

Welcome to jbuilder’s documentation!

	Quickstart
	Building a hello world program

	Building a hello world program using Lwt

	Defining a library using Lwt and ocaml-re

	Using cppo
	Using the .cppo.ml style like the ocamlbuild plugin

	Defining a library with C stubs

	Defining a library with C stubs using pkg-config

	Using a custom code generator

	Defining tests

	Overview

	Terminology

	Project Layout and Metadata Specification
	Metadata format

	<package>.opam files
	Package version

	Odig conventions

	jbuild-ignore

	jbuild specification
	Stanzas
	jbuild_version

	library

	executable

	executables

	rule

	ocamllex

	ocamlyacc

	menhir

	alias

	install

	Common items
	Ordered set language

	Variables expansion

	Library dependencies

	Preprocessing specification

	Dependency specification

	OCaml flags

	js_of_ocaml

	User actions

	OCaml syntax

	Usage
	Finding the root
	jbuild-workspace

	jbuild-workspace*

	Current directory

	Forcing the root (for scripts)

	Interpretation of targets
	Resolution

	Aliases

	Finding external libraries
	Running tests

	Restricting the set of packages

	Invocation from opam

	Tests

	Installation
	Destination

	Workspace configuration
	jbuild-workspace

	Building JavaScript with js_of_ocaml

	Using topkg with jbuilder

	Advanced topics
	META file generation

	Using a custom ppx driver
	Driver expectation

Quickstart

This document gives simple usage examples of Jbuilder. You can also look at
examples [https://github.com/janestreet/jbuilder/tree/master/example] for
complete examples of projects using Jbuilder.

Building a hello world program

In a directory of your choice, write this jbuild file:

(jbuild_version 1)

(executables
 ((names (hello_world))))

This hello_world.ml file:

print_endline "Hello, world!"

And build it with:

jbuilder build hello_world.exe

The executable will be built as _build/default/hello_world.exe

Building a hello world program using Lwt

In a directory of your choice, write this jbuild file:

(jbuild_version 1)

(executables
 ((names (hello_world))
 (libraries (lwt.unix))))

This hello_world.ml file:

Lwt_main.run (Lwt_io.printf "Hello, world!\n")

And build it with:

jbuilder build hello_world.exe

The executable will be built as _build/default/hello_world.exe

Defining a library using Lwt and ocaml-re

Write this jbuild:

(jbuild_version 1)

(library
 ((name mylib)
 (public_name mylib)
 (libraries (re lwt))))

The library will be composed of all the modules in the same directory.
Outside of the library, module Foo will be accessible as
Mylib.Foo, unless you write an explicit mylib.ml file.

You can them use this library in any other directory by adding mylib
to the (libraries ...) field.

Using cppo

Add this field to your library or executables stanzas:

(preprocess (action (run ${bin:cppo} -V OCAML:${ocaml_version} ${<})))

Additionnaly, if you are include a config.h file, you need to
declare the dependency to this file via:

(preprocessor_deps (config.h))

Using the .cppo.ml style like the ocamlbuild plugin

Write this in your jbuild:

(rule
 ((targets (foo.ml))
 (deps (foo.cppo.ml <other files that foo.ml includes>))
 (action (run ${bin:cppo} ${<} -o ${@}))))

Defining a library with C stubs

Assuming you have a file called mystubs.c, that you need to pass
-I/blah/include to compile it and -lblah at link time, write
this jbuild:

(jbuild_version 1)

(library
 ((name mylib)
 (public_name mylib)
 (libraries (re lwt))
 (c_names (mystubs)
 (c_flags (-I/blah/include))
 (c_library_flags (-lblah)))))

Defining a library with C stubs using pkg-config

Same context as before, but using pkg-config to query the
compilation and link flags. Write this jbuild:

(jbuild_version 1)

(library
 ((name mylib)
 (public_name mylib)
 (libraries (re lwt))
 (c_names (mystubs)
 (c_flags (:include c_flags.sexp))
 (c_library_flags (:include c_library_flags.sexp)))))

(rule
 ((targets (c_flags.sexp
 c_library_flags.sexp))
 (deps (config/discover.exe))
 (action (run ${<} -ocamlc ${OCAMLC}))))

Then create a config subdirectory and write this jbuild:

(jbuild_version 1)

(executables
 ((names (discover))
 (libraries (base stdio configurator))))

as well as this discover.ml file:

open Base
open Stdio
module C = Configurator

let write_sexp fn sexp =
 Out_channel.write_all fn ~data:(Sexp.to_string sexp)

let () =
 C.main ~name:"mylib" (fun c ->
 let default : C.Pkg_config.package_conf =
 { libs = ["-lblah"]
 ; cflags = []
 }
 in
 let conf =
 match C.Pkg_config.get c with
 | None -> default
 | Some pc ->
 Option.value (C.Pkg_config.query pc ~package:"blah") ~default
 in

 write_sexp "c_flags.sexp" (sexp_of_list sexp_of_string conf.libs);
 write_sexp "c_library_flags.sexp" (sexp_of_list sexp_of_string conf.cflags))

Using a custom code generator

To generate a file foo.ml using a program from another directory:

(jbuild_version 1)

(rule
 ((targets (foo.ml))
 (deps (../generator/gen.exe))
 (action (run ${<} -o ${@}))))

Defining tests

Write this in your jbuild file:

(jbuild_version 1)

(alias
 ((name runtest)
 (deps (my-test-program.exe))
 (action (run ${<}))))

And run the tests with:

jbuilder runtest

Overview

Jbuilder is a build system for OCaml and Reason. It is not intended as a
completely generic build system that is able to build any given project
in any language. On the contrary, it makes lots of choices in order to
encourage a consistent development style.

This scheme is inspired from the one used inside Jane Street and adapted
to the opam world. It has matured over a long time and is used daily by
hundred of developers, which means that it is highly tested and
productive.

When using Jbuilder, you give very little and high-level information to
the build system, which in turns takes care of all the low-level
details, from the compilation of your libraries, executables and
documentation to the installation, setting up of tests, setting up of
the development tools such as merlin, etc.

