
textacy Documentation
Release 0.12.0

Burton DeWilde

Dec 06, 2021

CONTENTS

1 features 3

2 links 5

3 maintainer 7

4 contents 9
4.1 Installation . 9
4.2 Quickstart . 10
4.3 Walkthrough . 13
4.4 Tutorials . 20
4.5 API Reference . 29
4.6 Changes . 149

Python Module Index 181

Index 183

i

ii

textacy Documentation, Release 0.12.0

textacy is a Python library for performing a variety of natural language processing (NLP) tasks, built on the high-
performance spaCy library. With the fundamentals — tokenization, part-of-speech tagging, dependency parsing, etc.
— delegated to another library, textacy focuses primarily on the tasks that come before and follow after.

CONTENTS 1

https://travis-ci.org/chartbeat-labs/textacy
https://github.com/chartbeat-labs/textacy/releases
https://pypi.python.org/pypi/textacy
https://anaconda.org/conda-forge/textacy

textacy Documentation, Release 0.12.0

2 CONTENTS

CHAPTER

ONE

FEATURES

• Access and extend spaCy’s core functionality for working with one or many documents through convenient
methods and custom extensions

• Load prepared datasets with both text content and metadata, from Congressional speeches to historical literature
to Reddit comments

• Clean, normalize, and explore raw text before processing it with spaCy

• Extract structured information from processed documents, including n-grams, entities, acronyms, keyterms, and
SVO triples

• Compare strings and sequences using a variety of similarity metrics

• Tokenize and vectorize documents then train, interpret, and visualize topic models

• Compute text readability and lexical diversity statistics, including Flesch-Kincaid grade level, multilingual
Flesch Reading Ease, and Type-Token Ratio

. . . and much more!

3

textacy Documentation, Release 0.12.0

4 Chapter 1. features

CHAPTER

TWO

LINKS

• Download: https://pypi.org/project/textacy

• Documentation: https://textacy.readthedocs.io

• Source code: https://github.com/chartbeat-labs/textacy

• Bug Tracker: https://github.com/chartbeat-labs/textacy/issues

5

https://pypi.org/project/textacy
https://textacy.readthedocs.io
https://github.com/chartbeat-labs/textacy
https://github.com/chartbeat-labs/textacy/issues

textacy Documentation, Release 0.12.0

6 Chapter 2. links

CHAPTER

THREE

MAINTAINER

Howdy, y’all.

• Burton DeWilde (burtdewilde@gmail.com)

7

mailto:burtdewilde@gmail.com

textacy Documentation, Release 0.12.0

8 Chapter 3. maintainer

CHAPTER

FOUR

CONTENTS

4.1 Installation

The simplest way to install textacy is via pip:

$ pip install textacy

or conda:

$ conda install -c conda-forge textacy

If you prefer — or are obliged — you can download and unzip the source tar.gz from PyPi, then install manually:

$ cd path/to/textacy
$ pip install .

4.1.1 Dependencies

Given the breadth of functionality, textacy depends on a number of other Python packages. Most of these are
common components in the PyData stack (numpy, scikit-learn, etc.), but a few are more niche. One heavy
dependency has been made optional.

Specifically: To use visualization functionality in textacy.viz, you’ll need to have matplotlib installed. You
can do so via pip install textacy[viz] or pip install matplotlib.

4.1.2 Downloading Data

For most uses of textacy, language-specific model data in spaCy is required. Fortunately, spaCy makes the process
of getting this data easy; just follow the instructions in their docs, which also includes a list of currently-supported
languages and their models.

Note: In previous versions of spaCy, users were able to link a specific model to a different name (e.g.
“en_core_web_sm” => “en”), but this is no longer permitted. As such, textacy now requires users to fully specify
which model to apply to a text, rather than leveraging automatic language identification to do it for them.

textacy itself features convenient access to several datasets comprised of thousands of text + metadata records,
as well as a couple linguistic resources. Data can be downloaded via the .download() method on corresponding
dataset/resource classes (see Datasets and Resources for details) or directly from the command line.

9

https://spacy.io/docs/usage/models
https://spacy.io/usage/models#languages
https://spacy.io/usage/models#languages

textacy Documentation, Release 0.12.0

$ python -m textacy download capitol_words
$ python -m textacy download depeche_mood
$ python -m textacy download lang_identifier --version 2.0

These commands download and save a compressed json file with ~11k speeches given by the main protagonists of
the 2016 U.S. Presidential election, followed by a set of emotion lexicons in English and Italian with various word
representations, and lastly a language identification model that works for 140 languages. For more information about
particular datasets/resources use the info subcommand:

$ python -m textacy info capitol_words

4.2 Quickstart

Install textacy and (if you haven’t already) download a spaCy language pipeline for processing text:

$ pip install textacy
$ python -m spacy download en_core_web_sm

Make a spaCy Doc from text:

>>> import textacy
>>> text = (
... "Many years later, as he faced the firing squad, Colonel Aureliano Buendía "
... "was to remember that distant afternoon when his father took him to discover
→˓ice. "
... "At that time Macondo was a village of twenty adobe houses, built on the bank
→˓"
... "of a river of clear water that ran along a bed of polished stones, which
→˓were "
... "white and enormous, like prehistoric eggs. The world was so recent "
... "that many things lacked names, and in order to indicate them it was
→˓necessary to point."
...)
>>> doc = textacy.make_spacy_doc(text, lang="en_core_web_sm")
>>> print(doc._.preview)
Doc(93 tokens: "Many years later, as he faced the firing squad,...")

Analyze the document:

>>> from textacy import extract
>>> list(extract.entities(doc, include_types={"PERSON", "LOCATION"}))
[Aureliano Buendía, Macondo]
>>> list(extract.subject_verb_object_triples(doc))
[SVOTriple(subject=[he], verb=[faced], object=[firing, squad]),
SVOTriple(subject=[father], verb=[took], object=[him]),
SVOTriple(subject=[things], verb=[lacked], object=[names])]

>>> from textacy import text_stats as ts
>>> ts.n_words(doc), ts.n_unique_words(doc)
(84, 66)
>>> ts.diversity.ttr(doc)
0.7857142857142857
>>> ts.flesch_kincaid_grade_level(doc)
10.922857142857143

Make another document, and compare:

10 Chapter 4. contents

textacy Documentation, Release 0.12.0

>>> other_doc = textacy.make_spacy_doc(
... "Finally, one Tuesday in December, at lunchtime, all at once he released the
→˓whole weight of his torment. "
... "The children would remember for the rest of their lives the august solemnity
→˓with which their father, "
... "devastated by his prolonged vigil and by the wrath of his imagination,
→˓revealed his discovery to them: "
... "'The earth is round, like an orange.'",
... lang="en_core_web_sm",
...)
>>> from textacy import similarity
>>> similarity.levenshtein(doc.text, other_doc.text)
0.2693965517241379
>>> similarity.cosine(
... (tok.lemma_ for tok in extract.words(doc)),
... (tok.lemma_ for tok in extract.words(other_doc))
...)
0.0914991421995628
>>> set(tok.text for tok in extract.words(doc)) & set(tok.text for tok in extract.
→˓words(other_doc))
{'father', 'like', 'remember'}
>>> ts.flesch_reading_ease(doc) > ts.flesch_reading_ease(other_doc)
True

Make many documents, with metadata:

>>> records = [
... (
... "Many years later, as he faced the firing squad, Colonel Aureliano
→˓Buendía was to remember that distant afternoon when his father took him to discover
→˓ice. At that time Macondo was a village of twenty adobe houses, built on the bank
→˓of a river of clear water that ran along a bed of polished stones, which were white
→˓and enormous, like prehistoric eggs. The world was so recent that many things
→˓lacked names, and in order to indicate them it was necessary to point.",
... {"title": "One Hundred Years of Solitude", "pub_yr": 1967},
...),
... (
... "Over the weekend the vultures got into the presidential palace by
→˓pecking through the screens on the balcony windows and the flapping of their wings
→˓stirred up the stagnant time inside, and at dawn on Monday the city awoke out of
→˓its lethargy of centuries with the warm, soft breeze of a great man dad and rotting
→˓grandeur.",
... {"title": "The Autumn of the Patriarch", "pub_yr": 1975},
...),
... (
... "On the day they were going to kill him, Santiago Nasar got up at five-
→˓thirty in the morning to wait for the boat the bishop was coming on. He'd dreamed
→˓he was going through a grove of timber trees where a gentle drizzle was falling,
→˓and for an instant he was happy in his dream, but when he awoke he felt completely
→˓spattered with bird shit.",
... {"title": "Chronicle of a Death Foretold", "pub_yr": 1981},
...),
... (
... "It was inevitable: the scent of bitter almonds always reminded him of
→˓the fate of unrequited love. Dr. Juvenal Urbino noticed it as soon as he entered
→˓the still darkened house where he had hurried on an urgent call to attend a case
→˓that for him had lost all urgency many years before. The Antillean refugee Jeremiah
→˓de Saint-Amour, disabled war veteran, photographer of children, and his most
→˓sympathetic opponent in chess, had escaped the torments of memory with the aromatic
→˓fumes of gold cyanide.",

(continues on next page)

4.2. Quickstart 11

textacy Documentation, Release 0.12.0

(continued from previous page)

... {"title": "Love in the Time of Cholera", "pub_yr": 1985},

...),

... (

... "José Palacios, his oldest servant, found him floating naked with his
→˓eyes open in the purifying waters of his bath and thought he had drowned. He knew
→˓this was one of the many ways the General meditated, but the ecstasy in which he
→˓lay drifting seemed that of a man no longer of this world.",
... {"title": "The General in His Labyrinth", "pub_yr": 1989},
...),
...]
>>> corpus = textacy.Corpus("en_core_web_sm", records)
>>> print(corpus)
Corpus(5 docs, 383 tokens)

Analyze them:

>>> corpus.n_sents
11
>>> import statistics
>>> corpus.agg_metadata("pub_yr", statistics.median)
1981
>>> sorted(corpus.word_counts(by="lemma_").items(), key=lambda x: x[1],
→˓reverse=True)[:15]
[('year', 2),
('time', 2),
('house', 2),
('water', 2),
('world', 2),
('go', 2),
('get', 2),
('dream', 2),
('awake', 2),
('man', 2),
('later', 1),
('face', 1),
('firing', 1),
('squad', 1),
('Colonel', 1)]

Transform them into other representations for further analysis:

>>> from textacy.representations import Vectorizer
>>> vectorizer = Vectorizer(tf_type="linear", idf_type="smooth")
>>> doc_term_matrix = vectorizer.fit_transform(
... ((term.lemma_ for term in extract.terms(doc, ngs=1, ents=True)) for doc in
→˓corpus)
...)
>>> print(repr(doc_term_matrix))
<5x167 sparse matrix of type '<class 'numpy.int32'>'

with 175 stored elements in Compressed Sparse Row format>
>>> doc_term_matrix[:, vectorizer.vocabulary_terms["year"]].toarray()
array([[1.69314718],

[0.],
[0.],
[1.69314718],
[0.]])

>>> from textacy.representations import build_cooccurrence_network
(continues on next page)

12 Chapter 4. contents

textacy Documentation, Release 0.12.0

(continued from previous page)

>>> cooc_graph = build_cooccurrence_network(
... [[term.lemma_ for term in extract.terms(doc, ngs=1, ents=True)] for doc in
→˓corpus],
... window_size=5,
...)
>>> cooc_graph.number_of_nodes(), cooc_graph.number_of_edges()
(167, 658)
>>> sorted(cooc_graph.adjacency())[1]
('Aureliano',
{'Colonel': {'weight': 4},
'face': {'weight': 1},
'firing': {'weight': 2},
'squad': {'weight': 3},
'Buendía': {'weight': 4},
'remember': {'weight': 3},
'distant': {'weight': 2},
'afternoon': {'weight': 1}})

Next steps:

• Go through textacy’s features in more detail and with more context in the Walkthrough.

• See example tasks worked end-to-end in the Tutorials.

• Consult the API Reference.

4.3 Walkthrough

First things first: Import the package. Some functionality is available from this top-level import, but we’ll see that
many features require their own imports.

>>> import textacy

4.3.1 Working with Text

Let’s start with a single text:

>>> text = (
... "Since the so-called \"statistical revolution\" in the late 1980s and mid
→˓1990s, "
... "much Natural Language Processing research has relied heavily on machine
→˓learning. "
... "Formerly, many language-processing tasks typically involved the direct hand
→˓coding "
... "of rules, which is not in general robust to natural language variation. "
... "The machine-learning paradigm calls instead for using statistical inference "
... "to automatically learn such rules through the analysis of large corpora "
... "of typical real-world examples."
...)

Before (or in lieu of) processing this text with spaCy, we can do a few things. First, let’s look for keywords-in-context,
as a quick way to assess, by eye, how a particular word or phrase is used in a body of text:

4.3. Walkthrough 13

textacy Documentation, Release 0.12.0

>>> from textacy import extract
>>> list(extract.keyword_in_context(text, "language", window_width=25, pad_
→˓context=True))
[(' mid 1990s, much Natural ', 'Language', ' Processing research has '),
('learning. Formerly, many ', 'language', '-processing tasks typical'),
('eneral robust to natural ', 'language', ' variation. The machine-l')]

Sometimes, “raw” text is messy and must be cleaned up before analysis; other times, an analysis simply benefits from
well-standardized text. In either case, the textacy.preprocessing sub-package contains a number of functions
to normalize (whitespace, quotation marks, etc.), remove (punctuation, accents, etc.), and replace (URLs, emails,
numbers, etc.) messy text data. For example:

>>> from textacy import preprocessing
>>> preprocessing.normalize.whitespace(preprocessing.remove.punctuation(text))[:80]
'Since the so called statistical revolution in the late 1980s and mid 1990s much '

4.3.2 Make a Doc

In most cases, we want to work with text that’s been processed by spaCy: tokenized, part-of-speech tagged, parsed,
and so on. Since spaCy’s pipelines are language-dependent and come in many variations, we have to load a partic-
ular pipeline to process the text. When working with texts from multiple languages, this can be a pain; fortunately,
textacy caches the loaded language data to minimize wait time and hassle. Making a Doc from text is easy:

>>> doc = textacy.make_spacy_doc(text, lang="en_core_web_sm")
>>> doc._.preview
'Doc(85 tokens: "Since the so-called "statistical revolution" in...")'

where "en_core_web_sm" is the name of an installed spaCy pipeline. If you want to interact directly with the
pipeline (and perhaps customize it), just assign it to a variable, then pass it in when initializing the doc:

>>> en = textacy.load_spacy_lang("en_core_web_sm", disable=("parser",))
>>> doc = textacy.make_spacy_doc(text, lang=en)
>>> doc._.preview
'Doc(85 tokens: "Since the so-called "statistical revolution" in...")'

Oftentimes, text data comes paired with metadata, such as a title, author, or publication date, and we’d like to keep
them together. textacy makes this easy:

>>> metadata = {
... "title": "Natural-language processing",
... "url": "https://en.wikipedia.org/wiki/Natural-language_processing",
... "source": "wikipedia",
... }
>>> doc = textacy.make_spacy_doc((text, metadata), lang="en_core_web_sm")
>>> doc._.meta["title"]
'Natural-language processing'

textacy can add a variety of useful functionality to vanilla spaCy docs, accessible via its ._ “underscore” property.
For example: doc._.preview gives a convenient preview of the doc’s contents, and doc._.meta returns any
metadata associated with the main text content. Consult the spaCy docs for implementation details.

14 Chapter 4. contents

https://spacy.io/usage/models
https://spacy.io/usage/processing-pipelines#custom-components-attributes

textacy Documentation, Release 0.12.0

4.3.3 Analyze a Doc

There are many ways to understand the content of a Doc. For starters, let’s extract various elements of interest:

>>> from textacy import extract
>>> list(extract.ngrams(doc, 3, filter_punct=True)
[1980s and mid,
Natural Language Processing,
Language Processing research,
research has relied,
heavily on machine,
processing tasks typically,
tasks typically involved,
involved the direct,
direct hand coding,
coding of rules,
robust to natural,
natural language variation,
learning paradigm calls,
paradigm calls instead,
inference to automatically,
learn such rules,
analysis of large,
corpora of typical]

>>> list(extract.noun_chunks(doc, drop_determiners=True))[:5]
[so-called "statistical revolution,
late 1980s,
mid 1990s,
much Natural Language Processing research,
machine learning]

>>> list(extract.subject_verb_object_triples(doc))
[SVOTriple(subject=[processing, tasks], verb=[involved], object=[hand, coding])]

We can also identify key terms in a document by a number of algorithms:

>>> extract.keyterms.textrank(doc, normalize="lemma", topn=10)
[('Natural Language Processing research', 0.059959246697826624),
('natural language variation', 0.04488350959275309),
('direct hand coding', 0.037736661821063354),
('statistical inference', 0.03432557996664981),
('statistical revolution', 0.034007535820683756),
('machine learning', 0.03305919655573349),
('mid 1990', 0.026993994406706995),
('late 1980', 0.026499549123496648),
('general robust', 0.024835834233545625),
('large corpora', 0.024322049918545637)]

>>> extract.keyterms.sgrank(doc, ngrams=(1, 2, 3, 4), normalize="lower", topn=0.1)
[('natural language processing research', 0.31279919999041045),
('direct hand coding', 0.09373747682969617),
('natural language variation', 0.09229056171473927),
('mid 1990s', 0.05832421657510258),
('machine learning', 0.05536624437146417)]

Or we can compute various basic, readability, and lexical diversity statistics:

>>> from textacy import text_stats as ts
>>> ts.basics.n_words(doc)
73

(continues on next page)

4.3. Walkthrough 15

textacy Documentation, Release 0.12.0

(continued from previous page)

>>> ts.readability.flesch_kincaid_grade_level(doc)
13.135616438356163
>>> ts.diversity.ttr(doc)
0.7808219178082192
>>> ts.counts.pos(doc)
{'SCONJ': 1,
'DET': 5,
'ADV': 6,
'PUNCT': 12,
'VERB': 7,
'ADJ': 14,
'NOUN': 22,
'ADP': 9,
'CCONJ': 1,
'PROPN': 3,
'AUX': 2,
'PRON': 1,
'PART': 2}

4.3.4 Working with Many Texts

Many NLP tasks require datasets comprised of a large number of texts, which are often stored on disk in one or
multiple files. textacy makes it easy to efficiently stream text and (text, metadata) pairs from disk, regardless of the
format or compression of the data.

Let’s start with a single text file, where each line is a new text document:

I love Daylight Savings Time: It's a biannual opportunity to find and fix obscure
→˓date-time bugs in your code. Can't wait for next time!
Somewhere between "this is irritating but meh" and "blergh, why haven't I automated
→˓this yet?!" Fuzzy decision boundary.
Spent an entire day translating structured data blobs into concise, readable
→˓sentences. Human language is hard.
...

In this case, the texts are tweets from my sporadic presence on Twitter — a fine example of small (and boring) data.
Let’s stream it from disk so we can analyze it in textacy:

>>> texts = textacy.io.read_text('~/Desktop/burton-tweets.txt', lines=True)
>>> for text in texts:
... doc = textacy.make_spacy_doc(text, lang="en_core_web_sm")
... print(doc._.preview)
Doc(32 tokens; "I love Daylight Savings Time: It's a biannual o...")
Doc(28 tokens; "Somewhere between "this is irritating but meh" ...")
Doc(20 tokens; "Spent an entire day translating structured data...")
...

Okay, let’s not actually analyze my ramblings on social media. . .

Instead, let’s consider a more complicated dataset: a compressed JSON file in the mostly-standard “lines” format, in
which each line is a separate record with both text data and metadata fields. As an example, we can use the “Capitol
Words” dataset integrated into textacy (see Datasets and Resources for details). The data is downloadable from the
textacy-data GitHub repository.

16 Chapter 4. contents

https://github.com/bdewilde/textacy-data/releases/tag/capitol_words_py3_v1.0%3E

textacy Documentation, Release 0.12.0

>>> records = textacy.io.read_json(
... "textacy/data/capitol_words/capitol-words-py3.json.gz",
... mode="rt", lines=True)
>>> for record in records:
... doc = textacy.make_spacy_doc((record["text"], {"title": record["title"]}),
→˓lang="en_core_web_sm")
... print(doc._.preview)
... print("meta:", doc._.meta)
... # do stuff...
... break
Doc(159 tokens; "Mr. Speaker, 480,000 Federal employees are work...")
meta: {'title': 'JOIN THE SENATE AND PASS A CONTINUING RESOLUTION'}

For this and a few other datasets, convenient Dataset classes are already implemented in textacy to help users get
up and running, faster:

>>> import textacy.datasets # note the import
>>> ds = textacy.datasets.CapitolWords()
>>> ds.download()
>>> records = ds.records(speaker_name={"Hillary Clinton", "Barack Obama"})
>>> next(records)
('I yield myself 15 minutes of the time controlled by the Democrats.',
{'date': '2001-02-13',
'congress': 107,
'speaker_name': 'Hillary Clinton',
'speaker_party': 'D',
'title': 'MORNING BUSINESS',
'chamber': 'Senate'})

4.3.5 Make a Corpus

A textacy.Corpus is an ordered collection of spaCy Doc s, all processed by the same language pipeline. Let’s
continue with the Capitol Words dataset and make a corpus from a stream of records. (Note: This may take a few
minutes.)

>>> corpus = textacy.Corpus("en", data=records)
>>> corpus
Corpus(1240 docs, 857548 tokens)

The language pipeline used to analyze documents in the corpus must be specified on instantiation, but the data added
to it may come in the form of one or a stream of texts, records, or (valid) Doc s.

>>> textacy.Corpus(
... textacy.load_spacy_lang("en_core_web_sm", disable=("parser", "tagger")),
... data=ds.texts(speaker_party="R", chamber="House", limit=100))
Corpus(100 docs, 31356 tokens)

You can use basic indexing as well as flexible boolean queries to select documents in a corpus:

>>> corpus[-1]._.preview
'Doc(2999 tokens: "In the Federalist Papers, we often hear the ref...")'
>>> [doc._.preview for doc in corpus[10:15]]
['Doc(359 tokens: "My good friend from Connecticut raised an issue...")',
'Doc(83 tokens: "My question would be: In response to the discus...")',
'Doc(3338 tokens: "Madam President, I come to the floor today to s...")',

(continues on next page)

4.3. Walkthrough 17

textacy Documentation, Release 0.12.0

(continued from previous page)

'Doc(221 tokens: "Mr. President, I rise in support of Senator Tho...")',
'Doc(3061 tokens: "Mr. President, I thank my distinguished colleag...")']

>>> obama_docs = list(corpus.get(lambda doc: doc._.meta["speaker_name"] == "Barack
→˓Obama"))
>>> len(obama_docs)
411

It’s important to note that all of the data in a textacy.Corpus is stored in-memory, which makes a number of
features much easier to implement. Unfortunately, this means that the maximum size of a corpus will be bounded by
RAM.

4.3.6 Analyze a Corpus

There are lots of ways to analyze the data in a corpus. Basic stats are computed on the fly as documents are added (or
removed) from a corpus:

>>> corpus.n_docs, corpus.n_sents, corpus.n_tokens
(1240, 34530, 857548)

You can transform a corpus into a document-term matrix, with flexible tokenization, weighting, and filtering of terms:

>>> import textacy.vsm # note the import
>>> vectorizer = textacy.vsm.Vectorizer(
... tf_type="linear", apply_idf=True, idf_type="smooth", norm="l2",
... min_df=2, max_df=0.95)
>>> doc_term_matrix = vectorizer.fit_transform(
... (term.text for term in extract.terms(ngs=1, ents=True, ncs=True)
... for doc in corpus))
>>> print(repr(doc_term_matrix))
<1240x12577 sparse matrix of type '<class 'numpy.float64'>'

with 217067 stored elements in Compressed Sparse Row format>

From a doc-term matrix, you can then train and interpret a topic model:

>>> import textacy.tm # note the import
>>> model = textacy.tm.TopicModel("nmf", n_topics=10)
>>> model.fit(doc_term_matrix)
>>> doc_topic_matrix = model.transform(doc_term_matrix)
>>> doc_topic_matrix.shape
(1240, 10)
>>> for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term, top_
→˓n=10):
... print("topic", topic_idx, ":", " ".join(top_terms))
topic 0 : New people child work need York bill year school student
topic 1 : rescind quorum order unanimous consent ask President Mr.
→˓Madam objection
topic 2 : dispense reading unanimous consent amendment ask President Mr.
→˓ Madam OFFICER
topic 3 : motion table lay reconsider agree thereto Madam preamble
→˓intervene print
topic 4 : desire Chamber vote Senators rollcall voter amendment 2313
→˓regular cloture
topic 5 : amendment pende aside set ask unanimous consent Mr.
→˓President desk
topic 6 : health care patient Health mental quality child medical
→˓information coverage (continues on next page)

18 Chapter 4. contents

textacy Documentation, Release 0.12.0

(continued from previous page)

topic 7 : Iraq war troop iraqi Iraqis policy military american U.S.
→˓force
topic 8 : tax budget cut debt pay deficit $ fiscal billion spending
topic 9 : Senator Virginia yield West Virginia West question thank
→˓Massachusetts objection time

And that’s just getting started! For now, though, I encourage you to pick a dataset — either your own or one already
included in textacy — and start exploring the data. Most functionality is well-documented via in-code docstrings; to
see that information all together in nicely-formatted HTML, be sure to check out the API Reference.

4.3.7 Working with Many Languages

Since a Corpus uses the same spaCy language pipeline to process all input texts, it only works in a mono-lingual
context. In some cases, though, your collection of texts may contain more than one language; for example, if I
occasionally tweeted in Spanish (sí, ¡se habla español!), the burton-tweets.txt dataset couldn’t be fed in its
entirety into a single Corpus. This is irritating, but there are some workarounds.

If you haven’t already, download spaCy models for the languages you want to analyze — see Installation for details.
Then, if your use case doesn’t require Corpus functionality, you can iterate over the texts and only analyze those for
which models are available:

>>> for text in texts:
... try:
... doc = textacy.make_spacy_doc(text)
... except OSError:
... continue
... # do stuff...

When the lang param is unspecified, textacy tries to auto-detect the text’s language and load the corresponding
model; if that model is unavailable, spaCy will raise an OSError. This try/except also handles the case where
language detection fails and returns, say, “un” for “unknown”.

It’s worth noting that, although spaCy has statistical models for annotating texts in only 10 or so languages, it supports
tokenization in dozens of other languages. See https://spacy.io/usage/models#languages for details. You can load such
languages in textacy via textacy.load_spacy_lang(langstr, allow_blank=True).

If you do need a Corpus, you can split the input texts by language into distinct collections, then instantiate monolin-
gual corpora on those collections. For example:

>>> en_corpus = textacy.Corpus(
... "en_core_web_sm", data=(
... text for text in texts
... if textacy.identify_lang(text) == "en")
...)
>>> es_corpus = textacy.Corpus(
... "es_core_news_sm", data=(
... text for text in texts
... if textacy.identify_lang(text) == "es")
...)

Both of these options are less convenient than I’d like, but hopefully they get the job done.

4.3. Walkthrough 19

textacy Documentation, Release 0.12.0

4.4 Tutorials

4.4.1 Context and Description of Workers in the U.S. Congress

In this tutorial, we will explore how certain members of the U.S. Congress have spoken about workers, based on a
dataset of thousands of speeches sourced from the Congressional Record.

First, let’s initialize and download the dataset, which comes built-in with textacy:

>>> import textacy.datasets
>>> dataset = textacy.datasets.CapitolWords()
>>> dataset.info
{'name': 'capitol_words',
'site_url': 'http://sunlightlabs.github.io/Capitol-Words/',
'description': 'Collection of ~11k speeches in the Congressional Record given by
→˓notable U.S. politicians between Jan 1996 and Jun 2016.'}
>>> dataset.download()

Each record in this dataset contains the full text of and basic metadata about the speech. Let’s take a peek at the first
one, to get our bearings:

>>> record = next(dataset.records(limit=1))
>>> record
Record(text='Mr. Speaker, 480,000 Federal employees are working without pay, a form
→˓of involuntary servitude; 280,000 Federal employees are not working, and they will
→˓be paid. Virtually all of these workers have mortgages to pay, children to feed,
→˓and financial obligations to meet.\nMr. Speaker, what is happening to these workers
→˓is immoral, is wrong, and must be rectified immediately. Newt Gingrich and the
→˓Republican leadership must not continue to hold the House and the American people
→˓hostage while they push their disastrous 7-year balanced budget plan. The gentleman
→˓from Georgia, Mr. Gingrich, and the Republican leadership must join Senator Dole
→˓and the entire Senate and pass a continuing resolution now, now to reopen
→˓Government.\nMr. Speaker, that is what the American people want, that is what they
→˓need, and that is what this body must do.', meta={'date': '1996-01-04', 'congress':
→˓104, 'speaker_name': 'Bernie Sanders', 'speaker_party': 'I', 'title': 'JOIN THE
→˓SENATE AND PASS A CONTINUING RESOLUTION', 'chamber': 'House'})

This speech was delivered by Bernie Sanders back in 1996, when he was a member of the House of Representatives.
By reading the text, we can see that it’s about government workers during a shutdown — very relevant to our inquiry!
:)

Considering the number of speeches, we’d like to avoid a full read-through and instead extract just the specific parts
of interest. As a first step, let’s use the textacy.extract subpackage to inspect our keywords in context.

>>> from textacy import extract
>>> textacy.set_doc_extensions("extract") # just setting these now -- we'll use them
→˓later!
>>> list(extract.keyword_in_context(record.text, "work(ing|ers?)", window_width=35))
[('ker, 480,000 Federal employees are ', 'working', ' without pay, a form of
→˓involuntary'),
(' 280,000 Federal employees are not ', 'working', ', and they will be paid.
→˓Virtually '),
('ll be paid. Virtually all of these ', 'workers', ' have mortgages to pay, children
→˓to'),
('peaker, what is happening to these ', 'workers', ' is immoral, is wrong, and must
→˓be ')]

20 Chapter 4. contents

textacy Documentation, Release 0.12.0

This is useful for developing our intuitions about how Bernie regards workers, but we’d prefer the information in a
more structured form. Processing the text with spaCy will allow us to interrogate the text content in more sophisticated
ways.

But first, we should preprocess the text to get rid of potential data quality issues (inconsistent quotation marks, whites-
pace, unicode characters, etc.) and other distractions that may affect our analysis. For example, maybe it would be
better to replace all numbers with a constant placeholder value. For this, we’ll use some of the functions available in
textacy.preprocessing:

>>> from textacy import preprocessing as preproc
>>> preproc.replace.numbers(record.text)
'Mr. Speaker, _NUMBER_ Federal employees are working without pay, a form of
→˓involuntary servitude; _NUMBER_ Federal employees are not working, and they will be
→˓paid. Virtually all of these workers have mortgages to pay, children to feed, and
→˓financial obligations to meet.\nMr. Speaker, what is happening to these workers is
→˓immoral, is wrong, and must be rectified immediately. Newt Gingrich and the
→˓Republican leadership must not continue to hold the House and the American people
→˓hostage while they push their disastrous _NUMBER_-year balanced budget plan. The
→˓gentleman from Georgia, Mr. Gingrich, and the Republican leadership must join
→˓Senator Dole and the entire Senate and pass a continuing resolution now, now to
→˓reopen Government.\nMr. Speaker, that is what the American people want, that is
→˓what they need, and that is what this body must do.'

Note that these changes are “destructive” — they’ve changed the data, and we can’t reconstruct the original without
keeping a copy around or re-loading it from disk. On second thought. . . let’s leave the numbers alone.

However, we should still take care to normalize common text data errors. Let’s combine multiple such preprocessors
into a lightweight, callable pipeline that applies each sequentially:

>>> preprocessor = preproc.make_pipeline(
... preproc.normalize.unicode,
... preproc.normalize.quotation_marks,
... preproc.normalize.whitespace,
...)
>>> preproc_text = preprocessor(record.text)
>>> preproc_text[:200]
'Mr. Speaker, 480,000 Federal employees are working without pay, a form of
→˓involuntary servitude; 280,000 Federal employees are not working, and they will be
→˓paid. Virtually all of these workers have m'

To make a spaCy Doc, we need to apply a language-specific model pipeline to the text. (See the installation guide for
details on how to download the necessary data!) Assuming most if not all of these speeches were given in English,
let’s use the “en_core_web_sm” pipeline:

>>> doc = textacy.make_spacy_doc((preproc_text, record.meta), lang="en_core_web_sm")
>>> doc._.preview
'Doc(161 tokens: "Mr. Speaker, 480,000 Federal employees are work...")'
>>> doc._.meta
{'date': '1996-01-04',
'congress': 104,
'speaker_name': 'Bernie Sanders',
'speaker_party': 'I',
'title': 'JOIN THE SENATE AND PASS A CONTINUING RESOLUTION',
'chamber': 'House'}

Now, using the annotated part-of-speech tags, we can extract just the adjectives and determinants immediately preced-
ing our keyword to get a sense of how workers are described:

4.4. Tutorials 21

https://spacy.io/models/en#en_core_web_sm

textacy Documentation, Release 0.12.0

>>> patterns = [{"POS": {"IN": ["ADJ", "DET"]}, "OP": "+"}, {"ORTH": {"REGEX":
→˓"workers?"}}]
>>> list(extract.token_matches(doc, patterns))
[these workers, these workers]

Well, these particular examples aren’t very interesting, but we’d definitely like to see the results aggregated over all
speeches: skilled workers, American workers, young workers, and so on.

To accomplish that, let’s load many records into a textacy.Corpus. Note: For the sake of time, we’ll limit
ourselves to just the first 2000 — this can take a couple minutes!

>>> records = dataset.records(limit=2000)
>>> preproc_records = ((preprocessor(text), meta) for text, meta in records)
>>> corpus = textacy.Corpus("en_core_web_sm", data=preproc_records)
>>> print(corpus)
Corpus(2000 docs, 1049192 tokens)

We can leverage the documents’ metadata to get a better sense of what’s in our corpus:

>>> import collections
>>> corpus.agg_metadata("date", min), corpus.agg_metadata("date", max)
('1996-01-04', '1999-10-08')
>>> corpus.agg_metadata("speaker_name", collections.Counter)
Counter({'Bernie Sanders': 421,

'Lindsey Graham': 98,
'Rick Santorum': 533,
'Joseph Biden': 691,
'John Kasich': 257})

We see some familiar politicians, including current president Joe Biden and noted sycophant Lindsey Graham. Now
that the documents are processed, let’s extract matches from each, lemmatize their texts for consistency, and then
inspect the most common descriptions of workers:

>>> import itertools
>>> matches = itertools.chain.from_iterable(extract.token_matches(doc, patterns) for
→˓doc in corpus)
>>> collections.Counter(match.lemma_ for match in matches).most_common(20)
[('american worker', 95),
('average american worker', 21),
('the average american worker', 20),
('the worker', 15),
('social worker', 6),
('those worker', 5),
('a worker', 5),
('these worker', 4),
('young worker', 4),
('average worker', 4),
('an american worker', 4),
('the american worker', 4),
('federal worker', 3),
('that american worker', 3),
('that worker', 3),
('more worker', 3),
('nonunion worker', 3),
('the average worker', 3),
('young american worker', 2),
('every worker', 2)]

22 Chapter 4. contents

textacy Documentation, Release 0.12.0

Apparently, these speakers had a preoccupation with American workers, average workers, and average American
workers. To better understand the context of these mentions, we can extract keyterms (the most important or “key”
terms) from the documents in which they occured.

For example, here are the top 10 keyterms from that first Bernie speech in our dataset, extracted using a variation of
the well-known TextRank algorithm:

>>> corpus[0]._.extract_keyterms("textrank", normalize="lemma", window_size=10, edge_
→˓weighting="count", topn=10)
[('year balanced budget plan', 0.033721812470386026),
('Mr. Speaker', 0.032162715590532916),
('Mr. Gingrich', 0.031358819981176664),
('american people', 0.02612752273629427),
('republican leadership', 0.025418705021243045),
('federal employee', 0.021731159162187104),
('Newt Gingrich', 0.01988327361247088),
('pay', 0.018930131314143193),
('involuntary servitude', 0.015559235022115406),
('entire Senate', 0.015032623278646105)]

Now let’s select the subset of speeches in which “worker(s)” were mentioned, extract the keyterms from each, then
aggregate and rank the results.

>>> kt_weights = collections.Counter()
>>> for doc in corpus.get(lambda doc: any(doc._.extract_regex_matches("workers?"))):
... keyterms = doc._.extract_keyterms(
... "textrank", normalize="lemma", window_size=10, edge_weighting="count",
→˓topn=10
...)
... kt_weights.update(dict(keyterms))
kt_weights.most_common(20)
[('average american worker', 0.2925480520167547),
('american worker', 0.21976899187473325),
('american people', 0.2131304787602286),
('real wage', 0.20937859927617333),
('Mr. Speaker', 0.19605562157627318),
('minimum wage today', 0.15268345523692883),
('young people', 0.13646481152944478),
('Social Security Social Security', 0.1361447369032916),
('Social Security Trust Fund', 0.12800826053880315),
('wage job', 0.1245701927182434),
('minimum wage', 0.1231061204217654),
('Mr. Chairman', 0.11731341389089317),
('low wage', 0.10747384130103463),
('time job', 0.10698519355007824),
('Multiple Chemical Sensitivity disorder', 0.09848493865271887),
('Mr. President', 0.09740781572099372),
('income people', 0.09569570041926843),
('Mr. Kucinich', 0.09241855965201626),
('violent crime trust fund', 0.08805244819537784),
('Social Security system', 0.08688954139546792)]

Perhaps unsurprisingly, “average american worker” ranks at the top of the list, but we can see from the rest of the list
that they’re brought up in discussion of jobs, the minimum wage, and Social Security. Makes sense!

In this tutorial, we’ve learned how to

• load text+metadata records from a dataset

• inspect and preprocess raw texts

4.4. Tutorials 23

textacy Documentation, Release 0.12.0

• add a collection of documents processed by spaCy into a corpus

• inspect aggregated corpus metadata

• extract different kinds of structured data from one or many documents

4.4.2 Terms and Topics in the U.S. Congress

In this tutorial, we will explore the broad topics of discussion among certain members of the U.S. Congress, based on
a dataset of thousands of their speeches delivered on the floor.

First, let’s initialize and download the dataset, which comes built-in with textacy:

>>> import textacy.datasets
>>> dataset = textacy.datasets.CapitolWords()
>>> dataset.info
{'name': 'capitol_words',
'site_url': 'http://sunlightlabs.github.io/Capitol-Words/',
'description': 'Collection of ~11k speeches in the Congressional Record given by
→˓notable U.S. politicians between Jan 1996 and Jun 2016.'}
>>> dataset.download()

Each record in this dataset contains the full text of and basic metadata about the speech. Let’s take a peek at the first
one:

>>> next(dataset.records(limit=1))
Record(text='Mr. Speaker, 480,000 Federal employees are working without pay, a form
→˓of involuntary servitude; 280,000 Federal employees are not working, and they will
→˓be paid. Virtually all of these workers have mortgages to pay, children to feed,
→˓and financial obligations to meet.\nMr. Speaker, what is happening to these workers
→˓is immoral, is wrong, and must be rectified immediately. Newt Gingrich and the
→˓Republican leadership must not continue to hold the House and the American people
→˓hostage while they push their disastrous 7-year balanced budget plan. The gentleman
→˓from Georgia, Mr. Gingrich, and the Republican leadership must join Senator Dole
→˓and the entire Senate and pass a continuing resolution now, now to reopen
→˓Government.\nMr. Speaker, that is what the American people want, that is what they
→˓need, and that is what this body must do.', meta={'date': '1996-01-04', 'congress':
→˓104, 'speaker_name': 'Bernie Sanders', 'speaker_party': 'I', 'title': 'JOIN THE
→˓SENATE AND PASS A CONTINUING RESOLUTION', 'chamber': 'House'})

Feel the Bern, circa 1996!

Let’s load the first 2000 records into a textacy.Corpus. We’ll disable the spaCy pipeline’s parser for speed (since
we won’t need dependency annotations), but even still this will take a couple minutes. Hang tight.

>>> spacy_lang = textacy.load_spacy_lang("en_core_web_sm", disable=("parser",))
>>> records = dataset.records(limit=2000)
>>> corpus = textacy.Corpus(spacy_lang, data=records)
>>> print(corpus)
Corpus(2000 docs, 1049199 tokens)

As we saw in another tutorial, this collection covers speeches given during the late 90s by a handful of politicians,
including Bernie Sanders and Joe Biden.

>>> corpus.agg_metadata("date", min), corpus.agg_metadata("date", max)
('1996-01-04', '1999-10-08')

spaCy’s tokenization and annotations provide a flexible base from which we can perform a higher-level splitting of
each document into semantically meaningful “terms”. For example, let’s extract all entities:

24 Chapter 4. contents

textacy Documentation, Release 0.12.0

>>> from textacy import extract
>>> list(extract.entities(corpus[0]))
[Speaker, 480,000, 280,000, Speaker, Newt Gingrich, Republican, House, American, 7-
→˓year, Georgia, Gingrich, Republican, Dole, Senate, Speaker, American]

Upon inspection, that seems like a mixed bag, so let’s clean it up a bit by including only a subset of entity types, and
toss in noun- or adjective-only bigrams as well:

>>> from functools import partial
>>> terms = list(extract.terms(
... corpus[0],
... ngs=partial(extract.ngrams, n=2, include_pos={"NOUN", "ADJ"}),
... ents=partial(extract.entities, include_types={"PERSON", "ORG", "GPE", "LOC"}),
... dedupe=True))
>>> terms
[Federal employees, involuntary servitude, Federal employees, financial obligations,
→˓Republican leadership, American people, year balanced, balanced budget, budget plan,
→˓ Republican leadership, American people, Speaker, Speaker, Newt Gingrich, House,
→˓Georgia, Gingrich, Dole, Senate, Speaker]

Note that “Speaker” (as in Mr. Speaker) shows up multiple times: the dedupe arg removes exact duplicates based on
their positions in the text, but not by their text content.

Before building a document-term matrix representation of the corpus, we must first transform the terms’ Span objects
into strings. There are several options to choose from: use the text content as-is, lowercase it, or if available use
lemmas (base forms without inflectional suffixes). To reduce sparsity of the matrix, let’s lemmatize the terms:

>>> list(extract.terms_to_strings(terms, by="lemma"))
['federal employee', 'involuntary servitude', 'federal employee', 'financial
→˓obligation', 'republican leadership', 'american people', 'year balanced', 'balanced
→˓budget', 'budget plan', 'republican leadership', 'american people', 'Speaker',
→˓'Speaker', 'Newt Gingrich', 'House', 'Georgia', 'Gingrich', 'Dole', 'Senate',
→˓'Speaker']

Looks good! Let’s apply these steps to all docs in the corpus:

>>> docs_terms = (
... extract.terms(
... doc,
... ngs=partial(extract.ngrams, n=2, include_pos={"NOUN", "ADJ"}),
... ents=partial(extract.entities, include_types={"PERSON", "ORG", "GPE", "LOC
→˓"}))
... for doc in corpus)
>>> tokenized_docs = (
... extract.terms_to_strings(doc_terms, by="lemma")
... for doc_terms in docs_terms)

Now we can vectorize the documents. Each row represents a document, each column a unique term, and individual
values represent the “weight” of a term in a particular document. These weights may include combinations of local,
global, and normalization components; for simplicity, let’s use classic TF-IDF weighting, i.e. “Term Frequency”
(local) multiplied by “Inverse Doc Frequency” (global).

>>> from textacy import representations
>>> doc_term_matrix, vocab = representations.build_doc_term_matrix(tokenized_docs, tf_
→˓type="linear", idf_type="smooth")
>>> doc_term_matrix

(continues on next page)

4.4. Tutorials 25

textacy Documentation, Release 0.12.0

(continued from previous page)

<2000x30177 sparse matrix of type '<class 'numpy.float64'>'
with 58693 stored elements in Compressed Sparse Row format>

Let’s initialize and fit a topic model to this data. textacy provides a common interface to three basic topic models;
we’ll use an “NMF” model here, and configure it (without any optimization) to use 10 topics.

>>> import textacy.tm
>>> model = textacy.tm.TopicModel("nmf", n_topics=10)
>>> model.fit(doc_term_matrix)

Using the fit model, we can transform the doc-term matrix into a doc-topic matrix, where the columns now correspond
to topics and values represent the degree to which a given document is associated with a given topic.

>>> doc_topic_matrix = model.transform(doc_term_matrix)
>>> doc_topic_matrix.shape
(2000, 10)
>>> doc_topic_matrix
array([[0. , 0. , 0. , ..., 0.29051627, 0.03107776,

0.00069874],
[0. , 0. , 0. , ..., 0.08144687, 0. ,
0.],

[0.00210755, 0. , 0. , ..., 0.2770269 , 0. ,
0.],

...,
[0.00559379, 0.00188866, 0.0259026 , ..., 0.01886715, 0.04181629,
0.00639968],

[0. , 0. , 0.00083651, ..., 0. , 0.00209634,
0.],

[0.00407539, 0.00100207, 0.0066426 , ..., 0.05791785, 0. ,
0.00239545]])

To better understand the topics, we can extract a list of its top terms (those with the highest topic weight), as well as
the top documents.

>>> id_to_term = {id_: term for term, id_ in vocab.items()}
>>> for topic_idx, terms in model.top_topic_terms(id_to_term, top_n=8):
... print(f"topic {topic_idx}: {' '.join(terms)}")
topic 0: NATO Europe Russia Hungary Poland Czech Republic United States
→˓Madrid
topic 1: raw material medical device biomaterial supplier component part
→˓civil action rating system product liability DuPont
topic 2: China great power United States international norm human right
→˓Pakistan nuclear weapon Beijing
topic 3: chemical weapon Reagan Bush Helms poison gas Chemical Weapons
→˓Convention Saddam Iraq
topic 4: missile defense Russia national missile nuclear weapon arm control
→˓ballistic missile United States Soviet Union
topic 5: United Nations State Department U.N. foreign policy Mexico City
→˓North Carolina Helms U.S.
topic 6: Milosevic Kosovo Serbia Bosnia NATO KLA Belgrade war criminal
topic 7: Speaker America Mexico health care middle class Congress United
→˓States new job
topic 8: birth abortion Tony Senate little baby partial birth Donna Joy
→˓Tony Melendez Lori
topic 9: CWC chemical weapon chemical industry poison gas U.S. Chemical
→˓Weapons Convention american chemical rogue state

(continues on next page)

26 Chapter 4. contents

textacy Documentation, Release 0.12.0

(continued from previous page)

>>> for topic_idx, doc_idxs in model.top_topic_docs(doc_topic_matrix, top_n=3):
... print(f"topic {topic_idx}: {' '.join(corpus[doc_idx]._.meta['title'] for
→˓doc_idx in doc_idxs)}")
topic 0: EXECUTIVE SESSION THE STRATEGIC RATIONALE FOR NATO ENLARGEMENT NATO
→˓ENLARGEMENT AFTER PARIS
topic 1: STATEMENTS ON INTRODUCED BILLS AND JOINT RESOLUTIONS STATEMENTS ON
→˓INTRODUCED BILLS AND JOINT RESOLUTIONS DEPARTMENTS OF COMMERCE, JUSTICE, AND
→˓STATE, THE JUDICIARY, AND RELATED AGENCIES APPROPRIATIONS ACT, 1999
topic 2: THE CHINA SUMMIT: WHAT KIND OF ENGAGEMENT? THE SEARCH FOR MODERN CHINA:
→˓THE PRESIDENT'S CHINA TRIP FOREIGN OPERATIONS, EXPORT FINANCING, AND RELATED
→˓PROGRAMS APPROPRIATIONS ACT, 1998
topic 3: EXECUTIVE SESSION FIRST ANNIVERSARY OF THE ENTRY INTO FORCE OF THE
→˓CHEMICAL WEAPONS CONVENTION CHEMICAL WEAPONS CONVENTION
topic 4: NATIONAL MISSILE DEFENSE ACT OF 1999 CRISIS IN RUSSIA AMERICAN MISSILE
→˓PROTECTION ACT OF 1998--MOTION TO PROCEED
topic 5: FOREIGN AFFAIRS REFORM AND RESTRUCTURING ACT OF 1997 FOREIGN AFFAIRS
→˓REFORM AND RESTRUCTURING ACT--CONFERENCE REPORT FOREIGN AFFAIRS REFORM AND
→˓RESTRUCTURING ACT OF 1997
topic 6: THE SITUATION IN KOSOVO RESOLUTION OF THE KOSOVO PROBLEM PEACE AGREEMENT
topic 7: THE MOST IMPORTANT ISSUES FACING THE AMERICAN PEOPLE 55TH ANNIVERSARY OF
→˓THE BATTLE OF CRETE NARCOTICS CERTIFICATION
topic 8: PARTIAL-BIRTH ABORTION PARTIAL-BIRTH ABORTION BAN ACT OF 1997 PARTIAL-
→˓BIRTH ABORTION BAN ACT of 1997
topic 9: THE URGENT NEED TO OUTLAW POISON GAS CHEMICAL WEAPONS CONVENTION
→˓EXECUTIVE SESSION

At first glance, most of these topics seem relatively interpretable: topic 1 looks to be about medical device manufac-
turing and liability, topic 6 is focused on the late 90s Kosovo War, topic 9 deals with chemical weapons and related
treaties, etc. Seems reasonable!

We can also visualize the relationship between terms and topics using a “termite” plot, where the area of each circle is
proportional to a term’s weight in a given topic. To aid the eye, we’ve highlighted those topics called out above:

>>> _ = model.termite_plot(doc_term_matrix, id_to_term, n_terms=30, highlight_
→˓topics=[1, 6, 9])

4.4. Tutorials 27

textacy Documentation, Release 0.12.0

In this tutorial, we learned how to

• load text+metadata records from a dataset

• add many records to a corpus using a customized spaCy language pipeline

• extract and stringify higher-level “terms” to represent a document

• transform a collection of documents into a doc-term matrix

• fit, inspect, and visualize a topic model

28 Chapter 4. contents

textacy Documentation, Release 0.12.0

4.5 API Reference

4.5.1 Lang, Doc, Corpus

textacy.spacier.core: Convenient entry point for loading spaCy language pipelines and making spaCy docs.

textacy.spacier.core.load_spacy_lang(name: str | pathlib.Path, **kwargs)→ Language
Load a spaCy Language — a shared vocabulary and language-specific data for tokenizing text, and (if avail-
able) model data and a processing pipeline containing a sequence of components for annotating a document —
and cache results, for quick reloading as needed.

Note that as of spaCy v3, for which pipeline aliases are no longer allowed, this function is just a convenient
access point to underlying spacy.load().

>>> en_nlp = textacy.load_spacy_lang("en_core_web_sm")
>>> en_nlp = textacy.load_spacy_lang("en_core_web_sm", disable=("parser",))
>>> textacy.load_spacy_lang("ar")
...
OSError: [E050] Can't find model 'ar'. It doesn't seem to be a Python package or
→˓a valid path to a data directory.

Parameters

• name – Name or path to the spaCy language pipeline to load.

• **kwargs –

Note: Although spaCy’s API specifies some kwargs as List[str], here we require Tuple[str, ...]
equivalents. Language pipelines are stored in an LRU cache with unique identifiers generated from the hash of
the function name and args — and lists aren’t hashable.

Returns Loaded spaCy Language.

Raises OSError –

See also:

https://spacy.io/api/top-level#spacy.load

textacy.spacier.core.make_spacy_doc(data: Union[str, textacy.types.Record,
spacy.tokens.doc.Doc], lang: Union[str, path-
lib.Path, spacy.language.Language, Callable[[str],
str], Callable[[str], pathlib.Path], Callable[[str],
spacy.language.Language]], *, chunk_size: Op-
tional[int] = None)→ spacy.tokens.doc.Doc

Make a spacy.tokens.Doc from valid inputs, and automatically load/validate spacy.language.
Language pipelines to process data.

Make a Doc from text:

>>> text = "To be, or not to be, that is the question."
>>> doc = make_spacy_doc(text, "en_core_web_sm")
>>> doc._.preview
'Doc(13 tokens: "To be, or not to be, that is the question.")'

