

    
      
          
            
  
The thompson package

Nathan Barker [https://www.dpmms.cam.ac.uk/~nb443/research.html], Andrew Duncan [http://www.mas.ncl.ac.uk/~najd2/] and David Robertson [https://DMRobertson.github.io] have submitted a paper entitled The power conjugacy problem in Higman-Thompson groups which addresses the following problem in the groups named \(G_{n,r}\).


[AS74] Given two elements \(x\) and \(y\) of a group, are there integers \(a\) and \(b\) and a third element \(z\) for which \(x^a = zy^bz^{-1} \neq 1\)? If so, provide them.




This package aims to implement the algorithms described in the paper. To do so it provides tools for working in


	the algebra \(V_{n,r}\), a certain set of words, and


	the automorphism group \(G_{n,r} = \operatorname{Aut}(V_{n,r})\).




This documentation serves three purposes. Firstly, it is meant to serve as a gentle introduction, explaining how to install and use the package. Secondly, it is meant to be a reference to all the various classes and functions provided by thompson. Finally, a number of examples are included throughout the documentation, which can be used as a means to test the implementation.


David M. Robertson [https://DMRobertson.github.io], Aug 27, 2018





Overview


Warning

For the most part, this documentation is automatically generated by Sphinx [http://sphinx-doc.org/] , so it’s not the prettiest thing that’s ever been written.



This all began as a series of tools to draw tree pair diagrams in Thompson’s group [http://en.wikipedia.org/wiki/Thompson_groups] \(V = G_{2,1}\), hence the name thompson. The focus has moved away from trees diagrams towards bijections between bases of words. From there, the package has grown and it now serves as an implementation of the algorithms we describe in the paper. Chief among these are the algorithms which:


	Determine the type of component which contains a given element, with respect to some given basis [Lemma 4.28]


	Computes the quasi-normal basis for a given automorphism  [Lemma 4.28]


	Test to see if two words share an orbit  [Lemma 4.34]


	Test to see if two automorphism are conjugate [Algorithm 5.6] and power conjugate [Algorithm 6.13].







Implementation details

The implementation is written in Python and runs under Python 3.3 and above. The intent was to provide a proof-of-concept rather than a perfectly optimised implementation. Despite this, we have found the program useful as a calculator for \(G_{n,r}\), as a means to generate examples, and for experimentally testing conjectures. The source code (both to the program and this documentation) is publicly available from GitHub [https://github.com/DMRobertson/thompsons_v].


Todo

Make this available under an open-source license.
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Getting Started


Installation


	
	Python interpreter.

	This program is written in Python and needs a Python interpreter to run; to be specific, Python 3.3 or above is required. If you don’t have this already installed on your system, your best bet is to download the latest version (currently 3.5) from the Python website. For Linux users, Python may be available from your distribution’s repositories; take care to install version 3.x rather than 2.x!







	
	Source code.

	If you have git available on your system, the easiest way to obtain the program is to simply clone the repository:


git clone https://github.com/DMRobertson/thompsons_v.git




If this is not possible, a ZIPped version can be downloaded from the project page [https://github.com/DMRobertson/thompsons_v] on GitHub.







	
	Package requirements.

	The de-facto package management tool for Python is the pip program, which is installed as part of Python 3.4 and higher. Python 3.3 users should consult the pip documentation [https://pypi.python.org/pypi/pip/] for instructions on how to install pip directly. Some Linux distributions may also provide pip as a package (make sure it’s for Python 3—it may be listed as pip3).

Once pip is installed, navigate to the project directory and run


pip install -r requirements.txt




(possibly you may need to use pip3). This should do all the hard work for you.


	Direct installation:

	If you would prefer not to install pip, you may install the prerequisites directly. There is only one major Python package required to run the program: NetworkX [https://networkx.github.io/], a library for working with graphs in Python. This may be available in Linux repositories, e.g. Ubuntu [http://packages.ubuntu.com/search?keywords=python3-networkx&searchon=names].

This documentation is built using Sphinx [http://sphinx-doc.org/]. If you wish to build it yourself, or run the test suite, you must install Sphinx also. Again, consider checking Linux repositories e.g. in Ubuntu [http://packages.ubuntu.com/search?suite=default&section=all&arch=any&keywords=python3-sphinx&searchon=names].
















First steps

Navigate to the root folder (thompsons_v) in a terminal and start up Python using the python command. Once the python prompt (>>>) is available, try to import thompson:

$ python
Python 3.3.3 (v3.3.3:c3896275c0f6, Nov 18 2013, 21:19:30) [MSC v.1600 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import thompson
>>>





If this fails, check that you’re using Python 3.3 or above. If python started up Python 2.x, try using the command python3 instead.

We can now use the python REPL [http://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop] as a sort of calculator for these groups.

>>> from thompson import *
>>> sig = (2, 1) #signature of the algebra we work in
>>> domain = Generators.standard_basis(sig).expand(0).expand(0)
>>> range  = Generators.standard_basis(sig).expand(0).expand(1)
>>> print(domain)
[x1 a1 a1, x1 a1 a2, x1 a2]
>>> print(range)
[x1 a1, x1 a2 a1, x1 a2 a2]
>>> phi = Automorphism(domain, range)
>>> print(phi)
InfiniteAut: V(2, 1) -> V(2, 1) specified by 3 generators (after expansion and reduction).
x1 a1 a1 -> x1 a1
x1 a1 a2 -> x1 a2 a1
x1 a2    -> x1 a2 a2





>>> phi.image('x a2 a1 a2 a2 a1')
Word('x1 a2 a2 a1 a2 a2 a1', (2, 1))
>>> phi.order
inf
>>> phi.print_characteristics()
(-1, a1)
(1, a2)
>>> phi.dump_QNB()
x1 a1 Left semi-infinite component with characteristic (-1, a1)
x1 a2 Right semi-infinite component with characteristic (1, a2)





>>> print(phi ** 2)
InfiniteAut: V(2, 1) -> V(2, 1) specified by 4 generators (after expansion and reduction).
x1 a1 a1 a1 -> x1 a1
x1 a1 a1 a2 -> x1 a2 a1
x1 a1 a2    -> x1 a2 a2 a1
x1 a2       -> x1 a2 a2 a2
>>> print(~phi) #inverse
InfiniteAut: V(2, 1) -> V(2, 1) specified by 3 generators (after expansion and reduction).
x1 a1    -> x1 a1 a1
x1 a2 a1 -> x1 a1 a2
x1 a2 a2 -> x1 a2
>>> print(~phi * phi) # == identity
PeriodicAut: V(2, 1) -> V(2, 1) specified by 1 generators (after expansion and reduction).
x1 -> x1








Locating examples

A number of examples are included in this package, some of which are used in [BDR] . To access them, use the load_example() function:

>>> from thompson import *
>>> phi = load_example('nathan_pond_example')
>>> print(phi)
InfiniteAut: V(2, 1) -> V(2, 1) specified by 7 generators (after expansion and reduction).
x1 a1 a1 a1 a1 -> x1 a1 a1
x1 a1 a1 a1 a2 -> x1 a1 a2 a1 a1
x1 a1 a1 a2 a1 -> x1 a2 a2
x1 a1 a1 a2 a2 -> x1 a2 a1
x1 a1 a2       -> x1 a1 a2 a1 a2
x1 a2 a1       -> x1 a1 a2 a2 a2
x1 a2 a2       -> x1 a1 a2 a2 a1






Note

Previously, one would access this example by using from thompson.examples import nathan_pond_example. I changed this, because it meant that every example was loaded (and the quasinormal bases etc. computed) whenever thompson.examples was imported.



To see the list of available examples, consult the documentation for the examples module. You might also like to consult the demo notebook [https://github.com/DMRobertson/thompsons_v/blob/master/notebooks/Thompson%20example.ipynb] on GitHub.




Running the test suite

Make sure Sphinx is installed (see the installation section). Then navigate to the docs folder and run make doctest. This should look through the source code for short tests and alert you if any of them fail. You can also run make html to build this documentation. Reset with make clean.







          

      

      

    

  

    
      
          
            
  
Number theory

At the bottom level of the package hierarchy are various helper functions which implement standard number-theoretic algorithms.


	
thompson.number_theory.gcd(a, b)

	Calculate the Greatest Common Divisor of a and b.

Unless b==0, the result will have the same sign as b (so that when
b is divided by it, the result comes out positive).

>>> gcd(12, 8)
4
>>> gcd(0, 50)
50
>>> gcd(7, 101)
1










	
thompson.number_theory.extended_gcd(a, b)

	From this exposition of the extended gcd algorithm [http://anh.cs.luc.edu/331/notes/xgcd.pdf]. Computes \(d = \gcd(a, b)\) and returns a triple \((d, x, y)\) where \(d = ax + by\).

>>> extended_gcd(14, 33)
(1, -7, 3)
>>> extended_gcd(12, 32)
(4, 3, -1)










	
thompson.number_theory.lcm(*args)

	Computes the least common multiple of the given args. If a single argument is provided, the least common multiple of its elements is computed.

>>> n = randint(1, 1000000)
>>> lcm(n) == n
True
>>> lcm(2, 13)
26
>>> lcm(*range(1, 10)) #1, 2, ..., 9
2520
>>> lcm(range(1, 10))  #Don't have to unpack the arguments
2520










	
thompson.number_theory.solve_linear_diophantine(a, b, c)

	Solves the equation \(ax + by = c\) for integers \(x, y \in\mathbb{Z}\).


	Return type

	None if no solution exists; otherwise a triple (base, inc, lcm) where


	base is a single solution \((x_0, y_0)\);


	inc is a pair \((\delta x, \delta y)\) such that if \((x, y)\) is a solution, so is \((x, y) \pm (\delta x, \delta y)\); and


	lcm is the value of \(\operatorname{lcm}(a, b)\).















	
thompson.number_theory.solve_linear_congruence(a, b, n)

	Solves the congruence \(ax \equiv b \pmod n\).


	Return type

	a SolutionSet representing all such solutions \(x\).





>>> x = solve_linear_congruence(6, 12, 18)
>>> print(x)
{..., -1, 2, 5, 8, 11, 14, ...}
>>> y = solve_linear_congruence(5, 7, 11)
>>> print(y)
{..., -3, 8, 19, 30, 41, 52, ...}
>>> print(x & y)
{..., -25, 8, 41, 74, 107, 140, ...}










	
thompson.number_theory.divisors(n, include_one=True)

	An iterator that yields the positive divisors \(d \mid n\).


	Parameters

	include_one (bool [https://docs.python.org/3/library/functions.html#bool]) – set to False to exlude \(d = 1\).





>>> list(divisors(12))
[1, 2, 3, 4, 6, 12]
>>> list(divisors(125, include_one=False))
[5, 25, 125]










	
thompson.number_theory.prod(iterable)

	Handy function for computing the product of an iterable collection of numbers.
From Stack Overflow [http://stackoverflow.com/a/7948307].

>>> prod(range(1, 5))
24













          

      

      

    

  

    
      
          
            
  
Words and standard forms

By a word, we mean a string [http://en.wikipedia.org/wiki/Formal_language#Words_over_an_alphabet] written using the symbols


\[X \cup \Omega = \{x_1, \dotsc, x_r\} \cup \{\alpha_1, \dotsc, \alpha_n, \lambda\}.\]

We treat the \(x_i\) are constants, the \(\alpha_i\) are unary operators and \(\lambda\) as an n-ary operation. We refer to the parameters \(n\) and \(r\) as the arity and alphabet size respectively.


Notation

If we collect together all such words, we obtain an algebra (in the sense of universal algebra [http://en.wikipedia.org/wiki/Universal_algebra]) of words. We consider three different algebras; using the notation of [Cohn81]:


	\(W(\Omega; X)\), the set of all finite strings written using letters in \(X \cup \Omega\). In other words/jargon, this is the free monoid [http://en.wikipedia.org/wiki/Free_monoid] on \(X \cup \Omega\). Cohn calls these strings \(\Omega\)-rows.





	\(W_\Omega(X)\), the subset of \(W(\Omega; X)\) whose strings represent a valid series of operations. Valid means that each the operations \(\alpha_i\) and \(\lambda\) always recieve the correct number of arguments. Cohn calls these strings \(\Omega\)-words.





	\(V_{n, r}(X) = W_\Omega(X) / \mathfrak{q}\). This is equivalent to the set of words in \(W_\Omega(X)\) which are in Higman’s standard form. Roughly speaking, a word is in standard form if is valid (type 2) and it cannot be reduced to a shorter word using the following two rules.



	\(w_1 \dots w_n \lambda \alpha_i = w_i\), where each \(w_i\) is in standard form.


	\(w \alpha_1 \dots w \alpha_n \lambda = w\), where \(w\) is in standard form.











Sometimes we need to refer to a string which consists only of \(\alpha\)-s. Write \(A\) for the set \(\{\alpha_1, \dotsc, \alpha_n\}\). We define \(A^*\) to be the set of finite strings over \(A\). (Again, this is the free monoid [http://en.wikipedia.org/wiki/Free_monoid] on \(A\).)

Finally, let \(S\) be a set of words. We define \(X\langle A\rangle\) to be the set of concatenations \(s \Gamma\), where \(s \in S\) and \(\Gamma \in A^*\). It is sometimes helpful to think of \(S\langle A\rangle\) as the set of words below \(S\).


See also

Sections 2 and 2.3 and Remark 3.3 of the paper.






Signatures

It may happen that we need to work in different algebras \(V_{n,r}, V_{m,s}\) at the same time. To keep track of the algebras that different words belong to, we associate a Signature to each word \(w \in V_{n,r}\). 1 Signatures are implemented as a glorified tuple \((n, r)\). This means they are immutable [https://docs.python.org/3/glossary.html#term-immutable].


	
class thompson.word.Signature

	
	
static __new__(cls, arity, alphabet_size)

	Signatures store an arity \(n \geq 2\) and an alphabet_size \(r \geq 1\).






	
__contains__(other)

	We can use the in operator to see if a Word lies in the algebra that this signature describes.

>>> s = Signature(2, 1)
>>> Word('x1 a1 a2', s) in s
True
>>> Word('x1 a1 a2', (2, 2)) in s
False










	
is_isomorphic_to(other)

	We can test the (signatures of) two algebras \(V_{n,r}\) and \(V_{m,s}\) to see if they are isomorphic. This happens precisely when \(n = m\) and \(r \equiv s \pmod{n-1}\).

>>> Signature(2, 1).is_isomorphic_to(Signature(2, 4))
True
>>> Signature(2, 1).is_isomorphic_to(Signature(3, 1))
False
>>> Signature(3, 2).is_isomorphic_to(Signature(3, 1))
False
>>> Signature(3, 3).is_isomorphic_to(Signature(3, 1))
True






See also

Corollary 3.14 of the paper.














Operations on words

We represent a word as a tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of integers, where:


	\(x_i\) is represented by \(i\),


	\(\alpha_i\) is represented by \(-i\), and


	\(\lambda\) is represented by \(0\).




We can write words of all types in this format, but we’re only interested in the standard forms (type 3). To this end, the validate() detects those which are of type 2, and standardise() reduces type 2 words to type 3.


	
thompson.word.format(word)

	Turns a Word, or a sequence of integers representing a word into a nicely formatted string.
Can be thought of as an inverse to from_string().
The word is not processed or reduced in any way by this function.

>>> format(Word("x1 a1 a2 a1 a1", (2, 1)))
'x1 a1 a2 a1 a1'
>>> format([2, -1, 2, -2, 0])
'x2 a1 x2 a2 L'
>>> format([])
'<the empty word>'










	
thompson.word.format_cantor(word, subset=False)

	An alternative, more concise notation for simple words.
We use the Cantor set notation, where we write \(n-1\) in place of 
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Generating sets and bases

Let \(S\) be a set of words in \(V_{n,r}\). We can obtain new words by applying the operations \(\alpha_i\) and \(\lambda\) to elements of \(S\). Next, we can apply the operations to the new words we’ve received. This process continues indefinitely, producing a set of words \(T\) whose elements are sourced from the original set \(S\). We call \(T\) the subalgebra generated by \(S\) and say that \(S\) generates \(T\).

Of particular interest are bases, which we can think of as generating sets which do not contain any redundant elements.  For example, it would be pointless to include each of \(x\), \(x \alpha_1\) and \(x \alpha_2\) in S, as the first can be obtained from the last two and vice versa.


The Generators class


	
class thompson.generators.Generators(signature, generators=None)

	An ordered subset of \(V_{n, r}\), together with methods which treat such sets as generating sets and bases. Internally, this is a subclass of list [https://docs.python.org/3/library/stdtypes.html#list], so it is possible to reorder and otherwise modify collections of Generators.