In addition to the normal features one would expect from a build system
for OCaml, Jbuilder provides a few additional ones that detach it from
the crowd:

	you never need to tell Jbuilder where things such as libraries are.
Jbuilder will always discover it automatically. In particular this
mean that when you want to re-organize your project you need to do no
more than rename your directories, Jbuilder will do the rest

	things always work the same whether your dependencies are local or
installed on the system. In particular this mean that you can always
drop in the source for a dependency of your project in your working
copy and Jbuilder will start using immediately. This makes Jbuilder a
great choice for multi-project development

	cross-platform: as long as your code is portable, Jbuilder will be
able to cross-compile it (note that Jbuilder is designed internally
to make this easy but the actual support is not implemented yet)

	release directly from any revision: Jbuilder needs no setup stage. To
release your project, you can simply point to a specific tag. You can
of course add some release steps if you want to, but it is not
necessary

The first section of this document defines some terms used in the rest
of this manual. The second section specifies the Jbuilder metadata
format and the third one describes how to use the jbuilder command.

Terminology

	package: a package is a set of libraries, executables, ... that
are built and installed as one by opam

	project: a project is a source tree, maybe containing one or more
packages

	root: the root is the directory from where Jbuilder can build
things. Jbuilder knows how to build targets that are descendents of
the root. Anything outside of the tree starting from the root is
considered part of the installed world. How the root is
determined is explained in this section.

	workspace: the workspace is the subtree starting from the root.
It can contain any number of projects that will be built
simultaneously by jbuilder

	installed world: anything outside of the workspace, that Jbuilder
takes for granted and doesn’t know how to build

	build context: a build context is a subdirectory of the
<root>/_build directory. It contains all the build artifacts of
the workspace built against a specific configuration. Without
specific configuration from the user, there is always a default
build context, which corresponds to the environment in which Jbuilder
is executed. Build contexts can be specified by writing a
jbuild-workspace file

	build context root: the root of a build context named foo is
<root>/_build/<foo>

	alias: an alias is a build target that doesn’t produce any file
and has configurable dependencies. Alias are per-directory and some
are recursive; asking an alias to be built in a given directory will
trigger the construction of the alias in all children directories
recursively. The most interesting ones are:
	runtest which runs user defined tests

	install which depends on everything that should be installed

Project Layout and Metadata Specification

A typical jbuilder project will have one or more <package>.opam file
at toplevel as well as jbuild files wherever interesting things are:
libraries, executables, tests, documents to install, etc...

It is recommended to organize your project so that you have exactly one
library per directory. You can have several executables in the same
directory, as long as they share the same build configuration. If you’d
like to have multiple executables with different configurations in the
same directory, you will have to make an explicit module list for every
executable using modules.

The next sections describe the format of Jbuilder metadata files.

Note that the Jbuilder metadata format is versioned in order to ensure
forward compatibility. Jane Street packages use a special
jane_street version which correspond to a rolling and unstable
version that follows the internal Jane Street development. You shouldn’t
use this in your project, it is only intended to make the publication of
Jane Street packages easier.

Except for the special jane_street version, there is currently only
one version available, but to be future proof, you should still specify
it in your jbuild files. If no version is specified, the latest one
will be used.

Metadata format

Most configuration files read by Jbuilder are using the S-expression
syntax, which is very simple. Everything is either an atom or a list.
The exact specification of S-expressions is described in the
documentation of the parsexp [https://github.com/janestreet/parsexp]
library.

Note that the format is completely static. However you can do
meta-programming on jbuilds files by writing them in OCaml syntax.

<package>.opam files

When a <package>.opam file is present, Jbuilder will know that the
package named <package> exists. It will know how to construct a
<package>.install file in the same directory to handle installation
via opam [https://opam.ocaml.org/]. Jbuilder also defines the
recursive install alias, which depends on all the buildable
<package>.install files in the workspace. So for instance to build
everything that is installable in a workspace, run at the root:

$ jbuilder build @install

Declaring a package this way will allow you to add elements such as
libraries, executables, documentations, ... to your package by declaring
them in jbuild files.

Jbuilder will only register the existence of <package> in the
subtree starting where the <package>.opam file lives, so you can
only declare parts of the packages in this subtree. Typically your
<package>.opam files should be at the root of your project, since
this is where opam pin ... will look for them.

Note that <package> must be non empty, so in particular .opam
files are ignored.

Package version

Note that Jbuilder will try to determine the version number of packages
defined in the workspace. While Jbuilder itself makes no use of version
numbers, it can be use by external tools such as
ocamlfind [http://projects.camlcity.org/projects/findlib.html].

Jbuilder determines the version of a package by first looking in the
<package>.opam for a version variable. If not found, it will try
to read the first line of a version file in the same directory as the
<package>.opam file. The version file is any file whose name is, in
order in which they are looked for:

	<package>.version

	version

	VERSION

The version file can be generated by a user rule.

If the version can’t be determined, Jbuilder just won’t assign one.

Note that if you are using Topkg [https://github.com/dbuenzli/topkg]
as well in your project, you shouldn’t manually set a version in your
<package>.opam file or write/generate on of the file listed above.
See the section about using topkg with jbuilder for more details.

Odig conventions

Jbuilder follows the odig [http://erratique.ch/software/odig]
conventions and automatically installs any README*, CHANGE*, HISTORY*
and LICENSE* files in the same directory as the <package>.opam file
to a location where odig will find them.

Note that this include files present in the source tree as well as
generated files. So for instance a changelog generated by a user rule
will be automatically installed as well.

jbuild-ignore

By default Jbuilder traverses the whole source tree. To ignore a
subtree, simply write a jbuild-ignore file in the parent directory
containing the name of the sub-directories to ignore.

So for instance, if you write foo in src/jbuild-ignore, then
src/foo won’t be traversed and any jbuild file it contains will
be ignored.

jbuild-ignore files contain a list of directory names, one per line.

jbuild specification

jbuild files are the main part of Jbuilder, and are the origin of
its name. They are used to describe libraries, executables, tests, and
everything Jbuilder needs to know about.

