
The Hitchhiker’s Guide to Packaging"
Documentation

Release 1.0

Tarek Ziadé

Sep 27, 2017

Contents

1 Table of Contents 3
1.1 Quick Start . 3
1.2 Introduction to Packaging . 5
1.3 Installing the Package Tools . 9
1.4 Using Packages . 12
1.5 Creating a Package . 13
1.6 Contribute Your Package to the World . 18
1.7 Virtual Environments . 23
1.8 Specifications . 24
1.9 Advanced Topics . 28
1.10 Future of Packaging . 28
1.11 Glossary . 28
1.12 Credits . 31
1.13 License . 31

2 Indices and tables 33

Bibliography 35

i

ii

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

Warning: This document is currently under development. Thank you for your interest.

Contents 1

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

2 Contents

CHAPTER 1

Table of Contents

Quick Start

Here’s how to create a new project, which we’ll call TowelStuff.

1. Lay out your project

The smallest python project is two files. A setup.py file which describes the metadata about your project, and a file
containing Python code to implement the functionality of your project.

In this example project we are going to add a little more to the project to provide the typical minimal layout of a
project. We’ll create a full Python package, a directory with an __init__.py file, called towelstuff/ . This anticipates
future growth as our project’s source code is likely to grow beyond a single module file.

We’ll also create a README.txt file describing an overview of your project, and a LICENSE.txt file containing the
license of your project.

That’s enough to start. There are a number of other types of files a project will often have, see the Arranging your file
and directory structure for an example of a more fully fleshed out project.

Your project will now look like:

TowelStuff/
LICENSE.txt
README.txt
setup.py
towelstuff/

__init__.py

2. Describe your project

The setup.py file is at the heart of a Python project. It describes all of the metadata about your project. There a quite a
few fields you can add to a project to give it a rich set of metadata describing the project. However, there are only three

3

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

required fields: name, version, and packages. The name field must be unique if you wish to publish your package on
the Python Package Index (PyPI). The version field keeps track of different releases of the project. The packages field
describes where you’ve put the Python source code within your project.

Our initial setup.py will also include information about the license and will re-use the README.txt file for the
long_description field. This will look like:

from distutils.core import setup

setup(
name='TowelStuff',
version='0.1dev',
packages=['towelstuff',],
license='Creative Commons Attribution-Noncommercial-Share Alike license',
long_description=open('README.txt').read(),

)

3. Create your first release

In the version field, we specified 0.1dev. This indicates that we are developing towards the 0.1 version. Right now
there isn’t any code in the project. After you’ve written enough code to make your first release worthwhile, you will
change the version field to just 0.1, dropping the dev marker.

To create a release, your source code needs to be packaged into a single archive file. This can be done with the sdist
command:

$ python setup.py sdist

This will create a dist sub-directory in your project, and will wrap-up all of your project’s source code files into a
distribution file, a compressed archive file in the form of:

TowelStuff-0.1.tar.gz

The compressed archive format defaults to .tar.gz files on POSIX systems, and .zip files on Windows systems.

By default, Distutils does not include all files in your project’s directory. Only the following files will be included by
default:

• all Python source files implied by the py_modules and packages options

• all C source files mentioned in the ext_modules or libraries options

• scripts identified by the scripts option

• anything that looks like a test script: test/test*.py

• Top level files named: README.txt, README, setup.py, or setup.cfg

If you want to include additional files, then there are a couple options for including those files:

• Use a package which extends Distutils with more functionality. Setuptools and Distribute allow you to include
all files checked into your version control system.

• Write a top-level MANIFEST.in file. This is a template file which specifies which files (and file patterns) should
be included. (TO-DO: link to a MANIFEST.in document)

When you run the sdist command, a file named MANIFEST will be generated which contains a complete list of all
files included. You can view this file to double check that you’ve setup your project to include all files correctly. Now
your project is ready for a release. Before releasing, it’s a good idea to double check to make sure that you have:

4 Chapter 1. Table of Contents

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

• The correct version number.

While it’s handy to append a dev marker to the version number during development, so that you can distinguish
between code under development and a released version, you never want to publish a release with dev in the
version name.

• All desired project files are included.

Go over the MANIFEST file, or open the archive file generated by running the sdist command.

4. Register your package with the Python Package Index (PyPI)

The distribution file generated by running sdist can be published anywhere. There is a central index of all publically
available Python projects maintained on the python.org web site named the The Python Package Index (PyPI). This is
where you will want to release your distribution if you intend to make your project public.

You will first have to visit that site, where you can register for an account. Project’s are published on PyPI in the
format of:

http://pypi.python.org/pypi/<projectname>

Your project will have to choose a name which is not already taken on PyPI. You can then claim your new project’s
name by registering the package by running the command:

$ python setup.py register

5. Upload your release, then grab your towel and save the Universe!

Now that you are happy that you can create a valid source distribution, it’s time to upload the finished product to PyPI.
We’ll also create a bdist_wininst distribution file of our project, which will create a Windows installable file. There are
a few different file formats that Python distributions can be created for. Each format must be specified when you run
the upload command, or they won’t be uploaded (even if you’ve previously built them previously). You should always
upload a source distribution file. The other formats are optional, and will depend upon the needs of your anticipated
user base:

$ python setup.py sdist bdist_wininst upload

At this point you should announce your package to the community!

Finally, in your setup.py you can make plans for your next release, by changing the version field to indicate which
version you want to work towards next (e.g. 0.2dev).

This Quick Start is a good brief introduction, but does not cover a lot of obscure use-cases. For more details, please
see Introduction to Packaging, to gain a better understanding of the Current State of Packaging.

Introduction to Packaging

Abstract

This document describes the current state of packaging in Python using Distribution Utilities (“Distutils”) and
its extensions from the end-user’s point-of-view, describing how to extend the capabilities of a standard Python
installation by building packages and installing third-party packages, modules and extensions.

1.2. Introduction to Packaging 5

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

Python is known for it’s “batteries included” philosophy and has a rich standard library. However, being a popular
language, the number of third party packages is much larger than the number of standard library packages. So it
eventually becomes necessary to discover how packages are used, found and created in Python.

It can be tedious to manually install extra packages that one needs or requires. Therefore, Python has a packaging
system that allows people to distribute their programs and libraries in a standard format that makes it easy to install
and use them. In addition to distributing a package, Python also provides a central service for contributing packages.
This service is known as The Python Package Index (PyPI). Information about The Python Package Index (PyPI) will
be provided throughout this documentation. This allows a developer to distribute a package to the greater community
with little effort.

This documentation aims to explain how to install packages and create packages for the end-user, while still providing
references to advanced topics.

The Packaging Ecosystem

A Package

A package is simply a directory with an __init__.py file inside it. For example:

$ mkdir mypackage
$ cd mypackage
$ touch __init__.py
$ echo "# A Package" > __init__.py
$ cd ..

This creates a package that can be imported using the import. Example:

>>> import mypackage
>>> mypackage.__file__
'mypackage/__init__.py'

Discovering a Python Package

Using packages in the current working directory only works for small projects in most cases. Using the working
directory as a package location usually becomes a problem when distributing packages for larger systems. Therefore,
distutils was created to install packages into the PYTHONPATH with little difficulty. The PYTHONPATH, also
sys.path in code, is a list of locations to look for Python packages. Example:

>>> import sys
>>> sys.path
['',
'/usr/local/lib/python2.6',
'/usr/local/lib/python2.6/site-packages',
...]