	Variables

	signature – The Signature of the algebra this set belongs to.






	
__init__(signature, generators=None)

	When creating a generating set, you must specify the algebra \(V_{n, r}\) it is a subset of. A list of generators can optionally be provided. Each generator is passed to append().






	
append(w)

	Adds w to this generating set. If w is a string, a Word object is created and assigned the same arity and alphabet_size as the generating set.


	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if w is neither a string nor a Word.


	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – if w has a different arity to the generating set.


	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – if w has a larger alphabet_size the generating set.


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if w is already contained in this generating set.













	
extend(iterable) → None -- extend list by appending elements from the iterable

	




	
__eq__(other)

	Two Generators instances are equal iff they have the same signature and the same elements in the same order.

>>> x = random_basis(signature=(3, 2))
>>> y = x.embed_in((4, 3))
>>> x == y #Different signatures, so False
False
>>> list.__eq__(x, y) #Even though they have the same elements
True










	
copy()

	We override list.copy() so that we don’t have to recreate Generators instances by hand.

>>> olga_f = load_example('olga_f')
>>> X = olga_f.quasinormal_basis.copy()
>>> X is olga_f.quasinormal_basis
False
>>> type(X).__name__
'Generators'










	
filter(func)

	Creates a copy of the current generating set whose elements x are those for which func(x) is True. The original generating set is unmodified, and the order of elements is inherited by the filtered copy.

>>> X = load_example('olga_f').quasinormal_basis
>>> print(X)
[x1 a1 a1, x1 a1 a2, x1 a2 a1, x1 a2 a2 a1, x1 a2 a2 a2]
>>> def test(x):
...     return len(x) % 2 == 0
...
>>> print(X.filter(test))
[x1 a2 a2 a1, x1 a2 a2 a2]










	
test_free()

	Tests to see if the current generating set \(X\) is a free generating set.
To do so, the words contained in \(X\) must all be simple.

If the test fails, returns the first pair of indices \((i, j)\) found for which \(X_i\) is above \(X_j\). If the test passes, returns \((-1, -1)\).

>>> g = Generators((2, 3), ["x1 a1", "x1 a2 a1", "x1 a2 a1 a1", "x1 a2 a2"])
>>> g.test_free()
(1, 2)
>>> print(g[1], g[2], sep='\n')
x1 a2 a1
x1 a2 a1 a1
>>> g = Generators((2, 1), ['x1 a2 a2', 'x1 a2 a1 x1 a2 a2 a2 a1 L x1 a1 L'])
>>> g.test_free()
Traceback (most recent call last):
...
ValueError: Cannot test for freeness unless all words are simple.






	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if any word in the basis is not simple.






See also

Lemma 3.16 of the paper.








	
is_free()

	Returns True if this is a free generating set; otherwise False.

>>> g = Generators((2, 3), ['x1', 'x2']);
>>> g.is_free()
True
>>> g.append('x3'); g.is_free()
True
>>> g.append('x2 a1'); g.is_free()
False










	
preorder_traversal()

	Yields words as if traversing the vertices of a tree in pre-order.






	
simple_words_above()

	An iterator that yields the simple words which can be obtained by contracting this basis \(n \geq 0\) times. (So the ‘above’ condition is not strict.)

>>> g = Generators((3, 1), ["x a1 a1 a3", "x a1 a1 a1", "x a1 a2", "x a1 a1 a2", "x a1 a3"])
>>> for word in g.simple_words_above():
...     print(format(word))
x1 a1 a1 a1
x1 a1 a1 a2
x1 a1 a1 a3
x1 a1 a2
x1 a1 a3
x1 a1 a1
x1 a1










	
test_generates_algebra()

	Tests to see if this set generates all of \(V_{n,r}\). The generating set is sorted, and then contracted as much as possible. Then we check to see which elements of the standard basis \(\boldsymbol{x} = \{x_1, \dotsc, x_r\}\) are not included in the contraction.

The test fails if there is at least one such element; in this case, the list of all such elements is returned. Otherwise the test passes, and an empty list is returned.

>>> #A basis for V_2,1
>>> Y = Generators((2, 1), ["x a1", "x a2 a1", "x a2 a2 a1 a1", "x a2 a2 a1 a2", "x a2 a2 a2"])
>>> Y.test_generates_algebra()
[]
>>> #The same words do not generate V_2,3
>>> Y = Generators((2, 3), ["x a1", "x a2 a1", "x a2 a2 a1 a1", "x a2 a2 a1 a2", "x a2 a2 a2"])
>>> missing = Y.test_generates_algebra(); missing
[Word('x2', (2, 3)), Word('x3', (2, 3))]
>>> for x in missing: print(x)
x2
x3






	Return type

	a list of Words.










	
generates_algebra()

	Returns True if this set generates all of \(V_{n,r}\). Otherwise returns False.

>>> from random import randint
>>> arity = randint(2, 5); alphabet_size = randint(2, 10)
>>> Y = Generators.standard_basis((arity, alphabet_size))
>>> Y.generates_algebra()
True
>>> random_basis().generates_algebra()
True










	
test_above(word, return_index=False)

	Searches for a pair (gen, tail) where gen belongs to the current basis and gen + tail = word. If no such pair exists, returns None.

If return_index is False, returns the pair (gen, tail). Otherwise, returns the pair (i, tail) where i is the index of gen in the current basis.

>>> basis = Generators.standard_basis((2, 1)).expand(0).expand(0).expand(0)
>>> basis
Generators((2, 1), ['x1 a1 a1 a1', 'x1 a1 a1 a2', 'x1 a1 a2', 'x1 a2'])
>>> gen, tail = basis.test_above(Word('x1 a2 a2 a1', (2, 1)))
>>> print(gen, '|', format(tail))
x1 a2 | a2 a1
>>> i, tail = basis.test_above(Word('x1 a2 a2 a1', (2, 1)), return_index=True)
>>> print(basis[i])
x1 a2
>>> basis.test_above(Word('x1', (2,1))) is None
True
>>> gen, tail = basis.test_above(basis[0])
>>> print(gen)
x1 a1 a1 a1
>>> gen is basis[0] and len(tail) == 0
True










	
is_above(word)

	Returns True if any generator is_above() the given word.

>>> g = Generators((2, 2), ['x1 a1', 'x1 a2', 'x2'])
>>> g.is_above(Word('x1 a1 a1 a2', (2, 2)))
True
>>> g.is_above(Word('x1', (2, 2)))
False
>>> g.is_above(Word('x2', (2, 2)))
True
>>> g.is_above(Word('x1 a1 x1 a2 L', (2, 2)))
False










	
is_basis()

	Returns True if this is a free generating set which generates all of \(V_{n,r}\). Otherwise returns False.

>>> g = Generators((2, 2), ["x1 a1", "x1 a2"])
>>> g.is_free()
True
>>> g.generates_algebra()
False
>>> g.is_basis()
False
>>> g.append('x2')
>>> g.is_basis()
True
>>> random_basis().is_basis()
True










	
descendants_above(floor)

	Suppose we have a basis floor below the current basis ceiling. There are a finite number of elements below ceiling which are not below floor. This method enumerates them. In symbols, we are enumerating the set \(X\langle A\rangle \setminus F\langle A\rangle\), where \(X\) is the current basis and \(F\) is the floor.

>>> phi = load_example('example_5_15')
>>> X = phi.quasinormal_basis
>>> Y = X.minimal_expansion_for(phi)
>>> Z = phi.image_of_set(Y)
>>> terminal = X.descendants_above(Y)
>>> initial  = X.descendants_above(Z)
>>> print(initial, terminal, sep='\n')
[x1 a1, x1 a1 a1]
[x1 a2 a2, x1 a2 a2 a1]










	
classmethod standard_basis(signature)

	Creates the standard basis \(\boldsymbol{x} = \{x_1, \dotsc, x_r\}\) for \(V_{n,r}\), where \(n\) is the arity and \(r\) is the alphabet_size of the signature.

>>> Generators.standard_basis((2, 4))
Generators((2, 4), ['x1', 'x2', 'x3', 'x4'])










	
classmethod from_dfs(string)

	Creates bases correponding to binary trees via a string of 1s and 0s correponding to branches and carets respectively. See from_dfs(). The string can also be specified as a int [https://docs.python.org/3/library/functions.html#int], in which case it is replaced by its base 10 string representation.

>>> print(Generators.from_dfs("100"))
[x1 a1, x1 a2]
>>> print(Generators.from_dfs(1100100)) #ints are fine too
[x1 a1 a1, x1 a1 a2, x1 a2 a1, x1 a2 a2]






	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the string doesn’t correctly describe a rooted binary tree.





>>> print(Generators.from_dfs(""))
Traceback (most recent call last):
...
ValueError: Should have one more zero than one (got 0 and 0 respectively)
>>> print(Generators.from_dfs("10"))
Traceback (most recent call last):
...
ValueError: Should have one more zero than one (got 1 and 1 respectively)
>>> print(Generators.from_dfs(10001))
Traceback (most recent call last):
...
ValueError: Error at character 3: complete description of tree with unprocessed digits remaining. String was 10001










	
minimal_expansion_for(*automorphisms)

	Suppose we are given a finite sequence of automorphisms of \(V_{n,r}\) and that the current generaeting set is a basis \(X\) for \(V_{n,r}\). This methods returns an expansion \(Y\) of \(X\) such that each automorphism maps \(Y\) into \(X\langle A\rangle\).

>>> std_basis = Generators.standard_basis((2, 1))
>>> reduced_domain = Generators((2, 1), ["x a1 a1", "x a1 a2 a1", "x a1 a2 a2", "x a2 a1", "x a2 a2"])
>>> std_basis.minimal_expansion_for(load_example('cyclic_order_six')) == reduced_domain
True





>>> phi = load_example('example_5_3')
>>> basis = phi.quasinormal_basis
>>> print(basis.minimal_expansion_for(phi))
[x1 a1 a1 a1 a1, x1 a1 a1 a1 a2, x1 a1 a1 a2, x1 a1 a2 a1, x1 a1 a2 a2, x1 a2 a1, x1 a2 a2 a1, x1 a2 a2 a2]






	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if no automorphisms are passed to this method.


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the automorphisms or basis do not all belong to the same group \(G_{n,r}\).


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the given basis does not generate \(V_{n,r}\).









See also

Lemma 4.3 of the paper proves that this expansion exists, is of minimal size, and is unique with this that property.








	
embed_in(signature, shift=0)

	Creates a copy of the current generating set in the algebra determined by signature.


	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the current signature’s algebra is not a subset of the given signature’s algebra.

>>> x = Generators.standard_basis((2, 1)).expand(0); x
Generators((2, 1), ['x1 a1', 'x1 a2'])
>>> y = x.embed_in((3, 2)); y
Generators((3, 2), ['x1 a1', 'x1 a2'])
>>> z = x.embed_in((3, 2), shift=1); z
Generators((3, 2), ['x2 a1', 'x2 a2'])
>>> print(y.signature, y[0].signature)
(3, 2) (3, 2)
>>> x.is_basis()
True
>>> y.is_basis()
False
















	
expand(index)

	Replaces the word \(w\) at index index in the current generating set with its children, \(w\alpha1, \dotsc, w\alpha_n\), where \(n\) is the arity of the generating set. As with ordinary Python lists, negative values of index are supported.

>>> g = Generators.standard_basis((3, 1)); g
Generators((3, 1), ['x1'])
>>> g.expand(0)
Generators((3, 1), ['x1 a1', 'x1 a2', 'x1 a3'])
>>> g #has been modified
Generators((3, 1), ['x1 a1', 'x1 a2', 'x1 a3'])
>>> g.expand(-2) #expand at the second entry from the right, i.e. at 'x1 a2'
Generators((3, 1), ['x1 a1', 'x1 a2 a1', 'x1 a2 a2', 'x1 a2 a3', 'x1 a3'])






	Raises

	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – if there is no generator at index index.



	Returns

	the current generating set, after modification.










	
expand_away_lambdas()

	Experimental method to recursively (and inefficiently) expand a generating set until every word has lambda-length 0.

>>> X = Generators((2,1), ['x1 a1 a1 a1 a2', 'x1 a2 a1 a2 x1 a2 a1 a1 a2 x1 a2 a2 a2 L x1 a2 a2 a1 L L'])
>>> X.expand_away_lambdas()
>>> print(X)
[x1 a1 a1 a1 a2, x1 a2 a1 a2, x1 a2 a1 a1 a2, x1 a2 a2 a2, x1 a2 a2 a1]










	
classmethod sort_mapping_pair(domain, range)

	Makes copies of the given lists of words domain and range. The copy of domain is sorted according to the order defined on words. The same re-ordering is applied to the range, so that the mapping from domain to range is preserved.


	Return type

	A pair of class:Generator instances.










	
expand_to_size(size)

	Expands the current generating set until it has the given size. The expansions begin from the end of the generating set and work leftwards, wrapping around if we reach the start. (This is to try and avoid creating long words where possible.)

>>> basis = Generators.standard_basis((3, 1)); print(basis)
[x1]
>>> basis.expand_to_size(11); print(basis)
[x1 a1 a1, x1 a1 a2, x1 a1 a3, x1 a2 a1, x1 a2 a2, x1 a2 a3, x1 a3 a1, x1 a3 a2, x1 a3 a3 a1, x1 a3 a3 a2, x1 a3 a3 a3]
>>> basis = Generators.standard_basis((2, 1)); print(basis)
[x1]
>>> basis.expand_to_size(2); print(basis)
[x1 a1, x1 a2]
>>> basis = Generators.standard_basis((2, 3)).expand(2).expand(0); print(basis)
[x1 a1, x1 a2, x2, x3 a1, x3 a2]
>>> basis.expand_to_size(12); print(basis)
[x1 a1 a1, x1 a1 a2, x1 a2 a1, x1 a2 a2, x2 a1, x2 a2, x3 a1 a1, x3 a1 a2, x3 a2 a1 a1, x3 a2 a1 a2, x3 a2 a2 a1, x3 a2 a2 a2]





Expanding a basis to its current size does nothing.

>>> b1 = random_basis()
>>> b2 = b1.copy()
>>> b2.expand_to_size(len(b1))
>>> b1 == b2
True





If expansion to the target size is not possible, a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.

>>> basis = Generators.standard_basis((3,2))
>>> len(basis)
2
>>> basis.expand_to_size(3)
Traceback (most recent call last):
...
ValueError: Cannot expand from length 2 to length 3 in steps of size 2.
>>> basis.expand_to_size(4)
>>> len(basis)
4
>>> basis.expand_to_size(1)
Traceback (most recent call last):
...
ValueError: Cannot expand from length 4 to length 2 in steps of size 2.










	
cycled(positions=1)

	Produces a copy of the current generating set, cyclicly shifted by a number of positions to the right.

>>> phi = load_example('example_5_15')
>>> print(phi.domain)
[x1 a1, x1 a2 a1, x1 a2 a2 a1 a1, x1 a2 a2 a1 a2, x1 a2 a2 a2]
>>> print(phi.domain.cycled(2))
[x1 a2 a2 a1 a1, x1 a2 a2 a1 a2, x1 a2 a2 a2, x1 a1, x1 a2 a1]





>>> X = random_basis()
>>> X == X.cycled(0) == X.cycled(len(X))
True














	
thompson.generators.rewrite_set(set, basis, new_basis)

	Maps set into the algebra generated by new_basis according to the bijection between basis and new_basis. See also rewrite_word().






	
thompson.generators.rewrite_word(word, basis, new_basis)

	Suppose that we have a word which is below a given basis. Suppose we have a bijection between basis and some image new_basis. Then we can rewrite word as as descendant of new_basis in a manner which is compatible with this bijection.


	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if basis is not above word.


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if basis and new_basis have different sizes.















Next steps

Suppose we have a map \(f \colon V_{n,r} \to V_{n',r'}\). If this is just a set map then we would have to specify the image of every word in \(V_{n,r}\). However, if \(f\) preserves structure then it is sufficient to specify the image of a generating set—or even better, a basis—for \(V_{n,r}\). Such maps \(f\) are called homomorphisms. The next module describes homomorphisms in terms of the image of a given basis.
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Homomorphisms

The algebra of words has its own structure, and just like groups, rings etc. there exist homomorphisms which preserve this structure. In our specific case, a homomorphism \(\phi: V_{n,r} \to V_{n,s}\) is a function satisfying


\[w \alpha_i \phi = w \phi \alpha_i \qquad \text{and} \qquad
w_1 \dots w_n \lambda \phi = aw_1 \phi \dots w_n \phi \lambda.\]

In other words, a homomorphism is a function which ‘commutes’ with the algebra operations \(\alpha_i\) and \(\lambda\).


