

thinkpad-scripts: Scripts for ThinkPad X220 Tablet rotation, docking, etc.

Welcome to the documentation for thinkpad-scripts, a set of scripts to automate a
variety of tasks on the ThinkPad X220 Tablet.

If you want to get thinkpad-scripts up an running, then check out the
Getting Started guide.

In case you already have thinkpad-scripts set up and just want a quick reference, see
the manual pages.

Should there be something working unlike it should on your system and you can’t
figure out a solution from the documentation, check the issue tracker [https://github.com/martin-ueding/thinkpad-scripts/issues] to see if it is a
known problem. If it’s not there, please create a new issue on the issue
tracker.

See also

	Project website [http://martin-ueding.de/en/projects/thinkpad-scripts]

	
	Tar archives with source checkouts

	GitHub page [https://github.com/martin-ueding/thinkpad-scripts/issues]

	
	Issue tracker

	git repository

Short introduction

This collection of scripts is intended for the Lenovo ThinkPad X220 Tablet. You
can still use them with the regular X220 machine, but only thinkpad-rotate
will probably be useless for you then. I think that most scripts will also be
handy for other ThinkPad models, I have not tested them though.

In short, this script fixes or improves the following:

	Rotation of the internal screen and any Wacom touch and pen input devices
using the bezel buttons or physical screen rotation

	Get the microphone mute button to work.

	Automatically use any external monitor, speakers and LAN connection when
docking onto an UltraBase or similar.

	Ability to disable touch pad or touch screen.

Contents of the documentation

	Guides
	Getting Started

	Find hardware events

	Configuring Additional Hardware Keys

	Hardware-Specific Configuration

	Script Drawer For KDE Plasma Panel

	Manual Pages
	thinkpad-config

	thinkpad-dock

	thinkpad-mutemic

	thinkpad-rotate

	thinkpad-scripts-config-migration

	thinkpad-touch

	thinkpad-touchpad

	thinkpad-trackpoint

	Changelog

	Legal and License

	Developer documentation
	API

	Environments

	Why Python?

Guides

This section contains a few guides for thinkpad-scripts and related topics. If you’re
new to thinkpad-scripts, start with the Getting Started guide.

	Getting Started
	Installation

	Setup

	Usage

	Configuration

	Tips

	Find hardware events

	Configuring Additional Hardware Keys
	Introduction

	Directions

	References

	Hardware-Specific Configuration
	Introduction

	Unlisted Hardware

	Recommended Configurations

	Script Drawer For KDE Plasma Panel

Getting Started

Installation

Due to a lack of time there are no current packages of thinkpad-scripts available. You
will have to install from source.

Build Manually

First install all the dependencies, listed in Dependencies.
Then, you can build and install with:

$ make
make install
./setup.py install

To make the ACPI hooks take effect, you will need to restart acpid with the
following on SysVinit/Upstart systems:

service acpid restart

or on systemd systems:

systemctl restart acpid

Packagers will also need to add the following line, run as root, to their post
installation hook to update the udev hardware database with the information in
90-X2x0T-keyboard.hwdb:

udevadm hwdb --update

Alternatively, you can use make full-install which does that restarting for
you. However, this does not work when DESTDIR is set to something! For a
direct installation, use make full-install, for packaging, just use
make install.

Dependencies

These dependencies refer to Debian and Arch Linux packages, but should have
similar names in other distributions. yum in Fedora and zypper in
openSUSE have a search for “provides”. In openSUSE, you could use the cnf
tool to find out the package.

Build

These programs are needed during the build process.

	Needed Program

	Debian package

	Arch Linux package

	Fedora package

	openSUSE package

	msgfmt

	gettext

	gettext

	gettext

	gettext

	python3

	python3

	python

	python3-devel

	python3-devel

	setuptools

	python3-setuptools

	python-setuptools

	python3-setuptools

	python3-setuptools

	sphinx-build

	python3-sphinx

	python-sphinx

	python3-sphinx

	python3-Sphinx

	xgettext

	gettext

	gettext

	gettext

	gettext

	make

	make

	
	
	

Run

These programs are required for the execution of the scripts.

	Needed Program

	Debian package

	Arch Linux package

	Fedora package

	openSUSE package

	Version

	acpid

	acpid

	acpid

	acpid

	acpid

	

	amixer

	alsa-utils

	alsa-utils

	alsa-utils

	alsa-utils

	

	linux

	
	
	
	
	>= 3.11.0-17 1

	python3

	python3

	python

	
	
	

	setuptools

	python3-setuptools

	python-setuptools

	python3-setuptools

	python3-setuptools

	

	udev

	udev

	systemd

	
	systemd

	>= 196

	xinput

	xinput

	xorg-xinput

	xinput

	xinput

	

	xrandr

	x11-xserver-utils

	xorg-xrandr

	xorg-x11-server-utils

	xrandr

	

	1

	The Ubuntu Kernel with version 3.11.0-17 has a patched
thinkpad-acpi module which allows it to control the LED in the
microphone mute button. Previous versions of thinkpad-scripts would flash the
power LED to signal a muted microphone. This branch of thinkpad-scripts does not
flash the power LED anymore, therefore requiring that version of the
kernel.

openSUSE and other distributions are not patching the 3.?.0 kernel, but
ship a 3.?.? kernel. So users of distributions other than Ubuntu (maybe
even Debian) would have to check whether their kernel has the acpi patch.

Optional

These programs enhance the functionality of the scripts, but are not strictly
required.

	Needed Program

	Debian package

	Arch Linux package

	For

	gsettings

	libglib2.0-bin

	glib2

	subpixel anti-alias order with GNOME/XFCE

	kvkbd

	kvkbd

	kvkbd

	virtual keyboard

	lsusb

	usbutils

	usbutils

	docking detection with a USB device

	nmcli

	network-manager

	networkmanager

	changing wifi

	pactl

	pulseaudio-utils

	libpulse

	volume control when docking

	xbacklight

	xbacklight

	xorg-xbacklight

	adjusting brightness

	xsetwacom

	xserver-xorg-input-wacom

	xf86-input-wacom

	Wacom device rotation

Setup

thinkpad-scripts includes files that hook into various hardware events:

	a udeb hwdb file that allows proper operation of the bezel buttons on ThinkPad
X220 and X230 Tablet computers

	udev rules to automatically run thinkpad-dock when docking and undocking

	ACPI hooks to automatically call thinkpad-rotate when the screen is
rotated/unrotated

All of these files should be installed as part of the installation process. If
acpid is not enabled by default on your computer (which is the case for Arch
Linux), you need to enable and start it for the ACPI hooks to work.
Additionally, after installing thinkpad-scripts, you may need to restart udev and
acpid for the new rules and hooks to take effect.

Usage

After following the configuration instructions above, you generally will not
need to call any of the scripts manually. However, in case you do, this is a
synopsis of each command:

thinkpad-dock [on|off]
thinkpad-mutemic
thinkpad-rotate [direction]
thinkpad-touch [on|off]
thinkpad-touchpad

See the Manual Pages for more details.

Configuration

You can modify the default configuration for things such as the screen
brightness to set when docking, the relative positions of displays, and the
direction of screen rotation by placing configuration scripts in
$HOME/.config/thinkpad-scripts. See the Manual Pages for
more details.

You may need to modify some of the parameters depending on your hardware. See
Hardware-Specific Configuration for more details.

You can also add scripts that will be called before/after docking or rotating
the display. See the man pages for thinkpad-dock and
thinkpad-rotate for more details.

Tips

thinkpad-scripts fixes the bezel buttons so that they work, but it does not bind
anything to them by default. If you’d like, you can bind the thinkpad-rotate
script (or any other program for that matter) to one of the bezel buttons using
your desktop environment. For example, under GNOME, go to “Settings” →
“Keyboard” → “Shortcuts” → “Custom Shortcuts” and add a new “shortcut”.

thinkpad-scripts includes a script, thinkpad-touch, to make it easy to toggle the
touchscreen of the X220 Tablet on/off. If you want to disable your touch screen
on startup, use your desktop environment to call thinkpad-touch off when
starting.

Under KDE, it is convenient to place all of the scripts in a drawer so that you
can access them quickly. See Script Drawer For KDE Plasma Panel for instructions to do
this.

Find hardware events

The ThinkPad X220 Tablet has a hardware sensor that registers when the screen
is turned around. To find the code of the event, use acpi_listen:

$ acpi_listen
video/tabletmode TBLT 0000008A 00000001
video/tabletmode TBLT 0000008A 00000000

I started the command, turned the screen around, flipped it onto the keyboard
and back again.

This then goes into an ACPI hook file like so:

event=video/tabletmode TBLT 0000008A 0000000[01]
action=/usr/bin/thinkpad-rotate-hook %e

If you give us the output of acpi_listen, we can try to get the hardware
event working for you. The hook in tps/hooks.py needs to be made aware of
the hardware keys as well in order to decide which action to take.

Configuring Additional Hardware Keys

Introduction

Keys are identified on multiple levels in Linux: scancode, keycode, and
keysym. A scancode is the sequence of bytes that a keyboard sends to a
computer when a key is pressed. A keycode corresponds to a specific
function. A keysym corresponds to a symbol typed by the keyboard and mappings
of scancodes to keysyms depend on the keyboard layout. The progression of
mapping goes scancode → keycode → keysym. 1 By default, some unusual
hardware keys, such as those on the bezels of some tablets, are not mapped. This
guide explains how to map scancodes to keycodes using the udev hwdb, which
is part of udev versions 196 and later.

Note that thinkpad-scripts includes a udev hwdb file that fixes the bezel key mappings
for Lenovo X220 and X230 Tablets. This guide is useful if you have different
hardware. If you find something that works for your hardware, please feel free
to submit a pull request to the GitHub project [https://github.com/martin-ueding/thinkpad-scripts].

Directions

Determine the scancodes of the keys

Determine your Linux kernel version with:

$ uname -r

For kernels v2.6 and later, you need reboot with the kernel parameter
atkbd.softraw=0 in order for the following step to work 1. Detailed
instructions on how to add kernel parameters are provided in 2.

Switch to a virtual console with a text terminal with Ctrl-Alt-F2, login,
then run as root 1:

showkey --scancodes

When you press a key, it should send the scancode to stdout. Sometimes,
pressing and releasing a key have two different scancodes, and both scancodes
will show up in the output of showkey --scancodes. For example, pressing
and releasing the screen rotation bezel key on the X220 tablet gives the
keycodes 0x67 and 0xe7. Just choose the one that occurs when you
initially press the key. For the keys that you want to map, write down which
key corresponds to which scancode. Mappings for older ThinkPad tablets are
available at 3.

You can switch back to your graphical environment with a key combination
somewhere between Ctrl-Alt-F1 and Ctrl-Alt-F7 and then reboot to
restore your default kernel parameters.

Determine which keycodes you want to map them to

Look in /lib/udev/hwdb.d/60-keyboard.hwdb for mappings of some other
ThinkPad models 4; these provide a guide for which key should correspond
to which keycode. (The mappings are up to you, but it’s a good idea to pick
mappings similar to already established ones.)

A complete list of possible keycodes is in /usr/include/linux/input.h
4. Look for the definitions with the names KEY_<KEYCODE>.

Determine the modalias string of your keyboard

Use this command to list all of the modalias entries on your system 5:

$ find /sys -name modalias -print0 | xargs -0 cat | sort -u

Determine the modalias string that corresponds to your keyboard. The relevant
one will probably start with dmi. One example from an X220 tablet is:

dmi:bvnLENOVO:bvr8DET46WW(1.16):bd05/18/2011:svnLENOVO:pn42962WU:pvrThinkPadX220Tablet:rvnLENOVO:rn42962WU:rvrNotAvailable:cvnLENOVO:ct10:cvrNotAvailable:

Write and install a udev hwdb configuration file

Create a hwdb file with the mappings that you want. Here is the file from
thinkpad-rotate, named 90-X220T-keyboard.hwdb:

Thinkpad X220_Tablet
keyboard:dmi:bvn*:bvr*:bd*:svnLENOVO*:pn*:pvrThinkPadX220Tablet*
KEYBOARD_KEY_67=cyclewindows # bezel circular arrow
KEYBOARD_KEY_6c=scale # rotate screen

	Anything after a # is a comment and is ignored.