Stanzas

jbuild files are composed of stanzas. For instance a typical
jbuild looks like:

(library
 ((name mylib)
 (libraries (base lwt))))

(rule
 ((targets (foo.ml))
 (deps (generator/gen.exe))
 (action (run ${<} -o ${@}))))

The following sections describe the available stanzas and their meaning.

jbuild_version

(jbuild_version 1) specifies that we are using the version 1 of
the Jbuilder metadata format in this jbuild file.

library

The library stanza must be used to describe OCaml libraries. The
format of library stanzas is as follows:

(library
 ((name <library-name>)
 <optional-fields>
))

<library-name> is the real name of the library. It determines the
names of the archive files generated for the library as well as the
module name under which the library will be available, unless
(wrapped false) is used (see below). It must be a valid OCaml
module name but doesn’t need to start with a uppercase letter.

For instance, the modules of a library named foo will be
available as Foo.XXX outside of foo itself. It is however
allowed to write an explicit Foo module, in which case this will
be the interface of the library and you are free to expose only the
modules you want.

<optional-fields> are:

	
	(public_name <name>) this is the name under which the library can be

	referred to as a dependency when it is not part of the current workspace,
i.e. when it is installed. Without a (public_name ...) field, the library
will not be installed by Jbuilder. The public name must start by the package
name it is part of and optionally followed by a dot and anything else you
want. The package name must be one of the packages that Jbuilder knows about,
as determined by the <package>.opam files

	
	(synopsis <string>) should give a one-line description of the library.

	This is used by tools that list installed libraries

	
	(modules <modules>) specifies what modules are part of the library. By

	default Jbuilder will use all the .ml/.re files in the same directory as the
jbuild file. This include ones that are present in the file system as
well as ones generated by user rules. You can restrict this list by using a
(modules <modules>) field. <modules> uses the ordered set language
where elements are module names and don’t need to start with a uppercase
letter. For instance to exclude module Foo: (modules (:standard \
foo))

	
	(libraries (<library-dependencies>)) is used to specify the dependencies

	of the library. See the section about library dependencies for more details

	
	(wrapped <boolean>) specifies whether the modules of the library should be

	available only through the top-level library module, or should all be exposed
at the top level. The default is true and it is highly recommended to
keep it this way. Because OCaml top-level modules must all be unique when
linking an executables, polluting the top-level namespace will make your
library unusable with other libraries if there is a module name clash. This
option is only intended for libraries that manually prefix all their modules
by the library name and to ease porting of existing projects to Jbuilder

	
	(preprocess <preprocess-spec>) specifies how to preprocess files if

	needed. The default is no_processing. Other options are described in the
preprocessing specification section

	
	(preprocessor_deps (<deps-conf list>)) specifies extra dependencies of the

	preprocessor, for instance if the preprocessor reads a generated file. The
specification of dependencies is described in the dependency specification
section

	
	(optional), if present it indicates that the library should only be built

	and installed if all the dependencies are available, either in the workspace
or in the installed world. You can use this to provide extra features without
adding hard dependencies to your project

	
	(c_names (<names>)), if your library has stubs, you must list the C files

	in this field, without the .c extension

	(cxx_names (<names>)) is the same as c_names but for C++ stubs

	
	(install_c_headers (<names>)), if your library has public C header files

	that must be installed, you must list them in this field, with the .h
extension

	
	(modes (<modes>)) modes (byte and native) which should be built by

	default. This is only useful when writing libraries for the OCaml toplevel

	
	(no_dynlink) is to disable dynamic linking of the library. This is for

	advanced use only, by default you shouldn’t set this option

	
	(kind <kind>) is the kind of the library. The default is normal, other

	available choices are ppx_rewriter and ppx_deriver and must be set
when the library is intended to be used as a ppx rewriter or a [@@deriving
...] plugin. The reason why ppx_rewriter and ppx_deriver are split
is historical and hopefully we won’t need two options soon

	
	(ppx_runtime_libraries (<library-names>)) is for when the library is a ppx

	rewriter or a [@@deriving ...] plugin and has runtime dependencies. You
need to specify these runtime dependencies here

	
	(virtual_deps (<opam-packages>). Sometimes opam packages enable a specific

	feature only if another package is installed. This is for instance the case
of ctypes which will only install ctypes.foreign if the dummy
ctypes-foreign package is installed. You can specify such virtual
dependencies here. You don’t need to do so unless you use Jbuilder to
synthesize the depends and depopts sections of your opam file

	js_of_ocaml. See the section about js_of_ocaml

	flags, ocamlc_flags and ocamlopt_flags. See the
section about specifying OCaml flags

	
	(library_flags (<flags>)) is a list of flags that are passed as it to

	ocamlc and ocamlopt when building the library archive files. You can
use this to specify -linkall for instance. <flags> is a list of
strings supporting variables expansion

	(c_flags <flags>) specifies the compilation flags for C stubs,
using the ordered set language. This field supports
(:include ...) forms

	(cxx_flags <flags>) is the same as c_flags but for C++
stubs

	
	(c_library_flags <flags>) specifies the flags to pass to the C compiler

	when constructing the library archive file for the C stubs. <flags> uses
the ordered set language and supports (:include ...) forms. When you
are writing bindings for a C library named bar, you should typically
write -lbar here, or whatever flags are necessary to to link against this
library

	
	(self_build_stubs_archive <c-libname>) indicates to Jbuilder that the

	library has stubs, but that the stubs are built manually. The aim of the
field is to embed a library written in foreign language and/or building with
another build system. It is not for casual uses, see the re2 library [https://github.com/janestreet/re2] for an example of use

Note that when binding C libraries, Jbuilder doesn’t provide special
support for tools such as pkg-config, however it integrates
easily with
configurator [https://github.com/janestreet/configurator] by
using (c_flags (:include ...)) and
(c_library_flags (:include ...)).

executable

The executable stanza must be used to describe an executable. The
format of executable stanzas is as follows:

(executable
 ((name <name>)
 <optional-fields>
))

<name> is a module name that contains the main entry point of the
executable. There can be additional modules in the current directory, you only
need to specify the entry point. Given an executable stanza with (name
<name>), Jbuilder will know how to build <name>.exe, <name>.bc and
<name>.bc.js. <name>.exe is a native code executable, <name>.bc is a
bytecode executable which requires ocamlrun to run and <name>.bc.js is a
JavaScript generated using js_of_ocaml.

Note that in case native compilation is not available, <name>.exe
will in fact be a custom byte-code executable. Custom in the sense of
ocamlc -custom, meaning that it is a native executable that
embeds the ocamlrun virtual machine as well as the byte code. As
such you can always rely on <name>.exe being available.

