

Restic Documentation

	Installation
	Packages

	Pre-compiled Binary

	From Source

	Manual
	Usage help

	Initialize a repository

	Create a snapshot

	List all snapshots

	Restore a snapshot

	Manage repository keys

	Manage tags

	Check integrity and consistency

	Mount a repository

	Removing old snapshots

	Debugging

	Under the hood: Browse repository objects

	Scripting

	Temporary files

	FAQ
	restic check reports packs that aren’t referenced in any index, is my repository broken?

	Development
	Contribute

	Security

	Compatibility

	Building documentation

	References
	Design

	REST Backend

	Talks

[image: Documentation] [https://restic.readthedocs.io/en/latest/?badge=latest] [image: Build Status] [https://travis-ci.org/restic/restic] [image: Build status] [https://ci.appveyor.com/project/fd0/restic/branch/master] [image: Report Card] [http://goreportcard.com/report/github.com/restic/restic]

Introduction

restic is a backup program that is fast, efficient and secure.

For detailed usage and installation instructions check out the documentation [https://restic.readthedocs.io/en/latest].

Quick start

Once you’ve installed [https://restic.readthedocs.io/en/latest/installation.html] restic, start off with creating a repository for your backups:

$ restic init --repo /tmp/backup
enter password for new backend:
enter password again:
created restic backend 085b3c76b9 at /tmp/backup
Please note that knowledge of your password is required to access the repository.
Losing your password means that your data is irrecoverably lost.

and add some data:

$ restic -r /tmp/backup backup ~/work
enter password for repository:
scan [/home/user/work]
scanned 764 directories, 1816 files in 0:00
[0:29] 100.00% 54.732 MiB/s 1.582 GiB / 1.582 GiB 2580 / 2580 items 0 errors ETA 0:00
duration: 0:29, 54.47MiB/s
snapshot 40dc1520 saved

For more options check out the usage guide [https://restic.readthedocs.io/en/latest/usage.html].

Design Principles

Restic is a program that does backups right and was designed with the
following principles in mind:

	Easy: Doing backups should be a frictionless process, otherwise
you might be tempted to skip it. Restic should be easy to configure
and use, so that, in the event of a data loss, you can just restore
it. Likewise, restoring data should not be complicated.

	Fast: Backing up your data with restic should only be limited by
your network or hard disk bandwidth so that you can backup your files
every day. Nobody does backups if it takes too much time. Restoring
backups should only transfer data that is needed for the files that
are to be restored, so that this process is also fast.

	Verifiable: Much more important than backup is restore, so restic
enables you to easily verify that all data can be restored.

	Secure: Restic uses cryptography to guarantee confidentiality and
integrity of your data. The location the backup data is stored is
assumed not to be a trusted environment (e.g. a shared space where
others like system administrators are able to access your backups).
Restic is built to secure your data against such attackers.

	Efficient: With the growth of data, additional snapshots should
only take the storage of the actual increment. Even more, duplicate
data should be de-duplicated before it is actually written to the
storage back end to save precious backup space.

News

You can follow the restic project on Twitter @resticbackup [https://twitter.com/resticbackup] or by subscribing to
the development blog [https://restic.github.io/blog/].

License

Restic is licensed under “BSD 2-Clause License”. You can find the
complete text in LICENSE.

Installation

Packages

Mac OS X

If you are using Mac OS X, you can install restic using the
homebrew [http://brew.sh/] packet manager:

$ brew tap restic/restic
$ brew install restic

archlinux

On archlinux, there is a package called restic-git which can be
installed from AUR, e.g. with pacaur:

$ pacaur -S restic-git

Pre-compiled Binary

You can download the latest pre-compiled binary from the restic release
page [https://github.com/restic/restic/releases/latest].

From Source

restic is written in the Go programming language and you need at least
Go version 1.7. Building restic may also work with older versions of Go,
but that’s not supported. See the Getting
started [https://golang.org/doc/install] guide of the Go project for
instructions how to install Go.

In order to build restic from source, execute the following steps:

$ git clone https://github.com/restic/restic
[...]

$ cd restic

$ go run build.go

You can easily cross-compile restic for all supported platforms, just
supply the target OS and platform via the command-line options like this
(for Windows and FreeBSD respectively):

$ go run build.go --goos windows --goarch amd64

$ go run build.go --goos freebsd --goarch 386

The resulting binary is statically linked and does not require any
libraries.

At the moment, the only tested compiler for restic is the official Go
compiler. Building restic with gccgo may work, but is not supported.

Manual

Usage help

Usage help is available:

$./restic --help
restic is a backup program which allows saving multiple revisions of files and
directories in an encrypted repository stored on different backends.

Usage:
 restic [command]

Available Commands:
 backup create a new backup of files and/or directories
 cat print internal objects to stdout
 check check the repository for errors
 find find a file or directory
 forget forget removes snapshots from the repository
 init initialize a new repository
 key manage keys (passwords)
 list list items in the repository
 ls list files in a snapshot
 mount mount the repository
 prune remove unneeded data from the repository
 rebuild-index build a new index file
 restore extract the data from a snapshot
 snapshots list all snapshots
 tag modifies tags on snapshots
 unlock remove locks other processes created
 version Print version information

Flags:
 --json set output mode to JSON for commands that support it
 --no-lock do not lock the repo, this allows some operations on read-only repos
 -p, --password-file string read the repository password from a file
 -q, --quiet do not output comprehensive progress report
 -r, --repo string repository to backup to or restore from (default: $RESTIC_REPOSITORY)

Use "restic [command] --help" for more information about a command.

Similar to programs such as git, restic has a number of
sub-commands. You can see these commands in the listing above. Each
sub-command may have own command-line options, and there is a help
option for each command which lists them, e.g. for the backup
command:

$./restic backup --help
The "backup" command creates a new snapshot and saves the files and directories
given as the arguments.

Usage:
 restic backup [flags] FILE/DIR [FILE/DIR] ...

Flags:
 -e, --exclude pattern exclude a pattern (can be specified multiple times)
 --exclude-file string read exclude patterns from a file
 --files-from string read the files to backup from file (can be combined with file args)
 -f, --force force re-reading the target files/directories. Overrides the "parent" flag
 -x, --one-file-system Exclude other file systems
 --parent string use this parent snapshot (default: last snapshot in the repo that has the same target files/directories)
 --stdin read backup from stdin
 --stdin-filename string file name to use when reading from stdin
 --tag tag add a tag for the new snapshot (can be specified multiple times)

Global Flags:
 --json set output mode to JSON for commands that support it
 --no-lock do not lock the repo, this allows some operations on read-only repos
 -p, --password-file string read the repository password from a file
 -q, --quiet do not output comprehensive progress report
 -r, --repo string repository to backup to or restore from (default: $RESTIC_REPOSITORY)

Subcommand that support showing progress information such as backup,
check and prune will do so unless the quiet flag -q or
--quiet is set. When running from a non-interactive console progress
reporting will be limited to once every 10 seconds to not fill your
logs.

Additionally on Unix systems if restic receives a SIGUSR signal the
current progress will written to the standard output so you can check up
on the status at will.

Initialize a repository

First, we need to create a “repository”. This is the place where your
backups will be saved at.

Local

In order to create a repository at /tmp/backup, run the following
command and enter the same password twice:

$ restic init --repo /tmp/backup
enter password for new backend:
enter password again:
created restic backend 085b3c76b9 at /tmp/backup
Please note that knowledge of your password is required to access the repository.
Losing your password means that your data is irrecoverably lost.

Other backends like sftp and s3 are described in a later
section of this document.

Remembering your password is important! If you lose it, you won’t be
able to access data stored in the repository.

For automated backups, restic accepts the repository location in the
environment variable RESTIC_REPOSITORY. The password can be read
from a file (via the option --password-file) or the environment
variable RESTIC_PASSWORD.

SFTP

In order to backup data via SFTP, you must first set up a server with
SSH and let it know your public key. Passwordless login is really
important since restic fails to connect to the repository if the server
prompts for credentials.

Once the server is configured, the setup of the SFTP repository can
simply be achieved by changing the URL scheme in the init command:

$ restic -r sftp:user@host:/tmp/backup init
enter password for new backend:
enter password again:
created restic backend f1c6108821 at sftp:user@host:/tmp/backup
Please note that knowledge of your password is required to access the repository.
Losing your password means that your data is irrecoverably lost.

You can also specify a relative (read: no slash (/) character at the
beginning) directory, in this case the dir is relative to the remote
user’s home directory.

The backend config string does not allow specifying a port. If you need
to contact an sftp server on a different port, you can create an entry
in the ssh file, usually located in your user’s home directory at
~/.ssh/config or in /etc/ssh/ssh_config:

Host foo
 User bar
 Port 2222

Then use the specified host name foo normally (you don’t need to
specify the user name in this case):

$ restic -r sftp:foo:/tmp/backup init

You can also add an entry with a special host name which does not exist,
just for use with restic, and use the Hostname option to set the
real host name:

Host restic-backup-host
 Hostname foo
 User bar
 Port 2222

Then use it in the backend specification:

$ restic -r sftp:restic-backup-host:/tmp/backup init

Last, if you’d like to use an entirely different program to create the
SFTP connection, you can specify the command to be run with the option
-o sftp.command="foobar".

REST Server

In order to backup data to the remote server via HTTP or HTTPS protocol,
you must first set up a remote REST
server [https://github.com/restic/rest-server] instance. Once the
server is configured, accessing it is achieved by changing the URL
scheme like this:

$ restic -r rest:http://host:8000/

Depending on your REST server setup, you can use HTTPS protocol,
password protection, or multiple repositories. Or any combination of
those features, as you see fit. TCP/IP port is also configurable. Here
are some more examples:

$ restic -r rest:https://host:8000/
$ restic -r rest:https://user:pass@host:8000/
$ restic -r rest:https://user:pass@host:8000/my_backup_repo/

If you use TLS, make sure your certificates are signed, ‘cause restic
client will refuse to communicate otherwise. It’s easy to obtain such
certificates today, thanks to free certificate authorities like Let’s
Encrypt [https://letsencrypt.org/].

REST server uses exactly the same directory structure as local backend,
so you should be able to access it both locally and via HTTP, even
simultaneously.

Amazon S3

Restic can backup data to any Amazon S3 bucket. However, in this case,
changing the URL scheme is not enough since Amazon uses special security
credentials to sign HTTP requests. By consequence, you must first setup
the following environment variables with the credentials you obtained
while creating the bucket.