	The second line is a pattern that should match the modalias string of
your keyboard. This example matches the modalias string in the previous
section.

	The following lines are the mappings. Each line is in the form
KEYBOARD_KEY_<scancode>=<keycode>. The <scancode> should be the
value you obtained earlier without the 0x at the front, and the
<keycode> should be the keycode you selected earlier but in all
lowercase.

Give the file an appropriate name, such as 90-X220T-keyboard.hwdb, and
place it in /lib/udev/hwdb.d/.

See 4 for more details.

Update the udev hwdb

Run the following to update the udev hwdb:

udevadm hwdb --update

You may need to reboot for the changes to take effect.

Where to go from here

Now that you have properly mapped keycodes, you need to bind functionality to
them. You can do this with your desktop environment’s settings manager.

Note that some keycodes may not be mapped to keysyms, so your desktop
environment may not recognize them. In this case, the easiest thing to do is to
choose a different keycode for that key. (This is what I did for the X220
screen rotation button in thinkpad-rotate: based on other ThinkPad models
in /lib/udev/hwdb.d/60-keyboard.hwdb, the direction keycode would be
the better choice than scale. However, direction was not mapped in my
desktop environment, so it was easier just to choose a different keycode that
wasn’t mapped to anything.) The alternative is to use a utility like xmodmap to
perform the mapping of keycode to keysym 6.

You can find some interesting tricks at this (somewhat out-of-date) page:
7.

References

	1(1,2,3)

	https://wiki.archlinux.org/index.php/Extra_Keyboard_Keys

	2

	https://wiki.archlinux.org/index.php/Kernel_parameters

	3

	http://www.thinkwiki.org/wiki/Tablet_Hardware_Buttons

	4(1,2,3)

	https://wiki.archlinux.org/index.php/Map_scancodes_to_keycodes

	5

	http://people.skolelinux.org/pere/blog/Modalias_strings___a_practical_way_to_map__stuff__to_hardware.html

	6

	https://wiki.archlinux.org/index.php/Xmodmap

	7

	http://www.thinkwiki.org/wiki/How_to_get_special_keys_to_work

Hardware-Specific Configuration

Introduction

Most of the configuration parameters (described in the individual man
pages) depend on your own personal preferences. However, some
parameters depend on your specific model of computer. This page provides
recommended values for various computers.

Unlisted Hardware

If your particular model of computer is not listed here, please submit a pull
request [https://github.com/martin-ueding/thinkpad-scripts/pulls] with the
correct configuration or create a report on the issue tracker [https://github.com/martin-ueding/thinkpad-scripts/issues] with the name of
your computer and output of:

$ xinput
$ xrandr

Recommended Configurations

Functional configurations for computers that users have reported so far are
listed below.

Lenovo Thinkpad X200 & Lenovo Thinkpad X200 Tablet

Some of the hardware devices are named differently from the defaults. These are
the necessary configuration parameters:

[input]
touchscreen_device = Serial Wacom Tablet touch

[touch]
regex = Serial Wacom Tablet.*id=(\d+)

Lenovo Thinkpad X220 & Lenovo Thinkpad X220 Tablet

The defaults should work fine.

Lenovo Thinkpad X230 & Lenovo Thinkpad X230 Tablet

The defaults should work fine.

Lenovo Thinkpad Yoga

Some of the hardware devices are named differently from the defaults. These are
the necessary configuration parameters:

[input]
touchscreen_device = ELAN Touchscreen

[touch]
regex = (?:Wacom ISD|ELAN Touchscreen).*id=(\d+)

Script Drawer For KDE Plasma Panel

Since there are more scripts than buttons, I added a drawer with all the
programs to my KDE Panel. It looks like this:

[image: ../_images/kicker.png]

The script collection in a folder right next to the system clock.

[image: ../_images/drawer.png]

KDE Plasma Panel drawer with all thinkpad- scripts.

Add a new “folder view” to your panel and set the following options:

(1) Go into the first tab and (2) set the folder to
/usr/share/applications.

[image: ../_images/settings1.png]

(3) Then go to the “Filter” tab and (4) set
thinkpad-*.desktop as the filter. That will only list scripts from this
collection.

[image: ../_images/settings2.png]

Manual Pages

Once you have installed thinkpad-scripts, you can use man <program-name> to read
the man page corresponding to <program-name>. The man pages are include
here for your convenience:

	thinkpad-config

	thinkpad-dock

	thinkpad-mutemic

	thinkpad-rotate

	thinkpad-scripts-config-migration

	thinkpad-touch

	thinkpad-touchpad

	thinkpad-trackpoint

thinkpad-config

Show the thinkpad-scripts configuration

	Author

	Martin Ueding <mu@martin-ueding.de>

	Manual section

	1

Synopsis

thinkpad-config

Description

The user configuration for thinkpad-scripts is stored in
~/.config/thinkpad-scripts/config.ini in the INI format. There is a global
configuration that thinkpad-scripts will use as a basis and apply your configuration
over that, overriding default values. This program will show the config that
will be used in the program.

Options

This program does not interpret any command line options.

Exit Status

	0

	Everything okay.

Epilogue

This file is part of thinkpad-scripts by Martin Ueding and Jim
Turner.

We hope that this collection of scripts is useful to you. If you experience
bugs, find the documentation lacking or have a new kind of hardware that we do
not yet support, feel free to open an issue on GitHub or write an email to
Martin Ueding.

See also

	GitHub Repository [http://github.com/martin-ueding/thinkpad-scripts]

	project website [http://martin-ueding.de/en/projects/thinkpad-scripts].

	Hosted documentation [http://thinkpad-scripts.readthedocs.org/] (via
Read the Docs)

thinkpad-dock

set the screens when going to and from the docking station

	Author

	Martin Ueding <mu@martin-ueding.de>

	Manual section

	1

Synopsis

thinkpad-dock [on|off]

Description

This program sets the screen resolution correctly when putting the ThinkPad
onto the docking station. It also sets the Wacom input devices to act on the
internal screen only.

It deduces what to do automatically, if no option is given. If it is docked, it
will perform the docking action. When you pressed the eject button on the
docking station, it will un-dock.

There will be an udev rule installed that will automatically dock it when set
onto the station and un-dock when you press the eject button. Technically, this
rule calls the thinkpad-dock-hook.

What it does

When docking, the following things are done:

	Activating the external monitor.

	Setting the external monitor as primary monitor.

	Deactivate the wireless connection.

	Set the Wacom devices to the internal screen only.

	Set the brightness to a fixed value, currently 60%.

	Unmute the speakers and set the volume to 100%.

When undocking, the following things are done:

	Deactivating external monitor.

	Setting the internal monitor as primary monitor.

	Activating the wireless connection.

	Set the speakers to some medium volume, currently 50%.

Options

	on|off

	If you have it sitting on the docking station and want it to dock, use
on. Otherwise use off before you take the ThinkPad off the docking
station.

You can omit this option and the script will guess what to do by checking
whether a dock is docked in /sys.

Exit Status

	0

	Everything okay.

	1

	Some error.

Files

Config

You can create a config file in $HOME/.config/thinkpad-scripts/config.ini,
which has standard INI format. The old config can be converted using the
thinkpad-scripts-config-migrate script that was introduced in version 4.0.

A sample config would look like this:

[sound]
dock_loudness = 50%

[network]
disable_wifi = true

[screen]
relative_position = left-of

I will list all possible options in a moment. Since the INI format is
hierarchical, I will denote the options with a dot. The first one would be
sound.dock_loudness for example.

Those are the possible options:

	dock.lsusb_indicator_regex

	Some docks might not have a docking indicator in the sysfs. In Issue 129 [https://github.com/martin-ueding/thinkpad-scripts/issues/129] it has
been discussed to use a particular USB device that is attached only at the
dock to function as an indicator. If this option is set to a non-zero
length string, it will be used as a regular expression. The output of
lsusb is searched for that regular expression. If a match is found, the
laptop is assumed to be on the docking station.

Example

The output of lsusb might contain lines like the following:

Bus 002 Device 003: ID 056a:00e6 Wacom Co., Ltd TPCE6
Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 003: ID 04f2:b217 Chicony Electronics Co., Ltd Lenovo Integrated Camera (0.3MP)
Bus 001 Device 006: ID 046d:c05a Logitech, Inc. M90/M100 Optical Mouse
Bus 001 Device 008: ID 273f:1007
Bus 001 Device 005: ID 0424:2514 Standard Microsystems Corp. USB 2.0 Hub
Bus 001 Device 004: ID 0424:2514 Standard Microsystems Corp. USB 2.0 Hub
Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Some of these devices might be integrated in the docking station. One
of the USB hubs is the one in my external screen. That does not help
much because its ID is not unique. The unnamed device with ID
273f:1007 is only present on the docking station. Therefore I would
set the configuration value to 273f:1007.

At the office, I have a second docking station. There I have some other
device, say ID 1234:1234. Since this configuration option is a
regular expression, I could specify the following:
273f:1007|1234:1234. Then both devices can trigger the docking
state.

	gui.kdialog

	Please see the appropriate section in thinkpad-rotate(1), it has the same
option. Default:.

	hooks.postdock

	Full path to postdock hook. Default: ~/.config/thinkpad-scripts/hooks/postdock

	hooks.predock

	Full path to predock hook. Default: ~/.config/thinkpad-scripts/hooks/predock

	logging.syslog

	Whether to log everything to syslog. Default: true

	network.disable_wifi

	Whether to set the wifi. Default: true.

	network.restart_connection

	If this is set, the given network connection will be restarted on startup.
I (Martin Ueding) have seen the issue where my default DHCP connection
would not work right away. Restarting that connection helped. Default:
true

	network.connection_name

	If the connection should be restarted, you can specify which one in case
there is more than one wired connection. The default case is to use the
lexicographically first connection name in the list provided by nmcli
that contains the case-insensitive string 'ethernet'.

	screen.internal_regex

	Regular expression to match the xrandr name for the internal monitor.
Default: LVDS-?1|eDP-?1

	screen.primary

	The xrandr name for the primary monitor when docked or an empty string
to guess a reasonable monitor. Default: (empty string).

	screen.secondary

	The xrandr name for the secondary monitor when docked or an empty
string to guess a reasonable monitor. Default: (empty string).

	screen.set_brightness

	Whether to change the brightness. Default: true.

	screen.brightness

	Brightness to set to when docking. Default: 60%.

	screen.relative_position

	Where to set the primary monitor relative to the secondary monitor when
docking. Set it to right-of or left-of or anything else that
xrandr supports with a --* argument. Default: right-of.

	screen.internal_docked_on

	Whether to keep the internal screen on while docking. Default: true

	sound.unmute

	Whether to change the volume. Default: true.

	sound.dock_loudness

	Volume to set to when docking. Default: 100%.

	sound.undock_loudness

	Volume to set to when undocking. Default: 50%.

	trigger.dock_triggers

	Whitespace-delimited list of the enabled hardware triggers to execute
docking/undocking. The available triggers are udev1_on, udev1_off,
acpi1_on, acpi1_off, and acpi2.
Default: udev1_on udev1_off

Hooks

There are hooks, called before and after the main script. It gets a single
command line argument, on or off.

	~/.config/thinkpad-scripts/hooks/predock

	~/.config/thinkpad-scripts/hooks/postdock

You can change the path of those hooks in the configuration, see above.

Example

You can just call thinkpad-dock and it will do the right thing probably.

If you want, you can tell the script what to do: When you have it sitting on
the docking station, call thinkpad-dock on to get the external screen
going. When you are done, call thinkpad-dock off before you disconnect to
get the internal screen back again.

Epilogue

This file is part of thinkpad-scripts by Martin Ueding and Jim
Turner.

We hope that this collection of scripts is useful to you. If you experience
bugs, find the documentation lacking or have a new kind of hardware that we do
not yet support, feel free to open an issue on GitHub or write an email to
Martin Ueding.