Make a Doc from a (text, metadata) pair, aka a “record”:

4.5. API Reference 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/exceptions.html#OSError
https://spacy.io/api/top-level#spacy.load
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

>>> record = (text, {"author": "Shakespeare, William"})
>>> doc = make_spacy_doc(record, "en_core_web_sm")
>>> doc._.preview
'Doc(13 tokens: "To be, or not to be, that is the question.")'
>>> doc._.meta
{'author': 'Shakespeare, William'}

Specify the language pipeline used to process the text in a few different ways:

>>> make_spacy_doc(text, lang="en_core_web_sm")
>>> make_spacy_doc(text, lang=textacy.load_spacy_lang("en_core_web_sm"))
>>> make_spacy_doc(text, lang=lambda txt: "en_core_web_sm")

Ensure that an already-processed Doc is compatible with lang:

>>> spacy_lang = textacy.load_spacy_lang("en_core_web_sm")
>>> doc = spacy_lang(text)
>>> make_spacy_doc(doc, lang="en_core_web_sm")
>>> make_spacy_doc(doc, lang="es_core_news_sm")
...
ValueError: `spacy.Vocab` used to process document must be the same as that used
→˓by the `lang` pipeline ('es_core_news_sm')

Parameters

• data – Make a spacy.tokens.Doc from a text or (text, metadata) pair. If already a
Doc, ensure that it’s compatible with lang to avoid surprises downstream, and return it
as-is.

• lang – Language with which spaCy processes (or processed) data, represented as the full
name of a spaCy language pipeline, the path on disk to it, an already instantiated pipeline,
or a callable function that takes the text component of data and outputs one of the above
representations.

• chunk_size – Size of chunks in number of characters into which text will be split
before processing each via spaCy and concatenating the results into a single Doc.

Note: This is intended as a workaround for processing very long texts, for which spaCy
is unable to allocate enough RAM. For best performance, chunk size should be somewhere
between 1e3 and 1e7 characters, depending on how much RAM you have available.

Since chunking is done by character, chunks’ boundaries likely won’t respect natural lan-
guage segmentation, and as a result spaCy’s models may make mistakes on sentences/words
that cross them.

Returns Processed spaCy Doc.

Raises

• TypeError –

• ValueError –

textacy.spacier.core.get_doc_preview(doc: spacy.tokens.doc.Doc)→ str
Get a short preview of doc, including the number of tokens and a snippet. Typically used as a custom extension,
like doc._.preview .

30 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

textacy.spacier.core.get_doc_meta(doc: spacy.tokens.doc.Doc)→ dict
Get custom metadata added to doc . Typically used as a custom extension, like doc._.meta .

textacy.spacier.core.set_doc_meta(doc: spacy.tokens.doc.Doc, value: dict)→ None
Add custom metadata value to doc . Typically used as a custom extension, like doc._.meta = value .

textacy.corpus: Class for working with a collection of spaCy Doc s. Includes functionality for easily adding,
getting, and removing documents; saving to / loading their data from disk; and tracking basic corpus statistics.

class textacy.corpus.Corpus(lang: Union[str, pathlib.Path, spacy.language.Language], data: Op-
tional[Union[str, textacy.types.Record, spacy.tokens.doc.Doc,
Iterable[str], Iterable[textacy.types.Record], Iter-
able[spacy.tokens.doc.Doc]]] = None)

An ordered collection of spacy.tokens.Doc, all of the same language and sharing the same spacy.
language.Language processing pipeline and vocabulary, with data held in-memory.

Initialize from a Language name or instance and (optionally) one or a stream of texts or (text, metadata) pairs:

>>> ds = textacy.datasets.CapitolWords()
>>> records = ds.records(limit=50)
>>> corpus = textacy.Corpus("en_core_web_sm", data=records)
>>> print(corpus)
Corpus(50 docs, 32175 tokens)

Add or remove documents, with automatic updating of corpus statistics:

>>> texts = ds.texts(congress=114, limit=25)
>>> corpus.add(texts)
>>> corpus.add("If Burton were a member of Congress, here's what he'd say.")
>>> print(corpus)
Corpus(76 docs, 55906 tokens)
>>> corpus.remove(lambda doc: doc._.meta.get("speaker_name") == "Rick Santorum")
>>> print(corpus)
Corpus(61 docs, 48567 tokens)

Get subsets of documents matching your particular use case:

>>> match_func = lambda doc: doc._.meta.get("speaker_name") == "Bernie Sanders"
>>> for doc in corpus.get(match_func, limit=3):
... print(doc._.preview)
Doc(159 tokens: "Mr. Speaker, 480,000 Federal employees are work...")
Doc(336 tokens: "Mr. Speaker, I thank the gentleman for yielding...")
Doc(177 tokens: "Mr. Speaker, if we want to understand why in th...")

Get or remove documents by indexing, too:

>>> corpus[0]._.preview
'Doc(159 tokens: "Mr. Speaker, 480,000 Federal employees are work...")'
>>> [doc._.preview for doc in corpus[:3]]
['Doc(159 tokens: "Mr. Speaker, 480,000 Federal employees are work...")',
'Doc(219 tokens: "Mr. Speaker, a relationship, to work and surviv...")',
'Doc(336 tokens: "Mr. Speaker, I thank the gentleman for yielding...")']
>>> del corpus[:5]
>>> print(corpus)
Corpus(56 docs, 41573 tokens)

Compute basic corpus statistics:

4.5. API Reference 31

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

>>> corpus.n_docs, corpus.n_sents, corpus.n_tokens
(56, 1771, 41573)
>>> word_counts = corpus.word_counts(by="lemma_")
>>> sorted(word_counts.items(), key=lambda x: x[1], reverse=True)[:5]
[('-PRON-', 2553), ('people', 215), ('year', 148), ('Mr.', 139), ('$', 137)]
>>> word_doc_counts = corpus.word_doc_counts(by="lemma_", weighting="freq")
>>> sorted(word_doc_counts.items(), key=lambda x: x[1], reverse=True)[:5]
[('-PRON-', 0.9821428571428571),
('Mr.', 0.7678571428571429),
('President', 0.5),
('people', 0.48214285714285715),
('need', 0.44642857142857145)]

Save corpus data to and load from disk:

>>> corpus.save("./cw_sample.bin.gz")
>>> corpus = textacy.Corpus.load("en_core_web_sm", "./cw_sample.bin.gz")
>>> print(corpus)
Corpus(56 docs, 41573 tokens)

Parameters

• lang – Language with which spaCy processes (or processed) all documents added to the
corpus, whether as data now or later.

Pass the name of a spacy language pipeline (e.g. “en_core_web_sm”), or an already-
instantiated spacy.language.Language object.

A given / detected language string is then used to instantiate a corresponding Language
with all default components enabled.

• data – One or a stream of texts, records, or spacy.tokens.Doc s to be added to the
corpus.

See also:

Corpus.add()

lang

Type str

spacy_lang

Type spacy.language.Language

docs

Type List[spacy.tokens.doc.Doc]

n_docs

Type int

n_sents

Type int

n_tokens

Type int

32 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

add(data: Union[str, textacy.types.Record, spacy.tokens.doc.Doc, Iterable[str], Iter-
able[textacy.types.Record], Iterable[spacy.tokens.doc.Doc]], batch_size: int = 1000, n_process:
int = 1)
Add one or a stream of texts, records, or spacy.tokens.Doc s to the corpus, ensuring that all process-
ing is or has already been done by the Corpus.spacy_lang pipeline.

Parameters

• data –

• batch_size – Number of texts to buffer when processing with spaCy.

• n_process – Number of parallel processors to run when processing. If -1, this is set to
multiprocessing.cpu_count().

Note: This feature is only applies when data is a sequence of texts or records.

See also:

• Corpus.add_text()

• Corpus.add_texts()

• Corpus.add_record()

• Corpus.add_records()

• Corpus.add_doc()

• Corpus.add_docs()

add_text(text: str)→ None
Add one text to the corpus, processing it into a spacy.tokens.Doc using the Corpus.spacy_lang
pipeline.

Parameters text (str) –

add_texts(texts: Iterable[str], batch_size: int = 1000, n_process: int = 1)→ None
Add a stream of texts to the corpus, efficiently processing them into spacy.tokens.Doc s using the
Corpus.spacy_lang pipeline.

Parameters

• texts – Sequence of texts to process and add to corpus.

• batch_size – Number of texts to buffer when processing with spaCy.

• n_process – Number of parallel processors to run when processing. If -1, this is set to
multiprocessing.cpu_count().

Note: This feature is only available in spaCy 2.2.2+.

add_record(record: textacy.types.Record)→ None
Add one record to the corpus, processing it into a spacy.tokens.Doc using the Corpus.
spacy_lang pipeline.

Parameters record –

4.5. API Reference 33

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

textacy Documentation, Release 0.12.0

add_records(records: Iterable[textacy.types.Record], batch_size: int = 1000, n_process: int = 1)→
None

Add a stream of records to the corpus, efficiently processing them into spacy.tokens.Doc s using the
Corpus.spacy_lang pipeline.

Parameters

• records – Sequence of records to process and add to corpus.

• batch_size – Number of texts to buffer when processing with spaCy.

• n_process – Number of parallel processors to run when processing. If -1, this is set to
multiprocessing.cpu_count().

Note: This feature is only available in spaCy 2.2.2+.

add_doc(doc: spacy.tokens.doc.Doc)→ None
Add one spacy.tokens.Doc to the corpus, provided it was processed using the Corpus.
spacy_lang pipeline.

Parameters doc –

add_docs(docs: Iterable[spacy.tokens.doc.Doc])→ None
Add a stream of spacy.tokens.Doc s to the corpus, provided they were processed using the Corpus.
spacy_lang pipeline.

Parameters docs –

get(match_func: Callable[[spacy.tokens.doc.Doc], bool], limit: Optional[int] = None) → Iter-
able[spacy.tokens.doc.Doc]
Get all (or N <= limit) docs in Corpus for which match_func(doc) is True.

Parameters

• match_func – Function that takes a spacy.tokens.Doc as input and returns a
boolean value. For example:

Corpus.get(lambda x: len(x) >= 100)

gets all docs with at least 100 tokens. And:

Corpus.get(lambda doc: doc._.meta["author"] == "Burton DeWilde")

gets all docs whose author was given as ‘Burton DeWilde’.

• limit – Maximum number of matched docs to return.

Yields spacy.tokens.Doc – Next document passing match_func.

Tip: To get doc(s) by index, treat Corpus as a list and use Python’s usual indexing and slicing:
Corpus[0] gets the first document in the corpus; Corpus[:5] gets the first 5; etc.

remove(match_func: Callable[[spacy.tokens.doc.Doc], bool], limit: Optional[int] = None)→ None
Remove all (or N <= limit) docs in Corpus for which match_func(doc) is True. Corpus
doc/sent/token counts are adjusted accordingly.

Parameters

• match_func – Function that takes a spacy.tokens.Doc and returns a boolean
value. For example:

34 Chapter 4. contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

textacy Documentation, Release 0.12.0

Corpus.remove(lambda x: len(x) >= 100)

removes docs with at least 100 tokens. And:

Corpus.remove(lambda doc: doc._.meta["author"] == "Burton DeWilde
→˓")

removes docs whose author was given as “Burton DeWilde”.

• limit – Maximum number of matched docs to remove.

Tip: To remove doc(s) by index, treat Corpus as a list and use Python’s usual indexing and slicing: del
Corpus[0] removes the first document in the corpus; del Corpus[:5] removes the first 5; etc.

property vectors
Constituent docs’ word vectors stacked in a 2d array.

property vector_norms
Constituent docs’ L2-normalized word vectors stacked in a 2d array.

word_counts(*, by: Literal[lemma, lower, norm, orth, lemma_, lower_, norm_, orth_] = 'lemma',
weighting: Literal[count, freq] = 'count', **kwargs) → Dict[int, int | float] | Dict[str,
int | float]

Map the set of unique words in Corpus to their counts as absolute, relative, or binary frequencies of
occurence, similar to Doc._.to_bag_of_words() but aggregated over all docs.

Parameters

• by – Attribute by which spaCy Token s are grouped before counting, as given by
getattr(token, by). If “lemma”, tokens are grouped by their base form w/o in-
flections; if “lower”, by the lowercase form of the token text; if “norm”, by the normalized
form of the token text; if “orth”, by the token text exactly as it appears in documents.
To output keys as strings, append an underscore to any of these options; for example,
“lemma_” groups tokens by their lemmas as strings.

• weighting – Type of weighting to assign to unique words given by by. If “count”,
weights are the absolute number of occurrences (i.e. counts); if “freq”, weights are counts
normalized by the total token count, giving their relative frequency of occurrence.

• **kwargs – Passed directly on to textacy.extract.words() - filter_stops: If
True, stop words are removed before counting. - filter_punct: If True, punctuation tokens
are removed before counting. - filter_nums: If True, number-like tokens are removed
before counting.

Returns Mapping of a unique word id or string (depending on the value of by) to its absolute,
relative, or binary frequency of occurrence (depending on the value of weighting).

See also:

textacy.representations.matrix_utils.get_term_freqs()

word_doc_counts(*, by: Literal[lemma, lower, norm, orth, lemma_, lower_, norm_, orth_] =
'lemma', weighting: Literal[count, freq, idf] = 'count', smooth_idf: bool = True,
**kwargs)→ Dict[int, int | float] | Dict[str, int | float]

Map the set of unique words in Corpus to their document counts as absolute, relative, or inverse frequen-
cies of occurence.

Parameters

4.5. API Reference 35

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

• by – Attribute by which spaCy Token s are grouped before counting, as given by
getattr(token, by). If “lemma”, tokens are grouped by their base form w/o in-
flections; if “lower”, by the lowercase form of the token text; if “norm”, by the normalized
form of the token text; if “orth”, by the token text exactly as it appears in documents.
To output keys as strings, append an underscore to any of these options; for example,
“lemma_” groups tokens by their lemmas as strings.

• weighting – Type of weighting to assign to unique words given by by. If
“count”, weights are the absolute number of occurrences (i.e. counts); if “freq”,
weights are counts normalized by the total token count, giving their relative fre-
quency of occurrence; if “idf”, weights are the log of the inverse relative frequencies,
i.e. log(n_docs / word_doc_count) or, if smooth_idf is True, log(1 +
(n_docs / word_doc_count)).

• smooth_idf – If True, add 1 to all word doc counts when calculating “idf” weighting,
equivalent to adding a single document to the corpus containing every unique word.

Returns Mapping of a unique word id or string (depending on the value of by) to the number
of documents in which it appears, weighted as absolute, relative, or inverse frequency of
occurrence (depending on the value of weighting).

See also:

textacy.vsm.get_doc_freqs()

agg_metadata(name: str, agg_func: Callable[[Iterable[Any]], Any], default: Optional[Any] =
None)→ Any

Aggregate values for a particular metadata field over all documents in Corpus.

Parameters

• name – Name of metadata field (key) in Doc._.meta.

• agg_func – Callable that accepts an iterable of field values and outputs a single, aggre-
gated result.

• default – Default field value to use if name is not found in a given document’s meta-
data.

Returns Aggregated value for metadata field.

save(filepath: types.PathLike, attrs: Optional[str | Iterable[str] | Literal[auto]] = 'auto',
store_user_data: bool = True)

Save Corpus to disk as binary data.

Parameters

• filepath – Full path to file on disk where Corpus docs data will be saved as a binary
file.

• attrs – List of token attributes to serialize; if “auto”, an appropriate list is inferred
from annotations found on the first Doc; if None, spaCy’s default values are used (https:
//spacy.io/api/docbin#init)

• store_user_data – If True, store user data and values of custom extension attributes
along with core spaCy attributes.

See also:

• Corpus.load()

• textacy.io.write_spacy_docs()

• spacy.tokens.DocBin

36 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://spacy.io/api/docbin#init
https://spacy.io/api/docbin#init

textacy Documentation, Release 0.12.0

classmethod load(lang: Union[str, pathlib.Path, spacy.language.Language], filepath: Union[str,
pathlib.Path])→ Corpus

Load previously saved Corpus binary data, reproduce the original :class:`spacy.tokens.Doc`s tokens and
annotations, and instantiate a new :class:`Corpus from them.

Parameters

• lang –

• filepath – Full path to file on disk where Corpus data was previously saved as a
binary file.

Returns Initialized corpus.

See also:

• Corpus.save()

• textacy.io.read_spacy_docs()

• spacy.tokens.DocBin

Custom Extensions

textacy.spacier.extensions: Functions for getting, setting, and removing collections of custom extensions
on spaCy classes.

textacy.spacier.extensions.get_doc_extensions(name: str) → Dict[str, Dict[str, tex-
tacy.types.DocExtFunc]]

Get a collection of custom extensions that can be set on or removed from the global spacy.tokens.Doc ,
specified by name .

Parameters name – Name of a function registered in doc_extensions_registry that re-
turns a collection of custom doc extensions as a dictionary. For example, “extract” or “ex-
tract.keyterms”.

Note: If name isn’t found, you may need to import the module from which it comes. For example, the
“text_stats” collection of doc extensions is only available after running import textacy.text_stats .

textacy.spacier.extensions.set_doc_extensions(name: str, force: bool = True)
Set a collection of custom extensions on the global spacy.tokens.Doc , specified by name .

Parameters

• name – Name of a function registered in doc_extensions_registry that returns
a collection of custom doc extensions as a dictionary. For example, “extract” or “ex-
tract.keyterms”.

• force – If True, set extensions even if existing extensions already exist; otherwise, don’t
overwrite existing extensions.

textacy.spacier.extensions.remove_doc_extensions(name: str)
Remove a collection of custom extensions from the global spacy.tokens.Doc , specified by name .

Parameters name – Name of a function registered in doc_extensions_registry that re-
turns a collection of custom doc extensions as a dictionary. For example, “extract” or “ex-
tract.keyterms”.

4.5. API Reference 37

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

4.5.2 Datasets and Resources

capitol_words.CapitolWords Stream a collection of Congressional speeches from a
compressed json file on disk, either as texts or text +
metadata pairs.

supreme_court.SupremeCourt Stream a collection of US Supreme Court decisions
from a compressed json file on disk, either as texts or
text + metadata pairs.

wikimedia.Wikipedia Stream a collection of Wikipedia pages from a version-
and language-specific database dump, either as texts or
text + metadata pairs.

wikimedia.Wikinews Stream a collection of Wikinews pages from a version-
and language-specific database dump, either as texts or
text + metadata pairs.

reddit_comments.RedditComments Stream a collection of Reddit comments from 1 or more
compressed files on disk, either as texts or text + meta-
data pairs.

oxford_text_archive.OxfordTextArchive Stream a collection of English-language literary works
from text files on disk, either as texts or text + metadata
pairs.

imdb.IMDB Stream a collection of IMDB movie reviews from text
files on disk, either as texts or text + metadata pairs.

udhr.UDHR Stream a collection of UDHR translations from disk, ei-
ther as texts or text + metadata pairs.

concept_net.ConceptNet Interface to ConceptNet, a multilingual knowledge
base representing common words and phrases and the
common-sense relationships between them.

depeche_mood.DepecheMood Interface to DepecheMood, an emotion lexicon for En-
glish and Italian text.

Capitol Words Congressional speeches

A collection of ~11k (almost all) speeches given by the main protagonists of the 2016 U.S. Presidential election that
had previously served in the U.S. Congress – including Hillary Clinton, Bernie Sanders, Barack Obama, Ted Cruz,
and John Kasich – from January 1996 through June 2016.

Records include the following data:

• text: Full text of the Congressperson’s remarks.

• title: Title of the speech, in all caps.

• date: Date on which the speech was given, as an ISO-standard string.

• speaker_name: First and last name of the speaker.

• speaker_party: Political party of the speaker: “R” for Republican, “D” for Democrat, “I” for Independent.

• congress: Number of the Congress in which the speech was given: ranges continuously between 104 and
114.

• chamber: Chamber of Congress in which the speech was given: almost all are either “House” or “Senate”,
with a small number of “Extensions”.

38 Chapter 4. contents

textacy Documentation, Release 0.12.0

This dataset was derived from data provided by the (now defunct) Sunlight Foundation’s Capitol Words API.

class textacy.datasets.capitol_words.CapitolWords(data_dir: Union[str,
pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/envs/stable/lib/python3.8/site-
packages/textacy/data/capitol_words'))

Stream a collection of Congressional speeches from a compressed json file on disk, either as texts or text +
metadata pairs.

Download the data (one time only!) from the textacy-data repo (https://github.com/bdewilde/textacy-data), and
save its contents to disk:

>>> import textacy.datasets
>>> ds = textacy.datasets.CapitolWords()
>>> ds.download()
>>> ds.info
{'name': 'capitol_words',
'site_url': 'http://sunlightlabs.github.io/Capitol-Words/',
'description': 'Collection of ~11k speeches in the Congressional Record given by
→˓notable U.S. politicians between Jan 1996 and Jun 2016.'}

Iterate over speeches as texts or records with both text and metadata:

>>> for text in ds.texts(limit=3):
... print(text, end="\n\n")
>>> for text, meta in ds.records(limit=3):
... print("\n{} ({})\n{}".format(meta["title"], meta["speaker_name"], text))

Filter speeches by a variety of metadata fields and text length:

>>> for text, meta in ds.records(speaker_name="Bernie Sanders", limit=3):
... print("\n{}, {}\n{}".format(meta["title"], meta["date"], text))
>>> for text, meta in ds.records(speaker_party="D", congress={110, 111, 112},
... chamber="Senate", limit=3):
... print(meta["title"], meta["speaker_name"], meta["date"])
>>> for text, meta in ds.records(speaker_name={"Barack Obama", "Hillary Clinton"},
... date_range=("2005-01-01", "2005-12-31")):
... print(meta["title"], meta["speaker_name"], meta["date"])
>>> for text in ds.texts(min_len=50000):
... print(len(text))

Stream speeches into a textacy.Corpus:

>>> textacy.Corpus("en", data=ota.records(limit=100))
Corpus(100 docs; 70496 tokens)

Parameters data_dir – Path to directory on disk under which dataset is stored, i.e. /path/to/
data_dir/capitol_words.

full_date_range
First and last dates for which speeches are available, each as an ISO-formatted string (YYYY-MM-DD).

Type ClassVar[Tuple[str, str]]

speaker_names
Full names of all speakers included in corpus, e.g. “Bernie Sanders”.

Type ClassVar[Set[str]]

4.5. API Reference 39

http://sunlightlabs.github.io/Capitol-Words/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://github.com/bdewilde/textacy-data
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

speaker_parties
All distinct political parties of speakers, e.g. “R”.

Type ClassVar[Set[str]]

chambers
All distinct chambers in which speeches were given, e.g. “House”.

Type ClassVar[Set[str]]

congresses
All distinct numbers of the congresses in which speeches were given, e.g. 114.

Type ClassVar[Set[int]]

property filepath
Full path on disk for CapitolWords data as compressed json file. None if file is not found, e.g. has not yet
been downloaded.

download(*, force: bool = False)→ None
Download the data as a Python version-specific compressed json file and save it to disk under the
data_dir directory.

Parameters force – If True, download the dataset, even if it already exists on disk under
data_dir.

texts(*, speaker_name: Optional[str | Set[str]] = None, speaker_party: Optional[str | Set[str]] =
None, chamber: Optional[str | Set[str]] = None, congress: Optional[int | Set[int]] = None,
date_range: Optional[Tuple[Optional[str], Optional[str]]] = None, min_len: Optional[int] =
None, limit: Optional[int] = None)→ Iterable[str]

Iterate over speeches in this dataset, optionally filtering by a variety of metadata and/or text length, and
yield texts only, in chronological order.

Parameters

• speaker_name – Filter speeches by the speakers’ name; see CapitolWords.
speaker_names.

• speaker_party – Filter speeches by the speakers’ party; see CapitolWords.
speaker_parties.

• chamber – Filter speeches by the chamber in which they were given; see
CapitolWords.chambers.

• congress – Filter speeches by the congress in which they were given; see
CapitolWords.congresses.

• date_range – Filter speeches by the date on which they were given. Both start and end
date must be specified, but a null value for either will be replaced by the min/max date
available for the dataset.

• min_len – Filter texts by the length (# characters) of their text content.

• limit – Yield no more than limit texts that match all specified filters.

Yields Full text of next (by chronological order) speech in dataset passing all filter params.

Raises ValueError – If any filtering options are invalid.

records(*, speaker_name: Optional[str | Set[str]] = None, speaker_party: Optional[str | Set[str]] =
None, chamber: Optional[str | Set[str]] = None, congress: Optional[int | Set[int]] = None,
date_range: Optional[Tuple[Optional[str], Optional[str]]] = None, min_len: Optional[int]
= None, limit: Optional[int] = None)→ Iterable[types.Record]

Iterate over speeches in this dataset, optionally filtering by a variety of metadata and/or text length, and

40 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

yield text + metadata pairs, in chronological order.

Parameters

• speaker_name – Filter speeches by the speakers’ name; see CapitolWords.
speaker_names.

• speaker_party – Filter speeches by the speakers’ party; see CapitolWords.
speaker_parties.

• chamber – Filter speeches by the chamber in which they were given; see
CapitolWords.chambers.

• congress – Filter speeches by the congress in which they were given; see
CapitolWords.congresses.

• date_range – Filter speeches by the date on which they were given. Both start and end
date must be specified, but a null value for either will be replaced by the min/max date
available for the dataset.

• min_len – Filter speeches by the length (# characters) of their text content.

• limit – Yield no more than limit speeches that match all specified filters.

Yields Full text of the next (by chronological order) speech in dataset passing all filters, and its
corresponding metadata.

Raises ValueError – If any filtering options are invalid.

Supreme Court decisions

A collection of ~8.4k (almost all) decisions issued by the U.S. Supreme Court from November 1946 through June
2016 – the “modern” era.

Records include the following data:

• text: Full text of the Court’s decision.

• case_name: Name of the court case, in all caps.

• argument_date: Date on which the case was argued before the Court, as an ISO-formatted string (“YYYY-
MM-DD”).

• decision_date: Date on which the Court’s decision was announced, as an ISO-formatted string (“YYYY-
MM-DD”).

• decision_direction: Ideological direction of the majority’s decision: one of “conservative”, “liberal”, or
“unspecifiable”.

• maj_opinion_author: Name of the majority opinion’s author, if available and identifiable, as an integer
code whose mapping is given in SupremeCourt.opinion_author_codes.

• n_maj_votes: Number of justices voting in the majority.

• n_min_votes: Number of justices voting in the minority.

• issue: Subject matter of the case’s core disagreement (e.g. “affirmative action”) rather than its legal basis (e.g.
“the equal protection clause”), as a string code whose mapping is given in SupremeCourt.issue_codes.

• issue_area: Higher-level categorization of the issue (e.g. “Civil Rights”), as an integer code whose mapping
is given in SupremeCourt.issue_area_codes.

• us_cite_id: Citation identifier for each case according to the official United States Reports. Note: There are
~300 cases with duplicate ids, and it’s not clear if that’s “correct” or a data quality problem.

4.5. API Reference 41

https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.12.0

The text in this dataset was derived from FindLaw’s searchable database of court cases: http://caselaw.findlaw.com/
court/us-supreme-court.

The metadata was extracted without modification from the Supreme Court Database: Harold J. Spaeth, Lee Epstein, et
al. 2016 Supreme Court Database, Version 2016 Release 1. http://supremecourtdatabase.org. Its license is CC BY-NC
3.0 US: https://creativecommons.org/licenses/by-nc/3.0/us/.

This dataset’s creation was inspired by a blog post by Emily Barry: http://www.emilyinamillion.me/blog/2016/7/13/
visualizing-supreme-court-topics-over-time.

The two datasets were merged through much munging and a carefully trained model using the dedupe package.
The model’s duplicate threshold was set so as to maximize the F-score where precision had twice as much weight as
recall. Still, given occasionally baffling inconsistencies in case naming, citation ids, and decision dates, a very small
percentage of texts may be incorrectly matched to metadata. (Sorry.)

class textacy.datasets.supreme_court.SupremeCourt(data_dir: Union[str,
pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/envs/stable/lib/python3.8/site-
packages/textacy/data/supreme_court'))

Stream a collection of US Supreme Court decisions from a compressed json file on disk, either as texts or text +
metadata pairs.

Download the data (one time only!) from the textacy-data repo (https://github.com/bdewilde/textacy-data), and
save its contents to disk:

>>> import textacy.datasets
>>> ds = textacy.datasets.SupremeCourt()
>>> ds.download()
>>> ds.info
{'name': 'supreme_court',
'site_url': 'http://caselaw.findlaw.com/court/us-supreme-court',
'description': 'Collection of ~8.4k decisions issued by the U.S. Supreme Court
→˓between November 1946 and June 2016.'}

Iterate over decisions as texts or records with both text and metadata:

>>> for text in ds.texts(limit=3):
... print(text[:500], end="\n\n")
>>> for text, meta in ds.records(limit=3):
... print("\n{} ({})\n{}".format(meta["case_name"], meta["decision_date"],
→˓text[:500]))

Filter decisions by a variety of metadata fields and text length:

>>> for text, meta in ds.records(opinion_author=109, limit=3): # Notorious RBG!
... print(meta["case_name"], meta["decision_direction"], meta["n_maj_votes"])
>>> for text, meta in ds.records(decision_direction="liberal",
... issue_area={1, 9, 10}, limit=3):
... print(meta["case_name"], meta["maj_opinion_author"], meta["n_maj_votes"])
>>> for text, meta in ds.records(opinion_author=102, date_range=('1985-02-11',
→˓'1986-02-11')):
... print("\n{} ({})".format(meta["case_name"], meta["decision_date"]))
... print(ds.issue_codes[meta["issue"]], "=>", meta["decision_direction"])
>>> for text in ds.texts(min_len=250000):
... print(len(text))

Stream decisions into a textacy.Corpus:

42 Chapter 4. contents

http://caselaw.findlaw.com/court/us-supreme-court
http://caselaw.findlaw.com/court/us-supreme-court
http://supremecourtdatabase.org
https://creativecommons.org/licenses/by-nc/3.0/us/
http://www.emilyinamillion.me/blog/2016/7/13/visualizing-supreme-court-topics-over-time
http://www.emilyinamillion.me/blog/2016/7/13/visualizing-supreme-court-topics-over-time
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://github.com/bdewilde/textacy-data

textacy Documentation, Release 0.12.0

>>> textacy.Corpus("en", data=ds.records(limit=25))
Corpus(25 docs; 136696 tokens)

Parameters data_dir (str or pathlib.Path) – Path to directory on disk under which the data
is stored, i.e. /path/to/data_dir/supreme_court.

full_date_range
First and last dates for which decisions are available, each as an ISO-formatted string (YYYY-MM-DD).

Type ClassVar[Tuple[str, str]]

decision_directions
All distinct decision directions, e.g. “liberal”.

Type ClassVar[Set[str]]

opinion_author_codes
Mapping of majority opinion authors, from id code to full name.

Type ClassVar[Dict[int, Optional[str]]]

issue_area_codes
Mapping of high-level issue area of the case’s core disagreement, from id code to description.

Type ClassVar[Dict[int, Optional[str]]]

issue_codes
Mapping of the specific issue of the case’s core disagreement, from id code to description.

Type ClassVar[Dict[str, str]]

property filepath
Full path on disk for SupremeCourt data as compressed json file. None if file is not found, e.g. has not yet
been downloaded.

download(*, force: bool = False)→ None
Download the data as a Python version-specific compressed json file and save it to disk under the
data_dir directory.

Parameters force – If True, download the dataset, even if it already exists on disk under
data_dir.

texts(*, opinion_author: Optional[int | Set[int]] = None, decision_direction: Optional[str | Set[str]]
= None, issue_area: Optional[int | Set[int]] = None, date_range: Optional[Tuple[Optional[str],
Optional[str]]] = None, min_len: Optional[int] = None, limit: Optional[int] = None) → Iter-
able[str]

Iterate over decisions in this dataset, optionally filtering by a variety of metadata and/or text length, and
yield texts only, in chronological order by decision date.

Parameters

• opinion_author – Filter decisions by the name(s) of the majority opin-
ion’s author, coded as an integer whose mapping is given in SupremeCourt.
opinion_author_codes.

• decision_direction – Filter decisions by the ideological direction of the majority’s
decision; see SupremeCourt.decision_directions.

• issue_area – Filter decisions by the issue area of the case’s subject matter, coded as
an integer whose mapping is given in SupremeCourt.issue_area_codes.

4.5. API Reference 43

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

• date_range – Filter decisions by the date on which they were decided; both start and
end date must be specified, but a null value for either will be replaced by the min/max date
available for the dataset.

• min_len – Filter decisions by the length (# characters) of their text content.

• limit – Yield no more than limit decisions that match all specified filters.

Yields Text of the next decision in dataset passing all filters.

Raises ValueError – If any filtering options are invalid.

records(*, opinion_author: Optional[int | Set[int]] = None, decision_direction: Optional[str
| Set[str]] = None, issue_area: Optional[int | Set[int]] = None, date_range: Op-
tional[Tuple[Optional[str], Optional[str]]] = None, min_len: Optional[int] = None, limit:
Optional[int] = None)→ Iterable[types.Record]

Iterate over decisions in this dataset, optionally filtering by a variety of metadata and/or text length, and
yield text + metadata pairs, in chronological order by decision date.

Parameters

• opinion_author – Filter decisions by the name(s) of the majority opin-
ion’s author, coded as an integer whose mapping is given in SupremeCourt.
opinion_author_codes.

• decision_direction – Filter decisions by the ideological direction of the majority’s
decision; see SupremeCourt.decision_directions.

• issue_area – Filter decisions by the issue area of the case’s subject matter, coded as
an integer whose mapping is given in SupremeCourt.issue_area_codes.

• date_range – Filter decisions by the date on which they were decided; both start and
end date must be specified, but a null value for either will be replaced by the min/max date
available for the dataset.

• min_len – Filter decisions by the length (# characters) of their text content.

• limit – Yield no more than limit decisions that match all specified filters.

Yields Text of the next decision in dataset passing all filters, and its corresponding metadata.

Raises ValueError – If any filtering options are invalid.

Wikimedia articles

All articles for a given Wikimedia project, specified by language and version.

Records include the following key fields (plus a few others):

• text: Plain text content of the wiki page – no wiki markup!

• title: Title of the wiki page.

• wiki_links: A list of other wiki pages linked to from this page.

• ext_links: A list of external URLs linked to from this page.

• categories: A list of categories to which this wiki page belongs.

• dt_created: Date on which the wiki page was first created.

• page_id: Unique identifier of the wiki page, usable in Wikimedia APIs.

44 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.12.0

Datasets are generated by the Wikimedia Foundation for a variety of projects, such as Wikipedia and Wikinews.
The source files are meant for search indexes, so they’re dumped in Elasticsearch bulk insert format – basically, a
compressed JSON file with one record per line. For more information, refer to https://meta.wikimedia.org/wiki/Data_
dumps.

class textacy.datasets.wikimedia.Wikimedia(name, meta, project, data_dir, lang='en', ver-
sion='current', namespace=0)

Base class for project-specific Wikimedia datasets. See:

• Wikipedia

• Wikinews

property filepath
Full path on disk for the Wikimedia CirrusSearch db dump corresponding to the project, lang, and
version.

Type str

download(*, force: bool = False)→ None
Download the Wikimedia CirrusSearch db dump corresponding to the given project, lang, and
version as a compressed JSON file, and save it to disk under the data_dir directory.

Parameters force – If True, download the dataset, even if it already exists on disk under
data_dir.

Note: Some datasets are quite large (e.g. English Wikipedia is ~28GB) and can take hours to fully
download.

texts(*, category: Optional[str | Set[str]] = None, wiki_link: Optional[str | Set[str]] = None, min_len:
Optional[int] = None, limit: Optional[int] = None)→ Iterable[str]

Iterate over wiki pages in this dataset, optionally filtering by a variety of metadata and/or text length, and
yield texts only, in order of appearance in the db dump file.

Parameters

• category – Filter wiki pages by the categories to which they’ve been assigned. For
multiple values (Set[str]), ANY rather than ALL of the values must be found among a
given page’s categories.

• wiki_link – Filter wiki pages by the other wiki pages to which they’ve been linked.
For multiple values (Set[str]), ANY rather than ALL of the values must be found among a
given page’s wiki links.

• min_len – Filter wiki pages by the length (# characters) of their text content.

• limit – Yield no more than limit wiki pages that match all specified filters.

Yields Text of the next wiki page in dataset passing all filters.

Raises ValueError – If any filtering options are invalid.

records(*, category: Optional[str | Set[str]] = None, wiki_link: Optional[str | Set[str]] = None,
min_len: Optional[int] = None, limit: Optional[int] = None)→ Iterable[types.Record]

Iterate over wiki pages in this dataset, optionally filtering by a variety of metadata and/or text length, and
yield text + metadata pairs, in order of appearance in the db dump file.

Parameters

• category – Filter wiki pages by the categories to which they’ve been assigned. For
multiple values (Set[str]), ANY rather than ALL of the values must be found among a
given page’s categories.

4.5. API Reference 45

https://meta.wikimedia.org/wiki/Data_dumps
https://meta.wikimedia.org/wiki/Data_dumps
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

• wiki_link – Filter wiki pages by the other wiki pages to which they’ve been linked.
For multiple values (Set[str]), ANY rather than ALL of the values must be found among a
given page’s wiki links.

• min_len – Filter wiki pages by the length (# characters) of their text content.

• limit – Yield no more than limit wiki pages that match all specified filters.

Yields Text of the next wiki page in dataset passing all filters, and its corresponding metadata.

Raises ValueError – If any filtering options are invalid.

class textacy.datasets.wikimedia.Wikipedia(data_dir: Union[str, pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/envs/stable/lib/python3.8/site-
packages/textacy/data/wikipedia'), lang: str =
'en', version: str = 'current', namespace: int =
0)

Stream a collection of Wikipedia pages from a version- and language-specific database dump, either as texts or
text + metadata pairs.

Download a database dump (one time only!) and save its contents to disk:

>>> import textacy.datasets
>>> ds = textacy.datasets.Wikipedia(lang="en", version="current")
>>> ds.download()
>>> ds.info
{'name': 'wikipedia',
'site_url': 'https://en.wikipedia.org/wiki/Main_Page',
'description': 'All pages for a given language- and version-specific Wikipedia
→˓site snapshot.'}

Iterate over wiki pages as texts or records with both text and metadata:

>>> for text in ds.texts(limit=5):
... print(text[:500])
>>> for text, meta in ds.records(limit=5):
... print(meta["page_id"], meta["title"])

Filter wiki pages by a variety of metadata fields and text length:

>>> for text, meta in ds.records(category="Living people", limit=5):
... print(meta["title"], meta["categories"])
>>> for text, meta in ds.records(wiki_link="United_States", limit=5):
... print(meta["title"], meta["wiki_links"])
>>> for text in ds.texts(min_len=10000, limit=5):
... print(len(text))

Stream wiki pages into a textacy.Corpus:

>>> textacy.Corpus("en", data=ds.records(min_len=2000, limit=50))
Corpus(50 docs; 72368 tokens)

Parameters

• data_dir – Path to directory on disk under which database dump files
are stored. Each file is expected as {lang}{project}/{version}/
{lang}{project}-{version}-cirrussearch-content.json.gz im-
mediately under this directory.

46 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

• lang – Standard two-letter language code, e.g. “en” => “English”, “de” => “German”.
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

• version – Database dump version to use. Either “current” for the most recently available
version or a date formatted as “YYYYMMDD”. Dumps are produced weekly; check for
available versions at https://dumps.wikimedia.org/other/cirrussearch/.

• namespace – Namespace of the wiki pages to include. Typical, public- facing content is
in the 0 (default) namespace.

class textacy.datasets.wikimedia.Wikinews(data_dir: Union[str, pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/envs/stable/lib/python3.8/site-
packages/textacy/data/wikinews'), lang: str =
'en', version: str = 'current', namespace: int =
0)

Stream a collection of Wikinews pages from a version- and language-specific database dump, either as texts or
text + metadata pairs.

Download a database dump (one time only!) and save its contents to disk:

>>> import textacy.datasets
>>> ds = textacy.datasets.Wikinews(lang="en", version="current")
>>> ds.download()
>>> ds.info
{'name': 'wikinews',
'site_url': 'https://en.wikinews.org/wiki/Main_Page',
'description': 'All pages for a given language- and version-specific Wikinews
→˓site snapshot.'}

Iterate over wiki pages as texts or records with both text and metadata:

>>> for text in ds.texts(limit=5):
... print(text[:500])
>>> for text, meta in ds.records(limit=5):
... print(meta["page_id"], meta["title"])

Filter wiki pages by a variety of metadata fields and text length:

>>> for text, meta in ds.records(category="Politics and conflicts", limit=5):
... print(meta["title"], meta["categories"])
>>> for text, meta in ds.records(wiki_link="Reuters", limit=5):
... print(meta["title"], meta["wiki_links"])
>>> for text in ds.texts(min_len=5000, limit=5):
... print(len(text))

Stream wiki pages into a textacy.Corpus:

>>> textacy.Corpus("en", data=ds.records(limit=100))
Corpus(100 docs; 33092 tokens)

Parameters

• data_dir – Path to directory on disk under which database dump files
are stored. Each file is expected as {lang}{project}/{version}/
{lang}{project}-{version}-cirrussearch-content.json.gz im-
mediately under this directory.

• lang – Standard two-letter language code, e.g. “en” => “English”, “de” => “German”.
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

4.5. API Reference 47

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://dumps.wikimedia.org/other/cirrussearch/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

textacy Documentation, Release 0.12.0

• version – Database dump version to use. Either “current” for the most recently available
version or a date formatted as “YYYYMMDD”. Dumps are produced weekly; check for
available versions at https://dumps.wikimedia.org/other/cirrussearch/.

• namespace – Namespace of the wiki pages to include. Typical, public- facing content is
in the 0 (default) namespace.

Reddit comments

A collection of up to ~1.5 billion Reddit comments posted from October 2007 through May 2015.

Records include the following key fields (plus a few others):

• body: Full text of the comment.

• created_utc: Date on which the comment was posted.

• subreddit: Sub-reddit in which the comment was posted, excluding the familiar “/r/” prefix.

• score: Net score (upvotes - downvotes) on the comment.

• gilded: Number of times this comment received reddit gold.

The raw data was originally collected by /u/Stuck_In_the_Matrix via Reddit’s APIS, and stored for posterity by the
Internet Archive. For more details, refer to https://archive.org/details/2015_reddit_comments_corpus.

class textacy.datasets.reddit_comments.RedditComments(data_dir: Union[str,
pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/envs/stable/lib/python3.8/site-
packages/textacy/data/reddit_comments'))

Stream a collection of Reddit comments from 1 or more compressed files on disk, either as texts or text +
metadata pairs.

Download the data (one time only!) or subsets thereof by specifying a date range:

>>> import textacy.datasets
>>> ds = textacy.datasets.RedditComments()
>>> ds.download(date_range=("2007-10", "2008-03"))
>>> ds.info
{'name': 'reddit_comments',
'site_url': 'https://archive.org/details/2015_reddit_comments_corpus',
'description': 'Collection of ~1.5 billion publicly available Reddit comments
→˓from October 2007 through May 2015.'}

Iterate over comments as texts or records with both text and metadata:

>>> for text in ds.texts(limit=5):
... print(text)
>>> for text, meta in ds.records(limit=5):
... print("\n{} {}\n{}".format(meta["author"], meta["created_utc"], text))

Filter comments by a variety of metadata fields and text length:

>>> for text, meta in ds.records(subreddit="politics", limit=5):
... print(meta["score"], ":", text)
>>> for text, meta in ds.records(date_range=("2008-01", "2008-03"), limit=5):
... print(meta["created_utc"])
>>> for text, meta in ds.records(score_range=(10, None), limit=5):
... print(meta["score"], ":", text)

(continues on next page)

48 Chapter 4. contents

https://dumps.wikimedia.org/other/cirrussearch/
https://archive.org
https://archive.org/details/2015_reddit_comments_corpus
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

textacy Documentation, Release 0.12.0

(continued from previous page)

>>> for text in ds.texts(min_len=2000, limit=5):
... print(len(text))

Stream comments into a textacy.Corpus:

>>> textacy.Corpus("en", data=ds.records(limit=1000))
Corpus(1000 docs; 27582 tokens)

Parameters data_dir – Path to directory on disk under which the data is stored, i.e. /path/
to/data_dir/reddit_comments. Each file covers a given month, as indicated in the
filename like “YYYY/RC_YYYY-MM.bz2”.

full_date_range
First and last dates for which comments are available, each as an ISO-formatted string (YYYY-MM-DD).

Type ClassVar[Tuple[str, str]]

property filepaths
Full paths on disk for all Reddit comments files found under RedditComments.data_dir directory,
sorted in chronological order.

download(*, date_range: Tuple[Optional[str], Optional[str]] = (None, None), force: bool = False)→
None

Download 1 or more monthly Reddit comments files from archive.org and save them to disk under the
data_dir directory.

Parameters

• date_range – Interval specifying the [start, end) dates for which comments files will
be downloaded. Each item must be a str formatted as YYYY-MM or YYYY-MM-DD
(the latter is converted to the corresponding YYYY-MM value). Both start and end values
must be specified, but a null value for either is automatically replaced by the minimum or
maximum valid values, respectively.

• force – If True, download the dataset, even if it already exists on disk under data_dir.

texts(*, subreddit: Optional[str | Set[str]] = None, date_range: Optional[Tuple[Optional[str], Op-
tional[str]]] = None, score_range: Optional[Tuple[Optional[int], Optional[int]]] = None,
min_len: Optional[int] = None, limit: Optional[int] = None)→ Iterable[str]

Iterate over comments (text-only) in 1 or more files of this dataset, optionally filtering by a variety of
metadata and/or text length, in chronological order.

Parameters

• subreddit – Filter comments for those which were posted in the specified subreddit(s).

• date_range – Filter comments for those which were posted within the interval [start,
end). Each item must be a str in ISO-standard format, i.e. some amount of YYYY-MM-
DDTHH:mm:ss. Both start and end values must be specified, but a null value for either is
automatically replaced by the minimum or maximum valid values, respectively.

• score_range – Filter comments for those whose score (# upvotes minus # downvotes)
is within the interval [low, high). Both start and end values must be specified, but a null
value for either is automatically replaced by the minimum or maximum valid values, re-
spectively.

• min_len – Filter comments for those whose body length in chars is at least this long.

• limit – Maximum number of comments passing all filters to yield. If None, all com-
ments are iterated over.

4.5. API Reference 49

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

Yields Text of the next comment in dataset passing all filters.

Raises ValueError – If any filtering options are invalid.

records(*, subreddit: Optional[str | Set[str]] = None, date_range: Optional[Tuple[Optional[str], Op-
tional[str]]] = None, score_range: Optional[Tuple[Optional[int], Optional[int]]] = None,
min_len: Optional[int] = None, limit: Optional[int] = None)→ Iterable[types.Record]

Iterate over comments (including text and metadata) in 1 or more files of this dataset, optionally filtering
by a variety of metadata and/or text length, in chronological order.

Parameters

• subreddit – Filter comments for those which were posted in the specified subreddit(s).

• date_range – Filter comments for those which were posted within the interval [start,
end). Each item must be a str in ISO-standard format, i.e. some amount of YYYY-MM-
DDTHH:mm:ss. Both start and end values must be specified, but a null value for either is
automatically replaced by the minimum or maximum valid values, respectively.

• score_range – Filter comments for those whose score (# upvotes minus # downvotes)
is within the interval [low, high). Both start and end values must be specified, but a null
value for either is automatically replaced by the minimum or maximum valid values, re-
spectively.

• min_len – Filter comments for those whose body length in chars is at least this long.

• limit – Maximum number of comments passing all filters to yield. If None, all com-
ments are iterated over.

Yields Text of the next comment in dataset passing all filters, and its corresponding metadata.

Raises ValueError – If any filtering options are invalid.

Oxford Text Archive literary works

A collection of ~2.7k Creative Commons literary works from the Oxford Text Archive, containing primarily English-
language 16th-20th century literature and history.

Records include the following data:

• text: Full text of the literary work.

• title: Title of the literary work.

• author: Author(s) of the literary work.

• year: Year that the literary work was published.

• url: URL at which literary work can be found online via the OTA.

• id: Unique identifier of the literary work within the OTA.

This dataset was compiled by David Mimno from the Oxford Text Archive and stored in his GitHub repo to avoid
unnecessary scraping of the OTA site. It is downloaded from that repo, and excluding some light cleaning of its
metadata, is reproduced exactly here.

class textacy.datasets.oxford_text_archive.OxfordTextArchive(data_dir:
Union[str,
pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/envs/stable/lib/python3.8/site-
packages/textacy/data/oxford_text_archive'))

Stream a collection of English-language literary works from text files on disk, either as texts or text + metadata
pairs.

50 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

textacy Documentation, Release 0.12.0

Download the data (one time only!), saving and extracting its contents to disk:

>>> import textacy.datasets
>>> ds = textacy.datasets.OxfordTextArchive()
>>> ds.download()
>>> ds.info
{'name': 'oxford_text_archive',
'site_url': 'https://ota.ox.ac.uk/',
'description': 'Collection of ~2.7k Creative Commons texts from the Oxford Text
→˓Archive, containing primarily English-language 16th-20th century literature and
→˓history.'}

Iterate over literary works as texts or records with both text and metadata:

>>> for text in ds.texts(limit=3):
... print(text[:200])
>>> for text, meta in ds.records(limit=3):
... print("\n{}, {}".format(meta["title"], meta["year"]))
... print(text[:300])

Filter literary works by a variety of metadata fields and text length:

>>> for text, meta in ds.records(author="Shakespeare, William", limit=1):
... print("{}\n{}".format(meta["title"], text[:500]))
>>> for text, meta in ds.records(date_range=("1900-01-01", "1990-01-01"),
→˓limit=5):
... print(meta["year"], meta["author"])
>>> for text in ds.texts(min_len=4000000):
... print(len(text))

Stream literary works into a textacy.Corpus:

>>> textacy.Corpus("en", data=ds.records(limit=5))
Corpus(5 docs; 182289 tokens)

Parameters data_dir (str or pathlib.Path) – Path to directory on disk under which dataset
is stored, i.e. /path/to/data_dir/oxford_text_archive.

full_date_range
First and last dates for which works are available, each as an ISO-formatted string (YYYY-MM-DD).

Type ClassVar[Tuple[str, str]]

authors
Full names of all distinct authors included in this dataset, e.g. “Shakespeare, William”.

Type Set[str]

download(*, force: bool = False)→ None
Download the data as a zip archive file, then save it to disk and extract its contents under the
OxfordTextArchive.data_dir directory.

Parameters force – If True, download the dataset, even if it already exists on disk under
data_dir.

texts(*, author: Optional[str | Set[str]] = None, date_range: Optional[Tuple[Optional[str], Op-
tional[str]]] = None, min_len: Optional[int] = None, limit: Optional[int] = None) → Iter-
able[str]

Iterate over works in this dataset, optionally filtering by a variety of metadata and/or text length, and yield
texts only.

4.5. API Reference 51

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

Parameters

• author – Filter texts by the authors’ name. For multiple values (Set[str]), ANY rather
than ALL of the authors must be found among a given works’s authors.

• date_range – Filter texts by the date on which it was published; both start and end date
must be specified, but a null value for either will be replaced by the min/max date available
in the dataset.

• min_len – Filter texts by the length (# characters) of their text content.

• limit – Yield no more than limit texts that match all specified filters.

Yields Text of the next work in dataset passing all filters.

Raises ValueError – If any filtering options are invalid.

records(*, author: Optional[str | Set[str]] = None, date_range: Optional[Tuple[Optional[str], Op-
tional[str]]] = None, min_len: Optional[int] = None, limit: Optional[int] = None) → Iter-
able[types.Record]

Iterate over works in this dataset, optionally filtering by a variety of metadata and/or text length, and yield
text + metadata pairs.

Parameters

• author – Filter texts by the authors’ name. For multiple values (Set[str]), ANY rather
than ALL of the authors must be found among a given works’s authors.

• date_range – Filter texts by the date on which it was published; both start and end date
must be specified, but a null value for either will be replaced by the min/max date available
in the dataset.

• min_len – Filter texts by the length (# characters) of their text content.

• limit – Yield no more than limit texts that match all specified filters.

Yields Text of the next work in dataset passing all filters, and its corresponding metadata.

Raises ValueError – If any filtering options are invalid.