$ export AWS_ACCESS_KEY_ID=<MY_ACCESS_KEY>
$ export AWS_SECRET_ACCESS_KEY=<MY_SECRET_ACCESS_KEY>

You can then easily initialize a repository that uses your Amazon S3 as
a backend, if the bucket does not exist yet it will be created in the
default location:

$ restic -r s3:s3.amazonaws.com/bucket_name init
enter password for new backend:
enter password again:
created restic backend eefee03bbd at s3:s3.amazonaws.com/bucket_name
Please note that knowledge of your password is required to access the repository.
Losing your password means that your data is irrecoverably lost.

It is not possible at the moment to have restic create a new bucket in a
different location, so you need to create it using a different program.
Afterwards, the S3 server (s3.amazonaws.com) will redirect restic to
the correct endpoint.

For an S3-compatible server that is not Amazon (like Minio, see below),
or is only available via HTTP, you can specify the URL to the server
like this: s3:http://server:port/bucket_name.

Minio Server

Minio [https://www.minio.io] is an Open Source Object Storage,
written in Go and compatible with AWS S3 API.

	Download and Install Minio
Server [https://minio.io/downloads/#minio-server].

	You can also refer to https://docs.minio.io for step by step guidance
on installation and getting started on Minio Client and Minio Server.

You must first setup the following environment variables with the
credentials of your running Minio Server.

$ export AWS_ACCESS_KEY_ID=<YOUR-MINIO-ACCESS-KEY-ID>
$ export AWS_SECRET_ACCESS_KEY= <YOUR-MINIO-SECRET-ACCESS-KEY>

Now you can easily initialize restic to use Minio server as backend with
this command.

$./restic -r s3:http://localhost:9000/restic init
enter password for new backend:
enter password again:
created restic backend 6ad29560f5 at s3:http://localhost:9000/restic1
Please note that knowledge of your password is required to access
the repository. Losing your password means that your data is irrecoverably lost.

Password prompt on Windows

At the moment, restic only supports the default Windows console
interaction. If you use emulation environments like
MSYS2 [https://msys2.github.io/] or
Cygwin [https://www.cygwin.com/], which use terminals like
Mintty or rxvt, you may get a password error:

You can workaround this by using a special tool called winpty (look
here [https://sourceforge.net/p/msys2/wiki/Porting/] and
here [https://github.com/rprichard/winpty] for detail information).
On MSYS2, you can install winpty as follows:

$ pacman -S winpty
$ winpty restic -r /tmp/backup init

Create a snapshot

Now we’re ready to backup some data. The contents of a directory at a
specific point in time is called a “snapshot” in restic. Run the
following command and enter the repository password you chose above
again:

$ restic -r /tmp/backup backup ~/work
enter password for repository:
scan [/home/user/work]
scanned 764 directories, 1816 files in 0:00
[0:29] 100.00% 54.732 MiB/s 1.582 GiB / 1.582 GiB 2580 / 2580 items 0 errors ETA 0:00
duration: 0:29, 54.47MiB/s
snapshot 40dc1520 saved

As you can see, restic created a backup of the directory and was pretty
fast! The specific snapshot just created is identified by a sequence of
hexadecimal characters, 40dc1520 in this case.

If you run the command again, restic will create another snapshot of
your data, but this time it’s even faster. This is de-duplication at
work!

$ restic -r /tmp/backup backup ~/shared/work/web
enter password for repository:
using parent snapshot 40dc1520aa6a07b7b3ae561786770a01951245d2367241e71e9485f18ae8228c
scan [/home/user/work]
scanned 764 directories, 1816 files in 0:00
[0:00] 100.00% 0B/s 1.582 GiB / 1.582 GiB 2580 / 2580 items 0 errors ETA 0:00
duration: 0:00, 6572.38MiB/s
snapshot 79766175 saved

You can even backup individual files in the same repository.

$ restic -r /tmp/backup backup ~/work.txt
scan [~/work.txt]
scanned 0 directories, 1 files in 0:00
[0:00] 100.00% 0B/s 220B / 220B 1 / 1 items 0 errors ETA 0:00
duration: 0:00, 0.03MiB/s
snapshot 31f7bd63 saved

In fact several hosts may use the same repository to backup directories
and files leading to a greater de-duplication.

Please be aware that when you backup different directories (or the
directories to be saved have a variable name component like a
time/date), restic always needs to read all files and only afterwards
can compute which parts of the files need to be saved. When you backup
the same directory again (maybe with new or changed files) restic will
find the old snapshot in the repo and by default only reads those files
that are new or have been modified since the last snapshot. This is
decided based on the modify date of the file in the file system.

You can exclude folders and files by specifying exclude-patterns. Either
specify them with multiple --exclude‘s or one --exclude-file

$ cat exclude
exclude go-files
*.go
exclude foo/x/y/z/bar foo/x/bar foo/bar
foo/**/bar
$ restic -r /tmp/backup backup ~/work --exclude=*.c --exclude-file=exclude

Patterns use
`filepath.Glob <https://golang.org/pkg/path/filepath/#Glob>`__
internally, see
`filepath.Match <https://golang.org/pkg/path/filepath/#Match>`__ for
syntax. Additionally ** excludes arbitrary subdirectories.
Environment-variables in exclude-files are expanded with
`os.ExpandEnv <https://golang.org/pkg/os/#ExpandEnv>`__.

By specifying the option --one-file-system you can instruct restic
to only backup files from the file systems the initially specified files
or directories reside on. For example, calling restic like this won’t
backup /sys or /dev on a Linux system:

$ restic -r /tmp/backup backup --one-file-system /

By using the --files-from option you can read the files you want to
backup from a file. This is especially useful if a lot of files have to
be backed up that are not in the same folder or are maybe pre-filtered
by other software.

For example maybe you want to backup files that have a certain filename
in them:

$ find /tmp/somefiles | grep 'PATTERN' > /tmp/files_to_backup

You can then use restic to backup the filtered files:

$ restic -r /tmp/backup backup --files-from /tmp/files_to_backup

Incidentally you can also combine --files-from with the normal files
args:

$ restic -r /tmp/backup backup --files-from /tmp/files_to_backup /tmp/some_additional_file

Reading data from stdin

Sometimes it can be nice to directly save the output of a program, e.g.
mysqldump so that the SQL can later be restored. Restic supports
this mode of operation, just supply the option --stdin to the
backup command like this:

$ mysqldump [...] | restic -r /tmp/backup backup --stdin

This creates a new snapshot of the output of mysqldump. You can then
use e.g. the fuse mounting option (see below) to mount the repository
and read the file.

By default, the file name stdin is used, a different name can be
specified with --stdin-filename, e.g. like this:

$ mysqldump [...] | restic -r /tmp/backup backup --stdin --stdin-filename production.sql

Tags

Snapshots can have one or more tags, short strings which add identifying
information. Just specify the tags for a snapshot with --tag:

$ restic -r /tmp/backup backup --tag projectX ~/shared/work/web
[...]

The tags can later be used to keep (or forget) snapshots.

List all snapshots

Now, you can list all the snapshots stored in the repository:

$ restic -r /tmp/backup snapshots
enter password for repository:
ID Date Host Tags Directory
--
40dc1520 2015-05-08 21:38:30 kasimir /home/user/work
79766175 2015-05-08 21:40:19 kasimir /home/user/work
bdbd3439 2015-05-08 21:45:17 luigi /home/art
590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

You can filter the listing by directory path:

$ restic -r /tmp/backup snapshots --path="/srv"
enter password for repository:
ID Date Host Tags Directory
--
590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

Or filter by host:

$ restic -r /tmp/backup snapshots --host luigi
enter password for repository:
ID Date Host Tags Directory
--
bdbd3439 2015-05-08 21:45:17 luigi /home/art
9f0bc19e 2015-05-08 21:46:11 luigi /srv

Combining filters is also possible.

Restore a snapshot

Restoring a snapshot is as easy as it sounds, just use the following
command to restore the contents of the latest snapshot to
/tmp/restore-work:

$ restic -r /tmp/backup restore 79766175 --target ~/tmp/restore-work
enter password for repository:
restoring <Snapshot of [/home/user/work] at 2015-05-08 21:40:19.884408621 +0200 CEST> to /tmp/restore-work

Use the word latest to restore the last backup. You can also combine
latest with the --host and --path filters to choose the last
backup for a specific host, path or both.

$ restic -r /tmp/backup restore latest --target ~/tmp/restore-work --path "/home/art" --host luigi
enter password for repository:
restoring <Snapshot of [/home/art] at 2015-05-08 21:45:17.884408621 +0200 CEST> to /tmp/restore-work

Manage repository keys

The key command allows you to set multiple access keys or passwords
per repository. In fact, you can use the list, add, remove
and passwd sub-commands to manage these keys very precisely:

$ restic -r /tmp/backup key list
enter password for repository:
 ID User Host Created
--
*eb78040b username kasimir 2015-08-12 13:29:57

$ restic -r /tmp/backup key add
enter password for repository:
enter password for new key:
enter password again:
saved new key as <Key of username@kasimir, created on 2015-08-12 13:35:05.316831933 +0200 CEST>

$ restic -r backup key list
enter password for repository:
 ID User Host Created
--
 5c657874 username kasimir 2015-08-12 13:35:05
*eb78040b username kasimir 2015-08-12 13:29:57

Manage tags

Managing tags on snapshots is done with the tag command. The
existing set of tags can be replaced completely, tags can be added to
removed. The result is directly visible in the snapshots command.

Let’s say we want to tag snapshot 590c8fc8 with the tags NL and
CH and remove all other tags that may be present, the following
command does that:

$ restic -r /tmp/backup tag --set NL,CH 590c8fc8
Create exclusive lock for repository
Modified tags on 1 snapshots

Note the snapshot ID has changed, so between each change we need to look
up the new ID of the snapshot. But there is an even better way, the
tag command accepts --tag for a filter, so we can filter
snapshots based on the tag we just added.

So we can add and remove tags incrementally like this:

$ restic -r /tmp/backup tag --tag NL --remove CH
Create exclusive lock for repository
Modified tags on 1 snapshots

$ restic -r /tmp/backup tag --tag NL --add UK
Create exclusive lock for repository
Modified tags on 1 snapshots

$ restic -r /tmp/backup tag --tag NL --remove NL
Create exclusive lock for repository
Modified tags on 1 snapshots

$ restic -r /tmp/backup tag --tag NL --add SOMETHING
No snapshots were modified

Check integrity and consistency

Imagine your repository is saved on a server that has a faulty hard
drive, or even worse, attackers get privileged access and modify your
backup with the intention to make you restore malicious data:

$ sudo echo "boom" >> backup/index/d795ffa99a8ab8f8e42cec1f814df4e48b8f49129360fb57613df93739faee97

In order to detect these things, it is a good idea to regularly use the
check command to test whether everything is alright, your precious
backup data is consistent and the integrity is unharmed:

$ restic -r /tmp/backup check
Load indexes
ciphertext verification failed

Trying to restore a snapshot which has been modified as shown above will
yield the same error:

$ restic -r /tmp/backup restore 79766175 --target ~/tmp/restore-work
Load indexes
ciphertext verification failed

Mount a repository

Browsing your backup as a regular file system is also very easy. First,
create a mount point such as /mnt/restic and then use the following
command to serve the repository with FUSE:

$ mkdir /mnt/restic
$ restic -r /tmp/backup mount /mnt/restic
enter password for repository:
Now serving /tmp/backup at /tmp/restic
Don't forget to umount after quitting!