See also

	GitHub Repository [http://github.com/martin-ueding/thinkpad-scripts]

	project website [http://martin-ueding.de/en/projects/thinkpad-scripts].

	Hosted documentation [http://thinkpad-scripts.readthedocs.org/] (via
Read the Docs)

thinkpad-mutemic

toggle the microphone mute status

	Author

	Martin Ueding <mu@martin-ueding.de>

	Date

	2014-02-22

	Manual section

	1

Synopsis

thinkpad-mutemic

Description

This script will be called when you press the microphone mute button. It will
mute the microphone and toggle the LED.

Epilogue

This file is part of thinkpad-scripts by Martin Ueding and Jim
Turner.

We hope that this collection of scripts is useful to you. If you experience
bugs, find the documentation lacking or have a new kind of hardware that we do
not yet support, feel free to open an issue on GitHub or write an email to
Martin Ueding.

See also

	GitHub Repository [http://github.com/martin-ueding/thinkpad-scripts]

	project website [http://martin-ueding.de/en/projects/thinkpad-scripts].

	Hosted documentation [http://thinkpad-scripts.readthedocs.org/] (via
Read the Docs)

thinkpad-rotate

ThinkPad X220 Tablet screen rotation script

	Author

	Martin Ueding <mu@martin-ueding.de>

	Manual section

	1

Synopsis

thinkpad-rotate [direction]

Description

If you want to use your X220 Tablet as a tablet, you might want to rotate the
screen. You can use this script for that and it will ensure that the pen and
touch interface know about the rotated screen.

It will also disable the trackpoint (the xinput id is automatically queried) so
that the back of the screen does not move your mouse if there is any force on
the side of the screen.

Finally, it will start the virtual keyboard (kvkbd by default) when the
screen is rotated and kill it when the screen is rotated back to normal.

If the screen is already rotated (say left) and you call thinkpad-rotate
left, the screen will be reverted to the normal orientation. That way, you
can use this script as a toggle.

A udev hook is installed as well that picks up the ACPI event when rotating the
screen.

Options

	direction

	The direction can be any of:

	ccw

	cw

	flip

	half

	left

	none

	normal

	right

Since the Wacom tools and xrandr have different names, this program
accepts all of them, so that you do not have to learn yet another set of
directions.

	-v

	Enable verbose output. Can be supplied multiple times for even more
verbosity.

	--force-direction

	Do not try to be smart. Actually rotate in the direction given even it
already is the case.

Exit Status

	0

	Everything went okay.

	2

	User specified a direction that is not known.

Environment

The script relies on xrandr to get the information, so this has to work.

Files

Config

You can create a config file in $HOME/.config/thinkpad-scripts/config.ini,
which is a simple INI configuration file. The old config can be converted using
the thinkpad-scripts-config-migrate script that was introduced in version
4.0. A sample config would look like this:

[rotate]
default_rotation = flip

[sound]
undock_loudness = 0%

[screen]
relative_position = left-of

You can set the following option:

	hooks.postrotate

	Executable file to run after rotation.
Default: ~/.config/thinkpad-scripts/hooks/postrotate

	hooks.prerotate

	Executable file to run before rotation.
Default: ~/.config/thinkpad-scripts/hooks/prerotate

	input.use_xsetwacom_if_available

	When an input device has a Wacom rotation property, we will use
xsetwacom to rotate it. Desktop environments like GNOME 3 might also
rotate the input devices, but by applying a rotation matrix via xinput.
This results in a double rotation, effectively no rotation at all. We have
decided [https://github.com/martin-ueding/thinkpad-scripts/issues/139]
that we cannot reliably guess what the desktop environment does. Therefore
we offer an option for the user to override the default behavior. Default:
true

	rotate.default_rotation

	Default rotation if device is in normal rotation and no arguments are
given. Default: right

	rotate.subpixels

	Rotate subpixel orientation when rotating the screen. Default: true

	rotate.subpixels_with_external

	Rotate the subpixel orientation if a second screen is attached. Default:
false.

	rotate.xrandr_bug_workaround

	On Ubuntu 15.04, XRandr has a bug [https://bugs.launchpad.net/ubuntu/+source/x11-xserver-utils/+bug/1451798] which turns the screen black when
rotating with no external screen attached.

This is problematic when the rotation is executed from a hardware event
hook. Then the screen is physically laying on the keyboard and one cannot
do anything. A workaround is to go to another terminal with [Ctrl][Alt][F1]
and back to the graphical one with [Ctrl][Alt][F7].

As contributed by Cody Christensen, that can be automated with chvt.
This way the hook will work in a useful way for users with that XRandr bug.
However, this program needs superuser privileges. One can use sudo to
allow oneself to call this program without a password entry. Add the
following line in a file like /etc/sudoers.d/chvt:

myuser ALL = NOPASSWD: /bin/chvt

Replace myuser with your username! Then check with visudo -c
whether the syntax is fine.

thinkpad-scripts can figure out whether this line is implemented by querying
sudo -l for a list of available commands with higher privileges. If you
set this option to true and the line is configured, it will call chvt
6; chvt 7 after the rotation and before the hook.

If chvt cannot be used, the hook will be disabled by enabling this
option. That way you can manually rotate the contents of the display with
thinkpad-rotate, press [Ctrl][Alt][F1] and [Ctrl][Alt][F7] and only
then physically rotate the screen. The hook will not fire and rotate back.

Default: false.

	screen.internal_regex

	Regular expression to match the xrandr name for the internal monitor.
Default: LVDS-?1|eDP-?1

	trigger.rotate_triggers

	Whitespace-delimited list of the enabled hardware triggers to execute
rotation. The available triggers are acpi1_normal, acpi1_rotated,
acpi2_normal, and acpi2_rotated.
Default: acpi1_normal acpi1_rotated acpi2_normal acpi2_rotated

	touch.regex

	Regular expression to match Wacom devices against. If your devices do not
start with Wacom ISD, change this appropriately.
Default: Wacom ISD.*id=(\d+)

	unity.toggle_launcher

	The Unity Launcher on the left side is only shown if you excert pressure
with the mouse. That means that you do not only have to put the mouse to
the left edge of the screen, but push it beyond that edge. This is not
possible to do with touchscreen or the pen, so you need to show the
launcher by default.

With this option set to true, the hide mode will be toggled. That way,
you have a hidden launcher on normal rotation, and a always-shown launcher
with any rotation. Default: false

	vkeyboard.program

	Command to start the virtual keyboard. Choices are (among others) kvkbd
for KDE, cellwriter, onboard. Default: kvkbd

Hooks

You can add scripts to be called before and/or after rotation by placing them
at the following paths. The postrotate hook gets the new rotation
(left, right, inverted, or normal) as a command line argument.

The default paths are:

	~/.config/thinkpad-scripts/hooks/prerotate

	~/.config/thinkpad-scripts/hooks/postrotate

Example

To rotate the screen to the right (and later back again), use:

thinkpad-rotate

To specify the direction, you can use:

thinkpad-rotate left
thinkpad-rotate right
thinkpad-rotate inverted
thinkpad-rotate normal

Epilogue

This file is part of thinkpad-scripts by Martin Ueding and Jim
Turner.

We hope that this collection of scripts is useful to you. If you experience
bugs, find the documentation lacking or have a new kind of hardware that we do
not yet support, feel free to open an issue on GitHub or write an email to
Martin Ueding.

See also

	GitHub Repository [http://github.com/martin-ueding/thinkpad-scripts]

	project website [http://martin-ueding.de/en/projects/thinkpad-scripts].

	Hosted documentation [http://thinkpad-scripts.readthedocs.org/] (via
Read the Docs)

thinkpad-scripts-config-migration

migrates the config from versions 3.x to 4.x

	Author

	Martin Ueding <mu@martin-ueding.de>

	Manual section

	1

Synopsis

thinkpad-scripts-config-migration

Description

The versions 3.x and before of thinkpad-scripts were Bash shell scripts. The
configuration files also were shell scripts that the main script would
source (execute within the main script) to set the configuration values.

With version 4.0, the complete project was rewritten in Python 3. The
configuration format was changed to INI since the Python standard library ships
the configparser module to handle those easily.

Users of the old version with configurations should be able to convert this
into the new format with this tool. Since the 3.x configuration files could be
programs really, there is no perfect way to parse them and turn them into INI
files. This program tries to parse it and should work fine if your
configuration file consists of simple variable assignments.

It will read the files ~/.config/thinkpad-scripts/rotate.sh and
~/.config/thinkpad-scripts/dock.sh and interpret them. All the errors will
be shown as well as the configuration that is understood. You will be prompted
whether to actually save the new configuration.

Options

This program does not take any options.

Epilogue

This file is part of thinkpad-scripts by Martin Ueding and Jim
Turner.

We hope that this collection of scripts is useful to you. If you experience
bugs, find the documentation lacking or have a new kind of hardware that we do
not yet support, feel free to open an issue on GitHub or write an email to
Martin Ueding.

See also

	GitHub Repository [http://github.com/martin-ueding/thinkpad-scripts]

	project website [http://martin-ueding.de/en/projects/thinkpad-scripts].

	Hosted documentation [http://thinkpad-scripts.readthedocs.org/] (via
Read the Docs)

thinkpad-touch

enable/disable the touch screen

	Author

	Jim Turner <jturner314@gmail.com>

	Manual section

	1

Synopsis

thinkpad-touch [on|off]

Description

This program enables/disables the touch screen of the ThinkPad tablet. If no
option is given, it toggles the touch screen on/off.

Options

	on|off

	If you want to enable the touch screen, use on. Otherwise use off.

If you omit this option, the script will toggle the touch screen on/off.

Exit Status

	0

	Everything okay.

	1

	Some error.

Config

In the configuration file, you can set the xinput name of the touch screen.
The ThinkPad X220 Tablet has Wacom ISDv4 E6 Finger touch for instance:

[input]
touchscreen_device = Wacom ISDv4 E6 Finger touch

Examples

You can just call thinkpad-touch to toggle the touch screen; otherwise
state on/off explicitly with thinkpad-touch on or thinkpad-touch off.

Epilogue

This file is part of thinkpad-scripts by Martin Ueding and Jim
Turner.

We hope that this collection of scripts is useful to you. If you experience
bugs, find the documentation lacking or have a new kind of hardware that we do
not yet support, feel free to open an issue on GitHub or write an email to
Martin Ueding.

See also

	GitHub Repository [http://github.com/martin-ueding/thinkpad-scripts]

	project website [http://martin-ueding.de/en/projects/thinkpad-scripts].

	Hosted documentation [http://thinkpad-scripts.readthedocs.org/] (via
Read the Docs)

thinkpad-touchpad

ThinkPad TouchPad toggle script

	Author

	Martin Ueding <mu@martin-ueding.de>

	Manual section

	1

Synopsis

thinkpad-touchpad

Description

This scripts toggles the TrackPad. It is designed to work on ThinkPads, but it
will probably work on almost all laptops.

Options

	on|off

	If you want to enable the touchpad, use on. Otherwise use off.

If you omit this option, the script will toggle the touchpad on/off.

Config

In the configuration file, you can set the xinput name of the touchpad. The
ThinkPad X220 Tablet has SynPS/2 Synaptics TouchPad for instance. The
default configuration option is just TouchPad to be rather general. This is
how you change it in the configuration:

[input]
touchpad_device = TouchPad

Epilogue

This file is part of thinkpad-scripts by Martin Ueding and Jim
Turner.

We hope that this collection of scripts is useful to you. If you experience
bugs, find the documentation lacking or have a new kind of hardware that we do
not yet support, feel free to open an issue on GitHub or write an email to
Martin Ueding.

See also

	GitHub Repository [http://github.com/martin-ueding/thinkpad-scripts]

	project website [http://martin-ueding.de/en/projects/thinkpad-scripts].

	Hosted documentation [http://thinkpad-scripts.readthedocs.org/] (via
Read the Docs)

thinkpad-trackpoint

enable/disable the TrackPoint

	Author

	Martin Ueding <mu@martin-ueding.de>

	Manual section

	1

Synopsis

thinkpad-trackpoint [on|off]

Description

This program enables/disables the TrackPoint of the ThinkPad. If no option is
given, it toggles the TrackPoint on/off.