<optional-fields> are:

	(public_name <public-name>) specifies that the executable
should be installed under that name. It is the same as adding the
following stanza to your jbuild file:

(install
 ((section bin)
 (files ((<name>.exe as <public-name>)))))

	(package <package>) if there is a (public_name ...) field,
this specifies the package the executables are part of

	(libraries (<library-dependencies>)) specifies the library
dependencies. See the section about library dependencies for
more details

	(modules <modules>) specifies which modules in the current
directory Jbuilder should consider when building this executable.
Modules not listed here will be ignored and cannot be used inside
the executable described by the current stanza. It is interpreted
in the same way as the (modules ...) field of libraries

	(preprocess <preprocess-spec>) is the same as the
(preprocess ...) field of libraries

	(preprocessor_deps (<deps-conf list>)) is the same as the
(preprocessor_deps ...) field of libraries

	js_of_ocaml. See the section about js_of_ocaml

	flags, ocamlc_flags and ocamlopt_flags. See the
section about specifying OCaml flags

executables

The executables stanza is the same as the executable stanza,
except that it is used to describe several executables sharing the
same configuration.

It shares the same fields as the executable stanza, except that
instead of (name ...) and (public_name ...) you must use:

	(names (<names>)) where <names> is a list of entry point
names. As for executable you only need to specify the modules
containing the entry point of each executable

	(public_names (<names>)) describes under what name each
executable should be installed. The list of names must be of the
same length as the list in the (names ...) field. Moreover you
can use - for executables that shouldn’t be installed

rule

The rule stanza is used to create custom user rules. It tells
Jbuilder how to generate a specific set of files from a specific set
of dependencies.

The syntax is as follows:

(rule
 ((targets (<filenames>))
 (deps (<deps-conf list>))
 (action <action>)))

<filenames> is a list of file names. Note that currently Jbuilder
only support user rules with targets in the current directory.

<deps-conf list> specifies the dependencies of the rule. See the
dependency specification section for more details.

<action> is the action to run to produce the targets from the
dependencies. See the actions section for more details.

Note that contrary to makefiles or other build systems, user rules
currently don’t support patterns, such as a rule to produce %.y
from %.x for any given %. This might be supported in the
future.

ocamllex

(ocamllex (<names>)) is essentially a shorthand for:

(rule
 ((targets (<name>.ml))
 (deps (<name>.mll))
 (action (chdir ${ROOT} (run ${bin:ocamllex} -q -o ${<})))))

ocamlyacc

(ocamlyacc (<names>)) is essentially a shorthand for:

(rule
 ((targets (<name>.ml <name>.mli))
 (deps (<name>.mly))
 (action (chdir ${ROOT} (run ${bin:ocamlyacc} ${<})))))

menhir

The basic form for defining menhir parsers (analogous to ocamlyacc) is:

(menhir
 ((modules (<parser1> <parser2> ...))))

Modular parsers can be defined by adding a merge_into field. This correspond
to the --base command line option of menhir. With this option, a single
parser named base_name is generated.

(menhir
 ((merge_into <base_name>)
 (modules (<parser1> <parser2> ...))))

Extra flags can be passed to menhir using the flags flag:

(menhir
 ((flags (<option1> <option2> ...))
 (modules (<parser1> <parser2> ...))))

alias

The alias stanza lets you add dependencies to an alias, or specify an action
to run to construct the alias.

The syntax is as follows:

(alias
 ((name <alias-name>)
 (deps (<deps-conf list>))
 <optional-fields>
))

<name> is an alias name such as runtest.

<deps-conf list> specifies the dependencies of the alias. See the
dependency specification section for more details.

<optional-fields> are:

	<action>, an action to run when constructing the alias. See
the actions section for more details.

	(package <name>) indicates that this alias stanza is part of
package <name> and should be filtered out if <name> is
filtered out from the command line, either with
--only-packages <pkgs> or -p <pkgs>

The typical use of the alias stanza is to define tests:

(alias
 ((name runtest)
 (action (run ${exe:my-test-program.exe} blah))))

See the section about running tests for details.

Note that if your project contains several packages and you run test the tests
from the opam file using a build-test field, then all your runtest alias
stanzas should have a (package ...) field in order to partition the set of
tests.

install

The install stanza is what lets you describe what Jbuilder should install,
either when running jbuilder install or through opam.

Libraries don’t need an install stanza to be installed, just a
public_name field. Everything else needs an install stanza.

The syntax is as follows:

(install
 ((section <section>)
 (files (<filenames>))
 <optional-fields>
))

<section> is the installation section, as described in the opam
manual. The following sections are available:

	lib

	libexec

	bin

	sbin

	toplevel

	share

	share_root

	etc

	doc

	stublibs

	man

	misc

=<files>= is the list of files to install.

<optional-fields> are:

	(package <name>). If there are no ambiguities, you can omit
this field. Otherwise you need it to specify which package these
files are part of. The package is not ambiguous when the first
parent directory to contain a <package>.opam file contains
exactly one <package>.opam file

Common items

Ordered set language

A few fields takes as argument an ordered set and can be specified using a small
DSL.

This DSL is interpreted by jbuilder into an ordered set of strings using the
following rules:

	:standard denotes the standard value of the field when it is absent

	an atom not starting with a : is a singleton containing only this atom

	a list of sets is the concatenation of its inner sets

	
	(<sets1> \ <sets2>) is the set composed of elements of <sets1> that do

	not appear in <sets2>

In addition, some fields support the inclusion of an external file using the
syntax (:include <filename>). This is useful for instance when you need to
run a script to figure out some compilation flags. <filename> is expected to
contain a single S-expression and cannot contain (:include ...) forms.

Most fields using the ordered set language also support variables expansion.
Variables are expanded after the set language is interpreted.

Variables expansion

Some fields can contains variables of the form $(var) or ${var} that are
expanded by Jbuilder.