The Homomorphism Class


	
class thompson.homomorphism.Homomorphism(domain, range, reduce=True)

	Let \(f: D \to R\) be some map embedding a basis \(D\) for \(V_{n,r}\) into another algebra \(V_{n,s}\) of the same Signature. This map uniquely extends to a homomorphism of algebras \(\psi : V_{n,r} \to V_{n,s}\).


	Variables

	
	domain – a basis of preimages


	range [https://docs.python.org/3/library/stdtypes.html#range] – a basis of images.








The next few attributes are used internally when constructing free factors. We need to have a way to map back to the parent automorphisms.


	Variables

	
	domain_relabeller – the homomorphism which maps relabelled words back into the original algebra that this automorphism came from.


	range_relabeller – the same.









	
__init__(domain, range, reduce=True)

	Creates a homomorphism with the specified domain and range. Sanity checks are performed so that the arguments do genuinely define a basis.

By default, any redudancy in the mapping is reduced. For example, the rules x1 a1 a1 -> x1 a2 a1 and x1 a1 a2 -> x1 a2 a2 reduce to the single rule x1 a1 -> x1 a2. The reduce argument can be used to disable this. This option is intended for internal use only. 1


	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the bases are of different sizes.


	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the algebras described by domain and range have different arities.


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if domain is not a basis.













	
classmethod from_file(filename)

	Reads in a file specifying a homomorphism and returns the homomorphism being described. Here is an example of the format:

5
(2,1)           ->      (2,1)
x1 a1 a1 a1     ->      x1 a1 a1
x1 a1 a1 a2     ->      x1 a1 a2 a1
x1 a1 a2        ->      x1 a1 a2 a2
x1 a2 a1        ->      x1 a2 a2
x1 a2 a2        ->      x1 a2 a1
This is an example intended to illustrate the format for reading and writing automorphisms to disk.





There are three components


	number \(k\) of generators in domain and range


	signatures of domain and range


	list of \(k\) rules domain -> range




Any lines after this are ignored, and can be treated as comments. Comments are read in and added to the __doc__ attribute of the homomorphism that gets created.


Todo

Should use a different attribute (.comment?) rather than __doc__.








	
classmethod from_string(string)

	An alternative from_file() for working with examples that you might want to copy and paste somewhere. string should be a Python string which describes an automorphism in the same format as in from_file().






	
static next_non_comment_line(file)

	




	
save_to_file(filename=None, comment=None)

	Takes a homomorphism and saves it to the file with the given filename. The homomorphism is stored in a format which is compatible with from_file(). Optionally, a comment may be appended to the end of the homomorphism file.

>>> before = random_automorphism()
>>> before.save_to_file('test_saving_homomorphism.aut')
>>> after = Automorphism.from_file('test_saving_homomorphism.aut')
>>> before == after, before is after
(True, False)










	
__eq__(other)

	We can test for equality of homomorphisms by using Python’s equality operator ==.
The Python integer 1 can be used as a shorthand for the identity of the current homomorphism’s algebra.

>>> phi = random_automorphism()
>>> phi == phi
True
>>> phi * ~phi == 1
True
>>> 1 == Homomorphism.identity(phi.signature)
True










	
__mul__(other)

	If the current automorphism is \(\psi\) and the other is \(\phi\), multiplication forms the composition \(\psi\phi\), which maps \(x \mapsto x\psi \mapsto (x\psi)\phi\).


	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the homomorphisms cannot be composed in the given order; i.e. if self.range.signature != other.domain.signature.



	Return type

	an MixedAut if possible; otherwise a Homomorphism.





>>> phi = load_example('alphabet_size_two')
>>> print(phi * phi)
MixedAut: V(3, 2) -> V(3, 2) specified by 8 generators (after expansion and reduction).
x1 a1    -> x1 a1      
x1 a2    -> x1 a2 a3 a3
x1 a3 a1 -> x1 a3      
x1 a3 a2 -> x1 a2 a2   
x1 a3 a3 -> x1 a2 a1   
x2 a1    -> x2         
x2 a2    -> x1 a2 a3 a2
x2 a3    -> x1 a2 a3 a1










	
classmethod identity(signature)

	Creates a new homo/automorphism which is the identity map on the algebra with the given signature.

>>> print(Homomorphism.identity((3, 2)))
PeriodicAut: V(3, 2) -> V(3, 2) specified by 2 generators (after expansion and reduction).
x1 -> x1
x2 -> x2
>>> sig = random_signature()
>>> Homomorphism.identity(sig) == 1
True










	
is_identity()

	Returns True if this automorphism is the identity map on the algebra with the given signature. Otherwise returns False.

>>> aut = Homomorphism.identity(random_signature())
>>> aut.is_identity()
True
>>> load_example('example_5_15').is_identity()
False










	
image(key, sig_in=None, sig_out=None, cache=None)

	Computes the image of a key under the given homomorphism. The result is cached for further usage later.

The key must be given as one of:


	a string to be passed to from_string();


	a sequence of integers (see the word module); or


	a Word instance.





Note

All other arguments are intended for internal use only. 2



The input need not be in standard form. This method


	Converts key to standard form if necessary.


	Checks if the image of the standard form of key has been cached, and returns the image if so.


	Computes the image of key under the homomorphism, then caches and returns the result.




>>> #An element of the domain---just a lookup
>>> phi = load_example('example_5_15')
>>> print(phi.image('x1 a1'))
x1 a1 a1 a1
>>> #A word below a the domain words
>>> print(phi.image('x1 a1 a2 a2'))
x1 a1 a1 a1 a2 a2
>>> #Above domain words---have to expand.
>>> print(phi.image('x1'))
x1 a1 a1 a1 x1 a1 a1 a2 x1 a2 a2 x1 a1 a2 L x1 a2 a1 L L L
>>> #Let's try some words not in standard form
>>> print(phi.image('x1 a1 a1 x1 a1 a2 L'))
x1 a1 a1 a1
>>> print(phi.image('x1 a1 a1 x1 a1 a2 L a2 a1'))
x1 a1 a1 a1 a2 a1
>>> print(phi.image('x1 a1 a1 x1 a2 a2 L'))
x1 a1 a1 a1 a1 x1 a2 a2 x1 a1 a2 L x1 a2 a1 L L






	Return type

	a Word instance (which are always in standard form).










	
image_of_set(set, sig_in=None, sig_out=None, cache=None)

	Computes the image of a list of Generators under the current homomorphism. The order of words in the list is preserved.


	Return type

	another list of Generators.





>>> basis = Generators.standard_basis((2,1))
>>> basis.expand_to_size(8); print(basis)
[x1 a1 a1 a1, x1 a1 a1 a2, x1 a1 a2 a1, x1 a1 a2 a2, x1 a2 a1 a1, x1 a2 a1 a2, x1 a2 a2 a1, x1 a2 a2 a2]
>>> print(load_example('example_5_3').image_of_set(basis))
[x1 a1 a1 a1 x1 a1 a1 a2 a1 L, x1 a1 a1 a2 a2, x1 a1 a2 a2, x1 a1 a2 a1, x1 a2 a1 a1 a1, x1 a2 a1 a1 a2, x1 a2 a1 a2, x1 a2 a2]










	
image_of_point(x)

	Interpret the current homomorphism as a piecewise linear map and evalutate the image of \(x\) under this map.
Note that inverse images aren’t supported, as homomorphisms need not be invertible.


	Parameters

	x (Fraction) – the current point, as an int [https://docs.python.org/3/library/functions.html#int] or a Fraction [https://docs.python.org/3/library/fractions.html#fractions.Fraction].





>>> from fractions import Fraction
>>> x = standard_generator(0)
>>> x.image_of_point(0)
Fraction(0, 1)
>>> x(0)    #can also just use __call__ syntax
Fraction(0, 1)
>>> x.image_of_point(Fraction(1, 3))
Fraction(1, 6)










	
__call__(*args, **kwargs)

	Homomorphisms are callable. Treating them as a function just calls the image() method.

>>> from fractions import Fraction
>>> x0 = standard_generator()
>>> x0(Fraction(1, 2))
Fraction(1, 4)










	
__str__()

	Printing an automorphism gives its arity, alphabet_size, and lists the images of its domain elements.

>>> print(load_example('cyclic_order_six'))
PeriodicAut: V(2, 1) -> V(2, 1) specified by 5 generators (after expansion and reduction).
x1 a1 a1    -> x1 a1 a1      
x1 a1 a2 a1 -> x1 a1 a2 a2 a2
x1 a1 a2 a2 -> x1 a2         
x1 a2 a1    -> x1 a1 a2 a2 a1
x1 a2 a2    -> x1 a1 a2 a1   










	
__repr__()

	A tweaked version of __str__().
This produces a string representation which can be passed to from_string() to reobtain the Homomorphism we started with.

>>> f = random_automorphism()
>>> g = Automorphism.from_string( repr(f) )
>>> f == g
True










	
classmethod pl_segment(d1, d2, r1, r2)

	




	
pl_segments()

	




	
format_pl_segments(LaTeX=False, sfrac=False)

	Returns a description of the current homomorphism as a piecewise-linear map on the interval.

>>> x = standard_generator()
>>> print(x.format_pl_segments())
0   + 1/2 (t - 0   ) from 0   to 1/2
1/4 + 1   (t - 1/2 ) from 1/2 to 3/4
1/2 + 2   (t - 3/4 ) from 3/4 to 1  






	Parameters

	
	LaTeX (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, the description is formatted as a LaTeX cases environment.


	sfrac (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, and if LaTeX is True, format fractions using xfrac’s \sfrac command.








>>> print(x.format_pl_segments(LaTeX=True))
%\usepackage{array}
\begin{equation*}
        \setlength\arraycolsep{1.3pt}
        \left\{ \begin{array}{ccrl>{\quad}c<{\quad}ccc}
                 0   &+& 1/2 &(t - 0   ) &\text{if}& 0   &\leq t < & 1/2  \\
                 1/4 &+& 1   &(t - 1/2 ) &\text{if}& 1/2 &\leq t < & 3/4  \\
                 1/2 &+& 2   &(t - 3/4 ) &\text{if}& 3/4 &\leq t < & 1    
        \end{array} \right.
\end{equation*}










	
classmethod format_pl_segments_directly(segments, LaTeX=False, sfrac=False)

	




	
tikz_path()

	Return a string which can be passed to a \tikz\draw command to graph the current homomorphism.






	
add_relabellers(domain_relabeller, range_relabeller)

	
	Raises

	
	LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] – if a relabeller is provided and the relabeller’s signature does not match that of domain or range


	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if a relabeller is provided and the relabeller’s signature does not match that of domain or range (as appropriate)













	
relabel()

	If this automorphism was derived from a parent automorphism, this converts back to the parent algebra after doing computations in the derived algebra.

In the following example test_conjugate_to() takes a pure periodic automorphism and extracts factors. A conjugator \(\rho\) is produced by the overridden version of this method. Finally \(\rho\) is relabelled back to the parent algebra.


	Raises

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – if the factor has not been assigned any relabellers.





>>> psi, phi = load_example_pair('example_5_12')
>>> rho = psi.test_conjugate_to(phi)
>>> print(rho)
PeriodicAut: V(2, 1) -> V(2, 1) specified by 6 generators (after expansion and reduction).
x1 a1 a1 a1 a1 -> x1 a1 a2   
x1 a1 a1 a1 a2 -> x1 a2 a2   
x1 a1 a1 a2    -> x1 a1 a1 a1
x1 a1 a2       -> x1 a2 a1 a1
x1 a2 a1       -> x1 a1 a1 a2
x1 a2 a2       -> x1 a2 a1 a2
>>> rho * phi == psi * rho
True










	
gradients()

	Interprets the current homomorphism as a piecewise linear map, and returns the list of gradients of each linear piece. The \(i\) th element of this list is the gradient of the affine map sending self.domain[i] to self.range[i].


	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] of Fraction [https://docs.python.org/3/library/fractions.html#fractions.Fraction] s.





>>> standard_generator(0).gradients()
[Fraction(1, 2), Fraction(1, 1), Fraction(2, 1)]
>>> load_example("alphabet_size_two").gradients()
[Fraction(1, 1), Fraction(1, 3), Fraction(3, 1), Fraction(1, 1), Fraction(1, 3), Fraction(1, 3)]










	
gradient_at(x)

	Interprets the current homomorphism as a piecewise linear map, and returns the right-derivative of the current homomorphism at \(x\).


	Return type

	Fraction [https://docs.python.org/3/library/fractions.html#fractions.Fraction]





>>> f = standard_generator(0)
>>> f.gradient_at(0)
Fraction(1, 2)
>>> f.gradient_at(-1)
Traceback (most recent call last):
...
AssertionError
>>> f.gradient_at(2/3)
Fraction(1, 1)
>>> f.gradient_at(Word("x a2", (2, 1)))
Traceback (most recent call last):
...
ValueError: Automorphism doesn't map x1 a2 affinely
>>> f.gradient_at(Word("x a2 a2 a2 a2", (2, 1)))
Fraction(2, 1)










	
static gradient(domain, range)

	Computes the gradient of the affine map sending the interval represented by domain to the interval represented by range.









Footnotes


	1

	Sometimes we have to expand free factors so that the orbit sizes match up.



	2

	Exposing more arguments means I can write this function in a more general manner. Doing so makes it easy to compute inverse images under an MixedAut.








Next steps

It is not possible to repeatedly apply a homomorphism \(\psi\) to a word unless \(\psi\) is actually an automorphism. The next class extends Homomorphism to represent an Automorphism.
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Automorphisms

As usual, a bijective homomorphism is called an isomorphism, and an isomorphism from an algebra to itself is called an automorphism. A collection of automorphisms of an object \(O\) forms a group \(\mathrm{Aut}(O)\) under composition. The group of automorphisms \(\mathrm{Aut}(V_{n,r})\) is known as \(G_{n,r}\).

We consider three different classes of automorphism; this module implements functionality common to each class.


The Automorphisms class


	
class thompson.automorphism.Automorphism(domain, range, reduce=True)

	Represents an automorphism as a bijection between bases.

Generic attributes:


	Variables

	
	signature – The Signature shared by the generating sets domain and range.


	quasinormal_basis – See compute_quasinormal_basis().


	pond_banks – A list of tuples \((\ell, k, r)\) such that \((\ell, r)\) are banks of a pond with \(\ell\phi^k = r\). (See also 4.15 of the paper.)








>>> olga_f = load_example('olga_f')
>>> olga_g = load_example('olga_g')
>>> olga_f.signature
Signature(arity=2, alphabet_size=1)
>>> print(len(olga_f.pond_banks)) #No ponds
0
>>> print(len(olga_g.pond_banks)) #One pond
1
>>> print(*olga_g.pond_banks[0], sep=',  ') 
x1 a2 a1 a2 a1 a1,  2,  x1 a1 a2 a2





Periodic attributes:


	Variables

	
	cycle_type – the set \(\{d \in \mathbb{N} : \text{$\exists$ an orbit of length $d$.}\}\). This is implemented as a frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset] which is a readonly version of Python’s set [https://docs.python.org/3/library/stdtypes.html#set] type.


	order – The lcm() of the automorphism’s cycle type. This is the group-theoretic order of the periodic factor of \(\phi\). If the cycle type is empty, the order is \(\infty\). NB: mixed automorphisms will have a finite order, despite being infinite-order group elements.


	periodic_orbits – a mapping \(d \mapsto L_d\), where \(L_d\) is the list of size \(d\) orbits in the quasinormal basis.


	multiplicity – a mapping \(d \mapsto m_\phi(d, X_\phi)\), which is the number of periodic orbits of size \(d\) in the quasinormal basis for \(\phi\). See Definition 5.8 in the paper.








>>> olga_f.cycle_type
frozenset()
>>> olga_f.order
inf
>>> f = load_example('cyclic_order_six')
>>> f.cycle_type
frozenset({1, 2, 3})
>>> f.order
6
>>> def display_orbits(orbits_by_size):
...     for key in sorted(orbits_by_size):
...             print('Orbits of length', key)
...             for list in orbits_by_size[key]:
...                     print('...', *list, sep=' -> ', end=' -> ...\n')
>>> display_orbits(load_example('example_5_9').periodic_orbits)
Orbits of length 2
... -> x1 a2 a1 a1 -> x1 a2 a1 a2 -> ...
... -> x1 a2 a2 a1 -> x1 a2 a2 a2 -> ...
Orbits of length 3
... -> x1 a1 a1 a1 -> x1 a1 a1 a2 -> x1 a1 a2 -> ...