Options

	on|off

	If you want to enable the touch screen, use on. Otherwise use off.

If you omit this option, the script will toggle the TrackPoint on/off.

Exit Status

	0

	Everything okay.

	1

	Some error.

Config

In the configuration file, you can set the xinput name of the TrackPoint.
The ThinkPad X220 Tablet has TPPS/2 IBM TrackPoint for instance. The
default configuration option is just TrackPoint to be rather general. This
is how you change it in the configuration:

[input]
trackpoint_device = TrackPoint

Epilogue

This file is part of thinkpad-scripts by Martin Ueding and Jim
Turner.

We hope that this collection of scripts is useful to you. If you experience
bugs, find the documentation lacking or have a new kind of hardware that we do
not yet support, feel free to open an issue on GitHub or write an email to
Martin Ueding.

See also

	GitHub Repository [http://github.com/martin-ueding/thinkpad-scripts]

	project website [http://martin-ueding.de/en/projects/thinkpad-scripts].

	Hosted documentation [http://thinkpad-scripts.readthedocs.org/] (via
Read the Docs)

Changelog

	v4.12.0

	Released: 2019-01-21 20:32:13 +0100

	Update documentation.

	Proper release on master branch.

	v4.11.0

	Released: 2017-11-06 20:50:08 +0100

	Add a configuration option input.use_xsetwacom_if_available in order
to let the user choose whether to use xsetwacom or xinput
(GH-139)

	v4.10.0

	Released: 2017-03-19 18:40:09 +0100

	Add a configuration option to select hardware triggers

	Graphical user detection can now handle display :1

	v4.9.1

	Released: 2017-02-24 22:35:30 +0100

	Update documentation

	Improve determination of the username that is logged in using X.

	v4.9.0

	Released: 2017-02-19 18:03:31 +0100

	Add lsusb check for docking.

	v4.8.1

	Released: 2017-01-20 09:26:34 +0100

	Ignore an additional command line argument to the hooks (GH-127)

	Fix the missing import of subprocess (GH-128)

	Update the documentation (GH-126)

	Use xsetwacom for the rotation and screen mapping if the input device
supports it (GH-124)

	v4.8.0

	
	Ignore a failure by xbacklight. On Martin’s laptop, the modesetting
driver currently has no access to the brightness setting. Therefore the
docking will always fail at the brightness step. This update converts the
failure into a warning.

	Change the configuration option screen.internal to
screen.internal_regex and give a sensible default value that matches
the output name variant reported by the modesetting driver. This change
should also help Yoga users.

	v4.7.5

	Released: 2017-01-14 20:40:37 +0100

	The program now does not crash in the case that the network connection
could not be restarted. Instead, a warning is logged (GH-121).

	v4.7.4

	Released: 2016-07-13 10:35:07 +0200

	Update the name of the Wacom touch screen such that its name also works
on Fedora 23 (GH-120).

	v4.7.3

	Released: 2016-04-15 13:14:40 +0200

	Fix location of sphinx-build on Fedora (GH-119). Contributed by
Aruee.

	v4.7.2

	Released: 2016-04-14 21:07:41 +0200

	Ubuntu seems to ship with a version of XRandR which set the Wacom
Rotation property of a few devices, but not all of them. As we have
switched to the rotation matrix some versions ago, we and XRandR
interfere with each other. Now we reset the rotation made by XRandR. Jim
tested this on Ubuntu 15.10, so that should fix GH-117 and GH-112.

	Debug shell commands are pretty-printed using shlex.quote. That way,
one can directly paste the log output into a shell and re-run a given
command.

	v4.7.1

	Released: 2015-10-20 17:14:26 +0200

	Fix errors caused by hooks at boot time. Hooks are sometimes executed at
boot when no user is logged in yet. This would cause error logs that are
just annoying for the user as he/she is greeted with crash reports. This
fixes GH-110 and GH-111.

	v4.7.0

	Released: 2015-10-16 10:10:16 +0200

	Add configuration option to disable the rotate and dock hook
individually.

	In cases where /dev/log does not exist, it will use standard UDP to
connect to the log.

	v4.6.0

	Released: 2015-10-15 20:30:31 +0200

	Add a --force-direction command line option for thinkpad-rotate
such that this can be used in a script. When starting up the computer an
autostart entry like

thinkpad-rotate --force-direction normal

could be very handy to normalize the setup.

	v4.5.0

	Released: 2015-10-15 16:50:57 +0200

	Add chvt workaround as suggested by Cody Christensen.

	v4.4.2

	Released: 2015-07-31 15:14:59 +0200

	Fix error in docking. I have broken it by assigning a temporary to a
variable output which also happened to be the function argument.
Sorry. I wish I had const in Python :-/.

	v4.4.1

	Released: 2015-07-29 08:23:28 +0200

	Check list of PulseAudio devices to get sound settings right.
(Contributed by Jannis Stoppe, thank you!)

	Update regular expressions for xinput. We have been using the ones
for xsetwacom until now. Since we have switched to xinput in
version 4.2.3, this should fix bugs since then.

	v4.4.0

	Released: 2015-05-09 10:51:34 +0200

	Add a workaround for an XRandr bug that I have on my machine.

	v4.3.0

	Released: 2015-03-25 14:53:31 +0100

	Fix a bug that was introduced in 69ef6ea. This leads to premature exit
and dump of a stacktrace. The screens got rotated, but the TrackPoint
would not be disabled.

	Add an option to disable the internal screen on docking (GH-103).

	v4.2.6

	Released: 2015-03-15 22:53:34 +0100

	Update documentation for openSUSE package

	v4.2.5

	Released: 2015-03-15 19:28:52 +0100

	Remove icons from docking desktop files to get it to build on openSUSE
Build Service

	v4.2.4

	Released: 2015-02-19 18:49:21 +0100

	Write transformation matrices to debug output.

	Small fixes in documentation: Remove dead navigation entry and use
correct syntax highlighting for config snippet.

	v4.2.3

	Released: 2015-02-08

	Add documentation about Fedora package

	Add hardware specific documentation

	Replace xsetwacom with xinput in all cases and use transformation
matrix (GH-91)

	Add a nice error message when a screen could not be found

	Remove termcolor as a dependency

	Always have at least one screen enabled

	Be more careful with gsettings, check whether the schema exists
before writing to it

	v4.2.2

	Released: 2015-01-24

	Remove dependency on termcolor since that is not packaged for Python
3 in Ubuntu or Fedora. It was not needed heavily anyway, so I just got
rid of it.

	Add manual page for thinkpad-config

	Add manual page for thinkpad-trackpoint

	Add manual page for thinkpad-scripts-config-migration

	Add a common epilogue for all manual pages

	Remove mailing list from README

	Replace hard coded strings with configuration options (GH-91)

	Toggle touch screen with xinput only (GH-91)

	Give a real error when rotation cannot be determined (GH-92)

	v4.2.1

	Released: 2015-01-20

	Fix errors in .desktop files

	Use built-in mocking for unit tests

	v4.2.0

	Released: 2015-01-15

	Log error when unsupported key is given to rotate hook.

	Fix full-install target in makefile.

	Add test target to makefile.

	Add support for multiple external monitors. See the manual page of
thinkpad-dock for the details of the configuration options.

	v4.1.5

	Released: 2014-10-26

	Make selection of ethernet connection which is restarted predictable.

	Remove call to nmcli con down in the restarting of the network
connection. This makes it compatible with nmcli 0.9.10. That closes
GH-81 [https://github.com/martin-ueding/thinkpad-scripts/issues/81],
fixes GH-74 [https://github.com/martin-ueding/thinkpad-scripts/issues/74] and closes
GH-75 [https://github.com/martin-ueding/thinkpad-scripts/issues/75],

	v4.1.4

	Released: 2014-10-25

	Fix GH-79 [https://github.com/martin-ueding/thinkpad-scripts/issues/79] by
catching the exceptions and logging warnings. Missing TrackPoint and
TouchPad do not cause the program to abort now.

	v4.1.3

	Released: 2014-10-15

	Fix breakage of the rotation script when the subpixel order cannot be
changed for some reason. An error is logged then.

	v4.1.2

	Released: 2014-10-05

	Fix hiding of Unity launcher (GitHub #72)

	Warn about make install (GitHub #76)

	v4.1.1

	Released: 2014-09-07

	Add network.connection_name configuration option.

	Add support for nmcli v0.9.10 command line interface.

	v4.1

	Released: 2014-07-12

	Add tablet-normal rotation. That will not rotate the screen but
deactivate the trackpoint.

	Accept all rotation names again.

	v4.0.8:

	Released: 2014-06-14

	Fix some errors in the manual pages

	v4.0.7

	Released: 2014-06-14

	Make triggering on hardware rotation slightly more robust against changes
in the event that acpid gives.

	v4.0.6

	Released: 2014-06-02

	Toggle Wacom Touch property with xsetwacom as well as using
xinput.

	v4.0.5

	Released: 2014-05-29

	Automatic determination of ethernet network connection

	make install does not restart any services. make full-install
does that now.

	v4.0.4

	Released: 2014-05-29

	State Python termcolor dependency in the documentation

	Stop failing if gsettings is not installed

	Add subpixel rotation in Xfce

	Warn about missing screen when docking

	v4.0.3

	Released: 2014-05-28

	Replace unicode arrow because of Launchpad errors.

	v4.0.2

	Released: 2014-05-28

	Assert Python 3 everywhere. I suspect that the Launchpad Build System
uses Python 2 for some reason. That causes some unicode errors.

	v4.0.1

	Released: 2014-05-28

	Fill in dependencies in the “Getting Started“ guide.

	Explicitly state the encoding in getversion.py.

	v4.0

	Released: 2014-05-27

	Complete rewrite in Python 3.

	INI style config. Run thinkpad-scripts-config-migrate to help you
migrate your config.

	Remove the transitional scripts. If you have anything that still depends
on having scripts starting with think-, this will break!

	v3.0.1 introduced more relative positions by putting the -of into
your configuration variable. Old configurations that still had left
or right still worked, since the script appended the -of for you.
Those couple lines were removed, so add a ``-of`` to your config, if
you do not have already!

	You can change the regular expression that matches the Wacom devices now
in the config. That is touch.regex in the config.

	v3.5.1

	Released: 2014-02-22

	Small fixes in the manual pages

	v3.5

	Released: 2014-02-22

	Added: Set the option toggle_unity_launcher for
thinkpad-rotate to un-hide the Unity launcher whenever the
screen is rotated. This was previously an example hook in the guides, now
it is part of the main suite of scripts.

	v3.4

	Released: 2014-02-21

	Rename all the scripts from think- to thinkpad- to match the new
project name. To ease transition, there are transition scripts with the
old names. Be sure to adjust all your scripts and hooks accordingly!
The transition scripts will be dropped with version 4.0.

	Rename the configuration directory from ~/.config/think-rotate to
~/.config/thinkpad-scripts. There is an automatic upgrade script in
place, so calling either thinkpad-rotate or thinkpad-dock will
rename your configuration folder if it exists and there is no new one
already existing.

	Put dates into the changelog, for all releases so far.

	v3.3

	Released: 2014-02-21

	Rename project to “thinkpad-scripts”

	Add subpixel anti-alias order change on rotation for Gnome

	v3.2

	Released: 2014-01-07

	Update copyright years in the documentation.

	Add a guard that prevents multiple execution of think-dock and
think-rotate. For some reason, the udev hooks call the script
twice, resulting in race conditions.

	v3.1.2

	Released: 2014-01-07

	Fix finding of external display. I tried to improve the syntax, but let
the script fail whenever the number needed to be incremented.

	v3.1.1

	Released: 2014-01-05

	Clean all *.pyc files in makefile. This was causing errors with
prisine tars and Debian packaging before.