Jbuilder supports the following variables:

	ROOT is the relative path to the root of the build context

	CC is the C compiler command line being used in the current
build context

	CXX is the C++ compiler command line being used in the
current build context

	ocaml_bin is the path where ocamlc lives

	OCAML is the ocaml binary

	OCAMLC is the ocamlc binary

	OCAMLOPT is the ocamlopt binary

	ocaml_version is the version of the compiler used in the
current build context

	ocaml_where is the output of ocamlc -where

	ARCH_SIXTYFOUR is true if using a compiler targeting a
64 bit architecture and false otherwise

	null is /dev/null on Unix or nul on Windows

In addition, (action ...) fields support the following special variables:

	@ expands to the list of target, separated by spaces

	< expands to the first dependency, or the empty string if
there are no dependencies

	^ expands to the list of dependencies, separated by spaces

	path:<path> expands to <path>

	exe:<path> is the same as <path>, except when
cross-compiling, in which case it will expand to <path>
from the host build context

	bin:<program> expands to a path to program. If
program is installed by a package in the workspace (see
install stanzas), the locally built binary will be used,
otherwise it will be searched in the PATH of the current
build context

	lib:<public-library-name>:<file> expands to a path to file
<file> of library <public-library-name>. If
<public-library-name> is available in the current
workspace, the local file will be used, otherwise the one from
the installed world will be used

	libexec:<public-library-name>:<file> is the same as
lib:... except when cross-compiling, in which case it will
expand to the file from the host build context

	lib-available:<library-name> expands to true or
false depending on wether the library is available or not.
A library is available iff at least one of the following
condition holds:
	it is part the installed worlds

	it is available locally and is not optional

	it is available locally and all its library dependencies are
available

	version:<package> expands to the version of the given
package. Note that this is only supported for packages that are
being defined in the current scope

The ${<kind>:...} forms are what allows you to write custom rules that work
transparently whether things are installed or not.

Library dependencies

Dependencies on libraries are specified using (libraries ...)
fields in library and executables stanzas.

For libraries that are present in the workspace, you can use
either the real name (with some restrictions, see below) or the
public name. For libraries that are part of the installed world,
you need to use the public name. For instance:
(libraries (base re)).

When resolving libraries, libraries that are part of the workspace
are always prefered to ones that are part of the installed world.

	Scope of internal library names

The scope of internal library names is not the whole workspace.
It is restricted to the subtree starting from the closest
parent containing a <package>.opam file, or the whole
workspace if no such directory exist. Moreover, a subtree
containing <package>.opam doesn’ t inherit the internal
names available in its parent scope.

The idea behing this rule is that public library names must be
universally unique, but internal ones don’t need to. In
particular you might have private libraries that are only used
for tests or building an executable.

As a result, when you create a workspace including several
projects there might be a name clash between internal library
names.

This scoping rule ensure that this won’t be a problem.

	Alternative dependencies

In addition to direct dependencies you can specify alternative
dependencies. This is described in the alternative
dependencies section

It is sometimes the case that one wants to not depend on a
specific library, but instead on whatever is already installed.
For instance to use a different backend depending on the
target.

Jbuilder allows this by using a (select ... from ...) form
inside the list of library dependencies.

Select forms are specified as follows:

(select <target-filename> from
 ((<literals> -> <filename>)
 (<literals> -> <filename>)
 ...))

<literals> are lists of literals, where each literal is one
of:

	<library-name>, which will evaluate to true if
<library-name> is available, either in the workspace or
in the installed world

	!<library-name>, which will evaluate to true if
<library-name> is not available in the workspace or in
the installed world

When evaluating a select form, Jbuilder will create
<target-filename> by copying the file given by the first
(<literals> -> <filename>) case where all the literals
evaluate to true. It is an error if none of the clauses are
selectable. You can add a fallback by adding a clause of the
form (-> <file>) at the end of the list.

Preprocessing specification

Jbuilder accepts three kinds of preprocessing:

	no_preprocessing, meaning that files are given as it to the
compiler, this is the default

	(action <action>) to preprocess files using the given
action

	(pps (<ppx-rewriters-and-flags>)) to preprocess files using
the given list of ppx rewriters

Note that in any cases, files are preprocessed only once. Jbuilder
doesn’t use the -pp or -ppx of the various OCaml tools.

	Preprocessing with actions

<action> uses the same DSL as described in the user
actions section, and for the same reason given in that
section, it will be executed from the root of the current build
context. It is expected to be an action that reads the file
given as only dependency and outputs the preprocessed file on
its standard output.

More precisely, (preprocess (action <action>)) acts as if
you had setup a rule for every file of the form:

(rule
 ((targets (file.pp.ml))
 (deps (file.ml))
 (action (with-stdout-to ${@} (chdir ${ROOT} <action>)))))

The equivalent of a -pp <command> option passed to the
OCaml compiler is (system "<command> ${<}").

	Preprocessing with ppx rewriters

<ppx-rewriters-and-flags> is expected to be a list where
each element is either a command line flag if starting with a
- or the name of a library. Additionnally, any sub-list
will be treated as a list of command line arguments. So for
instance from the following preprocess field:

(preprocess (pps (ppx1 -foo ppx2 (-bar 42))))

The list of libraries will be ppx1 and ppx2 and the
command line arguments will be: -foo -bar 42.

Libraries listed here should be libraries implementing an OCaml
AST rewriter and registering themselves using the
ocaml-migrate-parsetree.driver
API [https://github.com/let-def/ocaml-migrate-parsetree].

Jbuilder will build a single executable by linking all these
libraries and their dependencies. Note that it is important
that all these libraries are linked with -linkall. Jbuilder
automatically uses -linkall when the (kind ...) field
is set to ppx_rewriter or ppx_deriver.

It is guaranteed that the last library in the list will be
linked last. You can use this feature to use a custom ppx
driver. By default Jbuilder will use
ocaml-migrate-parsetree.driver-main. See the section about
using a custom ppx driver for more details.

	Per module preprocessing specification

By default a preprocessing specification will apply to all
modules in the library/set of executables. It is possible to
select the preprocessing on a module-by-module basis by using
the following syntax:

(preprocess (per_file
 (<spec1> (<module-list1>))
 (<spec2> (<module-list2>))
 ...))

Where <spec1>, <spec2>, ... are preprocessing
specifications and <module-list1>, <module-list2>, ...
are list of module names. It is currently not possible to
distinguish between .ml/.mli files, however it wouldn’t be hard
to support if needed.