Mounting repositories via FUSE is not possible on Windows and OpenBSD.

Restic supports storage and preservation of hard links. However, since
hard links exist in the scope of a filesystem by definition, restoring
hard links from a fuse mount should be done by a program that preserves
hard links. A program that does so is rsync, used with the option
–hard-links.

Removing old snapshots

All backup space is finite, so restic allows removing old snapshots.
This can be done either manually (by specifying a snapshot ID to remove)
or by using a policy that describes which snapshots to forget. For all
remove operations, two commands need to be called in sequence:
forget to remove a snapshot and prune to actually remove the
data that was referenced by the snapshot from the repository. This can
be automated with the --prune option of the forget command,
which runs prune automatically if snapshots have been removed.

Remove a single snapshot

The command snapshots can be used to list all snapshots in a
repository like this:

$ restic -r /tmp/backup snapshots
enter password for repository:
ID Date Host Tags Directory
--
40dc1520 2015-05-08 21:38:30 kasimir /home/user/work
79766175 2015-05-08 21:40:19 kasimir /home/user/work
bdbd3439 2015-05-08 21:45:17 luigi /home/art
590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

In order to remove the snapshot of /home/art, use the forget
command and specify the snapshot ID on the command line:

$ restic -r /tmp/backup forget bdbd3439
enter password for repository:
removed snapshot d3f01f63

Afterwards this snapshot is removed:

$ restic -r /tmp/backup snapshots
enter password for repository:
ID Date Host Tags Directory
--
40dc1520 2015-05-08 21:38:30 kasimir /home/user/work
79766175 2015-05-08 21:40:19 kasimir /home/user/work
590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

But the data that was referenced by files in this snapshot is still
stored in the repository. To cleanup unreferenced data, the prune
command must be run:

$ restic -r /tmp/backup prune
enter password for repository:

counting files in repo
building new index for repo
[0:00] 100.00% 22 / 22 files
repository contains 22 packs (8512 blobs) with 100.092 MiB bytes
processed 8512 blobs: 0 duplicate blobs, 0B duplicate
load all snapshots
find data that is still in use for 1 snapshots
[0:00] 100.00% 1 / 1 snapshots
found 8433 of 8512 data blobs still in use
will rewrite 3 packs
creating new index
[0:00] 86.36% 19 / 22 files
saved new index as 544a5084
done

Afterwards the repository is smaller.

You can automate this two-step process by using the --prune switch
to forget:

$ restic forget --keep-last 1 --prune
snapshots for host mopped, directories /home/user/work:

keep 1 snapshots:
ID Date Host Tags Directory
--
4bba301e 2017-02-21 10:49:18 mopped /home/user/work

remove 1 snapshots:
ID Date Host Tags Directory
--
8c02b94b 2017-02-21 10:48:33 mopped /home/user/work

1 snapshots have been removed, running prune
counting files in repo
building new index for repo
[0:00] 100.00% 37 / 37 packs
repository contains 37 packs (5521 blobs) with 151.012 MiB bytes
processed 5521 blobs: 0 duplicate blobs, 0B duplicate
load all snapshots
find data that is still in use for 1 snapshots
[0:00] 100.00% 1 / 1 snapshots
found 5323 of 5521 data blobs still in use, removing 198 blobs
will delete 0 packs and rewrite 27 packs, this frees 22.106 MiB
creating new index
[0:00] 100.00% 30 / 30 packs
saved new index as b49f3e68
done

Removing snapshots according to a policy

Removing snapshots manually is tedious and error-prone, therefore restic
allows specifying which snapshots should be removed automatically
according to a policy. You can specify how many hourly, daily, weekly,
monthly and yearly snapshots to keep, any other snapshots are removed.
The most important command-line parameter here is --dry-run which
instructs restic to not remove anything but print which snapshots would
be removed.

When forget is run with a policy, restic loads the list of all
snapshots, then groups these by host name and list of directories. The
policy is then applied to each group of snapshots separately. This is a
safety feature.

The forget command accepts the following parameters:

	--keep-last n never delete the n last (most recent) snapshots

	--keep-hourly n for the last n hours in which a snapshot was
made, keep only the last snapshot for each hour.

	--keep-daily n for the last n days which have one or more
snapshots, only keep the last one for that day.

	--keep-weekly n for the last n weeks which have one or more
snapshots, only keep the last one for that week.

	--keep-monthly n for the last n months which have one or more
snapshots, only keep the last one for that month.

	--keep-yearly n for the last n years which have one or more
snapshots, only keep the last one for that year.

	--keep-tag keep all snapshots which have all tags specified by
this option (can be specified multiple times).

Additionally, you can restrict removing snapshots to those which have a
particular hostname with the --hostname parameter, or tags with the
--tag option. When multiple tags are specified, only the snapshots
which have all the tags are considered.

All the --keep-* options above only count
hours/days/weeks/months/years which have a snapshot, so those without a
snapshot are ignored.

Let’s explain this with an example: Suppose you have only made a backup
on each Sunday for 12 weeks. Then forget --keep-daily 4 will keep
the last four snapshots for the last four Sundays, but remove the rest.
Only counting the days which have a backup and ignore the ones without
is a safety feature: it prevents restic from removing many snapshots
when no new ones are created. If it was implemented otherwise, running
forget --keep-daily 4 on a Friday would remove all snapshots!

Debugging

The program can be built with debug support like this:

$ go run build.go -tags debug

Afterwards, extensive debug messages are written to the file in
environment variable DEBUG_LOG, e.g.:

$ DEBUG_LOG=/tmp/restic-debug.log restic backup ~/work

If you suspect that there is a bug, you can have a look at the debug
log. Please be aware that the debug log might contain sensitive
information such as file and directory names.

The debug log will always contain all log messages restic generates. You
can also instruct restic to print some or all debug messages to stderr.
These can also be limited to e.g. a list of source files or a list of
patterns for function names. The patterns are globbing patterns (see the
documentation for
`path.Glob <https://golang.org/pkg/path/#Glob>`__), multiple
patterns are separated by commas. Patterns are case sensitive.

Printing all log messages to the console can be achieved by setting the
file filter to *:

$ DEBUG_FILES=* restic check

If you want restic to just print all debug log messages from the files
main.go and lock.go, set the environment variable
DEBUG_FILES like this:

$ DEBUG_FILES=main.go,lock.go restic check

The following command line instructs restic to only print debug
statements originating in functions that match the pattern *unlock*
(case sensitive):

$ DEBUG_FUNCS=*unlock* restic check

Under the hood: Browse repository objects

Internally, a repository stores data of several different types
described in the design
documentation [https://github.com/restic/restic/blob/master/doc/Design.md].
You can list objects such as blobs, packs, index, snapshots, keys or
locks with the following command:

$ restic -r /tmp/backup list snapshots
d369ccc7d126594950bf74f0a348d5d98d9e99f3215082eb69bf02dc9b3e464c

The find command searches for a given
pattern [http://golang.org/pkg/path/filepath/#Match] in the
repository.

$ restic -r backup find test.txt
debug log file restic.log
debug enabled
enter password for repository:
found 1 matching entries in snapshot 196bc5760c909a7681647949e80e5448e276521489558525680acf1bd428af36
 -rw-r--r-- 501 20 5 2015-08-26 14:09:57 +0200 CEST path/to/test.txt

The cat command allows you to display the JSON representation of the
objects or its raw content.

$ restic -r /tmp/backup cat snapshot d369ccc7d126594950bf74f0a348d5d98d9e99f3215082eb69bf02dc9b3e464c
enter password for repository:
{
 "time": "2015-08-12T12:52:44.091448856+02:00",
 "tree": "05cec17e8d3349f402576d02576a2971fc0d9f9776ce2f441c7010849c4ff5af",
 "paths": [
 "/home/user/work"
],
 "hostname": "kasimir",
 "username": "username",
 "uid": 501,
 "gid": 20
}

Scripting

Restic supports the output of some commands in JSON format, the JSON
data can then be processed by other programs (e.g.
jq [https://stedolan.github.io/jq/]). The following example
lists all snapshots as JSON and uses jq to pretty-print the result:

$ restic -r /tmp/backup snapshots --json | jq .
[
 {
 "time": "2017-03-11T09:57:43.26630619+01:00",
 "tree": "bf25241679533df554fc0fd0ae6dbb9dcf1859a13f2bc9dd4543c354eff6c464",
 "paths": [
 "/home/work/doc"
],
 "hostname": "kasimir",
 "username": "fd0",
 "uid": 1000,
 "gid": 100,
 "id": "bbeed6d28159aa384d1ccc6fa0b540644b1b9599b162d2972acda86b1b80f89e"
 },
 {
 "time": "2017-03-11T09:58:57.541446938+01:00",
 "tree": "7f8c95d3420baaac28dc51609796ae0e0ecfb4862b609a9f38ffaf7ae2d758da",
 "paths": [
 "/home/user/shared"
],
 "hostname": "kasimir",
 "username": "fd0",
 "uid": 1000,
 "gid": 100,
 "id": "b157d91c16f0ba56801ece3a708dfc53791fe2a97e827090d6ed9a69a6ebdca0"
 }
]

Temporary files

During some operations (e.g. backup and prune) restic uses
temporary files to store data. These files will, by default, be saved to
the system’s temporary directory, on Linux this is usually located in
/tmp/. The environment variable TMPDIR can be used to specify a
different directory, e.g. to use the directory /var/tmp/restic-tmp
instead of the default, set the environment variable like this:

$ export TMPDIR=/var/tmp/restic-tmp
$ restic -r /tmp/backup backup ~/work

FAQ

This is the list of Frequently Asked Questions for restic.

restic check reports packs that aren’t referenced in any index, is my repository broken?

When restic check reports that there are pack files in the
repository that are not referenced in any index, that’s (in contrast to
what restic reports at the moment) not a source for concern. The output
looks like this:

$ restic check
Create exclusive lock for repository
Load indexes
Check all packs
pack 819a9a52e4f51230afa89aefbf90df37fb70996337ae57e6f7a822959206a85e: not referenced in any index
pack de299e69fb075354a3775b6b045d152387201f1cdc229c31d1caa34c3b340141: not referenced in any index
Check snapshots, trees and blobs
Fatal: repository contains errors

The message means that there is more data stored in the repo than
strictly necessary. With high probability this is duplicate data. In
order to clean it up, the command restic prune can be used. The
cause of this bug is not yet known.