>>> import mypackage
>>> mypackage.__file__
'mypackage/__init__.py'

The first value, the null or empty string, in sys.path is the current working directory, which is what allows the
packages in the current working directory to be found.

Note: Your PYTHONPATH values will likely be different from those displayed.

6 Chapter 1. Table of Contents

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

Explicitly Including a Package Location

The convention way of manually installing packages is to put them in the .../site-packages/ directory. But
one may want to install Python modules into some arbitrary directory. For example, your site may have a convention
of keeping all software related to the web server application under /www. Add-on Python modules might then belong
in /www/pythonx.y/, and in order to import them, this directory must be added to sys.path. There are several
different ways to add the directory.

Note: TODO Better define where the .../site-packages/ directory is located.

The most convenient way is to add a path configuration file to a directory that’s already in Python’s path, which could
be the .../site-packages/ directory. Path configuration files have an extension of .pth, and each line must
contain a single path that will be appended to sys.path. (Because the new paths are appended to sys.path,
modules in the added directories will not override standard modules. This means you can’t use this mechanism for
installing fixed versions of standard modules.)

Paths can be absolute or relative, in which case they’re relative to the directory containing the .pth file. See the
documentation of the site module for more information.

In addition there are two environment variables that can modify sys.path. PYTHONHOME sets an alternate value for
the prefix of the Python installation. For example, if PYTHONHOME is set to /www/python/lib/python2.6/,
the search path will be set to ['', '/www/python/lib/python2.6/', ...].

The PYTHONPATH variable can be set to a list of paths that will be added to the beginning of sys.path. For example,
if PYTHONPATH is set to /www/python:/opt/py, the search path will begin with ['', '/www/python',
'/opt/py', ...].

Note: Directories must exist in order to be added to sys.path. The site module removes paths that don’t exist.

Finally, sys.path is just a regular Python list, so any Python application can modify it by adding or removing
entries.

Note: The zc.buildout package modifies the sys.path in order to include all packages relative to a buildout. The
zc.buildout package is often used to build large projects that have external build requirements.

Python file layout

A Python installation has a site-packages directory inside the module directory. This directory is where user
installed packages are dropped. A .pth file in this directory is maintained which contains paths to the directories
where the extra packages are installed.

Note: For details on the .pth file, please refer to modifying Python’s search path. In short, when a new package is in-
stalled using distutils or one of its extenders, the contents of the package are dropped into the site-packages
directory and then the name of the new package directory is added to a .pth file. This allows Python upon the next
startup to see the new package.

1.2. Introduction to Packaging 7

http://pypi.python.org/pypi/zc.buildout/
http://docs.python.org/install/index.html#inst-search-path

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

Benefits of packaging

While it’s possible to unpack tarballs and manually put them into your Python installation directories (see Explicitly
Including a Package Location), using a package management system gives you some significant benefits. Here are
some of the obvious ones:

• Dependency management Often, the package you want to install requires that others be there. A package man-
agement system can automatically resolve dependencies and make your installation pain free and quick.
This is one of the basic facilities offered by distutils. However, other extensions to distutils do
a better job of installing dependencies. (see Distribute)

• Accounting Package managers can maintain lists of things installed and other metadata like the version in-
stalled etc. which makes is easy for the user to know what are the things his system has. (see Pip Installs
Python (Pip))

• Uninstall Package managers can give you push button ways of removing a package from your environment.
(see Pip Installs Python (Pip))

• Search Find packages by searching a package index for specific terminology. (see Pip Installs Python (Pip))

Current State of Packaging

The distutils modules is part of the standard library and will be until Python 3.3. The distutils module will
be discontinued in Python 3.3. The distutils2 (note the number two) will be backwards compatible for Python
2.4 onward; and will be part of the standard library in Python 3.3.

The distutils module provides the basics for packaging Python. Unfortunately, the distutils module is
riddled with problems, which is why a small group of python developers are working on distutils2. However,
until distutils2 is complete it is recommended that the Developer either use pure distutils or the ‘Distribute
package <distribute_info_>‘_ for packaging Python software.

In the mean time, if a package requires the setuptools package, it is our recommendation that you install the
Distribute package, which provides a more up to date version of setuptools than does the original Setuptools

8 Chapter 1. Table of Contents

http://pypi.python.org/pypi/setuptools/
http://pypi.python.org/pypi/setuptools/

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

package.

In the future distutils2 will replace setuptools and distutils, which will also remove the need for Dis-
tribute. And as stated before distutils will be removed from the standard library. For more information, please
refer to the Future of Packaging.

Warning: Please use the Distribute package rather than the Setuptools package because there are problems in
this package that can and will not be fixed.

Creating a Micro-Ecosystem with virtualenv

Here we have a small digression to briefly discuss Virtual Environments, which will be covered later in this guide.
In most situations, the site-packages directory is part of the system Python installation and not writable by
unprivileged users. Also, it’s useful to have a solid reliable installation of the language which we can use. Experimental
packages shouldn’t be mixed with the stable ones if we want to keep this quality. In order to achieve this, most Python
developers use the virtualenv package which allows people to create a virtual installation of Python. This replicates
the site-packages directory in an user writable area. The site-packages directory located in the Virtual
Environments is in addition to the global one. While orthogonal to the whole package installation process, it’s an
extremely useful and natural way to work and so the whole thing will be mentioned again. The installation and usage
of virtualenv is covered in Virtual Environments document.

Installing the Package Tools

In the current state of packaging in Python, one needs a set of tools to easily manipulate the packaging ecosystem.
There are two tools in particular that are extremely handy in the current ecosystem. There is a third tool, Virtual
Environments, that will be discussed later in this documentation that will assist in isolating a packaging ecosystem
from the global one. The combination of these tools will help to find, install and uninstall packages.

Distribute

Distribute is a collection of enhancements to the Python standard library module: distutils (for Python 2.3.5 and
up on most platforms; 64-bit platforms require a minimum of Python 2.4) that allows you to more easily build and
distribute Python packages, especially ones that have dependencies on other packages.

Distribute was created because the Setuptools package is no longer maintained. Third-party packages will likely
require setuptools, which is provided by the Distribute package. Therefore, anytime time a packages depends on
the Setuptools package, Distribute will step in to say it already provides the setuptools module.

See also:

Distribute documentation.

Installation Instructions

Distribute can be installed using the distribute_setup.py script. It can also be installed using easy_install, pip, the
source tarball, or the egg distribution. distribute_setup.py is the simplest and preferred way to install Distribute on all
systems.

Download distribute_setup.py and execute it, using the Python interpreter of your choice.

From the *nix shell you can do:

1.3. Installing the Package Tools 9

http://pypi.python.org/pypi/setuptools/
http://pypi.python.org/pypi/setuptools/
http://pypi.python.org/pypi/setuptools/
http://packages.python.org/distribute
http://pypi.python.org/pypi/setuptools/
http://packages.python.org/distribute
http://pypi.python.org/pypi/setuptools/
http://packages.python.org/distribute
http://packages.python.org/distribute
http://packages.python.org/distribute
http://python-distribute.org/distribute_setup.py
http://python-distribute.org/distribute_setup.py
http://python-distribute.org/distribute_setup.py

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

$ wget http://python-distribute.org/distribute_setup.py
$ python distribute_setup.py

Note: For those on Mac OS X, you can use curl -O <url> instead of wget.