	Add changelog to documentation

	v3.1

	Released: 2014-01-03

	Pass target orientation to postrotate hook

	Pass version number to Sphinx automatically from the changelog

	v3.0.2

	Released: 2013-12-19

	Manual pages with Sphinx

	v3.0.1

	Released: 2013-12-10

	Allow more relative positions by putting the -of into the value of
the relative_position variable

	v3.0

	Released: 2013-12-01

	Settings of the keycodes is now done via a .hwdb file for udev.
This requires udev to be of version 196 or greater. Therefore, it is
marked as a major release, since it breaks Ubuntu 13.04 and earlier.

	v2.11

	Released: 2013-12-01

	Add some guides: “Additional Keys” and “KDE Script Drawer”

	Fix recursive make, pass -j down to child processes

	v2.10.2

	Released: 2013-10-30

	Actually return from function.

	v2.10.1

	Released: 2013-10-28

	Do not fail if qdbus does not work (like on vanilla Kubuntu 13.10)

	v2.10

	Released: 2013-10-28

	Print missing programs

	Do not fail if qdbus is missing

	v2.9

	Released: 2013-10-07

	Added: ACPI hook to call think-rotate (Jim Turner)

	Added: Support for systemd network inferface names (Jim Turner)

	Removed: think-resume (Jim Turner)

	Use syslog in think-dock

	Update documentation

	State all dependencies (Debian package names)

	Change indentation to four spaces instead of a single tab

	v2.8.1

	Released: 2013-09-30

	More logging to syslog

	Disable kdialog for ACPI hooks since that does now work well

	v2.8

	Released: 2013-09-24

	Translate to German

	v2.7.1

	Released: 2013-08-08

	Close KDialog progress bar when the script fails (via trap)

	v2.7

	Released: 2013-07-31

	Added: Hooks

	Added: on|off for the think-touchpad script

	v2.6

	Released: 2013-06-26

	Support for kdialog status.

	v2.5.2

	Released: 2013-05-10

	Update the ACPI hooks to find other docks as well

	v2.5.1

	Released: 2013-05-06

	Find other docks as well

	v2.5

	Released: 2013-02-03

	Get microphone mute button to work

	v2.4.1

	Released: 2012-12-29

	Actually install makefiles

	Implement required actions in init.d script to that Debian lintian
does not complain

	v2.4

	Released: 2012-12-29

	Fix bezel keyboard codes, so that they are usable. (Jim Turner)

	Add script to toggle touch screen. (Jim Turner)

	Organize code in subdirectories, using recursive make.

	v2.3.1

	Released: 2012-11-02

	Map Wacom devices to the output when rotating in any case. Thanks to Jim
Turner!

	v2.3

	Released: 2012-10-25

	Add support for other virtual keyboards. Thanks to Jim Turner!

	Use shorter redirection (&> instead of 2>&!).

	v2.2.1

	Released: 2012-10-22

	Fix spelling typo in relative_position. Thanks to Jim Turner!

	v2.2

	Released: 2012-10-15

	Background most tasks so that they run in parallel. This should speed up
docking.

	v2.1

	Released: 2012-10-06

	Only set Wacom screen devices. That way, any attached Wacom graphics
tablet is not affected by the docking.

	v2.0

	Released: 2012-08-31

	Use the kernel to determine what the docking status is.

	Add udev rules to perform the docking action.

	v1.5

	Released: 2012-08-31

	Desktop files for think-dock.

	v1.4.5

	Released: 2012-07-21

	Revert too intelligent behavior.

	v1.4.4

	Released: 2012-07-21

	Even if the user calls think-dock on, do not dock if there is no
external monitor attached. This might be the case when the think-dock
on is called automatically without any prior checks. If the script
would dock either way, it might disable wireless (although that is only
done when eth0 is connected) and set the volume to a wrong setting.

	v1.4.3

	Released: 2012-07-20

	Disable the wireless connection on docking.

	v1.4.2

	Released: 2012-07-20

	Fix commands in .desktop files.

	v1.4.1

	Released: 2012-07-20

	Install .desktop files.

	v1.4

	Released: 2012-07-20

	Query the state of the whole system automatically and determine the right
action. You can still specify on or off, if you want to.

	v1.3

	Released: 2012-07-16

	Optional config file for think-dock.

	v1.2.2

	Released: 2012-07-16

	Fix flip direction.

	v1.2.1

	Released: 2012-07-16

	Disable wireless only when eth0 connected.

	Document options.

	v1.2

	Released: 2012-07-15

	Change display brightness on docking.

	v1.1

	Released: 2012-07-15

	Check whether programs are there before using them.

	Create directories on make install.

	Disable wifi when going onto the docking station.

	Enable sound on docking.

	Lower the volume after docking.

	Query Wacom devices automatically.

	v1.0

	Released: 2012-07-13

This is the first release with a version number. It contains a couple fixes
and improvements compared to previous (before 2012-07-13) versions of these
scripts.

	Accept other names for the rotation.

	Disable the trackpad as well.

	Start and stop the virtual keyboard.

	Try to go back automatically, if a rotation is already set.

	Use --rotation instead of -o. This will only rotate the internal
screen and not any attached screens as well.

Way before 2012-07-13, those are significant changes in the history:

	Add desktop files.

	Also set Wacom hardware correctly.

	Determine resolution automatically.

	Disable trackpoint when switching.

	Dynamically find external display.

	Limit Wacom devices to internal screen.

	Set external monitor as primary.

Legal and License

I took the script, that served as a basis for thinkpad-rotate
from a forums entry [http://forum.thinkpads.com/viewtopic.php?p=676101#p676101] where the
original author said:

“Put this in a file blah.sh anywhere, and do whatever you want with it!”

The changes that I made to that script are licensed under the GPLv2 [http://www.gnu.org/licenses/old-licenses/gpl-2.0].

All other scripts are just licensed under GPLv2 [http://www.gnu.org/licenses/old-licenses/gpl-2.0].

The “ThinkPad” name

ThinkPad® is a trademark of Lenovo®. This project is not affiliated with,
sponsored by, or endorsed by Lenovo. Our use of the term “ThinkPad” is purely
descriptive since this collection of scripts is only applicable to said type of
computers.

Developer documentation

This part of the documentation is meant for developers. If you just want to use
thinkpad-scripts, you do not need to read this.

	API
	tps

	tps.config

	tps.dock

	tps.hooks

	tps.input

	tps.rotate

	tps.screen

	tps.unity

	tps.vkeyboard

	Environments
	Difference user and root

	Difference user and su

	Shared properties

	Difference user and su -c env

	Why Python?
	Advantages

	Disadvantages

API

	tps

	tps.config

	tps.dock

	tps.hooks

	tps.input

	tps.rotate

	tps.screen

	tps.unity

	tps.vkeyboard

tps

Main module for thinkpad-scripts.

	
class tps.Direction(xrandr, xsetwacom, subpixel, physically_closed, rot_mat)

	Holds the direction names of different tools.

xrandr and xsetwacom use different names for the rotations. To avoid
proliferation of various names, this class holds the differing names. The
module provides constants which have to be used within tps.

	
physically_closed

	Alias for field number 3

	
rot_mat

	Alias for field number 4

	
subpixel

	Alias for field number 2

	
xrandr

	Alias for field number 0

	
xsetwacom

	Alias for field number 1

	
tps.INVERTED = Direction(xrandr='inverted', xsetwacom='half', subpixel='bgr', physically_closed=True, rot_mat=[-1, 0, 1, 0, -1, 1, 0, 0, 1])

	Inverted

	
tps.LEFT = Direction(xrandr='left', xsetwacom='ccw', subpixel='vrgb', physically_closed=True, rot_mat=[0, -1, 1, 1, 0, 0, 0, 0, 1])

	Left

	
tps.NORMAL = Direction(xrandr='normal', xsetwacom='none', subpixel='rgb', physically_closed=False, rot_mat=[1, 0, 0, 0, 1, 0, 0, 0, 1])

	Normal

	
tps.RIGHT = Direction(xrandr='right', xsetwacom='cw', subpixel='vbgr', physically_closed=True, rot_mat=[0, 1, 0, -1, 0, 1, 0, 0, 1])

	Right

	
tps.TABLET_NORMAL = Direction(xrandr='normal', xsetwacom='none', subpixel='rgb', physically_closed=True, rot_mat=[1, 0, 0, 0, 1, 0, 0, 0, 1])

	Tablet normal

	
exception tps.UnknownDirectionException

	Unknown direction given at the command line.

	
tps.assert_python3()

	Asserts that this is running with Python 3

	
tps.has_program(command)

	Checks whether given program is installed on this computer.

	Parameters

	command (str) – Name of command

	Returns

	Whether program is installed

	Return type

	bool

	
tps.print_command_decorate(function)

	Decorates a func from the subprocess module to log the command parameter.

Note that the wrapper adds an additional local_logger parameter following
the command parameter that is used for the logging. All other parameters
are passed to the wrapped function.

	Parameters

	function – Function to wrap

	Returns

	Decorated function

	
tps.static_vars(**kwargs)

	Attach static variables to a function.

Python does not have static variables. There is a workaround since all
Python functions are objects really. Therefore one can attach attributes to
it. This decorator conveniently does that.

Taken from a Stack Overflow answer by Claudiu and ony.

	
tps.translate_direction(direction)

	
	Parameters

	direction (str) – Direction string

	Returns

	Direction object

	Return type

	tps.Direction

	Raises

	tps.UnknownDirectionException –

tps.config

Config module.

Takes care of the INI style config file for global and user configuration.

	
tps.config.CONFIGFILE = '/home/docs/.config/thinkpad-scripts/config.ini'

	Path of global config file

	
exception tps.config.ShellParseException

	Bash code could not be parsed.

The parser here is very limited, it can only detect variable assignments.
If something more complicated is found on a given line, this exception is
raised.

	
tps.config.get_config()

	Loads the config from the config files.

The global config file is read first, then the user config file is read.
That way, options can be overwritten in the user config file.

	Returns

	Config

	Return type

	configparser.ConfigParser

	
tps.config.interpret_shell_line(line, config)

	Interprets a single Bash line to parse for variable assignments.

The given line is searched for a config option was allowed in the 3.x
series. It will use the shlex module to parse the value of the variable
assignment. If it could be parsed correctly, it will add the value to the
config. The keys are translated into the new config sections.

	Parameters

	
	line (str) – Line to check

	config (configparser.ConfigParser) – Config to store parsed variables

	Raise

	tps.config.ShellParseException

	Returns

	None

	
tps.config.main()

	Command line entry point.

	Returns

	None

	
tps.config.migrate_shell_config()

	Migrates the shell config in an interactive way.

The old shell based config will be imported and transfered into a
configparser based one. Then that will be printed out. The user can accept
it and the config will be saved.

	
tps.config.print_config(config)

	Pretty prints config with colors.

	Parameters

	config (configparser.ConfigParser) – Config to print

	Returns

	None

	
tps.config.set_up_logging(verbosity)

	Sets up the logging to console and syslog.

This is taken from the Python Docs – Logging Cookbook [http://docs.python.org/3/howto/logging-cookbook.html#logging-to-multiple-destinations.].

The address parameter for the syslog is taken from an answer from dr
jimbob [http://stackoverflow.com/a/3969772].

tps.dock

Logic related to the UltraBase® docks.

	
tps.dock.dock(on, config)

	Performs the makroscopic docking action.

	Parameters

	
	on (bool) – Desired state

	config (configparser.ConfigParser) – Global config

	Returns

	None

	
tps.dock.is_docked(config)

	Determines whether the laptop is on a docking station.

This checks for /sys/devices/platform/dock.*/docked.
In issue 129 [https://github.com/martin-ueding/thinkpad-scripts/issues/129] it
became apparent that this is not a sufficient solution. Therefore a
configuration option allows to alternatively check for USB devices that are
present.

	Returns

	True if laptop is docked

	Return type

	bool

	
tps.dock.main()

	Command line entry point.

	Returns

	None

	
tps.dock.select_docking_screens(internal, primary='', secondary='')

	Selects the primary, secondary, and remaining screens when docking.

If primary or secondary is not the name of a connected screen, then
select an appropriate screen from the connected screens. External screens
are prioritized over the internal screen, and primary is prioritized
over secondary. Warn the user if primary or secondary is a non-empty
string and the screen is not connected.

If no external screens are connected, then set primary to the internal
screen, and set secondary to None.

