
thampi Documentation

theScore Inc.

Nov 06, 2018

Contents:

1 Overview 3
1.1 Introduction . 3
1.2 Benefits . 3
1.3 Limitations . 3
1.4 Alternatives . 4

2 Installation 5
2.1 Prerequisites . 5
2.2 Important . 5
2.3 What’s Next . 5

3 Tutorial 7
3.1 Prerequisites . 7
3.2 Dummy Project . 7
3.3 Training . 9
3.4 Serving the model . 10
3.5 Predict . 10
3.6 Undeploy . 11

4 Thampi Model API 13

5 Thampi Local API 15

6 Thampi Model API 17

7 Design 19
7.1 Model Size . 19

8 Indices and tables 21

9 Credits 23

i

ii

thampi Documentation

thampi creates a machine learning prediction server on AWS Lambda.

Contents: 1

thampi Documentation

2 Contents:

CHAPTER 1

Overview

1.1 Introduction

Thampi creates a serverless machine learning prediction system using Zappa.

1.2 Benefits

• No Devops. With a single command, create a web server that scales, is fault tolerant and zero mainte-
nance(courtesy AWS Lambda).

• Focus on your model. Work in Python to train your model. Thampi provides all support for serving the model.

• __Work on any platform*__. Work on Mac(technically possible on other platforms but untested) and still deploy
to AWS Lambda(which is Linux).

Thampi does this by using Docker underneath so that you can work on a Mac(or Windows?). When serving the
model, it recreates your machine learning project in the docker image(which is Linux) and compiles all the C
libraries(e.g. numpy) for you to Linux binaries, which is then uploaded to AWS Lambda.

• Pip and Conda support(See Limitations below).

1.3 Limitations

• Conda support is only for dependency files crafted by hand

• Max 500MB disk space. Ensure that your project with it’s libraries is below this size.

• Max 900 MB model size. This number was derived from a few live tests. We circumvent the 500 MB disk
space limit by loading the model directly from S3 to memory. thampi tries to reduce repeated calls to S3 by
using zappa's feature of pinging the lambda instance every 4 mins or so(configurable). In that way, the model
will stay on the lambda instance(unless it’s a first time load or if AWS Lambda does decide to evict the instance
for other reasons)

3

https://github.com/Miserlou/Zappa
https://aws.amazon.com/lambda/
https://conda.io/docs/user-guide/tasks/manage-environments.html#create-env-file-manually

thampi Documentation

Based on feedback, an option could be added to package the model with the code but you’ll then have to have a
very small model size. It depends on what framework you use but generally you may have 100-250 MB space
for your model as machine learning libraries take up a lot of space. Also look at the section Design

1.4 Alternatives

1.4.1 Sagemaker

SageMaker has the following advantages(not exhaustive):

• If you have SLAs, then Sagemaker may be a good choice. As they are on demand instances, you won’t have the
cold start delays.

• GPU Inference available

• Can serve models bigger than 1 GB(upon filling a form)

• You can choose more powerful machines than what AWS Lambda can offer you.

Sagemaker has the following costs(correct me if I am wrong):

• If you have to deploy a model which is not supported by Sagemaker(e.g. lightfm), then you have to:

– create your own docker image(manage your own OS updates e.g. security)

– implement a web server which has to implement a few endpoints

– manage auto scaling,

– provide handlers to SIGTERM and SIGKILL events

– manage some environment variables.

For more details, look here.

thampi(via AWS Lambda) abstracts all this away from you. Of course, one can build a library to do the above for
Sagemaker for you. Let me know when you make that library!

1.4.2 Algorithmia

Algorithmia is a commercial alternative to Thampi. I’m not sure though how easy it is to deploy models on libraries
not supported by Algorithmia(e.g. lightfm). Note: I haven’t spend too much researching Algorithmia.

4 Chapter 1. Overview

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html
https://algorithmia.com/

CHAPTER 2

Installation

pip install thampi

2.1 Prerequisites

• Setup AWS Credentials

• Install Docker(e.g for Mac)

• Ensure that the user which calls thampi has admin access

• For now, only python 3.6 is supported

2.2 Important

• Do not install zappa or flask for your environment for serving models. If you have to use zappa or flask,
consider creating another environment(and it’s corresponding requirements.txt file)

• Do not upgrade zappa or flask or pip if asked to do so. The latest version of zappa(0.46.1) does not
work for our use case so it’s at 0.45.1. As a thampi user, you should not be much affected by that.