Infinite attributes:


	Variables

	characteristics – the set of characteristics \((m, \Gamma)\) of this automorphism. Like the cycle_type above, this is a frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset].





>>> for char in sorted(olga_f.characteristics):
...             #TODO the order here isn't sorted intuitively
...     print(char)
Characteristic(-1, a2)
Characteristic(-1, a1)
Characteristic(2, a2 a1)
Characteristic(2, a1 a2)






	
__init__(domain, range, reduce=True)

	Creates an automorphism mapping the given domain basis to the range basis in the given order. That is, \(\text{domain}_{\,i} \mapsto \text{range}_{\,i}\).

The quasi-normal basis \(X\) and the various attributes are all calculated at creation time.


	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the bases have different arities or alphabet sizes.


	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if either basis isn't actually a basis.









See also

The superclass' method.








	
classmethod from_dfs(domain, range, labels=None, reduce=True)

	Creates elements of \(V=G_{2,1}\) using the notation of [Kogan].

The domain and range trees are described as a string of ones and zeros.
A 1 denotes a vertex which has children; a 0 denotes a vertex which has none (i.e. a leaf).
The ‘dfs’ stands for depth-first search, the order in which we traverse the vertices of the tree.
We initialise the current vertex as the root.
Upon reading a 1 we add two child vertices to the current vertex, then redeclare the current vertex to be the current vertex’s left child.
Upon reading a 0 we set the current vertex to be the next vertex of the tree in depth-first order. If the current vertex is the root we are done.


	Parameters

	
	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – A description of a binary tree as a stream of ones and zeroes.


	range (str [https://docs.python.org/3/library/stdtypes.html#str]) – The same.


	labels (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string of natural numbers \(1, \dots, m\) in some order. If omitted, taken to be the string "1 2 "..."len(domain)". If a single string n, taken to be the cyclic permuation mapping \(1 \mapsto n\).


	reduce (bool [https://docs.python.org/3/library/functions.html#bool]) – Passed to the superclass' initialiser method. If True, carets are reduced in the domain and range where possible.








>>> f = Automorphism.from_dfs("100", "100", "2 1")
>>> f.order
2
>>> print(f)
PeriodicAut: V(2, 1) -> V(2, 1) specified by 2 generators (after expansion and reduction).
x1 a1 -> x1 a2
x1 a2 -> x1 a1
>>> Automorphism.from_dfs("100", "100", "2") == f
True

>>> g = Automorphism.from_dfs("1010100", "1011000")
>>> print(g)
MixedAut: V(2, 1) -> V(2, 1) specified by 4 generators (after expansion and reduction).
x1 a1       -> x1 a1      
x1 a2 a1    -> x1 a2 a1 a1
x1 a2 a2 a1 -> x1 a2 a1 a2
x1 a2 a2 a2 -> x1 a2 a2   
>>> g == standard_generator(1)
True

>>> h = load_example("example_6_2")
>>> h2 = Automorphism.from_dfs("1110000", "1100100", "3 1 2 4")
>>> h == h2
True










	
classmethod rotation(numerator, denominator=None)

	Constructs an automorphism which represents a rotation when thought of as a homeomorphism of the circle. The displacement of this rotation be a dyadic rational. If both arguments are given, the displacement is numerator/denominator; if only one argument is given, the displacement is the result of passing numerator to the constructor of Fraction [https://docs.python.org/3/library/fractions.html#fractions.Fraction].


Note

This only works in \(T_{2,1}\), but could be modified in future to work for different arities.




	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the displacement is not dyadic.



	Returns

	PeriodicAut





>>> print(Automorphism.rotation(1, 2))
PeriodicAut: V(2, 1) -> V(2, 1) specified by 2 generators (after expansion and reduction).
x1 a1 -> x1 a2
x1 a2 -> x1 a1
>>> print(Automorphism.rotation(3, 8))
PeriodicAut: V(2, 1) -> V(2, 1) specified by 8 generators (after expansion and reduction).
x1 a1 a1 a1 -> x1 a1 a2 a2
x1 a1 a1 a2 -> x1 a2 a1 a1
x1 a1 a2 a1 -> x1 a2 a1 a2
x1 a1 a2 a2 -> x1 a2 a2 a1
x1 a2 a1 a1 -> x1 a2 a2 a2
x1 a2 a1 a2 -> x1 a1 a1 a1
x1 a2 a2 a1 -> x1 a1 a1 a2
x1 a2 a2 a2 -> x1 a1 a2 a1
>>> Automorphism.rotation(0) == Automorphism.rotation(100) == Automorphism.identity((2, 1))
True

>>> denominator = 2 ** randint(1, 10)
>>> numerator = randrange(denominator)
>>> rot = Automorphism.rotation(numerator, denominator)
>>> rot.rotation_number() == Fraction(numerator, denominator)
True
>>> rot.cycles_order()
True
>>> rot.preserves_order() == (numerator == 0)
True










	
image(key, inverse=False)

	If inverse is True, the inverse of the current automorphism is used to map key instead. Otherwise this method delegates to Homomorphism.image.

As a shorthand, we can use function call syntax in place of this method. For instance:

>>> phi = load_example('example_5_15')
>>> print(phi('x1 a2 a2 a1 a1'))
x1 a2 a2





Examples of finding inverse images:

>>> phi = load_example('example_5_15')
>>> print(phi.image('x1 a2 a2', inverse=True))
x1 a2 a2 a1 a1
>>> print(phi.image('x1 a1 a1 a2 a2 a1', inverse=True))
x1 a2 a1 a2 a1
>>> print(phi.image('x a2', inverse=True))
x1 a2 a2 a2 x1 a2 a2 a1 a1 L
>>> print(phi.image('x a2 a2 x a1 a2 L', inverse=True))
x1 a2 a2 a1










	
image_of_set(set, inverse=False)

	If inverse is True, the inverse of the current automorphism is used to map set instead. Otherwise this method delegates to Homomorphism.image_of_set.

Examples of finding inverse images:

>>> basis = Generators.standard_basis((2,1))
>>> basis.expand_to_size(8);
>>> print(load_example('example_5_3').image_of_set(basis, inverse=True))
[x1 a1 a1 a1 a1, x1 a1 a1 a1 a2 x1 a1 a1 a2 L, x1 a1 a2 a2, x1 a1 a2 a1, x1 a2 a1, x1 a2 a2 a1, x1 a2 a2 a2 a1, x1 a2 a2 a2 a2]










	
repeated_image(key, power)

	If \(\psi\) is the current automorphism, returns \(\text{key}\psi^\text{ power}\).


	Return type

	a Word instance.





>>> phi = load_example('example_5_15')
>>> print(phi.repeated_image('x1 a1', 10))
x1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1
>>> print(phi.repeated_image('x1 a1 a1 a1 a1 a1 a1 a1', -3))
x1 a1
>>> phi = load_example('arity_four')
>>> print(phi.repeated_image('x1 a4 a4 a2', 4))
x1 a3 a3 a2
>>> print(phi.repeated_image('x1 a3 a3 a2', -4))
x1 a4 a4 a2






Todo

This could be made more efficient for large values of power by using knowledge of the component containing key.








	
__pow__(power)

	Python uses the double star operator to denote exponentiation.

>>> psi = random_automorphism()
>>> psi ** 0 == 1 #identity
True
>>> ~psi ** 2 == ~psi * ~psi == psi ** -2
True










	
__invert__()

	We overload python’s unary negation operator ~ as shorthand for inversion. (In Python, ~ is normally used for bitwise negation.) We can also call a method explicitily: phi.inverse() is exactly the same as ~phi.

>>> phi = random_automorphism()
>>> phi * ~phi == ~phi * phi
True
>>> (phi * ~phi).is_identity()
True
>>> (~phi).quasinormal_basis == phi.quasinormal_basis
True










	
__xor__(other)

	We overload the bitwise exclusive or operator ^ as a shorthand for conjugation.
We act on the right, so that \(s^c = c^{-1}sc\).

>>> sig = random_signature()
>>> f = random_automorphism(signature=sig)
>>> g = random_automorphism(signature=sig)
>>> h = f^g
>>> f.is_conjugate_to(h)
True
>>> f ^ (f.test_conjugate_to(h)) == h
True










	
compute_quasinormal_basis()

	We say that \(\phi\) is in semi-normal form with respect to the basis \(X\) if no element of \(X\) lies in an incomplete \(X\)-component of a \(\phi\) orbit. See the orbits module for more details.

There is a minimal such basis, \(X_\phi\) say, and we say that \(\phi\) is in quasi-normal form with respect to \(X_\phi\). This method determines and returns the basis \(X_\phi\) where \(\phi\) denotes the current automorphism. The result is cached so that further calls to this method perform no additional computation.


Note

This method is called automatically at creation time and does not need to be called by the user.

>>> for name in ['example_4_5', 'alphabet_size_two', 'example_5_12_phi', 'example_6_2', 'example_6_8_phi']:
...     print(load_example(name).quasinormal_basis)
[x1 a1 a1, x1 a1 a2, x1 a2 a1, x1 a2 a2]
[x1 a1, x1 a2, x1 a3, x2]
[x1 a1, x1 a2]
[x1 a1 a1, x1 a1 a2, x1 a2]
[x1 a1, x1 a2]








	Return type

	a Generators instance.






See also

Quasi-normal forms are introduced in Section 4.2 of the paper. In particular, this method implements Lemma 4.28. Higman first described the idea of quasi-normal forms in Section 9 of [Hig74].








	
seminormal_form_start_point()

	Returns the minimal expansion \(X\) of \(\boldsymbol{x}\) such that every element of \(X\) belongs to either self.domain or self.range. Put differently, this is the minimal expansion of \(\boldsymbol{x}\) which does not contain any elements which are above \(Y \cup Z\). This basis that this method produces is the smallest possible which might be semi-normal.

>>> for name in ['example_4_5', 'example_4_11', 'example_4_12', 'example_5_15', 'cyclic_order_six']:
...     print(load_example(name).seminormal_form_start_point())
[x1 a1 a1, x1 a1 a2, x1 a2 a1, x1 a2 a2]
[x1 a1, x1 a2]
[x1 a1, x1 a2]
[x1 a1, x1 a2 a1, x1 a2 a2]
[x1 a1 a1, x1 a1 a2 a1, x1 a1 a2 a2, x1 a2]






See also

Remark 4.10 of the paper.








	
orbit_type(y, basis=None)

	Returns the orbit type of y with respect to the given basis. If basis is omitted, the quasi-normal basis is used by default. Also returns a dictionary of computed images, the list (4.6) from the paper.


	Returns

	A triple (ctype, images, type_b_data).





>>> phi = load_example('example_4_5')
>>> print_component_types(phi, phi.domain)
x1 a1 a1 a1: Left semi-infinite component with characteristic (-1, a1)
x1 a1 a1 a2: Bi-infinite component
x1 a1 a2: Right semi-infinite component with characteristic (1, a2)
x1 a2 a1: Periodic component of order 2
x1 a2 a2: Periodic component of order 2
with respect to the basis [x1 a1 a1 a1, x1 a1 a1 a2, x1 a1 a2, x1 a2 a1, x1 a2 a2]
>>> print_component_types(phi, basis=phi.domain, words=['x', 'x a1', 'x a2'])
x1: Incomplete component
x1 a1: Incomplete component
x1 a2: Incomplete component
with respect to the basis [x1 a1 a1 a1, x1 a1 a1 a2, x1 a1 a2, x1 a2 a1, x1 a2 a2]





Components can be calculated with respect to any basis, not just the quasi-normal basis.

>>> print(olga_f.quasinormal_basis)
[x1 a1 a1, x1 a1 a2, x1 a2 a1, x1 a2 a2 a1, x1 a2 a2 a2]
>>> basis = olga_f.quasinormal_basis.copy().expand(-1); print(basis)
[x1 a1 a1, x1 a1 a2, x1 a2 a1, x1 a2 a2 a1, x1 a2 a2 a2 a1, x1 a2 a2 a2 a2]
>>> from pprint import pprint
>>> print(olga_f.orbit_type('x a2 a2 a2')[0])
Bi-infinite component
>>> print(olga_f.orbit_type('x a2 a2 a2', basis)[0])
Incomplete component






See also

Lemmas 4.18, 4.28 of the paper.




Todo

This should be renamed to component_type.








	
test_semi_infinite(y, basis, backward=False)

	Computes the orbit type of y under the current automorphism \(\psi\) with respect to basis in the given direction. Let \(y\psi^m\) be the most recently computed image. The process stops when either:



	\(y\psi^m\) is not below the basis, for some \(m\geq 0\).



	infinite: False


	start: 0


	end: m-1


	images: \(y, y\psi, \dotsc, y\psi^{m-1}\).









	For some \(0 \le l < m\), \(y\psi^l\) is above (or equal to) \(y\psi^m\).



	infinite: True


	start: l


	end: m


	images: \(y, y\psi, \dotsc, y\psi^{m}\).












Note

The word \(y\psi^m\) is not strictly in the core part of the orbit of Lemma 4.24. We return this as part of images so that we can compute the characteristic multiplier in orbit_type().







	Returns

	the tuple (infinite, start, end, images).






See also

Lemma 4.28 of the paper.








	
semi_infinite_end_points(exclude_characteristics=False)

	Returns the list of terminal Words in left semi-infinite components and the list of initial words in right semi-infinite components. This is all computed with respect the current automorphism’s quasinormal basis. These are the sets \(X\langle A\rangle \setminus Y\langle A\rangle\) and \(X\langle A\rangle \setminus Z\langle A\rangle\).


	Parameters

	exclude_characteristics – if True, only the endpoints of non-characteristic semi-infinite orbits will be returned.





>>> for id in ['4_5', '4_11', '4_12', '5_15', '6_2']:
...     aut = load_example('example_' + id)
...     print(*aut.semi_infinite_end_points())
[x1 a1 a1] [x1 a1 a2]
[x1 a1] [x1 a2]
[] []
[x1 a2 a2, x1 a2 a2 a1] [x1 a1, x1 a1 a1]
[x1 a1 a1] [x1 a2]
>>> phi = load_example('nathan_pond_example')
>>> print(*phi.semi_infinite_end_points())
[x1 a1 a1, x1 a1 a1 a1, x1 a1 a1 a2] [x1 a1 a2, x1 a1 a2 a1, x1 a1 a2 a2]
>>> print(*phi.semi_infinite_end_points(exclude_characteristics=True))
[x1 a1 a1 a2] [x1 a1 a2 a2]






	Return type

	A pair of Generators.






See also

The discussion before Lemma 4.6.








	
dump_QNB()

	A convenience method for printing the quasinormal basis \(X\). The \(X\)-components of the elements \(x \in X\) are displayed.

>>> load_example('example_5_3').dump_QNB()
x1 a1 a1 a1 Left semi-infinite component with characteristic (-1, a1)
x1 a1 a1 a2 Right semi-infinite component with characteristic (1, a2)
x1 a1 a2 a1 Periodic component of order 2
x1 a1 a2 a2 Periodic component of order 2
x1 a2 a1 Right semi-infinite component with characteristic (1, a1)
x1 a2 a2 Left semi-infinite component with characteristic (-1, a2)










	
dump_periodic(cantor=False)

	A convenience method for printing out periodic orbits in the quasinormal basis.

>>> f = load_example("cyclic_order_six")
>>> f.dump_periodic()
Period 1
x1 a1 a1
Period 2
x1 a1 a2 a2 a1 -> x1 a2 a1
Period 3
x1 a1 a2 a1 -> x1 a1 a2 a2 a2 -> x1 a2 a2
>>> f.dump_periodic(cantor=True)
Period 1
00
Period 2
0110 -> 10
Period 3
010 -> 0111 -> 11










	
print_characteristics()

	For convenience, a method that prints out all of the characteristics of type B components wrt the quasinormal_basis.

>>> for id in ['4_1', '5_15', '6_2', '6_8_phi']:
...     name = 'example_' + id
...     print(name)
...     load_example(name).print_characteristics()
example_4_1
(-1, a1)
(1, a2)
example_5_15
(-1, a1 a1)
(1, a1 a1)
example_6_2
(-2, a1)
(1, a2)
example_6_8_phi
(-1, a1 a1 a1)
(1, a2 a2 a2)
>>> (load_example('example_6_2')**2).print_characteristics()
(-1, a1)
(1, a2 a2)
>>> #Lemma 5.16
>>> psi, phi = random_conjugate_pair()
>>> psi.characteristics == phi.characteristics
True






See also

Defintion 5.14.








	
share_orbit(u, v)

	Determines if \(u\) and \(v\) are in the same orbit of the current automorphism \(\psi\). Specifically, does there exist an integer \(m\) such that \(u\psi^m = v\)?