Development

Contribute

Contributions are welcome! Please open an issue first (or add a
comment to an existing issue) if you plan to work on any code or add a
new feature. This way, duplicate work is prevented and we can discuss
your ideas and design first.

More information and a description of the development environment can be
found in CONTRIBUTING.md.
A document describing the design of restic and the data structures stored on the
back end is contained in Design [https://restic.readthedocs.io/en/latest/design.html].

If you’d like to start contributing to restic, but don’t know exactly
what do to, have a look at this great article by Dave Cheney:
Suggestions for contributing to an Open Source
project [http://dave.cheney.net/2016/03/12/suggestions-for-contributing-to-an-open-source-project]
A few issues have been tagged with the label help wanted, you can
start looking at those:
https://github.com/restic/restic/labels/help%20wanted

Security

Important: If you discover something that you believe to be a
possible critical security problem, please do not open a GitHub issue
but send an email directly to alexander@bumpern.de. If possible, please
encrypt your email using the following PGP key
(0x91A6868BD3F7A907 [https://pgp.mit.edu/pks/lookup?op=get&search=0xCF8F18F2844575973F79D4E191A6868BD3F7A907]):

pub 4096R/91A6868BD3F7A907 2014-11-01
 Key fingerprint = CF8F 18F2 8445 7597 3F79 D4E1 91A6 868B D3F7 A907
 uid Alexander Neumann <alexander@bumpern.de>
 sub 4096R/D5FC2ACF4043FDF1 2014-11-01

Compatibility

Backward compatibility for backups is important so that our users are
always able to restore saved data. Therefore restic follows Semantic
Versioning [http://semver.org] to clearly define which versions are
compatible. The repository and data structures contained therein are
considered the “Public API” in the sense of Semantic Versioning. This
goes for all released versions of restic, this may not be the case for
the master branch.

We guarantee backward compatibility of all repositories within one major
version; as long as we do not increment the major version, data can be
read and restored. We strive to be fully backward compatible to all
prior versions.

Building documentation

The restic documentation is built with Sphinx [http://sphinx-doc.org],
therefore building it locally requires a recent Python version and requirements listed in doc/requirements.txt.
This example will guide you through the process using virtualenv [https://virtualenv.pypa.io]:

$ virtualenv venv # create virtual python environment
$ source venv/bin/activate # activate the virtual environment
$ cd doc
$ pip install -r requirements.txt # install dependencies
$ make html # build html documentation
$ # open _build/html/index.html with your favorite browser

References

Design

Terminology

This section introduces terminology used in this document.

Repository: All data produced during a backup is sent to and stored in
a repository in a structured form, for example in a file system
hierarchy with several subdirectories. A repository implementation must
be able to fulfill a number of operations, e.g. list the contents.

Blob: A Blob combines a number of data bytes with identifying
information like the SHA-256 hash of the data and its length.

Pack: A Pack combines one or more Blobs, e.g. in a single file.

Snapshot: A Snapshot stands for the state of a file or directory that
has been backed up at some point in time. The state here means the
content and meta data like the name and modification time for the file
or the directory and its contents.

Storage ID: A storage ID is the SHA-256 hash of the content stored in
the repository. This ID is required in order to load the file from the
repository.

Repository Format

All data is stored in a restic repository. A repository is able to store
data of several different types, which can later be requested based on
an ID. This so-called “storage ID” is the SHA-256 hash of the content of
a file. All files in a repository are only written once and never
modified afterwards. This allows accessing and even writing to the
repository with multiple clients in parallel. Only the delete operation
removes data from the repository.

Repositories consist of several directories and a top-level file called
config. For all other files stored in the repository, the name for
the file is the lower case hexadecimal representation of the storage ID,
which is the SHA-256 hash of the file’s contents. This allows for easy
verification of files for accidental modifications, like disk read
errors, by simply running the program sha256sum on the file and
comparing its output to the file name. If the prefix of a filename is
unique amongst all the other files in the same directory, the prefix may
be used instead of the complete filename.

Apart from the files stored within the keys directory, all files are
encrypted with AES-256 in counter mode (CTR). The integrity of the
encrypted data is secured by a Poly1305-AES message authentication code
(sometimes also referred to as a “signature”).

In the first 16 bytes of each encrypted file the initialisation vector
(IV) is stored. It is followed by the encrypted data and completed by
the 16 byte MAC. The format is: IV || CIPHERTEXT || MAC. The
complete encryption overhead is 32 bytes. For each file, a new random IV
is selected.

The file config is encrypted this way and contains a JSON document
like the following:

{
 "version": 1,
 "id": "5956a3f67a6230d4a92cefb29529f10196c7d92582ec305fd71ff6d331d6271b",
 "chunker_polynomial": "25b468838dcb75"
}

After decryption, restic first checks that the version field contains a
version number that it understands, otherwise it aborts. At the moment,
the version is expected to be 1. The field id holds a unique ID
which consists of 32 random bytes, encoded in hexadecimal. This uniquely
identifies the repository, regardless if it is accessed via SFTP or
locally. The field chunker_polynomial contains a parameter that is
used for splitting large files into smaller chunks (see below).

Filesystem-Based Repositories

The local and sftp backends are implemented using files and
directories stored in a file system. The directory layout is the same
for both backend types.

The basic layout of a repository stored in a local or sftp
backend is shown here:

/tmp/restic-repo
├── config
├── data
│ ├── 21
│ │ └── 2159dd48f8a24f33c307b750592773f8b71ff8d11452132a7b2e2a6a01611be1
│ ├── 32
│ │ └── 32ea976bc30771cebad8285cd99120ac8786f9ffd42141d452458089985043a5
│ ├── 59
│ │ └── 59fe4bcde59bd6222eba87795e35a90d82cd2f138a27b6835032b7b58173a426
│ ├── 73
│ │ └── 73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c
│ [...]
├── index
│ ├── c38f5fb68307c6a3e3aa945d556e325dc38f5fb68307c6a3e3aa945d556e325d
│ └── ca171b1b7394d90d330b265d90f506f9984043b342525f019788f97e745c71fd
├── keys
│ └── b02de829beeb3c01a63e6b25cbd421a98fef144f03b9a02e46eff9e2ca3f0bd7
├── locks
├── snapshots
│ └── 22a5af1bdc6e616f8a29579458c49627e01b32210d09adb288d1ecda7c5711ec
└── tmp

A local repository can be initialized with the restic init command,
e.g.:

$ restic -r /tmp/restic-repo init

The local and sftp backends will also accept the repository layout
described in the following section, so that remote repositories mounted
locally e.g. via fuse can be accessed. The layout auto-detection can be
overridden by specifying the option -o local.layout=default, valid
values are default, cloud and s3. The option for the sftp
backend is named sftp.layout.

Object-Storage-Based Repositories

Repositories in a backend based on an object store (e.g. Amazon s3) have
the same basic layout, with the exception that all data pack files are
directly saved in the data path, without the sub-directories listed
for the filesystem-based backends as listed in the previous section. The
layout looks like this:

/config
/data
 ├── 2159dd48f8a24f33c307b750592773f8b71ff8d11452132a7b2e2a6a01611be1
 ├── 32ea976bc30771cebad8285cd99120ac8786f9ffd42141d452458089985043a5
 ├── 59fe4bcde59bd6222eba87795e35a90d82cd2f138a27b6835032b7b58173a426
 ├── 73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c
[...]
/index
 ├── c38f5fb68307c6a3e3aa945d556e325dc38f5fb68307c6a3e3aa945d556e325d
 └── ca171b1b7394d90d330b265d90f506f9984043b342525f019788f97e745c71fd
/keys
 └── b02de829beeb3c01a63e6b25cbd421a98fef144f03b9a02e46eff9e2ca3f0bd7
/locks
/snapshots
 └── 22a5af1bdc6e616f8a29579458c49627e01b32210d09adb288d1ecda7c5711ec

Unfortunately during development the s3 backend uses slightly different
paths (directory names use singular instead of plural for key,
lock, and snapshot files), for s3 the repository layout looks
like this:

/config
/data
 ├── 2159dd48f8a24f33c307b750592773f8b71ff8d11452132a7b2e2a6a01611be1
 ├── 32ea976bc30771cebad8285cd99120ac8786f9ffd42141d452458089985043a5
 ├── 59fe4bcde59bd6222eba87795e35a90d82cd2f138a27b6835032b7b58173a426
 ├── 73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c
[...]
/index
 ├── c38f5fb68307c6a3e3aa945d556e325dc38f5fb68307c6a3e3aa945d556e325d
 └── ca171b1b7394d90d330b265d90f506f9984043b342525f019788f97e745c71fd
/key
 └── b02de829beeb3c01a63e6b25cbd421a98fef144f03b9a02e46eff9e2ca3f0bd7
/lock
/snapshot
 └── 22a5af1bdc6e616f8a29579458c49627e01b32210d09adb288d1ecda7c5711ec

The s3 backend understands and accepts both forms, new backends are
always created with the former layout for compatibility reasons.

Pack Format

All files in the repository except Key and Pack files just contain raw
data, stored as IV || Ciphertext || MAC. Pack files may contain one
or more Blobs of data.

A Pack’s structure is as follows:

EncryptedBlob1 || ... || EncryptedBlobN || EncryptedHeader || Header_Length

At the end of the Pack file is a header, which describes the content.
The header is encrypted and authenticated. Header_Length is the
length of the encrypted header encoded as a four byte integer in
little-endian encoding. Placing the header at the end of a file allows
writing the blobs in a continuous stream as soon as they are read during
the backup phase. This reduces code complexity and avoids having to
re-write a file once the pack is complete and the content and length of
the header is known.

All the blobs (EncryptedBlob1, EncryptedBlobN etc.) are
authenticated and encrypted independently. This enables repository
reorganisation without having to touch the encrypted Blobs. In addition
it also allows efficient indexing, for only the header needs to be read
in order to find out which Blobs are contained in the Pack. Since the
header is authenticated, authenticity of the header can be checked
without having to read the complete Pack.

After decryption, a Pack’s header consists of the following elements:

Type_Blob1 || Length(EncryptedBlob1) || Hash(Plaintext_Blob1) ||
[...]
Type_BlobN || Length(EncryptedBlobN) || Hash(Plaintext_Blobn) ||

This is enough to calculate the offsets for all the Blobs in the Pack.
Length is the length of a Blob as a four byte integer in little-endian
format. The type field is a one byte field and labels the content of a
blob according to the following table:

	Type
	Meaning

	0
	data

	1
	tree

All other types are invalid, more types may be added in the future.