IMDB movie reviews

A collection of 50k highly polar movie reviews posted to IMDB, split evenly into training and testing sets, with 25k
positive and 25k negative sentiment labels, as well as some unlabeled reviews.

Records include the following key fields (plus a few others):

• text: Full text of the review.

• subset: Subset of the dataset (“train” or “test”) into which the review has been split.

• label: Sentiment label (“pos” or “neg”) assigned to the review.

• rating: Numeric rating assigned by the original reviewer, ranging from 1 to 10. Reviews with a rating <= 5
are “neg”; the rest are “pos”.

• movie_id: Unique identifier for the movie under review within IMDB, useful for grouping reviews or joining
with an external movie dataset.

Reference: Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts.
(2011). Learning Word Vectors for Sentiment Analysis. The 49th Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2011).

52 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.12.0

class textacy.datasets.imdb.IMDB(data_dir: Union[str, pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/envs/stable/lib/python3.8/site-
packages/textacy/data/imdb'))

Stream a collection of IMDB movie reviews from text files on disk, either as texts or text + metadata pairs.

Download the data (one time only!), saving and extracting its contents to disk:

>>> import textacy.datasets
>>> ds = textacy.datasets.IMDB()
>>> ds.download()
>>> ds.info
{'name': 'imdb',
'site_url': 'http://ai.stanford.edu/~amaas/data/sentiment',
'description': 'Collection of 50k highly polar movie reviews split evenly into
→˓train and test sets, with 25k positive and 25k negative labels. Also includes
→˓some unlabeled reviews.'}

Iterate over movie reviews as texts or records with both text and metadata:

>>> for text in ds.texts(limit=5):
... print(text)
>>> for text, meta in ds.records(limit=5):
... print("\n{} {}\n{}".format(meta["label"], meta["rating"], text))

Filter movie reviews by a variety of metadata fields and text length:

>>> for text, meta in ds.records(label="pos", limit=5):
... print(meta["rating"], ":", text)
>>> for text, meta in ds.records(rating_range=(9, 11), limit=5):
... print(meta["rating"], text)
>>> for text in ds.texts(min_len=1000, limit=5):
... print(len(text))

Stream movie reviews into a textacy.Corpus:

>>> textacy.Corpus("en", data=ds.records(limit=100))
Corpus(100 docs; 24340 tokens)

Parameters data_dir – Path to directory on disk under which the data is stored, i.e. /path/
to/data_dir/imdb.

full_rating_range
Lowest and highest ratings for which movie reviews are available.

Type ClassVar[Tuple[int, int]]

download(*, force: bool = False)→ None
Download the data as a compressed tar archive file, then save it to disk and extract its contents under the
data_dir directory.

Parameters force – If True, always download the dataset even if it already exists on disk
under data_dir.

texts(*, subset: Optional[str] = None, label: Optional[str] = None, rating_range: Op-
tional[Tuple[Optional[int], Optional[int]]] = None, min_len: Optional[int] = None, limit: Op-
tional[int] = None)→ Iterable[str]

Iterate over movie reviews in this dataset, optionally filtering by a variety of metadata and/or text length,
and yield texts only.

4.5. API Reference 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

Parameters

• subset ({"train", "test"}) – Filter movie reviews by the dataset subset into
which they’ve already been split.

• label ({"pos", "neg", "unsup"}) – Filter movie reviews by the assigned senti-
ment label (or lack thereof, for “unsup”).

• rating_range – Filter movie reviews by the rating assigned by the reviewer. Only
those with ratings in the interval [low, high) are included. Both low and high values
must be specified, but a null value for either is automatically replaced by the minimum
or maximum valid values, respectively.

• min_len – Filter reviews by the length (# characters) of their text content.

• limit – Yield no more than limit reviews that match all specified filters.

Yields Text of the next movie review in dataset passing all filters.

Raises ValueError – If any filtering options are invalid.

records(*, subset: Optional[str] = None, label: Optional[str] = None, rating_range: Op-
tional[Tuple[Optional[int], Optional[int]]] = None, min_len: Optional[int] = None, limit:
Optional[int] = None)→ Iterable[textacy.types.Record]

Iterate over movie reviews in this dataset, optionally filtering by a variety of metadata and/or text length,
and yield text + metadata pairs.

Parameters

• subset ({"train", "test"}) – Filter movie reviews by the dataset subset into
which they’ve already been split.

• label ({"pos", "neg", "unsup"}) – Filter movie reviews by the assigned senti-
ment label (or lack thereof, for “unsup”).

• rating_range – Filter movie reviews by the rating assigned by the reviewer. Only
those with ratings in the interval [low, high) are included. Both low and high values
must be specified, but a null value for either is automatically replaced by the minimum
or maximum valid values, respectively.

• min_len – Filter reviews by the length (# characters) of their text content.

• limit – Yield no more than limit reviews that match all specified filters.

Yields Text of the next movie review in dataset passing all filters, and its corresponding metadata.

Raises ValueError – If any filtering options are invalid.

UDHR translations

A collection of translations of the Universal Declaration of Human Rights (UDHR), a milestone document in the
history of human rights that first, formally established fundamental human rights to be universally protected.

Records include the following fields:

• text: Full text of the translated UDHR document.

• lang: ISO-639-1 language code of the text.

• lang_name: Ethnologue entry for the language (see https://www.ethnologue.com).

The source dataset was compiled and is updated by the Unicode Consortium as a way to demonstrate the use of
unicode in representing a wide variety of languages. In fact, the UDHR was chosen because it’s been translated into

54 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://www.ethnologue.com

textacy Documentation, Release 0.12.0

more languages than any other document! However, this dataset only provides access to records translated into ISO-
639-1 languages — that is, major living languages only, rather than every language, major or minor, that has ever
existed. If you need access to texts in those other languages, you can find them at UDHR._texts_dirpath.

For more details, go to https://unicode.org/udhr.

class textacy.datasets.udhr.UDHR(data_dir: Union[str, pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/envs/stable/lib/python3.8/site-
packages/textacy/data/udhr'))

Stream a collection of UDHR translations from disk, either as texts or text + metadata pairs.

Download the data (one time only!), saving and extracting its contents to disk:

>>> import textacy.datasets
>>> ds = textacy.datasets.UDHR()
>>> ds.download()
>>> ds.info
{'name': 'udhr',
'site_url': 'http://www.ohchr.org/EN/UDHR',
'description': 'A collection of translations of the Universal Declaration of
→˓Human Rights (UDHR), a milestone document in the history of human rights that
→˓first, formally established fundamental human rights to be universally
→˓protected.'}

Iterate over translations as texts or records with both text and metadata:

>>> for text in ds.texts(limit=5):
... print(text[:500])
>>> for text, meta in ds.records(limit=5):
... print("\n{} ({})\n{}".format(meta["lang_name"], meta["lang"], text[:500]))

Filter translations by language, and note that some languages have multiple translations:

>>> for text, meta in ds.records(lang="en"):
... print("\n{} ({})\n{}".format(meta["lang_name"], meta["lang"], text[:500]))
>>> for text, meta in ds.records(lang="zh"):
... print("\n{} ({})\n{}".format(meta["lang_name"], meta["lang"], text[:500]))

Note: Streaming translations into a textacy.Corpus doesn’t work as for other available datasets, since this
dataset is multilingual.

Parameters data_dir (str or pathlib.Path) – Path to directory on disk under which the data
is stored, i.e. /path/to/data_dir/udhr.

langs
All distinct language codes with texts in this dataset, e.g. “en” for English.

Type Set[str]

download(*, force: bool = False)→ None
Download the data as a zipped archive of language-specific text files, then save it to disk and extract its
contents under the data_dir directory.

Parameters force – If True, download the dataset, even if it already exists on disk under
data_dir.

texts(*, lang: Optional[str | Set[str]] = None, limit: Optional[int] = None)→ Iterable[str]
Iterate over records in this dataset, optionally filtering by language, and yield texts only.

Parameters

• lang – Filter records by the language in which they’re written; see UDHR.langs.

4.5. API Reference 55

https://unicode.org/udhr
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

• limit – Yield no more than limit texts that match specified filter.

Yields Text of the next record in dataset passing filters.

Raises ValueError – If any filtering options are invalid.

records(*, lang: Optional[str | Set[str]] = None, limit: Optional[int] = None) → Iter-
able[types.Record]

Iterate over reocrds in this dataset, optionally filtering by a language, and yield text + metadata pairs.

Parameters

• lang – Filter records by the language in which they’re written; see UDHR.langs.

• limit – Yield no more than limit texts that match specified filter.

Yields Text of the next record in dataset passing filters, and its corresponding metadata.

Raises ValueError – If any filtering options are invalid.

ConceptNet

ConceptNet is a multilingual knowledge base, representing common words and phrases and the common-sense rela-
tionships between them. This information is collected from a variety of sources, including crowd-sourced resources
(e.g. Wiktionary, Open Mind Common Sense), games with a purpose (e.g. Verbosity, nadya.jp), and expert-created
resources (e.g. WordNet, JMDict).

The interface in textacy gives access to several key relationships between terms that are useful in a variety of NLP
tasks:

• antonyms: terms that are opposites of each other in some relevant way

• hyponyms: terms that are subtypes or specific instances of other terms

• meronyms: terms that are parts of other terms

• synonyms: terms that are sufficiently similar that they may be used interchangeably

class textacy.resources.concept_net.ConceptNet(data_dir: Union[str, pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/envs/stable/lib/python3.8/site-
packages/textacy/data/concept_net'),
version: str = '5.7.0')

Interface to ConceptNet, a multilingual knowledge base representing common words and phrases and the
common-sense relationships between them.

Download the data (one time only!), and save its contents to disk:

>>> import textacy.resources
>>> rs = textacy.resources.ConceptNet()
>>> rs.download()
>>> rs.info
{'name': 'concept_net',
'site_url': 'http://conceptnet.io',
'publication_url': 'https://arxiv.org/abs/1612.03975',
'description': 'An open, multilingual semantic network of general knowledge,
→˓designed to help computers understand the meanings of words.'}

Access other same-language terms related to a given term in a variety of ways:

>>> rs.get_synonyms("spouse", lang="en", sense="n")
['mate', 'married person', 'better half', 'partner']
>>> rs.get_antonyms("love", lang="en", sense="v")

(continues on next page)

56 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

(continued from previous page)

['detest', 'hate', 'loathe']
>>> rs.get_hyponyms("marriage", lang="en", sense="n")
['cohabitation situation', 'union', 'legal agreement', 'ritual', 'family',
→˓'marital status']

Note: The very first time a given relationship is accessed, the full ConceptNet db must be parsed and split for
fast future access. This can take a couple minutes; be patient.

When passing a spaCy Token or Span, the corresponding lang and sense are inferred automatically from
the object:

>>> text = "The quick brown fox jumps over the lazy dog."
>>> doc = textacy.make_spacy_doc(text, lang="en")
>>> rs.get_synonyms(doc[1]) # quick
['flying', 'fast', 'rapid', 'ready', 'straightaway', 'nimble', 'speedy', 'warm']
>>> rs.get_synonyms(doc[4:5]) # jumps over
['leap', 'startle', 'hump', 'flinch', 'jump off', 'skydive', 'jumpstart', ...]

Many terms won’t have entries, for actual linguistic reasons or because the db’s coverage of a given language’s
vocabulary isn’t comprehensive:

>>> rs.get_meronyms(doc[3]) # fox
[]
>>> rs.get_antonyms(doc[7]) # lazy
[]

Parameters

• data_dir – Path to directory on disk under which resource data is stored, i.e. /path/
to/data_dir/concept_net.

• version ({"5.7.0", "5.6.0", "5.5.5"}) – Version string of the ConceptNet db
to use. Since newer versions typically represent improvements over earlier versions, you’ll
probably want “5.7.0” (the default value).

download(*, force: bool = False)
Download resource data as a gzipped csv file, then save it to disk under the ConceptNet.data_dir
directory.

Parameters force (bool) – If True, download resource data, even if it already exists on disk;
otherwise, don’t re-download the data.

property filepath
Full path on disk for the ConceptNet gzipped csv file corresponding to the given ConceptNet.
data_dir.

Type str

property antonyms
Mapping of language code to term to sense to set of term’s antonyms – opposites of the term in some
relevant way, like being at opposite ends of a scale or fundamentally similar but with a key difference
between them – such as black <=> white or hot <=> cold. Note that this relationship is symmetric.

Based on the “/r/Antonym” relation in ConceptNet.

get_antonyms(term: str | types.SpanLike, *, lang: Optional[str] = None, sense: Optional[str] =
None)→ List[str]

Parameters

4.5. API Reference 57

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

• term –

• lang – Standard code for the language of term.

• sense – Sense in which term is used in context, which in practice is just its part of
speech. Valid values: “n” or “NOUN”, “v” or “VERB”, “a” or “ADJ”, “r” or “ADV”.

property hyponyms
Mapping of language code to term to sense to set of term’s hyponyms – subtypes or specific instances of
the term – such as car => vehicle or Chicago => city. Every A is a B.

Based on the “/r/IsA” relation in ConceptNet.

get_hyponyms(term: str | types.SpanLike, *, lang: Optional[str] = None, sense: Optional[str] =
None)→ List[str]

Parameters

• term –

• lang – Standard code for the language of term.

• sense – Sense in which term is used in context, which in practice is just its part of
speech. Valid values: “n” or “NOUN”, “v” or “VERB”, “a” or “ADJ”, “r” or “ADV”.

property meronyms
Mapping of language code to term to sense to set of term’s meronyms – parts of the term – such as gearshift
=> car.

Based on the “/r/PartOf” relation in ConceptNet.

get_meronyms(term: str | types.SpanLike, *, lang: Optional[str] = None, sense: Optional[str] =
None)→ List[str]

Parameters

• term –

• lang – Standard code for the language of term.

• sense – Sense in which term is used in context, which in practice is just its part of
speech. Valid values: “n” or “NOUN”, “v” or “VERB”, “a” or “ADJ”, “r” or “ADV”.

Returns List[str]

property synonyms
Mapping of language code to term to sense to set of term’s synonyms – sufficiently similar concepts
that they may be used interchangeably – such as sunlight <=> sunshine. Note that this relationship is
symmetric.

Based on the “/r/Synonym” relation in ConceptNet.

get_synonyms(term: str | types.SpanLike, *, lang: Optional[str] = None, sense: Optional[str] =
None)→ List[str]

Parameters

• term –

• lang – Standard code for the language of term.

• sense – Sense in which term is used in context, which in practice is just its part of
speech. Valid values: “n” or “NOUN”, “v” or “VERB”, “a” or “ADJ”, “r” or “ADV”.

58 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

DepecheMood

DepecheMood is a high-quality and high-coverage emotion lexicon for English and Italian text, mapping individual
terms to their emotional valences. These word-emotion weights are inferred from crowd-sourced datasets of emotion-
ally tagged news articles (rappler.com for English, corriere.it for Italian).

English terms are assigned weights to eight emotions:

• AFRAID

• AMUSED

• ANGRY

• ANNOYED

• DONT_CARE

• HAPPY

• INSPIRED

• SAD

Italian terms are assigned weights to five emotions:

• DIVERTITO (~amused)

• INDIGNATO (~annoyed)

• PREOCCUPATO (~afraid)

• SODDISFATTO (~happy)

• TRISTE (~sad)

class textacy.resources.depeche_mood.DepecheMood(data_dir: Union[str, pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/envs/stable/lib/python3.8/site-
packages/textacy/data/depeche_mood'),
lang: Literal[en, it] = 'en', word_rep:
Literal[token, lemma, lemmapos] =
'lemmapos', min_freq: int = 3)

Interface to DepecheMood, an emotion lexicon for English and Italian text.

Download the data (one time only!), and save its contents to disk:

>>> import textacy.resources
>>> rs = textacy.resources.DepecheMood(lang="en", word_rep="lemmapos")
>>> rs.download()
>>> rs.info
{'name': 'depeche_mood',
'site_url': 'http://www.depechemood.eu',
'publication_url': 'https://arxiv.org/abs/1810.03660',
'description': 'A simple tool to analyze the emotions evoked by a text.'}

Access emotional valences for individual terms:

>>> rs.get_emotional_valence("disease#n")
{'AFRAID': 0.37093526222120465,
'AMUSED': 0.06953745082761113,
'ANGRY': 0.06979683067736414,
'ANNOYED': 0.06465401081252636,
'DONT_CARE': 0.07080580707440012,

(continues on next page)

4.5. API Reference 59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

(continued from previous page)

'HAPPY': 0.07537324330608403,
'INSPIRED': 0.13394731320662606,
'SAD': 0.14495008187418348}
>>> rs.get_emotional_valence("heal#v")
{'AFRAID': 0.060450319886187334,
'AMUSED': 0.09284046387491741,
'ANGRY': 0.06207816933776029,
'ANNOYED': 0.10027622719958346,
'DONT_CARE': 0.11259594401785,
'HAPPY': 0.09946106491457314,
'INSPIRED': 0.37794768332634626,
'SAD': 0.09435012744278205}

When passing multiple terms in the form of a List[str] or Span or Doc, emotion weights are averaged over all
terms for which weights are available:

>>> rs.get_emotional_valence(["disease#n", "heal#v"])
{'AFRAID': 0.215692791053696,
'AMUSED': 0.08118895735126427,
'ANGRY': 0.06593750000756221,
'ANNOYED': 0.08246511900605491,
'DONT_CARE': 0.09170087554612506,
'HAPPY': 0.08741715411032858,
'INSPIRED': 0.25594749826648616,
'SAD': 0.11965010465848278}
>>> text = "The acting was sweet and amazing, but the plot was dumb and terrible."
>>> doc = textacy.make_spacy_doc(text, lang="en")
>>> rs.get_emotional_valence(doc)
{'AFRAID': 0.05272350876803627,
'AMUSED': 0.13725054992595098,
'ANGRY': 0.15787016147081184,
'ANNOYED': 0.1398733360688608,
'DONT_CARE': 0.14356943460620503,
'HAPPY': 0.11923217912716871,
'INSPIRED': 0.17880214720077342,
'SAD': 0.07067868283219296}

>>> rs.get_emotional_valence(doc[0:6]) # the acting was sweet and amazing
{'AFRAID': 0.039790959333750785,
'AMUSED': 0.1346884072825313,
'ANGRY': 0.1373596223131593,
'ANNOYED': 0.11391999698695347,
'DONT_CARE': 0.1574819173485831,
'HAPPY': 0.1552521762333925,
'INSPIRED': 0.21232264216449326,
'SAD': 0.049184278337136296}

For good measure, here’s how Italian w/o POS-tagged words looks:

>>> rs = textacy.resources.DepecheMood(lang="it", word_rep="lemma")
>>> rs.get_emotional_valence("amore")
{'INDIGNATO': 0.11451408951814121,
'PREOCCUPATO': 0.1323655108545536,
'TRISTE': 0.18249663560400609,
'DIVERTITO': 0.33558928569110086,
'SODDISFATTO': 0.23503447833219815}

Parameters

60 Chapter 4. contents

textacy Documentation, Release 0.12.0

• data_dir – Path to directory on disk under which resource data is stored, i.e. /path/
to/data_dir/depeche_mood.

• lang – Standard two-letter code for the language of terms for which emotional valences
are to be retrieved.

• word_rep – Level of text processing used in computing terms’ emotion weights. “to-
ken” => tokenization only; “lemma” => tokenization and lemmatization; “lemmapos” =>
tokenization, lemmatization, and part-of-speech tagging.

• min_freq – Minimum number of times that a given term must have appeared in the source
dataset for it to be included in the emotion weights dict. This can be used to remove noisy
terms at the expense of reducing coverage. Researchers observed peak performance at 10,
but anywhere between 1 and 20 is reasonable.

property filepath
Full path on disk for the DepecheMood tsv file corresponding to the lang and word_rep.

property weights
Mapping of term string (or term#POS, if DepecheMood.word_rep is “lemmapos”) to the terms’ nor-
malized weights on a fixed set of affective dimensions (aka “emotions”).

download(*, force: bool = False)
Download resource data as a zip archive file, then save it to disk and extract its contents under the
data_dir directory.

Parameters force (bool) – If True, download the resource, even if it already exists on disk
under data_dir.

get_emotional_valence(terms: str | Token | Sequence[str] | Sequence[Token])→ Dict[str, float]
Get average emotional valence over all terms in terms for which emotion weights are available.

Parameters terms – One or more terms over which to average emotional valences. Note that
only nouns, adjectives, adverbs, and verbs are included.

Note: If the resource was initialized with word_rep="lemmapos", then string terms
must have matching parts-of-speech appended to them like TERM#POS. Only “n” => noun,
“v” => verb, “a” => adjective, and “r” => adverb are included in the data.

Returns Mapping of emotion to average weight.

4.5.3 Text Preprocessing

pipeline.make_pipeline Make a callable pipeline that takes a text as input, passes
it through one or more functions in sequential order,
then outputs a single (preprocessed) text string.

normalize.bullet_points Normalize all “fancy” bullet point symbols in text to
just the basic ASCII “-“, provided they are the first non-
whitespace characters on a new line (like a list of items).

normalize.hyphenated_words Normalize words in text that have been split across
lines by a hyphen for visual consistency (aka hyphen-
ated) by joining the pieces back together, sans hyphen
and whitespace.

continues on next page

4.5. API Reference 61

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

Table 3 – continued from previous page
normalize.quotation_marks Normalize all “fancy” single- and double-quotation

marks in text to just the basic ASCII equivalents.
normalize.repeating_chars Normalize repeating characters in text by truncating

their number of consecutive repetitions to maxn.
normalize.unicode Normalize unicode characters in text into canonical

forms.
normalize.whitespace Replace all contiguous zero-width spaces with an empty

string, line-breaking spaces with a single newline, and
non-breaking spaces with a single space, then strip any
leading/trailing whitespace.

remove.accents Remove accents from any accented unicode characters
in text, either by replacing them with ASCII equiva-
lents or removing them entirely.

remove.brackets Remove text within curly {}, square [], and/or round ()
brackets, as well as the brackets themselves.

remove.html_tags Remove HTML tags from text, returning just the text
found between tags and other non-data elements.

remove.punctuation Remove punctuation from text by replacing all in-
stances of punctuation (or a subset thereof specified by
only) with whitespace.

replace.currency_symbols Replace all currency symbols in text with repl.
replace.emails Replace all email addresses in text with repl.
replace.emojis Replace all emoji and pictographs in text with repl.
replace.hashtags Replace all hashtags in text with repl.
replace.numbers Replace all numbers in text with repl.
replace.phone_numbers Replace all phone numbers in text with repl.
replace.urls Replace all URLs in text with repl.
replace.user_handles Replace all (Twitter-style) user handles in text with

repl.

Pipeline

textacy.preprocessing.pipeline: Basic functionality for composing multiple preprocessing steps into a
single callable pipeline.

textacy.preprocessing.pipeline.make_pipeline(*funcs: Callable[[str], str]) →
Callable[[str], str]

Make a callable pipeline that takes a text as input, passes it through one or more functions in sequential order,
then outputs a single (preprocessed) text string.

This function is intended as a lightweight convenience for users, allowing them to flexibly specify which (and
in which order) preprocessing functions are to be applied to raw texts, then treating the whole thing as a single
callable.

>>> from textacy import preprocessing
>>> preproc = preprocessing.make_pipeline(
... preprocessing.replace.hashtags,
... preprocessing.replace.user_handles,
... preprocessing.replace.emojis,
...)
>>> preproc("@spacy_io is OSS for industrial-strength NLP in Python developed by
→˓@explosion_ai ")
'_USER_ is OSS for industrial-strength NLP in Python developed by _USER_ _EMOJI_'

(continues on next page)

62 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

(continued from previous page)

>>> preproc("hacking with my buddy Isaac Mewton #PawProgramming")
'hacking with my buddy Isaac Mewton _EMOJI_ _TAG_'

To specify arguments for individual preprocessors, use functools.partial():

>>> from functools import partial
>>> preproc = preprocessing.make_pipeline(
... partial(preprocessing.remove.punctuation, only=[".", "?", "!"]),
... partial(preprocessing.replace.user_handles, repl="TAG"),
...)
>>> preproc("hey, @bjdewilde! when's the next release of textacy?")
"hey, TAG when's the next release of textacy "

Parameters *funcs –

Returns Pipeline composed of *funcs that applies each in sequential order.

Normalize

textacy.preprocessing.normalize: Normalize aspects of raw text that may vary in problematic ways.

textacy.preprocessing.normalize.bullet_points(text: str)→ str
Normalize all “fancy” bullet point symbols in text to just the basic ASCII “-“, provided they are the first
non-whitespace characters on a new line (like a list of items).

textacy.preprocessing.normalize.hyphenated_words(text: str)→ str
Normalize words in text that have been split across lines by a hyphen for visual consistency (aka hyphenated)
by joining the pieces back together, sans hyphen and whitespace.

textacy.preprocessing.normalize.quotation_marks(text: str)→ str
Normalize all “fancy” single- and double-quotation marks in text to just the basic ASCII equivalents. Note
that this will also normalize fancy apostrophes, which are typically represented as single quotation marks.

textacy.preprocessing.normalize.repeating_chars(text: str, *, chars: str, maxn: int = 1)
→ str

Normalize repeating characters in text by truncating their number of consecutive repetitions to maxn.

Parameters

• text –

• chars – One or more characters whose consecutive repetitions are to be normalized, e.g.
“.” or “?!”.

• maxn – Maximum number of consecutive repetitions of chars to which longer repetitions
will be truncated.

Returns str

textacy.preprocessing.normalize.unicode(text: str, *, form: Literal[NFC, NFD, NFKC,
NFKD] = 'NFC')→ str

Normalize unicode characters in text into canonical forms.

Parameters

• text –

• form – Form of normalization applied to unicode characters. For example, an “e” with
accute accent “´” can be written as “e´” (canonical decomposition, “NFD”) or “é” (canonical

4.5. API Reference 63

https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

composition, “NFC”). Unicode can be normalized to NFC form without any change in
meaning, so it’s usually a safe bet. If “NFKC”, additional normalizations are applied that
can change characters’ meanings, e.g. ellipsis characters are replaced with three periods.

See also:

https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize

textacy.preprocessing.normalize.whitespace(text: str)→ str
Replace all contiguous zero-width spaces with an empty string, line-breaking spaces with a single newline, and
non-breaking spaces with a single space, then strip any leading/trailing whitespace.

Remove

textacy.preprocessing.remove: Remove aspects of raw text that may be unwanted for certain use cases.

textacy.preprocessing.remove.accents(text: str, *, fast: bool = False)→ str
Remove accents from any accented unicode characters in text, either by replacing them with ASCII equiva-
lents or removing them entirely.

Parameters

• text –

• fast – If False, accents are removed from any unicode symbol with a direct ASCII equiv-
alent; if True, accented chars for all unicode symbols are removed, regardless.

Note: fast=True can be significantly faster than fast=False, but its transformation
of text is less “safe” and more likely to result in changes of meaning, spelling errors, etc.

Returns str

See also:

For a more powerful (but slower) alternative, check out unidecode: https://github.com/avian2/unidecode

textacy.preprocessing.remove.brackets(text: str, *, only: Optional[str | Collection[str]] =
None)→ str

Remove text within curly {}, square [], and/or round () brackets, as well as the brackets themselves.

Parameters

• text –

• only – Remove only those bracketed contents as specified here: “curly”, “square”, and/or
“round”. For example, "square" removes only those contents found between square
brackets, while ["round", "square"] removes those contents found between square
or round brackets, but not curly.

Returns str

Note: This function relies on regular expressions, applied sequentially for curly, square, then round brackets;
as such, it doesn’t handle nested brackets of the same type and may behave unexpectedly on text with “wild” use
of brackets. It should be fine removing structured bracketed contents, as is often used, for instance, to denote
in-text citations.

textacy.preprocessing.remove.html_tags(text: str)→ str
Remove HTML tags from text, returning just the text found between tags and other non-data elements.

64 Chapter 4. contents

https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/avian2/unidecode
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

Parameters text –

Returns str

Note: This function relies on the stdlib html.parser.HTMLParser and doesn’t do anything fancy. For a
better and potentially faster solution, consider using lxml and/or beautifulsoup4.

textacy.preprocessing.remove.punctuation(text: str, *, only: Optional[str | Collection[str]]
= None)→ str

Remove punctuation from text by replacing all instances of punctuation (or a subset thereof specified by
only) with whitespace.

Parameters

• text –

• only – Remove only those punctuation marks specified here. For example, "." removes
only periods, while [",", ";", ":"] removes commas, semicolons, and colons; if
None, all unicode punctuation marks are removed.

Returns str

Note: When only=None, Python’s built-in str.translate() is used to remove punctuation; otherwise,
a regular expression is used. The former’s performance can be up to an order of magnitude faster.

Replace

textacy.preprocessing.replace: Replace parts of raw text that are semantically important as members of
a group but not so much in the individual instances. Can also be used to remove such parts by specifying repl=""
in function calls.

textacy.preprocessing.replace.currency_symbols(text: str, repl: str = '_CUR_')→ str
Replace all currency symbols in text with repl.

textacy.preprocessing.replace.emails(text: str, repl: str = '_EMAIL_')→ str
Replace all email addresses in text with repl.

textacy.preprocessing.replace.emojis(text: str, repl: str = '_EMOJI_')→ str
Replace all emoji and pictographs in text with repl.

Note: If your Python has a narrow unicode build (“USC-2”), only dingbats and miscellaneous symbols are
replaced because Python isn’t able to represent the unicode data for things like emoticons. Sorry!

textacy.preprocessing.replace.hashtags(text: str, repl: str = '_TAG_')→ str
Replace all hashtags in text with repl.

textacy.preprocessing.replace.numbers(text: str, repl: str = '_NUMBER_')→ str
Replace all numbers in text with repl.

textacy.preprocessing.replace.phone_numbers(text: str, repl: str = '_PHONE_')→ str
Replace all phone numbers in text with repl.

textacy.preprocessing.replace.urls(text: str, repl: str = '_URL_')→ str
Replace all URLs in text with repl.

4.5. API Reference 65

https://docs.python.org/3/library/html.parser.html#html.parser.HTMLParser
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str.translate
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

textacy.preprocessing.replace.user_handles(text: str, repl: str = '_USER_')→ str
Replace all (Twitter-style) user handles in text with repl.

4.5.4 Information Extraction

basics.words Extract an ordered sequence of words from a document
processed by spaCy, optionally filtering words by part-
of-speech tag and frequency.

basics.ngrams Extract an ordered sequence of n-grams (n consecutive
tokens) from a spaCy Doc or Span, for one or multiple
n values, optionally filtering n-grams by the types and
parts-of-speech of the constituent tokens.

basics.entities Extract an ordered sequence of named entities (PER-
SON, ORG, LOC, etc.) from a Doc, optionally filtering
by entity types and frequencies.

basics.noun_chunks Extract an ordered sequence of noun chunks from a
spacy-parsed doc, optionally filtering by frequency and
dropping leading determiners.

basics.terms Extract one or multiple types of terms – ngrams, enti-
ties, and/or noun chunks – from doclike as a single,
concatenated collection, with optional deduplication of
spans extracted by more than one type.

matches.token_matches Extract Span s from a document or sentence matching
one or more patterns of per-token attr:value pairs, with
optional quantity qualifiers.

matches.regex_matches Extract Span s from a document or sentence whose full
texts match against a regular expression pattern.

triples.subject_verb_object_triples Extract an ordered sequence of subject-verb-object
triples from a document or sentence.

triples.semistructured_statements Extract “semi-structured statements” from a document
as a sequence of (entity, cue, fragment) triples.

triples.direct_quotations Extract direct quotations with an attributable speaker
from a document using simple rules and patterns.

acros.acronyms Extract tokens whose text is “acronym-like” from a doc-
ument or sentence, in order of appearance.

acros.acronyms_and_definitions Extract a collection of acronyms and their most likely
definitions, if available, from a spacy-parsed doc.

kwic.keyword_in_context Search for keyword matches in doc via reg-
ular expression and yield matches along with
window_width characters of context before and
after occurrence.

keyterms.textrank Extract key terms from a document using the TextRank
algorithm, or a variation thereof.

keyterms.yake Extract key terms from a document using the YAKE al-
gorithm.

keyterms.scake Extract key terms from a document using the sCAKE
algorithm.

keyterms.sgrank Extract key terms from a document using the SGRank
algorithm.

66 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

Basics

textacy.extract.basics: Extract basic components from a document or sentence via spaCy, with bells and
whistles for filtering the results.

textacy.extract.basics.words(doclike: types.DocLike, *, filter_stops: bool = True, filter_punct:
bool = True, filter_nums: bool = False, include_pos: Optional[str
| Collection[str]] = None, exclude_pos: Optional[str | Collec-
tion[str]] = None, min_freq: int = 1)→ Iterable[Token]

Extract an ordered sequence of words from a document processed by spaCy, optionally filtering words by part-
of-speech tag and frequency.

Parameters

• doclike –

• filter_stops – If True, remove stop words from word list.

• filter_punct – If True, remove punctuation from word list.

• filter_nums – If True, remove number-like words (e.g. 10, “ten”) from word list.

• include_pos – Remove words whose part-of-speech tag IS NOT in the specified tags.

• exclude_pos – Remove words whose part-of-speech tag IS in the specified tags.

• min_freq – Remove words that occur in doclike fewer than min_freq times.

Yields Next token from doclike passing specified filters in order of appearance in the document.

Raises TypeError – if include_pos or exclude_pos is not a str, a set of str, or a falsy value

Note: Filtering by part-of-speech tag uses the universal POS tag set; for details, check spaCy’s docs: https:
//spacy.io/api/annotation#pos-tagging

textacy.extract.basics.ngrams(doclike: types.DocLike, n: int | Collection[int], *, filter_stops:
bool = True, filter_punct: bool = True, filter_nums: bool = False,
include_pos: Optional[str | Collection[str]] = None, exclude_pos:
Optional[str | Collection[str]] = None, min_freq: int = 1) → It-
erable[Span]

Extract an ordered sequence of n-grams (n consecutive tokens) from a spaCy Doc or Span, for one or multiple
n values, optionally filtering n-grams by the types and parts-of-speech of the constituent tokens.

Parameters

• doclike –

• n – Number of tokens included per n-gram; for example, 2 yields bigrams and 3 yields
trigrams. If multiple values are specified, then the collections of n-grams are concatenated
together; for example, (2, 3) yields bigrams and then trigrams.

• filter_stops – If True, remove ngrams that start or end with a stop word.

• filter_punct – If True, remove ngrams that contain any punctuation-only tokens.

• filter_nums – If True, remove ngrams that contain any numbers or number-like tokens
(e.g. 10, ‘ten’).

• include_pos – Remove ngrams if any constituent tokens’ part-of-speech tags ARE NOT
included in this param.

• exclude_pos – Remove ngrams if any constituent tokens’ part-of-speech tags ARE in-
cluded in this param.

4.5. API Reference 67

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TypeError
https://spacy.io/api/annotation#pos-tagging
https://spacy.io/api/annotation#pos-tagging
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

• min_freq – Remove ngrams that occur in doclike fewer than min_freq times

Yields Next ngram from doclike passing all specified filters, in order of appearance in the docu-
ment.

Raises

• ValueError – if any n < 1

• TypeError – if include_pos or exclude_pos is not a str, a set of str, or a falsy
value

Note: Filtering by part-of-speech tag uses the universal POS tag set; for details, check spaCy’s docs: https:
//spacy.io/api/annotation#pos-tagging

textacy.extract.basics.entities(doclike: types.DocLike, *, include_types: Optional[str | Col-
lection[str]] = None, exclude_types: Optional[str | Collec-
tion[str]] = None, drop_determiners: bool = True, min_freq:
int = 1)→ Iterable[Span]

Extract an ordered sequence of named entities (PERSON, ORG, LOC, etc.) from a Doc, optionally filtering by
entity types and frequencies.

Parameters

• doclike –

• include_types – Remove entities whose type IS NOT in this param; if “NUMERIC”,
all numeric entity types (“DATE”, “MONEY”, “ORDINAL”, etc.) are included

• exclude_types – Remove entities whose type IS in this param; if “NUMERIC”, all
numeric entity types (“DATE”, “MONEY”, “ORDINAL”, etc.) are excluded

• drop_determiners – Remove leading determiners (e.g. “the”) from entities (e.g. “the
United States” => “United States”).

Note: Entities from which a leading determiner has been removed are, effectively, new
entities, and not saved to the Doc from which they came. This is irritating but unavoidable,
since this function is not meant to have side-effects on document state. If you’re only us-
ing the text of the returned spans, this is no big deal, but watch out if you’re counting on
determiner-less entities associated with the doc downstream.

• min_freq – Remove entities that occur in doclike fewer than min_freq times

Yields Next entity from doclike passing all specified filters in order of appearance in the docu-
ment

Raises TypeError – if include_types or exclude_types is not a str, a set of str, or a falsy
value

textacy.extract.basics.noun_chunks(doclike: Union[spacy.tokens.doc.Doc,
spacy.tokens.span.Span], *, drop_determiners:
bool = True, min_freq: int = 1) → Iter-
able[spacy.tokens.span.Span]

Extract an ordered sequence of noun chunks from a spacy-parsed doc, optionally filtering by frequency and
dropping leading determiners.

Parameters

• doclike –

68 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://spacy.io/api/annotation#pos-tagging
https://spacy.io/api/annotation#pos-tagging
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

• drop_determiners – Remove leading determiners (e.g. “the”) from phrases (e.g. “the
quick brown fox” => “quick brown fox”)

• min_freq – Remove chunks that occur in doclike fewer than min_freq times

Yields Next noun chunk from doclike in order of appearance in the document

textacy.extract.basics.terms(doclike: types.DocLike, *, ngs: Optional[int | Collection[int]
| types.DocLikeToSpans] = None, ents: Optional[bool
| types.DocLikeToSpans] = None, ncs: Optional[bool |
types.DocLikeToSpans] = None, dedupe: bool = True) →
Iterable[Span]

Extract one or multiple types of terms – ngrams, entities, and/or noun chunks – from doclike as a single,
concatenated collection, with optional deduplication of spans extracted by more than one type.

>>> extract.terms(doc, ngs=2, ents=True, ncs=True)
>>> extract.terms(doc, ngs=lambda doc: extract.ngrams(doc, n=2))
>>> extract.terms(doc, ents=extract.entities)
>>> extract.terms(doc, ents=partial(extract.entities, include_types="PERSON"))

Parameters

• doclike –

• ngs – N-gram terms to be extracted. If one or multiple ints, textacy.extract.
ngrams(doclike, n=ngs)() is used to extract terms; if a callable, ngs(doclike)
is used to extract terms; if None, no n-gram terms are extracted.

• ents – Entity terms to be extracted. If True, textacy.extract.
entities(doclike)() is used to extract terms; if a callable, ents(doclike) is
used to extract terms; if None, no entity terms are extracted.

• ncs – Noun chunk terms to be extracted. If True, textacy.extract.
noun_chunks(doclike)() is used to extract terms; if a callable, ncs(doclike)
is used to extract terms; if None, no noun chunk terms are extracted.

• dedupe – If True, deduplicate terms whose spans are extracted by multiple types (e.g. a
span that is both an n-gram and an entity), as identified by identical (start, stop) indexes in
doclike; otherwise, don’t.

Returns Next term from doclike, in order of n-grams then entities then noun chunks, with each
collection’s terms given in order of appearance.

Note: This function is not to be confused with keyterm extraction, which leverages statistics and algorithms
to quantify the “key”-ness of terms before returning the top-ranking terms. There is no such scoring or ranking
here.

See also:

• textacy.extact.ngrams()

• textacy.extact.entities()

• textacy.extact.noun_chunks()

• textacy.extact.keyterms

4.5. API Reference 69

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

textacy Documentation, Release 0.12.0

textacy.extract.bags.to_bag_of_words(doclike: types.DocLike, *, by: TokenGroupByType
= 'lemma_', weighting: WeightingType = 'count',
**kwargs)→ Dict[int, int | float] | Dict[str, int | float]

Transform a Doc or Span into a bag-of-words: the set of unique words therein mapped to their absolute,
relative, or binary frequencies of occurrence.

Parameters

• doclike –

• by – Attribute by which spaCy Token s are grouped before counting, as given by
getattr(token, by). If “lemma”, tokens are grouped by their base form w/o inflec-
tional suffixes; if “lower”, by the lowercase form of the token text; if “norm”, by the nor-
malized form of the token text; if “orth”, by the token text exactly as it appears in doc. To
output keys as strings, simply append an underscore to any of these; for example, “lemma_”
creates a bag whose keys are token lemmas as strings.

• weighting – Type of weighting to assign to unique words given by by. If “count”,
weights are the absolute number of occurrences (i.e. counts); if “freq”, weights are counts
normalized by the total token count, giving their relative frequency of occurrence; if “bi-
nary”, weights are set equal to 1.

• **kwargs – Passed directly on to textacy.extract.words() - filter_stops: If True,
stop words are removed before counting. - filter_punct: If True, punctuation tokens are
removed before counting. - filter_nums: If True, number-like tokens are removed before
counting.

Returns Mapping of a unique word id or string (depending on the value of by) to its absolute,
relative, or binary frequency of occurrence (depending on the value of weighting).

Note: For “freq” weighting, the resulting set of frequencies won’t (necessarily) sum to 1.0, since all tokens are
used when normalizing counts but some (punctuation, stop words, etc.) may be filtered out of the bag afterwards.

See also:

textacy.extract.words()

textacy.extract.bags.to_bag_of_terms(doclike: types.DocLike, *, by: SpanGroupByType =
'lemma_', weighting: WeightingType = 'count', ngs: Op-
tional[int | Collection[int] | types.DocLikeToSpans] =
None, ents: Optional[bool | types.DocLikeToSpans] =
None, ncs: Optional[bool | types.DocLikeToSpans] =
None, dedupe: bool = True) → Dict[str, int] | Dict[str,
float]

Transform a Doc or Span into a bag-of-terms: the set of unique terms therein mapped to their absolute, relative,
or binary frequencies of occurrence, where “terms” may be a combination of n-grams, entities, and/or noun
chunks.

Parameters

• doclike –

• by – Attribute by which spaCy Span s are grouped before counting, as given by
getattr(token, by). If “lemma”, tokens are counted by their base form w/o inflec-
tional suffixes; if “lower”, by the lowercase form of the token text; if “orth”, by the token
text exactly as it appears in doc. To output keys as strings, simply append an underscore to
any of these; for example, “lemma_” creates a bag whose keys are token lemmas as strings.

70 Chapter 4. contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

• weighting – Type of weighting to assign to unique terms given by by. If “count”, weights
are the absolute number of occurrences (i.e. counts); if “freq”, weights are counts normal-
ized by the total token count, giving their relative frequency of occurrence; if “binary”,
weights are set equal to 1.

• ngs – N-gram terms to be extracted. If one or multiple ints, textacy.extract.
ngrams(doclike, n=ngs)() is used to extract terms; if a callable, ngs(doclike)
is used to extract terms; if None, no n-gram terms are extracted.

• ents – Entity terms to be extracted. If True, textacy.extract.
entities(doclike)() is used to extract terms; if a callable, ents(doclike) is
used to extract terms; if None, no entity terms are extracted.

• ncs – Noun chunk terms to be extracted. If True, textacy.extract.
noun_chunks(doclike)() is used to extract terms; if a callable, ncs(doclike)
is used to extract terms; if None, no noun chunk terms are extracted.

• dedupe – If True, deduplicate terms whose spans are extracted by multiple types (e.g. a
span that is both an n-gram and an entity), as identified by identical (start, stop) indexes in
doclike; otherwise, don’t.

Returns Mapping of a unique term id or string (depending on the value of by) to its absolute,
relative, or binary frequency of occurrence (depending on the value of weighting).

See also:

textacy.extract.terms()

Matches

textacy.extract.matches: Extract matching spans from a document or sentence using spaCy’s built-in
matcher or regular expressions.

textacy.extract.matches.token_matches(doclike: types.DocLike, patterns: str | List[str]
| List[Dict[str, str]] | List[List[Dict[str, str]]], *,
on_match: Optional[Callable] = None) → Iter-
able[Span]

Extract Span s from a document or sentence matching one or more patterns of per-token attr:value pairs, with
optional quantity qualifiers.

Parameters

• doclike –

• patterns – One or multiple patterns to match against doclike using a spacy.
matcher.Matcher.

If List[dict] or List[List[dict]], each pattern is specified as attr: value pairs per token, with
optional quantity qualifiers:

– [{"POS": "NOUN"}] matches singular or plural nouns, like “friend” or “enemies”

– [{"POS": "PREP"}, {"POS": "DET", "OP": "?"}, {"POS":
"ADJ", "OP": "?"}, {"POS": "NOUN", "OP": "+"}] matches
prepositional phrases, like “in the future” or “from the distant past”

– [{"IS_DIGIT": True}, {"TAG": "NNS"}] matches numbered plural
nouns, like “60 seconds” or “2 beers”

– [{"POS": "PROPN", "OP": "+"}, {}] matches proper nouns and whatever
word follows them, like “Burton DeWilde yaaasss”

4.5. API Reference 71

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

If str or List[str], each pattern is specified as one or more per-token patterns separated by
whitespace where attribute, value, and optional quantity qualifiers are delimited by colons.
Note that boolean and integer values have special syntax — “bool(val)” and “int(val)”, re-
spectively — and that wildcard tokens still need a colon between the (empty) attribute and
value strings.

– "POS:NOUN" matches singular or plural nouns

– "POS:PREP POS:DET:? POS:ADJ:? POS:NOUN:+" matches prepositional
phrases

– "IS_DIGIT:bool(True) TAG:NNS" matches numbered plural nouns

– "POS:PROPN:+ :" matches proper nouns and whatever word follows them

Also note that these pattern strings don’t support spaCy v2.1’s “extended” pattern syntax; if
you need such complex patterns, it’s probably better to use a List[dict] or List[List[dict]],
anyway.

• on_match – Callback function to act on matches. Takes the arguments matcher,
doclike, i and matches.

Yields Next matching Span in doclike, in order of appearance

Raises

• TypeError –

• ValueError –

See also:

• https://spacy.io/usage/rule-based-matching

• https://spacy.io/api/matcher

textacy.extract.matches.regex_matches(doclike: types.DocLike, pattern: str | Pattern, *, align-
ment_mode: str = 'strict')→ Iterable[Span]

Extract Span s from a document or sentence whose full texts match against a regular expression pattern.

Parameters

• doclike –

• pattern – Valid regular expression against which to match document text, either as a
string or compiled pattern object.

• alignment_mode – How character indices of regex matches snap to spaCy token bound-
aries. If “strict”, only exact alignments are included (no snapping); if “contract”, tokens
completely within the character span are included; if “expand”, tokens at least partially
covered by the character span are included.

Yields Next matching Span.

72 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://spacy.io/usage/rule-based-matching
https://spacy.io/api/matcher
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

Triples

textacy.extract.triples: Extract structured triples from a document or sentence through rule-based pattern-
matching of the annotated tokens.

class textacy.extract.triples.SVOTriple(subject, verb, object)

object
Alias for field number 2

subject
Alias for field number 0

verb
Alias for field number 1

class textacy.extract.triples.SSSTriple(entity, cue, fragment)

cue
Alias for field number 1

entity
Alias for field number 0

fragment
Alias for field number 2

class textacy.extract.triples.DQTriple(speaker, cue, content)

content
Alias for field number 2

cue
Alias for field number 1

speaker
Alias for field number 0

textacy.extract.triples.subject_verb_object_triples(doclike:
Union[spacy.tokens.doc.Doc,
spacy.tokens.span.Span])
→ Iter-
able[textacy.extract.triples.SVOTriple]

Extract an ordered sequence of subject-verb-object triples from a document or sentence.

Parameters doclike –

Yields Next SVO triple as (subject, verb, object), in approximate order of appearance.

textacy.extract.triples.semistructured_statements(doclike: types.DocLike, *, en-
tity: str | Pattern, cue: str,
fragment_len_range: Op-
tional[Tuple[Optional[int], Op-
tional[int]]] = None) → Iter-
able[SSSTriple]

Extract “semi-structured statements” from a document as a sequence of (entity, cue, fragment) triples.

Parameters

• doclike –

4.5. API Reference 73

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

• entity – Noun or noun phrase of interest expressed as a regular expression pattern string
(e.g. "[Gg]lobal [Ww]arming") or compiled object (e.g. re.compile("global
warming", re.IGNORECASE)).

• cue – Verb lemma with which entity is associated (e.g. “be”, “have”, “say”).

• fragment_len_range – Filter statements to those whose fragment length in tokens is
within the specified [low, high) interval. Both low and high values must be specified, but a
null value for either is automatically replaced by safe default values. None (default) skips
filtering by fragment length.

Yields Next matching triple, consisting of (entity, cue, fragment), in order of appearance.

Notes

Inspired by N. Diakopoulos, A. Zhang, A. Salway. Visual Analytics of Media Frames in Online News and
Blogs. IEEE InfoVis Workshop on Text Visualization. October, 2013.

Which itself was inspired by by Salway, A.; Kelly, L.; Skadin, a, I.; and Jones, G. 2010. Portable Extraction of
Partially Structured Facts from the Web. In Proc. ICETAL 2010, LNAI 6233, 345-356. Heidelberg, Springer.

textacy.extract.triples.direct_quotations(doc: spacy.tokens.doc.Doc) → Iter-
able[textacy.extract.triples.DQTriple]

Extract direct quotations with an attributable speaker from a document using simple rules and patterns. Does
not extract indirect or mixed quotations!

Parameters doc –

Yields Next direct quotation in doc as a (speaker, cue, content) triple.

Notes

Loosely inspired by Krestel, Bergler, Witte. “Minding the Source: Automatic Tagging of Reported Speech in
Newspaper Articles”.

textacy.extract.triples.expand_noun(tok: spacy.tokens.token.Token) →
List[spacy.tokens.token.Token]

Expand a noun token to include all associated conjunct and compound nouns.

textacy.extract.triples.expand_verb(tok: spacy.tokens.token.Token) →
List[spacy.tokens.token.Token]

Expand a verb token to include all associated auxiliary and negation tokens.

Acronyms

textacy.extract.acronyms: Extract acronyms and their definitions from a document or sentence through
rule-based pattern-matching of the annotated tokens.

textacy.extract.acros.acronyms(doclike: Union[spacy.tokens.doc.Doc, spacy.tokens.span.Span])
→ Iterable[spacy.tokens.token.Token]

Extract tokens whose text is “acronym-like” from a document or sentence, in order of appearance.

Parameters doclike –

Yields Next acronym-like Token.

74 Chapter 4. contents

textacy Documentation, Release 0.12.0

textacy.extract.acros.acronyms_and_definitions(doclike: Union[spacy.tokens.doc.Doc,
spacy.tokens.span.Span],
known_acro_defs: Optional[Dict[str,
str]] = None)→ Dict[str, List[str]]

Extract a collection of acronyms and their most likely definitions, if available, from a spacy-parsed doc. If
multiple definitions are found for a given acronym, only the most frequently occurring definition is returned.

Parameters

• doclike –

• known_acro_defs – If certain acronym/definition pairs are known, pass them in as
{acronym (str): definition (str)}; algorithm will not attempt to find new definitions

Returns Unique acronyms (keys) with matched definitions (values)

References

Taghva, Kazem, and Jeff Gilbreth. “Recognizing acronyms and their definitions.” International Journal on
Document Analysis and Recognition 1.4 (1999): 191-198.

textacy.extract.acros.is_acronym(token: str, exclude: Optional[Set[str]] = None)→ bool
Pass single token as a string, return True/False if is/is not valid acronym.

Parameters

• token – Single word to check for acronym-ness

• exclude – If technically valid but not actual acronyms are known in advance, pass them
in as a set of strings; matching tokens will return False.

Returns Whether or not token is an acronym.

KWIC

textacy.extract.kwic: Extract keywords with their surrounding contexts from a text document using regular
expressions.

textacy.extract.kwic.keyword_in_context(doc: Doc | str, keyword: str | Pattern, *, ig-
nore_case: bool = True, window_width: int = 50,
pad_context: bool = False) → Iterable[Tuple[str,
str, str]]

Search for keyword matches in doc via regular expression and yield matches along with window_width
characters of context before and after occurrence.

Parameters

• doc – spaCy Doc or raw text in which to search for keyword. If a Doc, constituent text is
grabbed via spacy.tokens.Doc.text. Note that spaCy annotations aren’t used at all
here, they’re just a convenient owner of document text.