>>> phi = load_example('alphabet_size_two')
>>> u  = Word('x1 a2 a3 a1 a2', (3, 2))
>>> v1 = Word('x1 a1 a2 a2 a3 a1', (3, 2))
>>> v2 = Word('x2 a3 a2', (3, 2))
>>> print(phi.share_orbit(u, v1))
{}
>>> print(phi.share_orbit(u, v2))
{-2}
>>> print(phi.share_orbit(u, u))
{0}






	Returns

	The (possibly empty) SolutionSet of all integers \(m\) for which \(u\psi^m = v\). Note that if \(u = v\) this method returns \(\mathbb{Z}\).






See also

The implementation is due to lemma 4.34 of the paper.








	
is_conjugate_to(other)

	A shortcut for self.test_conjugate_to(other) is not None.






	
preserves_order()

	Returns True if this automorphism is an element of \(F_{n,r}\), Higman’s analogue of Thompson’s group \(F\). Otherwise returns False.

>>> random_automorphism(group='F').preserves_order()
True
>>> phi = random_automorphism(group='T')
>>> #phi preserves order iff it is in F.
>>> (sorted(phi.range) == phi.range) == phi.preserves_order()
True
>>> load_example('nathan_pond_example').preserves_order()
False










	
cycles_order()

	Returns True if this automorphism is an element of \(T_{n,r}\), Higman’s analogue of Thompson’s group \(T\). Otherwise returns False.

>>> random_automorphism(group='F').cycles_order()
True
>>> random_automorphism(group='T').cycles_order()
True
>>> load_example('nathan_pond_example').cycles_order() # in V \ T
False










	
rotation_number()

	The rotation number is a map \(\operatorname{Homeo}_+(\mathbb{S}^1) \to \mathbb{R/Z}\) which is constant on conjugacy classes.


	Return type

	Fraction [https://docs.python.org/3/library/fractions.html#fractions.Fraction] if the current automorphism is a circle homeomorphism; otherwise None.





>>> f = random_automorphism()
>>> rot = f.rotation_number()
>>> (rot is None) == (not f.cycles_order())
True
>>> sig = random_signature()
>>> Automorphism.identity(sig).rotation_number() == 0
True
>>> g = random_automorphism(group='T', signature=sig)
>>> k = random_automorphism(group='T', signature=sig)
>>> (g^k).rotation_number() == g.rotation_number()
True

>>> f_examples = "example_4_1 example_4_11 example_6_8_psi example_6_9_psi non_dyadic_fixed_point".split()
>>> all( load_example(name).rotation_number() == 0 for name in f_examples )
True
>>> t_examples = "example_4_1 example_5_12_phi example_6_8_phi non_dyadic_fixed_point rotation_number_one_third scott_free_alpha thirds_fixed".split()
>>> for name in t_examples:
...     print(load_example(name).rotation_number())
0
1/2
0
0
1/3
0
0










	
commutes(other)

	A shorthand for the expression self * other == other * self.

>>> x = random_automorphism()
>>> x.commutes(x)
True
>>> x.commutes(~x)
True
>>> x.commutes(1)
True
>>> x.commutes(x*x)
True










	
test_revealing(domain='wrt QNB')

	Determines if the given automorphism \(\phi\) is revealed by the tree pair \((D, \phi(D))\), where \(D\) is the given domain.

The domain may be implicitly specified by the string 'minimal' or 'wrt QNB'. In the first case, domain is taken to be the minimal domain required to specify the automorphism. In the second case, domain is taken to be the minimal expansion of the quasinormal basis.


	Returns

	None if the pair is revealing for \(\phi\). Otherwise, returns (as a Word) the root of a component of either \(D \setminus \phi(D)\) or \(\phi(D) \setminus D\) which does not contain an attractor/repeller.





>>> load_example('olga_f').test_revealing() is None
True
>>> print(load_example('semi_inf_c').test_revealing())
x1 a2 a1
>>> print(load_example('non_revealing').test_revealing())
x1 a1 a1
>>> f = load_example('cyclic_order_six')
>>> print(f.test_revealing('minimal'))
x1 a2
>>> f.test_revealing('wrt QNB') is None
True






Caution

This is an experimental feature based on [SD10].




Todo

This method is badly named; something like test_revealed_by(basis) would be better.








	
is_revealing(domain='wrt QNB')

	Calls test_revealing(), but only returns True or False.


	Returns

	True if the pair is revealing, otherwise False.





>>> load_example('olga_f').is_revealing()
True
>>> load_example('semi_inf_c').is_revealing()
False
>>> load_example('non_revealing').is_revealing()
False
>>> f = load_example('cyclic_order_six')
>>> f.is_revealing('minimal')
False
>>> f.is_revealing('wrt QNB')
True
>>> load_example('v_revealing_test').is_revealing()
False






Caution

This is an experimental feature based on [SD10].




Todo

This method is badly named; something like is_revealed_by(basis) would be better.








	
periodic_points(include_intervals=True)

	Identifies the intervals and points which are (pointwise) peridically mapped under the current automorphism.
Pointwise periodic intervals are represented as :class`~thompson.word.Word`s; isolated periodic points are represented as Fraction [https://docs.python.org/3/library/fractions.html#fractions.Fraction] s.


	Parameters

	include_intervals (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, intervals are not included in the output. If the current automorphism is in T, the result is the boundary of the set of fixed points.



	Returns

	an OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] mapping periodic objects to their period size.






Caution

This is an experimental feature and provides different information to fixed_points().








	
fixed_points()

	Returns a list of Fraction [https://docs.python.org/3/library/fractions.html#fractions.Fraction] and :class`~thompson.word.Word`s which are the fixed points and intervals of this function.

>>> print( *Automorphism.identity((2, 1)).fixed_points() , sep=" ")
x1
>>> standard_generator().fixed_points()
[Fraction(0, 1), Fraction(1, 1)]
>>> f = load_example("non_dyadic_fixed_point")
>>> f.fixed_points()
[Fraction(0, 1), Fraction(1, 3), Word('x1 a2 a2', (2, 1))]
>>> x = Automorphism.from_dfs("1101000", "1100100", "2 3 4 1")
>>> x.fixed_points()
[Fraction(1, 2)]
>>> y = Automorphism.from_dfs("1101000", "1011000", "2 3 4 1")
>>> y.fixed_points()
[Fraction(1, 3), Fraction(2, 3)]





>>> f = random_automorphism()
>>> fixed_intervals = (x for x in f.fixed_points() if isinstance(x, Word))
>>> all( f(interval) == interval for interval in fixed_intervals )
True






Caution

This is an experimental feature.








	
fixed_point_boundary(on_circle=False)

	Replaces any intervals in the output of fixed_points() with their endpoints.

>>> f = load_example("non_dyadic_fixed_point")
>>> f.fixed_point_boundary()
[Fraction(0, 1), Fraction(1, 3), Fraction(3, 4), Fraction(1, 1)]






	Parameters

	on_circle (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, treat 0 and 1 as the same point.





>>> f.fixed_point_boundary(on_circle=True)
[Fraction(0, 1), Fraction(1, 3), Fraction(3, 4)]










	
area_to_identity(scaled=False)

	Let \(\phi \in F_{n, 1}\), viewed as a bijection of the interval.
What is the (unsigned) area between \(\phi\) and the identity?


	Parameters

	scaled (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, the area is normalised by ignoring subintervals where the function is equal to the identity.






Warning

This is an experimental feature based on a suggestion by Henry Bradford.



>>> for n in range(4):
...     print(standard_generator(n).area_to_identity())
... 
5/32
5/128
5/512
5/2048
>>> x0 = standard_generator(0)
>>> x1 = standard_generator(1)
>>> g = ~x0 * x1 * x0
>>> print(g.area_to_identity())
3/32
>>> f = load_example('non_dyadic_fixed_point')
>>> print(f.area_to_identity())
43/768

>>> for n in range(4):
...             print(standard_generator(n).area_to_identity(scaled=True))
5/32
5/32
5/32
5/32










	
centralise_period(period, trees, rearranger)

	Constructs a new element \(\psi\) commuting with the given element \(\phi\). We construct the centralising element by altering the \(\phi\)-orbit structure below the orbits of the given period.

There are two parameters: a collection of labelled trees and a rearranger element; in the notation of [BBG11] these are elements of \(K_{m_i}\) and \(G_{n, r_i}\) respectively.


Todo

doctests




Caution

This is an experimental feature based on [BBG11].








	
gradients_around(x)

	Let \(x \in \mathbb{Q} \cap [0, 1]\). What’s the gradient to the left of \(x\) and right of \(x\)?
If \(x\) is a breakpoint it could be different; if not, it’ll be the same number on both sides.


	Return type

	2-tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of fractions.Fraction [https://docs.python.org/3/library/fractions.html#fractions.Fraction].





>>> f = standard_generator(0)
>>> f.gradients_around(5/6)
(Fraction(2, 1), Fraction(2, 1))
>>> f.gradients_around(1/2)
(Fraction(1, 2), Fraction(1, 1))
>>> f.gradients_around(0)
(Fraction(2, 1), Fraction(1, 2))

>>> g = load_example("alphabet_size_two")
>>> g.gradients_around(1/2)
(Fraction(3, 1), Fraction(1, 1))
>>> g.gradients_around(1/3)
(Fraction(1, 3), Fraction(1, 3))
>>> #One third is a breakpoint, but floating point can't accurately represent one third. Need to use a Fraction here
>>> g.gradients_around(Fraction(1, 3))
(Fraction(1, 3), Fraction(3, 1))
>>> g.gradients_around(0)
(Fraction(1, 3), Fraction(1, 1))














Membership placeholders

As an alternative to using the preserves_order() and cycles_order() methods, we provide two objects F, T which  know how to respond to the in operator.

>>> f = random_automorphism(group='F')
>>> f in F and f in T
True
>>> t = load_example('scott_free_alpha')
>>> t not in F and t in T
True










Next steps

Because an Automorphism can be repeatedly applied, we may consider the orbit \(\{w\psi^n \mid n \in \mathbb{Z}\}\) of any word \(w\). (Note that this is the orbit of \(w\) under the cyclic subgroup \(\langle \psi \rangle\), rather than all of \(G_{n,r}\).)

The next module gives us tools to classify and work with these orbits. (In truth, the Automorphism class uses these tools, so this documentation is really in the wrong order.)
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Orbits

Let \(y\) be a word, and let \(X\) be an expansion of the standard basis \(\boldsymbol{x}=\{x_1, \dotsc, x_n\}\); finally let \(\phi\) be an MixedAut. We call the set \(\mathrm{orb}_\phi(y) = \{ y \phi^i\}_{i\in \mathbb Z}\) the \(\phi\)-orbit of \(y\). Let us refer to the intersection \(\mathrm{orb}_\phi (y) \cap X\langle A \rangle\) as the \(X\) -component of (the \(\phi\)-orbit of) \(y\). Higman demonstrated how we could classify these components in [Hig74] (section 9).

This module is responsible for two orbit-related data structures. Firstly, ComponentType is set up to describe all possible types of orbits according to Higman’s scheme. Secondly, the SolutionSet describes solutions to the equation \(u \phi^i = v\).


Types of orbits and components

These components come in five different types:



	
	Complete infinite components.

	The component is the entire orbit \(\{ y \phi^i\}_{i\in \mathbb Z}\) and each element of the orbit is different.







	
	Complete finite components.

	The component is the entire orbit, which eventually it repeats itself. Thus the component only contains a finite number of distinct words.







	
	Right semi-infinite components.

	The forward orbit \(\{ y \phi^n\}_{n\in \mathbb N}\) belongs to the component and does not repeat itself. However, the backward orbit \(\{ y \phi^{-n}\}_{n\in \mathbb N}\) eventually leaves \(X\langle A\rangle\); thus the component only contains a finite amount of the backward orbit.







	
	Left semi-infinite components.

	The backward orbit is contained in the component, and does not repeat itself; the forward orbit eventually leaves \(X\langle A\rangle\).







	
	Incomplete finite components.

	A finite part of the orbit


\[y\phi^{-n}, \dotsc, y\phi^{-1}, y, y\phi, \dotsc, y\phi^m\]

for which both \(y\phi^{-n-1}\) and \(y\phi^{m+1}\) are not in \(X\langle A\rangle\).












There are six different ways we can form orbits using these components:



	
	Complete infinite (or doubly infinite) orbits.

	The entire orbit is a complete infinite component (type 1).







	
	Complete finite (or periodic) orbits.

	The entire orbit is a component finite component (type 2).







	
	Incomplete finite (or bad) orbits.

	The orbit does not contain any complete or semi-infinite components. Thus the only components which may appear are of type 5. Note that these orbits need not have any components at all!







	
	Incomplete infinite orbits.

	The orbit contains at least one semi-infinite component (types 3, 4). The orbit may also contain incomplete finite components (type 5). We give names to the different cases:


	
	Right semi-infinite orbits.

	One component of type 3, none of type 4.







	
	Left semi-infinite orbits.

	One component of type 4, none of type 3.







	
	Pond orbits.

	One component of type 3 and one of type 4. These components must be separated by a finite list of words in \(V_{n,r}\setminus X\langle A\rangle\); we think of this list as being a pond.




















If that wasn’t confusing enough, we have a another way to classify those orbits which are not incomplete finite.



	Type A components are those with characteristic \((m, \epsilon)\), where \(\epsilon\) is the empty word. These are precisely the periodic orbits.


	Type B components are those with characteristic \((m, \Gamma)\), where \(\Gamma \neq \epsilon\) is nontrivial.


	Type C components are those which are not of type A or B—that is, they are the components which do not have a characteristic. If \(x\) belongs to a type C orbit, then \(x\phi^\ell = z\Delta\) for some \(z\) of type B. That is, type C orbits are those ‘below’ type B orbits.





Note

Type B components must be semi-infinite, but not all semi-infinite components are of type B. Complete infinite components are always of type C, but some semi-infinite components are of type C too.







	
class thompson.orbits.ComponentType

	This class is essentially a glorified enumeration [https://docs.python.org/3/library/enum.html#module-enum]: its instances store a number from 1 to 5 to represent the type of a component.


	Variables

	characteristic – Either the characteristic \((m, \Gamma)\) of this component, or None if this component has no characteristic. Periodic components have characteristic \((m, \varepsilon)\), where \(\varepsilon\) is the empty word.






See also

Section 4.1 of the paper.




	
classmethod periodic(period)

	Describes a complete finite (i.e. periodic, type 2) component. The argument is the period of the the component.






	
classmethod semi_infinite(characteristic, backward=False)

	Describes a semi-infinite component (types 3, 4). The first argument is the characteristic of the component; use None if this component doesn’t have a characteristic. The second argument should specify where this component is left or right semi-infinite.






	
classmethod complete_infinite()

	Describes a component which is infinite in both directions (type 1).






	
classmethod incomplete()

	Describes a component which is incomplete finite (type 5).






	
is_type_A()

	Returns true if this component belongs to an orbit of type A (periodic).






	
is_type_B()

	Returns true if this component belongs to an orbit of type B (has a characteristic)






	
is_type_C()

	Returns true if this component belongs to an orbit of type C (does not have a characteristic)






	
is_incomplete()

	Returns True if this component is incomplete, otherwise False.






	
is_semi_infinite()

	Returns True is this component is semi_infinite (with or without characteristic); otherwise returns False.












The SolutionSet structure

Solutions to the equation \(u\psi^m = v\) come in specific instances. If there are no solutions, the solution set is \(\emptyset\). Otherwise \(u\) and \(v\) share an orbit. If this orbit is periodic, then the solution set is of the form \(m + p\mathbb{Z}\), where \(p\) is the period of the orbit. Otherwise the solution set is a single integer \(m\).

Internally we represent this as a pair (base, increment) of integers. The first element base is a solution \(m\) if it exists; otherwise None. The second element increment is the increment p between solutions (which occurs for a periodic orbit only).


	
class thompson.orbits.SolutionSet

	Solution sets to the orbit sharing test \(u\phi^k = v\). These are either


	empty (no such \(k\)) exists;


	a singleton; or


	a linear sequence a + b*n.




Create solution sets as follows:

>>> print(SolutionSet(5, 2))
{..., 3, 5, 7, 9, 11, 13, ...}
>>> print(SolutionSet.singleton(4))
{4}
>>> print(SolutionSet.empty_set())
{}
>>> print(SolutionSet.the_integers())
{..., -1, 0, 1, 2, 3, 4, ...}






	
is_sequence()

	Returns True if this set contains more than one distinct element; otherwise returns False.