See also:

The development version of Distribute can be found at: http://bitbucket.org/tarek/distribute/

Pip Installs Python (Pip)

Pip is an installer for Python packages written by Ian Bicking. It can install packages, list installed packages, upgrade
packages and uninstall packages.

The pip application is a replacement for easy_install. It uses mostly the same techniques for finding packages, so
packages that were made easy_installable should be pip-installable as well.

See also:

Pip Documentation and Pip PyPI description

Note: ??? Pip requirements

Installing Pip

The Pip installer can be installed using the source tarball or using easy_install. The source tarball is the recom-
mended method of installation.

The latest version of the source tarball can be obtained from PyPI:

$ wget http://pypi.python.org/packages/source/p/pip/pip-0.7.2.tar.gz
$ tar xzf pip-0.7.2.tar.gz
$ cd pip-0.7.2
$ python setup.py install

Or the easy_install application can be used:

$ easy_install pip

The pip application is now installed.

Note: pip is complementary with Virtual Environments, and it is encouraged that you use Virtual Environments to
isolate your installation.

Installing a package

Let’s install the Markdown package:

$ pip install Markdown

10 Chapter 1. Table of Contents

http://bitbucket.org/tarek/distribute/
http://pip.openplans.org/
http://peak.telecommunity.com/DevCenter/EasyInstall
http://pip.openplans.org/index.html
http://pypi.python.org/pypi/pip
http://pip.openplans.org/#requirements-files
http://pip.openplans.org/
http://pypi.python.org/pypi/Markdown

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

Markdown is now installed; you can import and use it:

$ python -c "import markdown; print markdown.markdown('**Excellent**')"

Listing installed packages

To list installed packages and versions, use the freeze command:

$ pip freeze
Markdown==2.0.3
wsgiref==0.1.2

Note: The wsgiref package is a part of the Python standard library. Currently it is the only standard library package
that includes package metadata, so it is the only standard library package whose presence pip reports.

Installing specific versions

You can also give pip a version specifier for a package using one or more of ==, >=, >, <, <=:

$ pip install 'Markdown<2.0'

This will find your current installation of Markdown 2.0.3, automatically uninstall it, and install Markdown 1.7 (the
latest version in the 1.x series) in its place. You can even combine version specifiers with a comma:

$ pip install 'Markdown>2.0,<2.0.3'

Upgrading

If you want to upgrade a package to its most recent available version, use the -U or --upgrade flag:

$ pip install -U Markdown

Uninstalling

Now let’s uninstall Markdown:

$ pip uninstall Markdown

After showing you which files/directories will be removed and requesting confirmation, pip will uninstall everything
installed by the Markdown package.

Note: Pip inside a Virtual Environment will only uninstall packages installed within that virtual environment. For
instance, if you try to pip uninstall wsgiref it will refuse, because the reference is within the global Python’s
standard library.

1.3. Installing the Package Tools 11

http://www.python.org/dev/peps/pep-0314/

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

Using Packages

Finding Packages

Note: TODO I’m mentioning The Python Package Index (PyPI) everywhere. Should probably move this up in the
documentation instead of explaining it over and over.

How does one find a package. Well, the simple answer is to check The Python Package Index (PyPI) first. The other
options are:

• To do a simple web search with google.com, yahoo, etc.

• Ask around the python community using IRC

We will cover the The Python Package Index (PyPI) later in the documentation.

Installing from other sources

When using the Pip Installs Python (Pip) application, how does it know what to install when you run pip install
Markdown? By default, it checks the The Python Package Index (PyPI) for a package of that name. In this case, it
found one; but what if you want to install a package that hasn’t been uploaded to PyPI?

You have several options:

• Installing from a tarball

• Installing from a Version Control System (VCS)

• Add URLs to search for links

Installing from a tarball

You can install directly from a tarball or zip file, as long as there is a working setup.py file in the root directory of
the unzipped contents:

$ pip install path/to/mypackage.tgz

You can also install from a tarball/zip file over the network:

$ pip install http://dist.repoze.org/PIL-1.1.6.tar.gz

Installing from a Version Control System (VCS)

Using the --editable or -e option, pip has the capability to install directly from a version control repository (it
currently supports Subversion, Mercurial, Git, and Bazaar):

$ pip install -e svn+http://svn.colorstudy.com/INITools/trunk#egg=initools-dev

This option shells out to the command-line client for each respective VCS, so you must have the VCS installed on
your system. The repo URL must begin with svn+ (or hg+, git+, or bzr+) and end with #egg=packagename;
otherwise, pip supports the same URL formats and wire protocols supported by the VCS itself.

Pip will checkout the source repo into a src/ directory inside the virtualenv (i.e. pip_test_env/src/
initools-dev), and then run python setup.py develop in that source repo. This “links” the code directly

12 Chapter 1. Table of Contents

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

from the repo into the virtualenv’s site-packages directory (by adding the repo directory into easy-install.
pth), so changes you make in the source checkout are effective immediately.

If you already have a local VCS checkout you want to keep using, you can just use pip install -e path/to/
repo to install it “editable” in the same way.

Add URLs to search for links

You can use the -f or --find-links option to add another URL pip should search for links to the package. If you
dump some package tarballs in a webserver directory and turn on automatic indexing, you can point pip at that index
page and install any of those packages, assuming you named the files in the pattern packagename-version.ext.

For example, if you upload a tarball MyApp-1.0.tgz to a my-packages directory on your webserver, and make
sure indexing is on for that directory, you can run:

$ pip install MyApp -f http://www.example.com/my-packages/

Running your own package index

If you want more of the features provided by PyPI (including the ability to upload packages with python setup.
py sdist upload), you can run software such as chishop, which implements the PyPI API, on your own server.
Then you can use pip’s -i (or --index-url) or --extra-index-url options to point it at your index.

For instance, if you set up your own index at http://www.example.com/chishop/, you might run:

$ pip install MyPrivateApp -i http://www.example.com/chishop/simple/

If you use -i pip won’t check PyPI, only the index you provide. If you are installing multiple packages at once, some
from your index and some from PyPI, you may want to use --extra-index-url instead, so pip will check both
indexes.

Creating a Package

Basics: Creating and Distributing Distributions

If you have some useful Python modules that you think others might benefit from, but aren’t sure how to go about
packaging them up and distributing them, then this short document is for you. By the end of it, you’ll be a contributor
to the The Python Package Index (PyPI).

For a more detailed look at packaging a larger project, see this example.

Let’s begin.

Background

Suppose you’ve written a couple modules to help you keep track of your towel (location.py and utils.py),
and you’d like to share them. First thing to do is come up with a CamelCase project name for them. Let’s go with
“TowelStuff” since it seems appropriate and also it has not yet been used on the The Python Package Index (PyPI).