	Parameters

	
	internal (str) – Name of the internal screen

	primary (str) – Name of primary screen, or an empty string

	secondary (str) – Name of secondary screen, or an empty string

	Returns

	(primary, secondary, [other1, …])

	Return type

	tuple

For example, when only LVDS1 is connected:

>>> select_docking_screens('LVDS1', '', '')
('LVDS1', None, [])

When LVDS1 and VGA1 are connected:

>>> select_docking_screens('LVDS1', '', '')
('VGA1', 'LVDS1', [])
>>> select_docking_screens('LVDS1', 'LVDS1', '')
('LVDS1', 'VGA1', [])

When LVDS1, VGA1, and HDMI1 are connected:

>>> select_docking_screens('LVDS1', '', '')
('HDMI1', 'VGA1', ['LVDS1'])
>>> select_docking_screens('LVDS1', 'VGA1', '')
('VGA1', 'HDMI1', ['LVDS1'])
>>> select_docking_screens('LVDS1', '', 'LVDS1')
('HDMI1', 'LVDS1', ['VGA1'])

Note that the default order of VGA1 versus HDMI1 depends on the
output of xrandr. See
tps.testsuite.test_dock.SelectDockingScreensTestCase for more
examples.

tps.hooks

Functions that execute the appropriate hooks.

	
tps.hooks.get_graphicsl_user()

	

	
tps.hooks.main_dock_hook()

	Entry point for thinkpad-dock-hook.

It interprets the key values from the caller and start up another
interpreter with the actual thinkpad-dock script.

	
tps.hooks.main_rotate_hook()

	Entry point for thinkpad-rotate-hook.

It interprets the key values from the caller and start up another
interpreter with the actual thinkpad-rotate script.

	
tps.hooks.parse_graphical_user(lines)

	Determine the graphical user from the output of who -u.

	
tps.hooks.postdock(state, config)

	Executes postdock hook if it exists.

	Parameters

	
	state (bool) – Whether new state is on

	config (configparser.ConfigParser) – Global config

	Returns

	None

	
tps.hooks.postrotate(direction, config)

	Executes postrotate hook if it exists.

	Parameters

	
	direction (tps.Direction) – Desired direction

	config (configparser.ConfigParser) – Global config

	Returns

	None

	
tps.hooks.predock(state, config)

	Executes predock hook if it exists.

	Parameters

	
	state (bool) – Whether new state is on

	config (configparser.ConfigParser) – Global config

	Returns

	None

	
tps.hooks.prerotate(direction, config)

	Executes prerotate hook if it exists.

	Parameters

	
	direction (tps.Direction) – Desired direction

	config (configparser.ConfigParser) – Global config

	Returns

	None

tps.input

Logic related to input devices.

	
exception tps.input.InputDeviceNotFoundException

	xinput device could not be found.

	
tps.input.generate_xinput_coordinate_transformation_matrix(output, orientation)

	Generates the coordinate transformation matrix that is needed for xinput to
confine the input to one screen and rotate it properly.

0.415703, 0.000000, 0.584297,
0.000000, -0.711111, 0.711111,
0.000000, 0.000000, 1.000000

	
tps.input.get_wacom_device_ids()

	Gets the IDs of the built-in Wacom touch devices.

This calls xinput to get the list and parses that with a regular
expression. Only device names starting with Wacom ISD (default regex)
are taken into account. If you have an external device, this will not be
picked up.

	Return type

	list

	
tps.input.get_xinput_id(name)

	Gets the xinput ID for given device.

The first parts of the name may be omitted. To get “TPPS/2 IBM TrackPoint”,
it is sufficient to use “TrackPoint”.

	Raises

	InputDeviceNotFoundException – Device not found in xinput output

	Return type

	int

	
tps.input.get_xinput_state(device)

	Gets the device state.

	Parameters

	device (int) – xinput ID of devicwe

	Returns

	Whether device is enabled

	Return type

	bool

	
tps.input.has_device_property(device, property_)

	Checks whether a given device supports a property.

	
tps.input.has_xinput_prop(device, prop)

	Checks whether the device has the given xinput propery.

	
tps.input.map_rotate_all_input_devices(output, orientation)

	Maps all Wacom® devices.

	
tps.input.map_rotate_input_device(device, matrix)

	Rotates an input device.

	
tps.input.map_rotate_wacom_device(device, output, direction)

	

	
tps.input.set_wacom_touch(device_id, state)

	Changes the Wacom Touch property of the given device.

	
tps.input.set_xinput_state(device, state)

	Sets the device state.

	Parameters

	
	device (int) – xinput ID of devicwe

	state (bool) – Whether device should be enabled

	
tps.input.state_change_ui(config_name)

	Change the state of the given device depending on command line options.

It parses the command line options. If no state is given there, it will be
the opposite of the current state.

	Parameters

	set_touch (bool) – Whether to also toggle the Touch property on
this device.

	Returns

	None

	
tps.input.wacom_rotate_reset(device)

	Resets the “Wacom Rotation” property of devices.

In GH-117 [https://github.com/martin-ueding/thinkpad-scripts/issues/117] we noticed that in Ubuntu the xrandr rotation command will
also rotate some input devices. This is probably meant in a good way but
interferes with our rotation here. Therefore we reset the “Wacom Rotation”
after setting the transformation matrix.

tps.rotate

	
tps.rotate.can_use_chvt()

	Checks whether chvt can be called with sudo without a password.

The sudo command has the -n option which will just make the command
fail when the user does not have the appropriate permissions. The problem
with chvt is that it does not have any intelligent command line
argument parsing. If will return code 1 if no argument is given, the same
code that sudo gives when no permission is available. Therefore I chose
to use sudo -l` to get the whole list and see whether the full path to
``chvt is in there. This might break on Fedora where the usr-merge
has been done now.

The following line is needed in a file like /etc/sudoers.d/chvt:

myuser ALL = NOPASSWD: /bin/chvt

You have to replace myuser which your username. Giving too broad
permissions to every other user account is probably not a good idea.

	Return type

	bool

	
tps.rotate.has_external_screens(config)

	Checks whether any external screens are attached.

	
tps.rotate.main()

	Entry point for thinkpad-rotate.

	
tps.rotate.needs_xrandr_bug_workaround(config)

	Determines whether xrandr bug needs to be worked around.

XRandr has a bug in Ubuntu [https://bugs.launchpad.net/ubuntu/+source/x11-xserver-utils/+bug/1451798], maybe even in other distributions. In
Ubuntu 15.04 a workaround is to change the virtual terminal to a different
one and back to the seventh, the graphical one. This can be automated using
the chvt command which requires superuser privileges. An entry in the
sudo file can let the normal user execute this program.

	
tps.rotate.new_rotation(current, desired_str, config, force=False)

	Determines the new rotation based on desired and current one.

	Parameters

	force (bool) – If set the function does not try to be too clever but

just uses the rotation given. If no rotation is given in desired_str,
it still uses the default from the configuration.

	
tps.rotate.rotate_to(direction, config)

	Performs all steps needed for a screen rotation.

	
tps.rotate.toggle_virtual_terminal()

	

	
tps.rotate.xrandr_bug_fail_early(config)

	Quits the program if xrandr bug cannot be coped with.

tps.screen

Screen related logic.

	
exception tps.screen.ScreenNotFoundException

	xrandr device could not be found.

	
tps.screen.disable(screen)

	Disables the given screen using xrandr.

	Parameters

	screen (str) – Name of the output to disable

	Returns

	None

	
tps.screen.enable(screen, primary=False, position=None)

	Enables given screen using xrandr.

	Parameters

	
	screen (str) – Name of the output to enable

	primary (bool) – Set output as primary

	position (tuple) – Tuple with (0) relative position and (1) other
output. This could be ('right-of', 'LVDS1').

	Returns

	None

	
tps.screen.filter_outputs(outputs, regex)

	

	
tps.screen.get_available_screens(output)

	

	
tps.screen.get_externals(internal)

	Gets the external screens.

You have to specify the internal screen to exclude that from the listing.

;param str internal: Name of the internal screen
:returns: List of external screen names
:rtype: str

	
tps.screen.get_internal(config, cache=True)

	Matches the regular expression in the config and retrieves the actual name
of the internal screen.

The names of the outputs that XRandR reports may be LVDS1 or
LVDS-1. The former happens with the Intel driver, the latter with the
generic kernel modesetting driver. We do not know what the system will
provide, therefore it was decided in GH-125 to use a regular expression in
the configuration file. This also gives out-of-the-box support for Yoga
users where the internal screen is called eDP1 or eDP-1.

	Parameters

	
	config – Configuration parser instance

	cache (bool) – Compute the value again even if it is cached

	
tps.screen.get_resolution_and_shift(output)

	Retrieves the total resolution of the virtual screen and the position of
the given output within that.

The X server seems to generate a huge screen which is then displayed by the
physical displays. xrandr gives the size of that (virtual) screen as
well as the positions of each display in that.

For example, I currently have the 12.5” 1366×768 ThinkPad X220 display on
the right of a 23” 1920×1080 pixel display. xrandr tells me the
following:

Screen 0: … current 3286 x 1080 …
LVDS1 … 1366x768+1920+0
DP2 … 1920x1080+0+0

This only shows the interesting parts. The size of the (virtual) screen is
3286×1080 and the position of the internal screen is 1366×768+1920+0. This
allows to compute the transformation matrix for this.

	
tps.screen.get_rotation(screen)

	Gets the current rotation of the given screen.

	Parameters

	screen (str) – Find rotation of given output

	Returns

	Current direction

	Return type

	tps.Direction

	
tps.screen.rotate(screen, direction)

	Rotates the screen into the direction.

	Parameters

	
	screen (str) – Name of the output to rotate

	direction (tps.Direction) – New direction

	Returns

	None

	
tps.screen.set_brightness(brightness)

	Sets the brightness with xbacklight.

	Parameters

	brightness (str) – Percent value of brightness, e. g. 60%

	Returns

	None

	
tps.screen.set_subpixel_order(direction)

	Sets the text subpixel anti-alias order.

	Parameters

	direction (tps.Direction) – New direction

	Returns

	None

tps.unity

Logic for Ubuntu Unity.

	
tps.unity.set_launcher(autohide)

	Sets the autohide property of the Unity launcher.

In the back, this uses dconf. If that is not installed, this just fails
with a warning.

	Parameters

	autohide (bool) – True if autohide is desired

tps.vkeyboard

Logic for virtual keyboard

	
tps.vkeyboard.toggle(program, state)

	Toggles the running state of the given progam.

If state is true, the program will be spawned.

	Parameters

	
	program (str) – Name of the program

	state (bool) – Desired state

	Returns

	None

Environments

The environment differs between the normal user and root. This might be the
cause for some bugs.