For instance:

(preprocess (per_file
 ((command "./pp.sh X=1" (foo bar)))
 ((command "./pp.sh X=2" (baz)))))

Dependency specification

Dependencies in jbuild files can be specified using one of the
following syntax:

	(file <filename>) or simply <filename>: depend on this
file

	(alias <alias-name>): depend on the construction of this
alias, for instance: (alias src/runtest)

	(glob_files <glob>): depend on all files matched by
<glob>, see the glob section for details

	(files_recursively_in <dir>): depend on all files in the
subtree with root <dir>

In all these cases, the argument supports variables expansion.

	Glob

You can use globs to declare dependencies on a set of files.
Note that globs will match files that exist in the source tree
as well as buildable targets, so for instance you can depend on
*.cmi.

Currently jbuilder only support globbing files in a single
directory. And in particular the glob is interpreted as
follows:

	anything before the last / is taken as a literal path

	anything after the last /, or everything if the glob
contains no /, is interpreted using the glob syntax

The glob syntax is interpreted as follows:

	\<char> matches exactly <char>, even if it is a
special character (*, ?, ...)

	* matches any sequence of characters, except if it comes
first in which case it matches any character that is not
. followed by anything

	** matches any character that is not . followed by
anything, except if it comes first in which case it matches
anything

	? matches any single character

	[<set>] matches any character that is part of <set>

	[!<set>] matches any character that is not part of
<set>

	{<glob1>,<glob2>,...,<globn>} matches any string that is
matched by one of <glob1>, <glob2>, ...

OCaml flags

In library and executables stanzas, you can specify OCaml
compilation flags using the following fields:

	(flags <flags>) to specify flags passed to both ocamlc
and ocamlopt

	(ocamlc_flags <flags>) to specify flags passed to
ocamlc only

	(ocamlopt_flags <flags>) to specify flags passed to
ocamlopt only

For all these fields, <flags> is specified in the ordered set
language.

The default value for (flags ...) includes some -w options
to set warnings. The exact set depends on whether --dev is
passed to Jbuilder. As a result it is recommended to write
(flags ...) fields as follows:

(flags (:standard <my options>))

js_of_ocaml

In library and executables stanzas, you can specify js_of_ocaml options
using (js_of_ocaml (<js_of_ocaml-options>)).

<js_of_ocaml-options> are all optional:

	(flags <flags>) to specify flags passed to js_of_ocaml

	
	(javascript_files (<files-list>)) to specify js_of_ocaml JavaScript

	runtime files.

=<flags>= is specified in the ordered set language.

The default value for (flags ...) depends on whether --dev is passed to
Jbuilder. --dev will enable sourcemap and the pretty JavaScript output.

User actions

(action ...) fields describe user actions.

User actions are always run from the same subdirectory of the current build
context as the jbuild they are defined in. So for instance an action defined in
src/foo/jbuild will be run from _build/<context>/src/foo.

The argument of (action ...) fields is a small DSL that is interpreted by
jbuilder directly and doesn’t require an external shell. All atoms in the DSL
support variables expansion. Moreover, you don’t need to specify dependencies
explicitly for the special ${<kind>:...} forms, these are recognized and
automatically handled by Jbuilder.

The DSL is currently quite limited, so if you want to do something complicated
it is recommended to write a small OCaml program and use the DSL to invoke it.
You can use shexp [https://github.com/janestreet/shexp] to write portable
scripts or configurator [https://github.com/janestreet/configurator] for
configuration related tasks.

The following constructions are available:

	(run <prog> <args>) to execute a program

	(chdir <dir> <DSL>) to change the current directory

	(setenv <var> <value> <DSL>) to set an environment variable

	
	(with-<outputs>-to <file> <DSL>) to redirect the output to a file, where

	<outputs> is one of: stdout, stderr or outputs (for both
stdout and stderr)

	(ignore-<outputs> <DSL) to ignore the output, where
<outputs> is one of: stdout, stderr or outputs

	(progn <DSL>...) to execute several commands in sequence

	(echo <string>) to output a string on stdout

	(cat <file>) to print the contents of a file to stdout

	(copy <src> <dst>) to copy a file

	
	(copy-and-add-line-directive <src> <dst>) to copy a file and add a line

	directive at the beginning

	
	(system <cmd>) to execute a command using the system shell: sh on Unix

	and cmd on Windows

	
	(bash <cmd>) to execute a command using /bin/bash. This is obviously

	not very portable

Note: expansion of the special ${<kind>:...} is done relative to the current
working directory of the part of the DSL being executed. So for instance if you
have this action in a src/foo/jbuild:

(action (chdir ../../.. (echo ${path:jbuild})))

Then ${path:jbuild} will expand to src/foo/jbuild. When you run various
tools, they often use the filename given on the command line in error messages.
As a result, if you execute the command from the original directory, it will
only see the basename.

To understand why this is important, let’s consider this jbuild living in
src/foo:

(rule
 ((targets (blah.ml))
 (deps (blah.mll))
 (action (run ocamllex -o ${@} ${<}))))

Here the command that will be executed is:

ocamllex -o blah.ml blah.mll

And it will be executed in _build/<context>/src/foo. As a result, if there
is an error in the generated blah.ml file it will be reported as:

File "blah.ml", line 42, characters 5-10:
Error: ...

Which can be a problem as you editor might think that blah.ml is at the root
of your project. What you should write instead is:

(rule
 ((targets (blah.ml))
 (deps (blah.mll))
 (action (chdir ${ROOT} (run ocamllex -o ${@} ${<})))))

OCaml syntax

If a jbuild file starts with (* -*- tuareg -*- *), then it is
interpreted as an OCaml script that generates the jbuild file as described
in the rest of this section. The code in the script will have access to a
Jbuild_plugin [https://github.com/janestreet/jbuilder/blob/master/plugin/jbuild_plugin.mli]
module containing details about the build context it is executed in.

The script can use the directive #require to access libraries:

#require "base,re";;

Note that any library required by a jbuild file must be part of the
installed world.

If you don’t like the S-expression syntax, then this method gives you a way to
use whatever else you want. For instance you could have an API to describe your
project in OCaml directly:

(* -*- tuareg -*- *)
#require "my_jbuild_api"
open My_jbuild_api

let () =
 library "foo" ~modules:["plop"; "bidule"]

Currently the Jbuild_plugin module is only available inside plugins. It is
however planned to make it a proper library, see the roadmap for details.