1.5. Creating a Package 13

http://github.com/ask/chishop
http://www.example.com/chishop/

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

Arranging your file and directory structure

“TowelStuff” will be the name of our project as well as the name of our distribution. We should also come up with a
package name within which our modules will reside (to avoid naming conflicts with other modules). For this example,
there’s only one package, so let’s reuse the project name and go with “towelstuff”. Make the layout of your project
directory (described below) look like this:

TowelStuff/
bin/
CHANGES.txt
docs/
LICENSE.txt
MANIFEST.in
README.txt
setup.py
towelstuff/

__init__.py
location.py
utils.py
test/

__init__.py
test_location.py
test_utils.py

Here’s what you should do for each of those listed above:

• Put into bin any scripts you’ve written that use your towelstuff package and which you think would be
useful for your users. If you don’t have any, then remove the bin directory.

• For now, the CHANGES.txt file should only contain:

v<version>, <date> -- Initial release.

since this is your very first version (version number will be described below) and there are no changes to report.

• The docs dir should contain any design docs, implementation notes, a FAQ, or any other docs you’ve written.
For now, stick to plain text files ending in ”.txt”. This author (JohnMG) likes to use Pandoc’s Markdown, but
many Pythoneers use reStructuredText.

• The LICENSE.txt file is often just a copy/paste of your license of choice. We recommend going with a
commonly-used license, such as the GPL, BSD, or MIT.

• The MANIFEST.in file should contain this:

include *.txt
recursive-include docs *.txt

• The README.txt file should be written in reST so that the PyPI can use it to generate your project’s PyPI
page. Here’s a 10-second intro to reST that you might use to start with:

===========
Towel Stuff
===========

Towel Stuff provides such and such and so and so. You might find
it most useful for tasks involving <x> and also <y>. Typical usage
often looks like this::

#!/usr/bin/env python

14 Chapter 1. Table of Contents

http://johnmacfarlane.net/pandoc/

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

from towelstuff import location
from towelstuff import utils

if utils.has_towel():
print "Your towel is located:", location.where_is_my_towel()

(Note the double-colon and 4-space indent formatting above.)

Paragraphs are separated by blank lines. *Italics*, **bold**,
and ``monospace`` look like this.

A Section
=========

Lists look like this:

* First

* Second. Can be multiple lines
but must be indented properly.

A Sub-Section

Numbered lists look like you'd expect:

1. hi there

2. must be going

Urls are http://like.this and links can be
written `like this <http://www.example.com/foo/bar>`_.

You might also consider adding a “Contributors” section and/or a “Thanks also to” section to list the names of
people who’ve helped.

By the way, to see how the above README.txt looks rendered in html, see the TowelStuff project at the PyPI.

• setup.py – Create this file and make it look like this:

from distutils.core import setup

setup(
name='TowelStuff',
version='0.1.0',
author='J. Random Hacker',
author_email='jrh@example.com',
packages=['towelstuff', 'towelstuff.test'],
scripts=['bin/stowe-towels.py','bin/wash-towels.py'],
url='http://pypi.python.org/pypi/TowelStuff/',
license='LICENSE.txt',
description='Useful towel-related stuff.',
long_description=open('README.txt').read(),
install_requires=[

"Django >= 1.1.1",
"caldav == 0.1.4",

],

1.5. Creating a Package 15

http://pypi.python.org/pypi/TowelStuff/

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

)

but, of course, replace the towel stuff with your own project and package names. For more details about picking
version numbers, see versioning, but ‘0.1.0’ will work just fine for a first release (this is using the common
“major.minor.micro” numbering convention).

Use the install_requires argument to automatically install dependencies when your package will be installed and
include information about dependencies (so that package management tools like Pip can use the information).
It takes a string or list of strings containing requirement specifiers.

The syntax consists of a project’s PyPI name, optionally followed by a comma-separated list of version spec-
ifiers. Modern packaging tools implement version specifiers syntax described in PEP 345 and resolve version
comparison in compliance with PEP 386.

If you have no scripts to distribute (and thus no bin dir), you can remove the above line which begins
with “scripts”.

• Inside the towelstuff directory, __init__.py can be empty. Likewise, inside towelstuff/test, that
__init__.py can be empty as well. If you have no tests written yet, you can leave the two other module files
in towelstuff/test empty for now too. When writing your tests, use the standard unittest module.

For our example, TowelStuff does not depend upon any other distributions (it only depends upon what’s already in the
Python standard library). To specify dependencies upon other distributions, see the more detailed example.

Creating your distribution file

Create your distribution file like so:

$ cd path/to/TowelStuff
$ python setup.py sdist

Running that last command will create a MANIFEST file in your project directory, and also a dist and build
directory. Inside that dist directory is the distribution that you’ll be uploading to the PyPI. In our case, the distribution
file will be named TowelStuff-0.1.0.tgz. Feel free to poke around in the dist directory to look at your
distribution.

Uploading your distribution file

Before uploading you first need to create an account at http://pypi.python.org/pypi . Once that’s complete, register
your distribution at the PyPI like so:

$ cd path/to/TowelStuff
$ python setup.py register

Use your existing login (choice #1). It will prompt you to save the login info for future use (to which I agree). Then
upload:

$ python setup.py sdist upload

This builds the distribution one last time and then uploads it.

Thanks for your contribution!

16 Chapter 1. Table of Contents

http://www.python.org/dev/peps/pep-0345/#version-specifiers
http://www.python.org/dev/peps/pep-0386/
http://pypi.python.org/pypi

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

Updating your distribution

Down the road, after you’ve made updates to your distribution and wish to make a new release:

1. increment the version number in your setup.py file,

2. update your CHANGES.txt file,

3. if necessary, update the “Contributors” and “Thanks also to” sections of your README.txt file.

4. run python setup.py sdist upload again.

Entry points

Entry points are a Setuptools/Distribute feature that’s really handy in one specific case: register something under a
specific key in package A that package B can query for.

Distribute itself uses it. If you’re packaging your project up properly, you’ve probably used the console_scripts
entry point:

setup(name='zest.releaser',
...
entry_points={

'console_scripts':
['release = zest.releaser.release:main',
'prerelease = zest.releaser.prerelease:main',
]}

)

console_scripts is an entry point that Setuptools looks up. It looks up all entry points registered under the name
console_scripts and uses that information to generate scripts. In the above example that’d be a bin/release script that
runs the main() method in zest/releaser/release.py.

You can use that for your own extension mechanism. For zest.releaser I needed some extension mechanism. I
wanted to be able to do extra things on prerelease/release/postrelease time.

• Downloading an external javascript library into a package that cannot be stored in (zope’s) svn repository directly
due to licensing issues. Before packaging and releasing it, that is. Automatically so you don’t forget it.

• Uploading a version.cfg to scp://somewhere/kgs/ourmainproduct-version.cfg after making a
release to use it as a so-called “known good set” (KGS).

• Possibly modifying values (like a commit message) inside zest.releaser itself while doing a release. (I do get
modification requests from time to time “hey, can you make x and y configurable”). So now every zest.releaser
step (prerelease, release, postrelease) is splitted in two: a calculation phase and a “doing” phase. The results of
the first phase are stored in a dict that gets used in the second phase. And you can register an entry point that
gets passed that dict so you can modify it. See the entry point documentation of zest.releaser for details.

An entry point for zest.releaser is configured like this in your setup.py:

entry_points={
'console_scripts':

['myscript = my.package.scripts:main'],
'zest.releaser.prereleaser.middle':

['dosomething = my.package.some:some_entrypoint,]
}

Replace prereleaser and middle in zest.releaser.prereleaser.middle with prerelease/release/postrelease and be-
fore/middle/after where needed. (For this specific zest.releaser example).