• keyword – String or regular expression pattern defining the keyword(s) to match. Typi-
cally, this is a single word or short phrase (“spam”, “spam and eggs”), but to account for
variations, use regex (r"[Ss]pam (and|&) [Ee]ggs?"), optionally compiled (re.
compile(r"[Ss]pam (and|&) [Ee]ggs?")).

• ignore_case – If True, ignore letter case in keyword matching; otherwise, use case-
sensitive matching. Note that this argument is only used if keyword is a string; for pre-
compiled regular expressions, the re.IGNORECASE flag is left as-is.

4.5. API Reference 75

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

• window_width – Number of characters on either side of keyword to include as “con-
text”.

• pad_context – If True, pad pre- and post-context strings to window_width chars in
length; otherwise, us as many chars as are found in the text, up to the specified width.

Yields Next matching triple of (pre-context, keyword match, post-context).

Keyterms

textacy.extract.keyterms: Extract keyterms from documents using a variety of rule-based algorithms.

textacy.extract.keyterms.textrank.textrank(doc: Doc, *, normalize: Optional[str
| Callable[[Token], str]] = 'lemma', in-
clude_pos: Optional[str | Collection[str]] =
('NOUN', 'PROPN', 'ADJ'), window_size: int
= 2, edge_weighting: str = 'binary', posi-
tion_bias: bool = False, topn: int | float = 10)
→ List[Tuple[str, float]]

Extract key terms from a document using the TextRank algorithm, or a variation thereof. For example:

• TextRank: window_size=2, edge_weighting="binary", position_bias=False

• SingleRank: window_size=10, edge_weighting="count", position_bias=False

• PositionRank: window_size=10, edge_weighting="count", position_bias=True

Parameters

• doc – spaCy Doc from which to extract keyterms.

• normalize – If “lemma”, lemmatize terms; if “lower”, lowercase terms; if None, use the
form of terms as they appeared in doc; if a callable, must accept a Token and return a str,
e.g. textacy.spacier.utils.get_normalized_text().

• include_pos – One or more POS tags with which to filter for good candidate keyterms.
If None, include tokens of all POS tags (which also allows keyterm extraction from docs
without POS-tagging.)

• window_size – Size of sliding window in which term co-occurrences are determined.

• edge_weighting ({"count", "binary"}) – : If “count”, the nodes for all co-
occurring terms are connected by edges with weight equal to the number of times they
co-occurred within a sliding window; if “binary”, all such edges have weight = 1.

• position_bias – If True, bias the PageRank algorithm for weighting nodes in the word
graph, such that words appearing earlier and more frequently in doc tend to get larger
weights.

• topn – Number of top-ranked terms to return as key terms. If an integer, represents the
absolute number; if a float, value must be in the interval (0.0, 1.0], which is converted to an
int by int(round(len(set(candidates)) * topn)).

Returns Sorted list of top topn key terms and their corresponding TextRank ranking scores.

76 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

References

• Mihalcea, R., & Tarau, P. (2004, July). TextRank: Bringing order into texts. Association for Computational
Linguistics.

• Wan, Xiaojun and Jianguo Xiao. 2008. Single document keyphrase extraction using neighborhood knowl-
edge. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pages 855–860.

• Florescu, C. and Cornelia, C. (2017). PositionRank: An Unsupervised Approach to Keyphrase Extraction
from Scholarly Documents. In proceedings of ACL*, pages 1105-1115.

textacy.extract.keyterms.yake.yake(doc: Doc, *, normalize: Optional[str] = 'lemma', ngrams:
int | Collection[int] = (1, 2, 3), include_pos: Optional[str
| Collection[str]] = ('NOUN', 'PROPN', 'ADJ'), win-
dow_size: int = 2, topn: int | float = 10)→ List[Tuple[str,
float]]

Extract key terms from a document using the YAKE algorithm.

Parameters

• doc – spaCy Doc from which to extract keyterms. Must be sentence-segmented; optionally
POS-tagged.

• normalize – If “lemma”, lemmatize terms; if “lower”, lowercase terms; if “norm”, use
the norm of the terms (as set in a language’s tokenizer exceptions); if None, use the form of
terms as they appeared in doc.

Note: Unlike the other keyterm extraction functions, this one doesn’t accept a callable for
normalize.

• ngrams – n of which n-grams to consider as keyterm candidates. For example, (1, 2, 3)`
includes all unigrams, bigrams, and trigrams, while 2 includes bigrams only.

• include_pos – One or more POS tags with which to filter for good candidate keyterms.
If None, include tokens of all POS tags (which also allows keyterm extraction from docs
without POS-tagging.)

• window_size – Number of words to the right and left of a given word to use as context
when computing the “relatedness to context” component of its score. Note that the resulting
sliding window’s full width is 1 + (2 * window_size).

• topn – Number of top-ranked terms to return as key terms. If an integer, represents the
absolute number; if a float, value must be in the interval (0.0, 1.0], which is converted to an
int by int(round(len(candidates) * topn))

Returns Sorted list of top topn key terms and their corresponding YAKE scores.

4.5. API Reference 77

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

References

Campos, Mangaravite, Pasquali, Jorge, Nunes, and Jatowt. (2018). A Text Feature Based Automatic Keyword
Extraction Method for Single Documents. Advances in Information Retrieval. ECIR 2018. Lecture Notes in
Computer Science, vol 10772, pp. 684-691.

textacy.extract.keyterms.scake.scake(doc: Doc, *, normalize: Optional[str |
Callable[[Token], str]] = 'lemma', include_pos:
Optional[str | Collection[str]] = ('NOUN', 'PROPN',
'ADJ'), topn: int | float = 10)→ List[Tuple[str, float]]

Extract key terms from a document using the sCAKE algorithm.

Parameters

• doc – spaCy Doc from which to extract keyterms. Must be sentence-segmented; optionally
POS-tagged.

• normalize – If “lemma”, lemmatize terms; if “lower”, lowercase terms; if None, use the
form of terms as they appeared in doc; if a callable, must accept a Token and return a str,
e.g. textacy.spacier.utils.get_normalized_text().

• include_pos – One or more POS tags with which to filter for good candidate keyterms.
If None, include tokens of all POS tags (which also allows keyterm extraction from docs
without POS-tagging.)

• topn – Number of top-ranked terms to return as key terms. If an integer, represents the
absolute number; if a float, value must be in the interval (0.0, 1.0], which is converted to an
int by int(round(len(candidates) * topn))

Returns Sorted list of top topn key terms and their corresponding scores.

References

Duari, Swagata & Bhatnagar, Vasudha. (2018). sCAKE: Semantic Connectivity Aware Keyword Extraction.
Information Sciences. 477. https://arxiv.org/abs/1811.10831v1

class textacy.extract.keyterms.sgrank.Candidate(text, idx, length, count)

count
Alias for field number 3

idx
Alias for field number 1

length
Alias for field number 2

text
Alias for field number 0

textacy.extract.keyterms.sgrank.sgrank(doc: Doc, *, normalize: Optional[str |
Callable[[Span], str]] = 'lemma', ngrams: int |
Collection[int] = (1, 2, 3, 4, 5, 6), include_pos:
Optional[str | Collection[str]] = ('NOUN', 'PROPN',
'ADJ'), window_size: int = 1500, topn: int | float =
10, idf: Dict[str, float] = None) → List[Tuple[str,
float]]

Extract key terms from a document using the SGRank algorithm.

Parameters

78 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1811.10831v1
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

• doc – spaCy Doc from which to extract keyterms.

• normalize – If “lemma”, lemmatize terms; if “lower”, lowercase terms; if None, use the
form of terms as they appeared in doc; if a callable, must accept a Span and return a str,
e.g. textacy.spacier.utils.get_normalized_text()

• ngrams – n of which n-grams to include. For example, (1, 2, 3, 4, 5, 6) (de-
fault) includes all ngrams from 1 to 6; 2 if only bigrams are wanted

• include_pos – One or more POS tags with which to filter for good candidate keyterms.
If None, include tokens of all POS tags (which also allows keyterm extraction from docs
without POS-tagging.)

• window_size – Size of sliding window in which term co-occurrences are determined to
occur. Note: Larger values may dramatically increase runtime, owing to the larger number
of co-occurrence combinations that must be counted.

• topn – Number of top-ranked terms to return as keyterms. If int, represents the absolute
number; if float, must be in the open interval (0.0, 1.0), and is converted to an integer by
int(round(len(candidates) * topn))

• idf – Mapping of normalize(term) to inverse document frequency for re-weighting
of unigrams (n-grams with n > 1 have df assumed = 1). Results are typically better with idf
information.

Returns Sorted list of top topn key terms and their corresponding SGRank scores

Raises ValueError – if topn is a float but not in (0.0, 1.0] or window_size < 2

References

Danesh, Sumner, and Martin. “SGRank: Combining Statistical and Graphical Methods to Improve the State of
the Art in Unsupervised Keyphrase Extraction.” Lexical and Computational Semantics (* SEM 2015) (2015):
117.

Utils

textacy.extract.utils: Functions for working with extraction results.

textacy.extract.utils.terms_to_strings(terms: Iterable[types.SpanLike], by: str |
Callable[[types.SpanLike], str])→ Iterable[str]

Transform a sequence of terms as spaCy Token s or Span s into strings.

Parameters

• terms –

• by – Method by which terms are transformed into strings. If “orth”, terms are represented
by their text exactly as written; if “lower”, by the lowercased form of their text; if “lemma”,
by their base form w/o inflectional suffixes; if a callable, must accept a Token or Span and
return a string.

Yields Next term in terms, as a string.

textacy.extract.utils.clean_term_strings(terms: Iterable[str])→ Iterable[str]
Clean up a sequence of single- or multi-word terms as strings: strip leading/trailing junk chars, handle dangling
parens and odd hyphenation, and normalize whitespace.

Parameters terms – Sequence of terms such as “environment”, “plastic pollution”, or “fossil fuel
industry” that may be _unclean_ for whatever reason.

4.5. API Reference 79

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

Yields Next term in terms but with the cruft cleaned up, excluding terms that were entirely cruft

Warning: Terms with (intentionally) unusual punctuation may get “cleaned” into a form that changes or
obscures the original meaning of the term.

textacy.extract.utils.aggregate_term_variants(terms: Set[str], *, acro_defs: Op-
tional[Dict[str, str]] = None,
fuzzy_dedupe: bool = True) →
List[Set[str]]

Take a set of unique terms and aggregate terms that are symbolic, lexical, and ordering variants of each other, as
well as acronyms and fuzzy string matches.

Parameters

• terms – Set of unique terms with potential duplicates

• acro_defs – If not None, terms that are acronyms will be aggregated with their definitions
and terms that are definitions will be aggregated with their acronyms

• fuzzy_dedupe – If True, fuzzy string matching will be used to aggregate similar terms
of a sufficient length

Returns Each item is a set of aggregated terms.

Notes

Partly inspired by aggregation of variants discussed in Park, Youngja, Roy J. Byrd, and Branimir K. Bogu-
raev. “Automatic glossary extraction: beyond terminology identification.” Proceedings of the 19th international
conference on Computational linguistics- Volume 1. Association for Computational Linguistics, 2002.

textacy.extract.utils.get_longest_subsequence_candidates(doc:
spacy.tokens.doc.Doc,
match_func:
Callable[[spacy.tokens.token.Token],
bool]) → Iter-
able[Tuple[spacy.tokens.token.Token,
. . .]]

Get candidate keyterms from doc, where candidates are longest consecutive subsequences of tokens for which
all match_func(token) is True.

Parameters

• doc –

• match_func – Function applied sequentially to each Token in doc that returns True for
matching (“good”) tokens, False otherwise.

Yields Next longest consecutive subsequence candidate, as a tuple of constituent tokens.

textacy.extract.utils.get_ngram_candidates(doc: Doc, ns: int | Collection[int], *, in-
clude_pos: Optional[str | Collection[str]]
= ('NOUN', 'PROPN', 'ADJ')) → Iter-
able[Tuple[Token, . . .]]

Get candidate keyterms from doc, where candidates are n-length sequences of tokens (for all n in ns) that don’t
start/end with a stop word or contain punctuation tokens, and whose constituent tokens are filtered by POS tag.

Parameters

• doc –

80 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

• ns – One or more n values for which to generate n-grams. For example, 2 gets bigrams;
(2, 3) gets bigrams and trigrams.

• include_pos – One or more POS tags with which to filter ngrams. If None, include
tokens of all POS tags.

Yields Next ngram candidate, as a tuple of constituent Tokens.

See also:

textacy.extract.ngrams()

textacy.extract.utils.get_pattern_matching_candidates(doc: Doc, patterns: str
| List[str] | List[dict] |
List[List[dict]]) → Iter-
able[Tuple[Token, . . .]]

Get candidate keyterms from doc, where candidates are sequences of tokens that match any pattern in
patterns

Parameters

• doc –

• patterns – One or multiple patterns to match against doc using a spacy.matcher.
Matcher.

Yields Tuple[spacy.tokens.Token] – Next pattern-matching candidate, as a tuple of con-
stituent Tokens.

See also:

textacy.extract.token_matches()

textacy.extract.utils.get_filtered_topn_terms(term_scores: Iterable[Tuple[str, float]],
topn: int, *, match_threshold: Op-
tional[float] = None) → List[Tuple[str,
float]]

Build up a list of the topn terms, filtering out any that are substrings of better-scoring terms and optionally
filtering out any that are sufficiently similar to better-scoring terms.

Parameters

• term_scores – Iterable of (term, score) pairs, sorted in order of score from best to worst.
Note that this may be from high to low value or low to high, depending on the scoring
algorithm.

• topn – Maximum number of top-scoring terms to get.

• match_threshold – Minimal edit distance between a term and previously seen terms,
used to filter out terms that are sufficiently similar to higher-scoring terms. Uses textacy.
similarity.token_sort_ratio().

4.5. API Reference 81

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

4.5.5 Text Statistics

api.TextStats Class to compute a variety of basic, readability, morpho-
logical, and lexical diversity statistics for a given docu-
ment.

basics.n_sents Compute the number of sentences in a document.
basics.n_words Compute the number of words in a document.
basics.n_unique_words Compute the number of unique words in a document.
basics.n_chars_per_word Compute the number of characters for each word in a

document.
basics.n_chars Compute the total number of characters in a document’s

words.
basics.n_long_words Compute the number of long words in a document.
basics.n_syllables_per_word Compute the number of syllables for each word in a doc-

ument.
basics.n_syllables Compute the total number of syllables in a document.
basics.n_monosyllable_words Compute the number of monosyllobic words in a docu-

ment.
basics.n_polysyllable_words Compute the number of polysyllobic words in a docu-

ment.
basics.entropy Compute the entropy of words in a document.
counts.morph Count the number of times each value for a morpholog-

ical feature appears as a token annotation in doclike.
counts.tag Count the number of times each fine-grained part-of-

speech tag appears as a token annotation in doclike.
counts.pos Count the number of times each coarsed-grained univer-

sal part-of-speech tag appears as a token annotation in
doclike.

counts.dep Count the number of times each syntactic dependency
relation appears as a token annotation in doclike.

diversity.ttr Compute the Type-Token Ratio (TTR) of
doc_or_tokens, a direct ratio of the number
of unique words (types) to all words (tokens).

diversity.log_ttr Compute the logarithmic Type-Token Ratio (TTR) of
doc_or_tokens, a modification of TTR that uses log
functions to better adapt for text length.

diversity.segmented_ttr Compute the Mean Segmental TTR (MS-TTR) or Mov-
ing Average TTR (MA-TTR) of doc_or_tokens,
in which the TTR of tumbling or rolling segments of
words, respectively, each with length segment_size,
are computed and then averaged.

diversity.mtld Compute the Measure of Textual Lexical Diversity
(MTLD) of doc_or_tokens, the average length of
the longest consecutive sequences of words that main-
tain a TTR of at least min_ttr.

diversity.hdd Compute the Hypergeometric Distribution Diversity
(HD-D) of doc_or_tokens, which calculates the
mean contribution that each unique word (aka type)
makes to the TTR of all possible combinations of ran-
dom samples of words of a given size, then sums all
contributions together.

continues on next page

82 Chapter 4. contents

textacy Documentation, Release 0.12.0

Table 5 – continued from previous page
readability.automated_readability_indexReadability test for English-language texts, particularly

for technical writing, whose value estimates the U.S.
readability.automatic_arabic_readability_indexReadability test for Arabic-language texts based on

number of characters and average word and sentence
lengths.

readability.coleman_liau_index Readability test whose value estimates the number of
years of education required to understand a text, sim-
ilar to flesch_kincaid_grade_level() and
smog_index(), but using characters per word in-
stead of syllables.

readability.flesch_kincaid_grade_level Readability test used widely in education, whose value
estimates the U.S.

readability.flesch_reading_ease Readability test used as a general-purpose standard in
several languages, based on a weighted combination of
avg.

readability.gulpease_index Readability test for Italian-language texts,
whose value is in the range [0, 100] similar to
flesch_reading_ease().

readability.gunning_fog_index Readability test whose value estimates the number of
years of education required to understand a text, sim-
ilar to flesch_kincaid_grade_level() and
smog_index().

readability.lix Readability test commonly used in Sweden on both
English- and non-English-language texts, whose value
estimates the difficulty of reading a foreign text.

readability.mu_legibility_index Readability test for Spanish-language texts based on
number of words and the mean and variance of their
lengths in characters, whose value is in the range [0,
100].

readability.perspicuity_index Readability test for Spanish-language texts,
whose value is in the range [0, 100]; very
similar to the Spanish-specific formulation of
flesch_reading_ease(), but included ad-
ditionally since it’s become a common readability
standard.

readability.smog_index Readability test commonly used in medical
writing and the healthcare industry, whose
value estimates the number of years of edu-
cation required to understand a text similar to
flesch_kincaid_grade_level() and in-
tended as a substitute for gunning_fog_index().

readability.wiener_sachtextformel Readability test for German-language texts, whose
value estimates the grade level required to understand
a text.

utils.get_words Get all non-punct, non-space tokens – “words” as
we commonly understand them – from input Doc or
Iterable[Token] object.

utils.compute_n_words_and_types Compute the number of words and the number of unique
words (aka types).

utils.load_hyphenator Load an object that hyphenates words at valid points, as
used in LaTex typesetting.

4.5. API Reference 83

textacy Documentation, Release 0.12.0

textacy.text_stats.api: Compute a variety of text statistics for documents.

class textacy.text_stats.api.TextStats(doc: spacy.tokens.doc.Doc)
Class to compute a variety of basic, readability, morphological, and lexical diversity statistics for a given docu-
ment.

>>> text = next(textacy.datasets.CapitolWords().texts(limit=1))
>>> doc = textacy.make_spacy_doc(text, lang="en_core_web_sm")
>>> ts = textacy.text_stats.TextStats(doc)
>>> ts.n_words
137
>>> ts.n_unique_words
81
>>> ts.entropy
6.02267943673824
>>> ts.readability("flesch-kincaid-grade-level")
11.40259124087591
>>> ts.diversity("ttr")
0.5912408759124088

Some readability stats vary by language or are designed for use with specific languages:

>>> text = (
... "Muchos años después, frente al pelotón de fusilamiento, "
... "el coronel Aureliano Buendía había de recordar aquella tarde remota "
... "en que su padre lo llevó a conocer el hielo."
...)
>>> doc = textacy.make_spacy_doc(text, lang="es_core_news_sm")
>>> ts = textacy.text_stats.TextStats(doc)
>>> ts.readability("perspicuity-index")
56.46000000000002
>>> ts.readability("mu-legibility-index")
71.18644067796609

Each of these stats have stand-alone functions in textacy.text_stats.basics , textacy.
text_stats.readability , and textacy.text_stats.diversity with more detailed info and
links in the docstrings – when in doubt, read the docs!

Parameters doc – A text document tokenized and (optionally) sentence-segmented by spaCy.

Warning: The TextStats class is deprecated as of v0.12. Instead, call the stats func-
tions directly – text_stats.TextStats(doc).n_sents => text_stats.n_sents(doc)
– or set them as custom doc extensions and access them from the Doc – textacy.
set_doc_extensions('text_stats'); doc._.n_sents .

property n_sents
Number of sentences in document.

See also:

textacy.text_stats.basics.n_sents()

property n_words
Number of words in document.

See also:

textacy.text_stats.basics.n_words()

84 Chapter 4. contents

textacy Documentation, Release 0.12.0

property n_unique_words
Number of unique words in document.

See also:

textacy.text_stats.basics.n_unique_words()

property n_long_words
Number of long words in document.

See also:

textacy.text_stats.basics.n_long_words()

property n_chars_per_word
Number of characters for each word in document.

See also:

textacy.text_stats.basics.n_chars_per_word()

property n_chars
Total number of characters in document.

See also:

textacy.text_stats.basics.n_chars()

property n_syllables_per_word
Number of syllables for each word in document.

See also:

textacy.text_stats.basics.n_syllables_per_word()

property n_syllables
Total number of syllables in document.

See also:

textacy.text_stats.basics.n_syllables()

property n_monosyllable_words
Number of monosyllobic words in document.

See also:

textacy.text_stats.basics.n_monosyllable_words()

property n_polysyllable_words
Number of polysyllobic words in document.

See also:

textacy.text_stats.basics.n_polysyllable_words()

property entropy
Entropy of words in document.

See also:

textacy.text_stats.basics.entropy()

counts(name: CountsNameType)→ Dict[str, int] | Dict[str, Dict[str, int]]
Count the number of times each value for the feature specified by name appear as token annotations.

4.5. API Reference 85

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

See also:

textacy.text_stats.counts

readability(name: Literal[automated - readability - index, automatic - arabic - readability - index,
coleman - liau - index, flesch - kincaid - grade - level, flesch - reading - ease, gulpease -
index, gunning - fog - index, lix, mu - legibility - index, perspicuity - index, smog - index,
wiener - sachtextformel], **kwargs)→ float

Compute a measure of text readability using a method with specified name.

Higher values => more difficult text for the following methods:

• automated readability index

• automatic arabic readability index

• colman-liau index

• flesch-kincaid grade level

• gunning-fog index

• lix

• smog index

• wiener-sachtextformel

Higher values => less difficult text for the following methods:

• flesch reading ease

• gulpease index

• mu legibility index

• perspicuity index

See also:

textacy.text_stats.readability

diversity(name: Literal[ttr, log - ttr, segmented - ttr, mtld, hdd], **kwargs)→ float
Compute a measure of lexical diversity using a method with specified name , optionally specifying method
variants and parameters.

Higher values => higher lexical diversity.

See also:

textacy.text_stats.diversity

Basic Stats

textacy.text_stats.basics: Low-level functions for computing basic text statistics, typically accessed via
textacy.text_stats.TextStats.

textacy.text_stats.basics.n_sents(doc: spacy.tokens.doc.Doc)→ int
Compute the number of sentences in a document.

Parameters doc –

Warning: If doc has not been segmented into sentences, it will be modified in-place using spaCy’s rule-
based Sentencizer pipeline component before counting.

86 Chapter 4. contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

textacy.text_stats.basics.n_words(doc_or_tokens: Union[spacy.tokens.doc.Doc, Iter-
able[spacy.tokens.token.Token]])→ int

Compute the number of words in a document.

Parameters doc_or_tokens – If a spaCy Doc, non-punctuation tokens (words) are extracted; if
an iterable of spaCy Token s, all non-punct elements are used.

textacy.text_stats.basics.n_unique_words(doc_or_tokens: Union[spacy.tokens.doc.Doc, It-
erable[spacy.tokens.token.Token]])→ int

Compute the number of unique words in a document.

Parameters doc_or_tokens – If a spaCy Doc, non-punctuation tokens (words) are extracted; if
an iterable of spaCy Token s, all non-punct elements are used.

textacy.text_stats.basics.n_chars_per_word(doc_or_tokens: Union[spacy.tokens.doc.Doc,
Iterable[spacy.tokens.token.Token]]) → Tu-
ple[int, . . .]

Compute the number of characters for each word in a document.

Parameters doc_or_tokens – If a spaCy Doc, non-punctuation tokens (words) are extracted; if
an iterable of spaCy Token s, all non-punct elements are used.

Note: This function is cached, since other functions rely upon its outputs to compute theirs. As such,
doc_or_tokens must be hashable – for example, it may be a Doc or Tuple[Token, ...] , but not
a List[Token] .

textacy.text_stats.basics.n_chars(doc_or_tokens: Union[spacy.tokens.doc.Doc, Iter-
able[spacy.tokens.token.Token]])→ int

Compute the total number of characters in a document’s words.

Parameters doc_or_tokens – If a spaCy Doc, non-punctuation tokens (words) are extracted; if
an iterable of spaCy Token s, all non-punct elements are used.

See also:

n_chars_per_word()

textacy.text_stats.basics.n_long_words(doc_or_tokens: Union[spacy.tokens.doc.Doc, Iter-
able[spacy.tokens.token.Token]], *, min_n_chars:
int = 7)→ int

Compute the number of long words in a document.

Parameters

• doc_or_tokens – If a spaCy Doc, non-punctuation tokens (words) are extracted; if an
iterable of spaCy Token s, all non-punct elements are used.

• min_n_chars – Minimum number of characters required for a word to be considered
“long”.

textacy.text_stats.basics.n_syllables_per_word(doc_or_tokens:
Union[spacy.tokens.doc.Doc, Iter-
able[spacy.tokens.token.Token]], *,
lang: Optional[str] = None) →
Tuple[int, . . .]

Compute the number of syllables for each word in a document.

Parameters

• doc_or_tokens – If a spaCy Doc, non-punctuation tokens (words) are extracted; if an
iterable of spaCy Token s, all non-punct elements are used.

4.5. API Reference 87

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

• lang – Standard 2-letter language code used to load hyphenator. If not specified and
doc_or_tokens is a spaCy Doc , the value will be gotten from Doc.lang_ .

Note: Identifying syllables is _tricky_; this method relies on hyphenation, which is more straightforward but
doesn’t always give the correct number of syllables. While all hyphenation points fall on syllable divisions, not
all syllable divisions are valid hyphenation points.

Also: This function is cached, since other functions rely upon its outputs to compute theirs. As such,
doc_or_tokens must be hashable – for example, it may be a Doc or Tuple[Token, ...] , but not
a List[Token] .

textacy.text_stats.basics.n_syllables(doc_or_tokens: Union[spacy.tokens.doc.Doc, It-
erable[spacy.tokens.token.Token]], *, lang: Op-
tional[str] = None)→ int

Compute the total number of syllables in a document.

Parameters

• doc_or_tokens – If a spaCy Doc, non-punctuation tokens (words) are extracted; if an
iterable of spaCy Token s, all non-punct elements are used.

• lang – Standard 2-letter language code used to load hyphenator. If not specified and
doc_or_tokens is a spaCy Doc , the value will be gotten from Doc.lang_ .

See also:

n_syllables_per_word()

textacy.text_stats.basics.n_monosyllable_words(doc_or_tokens:
Union[spacy.tokens.doc.Doc, Iter-
able[spacy.tokens.token.Token]], *,
lang: Optional[str] = None)→ int

Compute the number of monosyllobic words in a document.

Parameters

• doc_or_tokens – If a spaCy Doc, non-punctuation tokens (words) are extracted; if an
iterable of spaCy Token s, all non-punct elements are used.

• lang – Standard 2-letter language code used to load hyphenator. If not specified and
doc_or_tokens is a spaCy Doc , the value will be gotten from Doc.lang_ .

See also:

n_syllables_per_word()

textacy.text_stats.basics.n_polysyllable_words(doc_or_tokens:
Union[spacy.tokens.doc.Doc, It-
erable[spacy.tokens.token.Token]],
*, lang: Optional[str] = None,
min_n_syllables: int = 3)→ int

Compute the number of polysyllobic words in a document.

Parameters

• doc_or_tokens – If a spaCy Doc, non-punctuation tokens (words) are extracted; if an
iterable of spaCy Token s, all non-punct elements are used.

• lang – Standard 2-letter language code used to load hyphenator. If not specified and
doc_or_tokens is a spaCy Doc , the value will be gotten from Doc.lang_ .

88 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

• min_n_syllables – Minimum number of syllables required for a word to be considered
“polysyllobic”.

See also:

n_syllables_per_word()

textacy.text_stats.basics.entropy(doc_or_tokens: Union[spacy.tokens.doc.Doc, Iter-
able[spacy.tokens.token.Token]])→ float

Compute the entropy of words in a document.

Parameters doc_or_tokens – If a spaCy Doc, non-punctuation tokens (words) are extracted; if
an iterable of spaCy Token s, all non-punct elements are used.

Annotation Counts

textacy.text_stats.counts: Functions for computing the counts of morphological, part-of-speech, and de-
pendency features on the tokens in a document.

textacy.text_stats.counts.morph(doclike: Union[spacy.tokens.doc.Doc,
spacy.tokens.span.Span])→ Dict[str, Dict[str, int]]

Count the number of times each value for a morphological feature appears as a token annotation in doclike.

Parameters doclike –

Returns Mapping of morphological feature to value counts of occurrence.

See also:

spacy.tokens.MorphAnalysis

textacy.text_stats.counts.tag(doclike: Union[spacy.tokens.doc.Doc, spacy.tokens.span.Span])
→ Dict[str, int]

Count the number of times each fine-grained part-of-speech tag appears as a token annotation in doclike.

Parameters doclike –

Returns Mapping of part-of-speech tag to count of occurrence.

textacy.text_stats.counts.pos(doclike: Union[spacy.tokens.doc.Doc, spacy.tokens.span.Span])
→ Dict[str, int]

Count the number of times each coarsed-grained universal part-of-speech tag appears as a token annotation in
doclike.

Parameters doclike –

Returns Mapping of universal part-of-speech tag to count of occurrence.

textacy.text_stats.counts.dep(doclike: Union[spacy.tokens.doc.Doc, spacy.tokens.span.Span])
→ Dict[str, int]

Count the number of times each syntactic dependency relation appears as a token annotation in doclike.

Parameters doclike –

Returns Mapping of dependency relation to count of occurrence.

4.5. API Reference 89

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

Lexical Diversity Stats

textacy.text_stats.diversity: Low-level functions for computing various measures of lexical diversity,
typically accessed via textacy.text_stats.TextStats.diversity().

textacy.text_stats.diversity.ttr(doc_or_tokens: Union[spacy.tokens.doc.Doc, Iter-
able[spacy.tokens.token.Token]], variant: Literal[standard,
root, corrected] = 'standard')→ float

Compute the Type-Token Ratio (TTR) of doc_or_tokens, a direct ratio of the number of unique words
(types) to all words (tokens).

Higher values indicate higher lexical diversity.

Parameters

• doc_or_tokens – If a spaCy Doc, non-punctuation tokens (words) are extracted; if an
iterable of spaCy Token s, all non-punct elements are used.

• variant – Particular variant of TTR. - “standard” => n_types / n_words -
“root” => n_types / sqrt(n_words) - “corrected” => n_types / sqrt(2 *
n_words)

Note: All variants of this measure are sensitive to document length, so values from texts with different lengths
should not be compared.

References

• Templin, M. (1957). Certain language skills in children. Minneapolis: University of Minnesota Press.

• RTTR: Guiraud 1954, 1960

• CTTR: 1964 Carrol

textacy.text_stats.diversity.log_ttr(doc_or_tokens: Union[spacy.tokens.doc.Doc, It-
erable[spacy.tokens.token.Token]], variant: Lit-
eral[herdan, summer, dugast] = 'herdan')→ float

Compute the logarithmic Type-Token Ratio (TTR) of doc_or_tokens, a modification of TTR that uses log
functions to better adapt for text length.

Higher values indicate higher lexical diversity.

Parameters

• doc_or_tokens – If a spaCy Doc, non-punctuation tokens (words) are extracted; if an
iterable of spaCy Token s, all non-punct elements are used.

• variant – Particular variant of log-TTR. - “herdan” => log(n_types) /
log(n_words) - “summer” => log(log(n_types)) / log(log(n_words))
- “dugast” => log(n_words) ** 2 / (log(n_words) - log(n_types))

Note: All variants of this measure are slightly sensitive to document length, so values from texts with different
lengths should be compared with care.

The popular Maas variant of log-TTR is simply the reciprocal of Dugast’s: (log(n_words) -
log(n_types)) / log(n_words) ** 2. It isn’t included as a variant because its interpretation dif-
fers: lower values indicate higher lexical diversity.

90 Chapter 4. contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

References

• Herdan, G. (1964). Quantitative linguistics. London: Butterworths.

• Somers, H. H. (1966). Statistical methods in literary analysis. In J. Leeds (Ed.), The computer and literary
style (pp. 128-140). Kent, OH: Kent State University.

• Dugast, D. (1978). Sur quoi se fonde la notion d’étendue théoretique du vocabulaire? Le Français Mod-
erne, 46, 25-32.

textacy.text_stats.diversity.segmented_ttr(doc_or_tokens: Union[spacy.tokens.doc.Doc,
Iterable[spacy.tokens.token.Token]], seg-
ment_size: int = 50, variant: Literal[mean,
moving - avg] = 'mean')→ float

Compute the Mean Segmental TTR (MS-TTR) or Moving Average TTR (MA-TTR) of doc_or_tokens, in
which the TTR of tumbling or rolling segments of words, respectively, each with length segment_size, are
computed and then averaged.

Higher values indicate higher lexical diversity.

Parameters

• doc_or_tokens – If a spaCy Doc, non-punctuation tokens (words) are extracted; if an
iterable of spaCy Token s, all non-punct elements are used.

• segment_size – Number of consecutive words to include in each segment.

• variant – Variant of segmented TTR to compute. - “mean” => MS-TTR - “moving-avg”
=> MA-TTR

References

• Johnson, W. (1944). Studies in language behavior: I. A program of research. Psychological Monographs,
56, 1-15.

• Covington, M. A., & McFall, J. D. (2010). Cutting the Gordian knot: The moving-average type–token
ratio (MATTR). Journal of quantitative linguistics, 17(2), 94-100.

textacy.text_stats.diversity.mtld(doc_or_tokens: Union[spacy.tokens.doc.Doc, Iter-
able[spacy.tokens.token.Token]], min_ttr: float = 0.72) →
float

Compute the Measure of Textual Lexical Diversity (MTLD) of doc_or_tokens, the average length of the
longest consecutive sequences of words that maintain a TTR of at least min_ttr.

Higher values indicate higher lexical diversity.

Parameters

• doc_or_tokens – If a spaCy Doc, non-punctuation tokens (words) are extracted; if an
iterable of spaCy Token s, all non-punct elements are used.

• min_ttr – Minimum TTR for each segment in doc_or_tokens. When an ongoing
segment’s TTR falls below this value, a new segment is started. Value should be in the
range [0.66, 0.75].

4.5. API Reference 91

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

References

McCarthy, P. M., & Jarvis, S. (2010). MTLD, vocd-D, and HD-D: A validation study of sophisticated ap-
proaches to lexical diversity assessment. Behavior research methods, 42(2), 381-392.

textacy.text_stats.diversity.hdd(doc_or_tokens: Union[spacy.tokens.doc.Doc, Iter-
able[spacy.tokens.token.Token]], sample_size: int = 42)
→ float

Compute the Hypergeometric Distribution Diversity (HD-D) of doc_or_tokens, which calculates the mean
contribution that each unique word (aka type) makes to the TTR of all possible combinations of random samples
of words of a given size, then sums all contributions together.

Parameters

• doc_or_tokens – If a spaCy Doc, non-punctuation tokens (words) are extracted; if an
iterable of spaCy Token s, all non-punct elements are used.

• sample_size – Number of words randomly sampled without replacement when comput-
ing unique word appearance probabilities. Value should be in the range [35, 50].

Note: The popular vocd-D index of lexical diversity is actually just an approximation of HD-D, and should not
be used.

References

• McCarthy, P. M., & Jarvis, S. (2010). MTLD, vocd-D, and HD-D: A validation study of sophisticated
approaches to lexical diversity assessment. Behavior research methods, 42(2), 381-392.

• McCarthy, P. M., & Jarvis, S. (2007). A theoretical and empirical evaluation of vocd. Language Testing,
24, 459-488.

Readability Stats

textacy.text_stats.readability: Low-level functions for computing various measures of text “readabil-
ity”, typically accessed via textacy.text_stats.TextStats.readability().

textacy.text_stats.readability.automated_readability_index(doc:
spacy.tokens.doc.Doc)
→ float

Readability test for English-language texts, particularly for technical writing, whose value es-
timates the U.S. grade level required to understand a text. Similar to several other tests
(e.g. flesch_kincaid_grade_level()), but uses characters per word instead of syllables like
coleman_liau_index().

Higher value => more difficult text.

Parameters doc –

92 Chapter 4. contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

References

https://en.wikipedia.org/wiki/Automated_readability_index

textacy.text_stats.readability.automatic_arabic_readability_index(doc:
spacy.tokens.doc.Doc)
→ float

Readability test for Arabic-language texts based on number of characters and average word and sentence lengths.

Higher value => more difficult text.

Parameters doc –

References

Al Tamimi, Abdel Karim, et al. “AARI: automatic arabic readability index.” Int. Arab J. Inf. Technol. 11.4
(2014): 370-378.

textacy.text_stats.readability.coleman_liau_index(doc: spacy.tokens.doc.Doc)→ float
Readability test whose value estimates the number of years of education required to understand a text, similar
to flesch_kincaid_grade_level() and smog_index(), but using characters per word instead of
syllables.

Higher value => more difficult text.

Parameters doc –

References

https://en.wikipedia.org/wiki/Coleman%E2%80%93Liau_index

textacy.text_stats.readability.flesch_kincaid_grade_level(doc:
spacy.tokens.doc.Doc)
→ float

Readability test used widely in education, whose value estimates the U.S. grade level / number of years of
education required to understand a text.

Higher value => more difficult text.

Parameters doc –

References

https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests#Flesch.E2.80.93Kincaid_grade_
level

textacy.text_stats.readability.flesch_reading_ease(doc: spacy.tokens.doc.Doc, *,
lang: Optional[str] = None) →
float

Readability test used as a general-purpose standard in several languages, based on a weighted combination of
avg. sentence length and avg. word length. Values usually fall in the range [0, 100], but may be arbitrarily
negative in extreme cases.

Higher value => easier text.

Parameters

• doc –

• lang –

4.5. API Reference 93

https://en.wikipedia.org/wiki/Automated_readability_index
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/Coleman%E2%80%93Liau_index
https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests#Flesch.E2.80.93Kincaid_grade_level
https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests#Flesch.E2.80.93Kincaid_grade_level
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

Note: Coefficients in this formula are language-dependent; if lang is null, the value of Doc.lang_ is used.

References

English: https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests#Flesch_reading_ease
German: https://de.wikipedia.org/wiki/Lesbarkeitsindex#Flesch-Reading-Ease Spanish: Fernández-
Huerta formulation French: ? Italian: https://it.wikipedia.org/wiki/Formula_di_Flesch Dutch: ? Por-
tuguese: https://pt.wikipedia.org/wiki/Legibilidade_de_Flesch Turkish: Atesman formulation Russian:
https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D0%B5%D0%BA%D1%81_%D1%83%D0%
B4%D0%BE%D0%B1%D0%BE%D1%87%D0%B8%D1%82%D0%B0%D0%B5%D0%BC%D0%BE%
D1%81%D1%82%D0%B8

textacy.text_stats.readability.gulpease_index(doc: spacy.tokens.doc.Doc)→ float
Readability test for Italian-language texts, whose value is in the range [0, 100] similar to
flesch_reading_ease().

Higher value => easier text.

Parameters doc –

References

https://it.wikipedia.org/wiki/Indice_Gulpease

textacy.text_stats.readability.gunning_fog_index(doc: spacy.tokens.doc.Doc)→ float
Readability test whose value estimates the number of years of education required to understand a text, similar
to flesch_kincaid_grade_level() and smog_index().

Higher value => more difficult text.

Parameters doc –

References

https://en.wikipedia.org/wiki/Gunning_fog_index

textacy.text_stats.readability.lix(doc: spacy.tokens.doc.Doc)→ float
Readability test commonly used in Sweden on both English- and non-English-language texts, whose value
estimates the difficulty of reading a foreign text.

Higher value => more difficult text.

Parameters doc –

References

https://en.wikipedia.org/wiki/Lix_(readability_test)

textacy.text_stats.readability.mu_legibility_index(doc: spacy.tokens.doc.Doc) →
float

Readability test for Spanish-language texts based on number of words and the mean and variance of their lengths
in characters, whose value is in the range [0, 100].

Higher value => easier text.

Parameters doc –

94 Chapter 4. contents

https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests#Flesch_reading_ease
https://de.wikipedia.org/wiki/Lesbarkeitsindex#Flesch-Reading-Ease
https://it.wikipedia.org/wiki/Formula_di_Flesch
https://pt.wikipedia.org/wiki/Legibilidade_de_Flesch
https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D0%B5%D0%BA%D1%81_%D1%83%D0%B4%D0%BE%D0%B1%D0%BE%D1%87%D0%B8%D1%82%D0%B0%D0%B5%D0%BC%D0%BE%D1%81%D1%82%D0%B8
https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D0%B5%D0%BA%D1%81_%D1%83%D0%B4%D0%BE%D0%B1%D0%BE%D1%87%D0%B8%D1%82%D0%B0%D0%B5%D0%BC%D0%BE%D1%81%D1%82%D0%B8
https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D0%B5%D0%BA%D1%81_%D1%83%D0%B4%D0%BE%D0%B1%D0%BE%D1%87%D0%B8%D1%82%D0%B0%D0%B5%D0%BC%D0%BE%D1%81%D1%82%D0%B8
https://docs.python.org/3/library/functions.html#float
https://it.wikipedia.org/wiki/Indice_Gulpease
https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/Gunning_fog_index
https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/Lix_(readability_test
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

References

Muñoz, M., and J. Muñoz. “Legibilidad Mµ.” Viña del Mar: CHL (2006).

textacy.text_stats.readability.perspicuity_index(doc: spacy.tokens.doc.Doc)→ float
Readability test for Spanish-language texts, whose value is in the range [0, 100]; very similar to the Spanish-
specific formulation of flesch_reading_ease(), but included additionally since it’s become a common
readability standard.

Higher value => easier text.

Parameters doc –

References

Pazos, Francisco Szigriszt. Sistemas predictivos de legibilidad del mensaje escrito: fórmula de perspicuidad.
Universidad Complutense de Madrid, Servicio de Reprografía, 1993.

textacy.text_stats.readability.smog_index(doc: spacy.tokens.doc.Doc)→ float
Readability test commonly used in medical writing and the healthcare industry, whose value estimates the num-
ber of years of education required to understand a text similar to flesch_kincaid_grade_level() and
intended as a substitute for gunning_fog_index().

Higher value => more difficult text.

Parameters doc –

References

https://en.wikipedia.org/wiki/SMOG

textacy.text_stats.readability.wiener_sachtextformel(doc: spacy.tokens.doc.Doc, *,
variant: int = 1)→ float

Readability test for German-language texts, whose value estimates the grade level required to understand a text.

Higher value => more difficult text.

Parameters

• doc –

• variant –

References

https://de.wikipedia.org/wiki/Lesbarkeitsindex#Wiener_Sachtextformel

textacy.text_stats.utils: Utility functions for computing text statistics, called under the hood of many
stats functions – and not typically accessed by users.

textacy.text_stats.utils.get_words(doc_or_tokens: Union[spacy.tokens.doc.Doc,
Iterable[spacy.tokens.token.Token]]) → Iter-
able[spacy.tokens.token.Token]

Get all non-punct, non-space tokens – “words” as we commonly understand them – from input Doc or
Iterable[Token] object.

textacy.text_stats.utils.compute_n_words_and_types(words: Iter-
able[spacy.tokens.token.Token])
→ Tuple[int, int]

Compute the number of words and the number of unique words (aka types).

4.5. API Reference 95

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/SMOG
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://de.wikipedia.org/wiki/Lesbarkeitsindex#Wiener_Sachtextformel
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

Parameters words – Sequence of non-punct, non-space tokens – “words” – as output, say, by
get_words().

Returns (n_words, n_types)

textacy.text_stats.utils.load_hyphenator(lang: str)
Load an object that hyphenates words at valid points, as used in LaTex typesetting.

Parameters lang – Standard 2-letter language abbreviation. To get a list of valid values:

>>> import pyphen; pyphen.LANGUAGES

Returns pyphen.Pyphen()

4.5.6 Document Similarity

edits.hamming Compute the similarity between two strings using Ham-
ming distance, which gives the number of characters at
corresponding string indices that differ, including chars
in the longer string that have no correspondents in the
shorter.

edits.levenshtein Measure the similarity between two strings using Lev-
enshtein distance, which gives the minimum number of
character insertions, deletions, and substitutions needed
to change one string into the other.

edits.jaro Measure the similarity between two strings using Jaro
(not Jaro-Winkler) distance, which searches for com-
mon characters while taking transpositions and string
lengths into account.

edits.character_ngrams Measure the similarity between two strings using a
character ngrams similarity metric, in which strings
are transformed into trigrams of alnum-only characters,
vectorized and weighted by tf-idf, then compared by co-
sine similarity.

tokens.jaccard Measure the similarity between two sequences of strings
as sets using the Jaccard index.

tokens.sorensen_dice Measure the similarity between two sequences of strings
as sets using the Sørensen-Dice index, which is similar
to the Jaccard index.

tokens.tversky Measure the similarity between two sequences of strings
as sets using the (symmetric) Tversky index, which is a
generalization of Jaccard (alpha=0.5, beta=2.0)
and Sørensen-Dice (alpha=0.5, beta=1.0).

tokens.cosine Measure the similarity between two sequences of strings
as sets using the Otsuka-Ochiai variation of cosine simi-
larity (which is equivalent to the usual formulation when
values are binary).

tokens.bag Measure the similarity between two sequences of strings
(not as sets) using the “bag distance” measure, which
can be considered an approximation of edit distance.

continues on next page

96 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

Table 6 – continued from previous page
sequences.matching_subsequences_ratio Measure the similarity between two sequences of strings

by finding contiguous matching subsequences without
any “junk” elements and normalizing by the total num-
ber of elements.

hybrid.token_sort_ratio Measure the similarity between two strings or sequences
of strings using Levenshtein distance, only with non-
alphanumeric characters removed and the ordering of
tokens in each sorted before comparison.

hybrid.monge_elkan Measure the similarity between two sequences of strings
using the (symmetric) Monge-Elkan method, which
takes the average of the maximum pairwise similarity
between the tokens in each sequence as compared to
those in the other sequence.

Edit-based Metrics

textacy.similarity.edits: Normalized similarity metrics built on edit-based algorithms that compute the
number of operations (additions, subtractions, . . .) needed to transform one string into another.

textacy.similarity.edits.hamming(str1: str, str2: str)→ float
Compute the similarity between two strings using Hamming distance, which gives the number of characters at
corresponding string indices that differ, including chars in the longer string that have no correspondents in the
shorter.

Parameters

• str1 –

• str2 –

Returns Similarity between str1 and str2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar strings

textacy.similarity.edits.levenshtein(str1: str, str2: str)→ float
Measure the similarity between two strings using Levenshtein distance, which gives the minimum number of
character insertions, deletions, and substitutions needed to change one string into the other.

Parameters

• str1 –

• str2 –

Returns Similarity between str1 and str2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar strings

textacy.similarity.edits.jaro(str1: str, str2: str)→ float
Measure the similarity between two strings using Jaro (not Jaro-Winkler) distance, which searches for common
characters while taking transpositions and string lengths into account.

Parameters

• str1 –

• str2 –

Returns Similarity between str1 and str2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar strings

4.5. API Reference 97

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

textacy.similarity.edits.character_ngrams(str1: str, str2: str)→ float
Measure the similarity between two strings using a character ngrams similarity metric, in which strings are
transformed into trigrams of alnum-only characters, vectorized and weighted by tf-idf, then compared by cosine
similarity.

Parameters

• str1 –

• str2 –

Returns Similarity between str1 and str2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar strings

Note: This method has been used in cross-lingual plagiarism detection and authorship attribution, and seems to
work better on longer texts. At the very least, it is slow on shorter texts relative to the other similarity measures.

Token-based Metrics

textacy.similarity.edits: Normalized similarity metrics built on token-based algorithms that identify and
count similar tokens between one sequence and another, and don’t rely on the ordering of those tokens.

textacy.similarity.tokens.jaccard(seq1: Iterable[str], seq2: Iterable[str])→ float
Measure the similarity between two sequences of strings as sets using the Jaccard index.

Parameters

• seq1 –

• seq2 –

Returns Similarity between seq1 and seq2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar sequences of strings

Reference: https://en.wikipedia.org/wiki/Jaccard_index

textacy.similarity.tokens.sorensen_dice(seq1: Iterable[str], seq2: Iterable[str])→ float
Measure the similarity between two sequences of strings as sets using the Sørensen-Dice index, which is similar
to the Jaccard index.

Parameters

• seq1 –

• seq2 –

Returns Similarity between seq1 and seq2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar sequences

Reference: https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient

textacy.similarity.tokens.tversky(seq1: Iterable[str], seq2: Iterable[str], *, alpha: float = 1.0,
beta: float = 1.0)→ float

Measure the similarity between two sequences of strings as sets using the (symmetric) Tversky index, which is
a generalization of Jaccard (alpha=0.5, beta=2.0) and Sørensen-Dice (alpha=0.5, beta=1.0).

Parameters

• seq1 –

98 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/Jaccard_index
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

• seq2 –

• alpha –

• beta –

Returns Similarity between seq1 and seq2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar sequences

Reference: https://en.wikipedia.org/wiki/Tversky_index

textacy.similarity.tokens.cosine(seq1: Iterable[str], seq2: Iterable[str])→ float
Measure the similarity between two sequences of strings as sets using the Otsuka-Ochiai variation of cosine
similarity (which is equivalent to the usual formulation when values are binary).

Parameters

• seq1 –

• seq2 –

Returns Similarity between seq1 and seq2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar sequences

Reference: https://en.wikipedia.org/wiki/Cosine_similarity#Otsuka-Ochiai_coefficient

textacy.similarity.tokens.bag(seq1: Iterable[str], seq2: Iterable[str])→ float
Measure the similarity between two sequences of strings (not as sets) using the “bag distance” measure, which
can be considered an approximation of edit distance.

Parameters

• seq1 –

• seq2 –

Returns Similarity between seq1 and seq2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar sequences

Reference: Bartolini, Ilaria, Paolo Ciaccia, and Marco Patella. “String matching with metric trees using an ap-
proximate distance.” International Symposium on String Processing and Information Retrieval. Springer,
Berlin, Heidelberg, 2002.

Sequence-based Metrics

textacy.similarity.sequences: Normalized similarity metrics built on sequence-based algorithms that
identify and measure the subsequences common to each.

textacy.similarity.sequences.matching_subsequences_ratio(seq1: Sequence[str],
seq2: Sequence[str],
**kwargs)→ float

Measure the similarity between two sequences of strings by finding contiguous matching subsequences without
any “junk” elements and normalizing by the total number of elements.

Parameters

• seq1 –

• seq2 –

• **kwargs – isjunk: Optional[Callable[str], bool] = None autojunk: bool = True

4.5. API Reference 99

https://en.wikipedia.org/wiki/Tversky_index
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://en.wikipedia.org/wiki/Cosine_similarity#Otsuka-Ochiai_coefficient
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

Returns Similarity between seq1 and seq2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar sequences of strings

Reference: https://docs.python.org/3/library/difflib.html#difflib.SequenceMatcher.ratio

Hybrid Metrics

textacy.similarity.hybrid: Normalized similarity metrics that combine edit-, token-, and/or sequence-
based algorithms.

textacy.similarity.hybrid.token_sort_ratio(s1: str | Sequence[str], s2: str | Se-
quence[str])→ float

Measure the similarity between two strings or sequences of strings using Levenshtein distance, only with non-
alphanumeric characters removed and the ordering of tokens in each sorted before comparison.

Parameters

• s1 –

• s2 –

Returns Similarity between s1 and s2 in the interval [0.0, 1.0], where larger values correspond to
more similar strings.

See also:

textacy.similarity.edits.levenshtein()

textacy.similarity.hybrid.monge_elkan(seq1: Sequence[str], seq2: Sequence[str], sim_func:
Callable[[str, str], float] = <function levenshtein>)
→ float

Measure the similarity between two sequences of strings using the (symmetric) Monge-Elkan method, which
takes the average of the maximum pairwise similarity between the tokens in each sequence as compared to those
in the other sequence.