Difference user and root

See the following diff between the user and root environment, made with $
env and # env:

--- env-user.txt	2014-01-07 08:10:57.297768327 +0100
+++ env-root.txt	2014-01-07 08:10:57.297768327 +0100
@@ -1,76 +1,16 @@
-BROWSER=/usr/bin/firefox
-COLORFGBG=15;0
-DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbus-TK74xcpHuB
-DEBEMAIL=dev@martin-ueding.de
-DEBFULLNAME=Martin Ueding
-DEBIAN_PACKAGING_DIR=/home/mu/Packaging_Debian
-DEFAULTS_PATH=/usr/share/gconf/kde-plasma.default.path
-DESKTOP_SESSION=kde-plasma
 DISPLAY=:0
-EDITOR=/usr/bin/vim
-GDM_LANG=en
-GDMSESSION=kde-plasma
-GNOME_KEYRING_CONTROL=/run/user/1000/keyring-35U0Ew
-GNOME_KEYRING_PID=1784
-GPG_AGENT_INFO=/tmp/gpg-BQD8Wt/S.gpg-agent:1864:1
-GS_LIB=/home/mu/.fonts
-GTK2_RC_FILES=/etc/gtk-2.0/gtkrc:/home/mu/.gtkrc-2.0:/home/mu/.kde/share/config/gtkrc-2.0
-GTK_RC_FILES=/etc/gtk/gtkrc:/home/mu/.gtkrc:/home/mu/.kde/share/config/gtkrc
 HOME=/home/mu
-IM_CONFIG_PHASE=1
-INSTANCE=
-JOB=dbus
-KDE_FULL_SESSION=true
-KDE_MULTIHEAD=false
-KDE_SESSION_UID=1000
-KDE_SESSION_VERSION=4
-KONSOLE_DBUS_SERVICE=:1.72
-KONSOLE_DBUS_SESSION=/Sessions/2
-KONSOLE_DBUS_WINDOW=/Windows/1
-KONSOLE_PROFILE_NAME=Shell
 LANG=de_DE.UTF-8
 LANGUAGE=en
-LESSCLOSE=/usr/bin/lesspipe %s %s
-LESS=-FRSXx8
-LESSOPEN=| /usr/bin/lesspipe %s
-LOGNAME=mu
-MAKEFLAGS=-j 4
-MANDATORY_PATH=/usr/share/gconf/kde-plasma.mandatory.path
-MATHEMATICA_HOME=/usr/local/Wolfram/Mathematica/9.0
-PAGER=less -FRSXx8
-PATH=/home/mu/.local/bin:/home/mu/bin:/usr/lib/lightdm/lightdm:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games
-PROFILEHOME=
-PROJECTS_DIR=/home/mu/Projekte
-PROMPT_DIRTRIM=4
-PWD=/home/mu/Projekte/think-rotate/doc/environment
-QT_PLUGIN_PATH=/home/mu/.kde/lib/kde4/plugins/:/usr/lib/kde4/plugins/
-SESSION=kde-plasma
-SESSION_MANAGER=local/Martin-X220:@/tmp/.ICE-unix/2000,unix/Martin-X220:/tmp/.ICE-unix/2000
-SESSIONTYPE=
+LOGNAME=root
+MAIL=/var/mail/root
+PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 SHELL=/bin/bash
-SHELL_SESSION_ID=a7053eff52fd4000b6f58d0783a5b9ba
-SHLVL=2
-SSH_AGENT_PID=1867
-SSH_AUTH_SOCK=/tmp/ssh-KejIl272p39R/agent.1862
-TAR_ARCHIVE_DIR=/home/mu/Packaging_Debian
+SUDO_COMMAND=/usr/bin/env
+SUDO_GID=1000
+SUDO_UID=1000
+SUDO_USER=mu
 TERM=xterm-256color
-TEXTDOMAINDIR=/usr/share/locale/
-TEXTDOMAIN=im-config
-UPSTART_EVENTS=started xsession
-UPSTART_INSTANCE=
-UPSTART_JOB=startkde
-UPSTART_SESSION=unix:abstract=/com/ubuntu/upstart-session/1000/1797
-USER=mu
-_=/usr/bin/env
-WINDOWID=52428826
+USERNAME=root
+USER=root
 XAUTHORITY=/tmp/kde-mu/xauth-1000-_0
-XCURSOR_THEME=default
-XDG_CONFIG_DIRS=/etc/xdg/xdg-kde-plasma:/usr/share/upstart/xdg:/etc/xdg
-XDG_CURRENT_DESKTOP=KDE
-XDG_DATA_DIRS=/usr/share:/usr/share/kde-plasma:/usr/local/share/:/usr/share/
-XDG_RUNTIME_DIR=/run/user/1000
-XDG_SEAT_PATH=/org/freedesktop/DisplayManager/Seat0
-XDG_SEAT=seat0
-XDG_SESSION_ID=c2
-XDG_SESSION_PATH=/org/freedesktop/DisplayManager/Session0
-XDG_VTNR=7

Difference user and su

If you look the differences to an environment made with su, there is less
changed, but still a lot missing. I made the following with (where mu is my
user account):

su -c env mu

This is the output:

--- env-user.txt	2014-01-07 08:10:57.297768327 +0100
+++ env-su.txt	2014-01-07 08:10:57.225768328 +0100
@@ -1,76 +1,24 @@
-BROWSER=/usr/bin/firefox
-COLORFGBG=15;0
-DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbus-TK74xcpHuB
-DEBEMAIL=dev@martin-ueding.de
-DEBFULLNAME=Martin Ueding
-DEBIAN_PACKAGING_DIR=/home/mu/Packaging_Debian
-DEFAULTS_PATH=/usr/share/gconf/kde-plasma.default.path
-DESKTOP_SESSION=kde-plasma
 DISPLAY=:0
-EDITOR=/usr/bin/vim
-GDM_LANG=en
-GDMSESSION=kde-plasma
-GNOME_KEYRING_CONTROL=/run/user/1000/keyring-35U0Ew
-GNOME_KEYRING_PID=1784
-GPG_AGENT_INFO=/tmp/gpg-BQD8Wt/S.gpg-agent:1864:1
-GS_LIB=/home/mu/.fonts
-GTK2_RC_FILES=/etc/gtk-2.0/gtkrc:/home/mu/.gtkrc-2.0:/home/mu/.kde/share/config/gtkrc-2.0
-GTK_RC_FILES=/etc/gtk/gtkrc:/home/mu/.gtkrc:/home/mu/.kde/share/config/gtkrc
 HOME=/home/mu
-IM_CONFIG_PHASE=1
-INSTANCE=
-JOB=dbus
-KDE_FULL_SESSION=true
-KDE_MULTIHEAD=false
-KDE_SESSION_UID=1000
-KDE_SESSION_VERSION=4
-KONSOLE_DBUS_SERVICE=:1.72
-KONSOLE_DBUS_SESSION=/Sessions/2
-KONSOLE_DBUS_WINDOW=/Windows/1
-KONSOLE_PROFILE_NAME=Shell
 LANG=de_DE.UTF-8
 LANGUAGE=en
-LESSCLOSE=/usr/bin/lesspipe %s %s
-LESS=-FRSXx8
-LESSOPEN=| /usr/bin/lesspipe %s
 LOGNAME=mu
-MAKEFLAGS=-j 4
-MANDATORY_PATH=/usr/share/gconf/kde-plasma.mandatory.path
-MATHEMATICA_HOME=/usr/local/Wolfram/Mathematica/9.0
-PAGER=less -FRSXx8
-PATH=/home/mu/.local/bin:/home/mu/bin:/usr/lib/lightdm/lightdm:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games
-PROFILEHOME=
-PROJECTS_DIR=/home/mu/Projekte
-PROMPT_DIRTRIM=4
+MAIL=/var/mail/mu
+PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games
 PWD=/home/mu/Projekte/think-rotate/doc/environment
-QT_PLUGIN_PATH=/home/mu/.kde/lib/kde4/plugins/:/usr/lib/kde4/plugins/
-SESSION=kde-plasma
-SESSION_MANAGER=local/Martin-X220:@/tmp/.ICE-unix/2000,unix/Martin-X220:/tmp/.ICE-unix/2000
-SESSIONTYPE=
 SHELL=/bin/bash
-SHELL_SESSION_ID=a7053eff52fd4000b6f58d0783a5b9ba
-SHLVL=2
-SSH_AGENT_PID=1867
-SSH_AUTH_SOCK=/tmp/ssh-KejIl272p39R/agent.1862
-TAR_ARCHIVE_DIR=/home/mu/Packaging_Debian
+SHLVL=1
+SUDO_COMMAND=/bin/su -c env mu
+SUDO_GID=1000
+SUDO_UID=1000
+SUDO_USER=mu
 TERM=xterm-256color
-TEXTDOMAINDIR=/usr/share/locale/
-TEXTDOMAIN=im-config
-UPSTART_EVENTS=started xsession
-UPSTART_INSTANCE=
-UPSTART_JOB=startkde
-UPSTART_SESSION=unix:abstract=/com/ubuntu/upstart-session/1000/1797
 USER=mu
+USERNAME=root
 _=/usr/bin/env
-WINDOWID=52428826
 XAUTHORITY=/tmp/kde-mu/xauth-1000-_0
-XCURSOR_THEME=default
-XDG_CONFIG_DIRS=/etc/xdg/xdg-kde-plasma:/usr/share/upstart/xdg:/etc/xdg
-XDG_CURRENT_DESKTOP=KDE
-XDG_DATA_DIRS=/usr/share:/usr/share/kde-plasma:/usr/local/share/:/usr/share/
 XDG_RUNTIME_DIR=/run/user/1000
-XDG_SEAT_PATH=/org/freedesktop/DisplayManager/Seat0
 XDG_SEAT=seat0
+XDG_SESSION_COOKIE=550ca4757c0af12b457994cd526d188e-1389078657.209124-1472854378
 XDG_SESSION_ID=c2
-XDG_SESSION_PATH=/org/freedesktop/DisplayManager/Session0
 XDG_VTNR=7

Shared properties

In both cases, the variable DBUS_SESSION_BUS_ADDRESS is missing. This might
be cause for bugs like #36 [https://github.com/martin-ueding/thinkpad-scripts].

Difference user and su -c env

Even if you use env to recreate the user’s environment, it does not change
anything, apparently:

su -c 'env env' mu

--- env-user.txt	2014-01-07 08:10:57.297768327 +0100
+++ env-su_env.txt	2014-01-07 08:10:57.277768327 +0100
@@ -1,76 +1,24 @@
-BROWSER=/usr/bin/firefox
-COLORFGBG=15;0
-DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbus-TK74xcpHuB
-DEBEMAIL=dev@martin-ueding.de
-DEBFULLNAME=Martin Ueding
-DEBIAN_PACKAGING_DIR=/home/mu/Packaging_Debian
-DEFAULTS_PATH=/usr/share/gconf/kde-plasma.default.path
-DESKTOP_SESSION=kde-plasma
 DISPLAY=:0
-EDITOR=/usr/bin/vim
-GDM_LANG=en
-GDMSESSION=kde-plasma
-GNOME_KEYRING_CONTROL=/run/user/1000/keyring-35U0Ew
-GNOME_KEYRING_PID=1784
-GPG_AGENT_INFO=/tmp/gpg-BQD8Wt/S.gpg-agent:1864:1
-GS_LIB=/home/mu/.fonts
-GTK2_RC_FILES=/etc/gtk-2.0/gtkrc:/home/mu/.gtkrc-2.0:/home/mu/.kde/share/config/gtkrc-2.0
-GTK_RC_FILES=/etc/gtk/gtkrc:/home/mu/.gtkrc:/home/mu/.kde/share/config/gtkrc
 HOME=/home/mu
-IM_CONFIG_PHASE=1
-INSTANCE=
-JOB=dbus
-KDE_FULL_SESSION=true
-KDE_MULTIHEAD=false
-KDE_SESSION_UID=1000
-KDE_SESSION_VERSION=4
-KONSOLE_DBUS_SERVICE=:1.72
-KONSOLE_DBUS_SESSION=/Sessions/2
-KONSOLE_DBUS_WINDOW=/Windows/1
-KONSOLE_PROFILE_NAME=Shell
 LANG=de_DE.UTF-8
 LANGUAGE=en
-LESSCLOSE=/usr/bin/lesspipe %s %s
-LESS=-FRSXx8
-LESSOPEN=| /usr/bin/lesspipe %s
 LOGNAME=mu
-MAKEFLAGS=-j 4
-MANDATORY_PATH=/usr/share/gconf/kde-plasma.mandatory.path
-MATHEMATICA_HOME=/usr/local/Wolfram/Mathematica/9.0
-PAGER=less -FRSXx8
-PATH=/home/mu/.local/bin:/home/mu/bin:/usr/lib/lightdm/lightdm:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games
-PROFILEHOME=
-PROJECTS_DIR=/home/mu/Projekte
-PROMPT_DIRTRIM=4
+MAIL=/var/mail/mu
+PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games
 PWD=/home/mu/Projekte/think-rotate/doc/environment
-QT_PLUGIN_PATH=/home/mu/.kde/lib/kde4/plugins/:/usr/lib/kde4/plugins/
-SESSION=kde-plasma
-SESSION_MANAGER=local/Martin-X220:@/tmp/.ICE-unix/2000,unix/Martin-X220:/tmp/.ICE-unix/2000
-SESSIONTYPE=
 SHELL=/bin/bash
-SHELL_SESSION_ID=a7053eff52fd4000b6f58d0783a5b9ba
-SHLVL=2
-SSH_AGENT_PID=1867
-SSH_AUTH_SOCK=/tmp/ssh-KejIl272p39R/agent.1862
-TAR_ARCHIVE_DIR=/home/mu/Packaging_Debian
+SHLVL=1
+SUDO_COMMAND=/bin/su -c env env mu
+SUDO_GID=1000
+SUDO_UID=1000
+SUDO_USER=mu
 TERM=xterm-256color
-TEXTDOMAINDIR=/usr/share/locale/
-TEXTDOMAIN=im-config
-UPSTART_EVENTS=started xsession
-UPSTART_INSTANCE=
-UPSTART_JOB=startkde
-UPSTART_SESSION=unix:abstract=/com/ubuntu/upstart-session/1000/1797
 USER=mu
+USERNAME=root
 _=/usr/bin/env
-WINDOWID=52428826
 XAUTHORITY=/tmp/kde-mu/xauth-1000-_0
-XCURSOR_THEME=default
-XDG_CONFIG_DIRS=/etc/xdg/xdg-kde-plasma:/usr/share/upstart/xdg:/etc/xdg
-XDG_CURRENT_DESKTOP=KDE
-XDG_DATA_DIRS=/usr/share:/usr/share/kde-plasma:/usr/local/share/:/usr/share/
 XDG_RUNTIME_DIR=/run/user/1000
-XDG_SEAT_PATH=/org/freedesktop/DisplayManager/Seat0
 XDG_SEAT=seat0
+XDG_SESSION_COOKIE=550ca4757c0af12b457994cd526d188e-1389078657.247557-1009355119
 XDG_SESSION_ID=c2
-XDG_SESSION_PATH=/org/freedesktop/DisplayManager/Session0
 XDG_VTNR=7