1.5. Creating a Package 17

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

Now, how to use this in your program? The best way is to show a quick example from zest.releaser where we query
and use one of our entry points:

import pkg_resources

...
def run_entry_point(data):

Note: data is zest.releaser specific: we want to pass
something to the plugin group = 'zest.releaser.prerelease.middle'

for entrypoint in pkg_resources.iter_entry_points(group=group):
Grab the function that is the actual plugin.
plugin = entrypoint.load() # Call the plugin
plugin(data)

So: pretty easy and simple way to allow other packages to register something that you want to know. Extra plugins,
extra render methods, extra functionality you want to register in your web application, etcetera.

Packaging for a Particular Operating System (OS)

General Packaging Guidelines for Unix

General Packaging Guidelines for Windows

Contribute Your Package to the World

The Python Package Index (PyPI)

The Python Package Index (PyPI), formerly known as the Cheeseshop, is to Python what CPAN is to Perl: a central
repository of projects and distributions.

Note: XXX put here the Monty Python Cheeseshop extract

PyPI is located at http://pypi.python.org and contains more than 9000 projects registered by developers from the
community.

18 Chapter 1. Table of Contents

http://pypi.python.org
http://pypi.python.org

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

Tools like Pip or zc.buildout are using PyPI as the default location to find distributions to install. When pip
install Foo is called, it will browse PyPI to find the latest available version of the Foo project using The Simple
Index Protocol. If it finds it, it will download it and install it automatically.

This automatic installation ala Pip Installs Python (Pip) will work only if the distribution is using the Distutils-based
structure and contains a setup.py file.

This means that any serious Python project should use Distutils (see the basics for doing this) and should at the
minimum be registered at PyPI. Uploading releases there is also a good practice.

Note: ??? Why should a project at a minimum register at PyPI? good practice, yes; at a minimum, no

Registering projects

Registering a project at PyPI is done by using Distutils‘ register command. This command performs a simple
HTTP post using basic authentication with the login name and password stored in the .pypirc file located in your

1.6. Contribute Your Package to the World 19

http://pypi.python.org/pypi/zc.buildout

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

home directory. This login has to be registered at PyPI, so you should go there and create an account before running
register for the first time.

Another option is to call register once on any Distutils-based project. It will register the new account for you and
all you’ll have to do is to reply to the confirmation e-mail PyPI will send you:

$ python setup.py register
running register
warning: register: missing required meta-data: version
We need to know who you are, so please choose either:
1. use your existing login,
2. register as a new user,
3. have the server generate a new password for you (and email it to you), or
4. quit
Your selection [default 1]:
...

Once this is done, register will ask you if you want to save your login information in the .pypirc file. By
default, this will store the login name and the password:

[distutils]
index-servers =

pypi

[pypi]
username:tarek
password:sigourney_as_an_avatar_is_scary

For security reasons, starting at Python 2.6, you can remove the password from the file if you want register to
prompt you to type it everytime.

Note: A recent GSoC project called Keyring was created in 2009 in order to use any available system keyring like
KWallet or KeyChain to store the PyPI password. The project exists and may be used in Distutils by the register
and upload commands.

See: http://pypi.python.org/pypi/keyring

Once your account is ready, registering it at PyPI will create a new web page there, using the metadata fields of your
project.

• name will be used as the unique identifier in PyPI. For example, if your project’s name is Foo, its page will
be located at http://pypi.python.org/pypi/foo. The rule at PyPI is first in, first served, meaning that once you
have registered the Foo project, your login is the owner of the PyPI foo identifier and no one else (unless you
authorize them) will be able to register a project under that name.

• long_description will be used to fill that page. An Html to reStructuredText rendered will be used on the field
before it is displayed.

A good practice is to use reST, and make sure your long_description field doesn’t contain any reStructuredText
syntax error. See rest_example for a quick introduction on how to write a reST compatible field.

To perform a check, install docutils by using Pip (pip install docutils) and run:

$ python setup.py --long-description | rst2html.py > /dev/null

Under Windows, make sure the sys.prefix + ‘Scripts/’ path is in the PATH environment variable and run:

20 Chapter 1. Table of Contents

http://pypi.python.org/pypi/keyring

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

$ python.exe setup.py --long-description | rst2html.py > dummy.html

If your text contains any reST error or warning, they will be displayed.

Starting at Python 2.7, you can use the check command instead of calling the rst2html.py script, as long as
docutils is installed:

$ python setup.py check

The check command will check that all fields are compliant before you register the project at PyPI.

Uploading distributions

PyPI also allows developers to upload their project’s distributions. This can be done manually via a web form, but also
through Distutils by using the upload command.

This command will upload freshly created archives via HTTP to PyPI. The usual way to perform this is to call upload
right after register and the commands used to create archives. For instance, to upload a source distribution and
update the project’s page, one may do:

$ python setup.py register sdist upload

Note that you can upload several archives in one step if wanted:

$ python setup.py register sdist bdist upload

A good practice when uploading distributions at PyPI is to always upload the source distribution, unless your project
is not open source of course. Binary distribution are optional especially if your project doesn’t contain any extension
to be compiled. This will help automatic installers like Pip to get and install your project on any platform. Uploading
only a binary distribution will restrict automatic installation to the platform and Python version it was compiled with.

The Simple Index protocol

Besides its web pages, PyPI provides a tree structure at http://pypi.python.org/simple called the Simple Index.
This structure allows installers like Pip to look for distribution archives.

For example, calling:

$ pip install distribute

will look at the http://pypi.python.org/simple/distribute page, which is a list of URLs for the
Distribute project. These URLs include:

• the Distribute archives uploaded at PyPI

• a link to the project’s home page

• extra links contained in the project’s description fields

The Package Index follows these rules (taken from Setuptools’ documentation):

1. Its pages are in HTML

2. Individual project version pages’ URLs must be of the form base/projectname/version, where base
is the package index’s base URL. The base URL for PyPI is : http://pypi.python.org/simple.

3. Omitting the /version part of a project page’s URL (but keeping the trailing /) should result in a page that is
either:

1.6. Contribute Your Package to the World 21

http://pypi.python.org/simple

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

(a) The single active version of that project, as though the version had been explicitly included, OR

(b) A page with links to all of the active version pages for that project.

Depending on the project’s configuration, PyPI will display a) or b).

4. Individual project version pages should contain direct links to downloadable distributions where possible. The
project’s “long_description” field may contain URLs that will be displayed.

5. Where available, MD5 information should be added to download URLs by appending a fragment identifier of
the form #md5=..., where ... is the 32-character hex MD5 digest.

6. Individual project version pages should identify any “homepage” or “download” URLs using
rel="homepage" and rel="download" attributes on the HTML elements linking to those URLs.
Use of these attributes will cause EasyInstall to always follow the provided links, unless it can be determined
by inspection that they are downloadable distributions. If the links are not to downloadable distributions, they
are retrieved, and if they are HTML, they are scanned for download links. They are not scanned for additional
“homepage” or “download” links, as these are only processed for pages that are part of a package index site.

7. The root URL of the index, if retrieved with a trailing /, must result in a page containing links to all projects’
active version pages.

(Note: This requirement is a workaround for the absence of case-insensitive safe_name()matching of project
names in URL paths. If project names are matched in this fashion (e.g. via the PyPI server, mod_rewrite, or a
similar mechanism), then it is not necessary to include this all-packages listing page.)