Usage

This section describe usage of Jbuilder from the shell.

Finding the root

jbuild-workspace

The root of the current workspace is determined by looking up a
jbuild-workspace file in the current directory and parent
directories. jbuilder prints out the root when starting:

$ jbuilder runtest
Workspace root: /usr/local/home/jdimino/workspaces/public-jane/+share+
...

More precisely, it will choose the outermost ancestor directory
containing a jbuild-workspace file as root. For instance if you are
in /home/me/code/myproject/src, then jbuilder will look for all
these files in order:

	/jbuild-workspace

	/home/jbuild-workspace

	/home/me/jbuild-workspace

	/home/me/code/jbuild-workspace

	/home/me/code/myproject/jbuild-workspace

	/home/me/code/myproject/src/jbuild-workspace

The first entry to match in this list will determine the root. In
practice this means that if you nest your workspaces, Jbuilder will
always use the outermost one.

In addition to determining the root, jbuilder will read this file as
to setup the configuration of the workspace unless the --workspace
command line option is used. See the section about workspace
configuration for the syntax of this file.

jbuild-workspace*

In addition to the previous rule, if no jbuild-workspace file is
found, jbuilder will look for any file whose name starts with
jbuild-workspace in ancestor directories. For instance
jbuild-workspace.dev. If such a file is found, it will mark the root
of the workspace. jbuilder will however not read its contents.

The rationale for this rule is that it is good practice to have a
jbuild-workspace.dev file at the root of your project.

For quick experiments, simply do this to mark the root:

$ touch jbuild-workspace.here

Current directory

If none of the two previous rules appies, i.e. no ancestor directories
have a file whose name starts with jbuild-workspace, then the
current directory will be used as root.

Forcing the root (for scripts)

You can pass the --root option to jbuilder to select the root
explicitly. This option is intended for scripts to disable the automatic
lookup.

Notet that when using the --root option, targets given on the
command line will be interpreted relative to the given root, not
relative to the current directory as this is normally the case.

Interpretation of targets

This section describes how jbuilder interprets the targets given on
the command line.

Resolution

Most targets that Jbuilder knows how to build lives in the _build
directory, except for a few:

= .merlin files

	<package>.install files; for the default context Jbuilder
knows how generate the install file both in _build/default and in
the source tree so that opam can find it

As a result, if you want to ask jbuilder to produce a particular
.exe file you would have to type:

$ jbuilder build _build/default/bin/prog.exe

However, for convenience when a target on the command line doesn’t start
with _build, jbuilder will expand it to the corresponding target
in all the build contexts where it knows how to build it. It prints out
the actual set of targets when starting so that you know what is
happening:

$ jbuilder build bin/prog.exe
...
Actual targets:
- _build/default/bin/prog.exe
- _build/4.03.0/bin/prog.exe
- _build/4.04.0/bin/prog.exe

Aliases

Targets starting with a @ are interpreted as aliases. For instance
@src/runtest means the alias src/runtest. If you want to refer
to a target starting with a @, simply write: ./@foo.

Note that an alias not pointing to the _build directory always
depends on all the corresponding aliases in build contexts.

So for instance:

	jbuilder build @_build/foo/runtest will run the tests only for
the foo build context

	jbuilder build @runtest will run the tests for all build contexts

Finding external libraries

When a library is not available in the workspace, jbuilder will look it
up in the installed world, and expect it to be already compiled.

It looks up external libraries using a specific list of search pathes. A
list of search pathes is specific to a given build context and is
determined as follow:

	if the ocamlfind is present in the PATH of the context, use
each line in the output of ocamlfind printconf path as a search
path

	otherwise, if opam is present in the PATH, use the outout of
opam config var lib

	otherwise, take the directory where ocamlc was found, and append
../lib to it. For instance if ocamlc is found in
/usr/bin, use /usr/lib

Running tests

There are two ways to run tests:

	jbuilder build @runtest

	jbuilder runtest

The two commands are equivalent. They will run all the tests defined in
the current directory and its children recursively. You can also run the
tests in a specific sub-directory and its children by using:

	jbuilder build @foo/bar/runtest

	jbuidler runtest foo/bar

Restricting the set of packages

You can restrict the set of packages from your workspace that Jbuilder
can see with the --only-packages option:

$ jbuilder build --only-packages pkg1,pkg2,... @install

This option acts as if you went through all the jbuild files and
commented out the stanzas refering to a package that is not in the list
given to jbuilder.

Invocation from opam

You should set the build: field of your <package>.opam file as
follows:

build: [["jbuilder" "build" "-p" name "-j" jobs]]

-p pkg is a shorthand for --root . --only-packages pkg. -p
is the short version of --for-release-of-packages.

This has the following effects:

	it tells jbuilder to build everything that is installable and to
ignore packages other than name defined in your project

	it sets the root to prevent jbuilder from looking it up

	it uses whatever concurrency option opam provides

Note that name and jobs are variables expanded by opam. name
expands to the package name and jobs to the number of jobs available
to build the package.

Tests

To setup the building and running of tests in opam, add this line to
your <package>.opam file:

build-test: [["jbuilder" "runtest" "-p" name "-j" jobs]]

Installation

Installing a package means copying the build artifacts from the build
directory to the installed word.

When installing via opam, you don’t need to worry about this step:
jbuilder generates a <package>.install file that opam will
automatically read to handle installation.

However, when not using opam or doing local development, you can use
jbuilder to install the artifacts by hands. To do that, use the
install command:

$ jbuilder install [PACKAGE]...

without an argument, it will install all the packages available in the
workspace. With a specific list of packages, it will only install these
packages. If several build contexts are configured, the installation
will be performed for all of them.

Note that jbuilder install is a thin wrapper around the
opam-installer tool, so you will need to install this tool in order
to be able to use jbuilder install.

Destination

The place where the build artifacts are copied, usually referred as
prefix, is determined as follow for a given build context:

	if an explicit --prefix <path> argument is passed, use this path

	if opam is present in the PATH, use the output of opam config var
prefix

	otherwise, take the directory where ocamlc was found, and append
../lib to it. For instance if ocamlc is found in /usr/bin, use
/usr

Note that --prefix is only supported if a single build context is in
use.