Parameters

• seq1 –

• seq2 –

• sim_func – Callable that computes a string-to-string similarity metric; by default, Leven-
shtein edit distance.

Returns Similarity between seq1 and seq2 in the interval [0.0, 1.0], where larger values corre-
spond to more similar strings.

See also:

textacy.similarity.edits.levenshtein()

100 Chapter 4. contents

https://docs.python.org/3/library/difflib.html#difflib.SequenceMatcher.ratio
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

4.5.7 Document Representations

network.build_cooccurrence_network Transform an ordered sequence of strings (or a sequence
of such sequences) into a graph, where each string is
represented by a node with weighted edges linking it to
other strings that co-occur within window_size ele-
ments of itself.

network.build_similarity_network Transform a sequence of strings (or a sequence of such
sequences) into a graph, where each element of the top-
level sequence is represented by a node with edges link-
ing it to all other elements weighted by their pairwise
similarity.

sparse_vec.build_doc_term_matrix Transform one or more tokenized documents into a
document-term matrix of shape (# docs, # unique
terms), with flexible weighting/normalization of values.

sparse_vec.build_grp_term_matrix Transform one or more tokenized documents into a
group-term matrix of shape (# unique groups, # unique
terms), with flexible weighting/normalization of values.

vectorizers.Vectorizer Transform one or more tokenized documents into a
sparse document-term matrix of shape (# docs, # unique
terms), with flexible weighting/normalization of values.

vectorizers.GroupVectorizer Transform one or more tokenized documents into a
group-term matrix of shape (# groups, # unique terms),
with tf-, tf-idf, or binary-weighted values.

Networks

textacy.representations.network: Represent document data as networks, where nodes are terms, sen-
tences, or even full documents and edges between them are weighted by the strength of their co-occurrence or simi-
larity.

textacy.representations.network.build_cooccurrence_network(data: Se-
quence[str] | Se-
quence[Sequence[str]],
*, window_size: int
= 2, edge_weighting:
Literal[count, bi-
nary] = 'count') →
nx.Graph

Transform an ordered sequence of strings (or a sequence of such sequences) into a graph, where each string
is represented by a node with weighted edges linking it to other strings that co-occur within window_size
elements of itself.

Input data can take a variety of forms. For example, as a Sequence[str] where elements are token or term
strings from a single document:

>>> texts = [
... "Mary had a little lamb. Its fleece was white as snow.",
... "Everywhere that Mary went the lamb was sure to go.",
...]
>>> docs = [make_spacy_doc(text, lang="en_core_web_sm") for text in texts]
>>> data = [tok.text for tok in docs[0]]
>>> graph = build_cooccurrence_network(data, window_size=2)

(continues on next page)

4.5. API Reference 101

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

(continued from previous page)

>>> sorted(graph.adjacency())[0]
('.', {'lamb': {'weight': 1}, 'Its': {'weight': 1}, 'snow': {'weight': 1}})

Or as a Sequence[Sequence[str]], where elements are token or term strings per sentence from a single
document:

>>> data = [[tok.text for tok in sent] for sent in docs[0].sents]
>>> graph = build_cooccurrence_network(data, window_size=2)
>>> sorted(graph.adjacency())[0]
('.', {'lamb': {'weight': 1}, 'snow': {'weight': 1}})

Or as a Sequence[Sequence[str]], where elements are token or term strings per document from multiple
documents:

>>> data = [[tok.text for tok in doc] for doc in docs]
>>> graph = build_cooccurrence_network(data, window_size=2)
>>> sorted(graph.adjacency())[0]
('.',
{'lamb': {'weight': 1},
'Its': {'weight': 1},
'snow': {'weight': 1},
'go': {'weight': 1}})

Note how the “.” token’s connections to other nodes change for each case. (Note that in real usage, you’ll
probably want to remove stopwords, punctuation, etc. so that nodes in the graph represent meaningful concepts.)

Parameters

• data –

• window_size – Size of sliding window over data that determines which strings are said
to co-occur. For example, a value of 2 means that only immediately adjacent strings will
have edges in the network; larger values loosen the definition of co-occurrence and typically
lead to a more densely-connected network.

Note: Co-occurrence windows are not permitted to cross sequences. So, if data is a
Sequence[Sequence[str]], then co-occ counts are computed separately for each
sub-sequence, then summed together.

• edge_weighting – Method by which edges between nodes are weighted. If “count”,
nodes are connected by edges with weights equal to the number of times they co-occurred
within a sliding window; if “binary”, all such edges have weight set equal to 1.

Returns Graph whose nodes correspond to individual strings from data; those that co-occur are
connected by edges with weights determined by edge_weighting.

Reference: https://en.wikipedia.org/wiki/Co-occurrence_network

textacy.representations.network.build_similarity_network(data: Sequence[str] | Se-
quence[Sequence[str]],
edge_weighting: str) →
nx.Graph

Transform a sequence of strings (or a sequence of such sequences) into a graph, where each element of the top-
level sequence is represented by a node with edges linking it to all other elements weighted by their pairwise
similarity.

102 Chapter 4. contents

https://en.wikipedia.org/wiki/Co-occurrence_network
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

Input data can take a variety of forms. For example, as a Sequence[str] where elements are sentence
texts from a single document:

>>> texts = [
... "Mary had a little lamb. Its fleece was white as snow.",
... "Everywhere that Mary went the lamb was sure to go.",
...]
>>> docs = [make_spacy_doc(text, lang="en_core_web_sm") for text in texts]
>>> data = [sent.text.lower() for sent in docs[0].sents]
>>> graph = build_similarity_network(data, "levenshtein")
>>> sorted(graph.adjacency())[0]
('its fleece was white as snow.',
{'mary had a little lamb.': {'weight': 0.24137931034482762}})

Or as a Sequence[str] where elements are full texts from multiple documents:

>>> data = [doc.text.lower() for doc in docs]
>>> graph = build_similarity_network(data, "jaro")
>>> sorted(graph.adjacency())[0]
('everywhere that mary went the lamb was sure to go.',
{'mary had a little lamb. its fleece was white as snow.': {'weight': 0.
→˓6516002795248078}})

Or as a Sequence[Sequence[str]] where elements are tokenized texts from multiple documents:

>>> data = [[tok.lower_ for tok in doc] for doc in docs]
>>> graph = build_similarity_network(data, "jaccard")
>>> sorted(graph.adjacency())[0]
(('everywhere', 'that', 'mary', 'went', 'the', 'lamb', 'was', 'sure', 'to', 'go',
→˓'.'),
{('mary', 'had', 'a', 'little', 'lamb', '.', 'its', 'fleece', 'was', 'white', 'as
→˓', 'snow', '.'): {'weight': 0.21052631578947367}})

Parameters

• data –

• edge_weighting – Similarity metric to use for weighting edges between elements in
data, represented as the name of a function available in textacy.similarity.

Note: Different metrics are suited for different forms and contexts of data. You’ll have
to decide which method makes sense. For example, when comparing a sequence of short
strings, “levenshtein” is often a reasonable bet; when comparing a sequence of sequences
of somewhat noisy strings (e.g. includes punctuation, cruft tokens), you might try “match-
ing_subsequences_ratio” to help filter out the noise.

Returns Graph whose nodes correspond to top-level sequence elements in data, connected by
edges to all other nodes with weights determined by their pairwise similarity.

Reference: https://en.wikipedia.org/wiki/Semantic_similarity_network – this is not the same as what’s imple-
mented here, but they’re similar in spirit.

4.5. API Reference 103

https://en.wikipedia.org/wiki/Semantic_similarity_network

textacy Documentation, Release 0.12.0

textacy.representations.network.rank_nodes_by_pagerank(graph: net-
workx.classes.graph.Graph,
weight: str = 'weight',
**kwargs) → Dict[Any,
float]

Rank nodes in graph using the Pagegrank algorithm.

Parameters

• graph –

• weight – Key in edge data that holds weights.

• **kwargs –

Returns Mapping of node object to Pagerank score.

textacy.representations.network.rank_nodes_by_bestcoverage(graph: net-
workx.classes.graph.Graph,
k: int, c: int =
1, alpha: float
= 1.0, weight: str =
'weight')→ Dict[Any,
float]

Rank nodes in a network using the BestCoverage algorithm that attempts to balance between node centrality
and diversity.

Parameters

• graph –

• k – Number of results to return for top-k search.

• c – l parameter for l-step expansion; best if 1 or 2

• alpha – Float in [0.0, 1.0] specifying how much of central vertex’s score to remove from
its l-step neighbors; smaller value puts more emphasis on centrality, larger value puts more
emphasis on diversity

• weight – Key in edge data that holds weights.

Returns Top k nodes as ranked by bestcoverage algorithm; keys as node identifiers, values as cor-
responding ranking scores

References

Küçüktunç, O., Saule, E., Kaya, K., & Çatalyürek, Ü. V. (2013, May). Diversified recommendation on graphs:
pitfalls, measures, and algorithms. In Proceedings of the 22nd international conference on World Wide Web (pp.
715-726). International World Wide Web Conferences Steering Committee. http://www2013.wwwconference.
org/proceedings/p715.pdf

textacy.representations.network.rank_nodes_by_divrank(graph: net-
workx.classes.graph.Graph,
r: Optional[numpy.ndarray]
= None, lambda_: float =
0.5, alpha: float = 0.5) →
Dict[str, float]

Rank nodes in a network using the DivRank algorithm that attempts to balance between node centrality and
diversity.

Parameters

104 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://www2013.wwwconference.org/proceedings/p715.pdf
http://www2013.wwwconference.org/proceedings/p715.pdf
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

• graph –

• r – The “personalization vector”; by default, r = ones(1, n)/n

• lambda – Float in [0.0, 1.0]

• alpha – Float in [0.0, 1.0] that controls the strength of self-links.

Returns Mapping of node to score ordered by descending divrank score

References

Mei, Q., Guo, J., & Radev, D. (2010, July). Divrank: the interplay of prestige and diversity in information
networks. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and
data mining (pp. 1009-1018). ACM. http://clair.si.umich.edu/~radev/papers/SIGKDD2010.pdf

Sparse Vectors

textacy.representations.sparse_vec: Transform a collection of tokenized docs into a doc-term matrix
of shape (# docs, # unique terms) or a group-term matrix of shape (# unique groups, # unique terms), with various
ways to filter/limit included terms and flexible weighting/normalization schemes for their values.

Intended primarily as a simpler- and higher-level API for sparse vectorization of docs.

textacy.representations.sparse_vec.build_doc_term_matrix(tokenized_docs: Iter-
able[Iterable[str]], *,
tf_type: Literal[linear,
sqrt, log, binary] =
'linear', idf_type: Op-
tional[Literal[standard,
smooth, bm25]] =
None, dl_type: Op-
tional[Literal[linear,
sqrt, log]] = None,
**kwargs) → Tu-
ple[scipy.sparse.csr.csr_matrix,
Dict[str, int]]

Transform one or more tokenized documents into a document-term matrix of shape (# docs, # unique terms),
with flexible weighting/normalization of values.

Parameters

• tokenized_docs – A sequence of tokenized documents, where each is a sequence of
term strings. For example:

>>> ([tok.lemma_ for tok in spacy_doc]
... for spacy_doc in spacy_docs)
>>> ((ne.text for ne in extract.entities(doc))
... for doc in corpus)

• tf_type – Type of term frequency (tf) to use for weights’ local component:

– ”linear”: tf (tfs are already linear, so left as-is)

– ”sqrt”: tf => sqrt(tf)

– ”log”: tf => log(tf) + 1

– ”binary”: tf => 1

4.5. API Reference 105

http://clair.si.umich.edu/~radev/papers/SIGKDD2010.pdf
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

• idf_type – Type of inverse document frequency (idf) to use for weights’ global compo-
nent:

– ”standard”: idf = log(n_docs / df) + 1.0

– ”smooth”: idf = log(n_docs + 1 / df + 1) + 1.0, i.e. 1 is added to all document frequencies,
as if a single document containing every unique term was added to the corpus.

– ”bm25”: idf = log((n_docs - df + 0.5) / (df + 0.5)), which is a form commonly used in
information retrieval that allows for very common terms to receive negative weights.

– None: no global weighting is applied to local term weights.

• dl_type – Type of document-length scaling to use for weights’ normalization component:

– ”linear”: dl (dls are already linear, so left as-is)

– ”sqrt”: dl => sqrt(dl)

– ”log”: dl => log(dl)

– None: no normalization is applied to local (+global?) weights

• **kwargs – Passed directly into vectorizer class

Returns Document-term matrix as a sparse row matrix, and the corresponding mapping of term
strings to integer ids (column indexes).

Note: If you need to transform other sequences of tokenized documents in the same way, or if you
need more access to the underlying vectorization process, consider using textacy.representations.
vectorizers.Vectorizer directly.

See also:

• textacy.representations.vectorizers.Vectorizer

• scipy.sparse.csr_matrix

Reference: https://en.wikipedia.org/wiki/Document-term_matrix

textacy.representations.sparse_vec.build_grp_term_matrix(tokenized_docs: It-
erable[Iterable[str]],
grps: Iterable[str], *,
tf_type: Literal[linear,
sqrt, log, binary] =
'linear', idf_type: Op-
tional[Literal[standard,
smooth, bm25]] =
None, dl_type: Op-
tional[Literal[linear,
sqrt, log]] = None,
**kwargs) → Tu-
ple[scipy.sparse.csr.csr_matrix,
Dict[str, int], Dict[str,
int]]

Transform one or more tokenized documents into a group-term matrix of shape (# unique groups, # unique
terms), with flexible weighting/normalization of values.

106 Chapter 4. contents

https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://en.wikipedia.org/wiki/Document-term_matrix
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

This is an extension of typical document-term matrix vectorization, where terms are grouped by the documents
in which they co-occur. It allows for customized grouping, such as by a shared author or publication year, that
may span multiple documents, without forcing users to merge those documents themselves.

Parameters

• tokenized_docs – A sequence of tokenized documents, where each is a sequence of
term strings. For example:

>>> ([tok.lemma_ for tok in spacy_doc]
... for spacy_doc in spacy_docs)
>>> ((ne.text for ne in extract.entities(doc))
... for doc in corpus)

• grps – Sequence of group names by which the terms in tokenized_docs are aggre-
gated, where the first item in grps corresponds to the first item in tokenized_docs,
and so on.

• tf_type – Type of term frequency (tf) to use for weights’ local component:

– ”linear”: tf (tfs are already linear, so left as-is)

– ”sqrt”: tf => sqrt(tf)

– ”log”: tf => log(tf) + 1

– ”binary”: tf => 1

• idf_type – Type of inverse document frequency (idf) to use for weights’ global compo-
nent:

– ”standard”: idf = log(n_docs / df) + 1.0

– ”smooth”: idf = log(n_docs + 1 / df + 1) + 1.0, i.e. 1 is added to all document frequencies,
as if a single document containing every unique term was added to the corpus.

– ”bm25”: idf = log((n_docs - df + 0.5) / (df + 0.5)), which is a form commonly used in
information retrieval that allows for very common terms to receive negative weights.

– None: no global weighting is applied to local term weights.

• dl_type – Type of document-length scaling to use for weights’ normalization component:

– ”linear”: dl (dls are already linear, so left as-is)

– ”sqrt”: dl => sqrt(dl)

– ”log”: dl => log(dl)

– None: no normalization is applied to local (+global?) weights

• **kwargs – Passed directly into vectorizer class

Returns Group-term matrix as a sparse row matrix, and the corresponding mapping of term strings
to integer ids (column indexes), and the corresponding mapping of group strings to integer ids
(row indexes).

Note: If you need to transform other sequences of tokenized documents in the same way, or if you
need more access to the underlying vectorization process, consider using textacy.representations.
vectorizers.GroupVectorizer directly.

See also:

4.5. API Reference 107

textacy Documentation, Release 0.12.0

• textacy.representations.vectorizers.GroupVectorizer

• scipy.sparse.csr_matrix

Reference: https://en.wikipedia.org/wiki/Document-term_matrix

Vectorizers

textacy.representations.vectorizers: Transform a collection of tokenized docs into a doc-term matrix
of shape (# docs, # unique terms), with various ways to filter or limit included terms and flexible weighting schemes
for their values.

A second option aggregates terms in tokenized documents by provided group labels, resulting in a “group-term-matrix”
of shape (# unique groups, # unique terms), with filtering and weighting functionality as described above.

See the Vectorizer and GroupVectorizer docstrings for usage examples and explanations of the various
weighting schemes.

class textacy.representations.vectorizers.Vectorizer(*, tf_type: Literal[linear, sqrt,
log, binary] = 'linear', idf_type:
Optional[Literal[standard,
smooth, bm25]] =
None, dl_type: Op-
tional[Literal[linear, sqrt,
log]] = None, norm: Op-
tional[Literal[l1, l2]] = None,
min_df: int | float = 1, max_df:
int | float = 1.0, max_n_terms:
Optional[int] = None, vocabu-
lary_terms: Optional[Dict[str,
int] | Iterable[str]] = None)

Transform one or more tokenized documents into a sparse document-term matrix of shape (# docs, # unique
terms), with flexible weighting/normalization of values.

Stream a corpus with metadata from disk:

>>> ds = textacy.datasets.CapitolWords()
>>> records = ds.records(limit=1000)
>>> corpus = textacy.Corpus("en_core_web_sm", data=records)
>>> print(corpus)
Corpus(1000 docs, 538397 tokens)

Tokenize and vectorize the first 600 documents of this corpus:

>>> tokenized_docs = (
... (term.lemma_ for term in textacy.extract.terms(doc, ngs=1, ents=True))
... for doc in corpus[:600])
>>> vectorizer = Vectorizer(
... tf_type="linear", idf_type="smooth", norm="l2",
... min_df=3, max_df=0.95)
>>> doc_term_matrix = vectorizer.fit_transform(tokenized_docs)
>>> doc_term_matrix
<600x4412 sparse matrix of type '<class 'numpy.float64'>'

with 65210 stored elements in Compressed Sparse Row format>

Tokenize and vectorize the remaining 400 documents of the corpus, using only the groups, terms, and weights
learned in the previous step:

108 Chapter 4. contents

https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://en.wikipedia.org/wiki/Document-term_matrix
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

>>> tokenized_docs = (
... (term.lemma_ for term in textacy.extract.terms(doc, ngs=1, ents=True))
... for doc in corpus[600:])
>>> doc_term_matrix = vectorizer.transform(tokenized_docs)
>>> doc_term_matrix
<400x4412 sparse matrix of type '<class 'numpy.float64'>'

with 36212 stored elements in Compressed Sparse Row format>

Inspect the terms associated with columns; they’re sorted alphabetically:

>>> vectorizer.terms_list[:5]
['', '$', '$ 1 million', '$ 1.2 billion', '$ 10 billion']

(Btw: That empty string shouldn’t be there. Somehow, spaCy is labeling it as a named entity. . . ?)

If known in advance, limit the terms included in vectorized outputs to a particular set of values:

>>> tokenized_docs = (
... (term.lemma_ for term in textacy.extract.terms(doc, ngs=1, ents=True))
... for doc in corpus[:600])
>>> vectorizer = Vectorizer(
... idf_type="smooth", norm="l2",
... min_df=3, max_df=0.95,
... vocabulary_terms=["president", "bill", "unanimous", "distinguished",
→˓"american"])
>>> doc_term_matrix = vectorizer.fit_transform(tokenized_docs)
>>> doc_term_matrix
<600x5 sparse matrix of type '<class 'numpy.float64'>'

with 516 stored elements in Compressed Sparse Row format>
>>> vectorizer.terms_list
['american', 'bill', 'distinguished', 'president', 'unanimous']

Specify different weighting schemes to determine values in the matrix, adding or customizing individual com-
ponents, as desired:

>>> tokenized_docs = [
[term.lemma_ for term in textacy.extract.terms(doc, ngs=1, ents=True)]
for doc in corpus[:600]]

>>> doc_term_matrix = Vectorizer(
... tf_type="linear", norm=None, min_df=3, max_df=0.95
...).fit_transform(tokenized_docs)
>>> print(doc_term_matrix[:8, vectorizer.vocabulary_terms["$"]].toarray())
[[0]
[0]
[1]
[4]
[0]
[0]
[2]
[4]]
>>> doc_term_matrix = Vectorizer(
... tf_type="sqrt", dl_type="sqrt", norm=None, min_df=3, max_df=0.95
...).fit_transform(tokenized_docs)
>>> print(doc_term_matrix[:8, vectorizer.vocabulary_terms["$"]].toarray())
[[0.]
[0.]
[0.10660036]
[0.2773501]

(continues on next page)

4.5. API Reference 109

textacy Documentation, Release 0.12.0

(continued from previous page)

[0.]
[0.]
[0.11704115]
[0.24806947]]
>>> doc_term_matrix = Vectorizer(
... tf_type="bm25", idf_type="smooth", norm=None, min_df=3, max_df=0.95
...).fit_transform(tokenized_docs)
>>> print(doc_term_matrix[:8, vectorizer.vocabulary_terms["$"]].toarray())
[[0.]
[0.]
[2.68009606]
[4.97732126]
[0.]
[0.]
[3.87124987]
[4.97732126]]

If you’re not sure what’s going on mathematically, Vectorizer.weighting gives the formula being used
to calculate weights, based on the parameters set when initializing the vectorizer:

>>> vectorizer.weighting
'(tf * (k + 1)) / (k + tf) * log((n_docs + 1) / (df + 1)) + 1'

In general, weights may consist of a local component (term frequency), a global component (inverse document
frequency), and a normalization component (document length). Individual components may be modified: they
may have different scaling (e.g. tf vs. sqrt(tf)) or different behaviors (e.g. “standard” idf vs bm25’s version).
There are many possible weightings, and some may be better for particular use cases than others. When in
doubt, though, just go with something standard.

• “tf”: Weights are simply the absolute per-document term frequencies (tfs), i.e. value (i, j) in an output
doc-term matrix corresponds to the number of occurrences of term j in doc i. Terms appearing many
times in a given doc receive higher weights than less common terms. Params: tf_type="linear",
apply_idf=False, apply_dl=False

• “tfidf”: Doc-specific, local tfs are multiplied by their corpus-wide, global inverse document frequen-
cies (idfs). Terms appearing in many docs have higher document frequencies (dfs), correspondingly
smaller idfs, and in turn, lower weights. Params: tf_type="linear", apply_idf=True,
idf_type="smooth", apply_dl=False

• “bm25”: This scheme includes a local tf component that increases asymptotically, so higher tfs have
diminishing effects on the overall weight; a global idf component that can go negative for terms that
appear in a sufficiently high proportion of docs; as well as a row-wise normalization that accounts for
document length, such that terms in shorter docs hit the tf asymptote sooner than those in longer docs.
Params: tf_type="bm25", apply_idf=True, idf_type="bm25", apply_dl=True

• “binary”: This weighting scheme simply replaces all non-zero tfs with 1, indicating the presence or ab-
sence of a term in a particular doc. That’s it. Params: tf_type="binary", apply_idf=False,
apply_dl=False

Slightly altered versions of these “standard” weighting schemes are common, and may have better behavior in
general use cases:

• “lucene-style tfidf”: Adds a doc-length normalization to the usual local and global components. Params:
tf_type="linear", apply_idf=True, idf_type="smooth", apply_dl=True,
dl_type="sqrt"

• “lucene-style bm25”: Uses a smoothed idf instead of the classic bm25 variant to prevent weights on terms
from going negative. Params: tf_type="bm25", apply_idf=True, idf_type="smooth",

110 Chapter 4. contents

textacy Documentation, Release 0.12.0

apply_dl=True, dl_type="linear"

Parameters

• tf_type – Type of term frequency (tf) to use for weights’ local component:

– ”linear”: tf (tfs are already linear, so left as-is)

– ”sqrt”: tf => sqrt(tf)

– ”log”: tf => log(tf) + 1

– ”binary”: tf => 1

• idf_type – Type of inverse document frequency (idf) to use for weights’ global compo-
nent:

– ”standard”: idf = log(n_docs / df) + 1.0

– ”smooth”: idf = log(n_docs + 1 / df + 1) + 1.0, i.e. 1 is added to all document frequencies,
as if a single document containing every unique term was added to the corpus.

– ”bm25”: idf = log((n_docs - df + 0.5) / (df + 0.5)), which is a form commonly used in
information retrieval that allows for very common terms to receive negative weights.

– None: no global weighting is applied to local term weights.

• dl_type – Type of document-length scaling to use for weights’ normalization component:

– ”linear”: dl (dls are already linear, so left as-is)

– ”sqrt”: dl => sqrt(dl)

– ”log”: dl => log(dl)

– None: no normalization is applied to local (+global?) weights

• norm – If “l1” or “l2”, normalize weights by the L1 or L2 norms, respectively, of row-wise
vectors; otherwise, don’t.

• min_df – Minimum number of documents in which a term must appear for it to be included
in the vocabulary and as a column in a transformed doc-term matrix. If float, value is the
fractional proportion of the total number of docs, which must be in [0.0, 1.0]; if int, value is
the absolute number.

• max_df – Maximum number of documents in which a term may appear for it to be included
in the vocabulary and as a column in a transformed doc-term matrix. If float, value is the
fractional proportion of the total number of docs, which must be in [0.0, 1.0]; if int, value is
the absolute number.

• max_n_terms – If specified, only include terms whose document frequency is within the
top max_n_terms.

• vocabulary_terms – Mapping of unique term string to unique term id, or an iterable
of term strings that gets converted into such a mapping. Note that, if specified, vectorized
outputs will include only these terms.

vocabulary_terms
Mapping of unique term string to unique term id, either provided on instantiation or generated by calling
Vectorizer.fit() on a collection of tokenized documents.

Type Dict[str, int]

4.5. API Reference 111

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

property id_to_term
Mapping of unique term id (int) to unique term string (str), i.e. the inverse of Vectorizer.
vocabulary. This attribute is only generated if needed, and it is automatically kept in sync with the
corresponding vocabulary.

property terms_list
List of term strings in column order of vectorized outputs. For example, terms_list[0] gives the term
assigned to the first column in an output doc-term-matrix, doc_term_matrix[:, 0].

fit(tokenized_docs: Iterable[Iterable[str]])→ Vectorizer
Count terms in tokenized_docs and, if not already provided, build up a vocabulary based those terms.
Fit and store global weights (IDFs) and, if needed for term weighting, the average document length.

Parameters tokenized_docs – A sequence of tokenized documents, where each is a se-
quence of term strings. For example:

>>> ([tok.lemma_ for tok in spacy_doc]
... for spacy_doc in spacy_docs)
>>> ((ne.text for ne in extract.entities(doc))
... for doc in corpus)

Returns Vectorizer instance that has just been fit.

fit_transform(tokenized_docs: Iterable[Iterable[str]])→ scipy.sparse.csr.csr_matrix
Count terms in tokenized_docs and, if not already provided, build up a vocabulary based those terms.
Fit and store global weights (IDFs) and, if needed for term weighting, the average document length. Trans-
form tokenized_docs into a document-term matrix with values weighted according to the parameters
in Vectorizer initialization.

Parameters tokenized_docs – A sequence of tokenized documents, where each is a se-
quence of term strings. For example:

>>> ([tok.lemma_ for tok in spacy_doc]
... for spacy_doc in spacy_docs)
>>> ((ne.text for ne in extract.entities(doc))
... for doc in corpus)

Returns The transformed document-term matrix, where rows correspond to documents and
columns correspond to terms, as a sparse row matrix.

transform(tokenized_docs: Iterable[Iterable[str]])→ scipy.sparse.csr.csr_matrix
Transform tokenized_docs into a document-term matrix with values weighted according to the pa-
rameters in Vectorizer initialization and the global weights computed by calling Vectorizer.
fit().

Parameters tokenized_docs – A sequence of tokenized documents, where each is a se-
quence of term strings. For example:

>>> ([tok.lemma_ for tok in spacy_doc]
... for spacy_doc in spacy_docs)
>>> ((ne.text for ne in extract.entities(doc))
... for doc in corpus)

Returns The transformed document-term matrix, where rows correspond to documents and
columns correspond to terms, as a sparse row matrix.

Note: For best results, the tokenization used to produce tokenized_docs should be the same as was
applied to the docs used in fitting this vectorizer or in generating a fixed input vocabulary.

112 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix

textacy Documentation, Release 0.12.0

Consider an extreme case where the docs used in fitting consist of lowercased (non-numeric) terms, while
the docs to be transformed are all uppercased: The output doc-term-matrix will be empty.

property weighting
A mathematical representation of the overall weighting scheme used to determine values in the vectorized
matrix, depending on the params used to initialize the Vectorizer.

class textacy.representations.vectorizers.GroupVectorizer(*, tf_type: Lit-
eral[linear, sqrt,
log, binary] = 'lin-
ear', idf_type: Op-
tional[Literal[standard,
smooth, bm25]] =
None, dl_type: Op-
tional[Literal[linear,
sqrt, log]] =
None, norm: Op-
tional[Literal[l1, l2]] =
None, min_df: int | float
= 1, max_df: int | float
= 1.0, max_n_terms:
Optional[int] = None,
vocabulary_terms:
Optional[Dict[str, int] |
Iterable[str]] = None,
vocabulary_grps: Op-
tional[Dict[str, int] |
Iterable[str]] = None)

Transform one or more tokenized documents into a group-term matrix of shape (# groups, # unique terms), with
tf-, tf-idf, or binary-weighted values.

This is an extension of typical document-term matrix vectorization, where terms are grouped by the documents
in which they co-occur. It allows for customized grouping, such as by a shared author or publication year, that
may span multiple documents, without forcing users to merge those documents themselves.

Stream a corpus with metadata from disk:

>>> ds = textacy.datasets.CapitolWords()
>>> records = ds.records(limit=1000)
>>> corpus = textacy.Corpus("en_core_web_sm", data=records)
>>> corpus
Corpus(1000 docs, 538397 tokens)

Tokenize and vectorize the first 600 documents of this corpus, where terms are grouped not by documents but
by a categorical value in the docs’ metadata:

>>> tokenized_docs, groups = textacy.io.unzip(
... ((term.lemma_ for term in textacy.extract.terms(doc, ngs=1, ents=True)),
... doc._.meta["speaker_name"])
... for doc in corpus[:600])
>>> vectorizer = GroupVectorizer(
... tf_type="linear", idf_type="smooth", norm="l2",
... min_df=3, max_df=0.95)
>>> grp_term_matrix = vectorizer.fit_transform(tokenized_docs, groups)
>>> grp_term_matrix
<5x1822 sparse matrix of type '<class 'numpy.float64'>'

(continues on next page)

4.5. API Reference 113

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

(continued from previous page)

with 6139 stored elements in Compressed Sparse Row format>

Tokenize and vectorize the remaining 400 documents of the corpus, using only the groups, terms, and weights
learned in the previous step:

>>> tokenized_docs, groups = textacy.io.unzip(
... ((term.lemma_ for term in textacy.extract.terms(doc, ngs=1, ents=True)),
... doc._.meta["speaker_name"])
... for doc in corpus[600:])
>>> grp_term_matrix = vectorizer.transform(tokenized_docs, groups)
>>> grp_term_matrix
<5x1822 sparse matrix of type '<class 'numpy.float64'>'

with 4414 stored elements in Compressed Sparse Row format>

Inspect the terms associated with columns and groups associated with rows; they’re sorted alphabetically:

>>> vectorizer.terms_list[:5]
['', '$ 1 million', '$ 160 million', '$ 5 billion', '$ 7 billion']
>>> vectorizer.grps_list
['Bernie Sanders', 'John Kasich', 'Joseph Biden', 'Lindsey Graham', 'Rick Santorum
→˓']

If known in advance, limit the terms and/or groups included in vectorized outputs to a particular set of values:

>>> tokenized_docs, groups = textacy.io.unzip(
... ((term.lemma_ for term in textacy.extract.terms(doc, ngs=1, ents=True)),
... doc._.meta["speaker_name"])
... for doc in corpus[:600])
>>> vectorizer = GroupVectorizer(
... tf_type="linear", idf_type="smooth", norm="l2",
... min_df=3, max_df=0.95,
... vocabulary_terms=["legislation", "federal government", "house",
→˓"constitutional"],
... vocabulary_grps=["Bernie Sanders", "Lindsey Graham", "Rick Santorum"])
>>> grp_term_matrix = vectorizer.fit_transform(tokenized_docs, groups)
>>> grp_term_matrix
<3x4 sparse matrix of type '<class 'numpy.float64'>'

with 9 stored elements in Compressed Sparse Row format>
>>> vectorizer.terms_list
['constitutional', 'federal government', 'house', 'legislation']
>>> vectorizer.grps_list
['Bernie Sanders', 'Lindsey Graham', 'Rick Santorum']

For a discussion of the various weighting schemes that can be applied, check out the Vectorizer docstring.

Parameters

• tf_type – Type of term frequency (tf) to use for weights’ local component:

– ”linear”: tf (tfs are already linear, so left as-is)

– ”sqrt”: tf => sqrt(tf)

– ”log”: tf => log(tf) + 1

– ”binary”: tf => 1

• idf_type – Type of inverse document frequency (idf) to use for weights’ global compo-
nent:

114 Chapter 4. contents

textacy Documentation, Release 0.12.0

– ”standard”: idf = log(n_docs / df) + 1.0

– ”smooth”: idf = log(n_docs + 1 / df + 1) + 1.0, i.e. 1 is added to all document frequencies,
as if a single document containing every unique term was added to the corpus.

– ”bm25”: idf = log((n_docs - df + 0.5) / (df + 0.5)), which is a form commonly used in
information retrieval that allows for very common terms to receive negative weights.

– None: no global weighting is applied to local term weights.

• dl_type – Type of document-length scaling to use for weights’ normalization component:

– ”linear”: dl (dls are already linear, so left as-is)

– ”sqrt”: dl => sqrt(dl)

– ”log”: dl => log(dl)

– None: no normalization is applied to local (+global?) weights

• norm – If “l1” or “l2”, normalize weights by the L1 or L2 norms, respectively, of row-wise
vectors; otherwise, don’t.

• min_df – Minimum number of documents in which a term must appear for it to be included
in the vocabulary and as a column in a transformed doc-term matrix. If float, value is the
fractional proportion of the total number of docs, which must be in [0.0, 1.0]; if int, value is
the absolute number.

• max_df – Maximum number of documents in which a term may appear for it to be included
in the vocabulary and as a column in a transformed doc-term matrix. If float, value is the
fractional proportion of the total number of docs, which must be in [0.0, 1.0]; if int, value is
the absolute number.

• max_n_terms – If specified, only include terms whose document frequency is within the
top max_n_terms.

• vocabulary_terms – Mapping of unique term string to unique term id, or an iterable
of term strings that gets converted into such a mapping. Note that, if specified, vectorized
output will include only these terms.

• vocabulary_grps – Mapping of unique group string to unique group id, or an iterable
of group strings that gets converted into such a mapping. Note that, if specified, vectorized
output will include only these groups.

vocabulary_terms
Mapping of unique term string to unique term id, either provided on instantiation or generated by calling
GroupVectorizer.fit() on a collection of tokenized documents.

Type Dict[str, int]

vocabulary_grps
Mapping of unique group string to unique group id, either provided on instantiation or generated by calling
GroupVectorizer.fit() on a collection of tokenized documents.

Type Dict[str, int]

See also:

Vectorizer

property id_to_grp
Mapping of unique group id (int) to unique group string (str), i.e. the inverse of GroupVectorizer.
vocabulary_grps. This attribute is only generated if needed, and it is automatically kept in sync with
the corresponding vocabulary.

4.5. API Reference 115

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

property grps_list
List of group strings in row order of vectorized outputs. For example, grps_list[0] gives the group
assigned to the first row in an output group-term-matrix, grp_term_matrix[0, :].

fit(tokenized_docs: Iterable[Iterable[str]], grps: Iterable[str])→ GroupVectorizer
Count terms in tokenized_docs and, if not already provided, build up a vocabulary based those terms;
do the same for the groups in grps. Fit and store global weights (IDFs) and, if needed for term weighting,
the average document length.

Parameters

• tokenized_docs – A sequence of tokenized documents, where each is a sequence of
term strings. For example:

>>> ([tok.lemma_ for tok in spacy_doc]
... for spacy_doc in spacy_docs)
>>> ((ne.text for ne in extract.entities(doc))
... for doc in corpus)

• grps – Sequence of group names by which the terms in tokenized_docs are aggre-
gated, where the first item in grps corresponds to the first item in tokenized_docs,
and so on.

Returns GroupVectorizer instance that has just been fit.

fit_transform(tokenized_docs: Iterable[Iterable[str]], grps: Iterable[str]) →
scipy.sparse.csr.csr_matrix

Count terms in tokenized_docs and, if not already provided, build up a vocabulary based those terms;
do the same for the groups in grps. Fit and store global weights (IDFs) and, if needed for term weight-
ing, the average document length. Transform tokenized_docs into a group-term matrix with values
weighted according to the parameters in GroupVectorizer initialization.

Parameters

• tokenized_docs – A sequence of tokenized documents, where each is a sequence of
term strings. For example:

>>> ([tok.lemma_ for tok in spacy_doc]
... for spacy_doc in spacy_docs)
>>> ((ne.text for ne in extract.entities(doc))
... for doc in corpus)

• grps – Sequence of group names by which the terms in tokenized_docs are aggre-
gated, where the first item in grps corresponds to the first item in tokenized_docs,
and so on.

Returns The transformed group-term matrix, where rows correspond to groups and columns
correspond to terms, as a sparse row matrix.

transform(tokenized_docs: Iterable[Iterable[str]], grps: Iterable[str])→ scipy.sparse.csr.csr_matrix
Transform tokenized_docs and grps into a group-term matrix with values weighted according
to the parameters in GroupVectorizer initialization and the global weights computed by calling
GroupVectorizer.fit().

Parameters

• tokenized_docs – A sequence of tokenized documents, where each is a sequence of
term strings. For example:

116 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix

textacy Documentation, Release 0.12.0

>>> ([tok.lemma_ for tok in spacy_doc]
... for spacy_doc in spacy_docs)
>>> ((ne.text for ne in extract.entities(doc))
... for doc in corpus)

• grps – Sequence of group names by which the terms in tokenized_docs are aggre-
gated, where the first item in grps corresponds to the first item in tokenized_docs,
and so on.

Returns The transformed group-term matrix, where rows correspond to groups and columns
correspond to terms, as a sparse row matrix.

Note: For best results, the tokenization used to produce tokenized_docs should be the same as was
applied to the docs used in fitting this vectorizer or in generating a fixed input vocabulary.

Consider an extreme case where the docs used in fitting consist of lowercased (non-numeric) terms, while
the docs to be transformed are all uppercased: The output group-term-matrix will be empty.

textacy.vsm.matrix_utils: Functions for computing corpus-wide term- or document-based values, like term
frequency, document frequency, and document length, and filtering terms from a matrix by their document frequency.

textacy.representations.matrix_utils.get_term_freqs(doc_term_matrix:
scipy.sparse.csr.csr_matrix, *,
type_: Literal[linear, sqrt, log] =
'linear')→ numpy.ndarray

Compute frequencies for all terms in a document-term matrix, with optional sub-linear scaling.

Parameters

• doc_term_matrix – M x N sparse matrix, where M is the # of docs and N is the # of
unique terms. Values must be the linear, un-scaled counts of term n per doc m.

• type – Scaling applied to absolute term counts. If ‘linear’, term counts are left as-is, since
the sums are already linear; if ‘sqrt’, tf => sqrt(tf); if ‘log’, tf => log(tf) + 1.

Returns Array of term frequencies, with length equal to the # of unique terms (i.e. # of columns) in
doc_term_matrix.

Raises ValueError – if doc_term_matrix doesn’t have any non-zero entries, or if type_
isn’t one of {“linear”, “sqrt”, “log”}.

textacy.representations.matrix_utils.get_doc_freqs(doc_term_matrix:
scipy.sparse.csr.csr_matrix)
→ numpy.ndarray

Compute document frequencies for all terms in a document-term matrix.

Parameters doc_term_matrix – M x N sparse matrix, where M is the # of docs and N is the #
of unique terms.

Note: Weighting on the terms doesn’t matter! Could be binary or tf or tfidf, a term’s doc freq
will be the same.

Returns Array of document frequencies, with length equal to the # of unique terms (i.e. # of
columns) in doc_term_matrix.

Raises ValueError – if doc_term_matrix doesn’t have any non-zero entries.

4.5. API Reference 117

https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.12.0

textacy.representations.matrix_utils.get_inverse_doc_freqs(doc_term_matrix:
scipy.sparse.csr.csr_matrix,
*, type_: Lit-
eral[standard,
smooth, bm25]
= 'smooth') →
numpy.ndarray

Compute inverse document frequencies for all terms in a document-term matrix, using one of several IDF
formulations.

Parameters

• doc_term_matrix – M x N sparse matrix, where M is the # of docs and N is the # of
unique terms. The particular weighting of matrix values doesn’t matter.

• type – Type of IDF formulation to use. If ‘standard’, idfs => log(n_docs / dfs) + 1.0; if
‘smooth’, idfs => log(n_docs + 1 / dfs + 1) + 1.0, i.e. 1 is added to all document frequen-
cies, equivalent to adding a single document to the corpus containing every unique term; if
‘bm25’, idfs => log((n_docs - dfs + 0.5) / (dfs + 0.5)), which is a form commonly used in
BM25 ranking that allows for extremely common terms to have negative idf weights.

Returns Array of inverse document frequencies, with length equal to the # of unique terms (i.e. #
of columns) in doc_term_matrix.

Raises ValueError – if type_ isn’t one of {“standard”, “smooth”, “bm25”}.

textacy.representations.matrix_utils.get_doc_lengths(doc_term_matrix:
scipy.sparse.csr.csr_matrix, *,
type_: Literal[linear, sqrt, log]
= 'linear')→ numpy.ndarray

Compute the lengths (i.e. number of terms) for all documents in a document-term matrix.

Parameters

• doc_term_matrix – M x N sparse matrix, where M is the # of docs, N is the # of unique
terms, and values are the absolute counts of term n per doc m.

• type – Scaling applied to absolute doc lengths. If ‘linear’, lengths are left as-is, since the
sums are already linear; if ‘sqrt’, dl => sqrt(dl); if ‘log’, dl => log(dl) + 1.

Returns Array of document lengths, with length equal to the # of documents (i.e. # of rows) in
doc_term_matrix.

Raises ValueError – if type_ isn’t one of {“linear”, “sqrt”, “log”}.

textacy.representations.matrix_utils.get_information_content(doc_term_matrix:
scipy.sparse.csr.csr_matrix)
→ numpy.ndarray

Compute information content for all terms in a document-term matrix. IC is a float in [0.0, 1.0], defined as -df
* log2(df) - (1 - df) * log2(1 - df), where df is a term’s normalized document frequency.

Parameters doc_term_matrix – M x N sparse matrix, where M is the # of docs and N is the #
of unique terms.

Note: Weighting on the terms doesn’t matter! Could be binary or tf or tfidf, a term’s information
content will be the same.

Returns Array of term information content values, with length equal to the # of unique terms (# of
columns) in doc_term_matrix.

118 Chapter 4. contents

https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

textacy Documentation, Release 0.12.0

Raises ValueError – if doc_term_matrix doesn’t have any non-zero entries.

textacy.representations.matrix_utils.apply_idf_weighting(doc_term_matrix:
scipy.sparse.csr.csr_matrix,
*, type_: Lit-
eral[standard, smooth,
bm25] = 'smooth') →
scipy.sparse.csr.csr_matrix

Apply inverse document frequency (idf) weighting to a term-frequency (tf) weighted document-term matrix,
using one of several IDF formulations.

Parameters

• doc_term_matrix – M x N sparse matrix, where M is the # of docs and N is the # of
unique terms.

• type – Type of IDF formulation to use.

Returns Sparse matrix of shape M x N, where value (i, j) is the tfidf weight of term j in doc i.

See also:

get_inverse_doc_freqs()

textacy.representations.matrix_utils.filter_terms_by_df(doc_term_matrix:
sp.csr_matrix, term_to_id:
Dict[str, int], *, min_df:
float | int = 1, max_df: float
| int = 1.0, max_n_terms:
Optional[int] = None)
→ Tuple[sp.csr_matrix,
Dict[str, int]]

Filter out terms that are too common and/or too rare (by document frequency), and compactify the
top max_n_terms in the id_to_term mapping accordingly. Borrows heavily from the sklearn.
feature_extraction.text module.

Parameters

• doc_term_matrix – M X N matrix, where M is the # of docs and N is the # of unique
terms.

• term_to_id – Mapping of term string to unique term id, e.g. Vectorizer.
vocabulary_terms.

• min_df – If float, value is the fractional proportion of the total number of documents and
must be in [0.0, 1.0]; if int, value is the absolute number; filter terms whose document
frequency is less than min_df

• max_df – If float, value is the fractional proportion of the total number of documents and
must be in [0.0, 1.0]; if int, value is the absolute number; filter terms whose document
frequency is greater than max_df

• max_n_terms – If specified, only include terms whose term frequency is within the top
max_n_terms.

Returns

Sparse matrix of shape (# docs, # unique filtered terms), where value (i, j) is the weight of term
j in doc i.

Term to id mapping, where keys are unique filtered terms as strings and values are their corre-
sponding integer ids.

4.5. API Reference 119

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

Raises ValueError – if max_df or min_df or max_n_terms < 0.

textacy.representations.matrix_utils.filter_terms_by_ic(doc_term_matrix:
scipy.sparse.csr.csr_matrix,
term_to_id: Dict[str, int],
*, min_ic: float = 0.0,
max_n_terms: Op-
tional[int] = None)→ Tu-
ple[scipy.sparse.csr.csr_matrix,
Dict[str, int]]

Filter out terms that are too common and/or too rare (by information content), and compactify the
top max_n_terms in the id_to_term mapping accordingly. Borrows heavily from the sklearn.
feature_extraction.text module.

Parameters

• doc_term_matrix – M X N sparse matrix, where M is the # of docs and N is the # of
unique terms.

• term_to_id – Mapping of term string to unique term id, e.g. Vectorizer.
vocabulary_terms.

• min_ic – Filter terms whose information content is less than this value; must be in [0.0,
1.0].

• max_n_terms – If specified, only include terms whose information content is within the
top max_n_terms

Returns

Sparse matrix of shape (# docs, # unique filtered terms), where value (i, j) is the weight of term
j in doc i.

Term to id mapping, where keys are unique filtered terms as strings and values are their corre-
sponding integer ids.

Raises ValueError – if min_ic not in [0.0, 1.0] or max_n_terms < 0.

4.5.8 Topic Modeling

textacy.tm.topic_model: Convenient and consolidated topic-modeling, built on scikit-learn.

class textacy.tm.topic_model.TopicModel(model: Literal[nmf, lda, lsa] | NMF | LatentDirich-
letAllocation | TruncatedSVD, n_topics: int = 10,
**kwargs)

Train and apply a topic model to vectorized texts using scikit-learn’s implementations of LSA, LDA, and NMF
models. Also any other topic model implementations that have component_, n_topics and transform attributes.
Inspect and visualize results. Save and load trained models to and from disk.

Prepare a vectorized corpus (i.e. document-term matrix) and corresponding vocabulary (i.e. mapping of
term strings to column indices in the matrix). See textacy.representations.vectorizers.
Vectorizer for details. In short:

>>> vectorizer = Vectorizer(
... tf_type="linear", idf_type="smooth", norm="l2",
... min_df=3, max_df=0.95, max_n_terms=100000)
>>> doc_term_matrix = vectorizer.fit_transform(terms_list)

Initialize and train a topic model:

120 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

>>> model = textacy.tm.TopicModel("nmf", n_topics=20)
>>> model.fit(doc_term_matrix)
>>> model
TopicModel(n_topics=10, model=NMF)

Transform the corpus and interpret our model:

>>> doc_topic_matrix = model.transform(doc_term_matrix)
>>> for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term,
→˓topics=[0,1]):
... print("topic", topic_idx, ":", " ".join(top_terms))
topic 0 : people american go year work think $ today money
→˓america
topic 1 : rescind quorum order unanimous consent ask president mr.
→˓ madam absence
>>> for topic_idx, top_docs in model.top_topic_docs(doc_topic_matrix, topics=[0,
→˓1], top_n=2):
... print(topic_idx)
... for j in top_docs:
... print(corpus[j]._.meta["title"])
0
THE MOST IMPORTANT ISSUES FACING THE AMERICAN PEOPLE
55TH ANNIVERSARY OF THE BATTLE OF CRETE
1
CHEMICAL WEAPONS CONVENTION
MFN STATUS FOR CHINA
>>> for doc_idx, topics in model.top_doc_topics(doc_topic_matrix, docs=range(5),
→˓top_n=2):
... print(corpus[doc_idx]._.meta["title"], ":", topics)
JOIN THE SENATE AND PASS A CONTINUING RESOLUTION : (9, 0)
MEETING THE CHALLENGE : (2, 0)
DISPOSING OF SENATE AMENDMENT TO H.R. 1643, EXTENSION OF MOST-FAVORED- NATION
→˓TREATMENT FOR BULGARIA : (0, 9)
EXAMINING THE SPEAKER'S UPCOMING TRAVEL SCHEDULE : (0, 9)
FLOODING IN PENNSYLVANIA : (0, 9)
>>> for i, val in enumerate(model.topic_weights(doc_topic_matrix)):
... print(i, val)
0 0.302796022302
1 0.0635617650602
2 0.0744927472417
3 0.0905778808867
4 0.0521162262192
5 0.0656303769725
6 0.0973516532757
7 0.112907245542
8 0.0680659204364
9 0.0725001620636

Visualize the model:

>>> model.termite_plot(doc_term_matrix, vectorizer.id_to_term,
... topics=-1, n_terms=25, sort_terms_by="seriation")

Persist our topic model to disk:

>>> model.save("nmf-10topics.pkl")

Parameters

4.5. API Reference 121

textacy Documentation, Release 0.12.0

• model – Name or instance of an sklearn decomposition model.

• n_topics – Number of topics in the model to be initialized

• **kwargs – variety of parameters used to initialize the model; see individual sklearn pages
for full details

Raises ValueError – if model not in {"nmf", "lda", "lsa"} or is not an NMF, Latent-
DirichletAllocation, or TruncatedSVD instance

See also:

• http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html

• http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html

• http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html

get_doc_topic_matrix(doc_term_matrix, *, normalize: bool = True)→ numpy.ndarray
Transform a document-term matrix into a document-topic matrix, where rows correspond to documents
and columns to the topics in the topic model.

Parameters

• doc_term_matrix (array-like or sparse matrix) – Corpus represented as
a document-term matrix with shape (n_docs, n_terms). LDA expects tf-weighting, while
NMF and LSA may do better with tfidf-weighting.

• normalize – If True, the values in each row are normalized, i.e. topic weights on each
document sum to 1.

Returns Document-topic matrix with shape (n_docs, n_topics).

top_topic_terms(id2term: Sequence[str] | Dict[int, str], *, topics: int | Sequence[int] = - 1, top_n:
int = 10, weights: bool = False) → Iterable[Tuple[int, Tuple[str, . . .]]] | Iter-
able[Tuple[int, Tuple[Tuple[str, float], . . .]]]

Get the top top_n terms by weight per topic in model.

Parameters

• id2term – Object that returns the term string corresponding to term id i through
id2term[i]; could be a list of strings where the index represents the term id, such as
that returned by sklearn.feature_extraction.text.CountVectorizer.
get_feature_names(), or a mapping of term id to term string.

• topics – Topic(s) for which to return top terms; if -1 (default), all topics’ terms are
returned.

• top_n – Number of top terms to return per topic

• weights – If True, terms are returned with their corresponding topic weights; otherwise,
terms are returned without weights

Yields Next tuple corresponding to a topic; the first element is the topic’s index; if weights is
False, the second element is a tuple of str representing the top top_n related terms; other-
wise, the second is a tuple of (str, float) pairs representing the top top_n related terms and
their associated weights wrt the topic; for example:

>>> list(TopicModel.top_topic_terms(id2term, topics=(0, 1), top_n=2,
→˓ weights=False))
[(0, ('foo', 'bar')), (1, ('bat', 'baz'))]

(continues on next page)

122 Chapter 4. contents

https://docs.python.org/3/library/exceptions.html#ValueError
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

(continued from previous page)

>>> list(TopicModel.top_topic_terms(id2term, topics=0, top_n=2,
→˓weights=True))
[(0, (('foo', 0.1415), ('bar', 0.0986)))]

top_topic_docs(doc_topic_matrix: np.ndarray, *, topics: int | Sequence[int] = - 1, top_n: int = 10,
weights: bool = False) → Iterable[Tuple[int, Tuple[int, . . .]]] | Iterable[Tuple[int,
Tuple[Tuple[int, float], . . .]]]