8. If a package index is accessed via a file:// URL, then EasyInstall will automatically use index.html
files, if present, when trying to read a directory with a trailing / on the URL.

The XML-RPC interface

Note: XXX pointer to PyPI developer doc + demo with yolk

Limitations of the system

Within the last few years, PyPI has become a first class citizen in the Python development ecosystem. For instance
Plone developers that are using zc.buildout to install Plone-based applications are making hundreds of calls to
PyPI each time they build their projects. That’s because many web applications are using hundreds of small Python
distributions nowadays.

This has a bad side effect: if PyPI is down, it becomes impossible to build some applications. PyPI acts as a Single
Point of Failure (SPOF).

The PyPI server is quite robust and its uptime is probably around 99.99%, although people hit the SPOF problem once
or twice per year. The community has started to develop strategies to avoid it:

• zc.buildout comes with a cache that will keep a copy of downloaded archives on the local system. This
avoids getting packages at PyPI when they were already downloaded once.

• the collective.eggproxy project provides a cache server that acts like a proxy between developers and PyPI, and
caches PyPI files like zc.buildout does.

• the z3c.pypimirror project is a mirroring script that syncs a local copy of the simple index so tools can use it
instead of calling PyPI.

In the last year, PEP 381 was added to describe a mirroring protocol and set up an official “ring” of PyPI mirrors.
This system should be ready by the end of the year 2010, and will provide a DNS entry under mirrors.pypi.org

22 Chapter 1. Table of Contents

http://pypi.python.org/pypi/collective.eggproxy
http://pypi.python.org/pypi/z3c.pypimirror

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

listing all mirrors IPs. This will allow tools like Pip Installs Python (Pip) to list all mirrors and pick the closest one,
or fall back in case a server is down.

Private and secondary PyPI servers

Note: XXX explain here that other servers can have a pypi feature (like plone.org, or private)

Note: XXX explain that pip can point to any pypi-like server

Note: XXX conclude on the multiple-index merge idea

Virtual Environments

Getting Started

Creating a virtualenv

We’ll be using virtualenv so our installation experiments are contained and don’t modify your system Python environ-
ment. If you aren’t already familiar with virtualenv, you may want to read up on it first.

Create a virtualenv:

$ virtualenv --no-site-packages pip_test_env

We use the --no-site-packages flag to prevent this virtualenv from “seeing” your global Python “site-packages”
directory, so that our experiments aren’t confused by any Python packages you happen to already have installed
globally.

Recent versions of virtualenv (1.4+) automatically install pip for you inside the virtualenv (there will already be
a pip script in pip_test_env/bin/). If you are using a pre-1.4 virtualenv, run pip_test_env/bin/
easy_install pip to install pip in the virtual environment.

Note: If you are using Windows, executable scripts in the virtualenv will be located at pip_test_env\Scripts\
rather than pip_test_env/bin/. Just replace all occurrences of the latter with the former.

Let’s “activate” the virtualenv to put pip_test_env/bin on our default PATH, so we can just type pip instead of
pip_test_env/bin/pip:

$. pip_test_env/bin/activate

Note: The leading dot is important. Without it, a subshell is spawned and only that subshell gets the virtualenv
activated. The leading dot tells the shell to run the activate script in the current shell.

On Windows, this is:

1.7. Virtual Environments 23

http://virtualenv.openplans.org/

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

$ pip_test_env\Scripts\activate.bat

In either case, your shell prompt should now begin with (pip_test_env) to remind you that a virtualenv is
activated. When you are done working with this virtualenv type deactivate to remove its bin directory from your
PATH.

Specifications

Naming Specification

Versioning Specification

How to version your Python projects

The version of a package is defined in the setup.py file. A setup.py looks something like this:

from distutils.core import setup

setup(name='MyProject', version='1.0', author='Tarek',
author_email='tarek@ziade.org',
url='http://example.com',)

And this gives you the power to register and upload your project to The Python Package Index (PyPI), as simply as:

$ python setup.py register sdist upload

Your project is then added in PyPI, among over 9000 other projects and people can start using it, by downloading the
archive you have created with the sdist command.

With pip they can even install it with a simple command, ala apt-get:

$ pip install MyProject

Why you need version numbers?

As soon as you start publishing your project to the world, you need to version it. For example, the first version of your
software can be 1.0.

Everytime you are releasing a new version with new features and bugfixes, raising the version number will let your
end users know that it is a newer version. This is usally done by incrementing the version, so your next version could
be 1.1.

Once this new version is made available to the world on PyPI, people will be able to install it, for example using pip:

$ pip install --upgrade MyProject

The upgrade option here means that Pip will look for all published versions of MyProject on PyPI and see which
one is the latest, then upgrade your system to that version if you are not up-to-date.

Now imagine that you have introduced a small bug in 1.1 that makes your project unusable on Windows. You are
working on it, but you know it will take you some time to resolve it.

The best strategy here is to tell you Windows user to stick with 1.0 until you have fixed the issue. They can downgrade
to 1.0 because it is still available on PyPI:

24 Chapter 1. Table of Contents

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

$ pip install MyProject==1.0

This is possible because pip is able to sort the various versions of your project, as long as it follows a standard version
scheme.

Standard versioning schemes

The two most commone schemes used to version a software are date-based schemes and sequence-based schemes.

Date scheme

Some projects use dates for the version numbers. That was the case for Wine before it started using a sequence-based
scheme. A date scheme is usually using a YYYY-MM-DD form so versions can be sorted alphanumerically:

• 2009-08-10

• 2005-02-03

• etc.

This versioning scheme has a few limitations:

• you need to add hours to the scheme if you do more than one release per day.

• if you have maintenance branches over older releases, the overall order will not work anymore: a maintenance
release of an older version will appear to be newer than a recent release.

Although, date schemes are commonly used as extra markers in versions schemes.

Sequence-based scheme

The most common scheme is the sequence-based scheme, where each version is a sequence of numerical values usually
separated by dots (.):

• 1.0

• 1.1

• 1.0.1

• 1.3.4

This scheme removes the limitations we have seen with date-based schemes since you can release maintenance ver-
sions and keep the proper order: versions are ordered by comparing alphanumerically each segment of the version.

The most frequent sequence-based scheme is:

MAJOR.MINOR[.MICRO]

where MAJOR designates a major revision number for the software, like 2 or 3 for Python. Usually, raising a major
revision number means that you are adding a lot of features, breaking backward-compatibility or drastically changing
the APIs or ABIs.

MINOR usually groups moderate changes to the software like bug fixes or minor improvements. Most of the time, end
users can upgrade with no risks their software to a new minor release. In case an API changes, the end users will be
notified with deprecation warnings. In other words, API and ABI stability is usually a promise between two minor
releases.

1.8. Specifications 25

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

Some softwares use a third level: MICRO. This level is used when the release cycle of minor release is quite long. In
that case, micro releases are dedicated to bug fixes.

Choosing between a major-based scheme and a micro-based one is really a matter of taste. The most important thing is
to document how your version scheme works and what your end users should expect when you release a new version.
So be sure to define your release cycle properly before you start releasing to the wild !

Development releases

When working for the next version of your application, you might need to release a development version in order to
share it with other developers. Many projects provide nightly builds, which are daily snapshots of the code repository
people can install to try out a cutting edge version.