Workspace configuration

By default, a workspace has only one build context named default
which correspond to the environment in which jbuilder is run. You
can define more contexts by writing a jbuild-workspace file.

You can point jbuilder to an explicit jbuild-workspace file with
the --workspace option. For instance it is good practice to write a
jbuild-workspace.dev in your project with all the version of OCaml
your projects support. This way developpers can tests that the code
builds with all version of OCaml by simply running:

$ jbuilder build --workspace jbuild-workspace.dev @install @runtest

jbuild-workspace

The jbuild-workspace file uses the S-expression syntax. This is what
a typical jbuild-workspace file looks like:

(context ((switch 4.02.3)))
(context ((switch 4.03.0)))
(context ((switch 4.04.0)))

The rest of this section describe the stanzas available.

context

The (context ...) stanza declares a build context. The argument
can be either default for the default build context or can be the
description of an opam switch, as follows:

(context ((switch <opam-switch-name>)
 <optional-fields>))

<optional-fields> are:

	(name <name>) is the name of the subdirectory of _build
where the artifacts for this build context will be stored

	(root <opam-root>) is the opam root. By default it will take
the opam root defined by the environment in which jbuilder is
run which is usually ~/.opam

	(merlin) instructs Jbuilder to generate the .merlin files
from this context. There can be at most one build context with a
(merlin) field. If no build context has a (merlin) field,
the selected context for merlin will be (context default)
if present. Otherwise Jbuilder won’t generate .merlin files

Building JavaScript with js_of_ocaml

Jbuilder knows how to generate a JavaScript version of an executable
(<name>.bc.js) using the js_of_ocaml compiler (the js_of_ocaml-compiler
opam package must be installed).

It supports two modes of compilation:

	Direct compilation of a bytecode program to JavaScript. This mode allows
js_of_ocaml to perform whole program deadcode elimination and whole program
inlining.

	Separate compilation, where compilation units are compiled to JavaScript
separately and then linked together. This mode is useful during development as
it builds more quickly.

The separate compilation mode will be selected when passing --dev to
jbuilder. There is currently no other way to control this behaviour.

See the section about js_of_ocalm for passing custom flags to the js_of_ocaml
compiler

Using topkg with jbuilder

Jbuilder provides suport for building and installing your project.
However it doesn’t provides helpers for distributing it. It is
recommemded to use Topkg [https://github.com/dbuenzli/topkg] for
this purpose.

The topkg-jbuilder [https://github.com/diml/topkg-jbuilder] project
provides helpers for using Topkg in a Jbuilder project.

Advanced topics

This section describes some details of Jbuilder for advanced users.

META file generation

Jbuilder uses META files from the findlib library
manager [http://projects.camlcity.org/projects/findlib.html] in order
to interoperate with the rest of the world when installing libraries. It
is able to generate them automatically. However, for the rare cases
where you would need a specific META file, or to ease the transition
of a project to Jbuilder, it is allowed to write/generate a specific
one.

In order to do that, write or setup a rule to generate a
META.<package> file in the same directory as the <package>.opam
file. If you do that, Jbuilder will still generate a META file but
it will be called META.<package>.from-jbuilder. So for instance if
you want to extend the META file generated by Jbuilder you can
write:

(rule
 ((targets (META.foo))
 (deps (META.foo.from-jbuilder))
 (action (with-stdout-to ${@}
 (progn
 (cat ${<})
 (echo blah))))))

Additionally, Jbuilder provides a simpler mechanism for this scheme:
just write or generate a META.<package>.template file containing a
line of the form # JBUILDER_GEN. Jbuilder will automatically insert
its generated META contents in place of this line.

Using a custom ppx driver

You can use a custom ppx driver by putting it as the last library in (pps
...) forms. An example of alternative driver is ppx_driver [https://github.com/janestreet/ppx_driver]. To use it instead of
ocaml-migrate-parsetree.driver-main, simply write ppx_driver.runner as
the last library:

(preprocess (pps (ppx_sexp_conv ppx_bin_prot ppx_driver.runner)))

Driver expectation

Jbuilder will invoke the executable resulting from linking the libraries
given in the (pps ...) form as follows:

ppx.exe <flags-written-by-user> --dump-ast -o <output-file> \
 [--cookie library-name="<name>"] [--impl|--intf] <source-file>

Where <source-file> is either an implementation (.ml) or
interface (.mli) OCaml source file. The command is expected to write
a binary OCaml AST in <output-file>.

Additionally, it is expected that if the executable is invoked with
--as-ppx as its first argument, then it will behave as a standard
ppx rewirter as passed to -ppx option of OCaml. This is for two
reason:

	to improve interoperability with build systems that Jbuilder

	so that it can be used with merlin

Index

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		Welcome to jbuilder's documentation!

 		Quickstart

 		Building a hello world program

 		Building a hello world program using Lwt

 		Defining a library using Lwt and ocaml-re

 		Using cppo

 		Using the .cppo.ml style like the ocamlbuild plugin

 		Defining a library with C stubs

 		Defining a library with C stubs using pkg-config

 		Using a custom code generator

 		Defining tests

 		Overview

 		Terminology

 		Project Layout and Metadata Specification

 		Metadata format

 		<package>.opam files

 		Package version

 		Odig conventions

 		jbuild-ignore

 		jbuild specification

 		Stanzas

 		jbuild_version

 		library

 		executable

 		executables

 		rule

 		ocamllex

 		ocamlyacc

 		menhir

 		alias

 		install

 		Common items

 		Ordered set language

 		Variables expansion

 		Library dependencies

 		Preprocessing specification

 		Dependency specification

 		OCaml flags

 		js_of_ocaml

 		User actions

 		OCaml syntax

 		Usage

 		Finding the root

 		jbuild-workspace

 		jbuild-workspace*

 		Current directory

 		Forcing the root (for scripts)

 		Interpretation of targets

 		Resolution

 		Aliases

 		Finding external libraries

 		Running tests

 		Restricting the set of packages

 		Invocation from opam

 		Tests

 		Installation

 		Destination

 		Workspace configuration

 		jbuild-workspace

 		Building JavaScript with js_of_ocaml

 		Using topkg with jbuilder

 		Advanced topics

 		META file generation

 		Using a custom ppx driver

 		Driver expectation

_static/up.png

_static/up-pressed.png