Why Python?

	Author

	Martin Ueding <mu@martin-ueding.de>

Advantages

Why do I want to switch to Python 3 over Bash?

	INI config format

	The Bash implementation just sourced its config file. So you could write a
little shell script that assigned a couple variables and you were done with
it.

Python has the configparser module which enables using INI style config
files. There is a default configuration which can be overwritten. This
offers sectioning in the config, which makes sense with the current amount
of options.

	Language offers module

	Bash has no notion of modules. It just has scripts that could be sourced.
This was done with the lib folder, but it has felt like a hack from the
very beginning. When I documented those functions, I realized that it was
hard to do that since Bash functions do not have named parameter like real
programming languages. The biggest issue are the missing return values.

Since modules are easy with Python, I can split the long scripts into
multiple modules.

	Scoping

	The Bash implementation used a lot of global variables. Like the
$external that appeared magically when you would call the
find-external function. I believe in the “explicit is better than
implicit” statement of the Python Zen, so this bugged me.

With the scopes in the functions, I can create lot of simple, small
functions that can be tested and reused better.

	XML support

	With the XML config file for fontconfig coming up, I wanted to have a
language that can work with XML files natively. Using sed on a XML file
just seems wrong. Well, XML as configuration seems wrong as well.

	Direct GUI

	So far, the GUI has been made with kdialog which received messages via
qdbus. This works. But with Python, a binding like PyQt can be used to
create a real GUI.

	Better string processing

	There are lines like the following in the 3.x codebase:

external=$(xrandr | grep -Eo '(\S+) connected' | grep -Eo '^(\S+)' | grep -v "$internal")

I think this can be done much nicer in Python.

def get_external(internal):
 lines = tps.check_output(['xrandr'], logger).decode().split('\n')
 for line in lines:
 if not line.startswith(internal):
 matcher = re.search(r'^(\S+) connected', line)
 if matcher:
 return matcher.group(1)

Yes, it is way more code. But I find it easier to read and more self
explanatory.

	Possibility of a daemon

	It would be possible to have this running as a daemon which gets messages
via D-Bus. The hooks that get called with hardware events are run as root
and without the DISPLAY variable set. The 3.x code uses su to run
the code in the context of the user. With such a daemon, it would be
possible to avoid that and invoke the action.

This has the disadvantage of an always running daemon, which is not really
needed.

	Better documentation

	Docstrings and Sphinx allows one to document the hell out of code. And it
is quite fun. With that, it is really easy to document the various parts of
the codebase in a standard way.

Disadvantages

I do see some disadvantages. They are not big issues, I think.

	Requires Python knowledge

	It will require the developers to know Python. Or they will have to be
willing to learn it for this project. I do not consider Python an uncommon
language, not more uncommon than Bash, on Linux. Look at various Ubuntu
scripts, they are written in Python.

Bash is pretty hard to get right with all its pitfalls. So Python might be
an easier choice to get people to contribute.

	Adds more dependencies

	Bash is included in virtually every distribution. Python should be as well,
but there might be somebody without Python on his system.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tps	

 	
 	
 tps.config	

 	
 	
 tps.dock	

 	
 	
 tps.hooks	

 	
 	
 tps.input	

 	
 	
 tps.rotate	

 	
 	
 tps.screen	

 	
 	
 tps.unity	

 	
 	
 tps.vkeyboard	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W
 | X

A

 	
 	assert_python3() (in module tps)

C

 	
 	can_use_chvt() (in module tps.rotate)

 	
 	CONFIGFILE (in module tps.config)

D

 	
 	Direction (class in tps)

 	
 	disable() (in module tps.screen)

 	dock() (in module tps.dock)

E

 	
 	enable() (in module tps.screen)

F

 	
 	filter_outputs() (in module tps.screen)

G

 	
 	generate_xinput_coordinate_transformation_matrix() (in module tps.input)

 	get_available_screens() (in module tps.screen)

 	get_config() (in module tps.config)

 	get_externals() (in module tps.screen)

 	get_graphicsl_user() (in module tps.hooks)

 	
 	get_internal() (in module tps.screen)

 	get_resolution_and_shift() (in module tps.screen)

 	get_rotation() (in module tps.screen)

 	get_wacom_device_ids() (in module tps.input)

 	get_xinput_id() (in module tps.input)

 	get_xinput_state() (in module tps.input)

H

 	
 	has_device_property() (in module tps.input)

 	has_external_screens() (in module tps.rotate)

 	
 	has_program() (in module tps)

 	has_xinput_prop() (in module tps.input)

I

 	
 	InputDeviceNotFoundException

 	interpret_shell_line() (in module tps.config)

 	
 	INVERTED (in module tps)

 	is_docked() (in module tps.dock)

L

 	
 	LEFT (in module tps)

M

 	
 	main() (in module tps.config)

 	(in module tps.dock)

 	(in module tps.rotate)

 	main_dock_hook() (in module tps.hooks)

 	
 	main_rotate_hook() (in module tps.hooks)

 	map_rotate_all_input_devices() (in module tps.input)

 	map_rotate_input_device() (in module tps.input)

 	map_rotate_wacom_device() (in module tps.input)

 	migrate_shell_config() (in module tps.config)

N

 	
 	needs_xrandr_bug_workaround() (in module tps.rotate)

 	
 	new_rotation() (in module tps.rotate)

 	NORMAL (in module tps)

P

 	
 	parse_graphical_user() (in module tps.hooks)

 	physically_closed (tps.Direction attribute)

 	postdock() (in module tps.hooks)

 	postrotate() (in module tps.hooks)

 	
 	predock() (in module tps.hooks)

 	prerotate() (in module tps.hooks)

 	print_command_decorate() (in module tps)

 	print_config() (in module tps.config)

R

 	
 	RIGHT (in module tps)

 	rot_mat (tps.Direction attribute)

 	
 	rotate() (in module tps.screen)

 	rotate_to() (in module tps.rotate)

S

 	
 	ScreenNotFoundException

 	select_docking_screens() (in module tps.dock)

 	set_brightness() (in module tps.screen)

 	set_launcher() (in module tps.unity)

 	set_subpixel_order() (in module tps.screen)

 	set_up_logging() (in module tps.config)

 	
 	set_wacom_touch() (in module tps.input)

 	set_xinput_state() (in module tps.input)

 	ShellParseException

 	state_change_ui() (in module tps.input)

 	static_vars() (in module tps)

 	subpixel (tps.Direction attribute)

T

 	
 	TABLET_NORMAL (in module tps)

 	toggle() (in module tps.vkeyboard)

 	toggle_virtual_terminal() (in module tps.rotate)

 	tps (module)

 	tps.config (module)

 	tps.dock (module)

 	
 	tps.hooks (module)

 	tps.input (module)

 	tps.rotate (module)

 	tps.screen (module)

 	tps.unity (module)

 	tps.vkeyboard (module)

 	translate_direction() (in module tps)

U

 	
 	UnknownDirectionException

W

 	
 	wacom_rotate_reset() (in module tps.input)

X

 	
 	xrandr (tps.Direction attribute)

 	
 	xrandr_bug_fail_early() (in module tps.rotate)

 	xsetwacom (tps.Direction attribute)

Epilogue

This file is part of thinkpad-scripts by Martin Ueding and Jim
Turner.

We hope that this collection of scripts is useful to you. If you experience
bugs, find the documentation lacking or have a new kind of hardware that we do
not yet support, feel free to open an issue on GitHub or write an email to
Martin Ueding.

See also

	GitHub Repository [http://github.com/martin-ueding/thinkpad-scripts]

	project website [http://martin-ueding.de/en/projects/thinkpad-scripts].

	Hosted documentation [http://thinkpad-scripts.readthedocs.org/] (via
Read the Docs)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/kicker.png
O 200w

2013-01-23

_images/settings1.png
Tastenzuordnung

3

ort

Einstellungen Fur ,Ordner-Ansicht"

_ Arbeitsflachen-Ordner anzeigen

Die Dateien anzeigen, die die sktuelle Aktivitst betreffen

ort anzeigen:

[0
&

Ordner auswahlen:

Jusrshare/applications/

_images/drawer.png
& Ehinkdock-offdesitop

Ehink-dock-on desktop.

1]

B chinkheycodes deshtop
think-rotate-flp deshtop
think-rotate-left desktop
think-rotate desktop
think-touchdesktop

think-touchpad.desktop

- X- JSACA |4

_images/settings2.png
Tastenzuordnung

3

Einstellungen Fur ,Ordner-Ansicht” QYW
Filter T
Passende Dateien snzeigen v
Dateimuster:
think*.desktop a

Dateitypen:

3GPP-Multimediadatei (*.3gp, *39pp,
3GPP2-Multimediadatei (%392, *3gp.
7aip-Archiv (72)

%) »Adobe llustrator«-Dokument (%.ai)

»Applix Spreadsheetsc-Tabelle (%)
»Dolby Digitala-Audio (*.2c3)
»FastTracker lic-Audio (*xm)

£} »Game Boy«-ROM (*.gb)

2 »impulse Tracker«-Audio (*t)

CECRRCRRER KK
==k

Alle auswhlen

Auswahl aufheben

|_@ abbrechen |

_static/plus.png

nav.xhtml

 Table of Contents

 		
 thinkpad-scripts: Scripts for ThinkPad X220 Tablet rotation, docking, etc.

 		
 Guides

 		
 Getting Started

 		
 Find hardware events

 		
 Configuring Additional Hardware Keys

 		
 Hardware-Specific Configuration

 		
 Script Drawer For KDE Plasma Panel

 		
 Manual Pages

 		
 thinkpad-config

 		
 thinkpad-dock

 		
 thinkpad-mutemic

 		
 thinkpad-rotate

 		
 thinkpad-scripts-config-migration

 		
 thinkpad-touch

 		
 thinkpad-touchpad

 		
 thinkpad-trackpoint

 		
 Changelog

 		
 Legal and License

 		
 Developer documentation

 		
 API

 		
 tps

 		
 tps.config

 		
 tps.dock

 		
 tps.hooks

 		
 tps.input

 		
 tps.rotate

 		
 tps.screen

 		
 tps.unity

 		
 tps.vkeyboard

 		
 Environments

 		
 Why Python?

_static/up.png

_static/up-pressed.png