Like regular versions, development versions have to be numbered so they can be sorted and compared with any other
version. The simplest way to perform this numbering is to use the current repository version number when creating
the release. The next version is suffixed by a dev number. Of course this implies that your code lives in a repository,
like Subversion or Mercurial.

Examples:

• 1.2.dev1234 : a development version of the future 1.2 release. 1234 is the current repository version.

• 1.3a2.dev12 : a development version of the future 1.3 alpha 2 release. 12 is the current repository version.

Package managers that will install those versions will need to sort them correctly: 1.2.dev1234 < 1.2 < 1.3a2.dev12 <
1.3a2 < 1.3

Here’s an example of a setup.py file in a project that lives in a Mercurial repository, that will automatically generate
the right development version when creating a source distribution.:

from distutils.command.sdist import sdist
import os

class sdist_hg(sdist):

user_options = sdist.user_options + [
('dev', None, "Add a dev marker")
]

def initialize_options(self):
sdist.initialize_options(self)
self.dev = 0

def run(self):
if self.dev:

suffix = '.dev%d' % self.get_tip_revision()
self.distribution.metadata.version += suffix

sdist.run(self)

def get_tip_revision(self, path=os.getcwd()):
from mercurial.hg import repository
from mercurial.ui import ui
from mercurial import node
repo = repository(ui(), path)
tip = repo.changelog.tip()
return repo.changelog.rev(tip)

setup(name='MyProject',
version='1.0',

26 Chapter 1. Table of Contents

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

packages=['package'],
cmdclass={'sdist': sdist_hg})

This development marker will be added when the dev option is used.

Pre-releases

Major versions of a software are often preceded by pre-releases. These previews are comparable to development
versions and are released for testing purposes. Publishing them will let your end-users try them out and send you
valuable feedback before the final version is published. It also helps avoiding releases of brown-bag versions. A
brown-bag version is a version that is badly broken and that cannot be used by some of all of the end users.

Usually, pre-releases are organized in three phases:

• alpha releases: early pre-releases. A lot of changes can occur between alphas and the final release, like feature
additions or refactorings. But they are minor changes and the software should stay pretty unchanged by the time
the first beta is reached.

• beta releases: at this stage, no new features are added and developers are tracking remaning bugs.

• release candidate releases: a release candidate is an ultimate release before the final release. Unless something
bad happens, nothing is changed.

Of course, the number of pre-releases varies a lot depending on the size of your project and the numbers of end-users.
Python itself has several alpha, beta and release candidate releases when a minor version is being released, because it
impacts a lot of people and organizations.

Small projects often don’t have any pre-releases because they can publish a new final version anytime. Some small
projects do have pre-releases even if they could skip it because it is benefic for increasing feedback, and has a positive
psychological effect on end-users. For instance, having a series of pre-releases for your “1.0” version will increase the
chances to publish a rock-solid version. And the “1.0” milestone can mean a lot to your end users: round numbers like
this make them feel that your software has reached an important step in its maturity.

Post-releases

Some projects use post-releases when they need to publish a version that simply doesn’t fit in the next series or can’t
be a new release in the current series. Let’s take an example: “1.9” is the last release of your “1.x” series, and you have
started a backward incompatible “2.x” series. You want all your users to drop any “1.x” release as soon as possible.
You have released debug versions in the “1.x” series for quite a time and stated that “1.9” was the last one. Although,
a user finds a really bad bug in “1.9” and asks you to fix it because he can’t switch to the new series. In that case it is
useful to publish a post release.

This use case is quite rare, and it’s likely that you will never have to do post releases.

Defining your release cycle

A sofware usually follows this cycle:

• internal development versions might be released, for testing purposes. These releases can be private to a circle
of developers, but they still need to be versioned. It’s a good practice to do them because, unlike grabbing the
current development version out of the code repository, it will help testing your release process: if there’s a bug
in your setup.py file, or in any part of your release/deploy/install process, they can be caught in early stage that
way.

1.8. Specifications 27

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

• one or several pre-release are made for getting end-users feedback and avoiding releasing a brown bag release,
as we saw in the previous section. Having just release candidates, or also apha and betas is up to you. There’s
no rule about it, but it is considered overkill to have alphas and betas for small projects (small here would be
less that 5k SLOC. or less than 50 end-users)

• a final version is released to the world, usually starting at 1.0 or 0.1. Micro versions are considered overkill,
unless the release cycle of your minor version lasts for months, and you want to keep the same major number
for years.

• bugfixes and new features are added and new versions are released

• when a new major version is started, like “2.0”, bug fixes releases may continue in the “1.x” series, depending
on the cost of moving to “2.0” for your end-users.

Using a PEP 386 compatible scheme

PEP 386 defines a standard version scheme that should be used by Python applications that are publishing releases at
PyPI. It ensures interoperability among all major package managers and installers. In other words, it will make sure
that all versions of a project are proprely recognized and sorted as long as a PEP 386-compatible scheme is used.

XXX put a link, more info

XXX say here that ppl should look at how big projects are doing (python, zope, twisted)

Advanced Topics

Future of Packaging

Follow @packagingpig <http://twitter.com/packagingpig> on twitter.

Inshort...

• setup.py gone!

• distutils gone!

• distribute gone!

• pip and virtualenv here to stay!

• eggs ... gone!

See also:

http://bitbucket.org/tarek/distutils2/src/tip/docs/design/wiki.rst

Glossary

Buildout A python-based build system for creating, assembling and deploying applications from multiple parts, any
of which may be non-python based. It lets you create a buildout configuration and reproduce the same software
later.

Buildout is commonly used to install and manage Python distributions. It differentiates itself from <pip> in a
few ways: Buildout takes a configuration file as input, where as pip is run from the command-line. Buildout can

28 Chapter 1. Table of Contents

http://bitbucket.org/tarek/distutils2/src/tip/docs/design/wiki.rst
http://www.buildout.org

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

run any arbitrary recipe during installation and so can manage non-python parts, such as config files, databases,
etc. Buildout by default installs packages in a multi-version manner, so that each distribution is contained in
a separate directory, and Buildout be configured so that other Buildout installations can re-use a multi-version
archive of installed distributions. In contrast, Pip installs distributions into a single location, such that it’s only
possible to have a single version of each distribution installed at a time. However, it’s possible to use different
recipes with Buildout to create single location installations in the same fashion as pip.

CPAN CPAN is the Comprehensive Perl Archive Network, a large collection of Perl software and documentation.
You can begin exploring from either http://www.cpan.org/, http://www.perl.com/CPAN/ or any of the mirrors
listed at http://www.cpan.org/SITES.html. [CPAN]

Developer The person developing the package.

Distribution A Python distribution is a versioned compressed archive file that contains Python packages, modules,
and other resource files. The distribution file is what an end-user will download from the internet and install.

A distribution is often also called a package. This is the term commonly used in other fields of computing. For
example, Mac OS X and Debian call these files package files. However, in Python, the term package refers to an
importable directory. In order to distinguish between these two concepts, the compressed archive file containing
code is called a distribution.

However, it is not uncommon in Python to refer to a distribution using the term package. While the two meanings
of the term package is not always 100% unambigous, the context of the term package is usually sufficient to
distinguish the meaning of the word. For example, the python installation tool pip is an acronym for “pip
installs packages”, while technically the tool installs distributions, the name package is used as it’s meaning is
more widely understood. Even the site where distributions are distributed at is called the Python Package Index
(and not the Python Distribution Index).