For reconstructing the index or parsing a pack without an index, first
the last four bytes must be read in order to find the length of the
header. Afterwards, the header can be read and parsed, which yields all
plaintext hashes, types, offsets and lengths of all included blobs.

Indexing

Index files contain information about Data and Tree Blobs and the Packs
they are contained in and store this information in the repository. When
the local cached index is not accessible any more, the index files can
be downloaded and used to reconstruct the index. The files are encrypted
and authenticated like Data and Tree Blobs, so the outer structure is
IV || Ciphertext || MAC again. The plaintext consists of a JSON
document like the following:

{
 "supersedes": [
 "ed54ae36197f4745ebc4b54d10e0f623eaaaedd03013eb7ae90df881b7781452"
],
 "packs": [
 {
 "id": "73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c",
 "blobs": [
 {
 "id": "3ec79977ef0cf5de7b08cd12b874cd0f62bbaf7f07f3497a5b1bbcc8cb39b1ce",
 "type": "data",
 "offset": 0,
 "length": 25
 },{
 "id": "9ccb846e60d90d4eb915848add7aa7ea1e4bbabfc60e573db9f7bfb2789afbae",
 "type": "tree",
 "offset": 38,
 "length": 100
 },
 {
 "id": "d3dc577b4ffd38cc4b32122cabf8655a0223ed22edfd93b353dc0c3f2b0fdf66",
 "type": "data",
 "offset": 150,
 "length": 123
 }
]
 }, [...]
]
}

This JSON document lists Packs and the blobs contained therein. In this
example, the Pack 73d04e61 contains two data Blobs and one Tree
blob, the plaintext hashes are listed afterwards.

The field supersedes lists the storage IDs of index files that have
been replaced with the current index file. This happens when index files
are repacked, for example when old snapshots are removed and Packs are
recombined.

There may be an arbitrary number of index files, containing information
on non-disjoint sets of Packs. The number of packs described in a single
file is chosen so that the file size is kept below 8 MiB.

Keys, Encryption and MAC

All data stored by restic in the repository is encrypted with AES-256 in
counter mode and authenticated using Poly1305-AES. For encrypting new
data first 16 bytes are read from a cryptographically secure
pseudorandom number generator as a random nonce. This is used both as
the IV for counter mode and the nonce for Poly1305. This operation needs
three keys: A 32 byte for AES-256 for encryption, a 16 byte AES key and
a 16 byte key for Poly1305. For details see the original paper The
Poly1305-AES message-authentication
code [http://cr.yp.to/mac/poly1305-20050329.pdf] by Dan Bernstein.
The data is then encrypted with AES-256 and afterwards a message
authentication code (MAC) is computed over the ciphertext, everything is
then stored as IV || CIPHERTEXT || MAC.

The directory keys contains key files. These are simple JSON
documents which contain all data that is needed to derive the
repository’s master encryption and message authentication keys from a
user’s password. The JSON document from the repository can be
pretty-printed for example by using the Python module json
(shortened to increase readability):

$ python -mjson.tool /tmp/restic-repo/keys/b02de82*
{
 "hostname": "kasimir",
 "username": "fd0"
 "kdf": "scrypt",
 "N": 65536,
 "r": 8,
 "p": 1,
 "created": "2015-01-02T18:10:13.48307196+01:00",
 "data": "tGwYeKoM0C4j4/9DFrVEmMGAldvEn/+iKC3te/QE/6ox/V4qz58FUOgMa0Bb1cIJ6asrypCx/Ti/pRXCPHLDkIJbNYd2ybC+fLhFIJVLCvkMS+trdywsUkglUbTbi+7+Ldsul5jpAj9vTZ25ajDc+4FKtWEcCWL5ICAOoTAxnPgT+Lh8ByGQBH6KbdWabqamLzTRWxePFoYuxa7yXgmj9A==",
 "salt": "uW4fEI1+IOzj7ED9mVor+yTSJFd68DGlGOeLgJELYsTU5ikhG/83/+jGd4KKAaQdSrsfzrdOhAMftTSih5Ux6w==",
}

When the repository is opened by restic, the user is prompted for the
repository password. This is then used with scrypt, a key derivation
function (KDF), and the supplied parameters (N, r, p and
salt) to derive 64 key bytes. The first 32 bytes are used as the
encryption key (for AES-256) and the last 32 bytes are used as the
message authentication key (for Poly1305-AES). These last 32 bytes are
divided into a 16 byte AES key k followed by 16 bytes of secret key
r. The key r is then masked for use with Poly1305 (see the paper
for details).

Those message authentication keys (k and r) are used to compute
a MAC over the bytes contained in the JSON field data (after
removing the Base64 encoding and not including the last 32 byte). If the
password is incorrect or the key file has been tampered with, the
computed MAC will not match the last 16 bytes of the data, and restic
exits with an error. Otherwise, the data is decrypted with the
encryption key derived from scrypt. This yields a JSON document
which contains the master encryption and message authentication keys for
this repository (encoded in Base64). The command
restic cat masterkey can be used as follows to decrypt and
pretty-print the master key:

$ restic -r /tmp/restic-repo cat masterkey
{
 "mac": {
 "k": "evFWd9wWlndL9jc501268g==",
 "r": "E9eEDnSJZgqwTOkDtOp+Dw=="
 },
 "encrypt": "UQCqa0lKZ94PygPxMRqkePTZnHRYh1k1pX2k2lM2v3Q=",
}

All data in the repository is encrypted and authenticated with these
master keys. For encryption, the AES-256 algorithm in Counter mode is
used. For message authentication, Poly1305-AES is used as described
above.

A repository can have several different passwords, with a key file for
each. This way, the password can be changed without having to re-encrypt
all data.

Snapshots

A snapshot represents a directory with all files and sub-directories at
a given point in time. For each backup that is made, a new snapshot is
created. A snapshot is a JSON document that is stored in an encrypted
file below the directory snapshots in the repository. The filename
is the storage ID. This string is unique and used within restic to
uniquely identify a snapshot.

The command restic cat snapshot can be used as follows to decrypt
and pretty-print the contents of a snapshot file:

$ restic -r /tmp/restic-repo cat snapshot 251c2e58
enter password for repository:
{
 "time": "2015-01-02T18:10:50.895208559+01:00",
 "tree": "2da81727b6585232894cfbb8f8bdab8d1eccd3d8f7c92bc934d62e62e618ffdf",
 "dir": "/tmp/testdata",
 "hostname": "kasimir",
 "username": "fd0",
 "uid": 1000,
 "gid": 100,
 "tags": [
 "NL"
]
}

Here it can be seen that this snapshot represents the contents of the
directory /tmp/testdata. The most important field is tree. When
the meta data (e.g. the tags) of a snapshot change, the snapshot needs
to be re-encrypted and saved. This will change the storage ID, so in
order to relate these seemingly different snapshots, a field
original is introduced which contains the ID of the original
snapshot, e.g. after adding the tag DE to the snapshot above it
becomes:

$ restic -r /tmp/restic-repo cat snapshot 22a5af1b
enter password for repository:
{
 "time": "2015-01-02T18:10:50.895208559+01:00",
 "tree": "2da81727b6585232894cfbb8f8bdab8d1eccd3d8f7c92bc934d62e62e618ffdf",
 "dir": "/tmp/testdata",
 "hostname": "kasimir",
 "username": "fd0",
 "uid": 1000,
 "gid": 100,
 "tags": [
 "NL",
 "DE"
],
 "original": "251c2e5841355f743f9d4ffd3260bee765acee40a6229857e32b60446991b837"
}

Once introduced, the original field is not modified when the
snapshot’s meta data is changed again.

All content within a restic repository is referenced according to its
SHA-256 hash. Before saving, each file is split into variable sized
Blobs of data. The SHA-256 hashes of all Blobs are saved in an ordered
list which then represents the content of the file.

In order to relate these plaintext hashes to the actual location within
a Pack file , an index is used. If the index is not available, the
header of all data Blobs can be read.

Trees and Data

A snapshot references a tree by the SHA-256 hash of the JSON string
representation of its contents. Trees and data are saved in pack files
in a subdirectory of the directory data.

The command restic cat blob can be used to inspect the tree
referenced above (piping the output of the command to jq . so that
the JSON is indented):

$ restic -r /tmp/restic-repo cat blob b8138ab08a4722596ac89c917827358da4672eac68e3c03a8115b88dbf4bfb59 | jq .
enter password for repository:
{
 "nodes": [
 {
 "name": "testdata",
 "type": "dir",
 "mode": 493,
 "mtime": "2014-12-22T14:47:59.912418701+01:00",
 "atime": "2014-12-06T17:49:21.748468803+01:00",
 "ctime": "2014-12-22T14:47:59.912418701+01:00",
 "uid": 1000,
 "gid": 100,
 "user": "fd0",
 "inode": 409704562,
 "content": null,
 "subtree": "b26e315b0988ddcd1cee64c351d13a100fedbc9fdbb144a67d1b765ab280b4dc"
 }
]
}

A tree contains a list of entries (in the field nodes) which contain
meta data like a name and timestamps. When the entry references a
directory, the field subtree contains the plain text ID of another
tree object.

When the command restic cat blob is used, the plaintext ID is needed
to print a tree. The tree referenced above can be dumped as follows:

$ restic -r /tmp/restic-repo cat blob 8b238c8811cc362693e91a857460c78d3acf7d9edb2f111048691976803cf16e
enter password for repository:
{
 "nodes": [
 {
 "name": "testfile",
 "type": "file",
 "mode": 420,
 "mtime": "2014-12-06T17:50:23.34513538+01:00",
 "atime": "2014-12-06T17:50:23.338468713+01:00",
 "ctime": "2014-12-06T17:50:23.34513538+01:00",
 "uid": 1000,
 "gid": 100,
 "user": "fd0",
 "inode": 416863351,
 "size": 1234,
 "links": 1,
 "content": [
 "50f77b3b4291e8411a027b9f9b9e64658181cc676ce6ba9958b95f268cb1109d"
]
 },
 [...]
]
}

This tree contains a file entry. This time, the subtree field is not
present and the content field contains a list with one plain text
SHA-256 hash.

The command restic cat blob can also be used to extract and decrypt
data given a plaintext ID, e.g. for the data mentioned above:

$ restic -r /tmp/restic-repo cat blob 50f77b3b4291e8411a027b9f9b9e64658181cc676ce6ba9958b95f268cb1109d | sha256sum
enter password for repository:
50f77b3b4291e8411a027b9f9b9e64658181cc676ce6ba9958b95f268cb1109d -

As can be seen from the output of the program sha256sum, the hash
matches the plaintext hash from the map included in the tree above, so
the correct data has been returned.