Get the top top_n docs by weight per topic in doc_topic_matrix.

Parameters

• doc_topic_matrix – Document-topic matrix with shape (n_docs, n_topics), the result
of calling TopicModel.get_doc_topic_matrix()

• topics – Topic(s) for which to return top docs; if -1, all topics’ docs are returned.

• top_n – Number of top docs to return per topic.

• weights – If True, docs are returned with their corresponding (normalized) topic
weights; otherwise, docs are returned without weights.

Yields Next tuple corresponding to a topic; the first element is the topic’s index; if weights
is False, the second element is a tuple of ints representing the top top_n related docs;
otherwise, the second is a tuple of (int, float) pairs representing the top top_n related docs
and their associated weights wrt the topic; for example:

>>> list(TopicModel.top_doc_terms(dtm, topics=(0, 1), top_n=2,
→˓weights=False))
[(0, (4, 2)), (1, (1, 3))]
>>> list(TopicModel.top_doc_terms(dtm, topics=0, top_n=2,
→˓weights=True))
[(0, ((4, 0.3217), (2, 0.2154)))]

top_doc_topics(doc_topic_matrix: np.ndarray, *, docs: int | Sequence[int] = - 1, top_n: int = 3,
weights: bool = False) → Iterable[Tuple[int, Tuple[int, . . .]]] | Iterable[Tuple[int,
Tuple[Tuple[int, float], . . .]]]

Get the top top_n topics by weight per doc for docs in doc_topic_matrix.

Parameters

• doc_topic_matrix – Document-topic matrix with shape (n_docs, n_topics), the result
of calling TopicModel.get_doc_topic_matrix() .

• docs – Docs for which to return top topics; if -1, all docs’ top topics are returned.

• top_n – Number of top topics to return per doc.

• If True (weights) – topic weights; otherwise, docs are returned without weights.

• are returned with their corresponding (docs) – topic weights; other-
wise, docs are returned without weights.

Yields Next tuple corresponding to a doc; the first element is the doc’s index; if weights
is False, the second element is a tuple of ints representing the top top_n related topics;
otherwise, the second is a tuple of (int, float) pairs representing the top top_n related topics
and their associated weights wrt the doc; for example:

>>> list(TopicModel.top_doc_topics(dtm, docs=(0, 1), top_n=2,
→˓weights=False))
[(0, (1, 4)), (1, (3, 2))]

(continues on next page)

4.5. API Reference 123

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

(continued from previous page)

>>> list(TopicModel.top_doc_topics(dtm, docs=0, top_n=2,
→˓weights=True))
[(0, ((1, 0.2855), (4, 0.2412)))]

topic_weights(doc_topic_matrix: numpy.ndarray)→ numpy.ndarray
Get the overall weight of topics across an entire corpus. Note: Values depend on whether topic weights per
document in doc_topic_matrix were normalized, or not. I suppose either way makes sense. . . o_O

Parameters doc_topic_matrix – Document-topic matrix with shape (n_docs, n_topics),
the result of calling TopicModel.get_doc_topic_matrix()

Returns Array, where the ith element is the ith topic’s overall weight.

termite_plot(doc_term_matrix: np.ndarray | sp.csr_matrix, id2term: List[str] | Dict[int, str],
*, topics: int | Sequence[int] = - 1, sort_topics_by: Literal[index, weight] =
'index', highlight_topics: Optional[int | Sequence[int]] = None, n_terms: int
= 25, rank_terms_by: Literal[topic_weight, corpus_weight] = 'topic_weight',
sort_terms_by: Literal[seriation, weight, index, alphabetical] = 'seriation', save: Op-
tional[str] = None, rc_params: Optional[dict] = None)

Make a “termite” plot for assessing topic models using a tabular layout to promote comparison of terms
both within and across topics.

Parameters

• doc_term_matrix – Corpus represented as a document-term matrix with shape
(n_docs, n_terms); may have tf- or tfidf-weighting.

• id2term – Object that returns the term string corresponding to term id i through
id2term[i]. Could be a list of strings where the index represents the term id, such as
that returned by sklearn.feature_extraction.text.CountVectorizer.
get_feature_names(), or a mapping of term id to term string.

• topics – Topic(s) to include in termite plot; if -1, all topics are included.

• sort_topics_by –

• highlight_topics – Indices for up to 6 topics to visually highlight in the plot with
contrasting colors.

• n_terms – Number of top terms to include in termite plot.

• rank_terms_by – Value used to rank terms; the top-ranked n_terms are included in
the plot.

• sort_terms_by – Method used to vertically sort the selected top n_terms terms; the
default (“seriation”) groups similar terms together, which facilitates cross-topic assess-
ment.

• save – The full /path/to/fname on disk to save figure, or None.

• rc_params – Allow passing parameters to rc_context in matplotlib.plyplot, details in
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_context.html

Returns Axis on which termite plot is plotted.

Return type matplotlib.axes.Axes.axis

Raises ValueError – if more than 6 topics are selected for highlighting, or an invalid value is
passed for the sort_topics_by, rank_terms_by, and/or sort_terms_by params

124 Chapter 4. contents

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_context.html
https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.12.0

References

• Chuang, Jason, Christopher D. Manning, and Jeffrey Heer. “Termite: Visualization techniques for
assessing textual topic models.” Proceedings of the International Working Conference on Advanced
Visual Interfaces. ACM, 2012.

• for sorting by “seriation”, see https://arxiv.org/abs/1406.5370

See also:

viz.termite_plot

TODO: rank_terms_by other metrics, e.g. topic salience or relevance

4.5.9 File I/O

text.read_text Read the contents of a text file at filepath, either all
at once or streaming line-by-line.

text.write_text Write text data to disk at filepath, either all at once
or streaming line-by-line.

json.read_json Read the contents of a JSON file at filepath, either
all at once or streaming item-by-item.

json.write_json Write JSON data to disk at filepath, either all at
once or streaming item-by-item.

csv.read_csv Read the contents of a CSV file at filepath,
streaming line-by-line, where each line is a list of
strings and/or floats whose values are separated by
delimiter.

csv.write_csv Write rows of data to disk at filepath, where
each row is an iterable or a dictionary of strings and/or
numbers, written to one line with values separated by
delimiter.

matrix.read_sparse_matrix Read the data, indices, indptr, and shape arrays from a
.npz file on disk at filepath, and return an instan-
tiated sparse matrix.

matrix.write_sparse_matrix Write sparse matrix data to disk at filepath, op-
tionally compressed, into a single .npz file.

spacy.read_spacy_docs Read the contents of a file at filepath, written in bi-
nary or pickle format.

spacy.write_spacy_docs Write one or more Doc s to disk at filepath in binary
or pickle format.

http.read_http_stream Read data from url in a stream, either all at once or
line-by-line.

http.write_http_stream Download data from url in a stream, and write succes-
sive chunks to disk at filepath.

utils.open_sesame Open file filepath.
utils.split_records Split records’ content (text) from associated metadata,

but keep them paired together.
utils.unzip Borrowed from toolz.sandbox.core.unzip,

but using cytoolz instead of toolz to avoid the additional
dependency.

continues on next page

4.5. API Reference 125

https://arxiv.org/abs/1406.5370

textacy Documentation, Release 0.12.0

Table 8 – continued from previous page
utils.get_filepaths Yield full paths of files on disk under directory

dirpath, optionally filtering for or against particular
patterns or file extensions and crawling all subdirecto-
ries.

utils.download_file Download a file from url and save it to disk.
utils.unpack_archive Extract data from a zip or tar archive file into a directory

(or do nothing if the file isn’t an archive).

textacy.io.text: Functions for reading from and writing to disk records in plain text format, either as one text
per file or one text per line in a file.

textacy.io.text.read_text(filepath: Union[str, pathlib.Path], *, mode: str = 'rt', encoding: Op-
tional[str] = None, lines: bool = False)→ Iterable[str]

Read the contents of a text file at filepath, either all at once or streaming line-by-line.

Parameters

• filepath – Path to file on disk from which data will be read.

• mode – Mode with which filepath is opened.

• encoding – Name of the encoding used to decode or encode the data in filepath. Only
applicable in text mode.

• lines – If False, all data is read in at once; otherwise, data is read in one line at a time.

Yields Next line of text to read in.

If lines is False, wrap this output in next() to conveniently access the full text.

textacy.io.text.write_text(data: str | Iterable[str], filepath: types.PathLike, *, mode: str = 'wt',
encoding: Optional[str] = None, make_dirs: bool = False, lines: bool
= False)→ None

Write text data to disk at filepath, either all at once or streaming line-by-line.

Parameters

• If lines is False (data) – “isnt rick and morty that thing you get when you die
and your body gets all stiff”

If lines is True, an iterable of strings to write to disk, one item per line; for example:

["isnt rick and morty that thing you get when you die and your
→˓body gets all stiff",
"You're thinking of rigor mortis. Rick and morty is when you get
→˓trolled into watching "never gonna give you up"",
"That's rickrolling. Rick and morty is a type of pasta"]

• single string to write to disk; for example:: (a) – “isnt rick and
morty that thing you get when you die and your body gets all stiff”

If lines is True, an iterable of strings to write to disk, one item per line; for example:

["isnt rick and morty that thing you get when you die and your
→˓body gets all stiff",
"You're thinking of rigor mortis. Rick and morty is when you get
→˓trolled into watching "never gonna give you up"",
"That's rickrolling. Rick and morty is a type of pasta"]

• filepath – Path to file on disk to which data will be written.

126 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#next
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

textacy Documentation, Release 0.12.0

• mode – Mode with which filepath is opened.

• encoding – Name of the encoding used to decode or encode the data in filepath. Only
applicable in text mode.

• make_dirs – If True, automatically create (sub)directories if not already present in order
to write filepath.

• lines – If False, all data is written at once; otherwise, data is written to disk one line at a
time.

textacy.io.json: Functions for reading from and writing to disk records in JSON format, as one record per file
or one record per line in a file.

textacy.io.json.read_json(filepath: Union[str, pathlib.Path], *, mode: str = 'rt', encoding: Op-
tional[str] = None, lines: bool = False)→ Iterable

Read the contents of a JSON file at filepath, either all at once or streaming item-by-item.

Parameters

• filepath – Path to file on disk from which data will be read.

• mode – Mode with which filepath is opened.

• encoding – Name of the encoding used to decode or encode the data in filepath. Only
applicable in text mode.

• lines – If False, all data is read in at once; otherwise, data is read in one line at a time.

Yields Next JSON item; could be a dict, list, int, float, str, depending on the data and the value of
lines.

textacy.io.json.read_json_mash(filepath: Union[str, pathlib.Path], *, mode: str = 'rt', encoding:
Optional[str] = None, buffer_size: int = 2048)→ Iterable

Read the contents of a JSON file at filepath one item at a time, where all of the items have been mashed
together, end-to-end, on a single line.

Parameters

• filepath – Path to file on disk to which data will be written.

• mode – Mode with which filepath is opened.

• encoding – Name of the encoding used to decode or encode the data in filepath. Only
applicable in text mode.

• buffer_size – Number of bytes to read in as a chunk.

Yields Next valid JSON object, converted to native Python equivalent.

Note: Storing JSON data in this format is Not Good. Reading it is doable, so this function is included for users’
convenience, but note that there is no analogous write_json_mash() function. Don’t do it.

textacy.io.json.write_json(data: Any, filepath: types.PathLike, *, mode: str = 'wt', encoding:
Optional[str] = None, make_dirs: bool = False, lines: bool = False,
ensure_ascii: bool = False, separators: Tuple[str, str] = (',', ':'),
sort_keys: bool = False, indent: Optional[int | str] = None)→ None

Write JSON data to disk at filepath, either all at once or streaming item-by-item.

Parameters

• data – JSON data to write to disk, including any Python objects encodable by default in
json, as well as dates and datetimes. For example:

4.5. API Reference 127

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/json.html#module-json

textacy Documentation, Release 0.12.0

[
{"title": "Harrison Bergeron", "text": "The year was 2081, and

→˓everybody was finally equal."},
{"title": "2BR02B", "text": "Everything was perfectly swell."},
{"title": "Slaughterhouse-Five", "text": "All this happened,

→˓more or less."},
]

If lines is False, all of data is written as a single object; if True, each item is written to
a separate line in filepath.

• filepath – Path to file on disk to which data will be written.

• mode – Mode with which filepath is opened.

• encoding – Name of the encoding used to decode or encode the data in filepath. Only
applicable in text mode.

• make_dirs – If True, automatically create (sub)directories if not already present in order
to write filepath.

• lines – If False, all data is written at once; otherwise, data is written to disk one item at a
time.

• ensure_ascii – If True, all non-ASCII characters are escaped; otherwise, non-ASCII
characters are output as-is.

• separators – An (item_separator, key_separator) pair specifying how items and keys are
separated in output.

• sort_keys – If True, each output dictionary is sorted by key; otherwise, dictionary order-
ing is taken as-is.

• indent – If a non-negative integer or string, items are pretty-printed with the specified
indent level; if 0, negative, or “”, items are separated by newlines; if None, the most compact
representation is used when storing data.

See also:

https://docs.python.org/3/library/json.html#json.dump

class textacy.io.json.ExtendedJSONEncoder(*, skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separa-
tors=None, default=None)

Sub-class of json.JSONEncoder, used to write JSON data to disk in write_json() while handling a
broader range of Python objects.

• datetime.datetime => ISO-formatted string

• datetime.date => ISO-formatted string

default(obj)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base
implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

(continues on next page)

128 Chapter 4. contents

https://docs.python.org/3/library/json.html#json.dump
https://docs.python.org/3/library/json.html#json.JSONEncoder
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date

textacy Documentation, Release 0.12.0

(continued from previous page)

pass
else:

return list(iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

textacy.io.csv: Functions for reading from and writing to disk records in CSV format, where CSVs may be
delimited not only by commas (the default) but tabs, pipes, and other valid one-char delimiters.

textacy.io.csv.read_csv(filepath: types.PathLike, *, encoding: Optional[str] = None, fieldnames:
Optional[str | Sequence[str]] = None, dialect: str | Type[csv.Dialect] =
'excel', delimiter: str = ',', quoting: int = 2)→ Iterable[list] | Iterable[dict]

Read the contents of a CSV file at filepath, streaming line-by-line, where each line is a list of strings and/or
floats whose values are separated by delimiter.

Parameters

• filepath – Path to file on disk from which data will be read.

• encoding – Name of the encoding used to decode or encode the data in filepath.

• fieldnames – If specified, gives names for columns of values, which are used as keys
in an ordered dictionary representation of each line’s data. If ‘infer’, the first kB of data is
analyzed to make a guess about whether the first row is a header of column names, and if so,
those names are used as keys. If None, no column names are used, and each line is returned
as a list of strings/floats.

• dialect – Grouping of formatting parameters that determine how the data is parsed when
reading/writing. If ‘infer’, the first kB of data is analyzed to get a best guess for the correct
dialect.

• delimiter – 1-character string used to separate fields in a row.

• quoting – Type of quoting to apply to field values. See: https://docs.python.org/3/library/
csv.html#csv.QUOTE_NONNUMERIC

Yields List[obj] – Next row, whose elements are strings and/or floats. If fieldnames is None or
‘infer’ doesn’t detect a header row.

or

Dict[str, obj]: Next row, as an ordered dictionary of (key, value) pairs, where keys are column
names and values are the corresponding strings and/or floats. If fieldnames is a list of column
names or ‘infer’ detects a header row.

See also:

https://docs.python.org/3/library/csv.html#csv.reader

textacy.io.csv.write_csv(data: Iterable[Dict[str, Any]] | Iterable[Iterable], filepath:
types.PathLike, *, encoding: Optional[str] = None, make_dirs: bool =
False, fieldnames: Optional[Sequence[str]] = None, dialect: str = 'excel',
delimiter: str = ',', quoting: int = 2)→ None

Write rows of data to disk at filepath, where each row is an iterable or a dictionary of strings and/or
numbers, written to one line with values separated by delimiter.

Parameters

• data – If fieldnames is None, an iterable of iterables of strings and/or numbers to write
to disk; for example:

4.5. API Reference 129

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/csv.html#csv.Dialect
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/csv.html#csv.QUOTE_NONNUMERIC
https://docs.python.org/3/library/csv.html#csv.QUOTE_NONNUMERIC
https://docs.python.org/3/library/csv.html#csv.reader
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

textacy Documentation, Release 0.12.0

[['That was a great movie!', 0.9],
['The movie was okay, I guess.', 0.2],
['Worst. Movie. Ever.', -1.0]]

If fieldnames is specified, an iterable of dictionaries with string and/or number values to
write to disk; for example:

[{'text': 'That was a great movie!', 'score': 0.9},
{'text': 'The movie was okay, I guess.', 'score': 0.2},
{'text': 'Worst. Movie. Ever.', 'score': -1.0}]

• filepath – Path to file on disk to which data will be written.

• encoding – Name of the encoding used to decode or encode the data in filepath.

• make_dirs – If True, automatically create (sub)directories if not already present in order
to write filepath.

• fieldnames – Sequence of keys that identify the order in which values in each rows’
dictionary is written to filepath. These are included in filepath as a header row of
column names.

Note: Only specify this if data is an iterable of dictionaries.

• dialect – Grouping of formatting parameters that determine how the data is parsed when
reading/writing.

• delimiter – 1-character string used to separate fields in a row.

• quoting – Type of quoting to apply to field values. See: https://docs.python.org/3/library/
csv.html#csv.QUOTE_NONNUMERIC

See also:

https://docs.python.org/3/library/csv.html#csv.writer

textacy.io.matrix: Functions for reading from and writing to disk CSC and CSR sparse matrices in numpy
binary format.

textacy.io.matrix.read_sparse_matrix(filepath: types.PathLike, *, kind: str = 'csc') →
sp.csc_matrix | sp.csr_matrix

Read the data, indices, indptr, and shape arrays from a .npz file on disk at filepath, and return an instanti-
ated sparse matrix.

Parameters

• filepath – Path to file on disk from which data will be read.

• kind ({'csc', 'csr'}) – Kind of sparse matrix to instantiate.

Returns An instantiated sparse matrix, whose type depends on the value of kind.

See also:

https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.io.html#numpy-binary-files-npy-npz

textacy.io.matrix.write_sparse_matrix(data: sp.csc_matrix | sp.csr_matrix, filepath:
types.PathLike, *, compressed: bool = True,
make_dirs: bool = False)→ None

Write sparse matrix data to disk at filepath, optionally compressed, into a single .npz file.

Parameters

130 Chapter 4. contents

https://docs.python.org/3/library/csv.html#csv.QUOTE_NONNUMERIC
https://docs.python.org/3/library/csv.html#csv.QUOTE_NONNUMERIC
https://docs.python.org/3/library/csv.html#csv.writer
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.io.html#numpy-binary-files-npy-npz
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

textacy Documentation, Release 0.12.0

• data –

• filepath – Path to file on disk to which data will be written. If filepath does not end
in .npz, that extension is automatically appended to the name.

• compressed – If True, save arrays into a single file in compressed numpy binary format.

• make_dirs – If True, automatically create (sub)directories if not already present in order
to write filepath.

See also:

https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.io.html#numpy-binary-files-npy-npz

textacy.io.spacy: Functions for reading from and writing to disk spacy documents in either pickle or binary
format. Be warned: Both formats have pros and cons.

textacy.io.spacy.read_spacy_docs(filepath: Union[str, pathlib.Path], *, format: Literal[binary,
pickle] = 'binary', lang: Optional[Union[str, path-
lib.Path, spacy.language.Language]] = None) → Iter-
able[spacy.tokens.doc.Doc]

Read the contents of a file at filepath, written in binary or pickle format.

Parameters

• filepath – Path to file on disk from which data will be read.

• format – Format of the data that was written to disk. If “binary”, uses spacy.tokens.
DocBin to deserialize data; if “pickle”, uses python’s stdlib pickle.

Warning: Docs written in pickle format were saved all together as a list, which means
they’re all loaded into memory at once before streaming one by one. Mind your RAM
usage, especially when reading many docs!

• lang – Language with which spaCy originally processed docs, represented as the full name
of or path on disk to the pipeline, or an already instantiated pipeline instance. Note that this
is only required when format is “binary”.

Yields Next deserialized document.

Raises ValueError – if format is not “binary” or “pickle”, or if lang is None when
format="binary"

textacy.io.spacy.write_spacy_docs(data: Doc | Iterable[Doc], filepath: types.PathLike, *,
make_dirs: bool = False, format: FormatType = 'binary', at-
trs: Optional[Iterable[str]] = None, store_user_data: bool
= False)→ None

Write one or more Doc s to disk at filepath in binary or pickle format.

Parameters

• data – A single Doc or a sequence of Doc s to write to disk.

• filepath – Path to file on disk to which data will be written.

• make_dirs – If True, automatically create (sub)directories if not already present in order
to write filepath.

• format – Format of the data written to disk. If “binary”, uses spacy.tokens.DocBin
to serialie data; if “pickle”, uses python’s stdlib pickle.

4.5. API Reference 131

https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.io.html#numpy-binary-files-npy-npz
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

textacy Documentation, Release 0.12.0

Warning: When writing docs in pickle format, all the docs in data must be saved as
a list, which means they’re all loaded into memory. Mind your RAM usage, especially
when writing many docs!

• attrs – List of attributes to serialize if format is “binary”. If None, spaCy’s default
values are used; see here: https://spacy.io/api/docbin#init

• store_user_data – If True, write :attr`Doc.user_data` and the values of custom exten-
sion attributes to disk; otherwise, don’t.

Raises ValueError – if format is not “binary” or “pickle”

textacy.io.http: Functions for reading data from URLs via streaming HTTP requests and either reading it into
memory or writing it directly to disk.

textacy.io.http.read_http_stream(url: str, *, lines: bool = False, decode_unicode: bool = False,
chunk_size: int = 1024, auth: Optional[Tuple[str, str]] =
None)→ Iterable[str] | Iterable[bytes]

Read data from url in a stream, either all at once or line-by-line.

Parameters

• url – URL to which a GET request is made for data.

• lines – If False, yield all of the data at once; otherwise, yield data line-by-line.

• decode_unicode – If True, yield data as unicode, where the encoding is taken from the
HTTP response headers; otherwise, yield bytes.

• chunk_size – Number of bytes read into memory per chunk. Because decoding may
occur, this is not necessarily the length of each chunk.

• auth – (username, password) pair for simple HTTP authentication required (if at all) to
access the data at url.

See also:

http://docs.python-requests.org/en/master/user/authentication/

Yields If lines is True, the next line in the response data, which is bytes if decode_unicode is
False or unicode otherwise. If lines is False, yields the full response content, either as bytes
or unicode.

textacy.io.http.write_http_stream(url: str, filepath: Union[str, pathlib.Path], *, mode: str =
'wt', encoding: Optional[str] = None, make_dirs: bool =
False, chunk_size: int = 1024, auth: Optional[Tuple[str,
str]] = None)→ None

Download data from url in a stream, and write successive chunks to disk at filepath.

Parameters

• url – URL to which a GET request is made for data.

• filepath – Path to file on disk to which data will be written.

• mode – Mode with which filepath is opened.

• encoding – Name of the encoding used to decode or encode the data in filepath. Only
applicable in text mode.

132 Chapter 4. contents

https://spacy.io/api/docbin#init
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
http://docs.python-requests.org/en/master/user/authentication/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

textacy Documentation, Release 0.12.0

Note: The encoding on the HTTP response is inferred from its headers, or set to ‘utf-8’ as
a fall-back in the case that no encoding is detected. It is not set by encoding.

• make_dirs – If True, automatically create (sub)directories if not already present in order
to write filepath.

• chunk_size – Number of bytes read into memory per chunk. Because decoding may
occur, this is not necessarily the length of each chunk.

• auth – (username, password) pair for simple HTTP authentication required (if at all) to
access the data at url.

See also:

http://docs.python-requests.org/en/master/user/authentication/

I/O Utils

textacy.io.utils: Functions to help read and write data to disk in a variety of formats.

textacy.io.utils.open_sesame(filepath: Union[str, pathlib.Path], *, mode: str = 'rt', encoding:
Optional[str] = None, errors: Optional[str] = None, newline: Op-
tional[str] = None, compression: Literal[infer, bz2, gzip, xz, zip] =
'infer', make_dirs: bool = False)→ IO

Open file filepath. Automatically handle file compression, relative paths and symlinks, and missing inter-
mediate directory creation, as needed.

open_sesame may be used as a drop-in replacement for io.open().

Parameters

• filepath – Path on disk (absolute or relative) of the file to open.

• mode – The mode in which filepath is opened.

• encoding – Name of the encoding used to decode or encode filepath. Only applicable
in text mode.

• errors – String specifying how encoding/decoding errors are handled. Only applicable in
text mode.

• newline – String specifying how universal newlines mode works. Only applicable in text
mode.

• compression – Type of compression, if any, with which filepath is read from or
written to disk. If None, no compression is used; if ‘infer’, compression is inferred from the
extension on filepath.

• make_dirs – If True, automatically create (sub)directories if not already present in order
to write filepath.

Returns file object

Raises

• TypeError – if filepath is not a string

• ValueError – if encoding is specified but mode is binary

• OSError – if filepath doesn’t exist but mode is read

4.5. API Reference 133

http://docs.python-requests.org/en/master/user/authentication/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/io.html#io.open
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#OSError

textacy Documentation, Release 0.12.0

textacy.io.utils.coerce_content_type(content: types.AnyStr, file_mode: str)→ str | bytes
If the content to be written to file and the file_mode used to open it are incompatible (either bytes with text mode
or unicode with bytes mode), try to coerce the content type so it can be written.

textacy.io.utils.split_records(items: Iterable, content_field: str | int, itemwise: bool = False)
→ Iterable

Split records’ content (text) from associated metadata, but keep them paired together.

Parameters

• items – An iterable of dicts, e.g. as read from disk by read_json(lines=True), or
an iterable of lists, e.g. as read from disk by read_csv().

• content_field – If str, key in each dict item whose value is the item’s content (text); if
int, index of the value in each list item corresponding to the item’s content (text).

• itemwise – If True, content + metadata are paired item-wise as an iterable of (content,
metadata) 2-tuples; if False, content + metadata are paired by position in two parallel iter-
ables in the form of a (iterable(content), iterable(metadata)) 2-tuple.

Returns

If itemwise is True and items is Iterable[dict]; the first element in each tuple is the item’s
content, the second element is its metadata as a dictionary.

Generator(Tuple[str, list]): If itemwise is True and items is Iterable[list]; the first element
in each tuple is the item’s content, the second element is its metadata as a list.

Tuple[Iterable[str], Iterable[dict]]: If itemwise is False and items is Iterable[dict]; the first
element of the tuple is an iterable of items’ contents, the second is an iterable of their metadata
dicts.

Tuple[Iterable[str], Iterable[list]]: If itemwise is False and items is Iterable[list]; the first
element of the tuple is an iterable of items’ contents, the second is an iterable of their metadata
lists.

Return type Generator(Tuple[str, dict])

textacy.io.utils.unzip(seq: Iterable)→ Tuple
Borrowed from toolz.sandbox.core.unzip, but using cytoolz instead of toolz to avoid the additional
dependency.

textacy.io.utils.get_filepaths(dirpath: Union[str, pathlib.Path], *, match_regex: Optional[str]
= None, ignore_regex: Optional[str] = None, extension: Op-
tional[str] = None, ignore_invisible: bool = True, recursive:
bool = False)→ Iterable[str]

Yield full paths of files on disk under directory dirpath, optionally filtering for or against particular patterns
or file extensions and crawling all subdirectories.

Parameters

• dirpath – Path to directory on disk where files are stored.

• match_regex – Regular expression pattern. Only files whose names match this pattern
are included.

• ignore_regex – Regular expression pattern. Only files whose names do not match this
pattern are included.

• extension – File extension, e.g. “.txt” or “.json”. Only files whose extensions match are
included.

• ignore_invisible – If True, ignore invisible files, i.e. those that begin with a period.;
otherwise, include them.

134 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

• recursive – If True, iterate recursively through subdirectories in search of files to in-
clude; otherwise, only return files located directly under dirpath.

Yields Next file’s name, including the full path on disk.

Raises OSError – if dirpath is not found on disk

textacy.io.utils.download_file(url: str, *, filename: Optional[str] =
None, dirpath: Union[str, pathlib.Path] =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/envs/stable/lib/python3.8/site-
packages/textacy/data'), force: bool = False)→ Optional[str]

Download a file from url and save it to disk.

Parameters

• url – Web address from which to download data.

• filename – Name of the file to which downloaded data is saved. If None, a filename will
be inferred from the url.

• dirpath – Full path to the directory on disk under which downloaded data will be saved
as filename.

• force – If True, download the data even if it already exists at dirpath/filename;
otherwise, only download if the data doesn’t already exist on disk.

Returns Full path of file saved to disk.

textacy.io.utils.get_filename_from_url(url: str)→ str
Derive a filename from a URL’s path.

Parameters url – URL from which to extract a filename.

Returns Filename in URL.

textacy.io.utils.unpack_archive(filepath: Union[str, pathlib.Path], *, extract_dir: Op-
tional[Union[str, pathlib.Path]] = None) → Union[str, path-
lib.Path]

Extract data from a zip or tar archive file into a directory (or do nothing if the file isn’t an archive).

Parameters

• filepath – Full path to file on disk from which archived contents will be extracted.

• extract_dir – Full path of the directory into which contents will be extracted. If not
provided, the same directory as filepath is used.

Returns Path to directory of extracted contents.

4.5.10 Visualization

textacy.viz.termite.draw_termite_plot(values_mat, col_labels, row_labels, *, high-
light_cols=None, highlight_colors=None,
save=False, rc_params=None)

Make a “termite” plot, typically used for assessing topic models with a tabular layout that promotes comparison
of terms both within and across topics.

Parameters

• values_mat (np.ndarray or matrix) – matrix of values with shape (# row labels, # col
labels) used to size the dots on the grid

• col_labels (seq[str]) – labels used to identify x-axis ticks on the grid

4.5. API Reference 135

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

• row_labels (seq[str]) – labels used to identify y-axis ticks on the grid

• highlight_cols (int or seq[int], optional) – indices for columns to visu-
ally highlight in the plot with contrasting colors

• highlight_colors (tuple of 2-tuples) – each 2-tuple corresponds to a pair of
(light/dark) matplotlib-friendly colors used to highlight a single column; if not specified
(default), a good set of 6 pairs are used

• save (str, optional) – give the full /path/to/fname on disk to save figure

• rc_params (dict, optional) – allow passing parameters to rc_context in
matplotlib.plyplot, details in https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_
context.html

Returns Axis on which termite plot is plotted.

Return type matplotlib.axes.Axes.axis

Raises ValueError – if more columns are selected for highlighting than colors or if any of the
inputs’ dimensions don’t match

References

Chuang, Jason, Christopher D. Manning, and Jeffrey Heer. “Termite: Visualization techniques for assessing
textual topic models.” Proceedings of the International Working Conference on Advanced Visual Interfaces.
ACM, 2012.

See also:

TopicModel.termite_plot()

textacy.viz.termite.termite_df_plot(components, *, highlight_topics=None, n_terms=25,
rank_terms_by='max', sort_terms_by='seriation',
save=False, rc_params=None)

Make a “termite” plot for assessing topic models using a tabular layout to promote comparison of terms both
within and across topics.

Parameters

• components (pandas.DataFrame or sparse matrix) – corpus represented as a term-
topic matrix with shape (n_terms, n_topics); should have terms as index and topics as col-
umn names

• topics (int or Sequence[int]) – topic(s) to include in termite plot; if -1, all topics
are included

• highlight_topics (str or Sequence[str]) – names for up to 6 topics to visu-
ally highlight in the plot with contrasting colors

• n_terms (int) – number of top terms to include in termite plot

• rank_terms_by ({'max', 'mean', 'var'}) – argument to dataframe agg func-
tion, used to rank terms; the top-ranked n_terms are included in the plot

• sort_terms_by ({'seriation', 'weight', 'index',
'alphabetical'}) – method used to vertically sort the selected top n_terms
terms; the default (“seriation”) groups similar terms together, which facilitates cross-topic
assessment

136 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_context.html
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_context.html
https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.axis.html#matplotlib.axes.Axes.axis
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

• save (str) – give the full /path/to/fname on disk to save figure rc_params (dict, optional):
allow passing parameters to rc_context in matplotlib.plyplot, details in https://matplotlib.
org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_context.html

Returns Axis on which termite plot is plotted.

Return type matplotlib.axes.Axes.axis

Raises ValueError – if more than 6 topics are selected for highlighting, or an invalid value is
passed for the sort_topics_by, rank_terms_by, and/or sort_terms_by params

References

• Chuang, Jason, Christopher D. Manning, and Jeffrey Heer. “Termite: Visualization techniques for
assessing textual topic models.” Proceedings of the International Working Conference on Advanced
Visual Interfaces. ACM, 2012.

• Fajwel Fogel, Alexandre d’Aspremont, and Milan Vojnovic. 2016. Spectral ranking using seriation. J.
Mach. Learn. Res. 17, 1 (January 2016), 3013–3057.

See also:

viz.termite_plot

TODO: rank_terms_by other metrics, e.g. topic salience or relevance

textacy.viz.network.draw_semantic_network(graph, *, node_weights=None, spread=3.0,
draw_nodes=False, base_node_size=300,
node_alpha=0.25, line_width=0.5,
line_alpha=0.1, base_font_size=12,
save=False)

Draw a semantic network with nodes representing either terms or sentences, edges representing coocurrence or
similarity, and positions given by a force- directed layout.

Parameters

• graph (networkx.Graph) –

• node_weights (dict) – mapping of node: weight, used to size node labels (and, op-
tionally, node circles) according to their weight

• spread (float) – number that drives the spread of the network; higher values give more
spread-out networks

• draw_nodes (bool) – if True, circles are drawn under the node labels

• base_node_size (int) – if node_weights not given and draw_nodes is True, this is the
size of all nodes in the network; if node_weights _is_ given, node sizes will be scaled against
this value based on their weights compared to the max weight

• node_alpha (float) – alpha of the circular nodes drawn behind labels if draw_nodes is
True

• line_width (float) – width of the lines (edges) drawn between nodes

• line_alpha (float) – alpha of the lines (edges) drawn between nodes

• base_font_size (int) – if node_weights not given, this is the font size used to draw
all labels; otherwise, font sizes will be scaled against this value based on the corresponding
node weights compared to the max

• save (str) – give the full /path/to/fname on disk to save figure (optional)

4.5. API Reference 137

https://docs.python.org/3/library/stdtypes.html#str
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_context.html
https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.rc_context.html
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

Returns Axis on which network plot is drawn.

Return type matplotlib.axes.Axes.axis

Note: This function requires matplotlib.

4.5.11 Data Augmentation

augmenter.Augmenter Randomly apply one or many data augmentation trans-
forms to spaCy Doc s to produce new docs with addi-
tional variety and/or noise in the data.

transforms.substitute_word_synonyms Randomly substitute words for which synonyms are
available with a randomly selected synonym, up to num
times or with a probability of num.

transforms.insert_word_synonyms Randomly insert random synonyms of tokens for which
synonyms are available, up to num times or with a prob-
ability of num.

transforms.swap_words Randomly swap the positions of two adjacent words, up
to num times or with a probability of num.

transforms.delete_words Randomly delete words, up to num times or with a prob-
ability of num.

transforms.substitute_chars Randomly substitute a single character in randomly-
selected words with another, up to num times or with
a probability of num.

transforms.insert_chars Randomly insert a character into randomly-selected
words, up to num times or with a probability of num.

transforms.swap_chars Randomly swap two adjacent characters in randomly-
selected words, up to num times or with a probability of
num.

transforms.delete_chars Randomly delete a character in randomly-selected
words, up to num times or with a probability of num.

utils.to_aug_toks Transform a spaCy Doc or Span into a list of AugTok
objects, suitable for use in data augmentation transform
functions.

utils.get_char_weights Get lang-specific character weights for use in cer-
tain data augmentation transforms, based on texts in
textacy.datasets.UDHR.

class textacy.augmentation.augmenter.Augmenter(transforms: Se-
quence[types.AugTransform], *, num:
Optional[int | float | Sequence[float]] =
None)

Randomly apply one or many data augmentation transforms to spaCy Doc s to produce new docs with additional
variety and/or noise in the data.

Initialize an Augmenter with multiple transforms, and customize the randomization of their selection when
applying to a document:

>>> tfs = [transforms.delete_words, transforms.swap_chars, transforms.delete_
→˓chars]
>>> Augmenter(tfs, num=None) # all tfs applied each time

(continues on next page)

138 Chapter 4. contents

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.axis.html#matplotlib.axes.Axes.axis
https://matplotlib.org/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

(continued from previous page)

>>> Augmenter(tfs, num=1) # one randomly-selected tf applied each time
>>> Augmenter(tfs, num=0.5) # tfs randomly selected with 50% prob each time
>>> augmenter = Augmenter(tfs, num=[0.4, 0.8, 0.6]) # tfs randomly selected with
→˓40%, 80%, 60% probs, respectively, each time

Apply transforms to a given Doc to produce new documents:

>>> text = "The quick brown fox jumps over the lazy dog."
>>> doc = textacy.make_spacy_doc(text, lang="en_core_web_sm")
>>> augmenter.apply_transforms(doc, lang="en_core_web_sm")
The quick brown ox jupms over the lazy dog.
>>> augmenter.apply_transforms(doc, lang="en_core_web_sm")
The quikc brown fox over the lazy dog.
>>> augmenter.apply_transforms(doc, lang="en_core_web_sm")
quick brown fox jumps over teh lazy dog.

Parameters for individual transforms may be specified when initializing Augmenter or, if necessary, when
applying to individual documents:

>>> from functools import partial
>>> tfs = [partial(transforms.delete_words, num=3), transforms.swap_chars]
>>> augmenter = Augmenter(tfs)
>>> augmenter.apply_transforms(doc, lang="en_core_web_sm")
brown fox jumps over layz dog.
>>> augmenter.apply_transforms(doc, lang="en_core_web_sm", pos={"NOUN", "ADJ"})
The jumps over the lazy odg.

Parameters

• transforms – Ordered sequence of callables that must take List[AugTok] as their first
positional argument and return another List[AugTok].

Note: Although the particular transforms applied may vary doc-by-doc, they are applied
in order as listed here. Since some transforms may clobber text in a way that makes other
transforms less effective, a stable ordering can improve the quality of augmented data.

• num – If int, number of transforms to randomly select from transforms each time
Augmenter.apply_tranforms() is called. If float, probability that any given trans-
form will be selected. If Sequence[float], the probability that the corresponding transform
in transforms will be selected (these must be the same length). If None (default), num
is set to len(transforms), which means that every transform is applied each time.

See also:

A collection of general-purpose transforms are implemented in textacy.augmentation.transforms.

apply_transforms(doc: spacy.tokens.doc.Doc, lang: Union[str, pathlib.Path,
spacy.language.Language], **kwargs)→ spacy.tokens.doc.Doc

Sequentially apply some subset of data augmentation transforms to doc, then return a new Doc created
from the augmented text using lang.

Parameters

• doc –

• lang –

4.5. API Reference 139

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

textacy Documentation, Release 0.12.0

• **kwargs – If, for whatever reason, you have to pass keyword argument values into
transforms that vary or depend on characteristics of doc, specify them here. The trans-
forms’ call signatures will be inspected, and values will be passed along, as needed.

Returns spacy.tokens.Doc

textacy.augmentation.transforms.substitute_word_synonyms(aug_toks:
List[types.AugTok],
*, num: int | float =
1, pos: Optional[str |
Set[str]] = None) →
List[types.AugTok]

Randomly substitute words for which synonyms are available with a randomly selected synonym, up to num
times or with a probability of num.

Parameters

• aug_toks – Sequence of tokens to augment through synonym substitution.

• num – If int, maximum number of words with available synonyms to substitute with a
randomly selected synonym; if float, probability that a given word with synonyms will be
substituted.

• pos – Part of speech tag(s) of words to be considered for augmentation. If None, all words
with synonyms are considered.

Returns New, augmented sequence of tokens.

Note: This transform requires textacy.resources.ConceptNet to be downloaded to work properly,
since this is the data source for word synonyms to be substituted.

textacy.augmentation.transforms.insert_word_synonyms(aug_toks: List[types.AugTok],
*, num: int | float = 1, pos: Op-
tional[str | Set[str]] = None)
→ List[types.AugTok]

Randomly insert random synonyms of tokens for which synonyms are available, up to num times or with a
probability of num.

Parameters

• aug_toks – Sequence of tokens to augment through synonym insertion.

• num – If int, maximum number of words with available synonyms from which a random
synonym is selected and randomly inserted; if float, probability that a given word with
synonyms will provide a synonym to be inserted.

• pos – Part of speech tag(s) of words to be considered for augmentation. If None, all words
with synonyms are considered.

Returns New, augmented sequence of tokens.

Note: This transform requires textacy.resources.ConceptNet to be downloaded to work properly,
since this is the data source for word synonyms to be inserted.

textacy.augmentation.transforms.swap_words(aug_toks: List[types.AugTok], *, num: int |
float = 1, pos: Optional[str | Set[str]] = None)
→ List[types.AugTok]

Randomly swap the positions of two adjacent words, up to num times or with a probability of num.

140 Chapter 4. contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

Parameters

• aug_toks – Sequence of tokens to augment through position swapping.

• num – If int, maximum number of adjacent word pairs to swap; if float, probability that a
given word pair will be swapped.

• pos – Part of speech tag(s) of words to be considered for augmentation. If None, all words
are considered.

Returns New, augmented sequence of tokens.

textacy.augmentation.transforms.delete_words(aug_toks: List[types.AugTok], *, num: int
| float = 1, pos: Optional[str | Set[str]] =
None)→ List[types.AugTok]

Randomly delete words, up to num times or with a probability of num.

Parameters

• aug_toks – Sequence of tokens to augment through word deletion.

• num – If int, maximum number of words to delete; if float, probability that a given word
will be deleted.

• pos – Part of speech tag(s) of words to be considered for augmentation. If None, all words
are considered.

Returns New, augmented sequence of tokens.

textacy.augmentation.transforms.substitute_chars(aug_toks: List[types.AugTok],
*, num: int | float = 1, lang:
Optional[str] = None) →
List[types.AugTok]

Randomly substitute a single character in randomly-selected words with another, up to num times or with a
probability of num.

Parameters

• aug_toks – Sequence of tokens to augment through character substitution.

• num – If int, maximum number of words to modify with a random character substitution; if
float, probability that a given word will be modified.

• lang – Standard, two-letter language code corresponding to aug_toks. Used to load
a weighted distribution of language-appropriate characters that are randomly selected for
substitution. More common characters are more likely to be substituted. If not specified,
ascii letters and digits are randomly selected with equal probability.

Returns New, augmented sequence of tokens.

Note: This transform requires textacy.datasets.UDHR to be downloaded to work properly, since this is
the data source for character weights when deciding which char(s) to insert.

textacy.augmentation.transforms.insert_chars(aug_toks: List[types.AugTok], *, num: int |
float = 1, lang: Optional[str] = None) →
List[types.AugTok]

Randomly insert a character into randomly-selected words, up to num times or with a probability of num.

Parameters

• aug_toks – Sequence of tokens to augment through character insertion.

4.5. API Reference 141

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

• num – If int, maximum number of words to modify with a random character insertion; if
float, probability that a given word will be modified.

• lang – Standard, two-letter language code corresponding to aug_toks. Used to load
a weighted distribution of language-appropriate characters that are randomly selected for
substitution. More common characters are more likely to be substituted. If not specified,
ascii letters and digits are randomly selected with equal probability.

Returns New, augmented sequence of tokens.

Note: This transform requires textacy.datasets.UDHR to be downloaded to work properly, since this is
the data source for character weights when deciding which char(s) to insert.

textacy.augmentation.transforms.swap_chars(aug_toks: List[types.AugTok], *, num: int |
float = 1)→ List[types.AugTok]

Randomly swap two adjacent characters in randomly-selected words, up to num times or with a probability of
num.

Parameters

• aug_toks – Sequence of tokens to augment through character swapping.

• num – If int, maximum number of words to modify with a random character swap; if float,
probability that a given word will be modified.

Returns New, augmented sequence of tokens.

textacy.augmentation.transforms.delete_chars(aug_toks: List[types.AugTok], *, num: int |
float = 1)→ List[types.AugTok]

Randomly delete a character in randomly-selected words, up to num times or with a probability of num.

Parameters

• aug_toks – Sequence of tokens to augment through character deletion.

• num – If int, maximum number of words to modify with a random character deletion; if
float, probability that a given word will be modified.

Returns New, augmented sequence of tokens.

textacy.augmentation.utils.to_aug_toks(doclike: Union[spacy.tokens.doc.Doc,
spacy.tokens.span.Span]) →
List[textacy.types.AugTok]

Transform a spaCy Doc or Span into a list of AugTok objects, suitable for use in data augmentation transform
functions.

textacy.augmentation.utils.get_char_weights(lang: str)→ List[Tuple[str, int]]
Get lang-specific character weights for use in certain data augmentation transforms, based on texts in
textacy.datasets.UDHR.

Parameters lang – Standard two-letter language code.

Returns Collection of (character, weight) pairs, based on the distribution of characters found in the
source text.

142 Chapter 4. contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

textacy Documentation, Release 0.12.0

4.5.12 Miscellany

lang_id.lang_identifier.
identify_lang

Identify the most probable language identified in text,
with or without the corresponding probability.

lang_id.lang_identifier.
identify_topn_langs

Identify the topnmost probable languages identified in
text, with or without the corresponding probabilities.

utils.get_config Get key configuration info about dev environment: OS,
python, spacy, and textacy.

utils.print_markdown Print items as a markdown-formatted list.
utils.is_record Check whether obj is a “record” – that is, a (text, meta-

data) 2-tuple.
utils.to_collection Validate and cast a value or values to a collection.
utils.to_bytes Coerce string s to bytes.
utils.to_unicode Coerce string s to unicode.
utils.to_path Coerce path to a pathlib.Path.
utils.validate_set_members Validate values that must be of a certain type and (op-

tionally) found among a set of known valid values.
utils.validate_and_clip_range Validate and clip range values.

Language Identification

textacy.lang_id: Interface for de/serializing a language identification model, and using it to identify the most
probable language(s) of a given text. Inspired by Google’s Compact Language Detector v3 (https://github.com/google/
cld3) and implemented with thinc v8.0.

Model

Character unigrams, bigrams, and trigrams are extracted separately from the first 1000 characters of lower-cased input
text. Each collection of ngrams is hash-embedded into a 100-dimensional space, then averaged. The resulting feature
vectors are concatenated into a single embedding layer, then passed on to a dense layer with ReLu activation and
finally a Softmax output layer. The model’s predictions give the probabilities for a text to be written in ~140 ISO
639-1 languages.

Dataset

The model was trained on a randomized, stratified subset of ~375k texts drawn from several sources:

• WiLi: A public dataset of short text extracts from Wikipedias in over 230 languages. Style is relatively formal;
subject matter is “encyclopedic”. Source: https://zenodo.org/record/841984

• Tatoeba: A crowd-sourced collection of sentences and their translations into many languages. Style is rela-
tively informal; subject matter is a variety of everyday things and goings-on. Source: https://tatoeba.org/eng/
downloads.

• UDHR: The UN’s Universal Declaration of Human Rights document, translated into hundreds of languages and
split into paragraphs. Style is formal; subject matter is fundamental human rights to be universally protected.
Source: https://unicode.org/udhr/index.html

• DSLCC: Two collections of short excerpts of journalistic texts in a handful of language groups that are highly
similar to each other. Style is relatively formal; subject matter is current events. Source: http://ttg.uni-saarland.
de/resources/DSLCC/

4.5. API Reference 143

https://github.com/google/cld3
https://github.com/google/cld3
https://zenodo.org/record/841984
https://tatoeba.org/eng/downloads
https://tatoeba.org/eng/downloads
https://unicode.org/udhr/index.html
http://ttg.uni-saarland.de/resources/DSLCC/
http://ttg.uni-saarland.de/resources/DSLCC/

textacy Documentation, Release 0.12.0

Performance

The trained model achieved F1 = 0.97 when averaged over all languages.

A few languages have worse performance; for example, the two Norwegians (“nb” and “no”), as well as Bosnian
(“bs”), Serbian (“sr”), and Croatian (“hr”), which are extremely similar to each other. See the textacy-data releases for
more details: https://github.com/bdewilde/textacy-data/releases/tag/lang-identifier-v2.0

class textacy.lang_id.lang_identifier.LangIdentifier(version: float | str,
data_dir: str | pathlib.Path =
PosixPath('/home/docs/checkouts/readthedocs.org/user_builds/textacy/envs/stable/lib/python3.8/site-
packages/textacy/data/lang_identifier'),
model_base: Model =
<thinc.model.Model object>)

Parameters

• version –

• data_dir –

• model_base –

model

classes

save_model()
Save trained LangIdentifier.model to disk, as bytes.

load_model()→ thinc.model.Model
Load trained model from bytes on disk, using LangIdentifier.model_base as the framework into
which the data is fit.

download(force: bool = False)
Download version-specific model data as a binary file and save it to disk at LangIdentifier.
model_fpath.

Parameters force – If True, download the model data, even if it already exists on disk under
self.data_dir; otherwise, don’t.

identify_lang(text: str, with_probs: bool = False)→ str | Tuple[str, float]
Identify the most probable language identified in text, with or without the corresponding probability.

Parameters

• text –

• with_probs –

Returns ISO 639-1 standard language code of the most probable language, optionally with its
probability.

identify_topn_langs(text: str, topn: int = 3, with_probs: bool = False) → List[str] |
List[Tuple[str, float]]

Identify the topn most probable languages identified in text, with or without the corresponding proba-
bilities.

Parameters

• text –

• topn –

• with_probs –

144 Chapter 4. contents

https://github.com/bdewilde/textacy-data/releases/tag/lang-identifier-v2.0
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

textacy Documentation, Release 0.12.0

Returns ISO 639-1 standard language code and optionally with its probability of the topn most
probable languages.

textacy.lang_id.lang_identifier.identify_lang(text: str, with_probs: bool = False)→ str
| Tuple[str, float]

Identify the most probable language identified in text, with or without the corresponding probability.

Parameters

• text –

• with_probs –

Returns ISO 639-1 standard language code of the most probable language, optionally with its prob-
ability.

textacy.lang_id.lang_identifier.identify_topn_langs(text: str, topn: int = 3,
with_probs: bool = False) →
List[str] | List[Tuple[str, float]]

Identify the topn most probable languages identified in text, with or without the corresponding probabilities.

Parameters

• text –

• topn –

• with_probs –

Returns ISO 639-1 standard language code and optionally with its probability of the topn most
probable languages.

Utilities

textacy.utils: Variety of general-purpose utility functions for inspecting / validating / transforming args and
facilitating meta package tasks.

textacy.utils.deprecated(message: str, *, action: str = 'always')
Show a deprecation warning, optionally filtered.

Parameters

• message – Message to display with DeprecationWarning.

• action – Filter controlling whether warning is ignored, displayed, or turned into an error.
For reference:

See also:

https://docs.python.org/3/library/warnings.html#the-warnings-filter

textacy.utils.get_config()→ Dict[str, Any]
Get key configuration info about dev environment: OS, python, spacy, and textacy.

Returns dict

textacy.utils.print_markdown(items: Dict[Any, Any] | Iterable[Tuple[Any, Any]])
Print items as a markdown-formatted list. Specifically useful when submitting config info on GitHub issues.

Parameters items –

textacy.utils.is_record(obj: Any)→ bool
Check whether obj is a “record” – that is, a (text, metadata) 2-tuple.

4.5. API Reference 145

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/warnings.html#the-warnings-filter
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

textacy Documentation, Release 0.12.0

textacy.utils.to_collection(val: types.AnyVal | Collection[types.AnyVal], val_type: Type[Any]
| Tuple[Type[Any], . . .], col_type: Type[Any]) → Collec-
tion[types.AnyVal]

Validate and cast a value or values to a collection.