>>> SolutionSet.empty_set().is_sequence()
False
>>> SolutionSet.singleton(2).is_sequence()
False
>>> SolutionSet(base=4, increment=3).is_sequence()
True
>>> SolutionSet.the_integers().is_sequence()
True










	
is_singleton()

	Returns True if this contains precisely one element, otherwise False.

>>> SolutionSet.empty_set().is_singleton()
False
>>> SolutionSet.singleton(2).is_singleton()
True
>>> SolutionSet(base=4, increment=3).is_singleton()
False
>>> SolutionSet.the_integers().is_singleton()
False










	
is_empty()

	Returns True if this set is empty, otherwise False.

>>> SolutionSet.empty_set().is_empty()
True
>>> SolutionSet.singleton(2).is_empty()
False
>>> SolutionSet(base=4, increment=3).is_empty()
False
>>> SolutionSet.the_integers().is_empty()
False










	
is_the_integers()

	Returns True if this set contains every integer; otherwise returns False.

>>> SolutionSet.empty_set().is_the_integers()
False
>>> SolutionSet.singleton(2).is_the_integers()
False
>>> SolutionSet(base=4, increment=3).is_the_integers()
False
>>> SolutionSet.the_integers().is_the_integers()
True










	
__contains__(other)

	Returns true if this set contains an other number.

>>> 1024 in SolutionSet.empty_set()
False
>>> 1024 in SolutionSet.singleton(128)
False
>>> 1024 in SolutionSet(0, 256)
True
>>> 1024 in SolutionSet.the_integers()
True










	
__and__(other)

	The & operator (usually used for bitwise and) stands for intersection of sets.

>>> phi = SolutionSet.empty_set()
>>> Z = SolutionSet.the_integers()
>>> singleton = SolutionSet.singleton
>>> print(phi & phi)
{}
>>> print(phi & singleton(1))
{}
>>> print(phi & SolutionSet(2, 3))
{}
>>> print(singleton(1) & singleton(1))
{1}
>>> print(singleton(1) & singleton(2))
{}
>>> print(singleton(8) & SolutionSet(4, 2))
{8}
>>> print(SolutionSet(1, 3) & SolutionSet(2, 3))
{}
>>> print(SolutionSet(1, 3) & SolutionSet(1, 2))
{..., -5, 1, 7, 13, 19, 25, ...}
>>> print(SolutionSet(1, 18) & SolutionSet(5, 24))
{}
>>> print(SolutionSet(1, 18) & SolutionSet(13, 24))
{..., -35, 37, 109, 181, 253, 325, ...}
>>> print(SolutionSet(1, 3) & Z)
{..., -2, 1, 4, 7, 10, 13, ...}
>>> print(Z & Z)
{..., -1, 0, 1, 2, 3, 4, ...}
















Helper functions


	
thompson.orbits.print_component_types(aut, basis=None, words=None)

	Prints the classification of the components under aut of each word in words with respect to basis. If basis is omitted, it is taken to be the smallest possible expansion which could potentially be a semi-normal basis; see seminormal_form_start_point(). If words is omited, it is taken to be the same as basis.

>>> print_component_types(load_example('arity_three_order_inf'))
x1 a1: Left semi-infinite component with characteristic (-1, a1)
x1 a2: Bi-infinite component
x1 a3 a1: Bi-infinite component
x1 a3 a2: Bi-infinite component
x1 a3 a3: Right semi-infinite component with characteristic (1, a1)
with respect to the basis [x1 a1, x1 a2, x1 a3 a1, x1 a3 a2, x1 a3 a3]





>>> print_component_types(load_example('arity_four'))
x1 a1 a1: Periodic component of order 4
x1 a1 a2: Periodic component of order 4
x1 a1 a3: Periodic component of order 4
x1 a1 a4: Periodic component of order 4
x1 a2: Bi-infinite component
x1 a3: Right semi-infinite component with characteristic (1, a3)
x1 a4: Left semi-infinite component with characteristic (-1, a4)
with respect to the basis [x1 a1 a1, x1 a1 a2, x1 a1 a3, x1 a1 a4, x1 a2, x1 a3, x1 a4]






See also

The orbit_type() method.








	
class thompson.orbits.Characteristic(power, multiplier)

	
	
__getnewargs__()

	Return self as a plain tuple.  Used by copy and pickle.






	
static __new__(_cls, power, multiplier)

	Create new instance of Characteristic(power, multiplier)






	
__repr__()

	Return a nicely formatted representation string






	
multiplier

	Alias for field number 1






	
power

	Alias for field number 0












Next steps

With tools to describe orbits in hand, we can dive straight into the Automorphism class. In particular, we need to know how orbits work to


	determine quasinormal bases


	perform the orbit sharing test


	perform the conjugacy test
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MixedAuts

A general automorphism \(\phi \in G_{n,r}\) may exhibit periodic behaviour, infinite behaviour, or a mix of both. We say that an automorphism is


	purely periodic if it has finite order;


	purely infinite if it has no periodic orbits; and


	mixed otherwise.




We can represent a mixed automorphism \(\psi\) as a free product [http://en.wikipedia.org/wiki/Free_product] \(\psi = \psi_P * \psi_I\) of a purely periodic and purely infinite automorphism. The automorphisms \(\psi_P\) and \(\psi_I\) are called free_factors(). We form this decomposition because the conjugacy problem is easier to solve when the automorphisms are both pure infinite or both pure periodic.

This class is responsible for:


	Generating the free factors from a mixed automorphism;


	Combining a periodic and infinite factor into a mixed automorphism; and


	Delegating the conjugacy and power conjugacy tests to these factors.





The MixedAut class


	
class thompson.mixed.MixedAut(domain, range, reduce=True)

	
	
free_factors()

	In principle, an automorphism can be decomposed into free factors using any partition of the quasi-normal basis \(X = X_1 \sqcup X_2\). The decomposition \(X = X_P \sqcup X_I\) is particularly interesting since these sets generate \(\psi\)-invariant subalgebras, which means that a conjugator can be reassembled from conjugators of the factors.


See also

This jargon comes from Theorem 5.1.



This is a convenience method which produces the free factors \(\psi_P\) and \(\psi_I\) from \(\psi\).






	
free_factor(generators)

	This method restricts the current automorphism to the subalgebra generated by the given set \(W\) of generators. This is then transformed into an automorphism of an isomorphic algebra with minimal alphabet size \(1 \le s \le n-1\).


\[\begin{split}&G_{n, r}       &\to            &G_{n, |W|}             &\to            &G_{n, s} \\
&\phi           &\mapsto        &\phi|_{W\langle A\rangle\langle\lambda\rangle} 
                                                                                &\mapsto        &\phi\,'\end{split}\]


	Returns

	The transformed automorphism \(\phi\, \in G_{n, s}\). Its type is PeriodicAut or InfiniteAut as appropriate.



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if an empty list of generators is provided.





>>> phi = load_example('alphabet_size_two')
>>> qnb = phi.quasinormal_basis
>>> p, i = phi._partition_basis(qnb)
>>> print(phi.free_factor(p))
PeriodicAut: V(3, 1) -> V(3, 1) specified by 1 generators (after expansion and reduction).
This automorphism was derived from a parent automorphism.
'x' and 'y' represent root words of the parent and current derived algebra, respectively.
x1 a1 ~>    y1 => y1    ~> x1 a1
>>> print(phi.free_factor(i))
InfiniteAut: V(3, 1) -> V(3, 1) specified by 5 generators (after expansion and reduction).
This automorphism was derived from a parent automorphism.
'x' and 'y' represent root words of the parent and current derived algebra, respectively.
x1 a2 ~>    y1 a1    => y1 a1 a3    ~> x1 a2 a3
x1 a3 ~>    y1 a2    => y1 a3       ~> x2      
x2 a1 ~>    y1 a3 a1 => y1 a2       ~> x1 a3   
x2 a2 ~>    y1 a3 a2 => y1 a1 a2    ~> x1 a2 a2
x2 a3 ~>    y1 a3 a3 => y1 a1 a1    ~> x1 a2 a1










	
test_conjugate_to(other)

	Determines if the current automorphism \(\psi\) is conjugate to the other automorphism \(\phi\).


	Returns

	if it exists, a conjugating element \(\rho\) such that \(\rho^{-1}\psi\rho = \phi\). If no such \(\rho\) exists, returns None.



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the automorphisms have different arities or alphabet sizes.





>>> psi, phi = random_conjugate_pair()
>>> rho = psi.test_conjugate_to(phi)
>>> rho is not None
True
>>> psi * rho == rho * phi
True
>>> psi, phi = load_example_pair('first_pond_example')
>>> rho = psi.test_conjugate_to(phi)
>>> rho is not None
True
>>> psi * rho == rho * phi
True






See also

This is an implementation of Algorithm 5.6 in the paper. It depends on Algorithms 5.13 and 5.27; these are the periodic and infinite tests for conjugacy.








	
find_power_conjugators(other, cheat=False)

	Determines if some power of the current automorphism \(\psi\) is conjugate to some power of the other automorphism \(\phi\). This method exhaustively searches for all minimal solutions \((a, b, \rho)\) such that \(\rho^{-1}\psi^a\rho = \phi^b\). This method returns a generator which yields such minimal solutions.


Warning

If the power_conjugacy_bounds() are reasonable large (say > 30), this method could potentially take a long time!




	Parameters

	cheat – (internal) for speeding up testing.



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the automorphisms have different arities or alphabet sizes.






See also

This is an implementation of Algorithm 6.13 in the paper. It depends on Algorithms 5.6 (the conjugacy test) and 6.11 (the infinite power conjugate test.)








	
test_power_conjugate_to(other, cheat=False)

	Determines if some power of the current automorphism \(\psi\) is conjugate to some power of the other automorphism \(\phi\). This method searches for a single minimal solution \((a, b, \rho)\) such that \(\rho^{-1}\psi^a\rho = \phi^b\). If no such solution exists, returns None.


Warning

If the power_conjugacy_bounds() are reasonable large (say > 30), this method could potentially take a long time!




	Parameters

	cheat – (internal) for speeding up testing.



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the automorphisms have different arities or alphabet sizes.





>>> psi, phi = load_example_pair('mixed_pconj')
>>> a, b, rho = psi.test_power_conjugate_to(phi)
>>> a, b
(6, 3)
>>> psi**a * rho == rho * phi ** b
True






See also

This is an implementation of Algorithm 6.13 in the paper. It depends on Algorithms 5.6 (the conjugacy test) and 6.11 (the infinite power conjugate test.)














Next steps

To complete the details of the conjugacy test, we have to be able to test if two pure periodic automorphisms are conjugate and if two pure infinite automorphisms are conjugate. Any given automorphism can be broken down into a pure periodic and pure infinite part. These parts are called free factors.
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Free Factors and conjugacy

To test for conjugacy we need to extract periodic and infinite components of an automorphism and test those components for conjugacy. These next few classes keep track of


	how the components embed into the original automorphism, and


	any extra information that we need to test the components for conjugacy.





Periodic Factors


	
class thompson.periodic.PeriodicAut(domain, range, reduce=True)

	A purely periodic automorphism, which may have been extracted from a mixed automorphism.

>>> example_5_9 = load_example('example_5_9')
>>> print(example_5_9)
PeriodicAut: V(2, 1) -> V(2, 1) specified by 7 generators (after expansion and reduction).
x1 a1 a1 a1 -> x1 a1 a1 a2
x1 a1 a1 a2 -> x1 a1 a2   
x1 a1 a2    -> x1 a1 a1 a1
x1 a2 a1 a1 -> x1 a2 a1 a2
x1 a2 a1 a2 -> x1 a2 a1 a1
x1 a2 a2 a1 -> x1 a2 a2 a2
x1 a2 a2 a2 -> x1 a2 a2 a1
>>> sorted(example_5_9.cycle_type)
[2, 3]
>>> #Two orbits of size 2, one orbit of size 3
>>> from pprint import pprint
>>> pprint(example_5_9.multiplicity)
{2: 2, 3: 1}
>>> example_5_9.order
6





>>> load_example('cyclic_order_six').order
6
>>> phi = random_periodic_automorphism()
>>> 1 <= phi.order < float('inf')
True
>>> len(phi.cycle_type) != 0
True
>>> len(phi.characteristics)
0






	
test_conjugate_to(other)

	We can determine if two purely periodic automorphisms are conjugate by examining their orbits.

>>> psi_p, phi_p = load_example('example_5_12_psi'), load_example('example_5_12_phi')
>>> rho_p = psi_p.test_conjugate_to(phi_p)
>>> print(rho_p)
PeriodicAut: V(2, 1) -> V(2, 1) specified by 6 generators (after expansion and reduction).
x1 a1 a1 a1 a1 -> x1 a1 a2   
x1 a1 a1 a1 a2 -> x1 a2 a2   
x1 a1 a1 a2    -> x1 a1 a1 a1
x1 a1 a2       -> x1 a2 a1 a1
x1 a2 a1       -> x1 a1 a1 a2
x1 a2 a2       -> x1 a2 a1 a2
>>> rho_p * phi_p == psi_p * rho_p
True
>>> psi_p, phi_p = random_conjugate_periodic_pair()
>>> rho_p = psi_p.test_conjugate_to(phi_p)
>>> rho_p * phi_p == psi_p * rho_p
True






See also

This implements algorithm 5.13 of the paper—see section 5.3.








	
find_power_conjugators(other, identity_permitted=False, cheat=False)

	




	
test_power_conjugate_to(other, cheat=False)

	Tests two periodic factors to see if they are power conjugate. Yields minimal solutions \((a, b, \rho)\). such that \(\rho^{-1}\psi^a\rho = \phi^b\).


See also

Section 6.1 of the paper.








	
power_conjugacy_bounds(other, identity_permitted)

	We simply try all powers of both automorphisms. There are only finitely many, because everything is periodic.


	Returns

	self.power, other.power if the identity is permitted as a solution; otherwise self.power - 1, other.power - 1.






Todo

Maybe this should be 0 to order if the identity is permitted and 1 to order otherwise?




See also

Section 6.1 of the paper.














Infinite Factors


	
class thompson.infinite.InfiniteAut(domain, range, reduce=True)

	A purely infinite automorphism which may have been extracted from a mixed automorphism.

>>> print(load_example('example_5_3').free_factors()[1])
InfiniteAut: V(2, 1) -> V(2, 1) specified by 6 generators (after expansion and reduction).
This automorphism was derived from a parent automorphism.
'x' and 'y' represent root words of the parent and current derived algebra, respectively.
x1 a1 a1 a1 a1 ~>    y1 a1 a1 a1 => y1 a1 a1       ~> x1 a1 a1 a1   
x1 a1 a1 a1 a2 ~>    y1 a1 a1 a2 => y1 a1 a2 a1    ~> x1 a1 a1 a2 a1
x1 a1 a1 a2    ~>    y1 a1 a2    => y1 a1 a2 a2    ~> x1 a1 a1 a2 a2
x1 a2 a1       ~>    y1 a2 a1    => y1 a2 a1 a1    ~> x1 a2 a1 a1   
x1 a2 a2 a1    ~>    y1 a2 a2 a1 => y1 a2 a1 a2    ~> x1 a2 a1 a2   
x1 a2 a2 a2    ~>    y1 a2 a2 a2 => y1 a2 a2       ~> x1 a2 a2      
>>> phi = random_infinite_automorphism()
>>> phi.order
inf
>>> len(phi.cycle_type)
0
>>> len(phi.characteristics) != 0
True






	
test_conjugate_to(other)

	We can determine if two purely infinite automorphisms are conjugate by breaking down the quasi-normal basis into equivalence classes.

>>> for psi_i, phi_i in (
...   load_example_pair('example_5_26'),
...   load_example_pair('inf_conj'),
...   random_conjugate_infinite_pair()):
...     rho_i = psi_i.test_conjugate_to(phi_i)
...     print('Conjugate:', rho_i is not None, ' Conjugator works:', rho_i * phi_i == psi_i * rho_i)
Conjugate: True  Conjugator works: True
Conjugate: True  Conjugator works: True
Conjugate: True  Conjugator works: True





>>> f, g = (load_example('not_conjugate_' + c) for c in 'fg')
>>> f.is_conjugate_to(g)
False






See also

This implements Algorithm 5.27 of the paper—see Section 5.4.








	
equivalence_data(type_b, type_c)

	Let \(X\) be the quasi-normal basis for the current automorphism \(\psi\). We can define an equivalence relation \(\equiv\) on \(X\) by taking the non-transitive relation


\[x \equiv y \iff \exists k, \Gamma, \Delta : x\Gamma\psi^k = y\Delta\]

and allowing it to generate an equivalence relation. This method returns a pair (roots, graph) where


	graph is a DiGraph() [https://networkx.github.io/documentation/networkx-1.11/reference/classes.digraph.html#networkx.DiGraph]



	vertices are type B words in \(X\)


	directed edges \(x \to y\) correspond to the direct relation \(x \equiv y\)


	the graph is a directed forest









	roots is a list of type B words in \(X\)



	Each root is the root of a different tree in the forest graph.