Locks

The restic repository structure is designed in a way that allows
parallel access of multiple instance of restic and even parallel writes.
However, there are some functions that work more efficient or even
require exclusive access of the repository. In order to implement these
functions, restic processes are required to create a lock on the
repository before doing anything.

Locks come in two types: Exclusive and non-exclusive locks. At most one
process can have an exclusive lock on the repository, and during that
time there must not be any other locks (exclusive and non-exclusive).
There may be multiple non-exclusive locks in parallel.

A lock is a file in the subdir locks whose filename is the storage
ID of the contents. It is encrypted and authenticated the same way as
other files in the repository and contains the following JSON structure:

{
 "time": "2015-06-27T12:18:51.759239612+02:00",
 "exclusive": false,
 "hostname": "kasimir",
 "username": "fd0",
 "pid": 13607,
 "uid": 1000,
 "gid": 100
}

The field exclusive defines the type of lock. When a new lock is to
be created, restic checks all locks in the repository. When a lock is
found, it is tested if the lock is stale, which is the case for locks
with timestamps older than 30 minutes. If the lock was created on the
same machine, even for younger locks it is tested whether the process is
still alive by sending a signal to it. If that fails, restic assumes
that the process is dead and considers the lock to be stale.

When a new lock is to be created and no other conflicting locks are
detected, restic creates a new lock, waits, and checks if other locks
appeared in the repository. Depending on the type of the other locks and
the lock to be created, restic either continues or fails.

Backups and Deduplication

For creating a backup, restic scans the source directory for all files,
sub-directories and other entries. The data from each file is split into
variable length Blobs cut at offsets defined by a sliding window of 64
byte. The implementation uses Rabin Fingerprints for implementing this
Content Defined Chunking (CDC). An irreducible polynomial is selected at
random and saved in the file config when a repository is
initialized, so that watermark attacks are much harder.

Files smaller than 512 KiB are not split, Blobs are of 512 KiB to 8 MiB
in size. The implementation aims for 1 MiB Blob size on average.

For modified files, only modified Blobs have to be saved in a subsequent
backup. This even works if bytes are inserted or removed at arbitrary
positions within the file.

Threat Model

The design goals for restic include being able to securely store backups
in a location that is not completely trusted, e.g. a shared system where
others can potentially access the files or (in the case of the system
administrator) even modify or delete them.

General assumptions:

	The host system a backup is created on is trusted. This is the most
basic requirement, and essential for creating trustworthy backups.

The restic backup program guarantees the following:

	Accessing the unencrypted content of stored files and metadata should
not be possible without a password for the repository. Everything
except the metadata included for informational purposes in the key
files is encrypted and authenticated.

	Modifications (intentional or unintentional) can be detected
automatically on several layers:
	For all accesses of data stored in the repository it is checked
whether the cryptographic hash of the contents matches the storage
ID (the file’s name). This way, modifications (bad RAM, broken
harddisk) can be detected easily.

	Before decrypting any data, the MAC on the encrypted data is
checked. If there has been a modification, the MAC check will
fail. This step happens even before the data is decrypted, so data
that has been tampered with is not decrypted at all.

However, the restic backup program is not designed to protect against
attackers deleting files at the storage location. There is nothing that
can be done about this. If this needs to be guaranteed, get a secure
location without any access from third parties. If you assume that
attackers have write access to your files at the storage location,
attackers are able to figure out (e.g. based on the timestamps of the
stored files) which files belong to what snapshot. When only these files
are deleted, the particular snapshot vanished and all snapshots
depending on data that has been added in the snapshot cannot be restored
completely. Restic is not designed to detect this attack.

REST Backend

Restic can interact with HTTP Backend that respects the following REST
API. The following values are valid for {type}: data, keys,
locks, snapshots, index, config. {path} is a path to
the repository, so that multiple different repositories can be accessed.
The default path is /.

POST {path}?create=true

This request is used to initially create a new repository. The server
responds with “200 OK” if the repository structure was created
successfully or already exists, otherwise an error is returned.

DELETE {path}

Deletes the repository on the server side. The server responds with “200
OK” if the repository was successfully removed. If this function is not
implemented the server returns “501 Not Implemented”, if this it is
denied by the server it returns “403 Forbidden”.

HEAD {path}/config

Returns “200 OK” if the repository has a configuration, an HTTP error
otherwise.

GET {path}/config

Returns the content of the configuration file if the repository has a
configuration, an HTTP error otherwise.

Response format: binary/octet-stream

POST {path}/config

Returns “200 OK” if the configuration of the request body has been
saved, an HTTP error otherwise.

GET {path}/{type}/

Returns a JSON array containing the names of all the blobs stored for a
given type.

Response format: JSON

HEAD {path}/{type}/{name}

Returns “200 OK” if the blob with the given name and type is stored in
the repository, “404 not found” otherwise. If the blob exists, the HTTP
header Content-Length is set to the file size.

GET {path}/{type}/{name}

Returns the content of the blob with the given name and type if it is
stored in the repository, “404 not found” otherwise.

If the request specifies a partial read with a Range header field, then
the status code of the response is 206 instead of 200 and the response
only contains the specified range.

Response format: binary/octet-stream

POST {path}/{type}/{name}

Saves the content of the request body as a blob with the given name and
type, an HTTP error otherwise.

Request format: binary/octet-stream

DELETE {path}/{type}/{name}

Returns “200 OK” if the blob with the given name and type has been
deleted from the repository, an HTTP error otherwise.

Talks

The following talks will be or have been given about restic:

	2016-01-31: Lightning Talk at the Go Devroom at FOSDEM 2016,
Brussels, Belgium

	2016-01-29: restic - Backups mal
richtig [https://media.ccc.de/v/c4.openchaos.2016.01.restic]:
Public lecture in German at CCC Cologne
e.V. [https://koeln.ccc.de] in Cologne, Germany

	2015-08-23: A Solution to the Backup
Inconvenience [https://programm.froscon.de/2015/events/1515.html]:
Lecture at FROSCON 2015 [https://www.froscon.de] in Bonn, Germany

	2015-02-01: Lightning Talk at FOSDEM
2015 [https://www.youtube.com/watch?v=oM-MfeflUZ8&t=11m40s]: A
short introduction (with slightly outdated command line)

	2015-01-27: Talk about restic at CCC
Aachen [https://videoag.fsmpi.rwth-aachen.de/?view=player&lectureid=4442#content]
(in German)

Index

Design

Terminology

This section introduces terminology used in this document.

Repository: All data produced during a backup is sent to and stored in
a repository in a structured form, for example in a file system
hierarchy with several subdirectories. A repository implementation must
be able to fulfill a number of operations, e.g. list the contents.

Blob: A Blob combines a number of data bytes with identifying
information like the SHA-256 hash of the data and its length.

Pack: A Pack combines one or more Blobs, e.g. in a single file.

Snapshot: A Snapshot stands for the state of a file or directory that
has been backed up at some point in time. The state here means the
content and meta data like the name and modification time for the file
or the directory and its contents.

Storage ID: A storage ID is the SHA-256 hash of the content stored in
the repository. This ID is required in order to load the file from the
repository.

Repository Format

All data is stored in a restic repository. A repository is able to store
data of several different types, which can later be requested based on
an ID. This so-called “storage ID” is the SHA-256 hash of the content of
a file. All files in a repository are only written once and never
modified afterwards. This allows accessing and even writing to the
repository with multiple clients in parallel. Only the delete operation
removes data from the repository.

Repositories consist of several directories and a top-level file called
config. For all other files stored in the repository, the name for
the file is the lower case hexadecimal representation of the storage ID,
which is the SHA-256 hash of the file’s contents. This allows for easy
verification of files for accidental modifications, like disk read
errors, by simply running the program sha256sum on the file and
comparing its output to the file name. If the prefix of a filename is
unique amongst all the other files in the same directory, the prefix may
be used instead of the complete filename.

Apart from the files stored within the keys directory, all files are
encrypted with AES-256 in counter mode (CTR). The integrity of the
encrypted data is secured by a Poly1305-AES message authentication code
(sometimes also referred to as a “signature”).

In the first 16 bytes of each encrypted file the initialisation vector
(IV) is stored. It is followed by the encrypted data and completed by
the 16 byte MAC. The format is: IV || CIPHERTEXT || MAC. The
complete encryption overhead is 32 bytes. For each file, a new random IV
is selected.

The file config is encrypted this way and contains a JSON document
like the following:

{
 "version": 1,
 "id": "5956a3f67a6230d4a92cefb29529f10196c7d92582ec305fd71ff6d331d6271b",
 "chunker_polynomial": "25b468838dcb75"
}

After decryption, restic first checks that the version field contains a
version number that it understands, otherwise it aborts. At the moment,
the version is expected to be 1. The field id holds a unique ID
which consists of 32 random bytes, encoded in hexadecimal. This uniquely
identifies the repository, regardless if it is accessed via SFTP or
locally. The field chunker_polynomial contains a parameter that is
used for splitting large files into smaller chunks (see below).

Filesystem-Based Repositories

The local and sftp backends are implemented using files and
directories stored in a file system. The directory layout is the same
for both backend types.

The basic layout of a repository stored in a local or sftp
backend is shown here:

/tmp/restic-repo
├── config
├── data
│ ├── 21
│ │ └── 2159dd48f8a24f33c307b750592773f8b71ff8d11452132a7b2e2a6a01611be1
│ ├── 32
│ │ └── 32ea976bc30771cebad8285cd99120ac8786f9ffd42141d452458089985043a5
│ ├── 59
│ │ └── 59fe4bcde59bd6222eba87795e35a90d82cd2f138a27b6835032b7b58173a426
│ ├── 73
│ │ └── 73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c
│ [...]
├── index
│ ├── c38f5fb68307c6a3e3aa945d556e325dc38f5fb68307c6a3e3aa945d556e325d
│ └── ca171b1b7394d90d330b265d90f506f9984043b342525f019788f97e745c71fd
├── keys
│ └── b02de829beeb3c01a63e6b25cbd421a98fef144f03b9a02e46eff9e2ca3f0bd7
├── locks
├── snapshots
│ └── 22a5af1bdc6e616f8a29579458c49627e01b32210d09adb288d1ecda7c5711ec
└── tmp

A local repository can be initialized with the restic init command,
e.g.:

$ restic -r /tmp/restic-repo init

The local and sftp backends will also accept the repository layout
described in the following section, so that remote repositories mounted
locally e.g. via fuse can be accessed. The layout auto-detection can be
overridden by specifying the option -o local.layout=default, valid
values are default, cloud and s3. The option for the sftp
backend is named sftp.layout.