2.3 What’s Next

Step ahead to the tutorial

5

https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/setup-credentials.html
https://docs.docker.com/docker-for-mac/install/
tutorial.md

thampi Documentation

6 Chapter 2. Installation

CHAPTER 3

Tutorial

3.1 Prerequisites

• First ensure you have gone through all the installation steps

• Your python installation should be 3.6, since AWS Lambda supports 3.6 as of now

Let’s create a new project myproject. We’ll use scikit-learn as an example but you could use any framework.

3.2 Dummy Project

3.2.1 Setup(Pip)

mkdir myproject && cd myproject
virtualenv -p python3 venv
source ./venv/bin/activate
pip install thampi
pip install scikit-learn
pip install numpy
pip install scipy
pip freeze > requirements.txt

3.2.2 Setup(Conda)

Note: This is one way of creating a conda environment. Please use the conventional way if you are comfortable in that
style.

mkdir myproject && cd myproject
Create a conda environment inside the directory myproject
conda create --prefix=venv python=3.6.7

(continues on next page)

7

installation.md

thampi Documentation

(continued from previous page)

pip install thampi
pip install scikit-learn
pip install numpy
pip install scipy

IMPORTANT: thampi only supports conda requirements files crafted by hand. So, let’s manually create a require-
ments file with the above dependencies as shown below and save it as requirements.txt. The versions will
change but you get the idea.

name: thampi-tutorial
dependencies:

- thampi=0.1.0
- numpy=1.15.*
- scikit-learn=0.20.0
- scipy=1.1.0

3.2.3 Initialization

• Run thampi init and you should see something similar to the terminal output below.

– For the s3 bucket, you can choose to have one bucket for all your thampi applications. Each project(model)
is at a different prefix so as long as the projects have unique names, they won’t overwrite each other. If
you aren’t confident of that, you could just give a different bucket for each thampi project.

– Choose pip or conda according to your preference.

thampi init

Welcome to Thampi!

Enter Model Name. If your model name is 'mymodel', the predict endpoint will be
→˓myendpoint.com/mymodel/predict
What do you want to call your model: mymodel

AWS Lambda and API Gateway are only available in certain regions. Let's check to make
→˓sure you have a profile set up in one that will work.
We found the following profiles: analytics, and default. Which would you like us to
→˓use? (default 'default'): default

Your Zappa deployments will need to be uploaded to a private S3 bucket.
If you don't have a bucket yet, we'll create one for you too.
What do you want to call your bucket? (default 'thampi-2i1zp4ura'): thampi-store

Enter package manager:['conda', 'pip'](default: pip):pip
A file zappa_settings.json has been created. If you made a mistake, delete it and run
→˓`thampi init` again

• It has created a file called zappa_settings.json. This file is used by the Zappa framework. You’ll note
that some defaults have been filled up which are suitable for machine learning projects. A notable setting
is keep_warm which prevents AWS Lambda from evicting the instance due to lack of use, by pinging the
lambda(e.g. every 4 minutes). This is useful in the case when you have very large models. However, you
could take it out if you feel that your model is small enough. For more details on how you can customize
zappa_settings.json, check out zappa docs

8 Chapter 3. Tutorial

https://conda.io/docs/user-guide/tasks/manage-environments.html#create-env-file-manually
https://github.com/Miserlou/Zappa#advanced-settings

thampi Documentation

• Within zappa_settings.json, thampi adds a key thampi. All thampi specific settings will go here.
Note: zappa has no idea of thampi. It’s just a convenient place to store the thampi relevant configuration.

3.3 Training

Inside myproject, copy the following code into the file train.py

import numpy as np
from sklearn import datasets
from typing import Dict
import thampi
from sklearn.neighbors import KNeighborsClassifier

class ThampiWrapper(thampi.Model):
def __init__(self, sklearn_model):

self.sklearn_model = sklearn_model
super().__init__()

def predict(self, args: Dict, context) -> Dict:
original_input = [args.get('input')]
result = self.sklearn_model.predict(np.array(original_input))
return dict(result=int(list(result)[0]))

def train_model():
iris = datasets.load_iris()
iris_X = iris.data
iris_y = iris.target
np.random.seed(0)
indices = np.random.permutation(len(iris_X))
iris_X_train = iris_X[indices[:-10]]
iris_y_train = iris_y[indices[:-10]]

knn = KNeighborsClassifier()
knn.fit(iris_X_train, iris_y_train)
return ThampiWrapper(knn)

if __name__ == '__main__':
model = train_model()
thampi.save(model, 'iris-sklearn', './models')

• The above code first trains the sklearn model as knn. To make the thampi web framework send the
request data to the model, we wrap knn in ThampiWrapper, a class which implements the thampi.Model
interface. The data sent to the serving endpoint will be passed by thampi to the predict method as args.
Likewise, one can wrap models of other libraries as well. Ignore the context argument in the predict
method for now. The context object sends in the Flask application object(and others in the future) which is
probably not required for most of the use cases for now.