Parameters

• val (object) – Value or values to validate and cast.

• val_type (type) – Type of each value in collection, e.g. int or (str, bytes).

• col_type (type) – Type of collection to return, e.g. tuple or set.

Returns Collection of type col_type with values all of type val_type.

Raises TypeError –

textacy.utils.to_bytes(s: Union[str, bytes], *, encoding: str = 'utf-8', errors: str = 'strict')→ bytes
Coerce string s to bytes.

textacy.utils.to_unicode(s: Union[str, bytes], *, encoding: str = 'utf-8', errors: str = 'strict')→ str
Coerce string s to unicode.

textacy.utils.to_path(path: Union[str, pathlib.Path])→ pathlib.Path
Coerce path to a pathlib.Path.

Parameters path –

Returns pathlib.Path

textacy.utils.validate_set_members(vals: types.AnyVal | Set[types.AnyVal], val_type:
Type[Any] | Tuple[Type[Any], . . .], valid_vals: Op-
tional[Set[types.AnyVal]] = None)→ Set[types.AnyVal]

Validate values that must be of a certain type and (optionally) found among a set of known valid values.

Parameters

• vals – Value or values to validate.

• val_type – Type(s) of which all vals must be instances.

• valid_vals – Set of valid values in which all vals must be found.

Returns Validated values.

Return type Set[obj]

Raises

• TypeError –

• ValueError –

textacy.utils.validate_and_clip_range(range_vals: Tuple[types.AnyVal, types.AnyVal],
full_range: Tuple[types.AnyVal, types.AnyVal],
val_type: Optional[Type[Any] | Tuple[Type[Any],
. . .]] = None)→ Tuple[types.AnyVal, types.AnyVal]

Validate and clip range values.

Parameters

• range_vals – Range values, i.e. [start_val, end_val), to validate and, if necessary, clip.
If None, the value is set to the corresponding value in full_range.

• full_range – Full range of values, i.e. [min_val, max_val), within which range_vals
must lie.

146 Chapter 4. contents

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

textacy Documentation, Release 0.12.0

• val_type – Type(s) of which all range_vals must be instances, unless val is None.

Returns Range for which null or too-small/large values have been clipped to the min/max valid
values.

Raises

• TypeError –

• ValueError –

textacy.utils.get_kwargs_for_func(func: Callable, kwargs: Dict[str, Any])→ Dict[str, Any]
Get the set of keyword arguments from kwargs that are used by func. Useful when calling a func from
another func and inferring its signature from provided **kwargs.

textacy.utils.text_to_char_ngrams(text: str, n: int, *, pad: bool = False)→ Tuple[str, . . .]
Convert a text string into an ordered sequence of character ngrams.

Parameters

• text –

• n – Number of characters to concatenate in each n-gram.

• pad – If True, pad text by adding n - 1 “_” characters on either side; if False, leave
text as-is.

Returns Ordered sequence of character ngrams.

textacy.utils.get_function_names(module, ignore_private: bool = True)→ Iterable[str]
Get names of functions in module, optionally ignoring private members.

Parameters

• module –

• ignore_private –

Returns Alphabetically ordered sequence of function names.

textacy.types: Definitions for common object types used throughout the package.

class textacy.types.Record(text, meta)

text: str
Alias for field number 0

meta: dict
Alias for field number 1

class textacy.types.AugTok(text: str, ws: str, pos: str, is_word: bool, syns: List[str])
Minimal token data required for data augmentation transforms.

text: str
Alias for field number 0

ws: str
Alias for field number 1

pos: str
Alias for field number 2

is_word: bool
Alias for field number 3

4.5. API Reference 147

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

textacy Documentation, Release 0.12.0

syns: List[str]
Alias for field number 4

class textacy.types.AugTransform(*args, **kwargs)

class textacy.types.DocExtFunc(*args, **kwargs)

textacy.errors: Helper functions for making consistent errors.

textacy.cache: Functionality for caching language data and other NLP resources. Loading data from disk can be
slow; let’s just do it once and forget about it. :)

textacy.cache.LRU_CACHE = LRUCache([], maxsize=2147483648, currsize=0)
Least Recently Used (LRU) cache for loaded data.

The max cache size may be set by the TEXTACY_MAX_CACHE_SIZE environment variable, where the value
must be an integer (in bytes). Otherwise, the max size is 2GB.

Type cachetools.LRUCache

textacy.cache.clear()
Clear textacy’s cache of loaded data.

spaCy Utils

textacy.spacier.utils: Helper functions for working with / extending spaCy’s core functionality.

textacy.spacier.utils.make_doc_from_text_chunks(text: str, lang: Union[str, path-
lib.Path, spacy.language.Language],
chunk_size: int = 100000) →
spacy.tokens.doc.Doc

Make a single spaCy-processed document from 1 or more chunks of text. This is a workaround for processing
very long texts, for which spaCy is unable to allocate enough RAM.

Parameters

• text – Text document to be chunked and processed by spaCy.

• lang – Language with which spaCy processes text, represented as the full name of or
path on disk to the pipeline, or an already instantiated pipeline instance.

• chunk_size – Number of characters comprising each text chunk (excluding the last
chunk, which is probably smaller). For best performance, value should be somewhere be-
tween 1e3 and 1e7, depending on how much RAM you have available.

Note: Since chunking is done by character, chunks edges’ probably won’t respect natural
language segmentation, which means that every chunk_size characters, spaCy’s models
may make mistakes.

Returns A single processed document, built from concatenated text chunks.

textacy.spacier.utils.merge_spans(spans: Iterable[spacy.tokens.span.Span], doc:
spacy.tokens.doc.Doc)→ None

Merge spans into single tokens in doc, in-place.

Parameters

• spans (Iterable[spacy.tokens.Span]) –

• doc (spacy.tokens.Doc) –

148 Chapter 4. contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

textacy Documentation, Release 0.12.0

textacy.spacier.utils.preserve_case(token: spacy.tokens.token.Token)→ bool
Return True if token is a proper noun or acronym; otherwise, False.

Raises ValueError – If parent document has not been POS-tagged.

textacy.spacier.utils.get_normalized_text(span_or_token: Span | Token)→ str
Get the text of a spaCy span or token, normalized depending on its characteristics. For proper nouns and
acronyms, text is returned as-is; for everything else, text is lemmatized.

textacy.spacier.utils.get_main_verbs_of_sent(sent: spacy.tokens.span.Span) →
List[spacy.tokens.token.Token]

Return the main (non-auxiliary) verbs in a sentence.

textacy.spacier.utils.get_subjects_of_verb(verb: spacy.tokens.token.Token) →
List[spacy.tokens.token.Token]

Return all subjects of a verb according to the dependency parse.

textacy.spacier.utils.get_objects_of_verb(verb: spacy.tokens.token.Token) →
List[spacy.tokens.token.Token]

Return all objects of a verb according to the dependency parse, including open clausal complements.

textacy.spacier.utils.get_span_for_compound_noun(noun: spacy.tokens.token.Token) →
Tuple[int, int]

Return document indexes spanning all (adjacent) tokens in a compound noun.

textacy.spacier.utils.get_span_for_verb_auxiliaries(verb: spacy.tokens.token.Token)
→ Tuple[int, int]

Return document indexes spanning all (adjacent) tokens around a verb that are auxiliary verbs or negations.

textacy.spacier.utils.get_spacy_lang_morph_labels(lang: Union[str, pathlib.Path,
spacy.language.Language]) →
Set[str]

Get the full set of morphological feature labels assigned by a spaCy language pipeline according to its “mor-
phologizer” pipe’s metadata, or just get the default set of Universal Dependencies (v2) feature labels.

Parameters lang – Language with which spaCy processes text, represented as the full name of a
spaCy language pipeline, the path on disk to it, or an already instantiated pipeline.

Returns Set of morphological feature labels assigned/assignable by lang.

4.6 Changes

4.6.1 0.12.0 (2021-12-06)

• Refactored and extended text statistics functionality (PR #350)

– Added functions for computing measures of lexical diversity, such as the clasic Type-Token-Ratio and
modern Hypergeometric Distribution Diversity

– Added functions for counting token-level attributes, including morphological features and parts-of-speech,
in a convenient form

– Refactored all text stats functions to accept a Doc as their first positional arg, suitable for use as custom
doc extensions (see below)

– Deprecated the TextStats class, since other methods for accessing the underlying functionality were
made more accessible and convenient, and there’s no longer need for a third method.

• Standardized functionality for getting/setting/removing doc extensions (PR #352)

– Now, custom extensions are accessed by name, and users have more control over the process:

4.6. Changes 149

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str

textacy Documentation, Release 0.12.0

>>> import textacy
>>> from textacy import extract, text_stats
>>> textacy.set_doc_extensions("extract")
>>> textacy.set_doc_extensions("text_stats.readability")
>>> textacy.remove_doc_extensions("extract.matches")
>>> textacy.make_spacy_doc("This is a test.", "en_core_web_sm")._.flesch_
→˓reading_ease()
118.17500000000001

– Moved top-level extensions into spacier.core and extract.bags

– Standardized extract and text_stats subpackage extensions to use the new setup, and made them
more customizable

• Improved package code, tests, and docs

– Fixed outdated code and comments in the “Quickstart” guide, then renamed it “Walkthrough” since it
wasn’t actually quick; added a new and, yes, quick “Quickstart” guide to fill the gap (PR #353)

– Added a pytest conftest file to improve maintainability and consistency of unit test suite (PR #353)

– Improved quality and consistency of type annotations, everywhere (PR #349)

– Note: Bumped Python version support from 3.7–3.9 to 3.8–3.10 in order to take advantage of new typing
features in PY3.8 and formally support the current major version (PR #348)

– Modernized and streamlined package builds and configuration (PR #347)

* Removed deprecated setup.py and switched from setuptools to build for builds

* Consolidated tool configuration in pyproject.toml

* Extended and tidied up dev-oriented Makefile

* Addressed some CI/CD issues

Fixed

• Added missing import, args in TextStats docs (PR #331, Issue #334)

• Fixed normalization in YAKE keyword extraction (PR #332)

• Fixed text encoding issue when loading ConceptNet data on Windows systems (Issue #345)

Contributors

Thanks to @austinjp, @scarroll32, @MirkoLenz for their help!

4.6.2 0.11.0 (2021-04-12)

• Refactored, standardized, and extended several areas of functionality

– text preprocessing (textacy.preprocessing)

* Added functions for normalizing bullet points in lists (normalize.bullet_points()), remov-
ing HTML tags (remove.html_tags()), and removing bracketed contents such as in-line cita-
tions (remove.brackets()).

* Added make_pipeline() function for combining multiple preprocessors applied sequentially to
input text into a single callable.

150 Chapter 4. contents

textacy Documentation, Release 0.12.0

* Renamed functions for flexibility and clarity of use; in most cases, this entails replacing an underscore
with a period, e.g. preprocessing.normalize_whitespace() => preprocessing.
normalize.whitespace().

* Renamed and standardized some funcs’ args; for example, all “replace” functions had their (optional)
second argument renamed from replace_with => repl, and remove.punctuation(text,
marks=".?!") => remove.punctuation(text, only=[".", "?", "!"]).

– structured information extraction (textacy.extract)

* Consolidated and restructured functionality previously spread across the extract.py and
text_utils.py modules and ke subpackage. For the latter two, imports have changed:

· from textacy import ke; ke.textrank() => from textacy import
extract; extract.keyterms.textrank()

· from textacy import text_utils; text_utils.keywords_in_context()
=> from textacy import extract; extract.keywords_in_context()

* Added new extraction functions:

· extract.regex_matches(): For matching regex patterns in a document’s text that cross
spaCy token boundaries, with various options for aligning matches back to tokens.

· extract.acronyms(): For extracting acronym-like tokens, without looking around for re-
lated definitions.

· extract.terms(): For flexibly combining n-grams, entities, and noun chunks into a single
collection, with optional deduplication.

* Improved the generality and quality of extracted “triples” such as Subject-Verb-Objects, and changed
the structure of returned objects accordingly. Previously, only contiguous spans were permitted for
each element, but this was overly restrictive: A sentence like “I did not really like the movie.” would
produce an SVO of ("I", "like", "movie") which is. . . misleading. The new approach uses
lists of tokens that need not be adjacent; in this case, it produces (["I"], ["did", "not",
"like"], ["movie"]). For convenience, triple results are all named tuples, so elements may be
accessed by name or index (e.g. svo.subject == svo[0]).

* Changed extract.keywords_in_context() to always yield results, with optional padding of
contexts, leaving printing of contexts up to users; also extended it to accept Doc or str objects as
input.

* Removed deprecated extract.pos_regex_matches() function, which is superseded by the
more powerful extract.token_matches().

– string and sequence similarity metrics (textacy.similarity)

* Refactored top-level similarity.py module into a subpackage, with metrics split out into cate-
gories: edit-, token-, and sequence-based approaches, as well as hybrid metrics.

* Added several similarity metrics:

· edit-based Jaro (similarity.jaro())

· token-based Cosine (similarity.cosine()), Bag (similarity.bag()), and Tversky
(similarity.tvserky())

· sequence-based Matching Subsequences Ratio (similarity.
matching_subsequences_ratio())

· hybrid Monge-Elkan (similarity.monge_elkan())

* Removed a couple similarity metrics: Word Movers Distance relied on a troublesome external depen-
dency, and Word2Vec+Cosine is available in spaCy via Doc.similarity.

4.6. Changes 151

textacy Documentation, Release 0.12.0

– network- and vector-based document representations (textacy.representations)

* Consolidated and reworked networks functionality in representations.network module

· Added build_cooccurrence_network() function to represent a sequence of strings (or
a sequence of such sequences) as a graph with nodes for each unique string and edges to other
strings that co-occurred.

· Added build_similarity_network() function to represent a sequence of strings (or a
sequence of such sequences) as a graph with nodes as top-level elements and edges to all others
weighted by pairwise similarity.

· Removed obsolete network.py module and duplicative extract.keyterms.
graph_base.py module.

* Refined vectorizer initialization, and moved from vsm.vectorizers to representations.
vectorizers module.

· For both Vectorizer and GroupVectorizer, applying global inverse document frequency
weights is now handled by a single arg: idf_type: Optional[str], rather than a com-
bination of apply_idf: bool, idf_type: str; similarly, applying document-length
weight normalizations is handled by dl_type: Optional[str] instead of apply_dl:
bool, dl_type: str

* Added representations.sparse_vec module for higher-level access to document vector-
ization via build_doc_term_matrix() and build_grp_term_matrix() functions, for
cases when a single fit+transform is all you need.

– automatic language identification (textacy.lang_id)

* Moved functionality from lang_utils.py module into a subpackage, and added the primary user
interface (identify_lang() and identify_topn_langs()) as package-level imports.

* Implemented and trained a more accurate thinc-based language identification model that’s closer to
the original CLD3 inspiration, replacing the simpler sklearn-based pipeline.

• Updated interface with spaCy for v3, and better leveraged the new functionality

– Restricted textacy.load_spacy_lang() to only accept full spaCy language pipeline names or
paths, in accordance with v3’s removal of pipeline aliases and general tightening-up on this front. Unfor-
tunately, textacy can no longer play fast and loose with automatic language identification => pipeline
loading. . .

– Extended textacy.make_spacy_doc() to accept a chunk_size arg that splits input text into
chunks, processes each individually, then joins them into a single Doc; supersedes spacier.utils.
make_doc_from_text_chunks(), which is now deprecated.

– Moved core Doc extensions into a top-level extensions.py module, and improved/streamlined the
collection

* Refactored and improved performance of Doc._.to_bag_of_words() and Doc._.
to_bag_of_terms(), leveraging related functionality in extract.words() and extract.
terms()

* Removed redundant/awkward extensions:

· Doc._.lang => use Doc.lang_

· Doc._.tokens => use iter(Doc)

· Doc._.n_tokens => len(Doc)

· Doc._.to_terms_list() => extract.terms(doc) or Doc._.
extract_terms()

152 Chapter 4. contents

textacy Documentation, Release 0.12.0

· Doc._.to_tagged_text() => NA, this was an old holdover that’s not used in practice
anymore

· Doc._.to_semantic_network() => NA, use a function in textacy.
representations.networks

– Added Doc extensions for textacy.extract functions (see above for details), with most
functions having direct analogues; for example, to extract acronyms, use either textacy.
extract.acronyms(doc) or doc._.extract_acronyms(). Keyterm extraction func-
tions share a single extension: textacy.extract.keyterms.textrank(doc) <> doc._.
extract_keyterms(method="textrank")

– Leveraged spaCy’s new DocBin for efficiently saving/loading Docs in binary format, with corresponding
arg changes in io.write_spacy_docs() and Corpus.save()+.load()

• Improved package documentation, tests, dependencies, and type annotations

– Added two beginner-oriented tutorials to documentation, showing how to use various aspects of the pack-
age in the context of specific tasks.

– Reorganized API reference docs to put like functionality together and more consistently provide summary
tables up top

– Updated dependencies list and package versions

* Removed: pyemd and srsly

* Un-capped max versions: numpy and scikit-learn

* Bumped min versions: cytoolz, jellyfish, matplotlib, pyphen, and spacy (v3.0+ only!)

– Bumped min Python version from 3.6 => 3.7, and added PY3.9 support

– Removed textacy.export module, which had functions for exporting spaCy docs into other external
formats; this was a soft dependency on gensim and CONLL-U that wasn’t enforced or guaranteed, so
better to remove.

– Added types.pymodule for shared types, and used them everywhere. Also added/fixed type annotations
throughout the code base.

– Improved, added, and parametrized literally hundreds of tests.

Contributors

Many thanks to @timgates42, @datanizing, @8W9aG, @0x2b3bfa0, and @gryBox for submitting PRs, either merged
or used as inspiration for my own rework-in-progress.

4.6.3 0.10.1 (2020-08-29)

New and Changed:

• Expanded text statistics and refactored into a sub-package (PR #307)

– Refactored text_stats module into a sub-package with the same name and top-level API, but restruc-
tured under the hood for better consistency

– Improved performance, API, and documentation on the main TextStats class, and improved documen-
tation on many of the individual stats functions

– Added new readability tests for texts in Arabic (Automated Arabic Readability Index), Spanish (µ-legibility
and perspecuity index), and Turkish (a lang-specific formulation of Flesch Reading Ease)

4.6. Changes 153

textacy Documentation, Release 0.12.0

– Breaking change: Removed TextStats.basic_counts and TextStats.
readability_stats attributes, since typically only one or a couple needed for a given use
case; also, some of the readability tests are language-specific, which meant bad results could get mixed in
with good ones

• Improved and standardized some code quality and performance (PR #305, #306)

– Standardized error messages via top-level errors.py module

– Replaced str.format() with f-strings (almost) everywhere, for performance and readability

– Fixed a whole mess of linting errors, significantly improving code quality and consistency

• Improved package configuration, and maintenance (PRs #298, #305, #306)

– Added automated GitHub workflows for building and testing the package, linting and formatting, publish-
ing new releases to PyPi, and building documentation (and ripped out Travis CI)

– Added a makefile with common commands for dev work, plus instructions

– Adopted the new pyproject.toml package configuration standard; updated and streamlined setup.
py and setup.cfg accordingly; and removed requirements.txt

– Moved all source code into a /src directory, for technical reasons

– Added mypy-specific config file to reduce output noisiness when type-checking

• Improved and moved package documentation (PR #309)

– Moved the docs site back to ReadTheDocs (https://textacy.readthedocs.io)! Pardon the years-long detour
into GitHub Pages. . .

– Enabled markdown-based documentation using recommonmark instead of m2r, and migrated all “nar-
rative” docs from .rst to equivalent .md files

– Added auto-generated summary tables to many sections of the API Reference, to help users get an
overview of functionality and better find what they’re looking for; also added auto-generated section head-
ing references

– Tidied up and further standardized docstrings throughout the code

• Kept up with the Python ecosystem

– Trained a v1.1 language identifier model using scikit-learn==0.23.0, and bumped the upper
bound on that dependency’s version accordingly

– Updated and parametrized many tests using modern pytest functionality (PR #306)

– Got textacy versions 0.9.1 and 0.10.0 up on conda-forge (Issue #294)

– Added spectral seriation as a term-ordering technique when making a “Termite” visualization by taking
advantage of pandas.DataFrame functionality, and otherwise tidied up the default for nice-looking
plots (PR #295)

154 Chapter 4. contents

textacy Documentation, Release 0.12.0

Fixed:

• Corrected an incorrect and misleading reference in the quickstart docs (Issue #300, PR #302)

• Fixed a bug in the delete_words() augmentation transform (Issue #308)

Contributors:

Special thanks to @tbsexton, @marius-mather, and @rmax for their contributions!

4.6.4 0.10.0 (2020-03-01)

New:

• Added a logo to textacy’s documentation and social preview :page_with_curl:

• Added type hints throughout the code base, for more expressive type indicators in docstrings and for static type
checkers used by developers to code more effectively (PR #289)

• Added a preprocessing function to normalize sequences of repeating characters (Issue #275)

Changed:

• Improved core Corpus functionality using recent additions to spacy (PR #285)

– Re-implemented Corpus.save() and Corpus.load() using spacy’s new DocBin class, which
resolved a few bugs/issues (Issue #254)

– Added n_process arg to Corpus.add() to set the number of parallel processes used when adding
many items to a corpus, following spacy’s updates to nlp.pipe() (Issue #277)

– Bumped minimum spaCy version from 2.0.12 => 2.2.0, accordingly

• Added handling for zero-width whitespaces into normalize_whitespace() function (Issue #278)

• Improved a couple rough spots in package administration:

– Moved package setup information into a declarative configuration file, in an attempt to keep up with
evolving best practices for Python packaging

– Simplified the configuration and interoperability of sphinx + github pages for generating package docu-
mentation

Fixed:

• Fixed typo in ConceptNet docstring (Issue #280)

• Trained and distributed a LangIdentifier model using scikit-learn==0.22, to prevent ambiguous
errors when trying to load a file that didn’t exist (Issues #291, #292)

4.6. Changes 155

textacy Documentation, Release 0.12.0

4.6.5 0.9.1 (2019-09-03)

Changed:

• Tweaked TopicModel class to work with newer versions of scikit-learn, and updated version require-
ments accordingly from >=0.18.0,<0.21.0 to >=0.19

Fixed:

• Fixed residual bugs in the script for training language identification pipelines, then trained and released one
using scikit-learn==0.19 to prevent errors for users on that version

4.6.6 0.9.0 (2019-09-03)

Note: textacy is now PY3-only! Specifically, support for PY2.7 has been dropped, and the minimum PY3 version
has been bumped to 3.6 (PR #261). See below for related changes.

New:

• Added augmentation subpackage for basic text data augmentation (PR #268, #269)

– implemented several transformer functions for substituting, inserting, swapping, and deleting elements of
text at both the word- and character-level

– implemented an Augmenter class for combining multiple transforms and applying them to spaCy Docs
in a randomized but configurable manner

– Note: This API is provisional, and subject to change in future releases.

• Added resources subpackage for standardized access to linguistic resources (PR #265)

– DepecheMood++: high-coverage emotion lexicons for understanding the emotions evoked by a text. Up-
dated from a previous version, and now features better English data and Italian data with expanded, con-
sistent functionality.

* removed lexicon_methods.py module with previous implementation

– ConceptNet: multilingual knowledge base for representing relationships between words, similar to Word-
Net. Currently supports getting word antonyms, hyponyms, meronyms, and synonyms in dozens of lan-
guages.

• Added UDHR dataset, a collection of translations of the Universal Declaration of Human Rights (PR #271)

Changed:

• Updated and extended functionality previously blocked by PY2 compatibility while reducing code bloat / com-
plexity

– made many args keyword-only, to prevent user error

– args accepting strings for directory / file paths now also accept pathlib.Path objects, with pathlib
adopted widely under the hood

– increased minimum versions and/or uncapped maximum versions of several dependencies, including
jellyfish, networkx, and numpy

• Added a Portuguese-specific formulation of Flesch Reading Ease score to text_stats (PR #263)

156 Chapter 4. contents

textacy Documentation, Release 0.12.0

• Reorganized and grouped together some like functionality

– moved core functionality for loading spaCy langs and making spaCy docs into spacier.core, out of
cache.py and doc.py

– moved some general-purpose functionality from dataset.utils to io.utils and utils.py

– moved function for loading “hyphenator” out of cache.py and into text_stats.py, where it’s used

• Re-trained and released language identification pipelines using a better mix of training data, for slightly im-
proved performance; also added the script used to train the pipeline

• Changed API Reference docs to show items in source code rather than alphabetical order, which should make
the ordering more human-friendly

• Updated repo README and PyPi metadata to be more consistent and representative of current functionality

• Removed previously deprecated textacy.io.split_record_fields() function

Fixed:

• Fixed a regex for cleaning up crufty terms to prevent catastrophic backtracking in certain edge cases (true story:
this bug was encountered in production code, and ruined my day)

• Fixed bad handling of edge cases in sCAKE keyterm extraction (Issue #270)

• Changed order in which URL regexes are applied in preprocessing.replace_urls() to properly han-
dle certain edge case URLs (Issue #267)

Contributors:

Thanks much to @hugoabonizio for the contribution.

4.6.7 0.8.0 (2019-07-14)

New and Changed:

• Refactored and expanded text preprocessing functionality (PR #253)

– Moved code from a top-level preprocess module into a preprocessing sub-package, and reorga-
nized it in the process

– Added new functions:

* replace_hashtags() to replace hashtags like #FollowFriday or #spacyIRL2019 with
TAG

* replace_user_handles() to replace user handles like @bjdewilde or @spacy_io with
USER

* replace_emojis() to replace emoji symbols like or with _EMOJI_

* normalize_hyphenated_words() to join hyphenated words back together, like antici-
pation => anticipation

* normalize_quotation_marks() to replace “fancy” quotation marks with simple ascii equiv-
alents, like “the god particle” => "the god particle"

– Changed a couple functions for clarity and consistency:

4.6. Changes 157

textacy Documentation, Release 0.12.0

* replace_currency_symbols() now replaces all dedicated ascii and unicode currency sym-
bols with _CUR_, rather than just a subset thereof, and no longer provides for replacement with the
corresponding currency code (like C => EUR)

* remove_punct() now has a fast (bool) kwarg rather than method (str)

– Removed normalize_contractions(), preprocess_text(), and fix_bad_unicode()
functions, since they were bad/awkward and more trouble than they were worth

• Refactored and expanded keyterm extraction functionality (PR #257)

– Moved code from a top-level keyterms module into a ke sub-package, and cleaned it up / standardized
arg names / better shared functionality in the process

– Added new unsupervised keyterm extraction algorithms: YAKE (ke.yake()), sCAKE (ke.scake()),
and PositionRank (ke.textrank(), with non-default parameter values)

– Added new methods for selecting candidate keyterms: longest matching subsequence candidates (ke.
utils.get_longest_subsequence_candidates()) and pattern-matching candidates (ke.
utils.get_pattern_matching_candidates())

– Improved speed of SGRank implementation, and generally optimized much of the code

• Improved document similarity functionality (PR #256)

– Added a character ngram-based similarity measure (similarity.character_ngrams()), for
something that’s useful in different contexts than the other measures

– Removed Jaro-Winkler string similarity measure (similarity.jaro_winkler()), since it didn’t
add much beyond other measures

– Improved speed of Token Sort Ratio implementation

– Replaced python-levenshtein dependency with jellyfish, for its active development, better
documentation, and actually-compliant license

• Added customizability to certain functionality

– Added options to Doc._.to_bag_of_words() and Corpus.word_counts() for filtering out
stop words, punctuation, and/or numbers (PR #249)

– Allowed for objects that look like sklearn-style topic modeling classes to be passed into tm.
TopicModel() (PR #248)

– Added options to customize rc params used by matplotlib when drawing a “termite” plot in viz.
draw_termite_plot() (PR #248)

• Removed deprecated functions with direct replacements: io.utils.get_filenames() and spacier.
components.merge_entities()

Contributors:

Huge thanks to @kjoshi and @zf109 for the PRs!

158 Chapter 4. contents

textacy Documentation, Release 0.12.0

4.6.8 0.7.1 (2019-06-25)

New:

• Added a default, built-in language identification classifier that’s moderately fast, moderately accurate, and covers
a relatively large number of languages [PR #247]

– Implemented a Google CLD3-inspired model in scikit-learn and trained it on ~1.5M texts in ~130
different languages spanning a wide variety of subject matter and stylistic formality; overall, speed and
performance compare favorably to other open-source options (langid, langdetect, cld2-cffi,
and cld3)

– Dropped cld2-cffi dependency [Issue #246]

• Added extract.matches() function to extract spans from a document matching one or more pattern of
per-token (attribute, value) pairs, with optional quantity qualifiers; this is a convenient interface to spaCy’s
rule-based Matcher and a more powerful replacement for textacy’s existing (now deprecated) extract.
pos_regex_matches()

• Added preprocess.normalize_unicode() function to transform unicode characters into their canoni-
cal forms; this is a less-intensive consolation prize for the previously-removed fix_unicode() function

Changed:

• Enabled loading blank spaCy Language pipelines (tokenization only – no model-based tagging, parsing, etc.)
via load_spacy_lang(name, allow_blank=True) for use cases that don’t rely on annotations; dis-
abled by default to avoid unwelcome surprises

• Changed inclusion/exclusion and de-duplication of entities and ngrams in to_terms_list() [Issues #169,
#179]

– entities = True => include entities, and drop exact duplicate ngrams

– entities = False => don’t include entities, and also drop exact duplicate ngrams

– entities = None => use ngrams as-is without checking against entities

• Moved to_collection() function from the datasets.utils module to the top-level utils module,
for use throughout the code base

• Added quoting option to io.read_csv() and io.write_csv(), for problematic cases

• Deprecated the spacier.components.merge_entities() pipeline component, an implementation of
which has since been added into spaCy itself

• Updated documentation for developer convenience and reader clarity

– Split API reference docs into related chunks, rather than having them all together in one long page, and
tidied up headers

– Fixed errors / inconsistencies in various docstrings (a never-ending struggle. . .)

– Ported package readme and changelog from .rst to .md format

4.6. Changes 159

textacy Documentation, Release 0.12.0

Fixed:

• The NotImplementedError previously added to preprocess.fix_unicode() is now raised rather
than returned [Issue #243]

4.6.9 0.7.0 (2019-05-13)

New and Changed:

• Removed textacy.Doc, and split its functionality into two parts

– New: Added textacy.make_spacy_doc() as a convenient and flexible entry point for making
spaCy Doc s from text or (text, metadata) pairs, with optional spaCy language pipeline specification. It’s
similar to textacy.Doc.__init__, with the exception that text and metadata are passed in together
as a 2-tuple.

– New: Added a variety of custom doc property and method extensions to the global spacy.tokens.
Doc class, accessible via its Doc._ “underscore” property. These are similar to the properties/methods
on textacy.Doc, they just require an interstitial underscore. For example, textacy.Doc.
to_bag_of_words() => spacy.tokens.Doc._.to_bag_of_words().

– New: Added functions for setting, getting, and removing these extensions. Note that they are set automat-
ically when textacy is imported.

• Simplified and improved performance of textacy.Corpus

– Documents are now added through a simpler API, either in Corpus.__init__ or Corpus.add();
they may be one or a stream of texts, (text, metadata) pairs, or existing spaCy Doc s. When adding many
documents, the spaCy language processing pipeline is used in a faster and more efficient way.

– Saving / loading corpus data to disk is now more efficient and robust.

– Note: Corpus is now a collection of spaCy Doc s rather than textacy.Doc s.

• Simplified, standardized, and added Dataset functionality

– New: Added an IMDB dataset, built on the classic 2011 dataset commonly used to train sentiment analysis
models.

– New: Added a base Wikimedia dataset, from which a reworked Wikipedia dataset and a separate
Wikinews dataset inherit. The underlying data source has changed, from XML db dumps of raw wiki
markup to JSON db dumps of (relatively) clean text and metadata; now, the code is simpler, faster, and
totally language-agnostic.

– Dataset.records() now streams (text, metadata) pairs rather than a dict containing both text and
metadata, so users don’t need to know field names and split them into separate streams before creating
Doc or Corpus objects from the data.

– Filtering and limiting the number of texts/records produced is now clearer and more consistent between
.texts() and .records() methods on a given Dataset — and more performant!

– Downloading datasets now always shows progress bars and saves to the same file names. When appropri-
ate, downloaded archive files’ contents are automatically extracted for easy inspection.

– Common functionality (such as validating filter values) is now standardized and consolidated in the
datasets.utils module.

• Quality of life improvements

– Reduced load time for import textacy from ~2-3 seconds to ~1 second, by lazy-loading expensive
variables, deferring a couple heavy imports, and dropping a couple dependencies. Specifically:

160 Chapter 4. contents

textacy Documentation, Release 0.12.0

* ftfy was dropped, and a NotImplementedError is now raised in textacy’s wrapper function,
textacy.preprocess.fix_bad_unicode(). Users with bad unicode should now directly
call ftfy.fix_text().

* ijson was dropped, and the behavior of textacy.read_json() is now simpler and consistent
with other functions for line-delimited data.

* mwparserfromhell was dropped, since the reworked Wikipedia dataset no longer requires
complicated and slow parsing of wiki markup.

– Renamed certain functions and variables for clarity, and for consistency with existing conventions:

* textacy.load_spacy() => textacy.load_spacy_lang()

* textacy.extract.named_entities() => textacy.extract.entities()

* textacy.data_dir => textacy.DEFAULT_DATA_DIR

* filename => filepath and dirname => dirpath when specifying full paths to
files/dirs on disk, and textacy.io.utils.get_filenames() => textacy.io.utils.
get_filepaths() accordingly

* compiled regular expressions now consistently start with RE_

* SpacyDoc => Doc, SpacySpan => Span, SpacyToken => Token, SpacyLang =>
Language as variables and in docs

– Removed deprecated functionality

* top-level spacy_utils.py and spacy_pipelines.py are gone; use equivalent functionality
in the spacier subpackage instead

* math_utils.py is gone; it was long neglected, and never actually used

– Replaced textacy.compat.bytes_to_unicode() and textacy.compat.
unicode_to_bytes() with textacy.compat.to_unicode() and textacy.compat.
to_bytes(), which are safer and accept either binary or text strings as input.

– Moved and renamed language detection functionality, textacy.text_utils.
detect_language() => textacy.lang_utils.detect_lang(). The idea is to add
more/better lang-related functionality here in the future.

– Updated and cleaned up documentation throughout the code base.

– Added and refactored many tests, for both new and old functionality, significantly increasing test coverage
while significantly reducing run-time. Also, added a proper coverage report to CI builds. This should help
prevent future errors and inspire better test-writing.

– Bumped the minimum required spaCy version: v2.0.0 => v2.0.12, for access to their full set of
custom extension functionality.

Fixed:

• The progress bar during an HTTP download now always closes, preventing weird nesting issues if another bar
is subsequently displayed.

• Filtering datasets by multiple values performed either a logical AND or OR over the values, which was confus-
ing; now, a logical OR is always performed.

• The existence of files/directories on disk is now checked properly via os.path.isfile() or os.path.
isdir(), rather than os.path.exists().

• Fixed a variety of formatting errors raised by sphinx when generating HTML docs.

4.6. Changes 161

textacy Documentation, Release 0.12.0

4.6.10 0.6.3 (2019-03-23)

New:

• Added a proper contributing guide and code of conduct, as well as separate GitHub issue templates for different
user situations. This should help folks contribute to the project more effectively, and make maintaining it a bit
easier, too. [Issue #212]

• Gave the documentation a new look, using a template popularized by requests. Added documentation on
dealing with multi-lingual datasets. [Issue #233]

• Made some minor adjustments to package dependencies, the way they’re specified, and the Travis CI setup,
making for a faster and better development experience.

• Confirmed and enabled compatibility with v2.1+ of spacy. :dizzy:

Changed:

• Improved the Wikipedia dataset class in a variety of ways: it can now read Wikinews db dumps; access
records in namespaces other than the usual “0” (such as category pages in namespace “14”); parse and extract
category pages in several languages, including in the case of bad wiki markup; and filter out section headings
from the accompanying text via an include_headings kwarg. [PR #219, #220, #223, #224, #231]

• Removed the transliterate_unicode() preprocessing function that transliterated non-ascii text into
a reasonable ascii approximation, for technical and philosophical reasons. Also removed its GPL-licensed
unidecode dependency, for legal-ish reasons. [Issue #203]

• Added convention-abiding exclude argument to the function that writes spacy docs to disk, to limit which
pipeline annotations are serialized. Replaced the existing but non-standard include_tensor arg.

• Deprecated the n_threads argument in Corpus.add_texts(), which had not been working in spacy.
pipe for some time and, as of v2.1, is defunct.

• Made many tests model- and python-version agnostic and thus less likely to break when spacy releases new
and improved models.

• Auto-formatted the entire code base using black; the results aren’t always more readable, but they are pleas-
ingly consistent.

Fixed:

• Fixed bad behavior of key_terms_from_semantic_network(), where an error would be raised if no
suitable key terms could be found; now, an empty list is returned instead. [Issue #211]

• Fixed variable name typo so GroupVectorizer.fit() actually works. [Issue #215]

• Fixed a minor typo in the quick-start docs. [PR #217]

• Check for and filter out any named entities that are entirely whitespace, seemingly caused by an issue in spacy.

• Fixed an undefined variable error when merging spans. [Issue #225]

• Fixed a unicode/bytes issue in experimental function for deserializing spacy docs in “binary” format. [Issue
#228, PR #229]

162 Chapter 4. contents

textacy Documentation, Release 0.12.0

Contributors:

Many thanks to @abevieiramota, @ckot, @Jude188, and @digest0r for their help!

4.6.11 0.6.2 (2018-07-19)

Changed:

• Add a spacier.util module, and add / reorganize relevant functionality

– move (most) spacy_util functions here, and add a deprecation warning to the spacy_util module

– rename normalized_str() => get_normalized_text(), for consistency and clarity

– add a function to split long texts up into chunks but combine them into a single Doc. This is a workaround
for a current limitation of spaCy’s neural models, whose RAM usage scales with the length of input text.

• Add experimental support for reading and writing spaCy docs in binary format, where multiple docs are con-
tained in a single file. This functionality was supported by spaCy v1, but is not in spaCy v2; I’ve implemented
a workaround that should work well in most situations, but YMMV.

• Package documentation is now “officially” hosted on GitHub pages. The docs are automatically built on and
deployed from Travis via doctr, so they stay up-to-date with the master branch on GitHub. Maybe someday
I’ll get ReadTheDocs to successfully build textacy once again. . .

• Minor improvements/updates to documentation

Fixed:

• Add missing return statement in deprecated text_stats.flesch_readability_ease() function (Is-
sue #191)

• Catch an empty graph error in bestcoverage-style keyterm ranking (Issue #196)

• Fix mishandling when specifying a single named entity type to in/exclude in extract.named_entities
(Issue #202)

• Make networkx usage in keyterms module compatible with v1.11+ (Issue #199)

4.6.12 0.6.1 (2018-04-11)

New:

• Add a new spacier sub-package for spaCy-oriented functionality (#168, #187)

– Thus far, this includes a components module with two custom spaCy pipeline components: one to
compute text stats on parsed documents, and another to merge named entities into single tokens in an
efficient manner. More to come!

– Similar functionality in the top-level spacy_pipelines module has been deprecated; it will be re-
moved in v0.7.0.

4.6. Changes 163

textacy Documentation, Release 0.12.0

Changed:

• Update the readme, usage, and API reference docs to be clearer and (I hope) more useful. (#186)

• Removing punctuation from a text via the preprocessing module now replaces punctuation marks with a
single space rather than an empty string. This gives better behavior in many situations; for example, “won’t” =>
“won t” rather than “wont”, the latter of which is a valid word with a different meaning.

• Categories are now correctly extracted from non-English language Wikipedia datasets, starting with French and
German and extendable to others. (#175)

• Log progress when adding documents to a corpus. At the debug level, every doc’s addition is logged; at the info
level, only one message per batch of documents is logged. (#183)

Fixed:

• Fix two breaking typos in extract.direct_quotations(). (issue #177)

• Prevent crashes when adding non-parsed documents to a Corpus. (#180)

• Fix bugs in keyterms.most_discriminating_terms() that used vsm functionality as it was before
the changes in v0.6.0. (#189)

• Fix a breaking typo in vsm.matrix_utils.apply_idf_weighting(), and rename the problematic
kwarg for consistency with related functions. (#190)

Contributors:

Big thanks to @sammous, @dixiekong (nice name!), and @SandyRogers for the pull requests, and many more for
pointing out various bugs and the rougher edges / unsupported use cases of this package.

4.6.13 0.6.0 (2018-02-25)

Changed:

• Rename, refactor, and extend I/O functionality (PR #151)

– Related read/write functions were moved from read.py and write.py into format-specific
modules, and similar functions were consolidated into one with the addition of an arg.
For example, write.write_json() and write.write_json_lines() => json.
write_json(lines=True|False).

– Useful functionality was added to a few readers/writers. For example, write_json() now automati-
cally handles python dates/datetimes, writing them to disk as ISO-formatted strings rather than raising a
TypeError (“datetime is not JSON serializable”, ugh). CSVs can now be written to / read from disk when
each row is a dict rather than a list. Reading/writing HTTP streams now allows for basic authentication.

– Several things were renamed to improve clarity and consistency from a user’s perspective, most notably the
subpackage name: fileio => io. Others: read_file() and write_file() => read_text()
and write_text(); split_record_fields() => split_records(), although I kept an alias
to the old function for folks; auto_make_dirs boolean kwarg => make_dirs.

– io.open_sesame() now handles zip files (provided they contain only 1 file) as it already does for gzip,
bz2, and lzma files. On a related note, Python 2 users can now open lzma (.xz) files if they’ve installed
backports.lzma.

• Improve, refactor, and extend vector space model functionality (PRs #156 and #167)

164 Chapter 4. contents

textacy Documentation, Release 0.12.0

– BM25 term weighting and document-length normalization were implemented, and and users can now
flexibly add and customize individual components of an overall weighting scheme (local scaling + global
scaling + doc-wise normalization). For API sanity, several additions and changes to the Vectorizer
init params were required — sorry bout it!

– Given all the new weighting possibilities, a Vectorizer.weighting attribute was added for curious
users, to give a mathematical representation of how values in a doc-term matrix are being calculated.
Here’s a simple and a not-so-simple case:

>>> Vectorizer(apply_idf=True, idf_type='smooth').weighting
'tf * log((n_docs + 1) / (df + 1)) + 1'
>>> Vectorizer(tf_type='bm25', apply_idf=True, idf_type='smooth', apply_
→˓dl=True).weighting
'(tf * (k + 1)) / (tf + k * (1 - b + b * (length / avg(lengths))) * log((n_
→˓docs - df + 0.5) / (df + 0.5))'

– Terms are now sorted alphabetically after fitting, so you’ll have a consistent and interpretable ordering in
your vocabulary and doc-term-matrix.

– A GroupVectorizer class was added, as a child of Vectorizer and an extension of typical
document-term matrix vectorization, in which each row vector corresponds to the weighted terms co-
occurring in a single document. This allows for customized grouping, such as by a shared author or
publication year, that may span multiple documents, without forcing users to merge /concatenate those
documents themselves.

– Lastly, the vsm.py module was refactored into a vsm subpackage with two modules. Imports should stay
the same, but the code structure is now more amenable to future additions.

• Miscellaneous additions and improvements

– Flesch Reading Ease in the textstats module is now multi-lingual! Language- specific formulations
for German, Spanish, French, Italian, Dutch, and Russian were added, in addition to (the default) English.
(PR #158, prompted by Issue #155)

– Runtime performance, as well as docs and error messages, of functions for generating semantic networks
from lists of terms or sentences were improved. (PR #163)

– Labels on named entities from which determiners have been dropped are now preserved. There’s still a
minor gotcha, but it’s explained in the docs.

– The size of textacy’s data cache can now be set via an environment variable,
TEXTACY_MAX_CACHE_SIZE, in case the default 2GB cache doesn’t meet your needs.

– Docstrings were improved in many ways, large and small, throughout the code. May they guide you even
more effectively than before!

– The package version is now set from a single source. This isn’t for you so much as me, but it does prevent
confusing version mismatches b/w code, pypi, and docs.

– All tests have been converted from unittest to pytest style. They run faster, they’re more informative
in failure, and they’re easier to extend.

4.6. Changes 165

textacy Documentation, Release 0.12.0

Fixed:

• Fixed an issue where existing metadata associated with a spacy Doc was being overwritten with an empty dict
when using it to initialize a textacy Doc. Users can still overwrite existing metadata, but only if they pass in new
data.

• Added a missing import to the README’s usage example. (#149)

• The intersphinx mapping to numpy got fixed (and items for scipy and matplotlib were added, too).
Taking advantage of that, a bunch of broken object links scattered throughout the docs got fixed.

• Fixed broken formatting of old entries in the changelog, for your reading pleasure.

4.6.14 0.5.0 (2017-12-04)

Changed:

• Bumped version requirement for spaCy from < 2.0 to >= 2.0 — textacy no longer works with spaCy 1.x! It’s
worth the upgrade, though. v2.0’s new features and API enabled (or required) a few changes on textacy’s end

– textacy.load_spacy() takes the same inputs as the new spacy.load(), i.e. a package name
string and an optional list of pipes to disable

– textacy’s Doc metadata and language string are now stored in user_data directly on the spaCy Doc
object; although the API from a user’s perspective is unchanged, this made the next change possible

– Doc and Corpus classes are now de/serialized via pickle into a single file — no more side-car JSON files
for metadata! Accordingly, the .save() and .load() methods on both classes have a simpler API:
they take a single string specifying the file on disk where data is stored.

• Cleaned up docs, imports, and tests throughout the entire code base.

– docstrings and https://textacy.readthedocs.io ‘s API reference are easier to read, with better cross-
referencing and far fewer broken web links

– namespaces are less cluttered, and textacy’s source code is easier to follow

– import textacy takes less than half the time from before

– the full test suite also runs about twice as fast, and most tests are now more robust to changes in the
performance of spaCy’s models

– consistent adherence to conventions eases users’ cognitive load :)

• The module responsible for caching loaded data in memory was cleaned up and improved, as well as
renamed: from data.py to cache.py, which is more descriptive of its purpose. Otherwise, you shouldn’t
notice much of a difference besides things working correctly.

– All loaded data (e.g. spacy language pipelines) is now cached together in a single LRU cache whose
max size is set to 2GB, and the size of each element in the cache is now accurately computed. (tl;dr:
sys.getsizeof does not work on non-built-in objects like, say, a spacy.tokens.Doc.)

– Loading and downloading of the DepecheMood resource is now less hacky and weird, and much closer to
how users already deal with textacy’s various Dataset s, In fact, it can be downloaded in exactly the same
way as the datasets via textacy’s new CLI: $ python -m textacy download depechemood.
P.S. A brief guide for using the CLI got added to the README.

• Several function/method arguments marked for deprecation have been removed. If you’ve been ignoring
the warnings that print out when you use lemmatize=True instead of normalize='lemma' (etc.), now
is the time to update your calls!

166 Chapter 4. contents

textacy Documentation, Release 0.12.0

– Of particular note: The readability_stats() function has been removed; use
TextStats(doc).readability_stats instead.

Fixed:

• In certain situations, the text of a spaCy span was being returned without whitespace between to-
kens; that has been avoided in textacy, and the source bug in spaCy got fixed (by yours truly!
https://github.com/explosion/spaCy/pull/1621).

• When adding already-parsed Docs to a Corpus, including metadata now correctly overwrites any existing
metadata on those docs.

• Fixed a couple related issues involving the assignment of a 2-letter language string to the .lang attribute of
Doc and Corpus objects.

• textacy’s CLI wasn’t correctly handling certain dataset kwargs in all cases; now, all kwargs get to their intended
destinations.

4.6.15 0.4.2 (2017-11-28)

New:

• Added a CLI for downloading textacy-related data, inspired by the spaCy equivalent. It’s temporarily
undocumented, but to see available commands and options, just pass the usual flag: $ python -m textacy
--help. Expect more functionality (and docs!) to be added soonish. (#144)

– Note: The existing Dataset.download() methods work as before, and in fact, they are being called
under the hood from the command line.

Changed:

• Made usage of networkx v2.0-compatible, and therefore dropped the <2.0 version requirement on that depen-
dency. Upgrade as you please! (#131)

• Improved the regex for identifying phone numbers so that it’s easier to view and interpret its matches. (#128)

Fixed:

• Fixed caching of counts on textacy.Doc instance-specific, rather than shared by all instances of the class.
Oops.

• Fixed currency symbols regex, so as not to replace all instances of the letter “z” when a custom string is passed
into replace_currency_symbols(). (#137)

• Fixed README usage example, which skipped downloading of dataset data. Btw, see above for another way!
(#124)

• Fixed typo in the API reference, which included the SupremeCourt dataset twice and omitted the RedditCom-
ments dataset. (#129)

• Fixed typo in RedditComments.download() that prevented it from downloading any data. (#143)

4.6. Changes 167

textacy Documentation, Release 0.12.0

Contributors:

Many thanks to @asifm, @harryhoch, and @mdlynch37 for submitting PRs!

4.6.16 0.4.1 (2017-07-27)

Changed:

• Added key classes to the top-level textacy imports, for convenience:

– textacy.text_stats.TextStats => textacy.TextStats

– textacy.vsm.Vectorizer => textacy.Vectorizer

– textacy.tm.TopicModel => textacy.TopicModel

• Added tests for textacy.Doc and updated the README’s usage example

Fixed:

• Added explicit encoding when opening Wikipedia database files in text mode to resolve an issue when doing so
without encoding on Windows (PR #118)

• Fixed keyterms.most_discriminating_terms to use the vsm.Vectorizer class rather than the
vsm.doc_term_matrix function that it replaced (PR #120)

• Fixed mishandling of a couple optional args in Doc.to_terms_list

Contributors:

Thanks to @minketeer and @Gregory-Howard for the fixes!

4.6.17 0.4.0 (2017-06-21)

New and Changed:

• Refactored and expanded built-in corpora, now called datasets (PR #112)

– The various classes in the old corpora subpackage had a similar but frustratingly not-identical API. Also,
some fetched the corresponding dataset automatically, while others required users to do it themselves. Ugh.

– These classes have been ported over to a new datasets subpackage; they now have a consistent API,
consistent features, and consistent documentation. They also have some new functionality, including pain-
free downloading of the data and saving it to disk in a stream (so as not to use all your RAM).

– Also, there’s a new dataset: A collection of 2.7k Creative Commons texts from the Oxford Text Archive,
which rounds out the included datasets with English-language, 16th-20th century literary works. (h/t
@JonathanReeve)

• A Vectorizer class to convert tokenized texts into variously weighted document-term matrices (Issue #69,
PR #113)

– This class uses the familiar scikit-learn API (which is also consistent with the textacy.tm.
TopicModel class) to convert one or more documents in the form of “term lists” into weighted vectors.
An initial set of documents is used to build up the matrix vocabulary (via .fit()), which can then be
applied to new documents (via .transform()).

168 Chapter 4. contents

textacy Documentation, Release 0.12.0

– It’s similar in concept and usage to sklearn’s CountVectorizer or TfidfVectorizer, but doesn’t
convolve the tokenization task as they do. This means users have more flexibility in deciding which terms
to vectorize. This class outright replaces the textacy.vsm.doc_term_matrix() function.

• Customizable automatic language detection for Doc s

– Although cld2-cffi is fast and accurate, its installation is problematic for some users. Since other
language detection libraries are available (e.g. langdetect and langid), it makes sense to let users
choose, as needed or desired.

– First, cld2-cffi is now an optional dependency, i.e. is not installed by default. To install it,
do pip install textacy[lang] or (for it and all other optional deps) do pip install
textacy[all]. (PR #86)

– Second, the lang param used to instantiate Doc objects may now be a callable that accepts a unicode
string and returns a standard 2-letter language code. This could be a function that uses langdetect
under the hood, or a function that always returns “de” – it’s up to users. Note that the default value is now
textacy.text_utils.detect_language(), which uses cld2-cffi, so the default behavior
is unchanged.

• Customizable punctuation removal in the preprocessing module (Issue #91)

– Users can now specify which punctuation marks they wish to remove, rather than always removing all
marks.