Object-Storage-Based Repositories

Repositories in a backend based on an object store (e.g. Amazon s3) have
the same basic layout, with the exception that all data pack files are
directly saved in the data path, without the sub-directories listed
for the filesystem-based backends as listed in the previous section. The
layout looks like this:

/config
/data
 ├── 2159dd48f8a24f33c307b750592773f8b71ff8d11452132a7b2e2a6a01611be1
 ├── 32ea976bc30771cebad8285cd99120ac8786f9ffd42141d452458089985043a5
 ├── 59fe4bcde59bd6222eba87795e35a90d82cd2f138a27b6835032b7b58173a426
 ├── 73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c
[...]
/index
 ├── c38f5fb68307c6a3e3aa945d556e325dc38f5fb68307c6a3e3aa945d556e325d
 └── ca171b1b7394d90d330b265d90f506f9984043b342525f019788f97e745c71fd
/keys
 └── b02de829beeb3c01a63e6b25cbd421a98fef144f03b9a02e46eff9e2ca3f0bd7
/locks
/snapshots
 └── 22a5af1bdc6e616f8a29579458c49627e01b32210d09adb288d1ecda7c5711ec

Unfortunately during development the s3 backend uses slightly different
paths (directory names use singular instead of plural for key,
lock, and snapshot files), for s3 the repository layout looks
like this:

/config
/data
 ├── 2159dd48f8a24f33c307b750592773f8b71ff8d11452132a7b2e2a6a01611be1
 ├── 32ea976bc30771cebad8285cd99120ac8786f9ffd42141d452458089985043a5
 ├── 59fe4bcde59bd6222eba87795e35a90d82cd2f138a27b6835032b7b58173a426
 ├── 73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c
[...]
/index
 ├── c38f5fb68307c6a3e3aa945d556e325dc38f5fb68307c6a3e3aa945d556e325d
 └── ca171b1b7394d90d330b265d90f506f9984043b342525f019788f97e745c71fd
/key
 └── b02de829beeb3c01a63e6b25cbd421a98fef144f03b9a02e46eff9e2ca3f0bd7
/lock
/snapshot
 └── 22a5af1bdc6e616f8a29579458c49627e01b32210d09adb288d1ecda7c5711ec

The s3 backend understands and accepts both forms, new backends are
always created with the former layout for compatibility reasons.

Pack Format

All files in the repository except Key and Pack files just contain raw
data, stored as IV || Ciphertext || MAC. Pack files may contain one
or more Blobs of data.

A Pack’s structure is as follows:

EncryptedBlob1 || ... || EncryptedBlobN || EncryptedHeader || Header_Length

At the end of the Pack file is a header, which describes the content.
The header is encrypted and authenticated. Header_Length is the
length of the encrypted header encoded as a four byte integer in
little-endian encoding. Placing the header at the end of a file allows
writing the blobs in a continuous stream as soon as they are read during
the backup phase. This reduces code complexity and avoids having to
re-write a file once the pack is complete and the content and length of
the header is known.

All the blobs (EncryptedBlob1, EncryptedBlobN etc.) are
authenticated and encrypted independently. This enables repository
reorganisation without having to touch the encrypted Blobs. In addition
it also allows efficient indexing, for only the header needs to be read
in order to find out which Blobs are contained in the Pack. Since the
header is authenticated, authenticity of the header can be checked
without having to read the complete Pack.

After decryption, a Pack’s header consists of the following elements:

Type_Blob1 || Length(EncryptedBlob1) || Hash(Plaintext_Blob1) ||
[...]
Type_BlobN || Length(EncryptedBlobN) || Hash(Plaintext_Blobn) ||

This is enough to calculate the offsets for all the Blobs in the Pack.
Length is the length of a Blob as a four byte integer in little-endian
format. The type field is a one byte field and labels the content of a
blob according to the following table:

	Type
	Meaning

	0
	data

	1
	tree

All other types are invalid, more types may be added in the future.

For reconstructing the index or parsing a pack without an index, first
the last four bytes must be read in order to find the length of the
header. Afterwards, the header can be read and parsed, which yields all
plaintext hashes, types, offsets and lengths of all included blobs.

Indexing

Index files contain information about Data and Tree Blobs and the Packs
they are contained in and store this information in the repository. When
the local cached index is not accessible any more, the index files can
be downloaded and used to reconstruct the index. The files are encrypted
and authenticated like Data and Tree Blobs, so the outer structure is
IV || Ciphertext || MAC again. The plaintext consists of a JSON
document like the following:

{
 "supersedes": [
 "ed54ae36197f4745ebc4b54d10e0f623eaaaedd03013eb7ae90df881b7781452"
],
 "packs": [
 {
 "id": "73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c",
 "blobs": [
 {
 "id": "3ec79977ef0cf5de7b08cd12b874cd0f62bbaf7f07f3497a5b1bbcc8cb39b1ce",
 "type": "data",
 "offset": 0,
 "length": 25
 },{
 "id": "9ccb846e60d90d4eb915848add7aa7ea1e4bbabfc60e573db9f7bfb2789afbae",
 "type": "tree",
 "offset": 38,
 "length": 100
 },
 {
 "id": "d3dc577b4ffd38cc4b32122cabf8655a0223ed22edfd93b353dc0c3f2b0fdf66",
 "type": "data",
 "offset": 150,
 "length": 123
 }
]
 }, [...]
]
}

This JSON document lists Packs and the blobs contained therein. In this
example, the Pack 73d04e61 contains two data Blobs and one Tree
blob, the plaintext hashes are listed afterwards.

The field supersedes lists the storage IDs of index files that have
been replaced with the current index file. This happens when index files
are repacked, for example when old snapshots are removed and Packs are
recombined.

There may be an arbitrary number of index files, containing information
on non-disjoint sets of Packs. The number of packs described in a single
file is chosen so that the file size is kept below 8 MiB.

Keys, Encryption and MAC

All data stored by restic in the repository is encrypted with AES-256 in
counter mode and authenticated using Poly1305-AES. For encrypting new
data first 16 bytes are read from a cryptographically secure
pseudorandom number generator as a random nonce. This is used both as
the IV for counter mode and the nonce for Poly1305. This operation needs
three keys: A 32 byte for AES-256 for encryption, a 16 byte AES key and
a 16 byte key for Poly1305. For details see the original paper The
Poly1305-AES message-authentication
code [http://cr.yp.to/mac/poly1305-20050329.pdf] by Dan Bernstein.
The data is then encrypted with AES-256 and afterwards a message
authentication code (MAC) is computed over the ciphertext, everything is
then stored as IV || CIPHERTEXT || MAC.

The directory keys contains key files. These are simple JSON
documents which contain all data that is needed to derive the
repository’s master encryption and message authentication keys from a
user’s password. The JSON document from the repository can be
pretty-printed for example by using the Python module json
(shortened to increase readability):

$ python -mjson.tool /tmp/restic-repo/keys/b02de82*
{
 "hostname": "kasimir",
 "username": "fd0"
 "kdf": "scrypt",
 "N": 65536,
 "r": 8,
 "p": 1,
 "created": "2015-01-02T18:10:13.48307196+01:00",
 "data": "tGwYeKoM0C4j4/9DFrVEmMGAldvEn/+iKC3te/QE/6ox/V4qz58FUOgMa0Bb1cIJ6asrypCx/Ti/pRXCPHLDkIJbNYd2ybC+fLhFIJVLCvkMS+trdywsUkglUbTbi+7+Ldsul5jpAj9vTZ25ajDc+4FKtWEcCWL5ICAOoTAxnPgT+Lh8ByGQBH6KbdWabqamLzTRWxePFoYuxa7yXgmj9A==",
 "salt": "uW4fEI1+IOzj7ED9mVor+yTSJFd68DGlGOeLgJELYsTU5ikhG/83/+jGd4KKAaQdSrsfzrdOhAMftTSih5Ux6w==",
}

When the repository is opened by restic, the user is prompted for the
repository password. This is then used with scrypt, a key derivation
function (KDF), and the supplied parameters (N, r, p and
salt) to derive 64 key bytes. The first 32 bytes are used as the
encryption key (for AES-256) and the last 32 bytes are used as the
message authentication key (for Poly1305-AES). These last 32 bytes are
divided into a 16 byte AES key k followed by 16 bytes of secret key
r. The key r is then masked for use with Poly1305 (see the paper
for details).

Those message authentication keys (k and r) are used to compute
a MAC over the bytes contained in the JSON field data (after
removing the Base64 encoding and not including the last 32 byte). If the
password is incorrect or the key file has been tampered with, the
computed MAC will not match the last 16 bytes of the data, and restic
exits with an error. Otherwise, the data is decrypted with the
encryption key derived from scrypt. This yields a JSON document
which contains the master encryption and message authentication keys for
this repository (encoded in Base64). The command
restic cat masterkey can be used as follows to decrypt and
pretty-print the master key:

$ restic -r /tmp/restic-repo cat masterkey
{
 "mac": {
 "k": "evFWd9wWlndL9jc501268g==",
 "r": "E9eEDnSJZgqwTOkDtOp+Dw=="
 },
 "encrypt": "UQCqa0lKZ94PygPxMRqkePTZnHRYh1k1pX2k2lM2v3Q=",
}

All data in the repository is encrypted and authenticated with these
master keys. For encryption, the AES-256 algorithm in Counter mode is
used. For message authentication, Poly1305-AES is used as described
above.

A repository can have several different passwords, with a key file for
each. This way, the password can be changed without having to re-encrypt
all data.

Snapshots

A snapshot represents a directory with all files and sub-directories at
a given point in time. For each backup that is made, a new snapshot is
created. A snapshot is a JSON document that is stored in an encrypted
file below the directory snapshots in the repository. The filename
is the storage ID. This string is unique and used within restic to
uniquely identify a snapshot.

The command restic cat snapshot can be used as follows to decrypt
and pretty-print the contents of a snapshot file:

$ restic -r /tmp/restic-repo cat snapshot 251c2e58
enter password for repository:
{
 "time": "2015-01-02T18:10:50.895208559+01:00",
 "tree": "2da81727b6585232894cfbb8f8bdab8d1eccd3d8f7c92bc934d62e62e618ffdf",
 "dir": "/tmp/testdata",
 "hostname": "kasimir",
 "username": "fd0",
 "uid": 1000,
 "gid": 100,
 "tags": [
 "NL"
]
}

Here it can be seen that this snapshot represents the contents of the
directory /tmp/testdata. The most important field is tree. When
the meta data (e.g. the tags) of a snapshot change, the snapshot needs
to be re-encrypted and saved. This will change the storage ID, so in
order to relate these seemingly different snapshots, a field
original is introduced which contains the ID of the original
snapshot, e.g. after adding the tag DE to the snapshot above it
becomes:

$ restic -r /tmp/restic-repo cat snapshot 22a5af1b
enter password for repository:
{
 "time": "2015-01-02T18:10:50.895208559+01:00",
 "tree": "2da81727b6585232894cfbb8f8bdab8d1eccd3d8f7c92bc934d62e62e618ffdf",
 "dir": "/tmp/testdata",
 "hostname": "kasimir",
 "username": "fd0",
 "uid": 1000,
 "gid": 100,
 "tags": [
 "NL",
 "DE"
],
 "original": "251c2e5841355f743f9d4ffd3260bee765acee40a6229857e32b60446991b837"
}

Once introduced, the original field is not modified when the
snapshot’s meta data is changed again.