And then at the terminal run

python train.py

This will create the model and save it locally using thampi.save. In thampi, like mlflow, the model artifacts

3.3. Training 9

thampi Documentation

are stored in a directory(i.e. iris-sklearn). Storing it in the models directory is just arbitrary convention.

3.4 Serving the model

Now it’s time to upload the model to AWS Lambda. All you have to provide is the requirements.txt file along
with the above trained ./models/iris-sklearn directory.

thampi serve staging --model_dir=./models/iris-sklearn --dependency_file=./
→˓requirements.txt

The serve command will use zappa internally to create or update a server endpoint. To see the endpoint, do

thampi info staging

You’ll see something similar to:

{'url': 'https://8i7a6qtlri.execute-api.us-east-1.amazonaws.com/staging/mymodel/
→˓predict'}

Let’s hit the endpoint in the next section.

3.5 Predict

You can do a curl like below where you replace a_url with the url that you receive from thampi info
staging

curl -d '{"data": {"input": [5.9, 3.2, 4.8, 1.8]}}' -H "Content-Type: application/json
→˓" -X POST a_url

data is a keyword here. Anything passed to data will be send along to your model. The dictionary with the key
input depends on your application. It could have been something else like features for e.g. If you remember
from the ThampiWrapper code above, since we use input, our code reads the data as args.get('input')

Output:

{
"properties": {
"instance_id": "9dbc56dd-936d-4dff-953c-8c22267ebe84",
"served_time_utc": "2018-09-06T22:03:09.247038",
"thampi_data_version": "0.1",
"trained_time_utc": "2018-09-06T22:03:04.886644"

},
"result": {
"result": 2

}
}

For convenience, you can also do:

thampi predict staging --data='{"input": [5.9, 3.2, 4.8, 1.8]}'

where data is of json format.

The properties dictionary is meta-data associated with the model. Most of them are populated using the save
command. If you want to add custom data (e.g name for your model and version, you can add it within tags)

10 Chapter 3. Tutorial

thampi Documentation

3.6 Undeploy

After you are done with your project, the zappa command will bring down the server endpoint permanently. Note,
we are using a zappa command. Zappa offers other relevant commands as well. Refer to the zappa docs. thampi
offers a cleanup command as well which cleans up thampi relevant files locally and remotely where possible.

zappa undeploy staging
thampi clean --scope=project # or --scope=all

NOTE: You may still have to clean up/delete the S3 bucket mentioned in zappa_settings.json for now.

3.6. Undeploy 11

thampi Documentation

12 Chapter 3. Tutorial

CHAPTER 4

Thampi Model API

13

thampi Documentation

14 Chapter 4. Thampi Model API

CHAPTER 5

Thampi Local API

15

thampi Documentation

16 Chapter 5. Thampi Local API

CHAPTER 6

Thampi Model API

17

thampi Documentation

18 Chapter 6. Thampi Model API

CHAPTER 7

Design

thampi being on AWS Lambda comes with constraints

7.1 Model Size

If your model is too big and serving it takes a lot of time, consider

• Pushing the model weights to a database. The author of lightfm has had success in that direction.

19

https://github.com/lyst/lightfm

thampi Documentation

20 Chapter 7. Design

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

21

thampi Documentation

22 Chapter 8. Indices and tables

CHAPTER 9

Credits

Thanks to theScore Inc. for supporting this project.

23

	Overview
	Introduction
	Benefits
	Limitations
	Alternatives

	Installation
	Prerequisites
	Important
	What’s Next

	Tutorial
	Prerequisites
	Dummy Project
	Training
	Serving the model
	Predict
	Undeploy

	Thampi Model API
	Thampi Local API
	Thampi Model API
	Design
	Model Size

	Indices and tables
	Credits

