
testcode Documentation
Release dev

James Spencer

December 19, 2016

Contents

1 Installation 3

2 Configuration files 5

3 jobconfig 7

4 userconfig 11

5 Test verification 15

6 testcode.py 17

7 Indices and tables 21

i

ii

testcode Documentation, Release dev

testcode is a python module for testing for regression errors in numerical (principally scientific) software. Essentially
testcode runs a set of calculations, and compares the output data to that generated by a previous calculation (which
is regarded to be “correct”). It is designed to be lightweight and highly portable: it can be used both as part of the
development process and to verify the correctness of a binary on a new architecture. testcode requires python 2.4-
3.4. If these are not available, then pypy is recommended—for this purpose pypy serves as a portable, self-contained
python implementation but this is a tiny aspect of the pypy project.

testcode can run a set of tests and check the calculated data is within a the desired tolerance of results contained in
previous output (using an internal data extraction engine, a user-supplied data extraction program or a user-supplied
verification program). The programs to be tested can be run in serial and in parallel and tests can be run in either
locally or submitted to a compute cluster running a queueing system such as PBS. Previous tests can be compared and
diffed against other tests or benchmarks.

testcode provides access to these features via an API. The supplied command-line interface, testcode.py, should be
sufficient for most purposes. The command-line interface utilises simple configuration files, wich makes it easy to
customise to the local environment and to add new tests.

Contents 1

http://www.pypy.org

testcode Documentation, Release dev

2 Contents

CHAPTER 1

Installation

testcode2 is designed to be very lightweight and portable, so it can easily and quickly be used on a variety of machines.
Typically only downloading the testcode2 package is required.

If the testcode.py script is used, then no additional installation steps are required assuming the directory structure is
preserved. If the testcode2 module is used or the files are split up and installed elsewhere, then the testcode2
module must be able to be found by python (i.e. exists on $PYTHONPATH).

3

testcode Documentation, Release dev

4 Chapter 1. Installation

CHAPTER 2

Configuration files

For convenience, tests can be specified via configuration files rather than using the testcode API directly. These
configuration files are required for work with the command-line interface.

The two configuration files are, by default, jobconfig and userconfig in the working directory. Different names and/or
paths can be specified if required.

Both configuration files take options in the ini format (as understood by Python’s configparser module). For example:

[section_1]
a = 2
b = test_option

[section_2]
v = 4.5
hello = world

defines an ini file with two sections (named ‘section_1’ and ‘section_2’), each with two variables set.

Note: Any paths can either be absolute or relative to the directory containing the configuration file. The full path
need not be given for any program which exists on the user’s PATH. Environment variables in program names will be
expanded.

5

http://docs.python.org/library/configparser.html

testcode Documentation, Release dev

6 Chapter 2. Configuration files

CHAPTER 3

jobconfig

The jobconfig file defines the tests to run. If a section named ‘categories’ exists, then it gives labels to sets of tests. All
other sections are assumed to individually define a test.

3.1 Tests

A test is assumed to reside in the directory given by the name of the test section. For example:

[carbon_dioxide_ccsd]
inputs_args = ('co2.inp','')

would define a test in the carbon_dioxide_ccsd subdirectory relative to the jobconfig configuration file,
with the input file as co2.inp (in the carbon_dioxide_ccsd subdirectory) with no additional arguments to be
passed to the test program. All input and output files related to the test are assumed to be contained within the test
subdirectory.

The following options are permitted:

inputs_args [inputs and arguments format (see below)] Input filename and associated arguments to be passed to
the test program. No default.

min_nprocs [integer] Minimum number of processors to run test on. Cannot be overridden by the ‘–processors’
command-line option. Default: 0.

max_nprocs [integer] Maximum number of processors to run test on. Cannot be overridden by the ‘–processors’
command-line option. Default: 2^31-1 or 2^63-1.

nprocs [integer] Number of processors to run the test on. Zero indicates to run the test purely in serial, without using
an external program such as mpirun to launch the test program. Default: 0.

output [string] Filename to which the output is written if the output is not written to standard output. The output file
is moved to the specific testcode test filename at the end of the calculation before the test output is validated
against the benchmark output. Wildcards are allowed so long as the pattern only matches a single file at the end
of the calculation. Default: inherits from setting in userconfig.

path [string] Set path (relative to the directory containing the jobconfig configuration file) of the test. The test is
run in this directory and so input filenames need to be relative to it. If the given path contains wildcards, then this
is expanded and an individual test is created for each path that maches the pattern. Note that Python’s config-
parser restricts the use of special characters in section names and hence some patterns can only be accomplished
by explicitly using the path option. Default: test name (i.e. the name of the section defining the test).

run_concurrent [boolean] If true then subtests defined by the inputs_args option are allowed to run concurrently
rather than consecutively, assuming enough processors are available. Default: false.

7

testcode Documentation, Release dev

submit_template [string] Path to a template of a submit script used to submit jobs to a queueing system. testcode
will replace the string given in submit_pattern with the command(s) to run the test. The submit script must do
all other actions (e.g. setting environment variables, loading modules, copying files from the test directory to a
local disk and copying files back afterwards). No default.

program [string] Program name (appropriate section heading in userconfig) to use to run the test. Default: specified
in the [user] section of userconfig.

tolerance [tolerance format (see Tolerance format)] Tolerances for comparing test output to the benchmark output.
Default: inherits from the settings in userconfig.