This information allows us to (attempt to) compute the images of \(X\) under a conjugator given only the images of roots.


See also

Definition 5.17 through to Lemma 5.20.








	
potential_image_endpoints(self_type_b)

	Let x be a type B word with respect to the current automorphism. This returns a mapping which takes x and produces the set of words w which are endpoints of other-orbits which have the same characteristic as x.


See also

The sets \(\mathcal R_i\) of defintion 5.23.








	
find_power_conjugators(other, cheat=False)

	Tests two infinite factors to see if they are power conjugate. Yields minimal solutions \((a, b, 
ho)\).


>>> example_6_8_psi, example_6_8_phi = load_example_pair('example_6_8')
>>> solns = example_6_8_psi.find_power_conjugators(example_6_8_phi)
>>> for a, b, rho in solns:
...     print(a, b)
...     assert example_6_8_psi ** a * rho == rho * example_6_8_phi ** b
3 1
-3 -1






Warning

If the power_conjugacy_bounds() are reasonable large (say > 30), this method could potentially take a long time!




See also

Algorithm 6.11 of the paper.











	
test_power_conjugate_to(other, cheat=False)

	Tests two infinite factors to see if they are power conjugate. If a solution exists, returns \((a, b, \rho)\) such that \(\rho^{-1}\psi^a\rho = \phi^b\). Otherwise returns None.

>>> result = example_6_8_psi.test_power_conjugate_to(example_6_8_phi)
>>> result is not None
True
>>> a, b, rho = result
>>> (example_6_8_psi ** a) * rho == rho * (example_6_8_phi ** b)
True






Warning

If the power_conjugacy_bounds() are reasonable large (say > 30), this method could potentially take a long time!




See also

Algorithm 6.11 of the paper.








	
power_conjugacy_bounds(other)

	Compute the bounds \(\hat a, \hat b\) on powers which could solve the power conjugacy problem.

>>> example_6_8_psi.power_conjugacy_bounds(example_6_8_phi)
(9, 1)






See also

Proposition 6.6 and Corollary 6.7.








	
minimal_partition()

	Let \(\psi\) be the current automorphism. This method partitions the characteristics \(M_\psi\) into cells \(P_1 \sqcup \dots \sqcup P_L\), where
- The multipliers \(\Gamma\) all have the same root(), for all \((m, \Gamma)\) in each \(P_i\).
- \(L\) is minimal with this property.

>>> def print_partition(p):
...     for root in sorted(p.keys(), reverse=True):
...             print(format(root), end = ':')
...             for power, mult, _ in p[root]:
...                     print(' ({}, {})'.format(power, format(mult)), end='')
...             print()
>>> print_partition(example_6_8_psi.minimal_partition())
a1: (-1, a1)
a2: (1, a2)
>>> print_partition(example_6_8_phi.minimal_partition())
a1: (-1, a1 a1 a1)
a2: (1, a2 a2 a2)
>>> example_6_9_psi, example_6_9_phi = load_example_pair('example_6_9')
>>> print_partition(example_6_9_phi.minimal_partition())
a1: (-2, a1)
a2: (1, a2)






	Returns

	a dictionary of sets. The keys of this dictionary are the roots \(\sqrt\Gamma\); the values are the cells \(P_i\). An element of a cell looks like \(m, \Gamma, r\) where \(m, \Gamma\) is a characteristic and \(r\) is the root power corresponding to \(\sqrt\Gamma\).






See also

the discussion following Corollary 6.7.








	
static compute_bounds(s_parts, o_parts)

	Computes the bounds \(\hat a, \hat b\) (in terms of the partitions \(P, Q\) given by s_parts and o_parts) as in eqns (14) and (15) of the paper.

>>> def bounds(s, o):
...     P = s.minimal_partition()
...     Q = o.minimal_partition()
...     a_hat = InfiniteAut.compute_bounds(P, Q)
...     b_hat = InfiniteAut.compute_bounds(Q, P)
...     return a_hat, b_hat
>>> bounds(example_6_8_psi, example_6_8_phi)
(9, 1)
>>> bounds(example_6_9_psi, example_6_9_phi)
(1, 2)
















Next steps

With these classes, the conjugacy and power conjugacy tests are implemented. The other important part of this package is the examples module.







          

      

      

    

  

  
    
    Examples
    

    

    

    

    
 
  

    
      
          
            
  
Examples

This module provides a number of explicit examples for use in doctests. Additionally, functions to generate random automorphisms are provided.


Explict named examples

A list of named examples is loaded from the .aut files in the examples folder [https://github.com/DMRobertson/thompsons_v/tree/master/thompson/examples].
This includes all the examples given in the paper, as well as others used to test the package.
Use the following functions to load one of these examples.


	
thompson.examples.available_examples()

	Returns an iterator yielding the names of the examples that are provided with the package. (Note that the full list is provided in this documentation.)

>>> list(available_examples())[:4]
['alphabet_size_two', 'arity_four', 'arity_three_order_inf', 'bleak_alpha']










	
thompson.examples.load_example(name)

	Loads the example with the given name from disk. A corresponding Automorphism instance is created and returned. The results are cached, so call this method as often as you like.






	
thompson.examples.load_example_pair(name)

	Loads a pair of examples, *name*_psi and *name*_phi.


	Return type

	a 2-tuple of automorphisms.










	
thompson.examples.load_all_examples()

	Loads (and processes) all examples provided by the package. Returns a dictionary whose keys are the example names and whose values are the loaded automorphisms.


Note

To discourage use of this function, it is not available when importing * from thompson.examples.
Instead it must be explicitly imported with from thompson.examples import load_all_examples.




Warning

Some of the examples are slow to process, so calling this could take a long time.








	
thompson.examples.standard_generator(n=0)

	Produces the standard generator \(X_n\) of \(F\) as described in [CFP96].
For instance, \(X_0\) is the following:

>>> print(standard_generator())
InfiniteAut: V(2, 1) -> V(2, 1) specified by 3 generators (after expansion and reduction).
x1 a1    -> x1 a1 a1
x1 a2 a1 -> x1 a1 a2
x1 a2 a2 -> x1 a2   





For \(n > 0\) the element \(X_n\) is a Mixed automorphism, consisting of a large fixed part and a smaller part which looks like \(X_0\).

>>> from random import randint
>>> n = randint(1, 20)
>>> x_n = standard_generator(n)
>>> type(x_n)
<class 'thompson.mixed.MixedAut'>





The \(X_n\) generate \(F\); in fact just \(X_0\) and \(X_1\) are sufficient, due to the relation \(X_k^{-1} X_n X_k = X_{n+1}\) for \(k < n\). See [CFP96] for more details.

>>> x_k = standard_generator(randint(0, n-1))
>>> x_k * x_n * ~x_k == standard_generator(n+1) #operation is the other way round in Python
True










Todo

Add the named generators A, B, C of Thompson’s T and V. Analogues for general G_n,r?






List of named examples

Note that some automorphisms have more than one name—they will appear once in this list for every alias.


	alphabet_size_two

	See the forest diagram and function plot.

A toy example to test that the program works in \(V_{3,2}\).



	arity_four

	See the forest diagram and function plot.

Another example for sanity checking. This is an automorphism of \(V_{4,1}\).



	arity_three_order_inf

	See the forest diagram and function plot.

A purely infinite automorphism of \(V_{3,1}\).



	bleak_alpha

	See the forest diagram and function plot.

The element \(\alpha\) of \(V\) used by Bleak et al [BBG11] to illustrate their train tracks and flow graphs.



	bleak_klein_alpha

	See the forest diagram and function plot.

The example in [BBG11] of an element whose centraliser contains the Klein four group \(\mathbb{Z_2 \oplus Z_2}\) as a subgroup. We have represented it as an element of \(G_{2, 8}\) rather than \(G_{2, 1}\).



	bleak_klein_beta

	See the forest diagram and function plot.

The example \(\beta\) in [BBG11] of an element generating a Klein four group as part of the centraliser of bleak_klein_alpha.



	bleak_klein_gamma

	See the forest diagram and function plot.

The example \(\gamma\) in [BBG11] of an element generating a Klein four group as part of the centraliser of bleak_klein_alpha.



	commutator

	See the forest diagram and function plot.

An element of the commutator subgroup of F. It has one bump and two fixed intervals.



	cyclic_order_six

	See the forest diagram and function plot.

An introductory example drawn on the board by NB. It is purely periodic of order six.



	example_4_1

	See the forest diagram and function plot.

This example is used in the paper to illustrate the meaning of a semi-normal form (Example 4.11) and of a tree pair diagram (Example 4.1).



	example_4_12

	See the forest diagram and function plot.

This example is used in the paper to illustrate the meaning of a semi-normal form. This example needs to be expanded from its minimal representation to find a semi-normal (in fact quasi-normal) form.



	example_4_5

	See the forest diagram and function plot.

This example is used to illustrate the different types of components/orbits in the paper.



	example_5_12_phi

	See the forest diagram and function plot.

The example used in the paper to demonstrate the periodic conjugacy test.



	example_5_12_psi

	See the forest diagram and function plot.

The example used in the paper to demonstrate the periodic conjugacy test.



	example_5_15

	See the forest diagram and function plot.

This example is used in the paper to illustrate the process of finding the quasi-normal basis.



	example_5_26_psi

	See the forest diagram and function plot.

The example used in the paper to demonstrate the infinite conjugacy test.



	example_5_3

	See the forest diagram and function plot.

This example is used to demonstrate how we can break down an automorphism into its free_factors().



	example_5_9

	See the forest diagram and function plot.

This example is used in the paper to illustrate the definition of cycle types.



	example_6_2

	See the forest diagram and function plot.

Example 6.2 of the paper, used to illustrate lemma 6.1.



	example_6_8_phi

	See the forest diagram and function plot.

A purely infinite automorphism which illustrates the bounds \(\hat a, \hat b\) for power conjugacy.



	f_thirds_fixed

	See the forest diagram and function plot.

An element of \(F\) whose fixed point set is exactly \(\{ 0, 1/3, 2/3, 1\}\).



	first_pond_example_phi

	See the forest diagram and function plot.

The example of a pond orbit we found by a random search. Its banks are \(x\alpha_1^4\alpha_2\) and \(x\alpha_1\alpha_2^2\).



	first_pond_example_psi

	See the forest diagram and function plot.

The element which was conjugate to first_pond_example_phi.



	four_minimal_revealing_pairs

	See the forest diagram and function plot.

I think this automorphism has 4 minimal revealing pairs. It has an orbit of characteristic (-4, a1^4) spread apart over four components of \(A \setminus B\). Brin’s algorithm would have you add three of these components to the tree, and I think the component you DON’T add is the one that determines the revealing pair.



	inf_conj_phi

	See the forest diagram and function plot.

An example used to debug the infinite conjugacy test.



	inf_conj_psi

	See the forest diagram and function plot.

An example used to debug the infinite conjugacy test.



	mixed_pconj_phi

	See the forest diagram and function plot.

An example of mixed power conjugacy found by random search. Should have \(\psi^{-4} \sim \phi^2\).



	mixed_pconj_psi

	See the forest diagram and function plot.

An example of mixed power conjugacy found by random search. Should have \(\psi^{-4} \sim \phi^2\).



	mixed_plines

	See the forest diagram and function plot.

An element of \(T\) with rotation number \(1/2\). The square of this element acts like \(x_0^2\) on the first and third quarters, and acts like the identity elsewhere. Thus it has two periodic flow lines and two pointwise periodic lines. The same is true of the square of mixed_plines_2, but even though it does not act as the identity on the second and fourth quarters.



	mixed_plines_2

	See the forest diagram and function plot.

An element of \(T\) with rotation number \(1/2\) and no fixed intervals. The square of this element acts like \(x_0^2\) on the first and third quarters, and acts like the identity elsewhere. Thus it has two periodic flow lines and two pointwise periodic lines. The same is true of the square of mixed_plines, which acts as the identity on the second and fourth quarters.



	multiple_classes

	See the forest diagram and function plot.

A purely infinite automorphism for which there are two equivalence classes defined on X.



	multiple_classes_smaller

	See the forest diagram and function plot.

A purely infinite automorphism for which there are two equivalence classes defined on X. It was more straightforward to see that this automorphism had two equivalence classes.



	nathan1_example

	See the forest diagram and function plot.

One of Nathan’s examples. This is almost, but not quite conjugate to nathan_pond_example. Nathan had this to say: “I untwisted one of the infinite orbits after a conjugation and so they definitely should not be conjugate.”



	nathan_pond_example

	See the forest diagram and function plot.

Nathan’s example of an automorphism containing a pond. This has a simpler tree pair than first_pond_example_phi.



	no_minimal_revealing

	See the forest diagram and function plot.

An example from section 3.6 of [SD10]. This is an automorphism \(f \in G_{2,1}\) for which there is no minimal revealing pair from which every other revaling pair can be obtained via rollings.



	non_dyadic_fixed_point

	See the forest diagram and function plot.

In their paper introducing strand diagrams, Belk and Matucci provide an example of an element of \(F\) which has a non-dyadic fixed point. This is a slight simplification of that example.



	non_revealing

	See the forest diagram and function plot.

A purely infinite automorphism for which
- The minimal representation does NOT correspond to a revealing pair; and
- The quasinormal basis does NOT correspond to a revealing pair.



	not_conjugate_f

	See the forest diagram and function plot.

An example of an element which isn’t conjugate to not_conjugate_g, even though it comes quite close to being so!



	not_conjugate_g

	See the forest diagram and function plot.

An element which is not conjugate to not_conjugate_f, even though it comes quite close to being so!



	olga_f

	See the forest diagram and function plot.

An automorphism described in example 5 of [SD10]. Nathan had this to say: “olga_f is conjugate to olga_g, via a rho that can be found using your program or olga_h. Note that characteristics are not the same for two of the semi-infinite orbits.”



	olga_g

	See the forest diagram and function plot.

An automorphism described in example 5 of [SD10]. Nathan had this to say: “olga_f is conjugate to olga_g, via a rho that can be found using your program or olga_h. Note that characteristics are not the same for two of the semi-infinite orbits.”



	olga_gdash

	See the forest diagram and function plot.

An automorphism described in example 5 of [SD10]. The paper claims that olga_f and olga_gdash are not conjugate.



	olga_h

	See the forest diagram and function plot.

An automorphism described in example 5 of [SD10]. Nathan had this to say: “olga_f is conjugate to olga_g, via a rho that can be found using your program or olga_h. Note that characteristics are not the same for two of the semi-infinite orbits.”



	periodic_QNB_206

	See the forest diagram and function plot.

This purely periodic automorphism (again found by random search) has a quasinormal basis of size 206.



	periodic_QNB_344

	See the forest diagram and function plot.

This purely periodic automorphism (again found by random search) has a quasinormal basis of size 344.



	pond_width_4

	See the forest diagram and function plot.

An example found by random search of a pond orbit of width 4. Prior to this we had only seen ponds of width 1 or 2.



	power_smaller_QNB

	See the forest diagram and function plot.

The square of this automorphism appears to have a QNB above the QNB of the original automorphism.



	rotation_number_one_third

	See the forest diagram and function plot.

An non-periodic element of T_{2,3} which should have rotation number 1/3.



	scott_free_alpha

	See the forest diagram and function plot.

The element alpha in the appendix of [Scott] which generates a free group of rank 2 with beta, also from the appendix.



	scott_free_beta

	See the forest diagram and function plot.

The element beta in the appendix of [Scott] which generates a free group of rank 2 with alpha, also from the appendix.



	semi_inf_c

	See the forest diagram and function plot.

An example of an automorphism whose quasi-normal basis \(X\) contains an element \(x\alpha_2\alpha_1\) which belongs to a semi-infinite \(X\)-component which is not characteristic.



	t_generator_c

	See the forest diagram and function plot.

This is the element C used by Cannon, Floyd and Parry to generate Thompson’s group T.



	thirds_fixed

	See the forest diagram and function plot.