Distutils A standard and basic package that comes with the Python standard library. It is used for creating distribu-
tions (where it is imported in the setup.py file for that distribution).

Extension Module A module written in the low-level language of the Python implementation: C/C++ for Python,
Java for Jython. Typically contained in a single dynamically loadable pre-compiled file, e.g. a shared object
(.so) file for Python extensions on Unix, a DLL (given the .pyd extension) for Python extensions on Windows,
or a Java class file for Jython extensions.

IRC Internet Relay Chat (IRC) is a form of real-time Internet text messaging (chat) or synchronous conferenc-
ing. It is mainly designed for group communication in discussion forums, called channels, but also allows
one-to-one communication via private message as well as chat and data transfers via Direct Client-to-Client.
[WikipediaIRC]

Known Good Set (KGS) A set of distributions at specified versions which are compatible with each other. Typically
a test suite will be run which passes all tests before a specific set of packages is declared a known good set. This
term is commonly used by frameworks and toolkits which are compromised of multiple individual distributions.

Module A python source code file (ex. mymodule.py), most often found in a package (mypackage/
mymodule.py). You can import a module: import mymodule, or import mypackage.mymodule if
it lives in mypackage.

Package A directory containing an __init__.py file (ex. mypackage/__init__.py), and also usually con-
taining modules (possibly along with other packages). You can import a package: import mypackage

A package should not be confused with a compressed archive file used to install Python code.

Package Index A repository of distributions with a web interface to automate distribution discovery and consump-
tion.

See also:

The The Python Package Index (PyPI) is the default packaging index for the Python community. It is open to all
Python developers to consume and distribute their distributions.

1.11. Glossary 29

http://www.cpan.org/
http://www.perl.com/CPAN/
http://www.cpan.org/SITES.html

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

Packager The person packaging the package for a particular operating system (e.g. Debian).

Perl Perl is a high-level programming language with an eclectic heritage written by Larry Wall and a cast of thou-
sands. It derives from the ubiquitous C programming language and to a lesser extent from sed, awk, the Unix
shell, and at least a dozen other tools and languages. Perl’s process, file, and text manipulation facilities make
it particularly well-suited for tasks involving quick prototyping, system utilities, software tools, system man-
agement tasks, database access, graphical programming, networking, and world wide web programming. These
strengths make it especially popular with system administrators and CGI script authors, but mathematicians,
geneticists, journalists, and even managers also use Perl. [PERL]

Pip <pip> is a command-line tool for downloading and installing Python distributions.

Project A library, framework, script, plugin, application, or collection of data or other resources, or some combina-
tion thereof.

Python projects must have unique names, which are registered on PyPI. Each project will then contain one or
more releases, and each release may comprise one or more distributions.

Note that there is a strong convention to name a project after the name of the package that is imported to run that
project. However, this doesn’t have to hold true. It’s possible to install a distribution from the project ‘spam’
and have it provide a package importable only as ‘eggs’.

Pure Python Module A module written in Python and contained in a single .py file (and possibly associated .pyc
and/or .pyo files). Sometimes referred to as a “pure module.”

Release A snapshot of a project at a particular point in time, denoted by a version identifier.

Making a release may entail the publishing of multiple distributions. For example, if version 1.0 of a project was
released, it could be available in both a source distribution format and a Windows installer distribution format.

reStructuredText A plain text format used in many Python projects for documentation. The reStructuredText format
is used in this document. For more information, please see the reStructuredText Documentation.

Standard Library Python’s standard library is very extensive, offering a wide range of facilities as indicated by
the long table of contents listed below. The library contains built-in modules (written in C) that provide access
to system functionality such as file I/O that would otherwise be inaccessible to Python programmers, as well
as modules written in Python that provide standardized solutions for many problems that occur in everyday
programming. Some of these modules are explicitly designed to encourage and enhance the portability of
Python programs by abstracting away platform-specifics into platform-neutral APIs. [StandardLibrary]

See also:

Python Standard Library Documentation

System Package A package provided by in a format native to the operating system. e.g. rpm or dpkg file.

Tarball An archive format for collected a group of files together as one. The format’s extension is usually .tar,
which represents its meaning, Tape ARchive. The format is often used in conjunction with a compression format
such as gzip or bzip.

Working Set A collection of distributions available for importing. These are the distributions that are on the sys.path
variable. At most one version a distribution is possible in a working set.

Working sets include all distributions available for importing, not just the sub-set of distributions which have
actually been imported.

30 Chapter 1. Table of Contents

http://docutils.sourceforge.net/rst.html
http://docs.python.org/library/

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

Citations

Credits

Here’s the list of contributors: writers, editors, reviewers, and people who allowed some of their own content to be
included in the guide.

– Tarek

Contributors

• Jean-Paul Calderone

• Martijn Faassen

• Carl Meyer

• John M. Gabriele

• Reinout van Rees

• Michael Mulich

• C. Titus Brown

• Kevin Teague

Referenced Materials

• Installing Python Modules

• Distributing Python Modules

License

The Hitchhiker’s Guide to Packaging is licensed under a Creative Commons Attribution-Noncommercial-Share Alike
license: http://creativecommons.org/licenses/by-nc-sa/3.0

1.12. Credits 31

http://docs.python.org/install/
http://docs.python.org/distutils/
http://creativecommons.org/licenses/by-nc-sa/3.0

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

32 Chapter 1. Table of Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

33

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

34 Chapter 2. Indices and tables

Bibliography

[CPAN] What is CPAN?

[PERL] What is Perl?

[StandardLibrary] Python Standard Library Documentation

[WikipediaIRC] Internet Relay Chat (Wikipedia)

35

http://www.cpan.org/misc/cpan-faq.html#What_is_CPAN
http://www.cpan.org/misc/cpan-faq.html#What_is_Perl
http://docs.python.org/library/
http://en.wikipedia.org/wiki/Internet_Relay_Chat

The Hitchhiker’s Guide to Packaging" Documentation, Release 1.0

36 Bibliography

Index

A
api

PyPI XML-RPC, 22

B
Buildout, 28

C
CPAN, 29

D
Developer, 29
Distribution, 29
Distutils, 29

E
environment variable

PYTHONHOME, 7
PYTHONPATH, 6, 7

Extension Module, 29

I
IRC, 29

K
Known Good Set (KGS), 29

M
Module, 29

P
Package, 29
Package Index, 29
package index

cheeseshop, 18, 23
chishop, 13
creating, 13
pypi, 18, 23
registration, 19

uploading, 21
Packager, 30
Perl, 30
Pip, 30
Project, 30
protocol

simple index protocol, 21
Pure Python Module, 30
PYTHONHOME, 7
PYTHONPATH, 6, 7

R
Release, 30
reStructuredText, 30

S
Standard Library, 30
System Package, 30

T
Tarball, 30
tarball

install, 12

W
Working Set, 30

37

	Table of Contents
	Quick Start
	Introduction to Packaging
	Installing the Package Tools
	Using Packages
	Creating a Package
	Contribute Your Package to the World
	Virtual Environments
	Specifications
	Advanced Topics
	Future of Packaging
	Glossary
	Credits
	License

	Indices and tables
	Bibliography