All content within a restic repository is referenced according to its
SHA-256 hash. Before saving, each file is split into variable sized
Blobs of data. The SHA-256 hashes of all Blobs are saved in an ordered
list which then represents the content of the file.

In order to relate these plaintext hashes to the actual location within
a Pack file , an index is used. If the index is not available, the
header of all data Blobs can be read.

Trees and Data

A snapshot references a tree by the SHA-256 hash of the JSON string
representation of its contents. Trees and data are saved in pack files
in a subdirectory of the directory data.

The command restic cat blob can be used to inspect the tree
referenced above (piping the output of the command to jq . so that
the JSON is indented):

$ restic -r /tmp/restic-repo cat blob b8138ab08a4722596ac89c917827358da4672eac68e3c03a8115b88dbf4bfb59 | jq .
enter password for repository:
{
 "nodes": [
 {
 "name": "testdata",
 "type": "dir",
 "mode": 493,
 "mtime": "2014-12-22T14:47:59.912418701+01:00",
 "atime": "2014-12-06T17:49:21.748468803+01:00",
 "ctime": "2014-12-22T14:47:59.912418701+01:00",
 "uid": 1000,
 "gid": 100,
 "user": "fd0",
 "inode": 409704562,
 "content": null,
 "subtree": "b26e315b0988ddcd1cee64c351d13a100fedbc9fdbb144a67d1b765ab280b4dc"
 }
]
}

A tree contains a list of entries (in the field nodes) which contain
meta data like a name and timestamps. When the entry references a
directory, the field subtree contains the plain text ID of another
tree object.

When the command restic cat blob is used, the plaintext ID is needed
to print a tree. The tree referenced above can be dumped as follows:

$ restic -r /tmp/restic-repo cat blob 8b238c8811cc362693e91a857460c78d3acf7d9edb2f111048691976803cf16e
enter password for repository:
{
 "nodes": [
 {
 "name": "testfile",
 "type": "file",
 "mode": 420,
 "mtime": "2014-12-06T17:50:23.34513538+01:00",
 "atime": "2014-12-06T17:50:23.338468713+01:00",
 "ctime": "2014-12-06T17:50:23.34513538+01:00",
 "uid": 1000,
 "gid": 100,
 "user": "fd0",
 "inode": 416863351,
 "size": 1234,
 "links": 1,
 "content": [
 "50f77b3b4291e8411a027b9f9b9e64658181cc676ce6ba9958b95f268cb1109d"
]
 },
 [...]
]
}

This tree contains a file entry. This time, the subtree field is not
present and the content field contains a list with one plain text
SHA-256 hash.

The command restic cat blob can also be used to extract and decrypt
data given a plaintext ID, e.g. for the data mentioned above:

$ restic -r /tmp/restic-repo cat blob 50f77b3b4291e8411a027b9f9b9e64658181cc676ce6ba9958b95f268cb1109d | sha256sum
enter password for repository:
50f77b3b4291e8411a027b9f9b9e64658181cc676ce6ba9958b95f268cb1109d -

As can be seen from the output of the program sha256sum, the hash
matches the plaintext hash from the map included in the tree above, so
the correct data has been returned.

Locks

The restic repository structure is designed in a way that allows
parallel access of multiple instance of restic and even parallel writes.
However, there are some functions that work more efficient or even
require exclusive access of the repository. In order to implement these
functions, restic processes are required to create a lock on the
repository before doing anything.

Locks come in two types: Exclusive and non-exclusive locks. At most one
process can have an exclusive lock on the repository, and during that
time there must not be any other locks (exclusive and non-exclusive).
There may be multiple non-exclusive locks in parallel.

A lock is a file in the subdir locks whose filename is the storage
ID of the contents. It is encrypted and authenticated the same way as
other files in the repository and contains the following JSON structure:

{
 "time": "2015-06-27T12:18:51.759239612+02:00",
 "exclusive": false,
 "hostname": "kasimir",
 "username": "fd0",
 "pid": 13607,
 "uid": 1000,
 "gid": 100
}

The field exclusive defines the type of lock. When a new lock is to
be created, restic checks all locks in the repository. When a lock is
found, it is tested if the lock is stale, which is the case for locks
with timestamps older than 30 minutes. If the lock was created on the
same machine, even for younger locks it is tested whether the process is
still alive by sending a signal to it. If that fails, restic assumes
that the process is dead and considers the lock to be stale.

When a new lock is to be created and no other conflicting locks are
detected, restic creates a new lock, waits, and checks if other locks
appeared in the repository. Depending on the type of the other locks and
the lock to be created, restic either continues or fails.

Backups and Deduplication

For creating a backup, restic scans the source directory for all files,
sub-directories and other entries. The data from each file is split into
variable length Blobs cut at offsets defined by a sliding window of 64
byte. The implementation uses Rabin Fingerprints for implementing this
Content Defined Chunking (CDC). An irreducible polynomial is selected at
random and saved in the file config when a repository is
initialized, so that watermark attacks are much harder.

Files smaller than 512 KiB are not split, Blobs are of 512 KiB to 8 MiB
in size. The implementation aims for 1 MiB Blob size on average.

For modified files, only modified Blobs have to be saved in a subsequent
backup. This even works if bytes are inserted or removed at arbitrary
positions within the file.

Threat Model

The design goals for restic include being able to securely store backups
in a location that is not completely trusted, e.g. a shared system where
others can potentially access the files or (in the case of the system
administrator) even modify or delete them.

General assumptions:

	The host system a backup is created on is trusted. This is the most
basic requirement, and essential for creating trustworthy backups.

The restic backup program guarantees the following:

	Accessing the unencrypted content of stored files and metadata should
not be possible without a password for the repository. Everything
except the metadata included for informational purposes in the key
files is encrypted and authenticated.

	Modifications (intentional or unintentional) can be detected
automatically on several layers:
	For all accesses of data stored in the repository it is checked
whether the cryptographic hash of the contents matches the storage
ID (the file’s name). This way, modifications (bad RAM, broken
harddisk) can be detected easily.

	Before decrypting any data, the MAC on the encrypted data is
checked. If there has been a modification, the MAC check will
fail. This step happens even before the data is decrypted, so data
that has been tampered with is not decrypted at all.

However, the restic backup program is not designed to protect against
attackers deleting files at the storage location. There is nothing that
can be done about this. If this needs to be guaranteed, get a secure
location without any access from third parties. If you assume that
attackers have write access to your files at the storage location,
attackers are able to figure out (e.g. based on the timestamps of the
stored files) which files belong to what snapshot. When only these files
are deleted, the particular snapshot vanished and all snapshots
depending on data that has been added in the snapshot cannot be restored
completely. Restic is not designed to detect this attack.

REST Backend

Restic can interact with HTTP Backend that respects the following REST
API. The following values are valid for {type}: data, keys,
locks, snapshots, index, config. {path} is a path to
the repository, so that multiple different repositories can be accessed.
The default path is /.

POST {path}?create=true

This request is used to initially create a new repository. The server
responds with “200 OK” if the repository structure was created
successfully or already exists, otherwise an error is returned.

DELETE {path}

Deletes the repository on the server side. The server responds with “200
OK” if the repository was successfully removed. If this function is not
implemented the server returns “501 Not Implemented”, if this it is
denied by the server it returns “403 Forbidden”.

HEAD {path}/config

Returns “200 OK” if the repository has a configuration, an HTTP error
otherwise.

GET {path}/config

Returns the content of the configuration file if the repository has a
configuration, an HTTP error otherwise.

Response format: binary/octet-stream

POST {path}/config

Returns “200 OK” if the configuration of the request body has been
saved, an HTTP error otherwise.

GET {path}/{type}/

Returns a JSON array containing the names of all the blobs stored for a
given type.

Response format: JSON

HEAD {path}/{type}/{name}

Returns “200 OK” if the blob with the given name and type is stored in
the repository, “404 not found” otherwise. If the blob exists, the HTTP
header Content-Length is set to the file size.

GET {path}/{type}/{name}

Returns the content of the blob with the given name and type if it is
stored in the repository, “404 not found” otherwise.

If the request specifies a partial read with a Range header field, then
the status code of the response is 206 instead of 200 and the response
only contains the specified range.

Response format: binary/octet-stream

POST {path}/{type}/{name}

Saves the content of the request body as a blob with the given name and
type, an HTTP error otherwise.

Request format: binary/octet-stream

DELETE {path}/{type}/{name}

Returns “200 OK” if the blob with the given name and type has been
deleted from the repository, an HTTP error otherwise.

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-close.png

_static/ajax-loader.gif

_static/logo.png

_static/down.png

nav.xhtml

 Table of Contents

 		Restic Documentation

 		Installation

 		Packages

 		Mac OS X

 		archlinux

 		Pre-compiled Binary

 		From Source

 		Manual

 		Usage help

 		Initialize a repository

 		Local

 		SFTP

 		REST Server

 		Amazon S3

 		Minio Server

 		Password prompt on Windows

 		Create a snapshot

 		Reading data from stdin

 		Tags

 		List all snapshots

 		Restore a snapshot

 		Manage repository keys

 		Manage tags

 		Check integrity and consistency

 		Mount a repository

 		Removing old snapshots

 		Remove a single snapshot

 		Removing snapshots according to a policy

 		Debugging

 		Under the hood: Browse repository objects

 		Scripting

 		Temporary files

 		FAQ

 		restic check reports packs that aren't referenced in any index, is my repository broken?

 		Development

 		Contribute

 		Security

 		Compatibility

 		Building documentation

 		References

 		Design

 		Terminology

 		Repository Format

 		Pack Format

 		Indexing

 		Keys, Encryption and MAC

 		Snapshots

 		Trees and Data

 		Locks

 		Backups and Deduplication

 		Threat Model

 		REST Backend

 		POST {path}?create=true

 		DELETE {path}

 		HEAD {path}/config

 		GET {path}/config

 		POST {path}/config

 		GET {path}/{type}/

 		HEAD {path}/{type}/{name}

 		GET {path}/{type}/{name}

 		POST {path}/{type}/{name}

 		DELETE {path}/{type}/{name}

 		Talks

_static/plus.png

_static/down-pressed.png

_static/comment.png