This element of T has only two fixed points: 1/3 and 2/3; note that these are non dyadic!



	two_flow_components_d

	See the forest diagram and function plot.

An example which found a bug in the infinite conjugacy test. This automorphism contains two flow components which are identical in all but their location.



	two_flow_components_e

	See the forest diagram and function plot.

An example which found a bug in the infinite conjugacy test. This automorphism is a conjugated version of two_flow_components_d.



	v_generator_pi

	See the forest diagram and function plot.

This is the generator \(\pi_0\) used by Cannon, Floyd and Parry to generate V.



	v_revealing_test

	See the forest diagram and function plot.

A short example used to test the is_revealing method








Randomly generated examples


Words


	
thompson.examples.random_signature()

	Randomly generates a Signature \((n, r)\) for use in the functions below. The values of \(n\) and \(r\) are chosen (uniformly) at random from \(n \in \{2, 3, 4\}\) and \(r \in \{1, 2, 3, 4, 5\}\), respectively.


Note

This function is used to select a random signature when no signature argument is provided to the following random functions.








	
thompson.examples.random_simple_word(signature=None)

	Randomly generates a simple Word belonging to the algebra with the given signature. The word consists of an \(x_i\) followed by 0–15 descendant operators \(\alpha_j\). The length and the index of each \(\alpha_j\) is chosen (uniformly) at random.

>>> random_simple_word().is_simple()
True










	
thompson.examples.random_basis(signature=None, num_expansions=None, *args, **kwargs)

	Randomly generates a basis for the algebra with the given signature \((n,r)\). The basis is generated by expanding the standard_basis() num_expansions times. The expansion point is chosen (uniformly) at random each time. If num_expansions is not provided, a value from \(\{1, 2, 3, 4, 5\}\) is chosen (uniformly) at random.

>>> random_basis().is_basis()
True





The cls argument specifies which class the generated basis should have; this should be a subclass of Generators.
At the moment, this is only used internally and experimentally.


Note

This does not generate bases uniformly at random. For instance, take \(V_{n,r} = V_{2,1}\) and let num_expansions = 3. The first expansion always gives the basis \([x\alpha_1, x\alpha_2]\). Expanding this twice produces give six bases, one of which appears twice. (To see this, enumerate the rooted binary trees with four leaves.)










Automorphisms


	
thompson.examples.random_automorphism(signature=None, num_expansions=None, *args, **kwargs)

	Randomly generates an automorphism for the algebra with the given signature. Two bases domain and range are generated by random_basis(). Then the range is manipulated according to the group we’re interesting in. For group == 'V', we randomly shuffle the range; for group == 'T', we cyclicly permute the range; for group == 'F' we do nothing.

>>> random_automorphism(group='T').cycles_order()
True
>>> random_automorphism(group='F').preserves_order()
True





An automorphism is returned which maps the elements of domain to those of range in whichever order results.


Note

The bases may be reduced when the automorphism is created (if they contain redundancy).








	
thompson.examples.random_periodic_automorphism(signature=None, num_expansions=None, *args, **kwargs)

	Randomly generates an automorphism for the algebra with the given signature. A basis domain is generated by random_basis(). A copy range is made of domain, and is then randomly shuffled [https://docs.python.org/3/library/random.html#random.shuffle]. An automorphism is returned which maps the elements of domain to those of range in order.


Note

The bases may be reduced when the automorphism is created (if they contain redundancy.








	
thompson.examples.random_infinite_automorphism(signature=None, num_expansions=None, *args, **kwargs)

	Randomly generates an infinite automorphism—either by chance, or by extracting an infinite free_factor().


Todo

The implementation is inefficient: just make auts at random until you find an infinite one. Fix this!








	
thompson.examples.random_conjugate_pair(signature=None, num_expansions=None, *args, **kwargs)

	Calls random_automorphism() to create two automorphisms \(\psi\) and \(\rho\). Returns the pair \((\psi, \rho^{-1}\psi\rho)\), which are conjugate by definition.






	
thompson.examples.random_conjugate_periodic_pair(signature=None, num_expansions=None, *args, **kwargs)

	The same as random_conjugate_pair(), except \(\psi\) is chosen to be a random_periodic_automorphism().






	
thompson.examples.random_conjugate_infinite_pair(signature=None, num_expansions=None, *args, **kwargs)

	The same as random_conjugate_pair(), except \(\psi\) is chosen to be a random_infinite_automorphism().






	
thompson.examples.random_power_conjugate_pair(signature=None, num_expansions=None, *args, **kwargs)

	Generates \(\psi, \rho\) using random_automorphism() and random powers \(a, b\). Returns the tuple \((\Psi, \Phi) = (\psi^b, \rho^{-1}\psi^a\rho)\). Note that \(\Psi^a\) is conjugate to \(\Phi^b\) via \(\rho\).
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Drawing automorphisms

It can be helpful to see automorphisms rather than just read a description of them.
To that end we introduce functions for rendering automorphisms as tree pair diagrams.
The output looks best for automorphisms with a small arity (2–5) and a reasonable number of leaves.


Examples

First we take a well-behaved automorphism.
The solid carets are those belonging to both the domain and range trees.
All other carets are dotted.
Some edges are highlighted in red—these correspond to the repellers and attractors discussed by [SD10].

>>> from thompson import *
>>> x0 = standard_generator(0)
>>> plot(x0)
>>> forest(x0)





[image: A plot of the standard generator x_0 of Thompson's group F.]
[image: The tree pair diagram for the standard generator x_0 of Thompson's group F.]
Discontinuities are fine too. Here’s example_4_17 for instance.

>>> pond = load_example('example_4_17')
>>> plot(pond, discontinuities=True)
>>> forest(pond)





[image: A plot of a specific element of G_{2,1}.]
[image: The tree pair diagram for a specific element of G_{2,1}..]
Let’s aim for something more chaotic.
This example is complicated enough that the drawings don’t really give us much insight into the automorphism.

>>> random = random_automorphism() #different every time!
>>> plot(random)
>>> forest(random, horiz=False)





[image: A plot of a randomly generated element of G_{3,4}.]
[image: The tree pair diagram for a randomly generated element of G_{3,4}.]



Drawing functions


	
thompson.drawing.display_file(filepath, format=None, scale=1.0, verbose=False)

	Display the image at filepath to the user. This function behaves differently, depending on whether or not we execute it in a Jupyter notebook.

If we are not in a notebook, this function opens the given image using the operating system’s default application for that file.

If we are in a notebook, this returns an IPython object corresponding to the given image.
If this object is the last expression of a notebook code block, the image will be displayed.
The image is handled differently depending on its format, which must be specified when the function is called in a notebook.
Only the formats ‘svg’ and ‘pdf’ are accepted.


Note

PDF files are displayed in a notebook as a rendered PNG. The conversion is made using the convert program provided by ImageMagick [http://www.imagemagick.org/script/index.php], which must be available on the PATH [https://en.wikipedia.org/wiki/PATH_(variable)] for this function to work with PDF files. The optional scale argument can be used to control how big the rendered PNG is.




Todo

use a Python binding to ImageMagick rather than just shelling out?








	
thompson.drawing.plot(*auts, dest=None, display=True, diagonal=False, endpoints=False, scale=1)

	Plots the given automorphism s as a function \([0, 1] \to [0, 1]\). The image is rendered as an SVG using svgwrite.


	Parameters

	
	dest (str [https://docs.python.org/3/library/stdtypes.html#str]) – the destination filepath to save the SVG to. If None, the SVG is saved to a temporary file location.


	display (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, automatically call display_file() to display the SVG to the user. Otherwise does nothing.


	diagonal (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, draws the diagonal to highlight fixed points of aut.


	endpoints (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, open and closed endpoints are drawn on the plot to emphasise any discontinuities that aut has.






	Returns

	the filepath where the SVG was saved. If dest is None this is a temporary file; otherwise the return value is simply dest.










	
thompson.drawing.forest(aut, jobname=None, display=True, scale=1, **kwargs)

	Draws the given Automorphism as a forest-pair diagram.
The image is rendered as a PDF using the tikz graph drawing libraries and lualatex.


	Parameters

	
	jobname (str [https://docs.python.org/3/library/stdtypes.html#str]) – the destination filepath to save the PDF to. A file extension should not be provided. If None, the PDF is saved to a temporary file location.


	display (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, automatically call display_file() to display the PDF to the user. Otherwise does nothing.


	scale (float [https://docs.python.org/3/library/functions.html#float]) – In a Jupyter notebook, this controls the size of the rendered PNG image. See the note in display_file().






	Returns

	the filepath where the PDF was saved. If dest is None this is a temporary file; otherwise the return value is simply jobname + ‘.pdf’.






Note

The graph drawing is done via a TikZ and LaTeX. The source file is compiled using lualatex, which must be available on the PATH [https://en.wikipedia.org/wiki/PATH_(variable)] for this function to work.








	
thompson.drawing.flow(aut, jobname=None, display=True)

	




	
thompson.drawing.forest_code(aut, name='', domain='wrt QNB', include_styles=True, horiz=True, LTR=True, standalone=True, draw_revealing=True)

	Generate TikZ code for representing an automorphism aut as a forest pair diagram. The code is written to dest, which must be a writeable file-like object in text mode.


	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The label used for the arrow between domain and range forests. This is passed directly to TeX, so you can include mathematics by delimiting it with dollars. Note that backslashes are treated specially in Python unless you use a raw string, which is preceeded with an r. For instance, try name=r'\gamma_1


	domain (Generators) – By default, we use the minimal expansion of the quasi-normal basis as the leaves of the domain forest. This can be overridden by providing a domain argument.


	include_styles (bool [https://docs.python.org/3/library/functions.html#bool]) – Should the styling commands be added to this document?


	horiz (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, place the range forest to the right of the domain. Otherwise, place it below.


	LTR (bool [https://docs.python.org/3/library/functions.html#bool]) – if True and if horiz is True, draw the domain tree to the left of the range tree. If horiz is True but LTR is false, draw the domain tree to the right of the range tree.


	standalone (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, create a standalone LaTeX file. Otherwise just create TikZ code.


	draw_revealing (bool [https://docs.python.org/3/library/functions.html#bool]) – Should attractor/repeller paths be highlighted in red?
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Todo list


Note

There are also many #TODO comments scattered throughout the python files.




Warning

Auto-generated page! This does not look pretty.




Todo

Make this available under an open-source license.



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsons-v/checkouts/master/docs/index.rst, line 38.)


Todo

This could be made more efficient for large values of power by using knowledge of the component containing key.



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsons-v/checkouts/master/thompson/automorphism.py:docstring of thompson.automorphism.Automorphism.repeated_image, line 18.)


Todo

This should be renamed to component_type.



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsons-v/checkouts/master/thompson/automorphism.py:docstring of thompson.automorphism.Automorphism.orbit_type, line 91.)


Todo

This method is badly named; something like test_revealed_by(basis) would be better.



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsons-v/checkouts/master/thompson/automorphism.py:docstring of thompson.automorphism.Automorphism.test_revealing, line 21.)


Todo

This method is badly named; something like is_revealed_by(basis) would be better.



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsons-v/checkouts/master/thompson/automorphism.py:docstring of thompson.automorphism.Automorphism.is_revealing, line 21.)


Todo

doctests



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsons-v/checkouts/master/thompson/automorphism.py:docstring of thompson.automorphism.Automorphism.centralise_period, line 5.)


Todo

use a Python binding to ImageMagick rather than just shelling out?



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsons-v/checkouts/master/thompson/drawing/__init__.py:docstring of thompson.drawing.display_file, line 14.)


Todo

Add the named generators A, B, C of Thompson’s T and V. Analogues for general G_n,r?



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsons-v/checkouts/master/docs/thompson.examples.rst, line 19.)


Todo

The implementation is inefficient: just make auts at random until you find an infinite one. Fix this!



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsons-v/checkouts/master/thompson/examples/random.py:docstring of thompson.examples.random_infinite_automorphism, line 3.)


Todo

Maybe this should be 0 to order if the identity is permitted and 1 to order otherwise?



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsons-v/checkouts/master/thompson/periodic.py:docstring of thompson.periodic.PeriodicAut.power_conjugacy_bounds, line 5.)


Todo

Should use a different attribute (.comment?) rather than __doc__.



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsons-v/checkouts/master/thompson/homomorphism.py:docstring of thompson.homomorphism.Homomorphism.from_file, line 20.)


Todo

More convenient ways of inputting words, e.g. x a1^3 instead of x a1 a1 a1. Use of unicode characters α and λ?



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsons-v/checkouts/master/thompson/word.py:docstring of thompson.word.from_string, line 36.)


Todo

I think this is a total order—try to prove this. I based the idea on [Zaks] (section 2, definition 1) which describes a total order on k-ary trees. On another note, isn’t this similar to shortlex order?



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsons-v/checkouts/master/thompson/word.py:docstring of thompson.word.Word.__lt__, line 53.)
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Open subsets of the Cantor set


	
class thompson.cantorsubset.CantorSubset(signature, generators=None)

	A subclass of Generators specifically designed to represent an open subset of the Cantor set \(\mathcal C\).
We store this as a (typically sorted) list of Generators \(u_1, \dots, u_n\).
This stands for the set of all points \(u_i\Gamma\) where \(\Gamma \in \{0,1\}^{\mathbb N}\).


	
is_entire_Cantor_set()

	




	
is_empty()

	




	
status()

	




	
contract()

	Contracts the current generating set as much as possible (without using words involving a \(\lambda\)).
The set should be sorted before using this method.

>>> basis = random_basis(cls=CantorSubset)
>>> basis.contract()
>>> basis == CantorSubset.standard_basis(basis.signature)
True
>>> basis = CantorSubset((2,1), '01011 01010'.split())
>>> basis.contract()
>>> print(basis)
[0101]










	
simplify()

	Simplifies the current Cantor subset to a normal form.
We do this in three steps.
Firstly we expand any nonsimple Words.
Second, we contract() as much as possible (without using words involving a \(\lambda\)).
Last, we check to see if the set contains any pairs \(u, u\Gamma\) and remove the latter.

>>> X = CantorSubset((2,1), "0 11 10 00 111 1101 11110".split())
>>> X.simplify(); print(X)
[<entire Cantor set>]
>>> X = CantorSubset((2,1), ["1"])
>>> X.simplify(); print(X)
[1]










	
__str__()

	We use a notation introduced to us by Bleak: square brackets around a word stand for “the Cantor set underneath” its argument.
We use the format_cantor() function to display the elements of the generating set.

>>> print(CantorSubset((2, 1)))
[]
>>> print(CantorSubset((2, 1), ["x"]))
[<entire Cantor set>]
>>> print(CantorSubset((2, 1), ["x a1"]))
[0]
>>> S = CantorSubset((2, 1), ["x a1", "x a1 a1", "x a2 a1 a1", "x a2 a1 a2"])
>>> print(S)
[0, 00, 100, 101]
>>> S.simplify(); print(S)
[0, 10]










	
__and__(other)

	Computes the intersection of Cantor subsets.
We assume the list of words is sorted before calling this function.

>>> A = CantorSubset((2, 1), ["00"])
>>> B = CantorSubset((2, 1), "01 111".split())
>>> C = A & B
>>> print(A, B, C)
[00] [01, 111] []
>>> D = CantorSubset((2, 1), ["11"])
>>> print(D, B, D & B)
[11] [01, 111] [111]










	
__invert__()

	The complement. again it only works on a sorted list of leaves.

>>> X = CantorSubset((2, 1), "01 1010 11".split())
>>> print(~X)
[00, 100, 1011]
>>> print(~CantorSubset((2, 1), []))
[<entire Cantor set>]
>>> print(~CantorSubset((2, 1), ["x1"]))
[]





>>> X = random_generators(cls=CantorSubset, signature=(2,1))
>>> X.sort();
>>> comp = ~X
>>> print(X & comp)
[]
>>> X.extend(comp); X.simplify()
>>> print(X)
[<entire Cantor set>]














	
thompson.cantorsubset.detailed_comparison(self, other)

	Returns a tuple (subword, comparison) of two Booleans.
Either one word is a subword of the other or not.
In the former case subword is True, otherwise subword is False.

In both cases we can decide if self is lexicographically smaller than other.
If so, comparison is -1. If they are equal, comparison is 0; if self is larger than other then comparison is 1.

>>> for thing in ["0 00", "001 00", "101 101", "0 1", "11 00"]:
...     thing = thing.split()
...     s = Word(thing[0], (2, 1))
...     o = Word(thing[1], (2, 1))
...     print(*detailed_comparison(s, o))
... 
True -1
True 1
True 0
False -1
False 1
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