– In the case that all marks are removed, however, performance is now 5-10x faster by using Python’s built-in
str.translate() method instead of a regular expression.

• textacy, installable via conda (PR #100)

– The package has been added to Conda-Forge (here), and installation instructions have been added to the
docs. Hurray!

• textacy, now with helpful badges

– Builds are now automatically tested via Travis CI, and there’s a badge in the docs showing whether the
build passed or not. The days of my ignoring broken tests in master are (probably) over. . .

– There are also badges showing the latest releases on GitHub, pypi, and conda-forge (see above).

Fixed:

• Fixed the check for overlap between named entities and unigrams in the Doc.to_terms_list() method
(PR #111)

• Corpus.add_texts() uses CPU_COUNT - 1 threads by default, rather than always assuming that 4 cores
are available (Issue #89)

• Added a missing coding declaration to a test file, without which tests failed for Python 2 (PR #99)

• readability_stats() now catches an exception raised on empty documents and logs a message, rather
than barfing with an unhelpful ZeroDivisionError. (Issue #88)

• Added a check for empty terms list in terms_to_semantic_network (Issue #105)

• Added and standardized module-specific loggers throughout the code base; not a bug per sé, but certainly some
much-needed housecleaning

• Added a note to the docs about expectations for bytes vs. unicode text (PR #103)

4.6. Changes 169

https://github.com/Mimino666/langdetect
https://github.com/saffsd/langid.py
https://github.com/conda-forge/textacy-feedstock

textacy Documentation, Release 0.12.0

Contributors:

Thanks to @henridwyer, @rolando, @pavlin99th, and @kyocum for their contributions! :raised_hands:

4.6.18 0.3.4 (2017-04-17)

New and Changed:

• Improved and expanded calculation of basic counts and readability statistics in text_stats module.

– Added a TextStats() class for more convenient, granular access to individual values. See usage docs
for more info. When calculating, say, just one readability statistic, performance with this class should be
slightly better; if calculating all statistics, performance is worse owing to unavoidable, added overhead in
Python for variable lookups. The legacy function text_stats.readability_stats() still exists
and behaves as before, but a deprecation warning is displayed.

– Added functions for calculating Wiener Sachtextformel (PR #77), LIX, and GULPease readability statis-
tics.

– Added number of long words and number of monosyllabic words to basic counts.

• Clarified the need for having spacy models installed for most use cases of textacy, in addition to just the spacy
package.

– README updated with comments on this, including links to more extensive spacy documentation. (Issues
#66 and #68)

– Added a function, compat.get_config() that includes information about which (if any) spacy mod-
els are installed.

– Recent changes to spacy, including a warning message, will also make model problems more apparent.

• Added an ngrams parameter to keyterms.sgrank(), allowing for more flexibility in specifying valid
keyterm candidates for the algorithm. (PR #75)

• Dropped dependency on fuzzywuzzy package, replacing usage of fuzz.token_sort_ratio() with a
textacy equivalent in order to avoid license incompatibilities. As a bonus, the new code seems to perform faster!
(Issue #62)

– Note: Outputs are now floats in [0.0, 1.0], consistent with other similarity functions, whereas be-
fore outputs were ints in [0, 100]. This has implications for match_threshold values passed to
similarity.jaccard(); a warning is displayed and the conversion is performed automatically, for
now.

• A MANIFEST.in file was added to include docs, tests, and distribution files in the source distribution. This is
just good practice. (PR #65)

Fixed:

• Known acronym-definition pairs are now properly handled in extract.
acronyms_and_definitions() (Issue #61)

• WikiReader no longer crashes on null page element content while parsing (PR #64)

• Fixed a rare but perfectly legal edge case exception in keyterms.sgrank(), and added a window width
sanity check. (Issue #72)

• Fixed assignment of 2-letter language codes to Doc and Corpus objects when the lang parameter is specified
as a full spacy model name.

170 Chapter 4. contents

textacy Documentation, Release 0.12.0

• Replaced several leftover print statements with proper logging functions.

Contributors:

Big thanks to @oroszgy, @rolando, @covuworie, and @RolandColored for the pull requests!

4.6.19 0.3.3 (2017-02-10)

New and Changed:

• Added a consistent normalize param to functions and methods that require token/span text normalization.
Typically, it takes one of the following values: ‘lemma’ to lemmatize tokens, ‘lower’ to lowercase tokens, False-
y to not normalize tokens, or a function that converts a spacy token or span into a string, in whatever way the
user prefers (e.g. spacy_utils.normalized_str()).

– Functions modified to use this param: Doc.to_bag_of_terms(), Doc.to_bag_of_words(),
Doc.to_terms_list(), Doc.to_semantic_network(), Corpus.word_freqs(),
Corpus.word_doc_freqs(), keyterms.sgrank(), keyterms.textrank(), keyterms.
singlerank(), keyterms.key_terms_from_semantic_network(), network.
terms_to_semantic_network(), network.sents_to_semantic_network()

• Tweaked keyterms.sgrank() for higher quality results and improved internal performance.

• When getting both n-grams and named entities with Doc.to_terms_list(), filtering out numeric spans
for only one is automatically extended to the other. This prevents unexpected behavior, such as passing
filter_nums=True but getting numeric named entities back in the terms list.

Fixed:

• keyterms.sgrank() no longer crashes if a term is missing from idfs mapping. (@jeremybmerrill, issue
#53)

• Proper nouns are no longer excluded from consideration as keyterms in keyterms.sgrank() and
keyterms.textrank(). (@jeremybmerrill, issue #53)

• Empty strings are now excluded from consideration as keyterms — a bug inherited from spaCy. (@mlehl88,
issue #58)

4.6.20 0.3.2 (2016-11-15)

New and Changed:

• Preliminary inclusion of custom spaCy pipelines

– updated load_spacy() to include explicit path and create_pipeline kwargs, and removed the already-
deprecated load_spacy_pipeline() function to avoid confusion around spaCy languages and
pipelines

– added spacy_pipelines module to hold implementations of custom spaCy pipelines, including a
basic one that merges entities into single tokens

– note: necessarily bumped minimum spaCy version to 1.1.0+

– see the announcement here: https://explosion.ai/blog/spacy-deep-learning-keras

4.6. Changes 171

textacy Documentation, Release 0.12.0

• To reduce code bloat, made the matplotlib dependency optional and dropped the gensim dependency

– to install matplotlib at the same time as textacy, do $ pip install textacy[viz]

– bonus: backports.csv is now only installed for Py2 users

– thanks to @mbatchkarov for the request

• Improved performance of textacy.corpora.WikiReader().texts(); results should stream faster
and have cleaner plaintext content than when they were produced by gensim. This should also fix a bug
reported in Issue #51 by @baisk

• Added a Corpus.vectors property that returns a matrix of shape (# documents, vector dim) containing the
average word2vec-style vector representation of constituent tokens for all Doc s

4.6.21 0.3.1 (2016-10-19)

Changed:

• Updated spaCy dependency to the latest v1.0.1; set a floor on other dependencies’ versions to make sure every-
one’s running reasonably up-to-date code

Fixed:

• Fixed incorrect kwarg in sgrank ‘s call to extract.ngrams() (@patcollis34, issue #44)

• Fixed import for cachetool ‘s hashkey, which changed in the v2.0 (@gramonov, issue #45)

4.6.22 0.3.0 (2016-08-23)

New and Changed:

• Refactored and streamlined TextDoc; changed name to Doc

– simplified init params: lang can now be a language code string or an equivalent spacy.Language
object, and content is either a string or spacy.Doc; param values and their interactions are better
checked for errors and inconsistencies

– renamed and improved methods transforming the Doc; for example, .as_bag_of_terms() is now
.to_bag_of_terms(), and terms can be returned as integer ids (default) or as strings with absolute,
relative, or binary frequencies as weights

– added performant .to_bag_of_words() method, at the cost of less customizability of what gets in-
cluded in the bag (no stopwords or punctuation); words can be returned as integer ids (default) or as strings
with absolute, relative, or binary frequencies as weights

– removed methods wrapping extract functions, in favor of simply calling that function on the Doc
(see below for updates to extract functions to make this more convenient); for example, TextDoc.
words() is now extract.words(Doc)

– removed .term_counts() method, which was redundant with Doc.to_bag_of_terms()

– renamed .term_count() => .count(), and checking + caching results is now smarter and faster

• Refactored and streamlined TextCorpus; changed name to Corpus

– added init params: can now initialize a Corpus with a stream of texts, spacy or textacy Docs, and optional
metadatas, analogous to Doc; accordingly, removed .from_texts() class method

172 Chapter 4. contents

textacy Documentation, Release 0.12.0

– refactored, streamlined, bug-fixed, and made consistent the process of adding, getting, and removing doc-
uments from Corpus

* getting/removing by index is now equivalent to the built-in list API: Corpus[:5] gets the first
5 Docs, and del Corpus[:5] removes the first 5, automatically keeping track of corpus statistics
for total # docs, sents, and tokens

* getting/removing by boolean function is now done via the .get() and .remove() methods, the
latter of which now also correctly tracks corpus stats

* adding documents is split across the .add_text(), .add_texts(), and .add_doc()methods
for performance and clarity reasons

– added .word_freqs() and .word_doc_freqs() methods for getting a mapping of word (int id or
string) to global weight (absolute, relative, binary, or inverse frequency); akin to a vectorized representation
(see: textacy.vsm) but in non-vectorized form, which can be useful

– removed .as_doc_term_matrix() method, which was just wrapping another function; so, instead
of corpus.as_doc_term_matrix((doc.as_terms_list() for doc in corpus)),
do textacy.vsm.doc_term_matrix((doc.to_terms_list(as_strings=True) for
doc in corpus))

• Updated several extract functions

– almost all now accept either a textacy.Doc or spacy.Doc as input

– renamed and improved parameters for filtering for or against certain POS or NE types; for example,
good_pos_tags is now include_pos, and will accept either a single POS tag as a string or a
set of POS tags to filter for; same goes for exclude_pos, and analogously include_types, and
exclude_types

• Updated corpora classes for consistency and added flexibility

– enforced a consistent API: .texts() for a stream of plain text documents and .records() for a
stream of dicts containing both text and metadata

– added filtering options for RedditReader, e.g. by date or subreddit, consistent with other corpora
(similar tweaks to WikiReader may come later, but it’s slightly more complicated. . .)

– added a nicer repr for RedditReader and WikiReader corpora, consistent with other corpora

• Moved vsm.py and network.py into the top-level of textacy and thus removed the representations
subpackage

– renamed vsm.build_doc_term_matrix() => vsm.doc_term_matrix(), because the “build”
part of it is obvious

• Renamed distance.py => similarity.py; all returned values are now similarity metrics in the interval
[0, 1], where higher values indicate higher similarity

• Renamed regexes_etc.py => constants.py, without additional changes

• Renamed fileio.utils.split_content_and_metadata() => fileio.utils.
split_record_fields(), without further changes (except for tweaks to the docstring)

• Added functions to read and write delimited file formats: fileio.read_csv() and fileio.
write_csv(), where the delimiter can be any valid one-char string; gzip/bzip/lzma compression is handled
automatically when available

• Added better and more consistent docstrings and usage examples throughout the code base

4.6. Changes 173

textacy Documentation, Release 0.12.0

4.6.23 0.2.8 (2016-08-03)

New:

• Added two new corpora!

– the CapitolWords corpus: a collection of 11k speeches (~7M tokens) given by the main protagonists of
the 2016 U.S. Presidential election that had previously served in the U.S. Congress — including Hillary
Clinton, Bernie Sanders, Barack Obama, Ted Cruz, and John Kasich — from January 1996 through June
2016

– the SupremeCourt corpus: a collection of 8.4k court cases (~71M tokens) decided by the U.S. Supreme
Court from 1946 through 2016, with metadata on subject matter categories, ideology, and voting patterns

– DEPRECATED: the Bernie and Hillary corpus, which is a small subset of CapitolWords that can be
easily recreated by filtering CapitolWords by speaker_name={'Bernie Sanders', 'Hillary
Clinton'}

Changed:

• Refactored and improved fileio subpackage

– moved shared (read/write) functions into separate fileio.utils module

– almost all read/write functions now use fileio.utils.open_sesame(), enabling seamless fileio
for uncompressed or gzip, bz2, and lzma compressed files; relative/user-home-based paths; and missing
intermediate directories. NOTE: certain file mode / compression pairs simply don’t work (this is Python’s
fault), so users may run into exceptions; in Python 3, you’ll almost always want to use text mode (‘wt’ or
‘rt’), but in Python 2, users can’t read or write compressed files in text mode, only binary mode (‘wb’ or
‘rb’)

– added options for writing json files (matching stdlib’s json.dump()) that can help save space

– fileio.utils.get_filenames() now matches for/against a regex pattern rather than just a con-
tained substring; using the old params will now raise a deprecation warning

– BREAKING: fileio.utils.split_content_and_metadata() now has
itemwise=False by default, rather than itemwise=True, which means that splitting multi-
document streams of content and metadata into parallel iterators is now the default action

– added compression param to TextCorpus.save() and .load() to optionally write metadata
json file in compressed form

– moved fileio.write_conll() functionality to export.doc_to_conll(), which converts a
spaCy doc into a ConLL-U formatted string; writing that string to disk would require a separate call to
fileio.write_file()

• Cleaned up deprecated/bad Py2/3 compat imports, and added better functionality for Py2/3 strings

– now compat.unicode_type used for text data, compat.bytes_type for binary data, and
compat.string_types for when either will do

– also added compat.unicode_to_bytes() and compat.bytes_to_unicode() functions, for
converting between string types

174 Chapter 4. contents

textacy Documentation, Release 0.12.0

Fixed:

• Fixed document(s) removal from TextCorpus objects, including correct decrementing of .n_docs, .
n_sents, and .n_tokens attributes (@michelleful #29)

• Fixed OSError being incorrectly raised in fileio.open_sesame() on missing files

• lang parameter in TextDoc and TextCorpus can now be unicode or bytes, which was bug-like

4.6.24 0.2.5 (2016-07-14)

Fixed:

• Added (missing) pyemd and python-levenshtein dependencies to requirements and setup files

• Fixed bug in data.load_depechemood() arising from the Py2 csv module’s inability to take unicode as
input (thanks to @robclewley, issue #25)

4.6.25 0.2.4 (2016-07-14)

New and Changed:

• New features for TextDoc and TextCorpus classes

– added .save() methods and .load() classmethods, which allows for fast serialization of parsed doc-
uments/corpora and associated metadata to/from disk — with an important caveat: if spacy.Vocab
object used to serialize and deserialize is not the same, there will be problems, making this format useful
as short-term but not long-term storage

– TextCorpus may now be instantiated with an already-loaded spaCy pipeline, which may or may not
have all models loaded; it can still be instantiated using a language code string (‘en’, ‘de’) to load a spaCy
pipeline that includes all models by default

– TextDoc methods wrapping extract and keyterms functions now have full documentation rather
than forwarding users to the wrapped functions themselves; more irritating on the dev side, but much less
irritating on the user side :)

• Added a distance.py module containing several document, set, and string distance metrics

– word movers: document distance as distance between individual words represented by word2vec vectors,
normalized

– “word2vec”: token, span, or document distance as cosine distance between (average) word2vec represen-
tations, normalized

– jaccard: string or set(string) distance as intersection / overlap, normalized, with optional fuzzy-matching
across set members

– hamming: distance between two strings as number of substititions, optionally normalized

– levenshtein: distance between two strings as number of substitions, deletions, and insertions, optionally
normalized (and removed a redundant function from the still-orphaned math_utils.py module)

– jaro-winkler: distance between two strings with variable prefix weighting, normalized

• Added most_discriminating_terms() function to keyterms module to take a collection of docu-
ments split into two exclusive groups and compute the most discriminating terms for group1-and-not-group2 as
well as group2-and-not-group1

4.6. Changes 175

textacy Documentation, Release 0.12.0

Fixed:

• fixed variable name error in docs usage example (thanks to @licyeus, PR #23)

4.6.26 0.2.3 (2016-06-20)

New and Changed:

• Added corpora.RedditReader() class for streaming Reddit comments from disk, with .texts()
method for a stream of plaintext comments and .comments() method for a stream of structured comments as
dicts, with basic filtering by text length and limiting the number of comments returned

• Refactored functions for streaming Wikipedia articles from disk into a corpora.WikiReader() class, with
.texts() method for a stream of plaintext articles and .pages() method for a stream of structured pages
as dicts, with basic filtering by text length and limiting the number of pages returned

• Updated README and docs with a more comprehensive — and correct — usage example; also added tests to
ensure it doesn’t get stale

• Updated requirements to latest version of spaCy, as well as added matplotlib for viz

Fixed:

• textacy.preprocess.preprocess_text() is now, once again, imported at the top level, so easily
reachable via textacy.preprocess_text() (@bretdabaker #14)

• viz subpackage now included in the docs’ API reference

• missing dependencies added into setup.py so pip install handles everything for folks

4.6.27 0.2.2 (2016-05-05)

New and Changed:

• Added a viz subpackage, with two types of plots (so far):

– viz.draw_termite_plot(), typically used to evaluate and interpret topic models; conveniently ac-
cessible from the tm.TopicModel class

– viz.draw_semantic_network() for visualizing networks such as those output by
representations.network

• Added a “Bernie & Hillary” corpus with 3000 congressional speeches made by Bernie Sanders and Hillary
Clinton since 1996

– corpora.fetch_bernie_and_hillary() function automatically downloads to and loads from
disk this corpus

• Modified data.load_depechemood function, now downloads data from GitHub source if not found on
disk

• Removed resources/ directory from GitHub, hence all the downloadin’

• Updated to spaCy v0.100.7

– German is now supported! although some functionality is English-only

176 Chapter 4. contents

textacy Documentation, Release 0.12.0

– added textacy.load_spacy() function for loading spaCy packages, taking advan-
tage of the new spacy.load() API; added a DeprecationWarning for textacy.data.
load_spacy_pipeline()

– proper nouns’ and pronouns’ .pos_ attributes are now correctly assigned ‘PROPN’ and ‘PRON’; hence,
modified regexes_etc.POS_REGEX_PATTERNS['en'] to include ‘PROPN’

– modified spacy_utils.preserve_case() to check for language-agnostic ‘PROPN’ POS rather
than English-specific ‘NNP’ and ‘NNPS’ tags

• Added text_utils.clean_terms() function for cleaning up a sequence of single- or multi-word strings
by stripping leading/trailing junk chars, handling dangling parens and odd hyphenation, etc.

Fixed:

• textstats.readability_stats() now correctly gets the number of words in a doc from its generator
function (@gryBox #8)

• removed NLTK dependency, which wasn’t actually required

• text_utils.detect_language() now warns via logging rather than a print() statement

• fileio.write_conll() documentation now correctly indicates that the filename param is not optional

4.6.28 0.2.0 (2016-04-11)

New and Changed:

• Added representations subpackage; includes modules for network and vector space model (VSM) docu-
ment and corpus representations

– Document-term matrix creation now takes documents represented as a list of terms (rather than as spaCy
Docs); splits the tokenization step from vectorization for added flexibility

– Some of this functionality was refactored from existing parts of the package

• Added tm (topic modeling) subpackage, with a main TopicModel class for training, applying, persisting, and
interpreting NMF, LDA, and LSA topic models through a single interface

• Various improvements to TextDoc and TextCorpus classes

– TextDoc can now be initialized from a spaCy Doc

– Removed caching from TextDoc, because it was a pain and weird and probably not all that useful

– extract-based methods are now generators, like the functions they wrap

– Added .as_semantic_network() and .as_terms_list() methods to TextDoc

– TextCorpus.from_texts() now takes advantage of multithreading via spaCy, if available, and doc-
ument metadata can be passed in as a paired iterable of dicts

• Added read/write functions for sparse scipy matrices

• Added fileio.read.split_content_and_metadata() convenience function for splitting (text)
content from associated metadata when reading data from disk into a TextDoc or TextCorpus

• Renamed fileio.read.get_filenames_in_dir() to fileio.read.get_filenames() and
added functionality for matching/ignoring files by their names, file extensions, and ignoring invisible files

• Rewrote export.docs_to_gensim(), now significantly faster

4.6. Changes 177

textacy Documentation, Release 0.12.0

• Imports in __init__.py files for main and subpackages now explicit

Fixed:

• textstats.readability_stats() no longer filters out stop words (@henningko #7)

• Wikipedia article processing now recursively removes nested markup

• extract.ngrams() now filters out ngrams with any space-only tokens

• functions with include_nps kwarg changed to include_ncs, to match the renaming of the associated
function from extract.noun_phrases() to extract.noun_chunks()

4.6.29 0.1.4 (2016-02-26)

New:

• Added corpora subpackage with wikipedia.py module; functions for streaming pages from a Wikipedia
db dump as plain text or structured data

• Added fileio subpackage with functions for reading/writing content from/to disk in common formats

– JSON formats, both standard and streaming-friendly

– text, optionally compressed

– spacy documents to/from binary

4.6.30 0.1.3 (2016-02-22)

New:

• Added export.py module for exporting textacy/spacy objects into “third-party” formats; so far, just gensim
and conll-u

• Added compat.py module for Py2/3 compatibility hacks

• Added TextDoc.merge() and spacy_utils.merge_spans() for merging spans into single tokens
within a spacy.Doc, uses Spacy’s recent implementation

Changed:

• Renamed extract.noun_phrases() to extract.noun_chunks() to match Spacy’s API

• Changed extract functions to generators, rather than returning lists

178 Chapter 4. contents

textacy Documentation, Release 0.12.0

Fixed:

• Whitespace tokens now always filtered out of extract.words() lists

• Some Py2/3 str/unicode issues fixed

• Broken tests in test_extract.py no longer broken

4.6. Changes 179

textacy Documentation, Release 0.12.0

180 Chapter 4. contents

PYTHON MODULE INDEX

t
textacy.augmentation.augmenter, 138
textacy.augmentation.transforms, 140
textacy.augmentation.utils, 142
textacy.cache, 148
textacy.corpus, 31
textacy.datasets.capitol_words, 38
textacy.datasets.imdb, 52
textacy.datasets.oxford_text_archive,

50
textacy.datasets.reddit_comments, 48
textacy.datasets.supreme_court, 41
textacy.datasets.udhr, 54
textacy.datasets.wikimedia, 44
textacy.errors, 148
textacy.extract.acros, 74
textacy.extract.bags, 69
textacy.extract.basics, 66
textacy.extract.keyterms, 76
textacy.extract.keyterms.scake, 78
textacy.extract.keyterms.sgrank, 78
textacy.extract.keyterms.textrank, 76
textacy.extract.keyterms.yake, 77
textacy.extract.kwic, 75
textacy.extract.matches, 71
textacy.extract.triples, 72
textacy.extract.utils, 79
textacy.io.csv, 129
textacy.io.http, 132
textacy.io.json, 127
textacy.io.matrix, 130
textacy.io.spacy, 131
textacy.io.text, 126
textacy.io.utils, 133
textacy.lang_id.lang_identifier, 143
textacy.preprocessing.normalize, 63
textacy.preprocessing.pipeline, 62
textacy.preprocessing.remove, 64
textacy.preprocessing.replace, 65
textacy.representations.matrix_utils,

117
textacy.representations.network, 101

textacy.representations.sparse_vec, 105
textacy.representations.vectorizers, 108
textacy.resources.concept_net, 56
textacy.resources.depeche_mood, 58
textacy.similarity.edits, 97
textacy.similarity.hybrid, 100
textacy.similarity.sequences, 99
textacy.similarity.tokens, 98
textacy.spacier.core, 29
textacy.spacier.extensions, 37
textacy.spacier.utils, 148
textacy.text_stats.api, 83
textacy.text_stats.basics, 86
textacy.text_stats.counts, 89
textacy.text_stats.diversity, 89
textacy.text_stats.readability, 92
textacy.text_stats.utils, 95
textacy.tm.topic_model, 120
textacy.types, 147
textacy.utils, 145
textacy.viz.network, 137
textacy.viz.termite, 135

181

textacy Documentation, Release 0.12.0

182 Python Module Index

INDEX

A
accents() (in module textacy.preprocessing.remove),

64
acronyms() (in module textacy.extract.acros), 74
acronyms_and_definitions() (in module tex-

tacy.extract.acros), 74
add() (textacy.corpus.Corpus method), 32
add_doc() (textacy.corpus.Corpus method), 34
add_docs() (textacy.corpus.Corpus method), 34
add_record() (textacy.corpus.Corpus method), 33
add_records() (textacy.corpus.Corpus method), 33
add_text() (textacy.corpus.Corpus method), 33
add_texts() (textacy.corpus.Corpus method), 33
agg_metadata() (textacy.corpus.Corpus method), 36
aggregate_term_variants() (in module tex-

tacy.extract.utils), 80
antonyms() (textacy.resources.concept_net.ConceptNet

property), 57
apply_idf_weighting() (in module tex-

tacy.representations.matrix_utils), 119
apply_transforms() (tex-

tacy.augmentation.augmenter.Augmenter
method), 139

Augmenter (class in textacy.augmentation.augmenter),
138

AugTok (class in textacy.types), 147
AugTransform (class in textacy.types), 148
authors (textacy.datasets.oxford_text_archive.OxfordTextArchive

attribute), 51
automated_readability_index() (in module

textacy.text_stats.readability), 92
automatic_arabic_readability_index() (in

module textacy.text_stats.readability), 93

B
bag() (in module textacy.similarity.tokens), 99
brackets() (in module textacy.preprocessing.remove),

64
build_cooccurrence_network() (in module tex-

tacy.representations.network), 101
build_doc_term_matrix() (in module tex-

tacy.representations.sparse_vec), 105

build_grp_term_matrix() (in module tex-
tacy.representations.sparse_vec), 106

build_similarity_network() (in module tex-
tacy.representations.network), 102

bullet_points() (in module tex-
tacy.preprocessing.normalize), 63

C
Candidate (class in textacy.extract.keyterms.sgrank),

78
CapitolWords (class in tex-

tacy.datasets.capitol_words), 39
chambers (textacy.datasets.capitol_words.CapitolWords

attribute), 40
character_ngrams() (in module tex-

tacy.similarity.edits), 97
classes (textacy.lang_id.lang_identifier.LangIdentifier

attribute), 144
clean_term_strings() (in module tex-

tacy.extract.utils), 79
clear() (in module textacy.cache), 148
coerce_content_type() (in module tex-

tacy.io.utils), 133
coleman_liau_index() (in module tex-

tacy.text_stats.readability), 93
compute_n_words_and_types() (in module tex-

tacy.text_stats.utils), 95
ConceptNet (class in textacy.resources.concept_net),

56
congresses (textacy.datasets.capitol_words.CapitolWords

attribute), 40
content (textacy.extract.triples.DQTriple attribute), 73
Corpus (class in textacy.corpus), 31
cosine() (in module textacy.similarity.tokens), 99
count (textacy.extract.keyterms.sgrank.Candidate at-

tribute), 78
counts() (textacy.text_stats.api.TextStats method), 85
cue (textacy.extract.triples.DQTriple attribute), 73
cue (textacy.extract.triples.SSSTriple attribute), 73
currency_symbols() (in module tex-

tacy.preprocessing.replace), 65

183

textacy Documentation, Release 0.12.0

D
decision_directions (tex-

tacy.datasets.supreme_court.SupremeCourt
attribute), 43

default() (textacy.io.json.ExtendedJSONEncoder
method), 128

delete_chars() (in module tex-
tacy.augmentation.transforms), 142

delete_words() (in module tex-
tacy.augmentation.transforms), 141

dep() (in module textacy.text_stats.counts), 89
DepecheMood (class in tex-

tacy.resources.depeche_mood), 59
deprecated() (in module textacy.utils), 145
direct_quotations() (in module tex-

tacy.extract.triples), 74
diversity() (textacy.text_stats.api.TextStats method),

86
DocExtFunc (class in textacy.types), 148
docs (textacy.corpus.Corpus attribute), 32
download() (textacy.datasets.capitol_words.CapitolWords

method), 40
download() (textacy.datasets.imdb.IMDB method), 53
download() (textacy.datasets.oxford_text_archive.OxfordTextArchive

method), 51
download() (textacy.datasets.reddit_comments.RedditComments

method), 49
download() (textacy.datasets.supreme_court.SupremeCourt

method), 43
download() (textacy.datasets.udhr.UDHR method), 55
download() (textacy.datasets.wikimedia.Wikimedia

method), 45
download() (textacy.lang_id.lang_identifier.LangIdentifier

method), 144
download() (textacy.resources.concept_net.ConceptNet

method), 57
download() (textacy.resources.depeche_mood.DepecheMood

method), 61
download_file() (in module textacy.io.utils), 135
DQTriple (class in textacy.extract.triples), 73
draw_semantic_network() (in module tex-

tacy.viz.network), 137
draw_termite_plot() (in module tex-

tacy.viz.termite), 135

E
emails() (in module textacy.preprocessing.replace),

65
emojis() (in module textacy.preprocessing.replace),

65
entities() (in module textacy.extract.basics), 68
entity (textacy.extract.triples.SSSTriple attribute), 73
entropy() (in module textacy.text_stats.basics), 89

entropy() (textacy.text_stats.api.TextStats property),
85

expand_noun() (in module textacy.extract.triples), 74
expand_verb() (in module textacy.extract.triples), 74
ExtendedJSONEncoder (class in textacy.io.json),

128

F
filepath() (textacy.datasets.capitol_words.CapitolWords

property), 40
filepath() (textacy.datasets.supreme_court.SupremeCourt

property), 43
filepath() (textacy.datasets.wikimedia.Wikimedia

property), 45
filepath() (textacy.resources.concept_net.ConceptNet

property), 57
filepath() (textacy.resources.depeche_mood.DepecheMood

property), 61
filepaths() (textacy.datasets.reddit_comments.RedditComments

property), 49
filter_terms_by_df() (in module tex-

tacy.representations.matrix_utils), 119
filter_terms_by_ic() (in module tex-

tacy.representations.matrix_utils), 120
fit() (textacy.representations.vectorizers.GroupVectorizer

method), 116
fit() (textacy.representations.vectorizers.Vectorizer

method), 112
fit_transform() (tex-

tacy.representations.vectorizers.GroupVectorizer
method), 116

fit_transform() (tex-
tacy.representations.vectorizers.Vectorizer
method), 112

flesch_kincaid_grade_level() (in module tex-
tacy.text_stats.readability), 93

flesch_reading_ease() (in module tex-
tacy.text_stats.readability), 93

fragment (textacy.extract.triples.SSSTriple attribute),
73

full_date_range (tex-
tacy.datasets.capitol_words.CapitolWords
attribute), 39

full_date_range (tex-
tacy.datasets.oxford_text_archive.OxfordTextArchive
attribute), 51

full_date_range (tex-
tacy.datasets.reddit_comments.RedditComments
attribute), 49

full_date_range (tex-
tacy.datasets.supreme_court.SupremeCourt
attribute), 43

full_rating_range (textacy.datasets.imdb.IMDB
attribute), 53

184 Index

textacy Documentation, Release 0.12.0

G
get() (textacy.corpus.Corpus method), 34
get_antonyms() (tex-

tacy.resources.concept_net.ConceptNet
method), 57

get_char_weights() (in module tex-
tacy.augmentation.utils), 142

get_config() (in module textacy.utils), 145
get_doc_extensions() (in module tex-

tacy.spacier.extensions), 37
get_doc_freqs() (in module tex-

tacy.representations.matrix_utils), 117
get_doc_lengths() (in module tex-

tacy.representations.matrix_utils), 118
get_doc_meta() (in module textacy.spacier.core), 30
get_doc_preview() (in module tex-

tacy.spacier.core), 30
get_doc_topic_matrix() (tex-

tacy.tm.topic_model.TopicModel method),
122

get_emotional_valence() (tex-
tacy.resources.depeche_mood.DepecheMood
method), 61

get_filename_from_url() (in module tex-
tacy.io.utils), 135

get_filepaths() (in module textacy.io.utils), 134
get_filtered_topn_terms() (in module tex-

tacy.extract.utils), 81
get_function_names() (in module textacy.utils),

147
get_hyponyms() (tex-

tacy.resources.concept_net.ConceptNet
method), 58

get_information_content() (in module tex-
tacy.representations.matrix_utils), 118

get_inverse_doc_freqs() (in module tex-
tacy.representations.matrix_utils), 117

get_kwargs_for_func() (in module textacy.utils),
147

get_longest_subsequence_candidates() (in
module textacy.extract.utils), 80

get_main_verbs_of_sent() (in module tex-
tacy.spacier.utils), 149

get_meronyms() (tex-
tacy.resources.concept_net.ConceptNet
method), 58

get_ngram_candidates() (in module tex-
tacy.extract.utils), 80

get_normalized_text() (in module tex-
tacy.spacier.utils), 149

get_objects_of_verb() (in module tex-
tacy.spacier.utils), 149

get_pattern_matching_candidates() (in
module textacy.extract.utils), 81

get_spacy_lang_morph_labels() (in module
textacy.spacier.utils), 149

get_span_for_compound_noun() (in module tex-
tacy.spacier.utils), 149

get_span_for_verb_auxiliaries() (in mod-
ule textacy.spacier.utils), 149

get_subjects_of_verb() (in module tex-
tacy.spacier.utils), 149

get_synonyms() (tex-
tacy.resources.concept_net.ConceptNet
method), 58

get_term_freqs() (in module tex-
tacy.representations.matrix_utils), 117

get_words() (in module textacy.text_stats.utils), 95
GroupVectorizer (class in tex-

tacy.representations.vectorizers), 113
grps_list() (textacy.representations.vectorizers.GroupVectorizer

property), 115
gulpease_index() (in module tex-

tacy.text_stats.readability), 94
gunning_fog_index() (in module tex-

tacy.text_stats.readability), 94

H
hamming() (in module textacy.similarity.edits), 97
hashtags() (in module tex-

tacy.preprocessing.replace), 65
hdd() (in module textacy.text_stats.diversity), 92
html_tags() (in module tex-

tacy.preprocessing.remove), 64
hyphenated_words() (in module tex-

tacy.preprocessing.normalize), 63
hyponyms() (textacy.resources.concept_net.ConceptNet

property), 58

I
id_to_grp() (textacy.representations.vectorizers.GroupVectorizer

property), 115
id_to_term() (textacy.representations.vectorizers.Vectorizer

property), 111
identify_lang() (in module tex-

tacy.lang_id.lang_identifier), 145
identify_lang() (tex-

tacy.lang_id.lang_identifier.LangIdentifier
method), 144

identify_topn_langs() (in module tex-
tacy.lang_id.lang_identifier), 145

identify_topn_langs() (tex-
tacy.lang_id.lang_identifier.LangIdentifier
method), 144

idx (textacy.extract.keyterms.sgrank.Candidate at-
tribute), 78

IMDB (class in textacy.datasets.imdb), 52

Index 185

textacy Documentation, Release 0.12.0

insert_chars() (in module tex-
tacy.augmentation.transforms), 141

insert_word_synonyms() (in module tex-
tacy.augmentation.transforms), 140

is_acronym() (in module textacy.extract.acros), 75
is_record() (in module textacy.utils), 145
is_word (textacy.types.AugTok attribute), 147
issue_area_codes (tex-

tacy.datasets.supreme_court.SupremeCourt
attribute), 43

issue_codes (textacy.datasets.supreme_court.SupremeCourt
attribute), 43

J
jaccard() (in module textacy.similarity.tokens), 98
jaro() (in module textacy.similarity.edits), 97

K
keyword_in_context() (in module tex-

tacy.extract.kwic), 75

L
lang (textacy.corpus.Corpus attribute), 32
LangIdentifier (class in tex-

tacy.lang_id.lang_identifier), 144
langs (textacy.datasets.udhr.UDHR attribute), 55
length (textacy.extract.keyterms.sgrank.Candidate at-

tribute), 78
levenshtein() (in module textacy.similarity.edits),

97
lix() (in module textacy.text_stats.readability), 94
load() (textacy.corpus.Corpus class method), 37
load_hyphenator() (in module tex-

tacy.text_stats.utils), 96
load_model() (textacy.lang_id.lang_identifier.LangIdentifier

method), 144
load_spacy_lang() (in module tex-

tacy.spacier.core), 29
log_ttr() (in module textacy.text_stats.diversity), 90
LRU_CACHE (in module textacy.cache), 148

M
make_doc_from_text_chunks() (in module tex-

tacy.spacier.utils), 148
make_pipeline() (in module tex-

tacy.preprocessing.pipeline), 62
make_spacy_doc() (in module textacy.spacier.core),

29
matching_subsequences_ratio() (in module

textacy.similarity.sequences), 99
merge_spans() (in module textacy.spacier.utils), 148
meronyms() (textacy.resources.concept_net.ConceptNet

property), 58

meta (textacy.types.Record attribute), 147
model (textacy.lang_id.lang_identifier.LangIdentifier at-

tribute), 144
module

textacy.augmentation.augmenter, 138
textacy.augmentation.transforms, 140
textacy.augmentation.utils, 142
textacy.cache, 148
textacy.corpus, 31
textacy.datasets.capitol_words, 38
textacy.datasets.imdb, 52
textacy.datasets.oxford_text_archive,

50
textacy.datasets.reddit_comments, 48
textacy.datasets.supreme_court, 41
textacy.datasets.udhr, 54
textacy.datasets.wikimedia, 44
textacy.errors, 148
textacy.extract.acros, 74
textacy.extract.bags, 69
textacy.extract.basics, 66
textacy.extract.keyterms, 76
textacy.extract.keyterms.scake, 78
textacy.extract.keyterms.sgrank, 78
textacy.extract.keyterms.textrank,

76
textacy.extract.keyterms.yake, 77
textacy.extract.kwic, 75
textacy.extract.matches, 71
textacy.extract.triples, 72
textacy.extract.utils, 79
textacy.io.csv, 129
textacy.io.http, 132
textacy.io.json, 127
textacy.io.matrix, 130
textacy.io.spacy, 131
textacy.io.text, 126
textacy.io.utils, 133
textacy.lang_id.lang_identifier, 143
textacy.preprocessing.normalize, 63
textacy.preprocessing.pipeline, 62
textacy.preprocessing.remove, 64
textacy.preprocessing.replace, 65
textacy.representations.matrix_utils,

117
textacy.representations.network, 101
textacy.representations.sparse_vec,

105
textacy.representations.vectorizers,

108
textacy.resources.concept_net, 56
textacy.resources.depeche_mood, 58
textacy.similarity.edits, 97
textacy.similarity.hybrid, 100

186 Index

textacy Documentation, Release 0.12.0

textacy.similarity.sequences, 99
textacy.similarity.tokens, 98
textacy.spacier.core, 29
textacy.spacier.extensions, 37
textacy.spacier.utils, 148
textacy.text_stats.api, 83
textacy.text_stats.basics, 86
textacy.text_stats.counts, 89
textacy.text_stats.diversity, 89
textacy.text_stats.readability, 92
textacy.text_stats.utils, 95
textacy.tm.topic_model, 120
textacy.types, 147
textacy.utils, 145
textacy.viz.network, 137
textacy.viz.termite, 135

monge_elkan() (in module textacy.similarity.hybrid),
100

morph() (in module textacy.text_stats.counts), 89
mtld() (in module textacy.text_stats.diversity), 91
mu_legibility_index() (in module tex-

tacy.text_stats.readability), 94

N
n_chars() (in module textacy.text_stats.basics), 87
n_chars() (textacy.text_stats.api.TextStats property),

85
n_chars_per_word() (in module tex-

tacy.text_stats.basics), 87
n_chars_per_word() (tex-

tacy.text_stats.api.TextStats property), 85
n_docs (textacy.corpus.Corpus attribute), 32
n_long_words() (in module tex-

tacy.text_stats.basics), 87
n_long_words() (textacy.text_stats.api.TextStats

property), 85
n_monosyllable_words() (in module tex-

tacy.text_stats.basics), 88
n_monosyllable_words() (tex-

tacy.text_stats.api.TextStats property), 85
n_polysyllable_words() (in module tex-

tacy.text_stats.basics), 88
n_polysyllable_words() (tex-

tacy.text_stats.api.TextStats property), 85
n_sents (textacy.corpus.Corpus attribute), 32
n_sents() (in module textacy.text_stats.basics), 86
n_sents() (textacy.text_stats.api.TextStats property),

84
n_syllables() (in module textacy.text_stats.basics),

88
n_syllables() (textacy.text_stats.api.TextStats prop-

erty), 85
n_syllables_per_word() (in module tex-

tacy.text_stats.basics), 87

n_syllables_per_word() (tex-
tacy.text_stats.api.TextStats property), 85

n_tokens (textacy.corpus.Corpus attribute), 32
n_unique_words() (in module tex-

tacy.text_stats.basics), 87
n_unique_words() (textacy.text_stats.api.TextStats

property), 84
n_words() (in module textacy.text_stats.basics), 86
n_words() (textacy.text_stats.api.TextStats property),

84
ngrams() (in module textacy.extract.basics), 67
noun_chunks() (in module textacy.extract.basics), 68
numbers() (in module textacy.preprocessing.replace),

65

O
object (textacy.extract.triples.SVOTriple attribute), 73
open_sesame() (in module textacy.io.utils), 133
opinion_author_codes (tex-

tacy.datasets.supreme_court.SupremeCourt
attribute), 43

OxfordTextArchive (class in tex-
tacy.datasets.oxford_text_archive), 50

P
perspicuity_index() (in module tex-

tacy.text_stats.readability), 95
phone_numbers() (in module tex-

tacy.preprocessing.replace), 65
pos (textacy.types.AugTok attribute), 147
pos() (in module textacy.text_stats.counts), 89
preserve_case() (in module textacy.spacier.utils),

148
print_markdown() (in module textacy.utils), 145
punctuation() (in module tex-

tacy.preprocessing.remove), 65

Q
quotation_marks() (in module tex-

tacy.preprocessing.normalize), 63

R
rank_nodes_by_bestcoverage() (in module tex-

tacy.representations.network), 104
rank_nodes_by_divrank() (in module tex-

tacy.representations.network), 104
rank_nodes_by_pagerank() (in module tex-

tacy.representations.network), 103
read_csv() (in module textacy.io.csv), 129
read_http_stream() (in module textacy.io.http),

132
read_json() (in module textacy.io.json), 127
read_json_mash() (in module textacy.io.json), 127

Index 187

textacy Documentation, Release 0.12.0

read_spacy_docs() (in module textacy.io.spacy),
131

read_sparse_matrix() (in module tex-
tacy.io.matrix), 130

read_text() (in module textacy.io.text), 126
readability() (textacy.text_stats.api.TextStats

method), 86
Record (class in textacy.types), 147
records() (textacy.datasets.capitol_words.CapitolWords

method), 40
records() (textacy.datasets.imdb.IMDB method), 54
records() (textacy.datasets.oxford_text_archive.OxfordTextArchive

method), 52
records() (textacy.datasets.reddit_comments.RedditComments

method), 50
records() (textacy.datasets.supreme_court.SupremeCourt

method), 44
records() (textacy.datasets.udhr.UDHR method), 56
records() (textacy.datasets.wikimedia.Wikimedia

method), 45
RedditComments (class in tex-

tacy.datasets.reddit_comments), 48
regex_matches() (in module tex-

tacy.extract.matches), 72
remove() (textacy.corpus.Corpus method), 34
remove_doc_extensions() (in module tex-

tacy.spacier.extensions), 37
repeating_chars() (in module tex-

tacy.preprocessing.normalize), 63

S
save() (textacy.corpus.Corpus method), 36
save_model() (textacy.lang_id.lang_identifier.LangIdentifier

method), 144
scake() (in module textacy.extract.keyterms.scake), 78
segmented_ttr() (in module tex-

tacy.text_stats.diversity), 91
semistructured_statements() (in module tex-

tacy.extract.triples), 73
set_doc_extensions() (in module tex-

tacy.spacier.extensions), 37
set_doc_meta() (in module textacy.spacier.core), 31
sgrank() (in module textacy.extract.keyterms.sgrank),

78
smog_index() (in module tex-

tacy.text_stats.readability), 95
sorensen_dice() (in module tex-

tacy.similarity.tokens), 98
spacy_lang (textacy.corpus.Corpus attribute), 32
speaker (textacy.extract.triples.DQTriple attribute), 73
speaker_names (tex-

tacy.datasets.capitol_words.CapitolWords
attribute), 39

speaker_parties (tex-
tacy.datasets.capitol_words.CapitolWords
attribute), 39

split_records() (in module textacy.io.utils), 134
SSSTriple (class in textacy.extract.triples), 73
subject (textacy.extract.triples.SVOTriple attribute),

73
subject_verb_object_triples() (in module

textacy.extract.triples), 73
substitute_chars() (in module tex-

tacy.augmentation.transforms), 141
substitute_word_synonyms() (in module tex-

tacy.augmentation.transforms), 140
SupremeCourt (class in tex-

tacy.datasets.supreme_court), 42
SVOTriple (class in textacy.extract.triples), 73
swap_chars() (in module tex-

tacy.augmentation.transforms), 142
swap_words() (in module tex-

tacy.augmentation.transforms), 140
synonyms() (textacy.resources.concept_net.ConceptNet

property), 58
syns (textacy.types.AugTok attribute), 147

T
tag() (in module textacy.text_stats.counts), 89
termite_df_plot() (in module textacy.viz.termite),

136
termite_plot() (tex-

tacy.tm.topic_model.TopicModel method),
124

terms() (in module textacy.extract.basics), 69
terms_list() (textacy.representations.vectorizers.Vectorizer

property), 112
terms_to_strings() (in module tex-

tacy.extract.utils), 79
text (textacy.extract.keyterms.sgrank.Candidate at-

tribute), 78
text (textacy.types.AugTok attribute), 147
text (textacy.types.Record attribute), 147
text_to_char_ngrams() (in module textacy.utils),

147
textacy.augmentation.augmenter

module, 138
textacy.augmentation.transforms

module, 140
textacy.augmentation.utils

module, 142
textacy.cache

module, 148
textacy.corpus

module, 31
textacy.datasets.capitol_words

module, 38

188 Index

textacy Documentation, Release 0.12.0

textacy.datasets.imdb
module, 52

textacy.datasets.oxford_text_archive
module, 50

textacy.datasets.reddit_comments
module, 48

textacy.datasets.supreme_court
module, 41

textacy.datasets.udhr
module, 54

textacy.datasets.wikimedia
module, 44

textacy.errors
module, 148

textacy.extract.acros
module, 74

textacy.extract.bags
module, 69

textacy.extract.basics
module, 66

textacy.extract.keyterms
module, 76

textacy.extract.keyterms.scake
module, 78

textacy.extract.keyterms.sgrank
module, 78

textacy.extract.keyterms.textrank
module, 76

textacy.extract.keyterms.yake
module, 77

textacy.extract.kwic
module, 75

textacy.extract.matches
module, 71

textacy.extract.triples
module, 72

textacy.extract.utils
module, 79

textacy.io.csv
module, 129

textacy.io.http
module, 132

textacy.io.json
module, 127

textacy.io.matrix
module, 130

textacy.io.spacy
module, 131

textacy.io.text
module, 126

textacy.io.utils
module, 133

textacy.lang_id.lang_identifier
module, 143

textacy.preprocessing.normalize
module, 63

textacy.preprocessing.pipeline
module, 62

textacy.preprocessing.remove
module, 64

textacy.preprocessing.replace
module, 65

textacy.representations.matrix_utils
module, 117

textacy.representations.network
module, 101

textacy.representations.sparse_vec
module, 105

textacy.representations.vectorizers
module, 108

textacy.resources.concept_net
module, 56

textacy.resources.depeche_mood
module, 58

textacy.similarity.edits
module, 97

textacy.similarity.hybrid
module, 100

textacy.similarity.sequences
module, 99

textacy.similarity.tokens
module, 98

textacy.spacier.core
module, 29

textacy.spacier.extensions
module, 37

textacy.spacier.utils
module, 148

textacy.text_stats.api
module, 83

textacy.text_stats.basics
module, 86

textacy.text_stats.counts
module, 89

textacy.text_stats.diversity
module, 89

textacy.text_stats.readability
module, 92

textacy.text_stats.utils
module, 95

textacy.tm.topic_model
module, 120

textacy.types
module, 147

textacy.utils
module, 145

textacy.viz.network
module, 137

Index 189

textacy Documentation, Release 0.12.0

textacy.viz.termite
module, 135

textrank() (in module tex-
tacy.extract.keyterms.textrank), 76

texts() (textacy.datasets.capitol_words.CapitolWords
method), 40

texts() (textacy.datasets.imdb.IMDB method), 53
texts() (textacy.datasets.oxford_text_archive.OxfordTextArchive

method), 51
texts() (textacy.datasets.reddit_comments.RedditComments

method), 49
texts() (textacy.datasets.supreme_court.SupremeCourt

method), 43
texts() (textacy.datasets.udhr.UDHR method), 55
texts() (textacy.datasets.wikimedia.Wikimedia

method), 45
TextStats (class in textacy.text_stats.api), 84
to_aug_toks() (in module tex-

tacy.augmentation.utils), 142
to_bag_of_terms() (in module tex-

tacy.extract.bags), 70
to_bag_of_words() (in module tex-

tacy.extract.bags), 69
to_bytes() (in module textacy.utils), 146
to_collection() (in module textacy.utils), 145
to_path() (in module textacy.utils), 146
to_unicode() (in module textacy.utils), 146
token_matches() (in module tex-

tacy.extract.matches), 71
token_sort_ratio() (in module tex-

tacy.similarity.hybrid), 100
top_doc_topics() (tex-

tacy.tm.topic_model.TopicModel method),
123

top_topic_docs() (tex-
tacy.tm.topic_model.TopicModel method),
123

top_topic_terms() (tex-
tacy.tm.topic_model.TopicModel method),
122

topic_weights() (tex-
tacy.tm.topic_model.TopicModel method),
124

TopicModel (class in textacy.tm.topic_model), 120
transform() (textacy.representations.vectorizers.GroupVectorizer

method), 116
transform() (textacy.representations.vectorizers.Vectorizer

method), 112
ttr() (in module textacy.text_stats.diversity), 90
tversky() (in module textacy.similarity.tokens), 98

U
UDHR (class in textacy.datasets.udhr), 55

unicode() (in module tex-
tacy.preprocessing.normalize), 63

unpack_archive() (in module textacy.io.utils), 135
unzip() (in module textacy.io.utils), 134
urls() (in module textacy.preprocessing.replace), 65
user_handles() (in module tex-

tacy.preprocessing.replace), 65

V
validate_and_clip_range() (in module tex-

tacy.utils), 146
validate_set_members() (in module tex-

tacy.utils), 146
vector_norms() (textacy.corpus.Corpus property),

35
Vectorizer (class in tex-

tacy.representations.vectorizers), 108
vectors() (textacy.corpus.Corpus property), 35
verb (textacy.extract.triples.SVOTriple attribute), 73
vocabulary_grps (tex-

tacy.representations.vectorizers.GroupVectorizer
attribute), 115

vocabulary_terms (tex-
tacy.representations.vectorizers.GroupVectorizer
attribute), 115

vocabulary_terms (tex-
tacy.representations.vectorizers.Vectorizer
attribute), 111

W
weighting() (textacy.representations.vectorizers.Vectorizer

property), 113
weights() (textacy.resources.depeche_mood.DepecheMood

property), 61
whitespace() (in module tex-

tacy.preprocessing.normalize), 64
wiener_sachtextformel() (in module tex-

tacy.text_stats.readability), 95
Wikimedia (class in textacy.datasets.wikimedia), 45
Wikinews (class in textacy.datasets.wikimedia), 47
Wikipedia (class in textacy.datasets.wikimedia), 46
word_counts() (textacy.corpus.Corpus method), 35
word_doc_counts() (textacy.corpus.Corpus

method), 35
words() (in module textacy.extract.basics), 67
write_csv() (in module textacy.io.csv), 129
write_http_stream() (in module textacy.io.http),

132
write_json() (in module textacy.io.json), 127
write_spacy_docs() (in module textacy.io.spacy),

131
write_sparse_matrix() (in module tex-

tacy.io.matrix), 130
write_text() (in module textacy.io.text), 126

190 Index

textacy Documentation, Release 0.12.0

ws (textacy.types.AugTok attribute), 147

Y
yake() (in module textacy.extract.keyterms.yake), 77

Index 191

	features
	links
	maintainer
	contents
	Installation
	Quickstart
	Walkthrough
	Tutorials
	API Reference
	Changes

	Python Module Index
	Index