If a test is defined via a category/path containing wildcards and explicitly, then the explicit category will inherit any
settings from the wildcard definition. For example, given the subdirectories t1 and t2, each containing tests, the
definition:

[t*]
inputs_args = ('test.in', '')
[t1]
nprocs = 2

is entirely equivalent to:

[t1]
nprocs = 2
inputs_args = ('test.in', '')
[t2]
inputs_args = ('test.in', '')

Note: Explicitly defining a test multiple times, e.g.:

[t1]
inputs_args = ('inp1', '')
[t1]
inputs_args = ('inp2', '')

is not permitted and the resultant settings are not uniquely defined.

3.2 Test categories

For the purposes of selecting a subset of the tests in testcode.py, each test is automatically placed in two separate
categories, one labelled by the test’s name and the other by the test’s path. A test can hence be referred to by either its
path or by its name (which are identical by default).

Additional categories can be specified in the [categories] section. This makes it very easy to select subsets of the tests
to run. For example:

[categories]
cat1 = t1 t2
cat2 = t3 t4
cat3 = cat1 t3

defines three categories (cat, cat2 and cat3), each containing a subset of the overall tests. A category may contain
another category so long as circular dependencies are avoided. There are two special categories, _all_ and _default_.
The _all_ category contains, by default, all tests and should not be changed under any circumstances. The _default_
category can be set; if it is not specified then it is set to be the _all_ category.

8 Chapter 3. jobconfig

testcode Documentation, Release dev

3.3 Program inputs and arguments

The inputs and arguments must be given in a specific format. As with the tolerance format, the inputs and arguments
are specified using a comma-separated list of python tuples. Each tuple (basically a comma-separated list enclosed in
parantheses) contains two elements: the name of an input file and the associated arguments, in that order, represents a
subtest belonging to the given test. Both elements must be quoted. If the input filename contains wildcard, then those
wildcards are expanded to find all files in the test subdirectory which match that pattern; the expanded list is sorted in
alphanumerical order. A separate subtest (with the same arguments string) is then created for each file matching the
pattern. used to construct the command to run. A null string (’’) should be used to represent the absence of an input
file or arguments. By default subtests run in the order they are specified. For example:

inputs_args = ('test.inp', '')

defines a single subtest, with input filename test.inp and no arguments,

inputs_args = ('test.inp', ''), ('test2.inp', '--verbose')

defines two subtests, with an additional argument for the second subtest, and

inputs_args = ('test*.inp', '')

defines a subtest for each file matching the pattern test*inp in the subdirectory of the test.

3.3. Program inputs and arguments 9

testcode Documentation, Release dev

10 Chapter 3. jobconfig

CHAPTER 4

userconfig

The userconfig file must contain at least two sections. One section must be entitled ‘user’ and contains various user
settings. Any other section is assumed to define a program to be tested, where the program is referred to internally
by its section name. This makes it possible for a set of tests to cover multiple, heavily intertwined, programs. It is,
however, far better to have a distinct set of tests for each program where possible.

4.1 [user] section

The following options are allowed in the [user] section:

benchmark [string] Specify the ID of the benchmark to compare to. This should be set running

The format of the benchmark files is’benchmark.out.ID.inp=INPUT_FILE.arg=ARGS’. The ‘inp’ and/or ‘arg’
section is not included if it is empty.

Multiple benchmarks can be used by providing a space-separated list of IDs. The first ID in the list which
corresponds to an existing benchmark filename is used to validate the test.

date_fmt [string] Format of the date string used to uniquely label test outputs. This must be a valid date format string
(see Python documenation). Default: %d%m%Y.

default_program [string] Default program used to run each test. Only needs to be set if multiple program sections
are specified. No default.

diff [string] Program used to diff test and benchmark outputs. Default: diff.

tolerance [tolerance format (see below.)] Default tolerance(s) used to compare all tests to their respective bench-
marks. Default: absolute tolerance 10^-10; no relative tolerance set.

4.2 [program_name] section(s)

The following options are allowed to specify a program (called ‘program_name’) to be tested:

data_tag [string] Data tag to be used to extract data from test and benchmark output. See Test verification for more
details. No default.

ignore_fields [space-separated list of strings] Specify the fields (e.g. column headings in the output from the extrac-
tion program) to ignore. This can be used to include, say, timing information in the test output for performance
comparison without causing failure of tests. Spaces within a string can be escaped by quoting the string. No
default.

exe [string] Path to the program executable. No default.

11

http://docs.python.org/library/time.html

testcode Documentation, Release dev

extract_fn [string] A python function (in the form module_name.function_name) which extracts data from test and
benchmark outputs for comparison. See Test verification for details. If a space-separated pair of strings are
given, the first is appended to sys.path before the module is imported. Otherwise the desired module must exist
on PYTHONPATH. The feature requires python 2.7 or python 3.1+.

extract_args [string] Arguments to supply to the extraction program. Default: null string.

extract_cmd_template [string] Template of command used to extract data from output(s) with the following substi-
tutions made:

tc.extract replaced with the extraction program.

tc.args replaced with extract_args.

tc.file replaced with (as required) the filename of the test output or the filename of the benchmark
output.

tc.bench replaced with the filename of the benchmark output.

tc.test replaced with the filename of the test output.

Default: tc.extract tc.args tc.file if verify is False and tc.extract tc.args tc.test tc.bench if verify is True.

extract_program [string] Path to program to use to extract data from test and benchmark output. See Test verification
for more details. No default.

extract_fmt [string] Format of the data returned by extraction program. See Test verification for more details. Can
only take values table or yaml. Default: table.

launch_parallel [string] Command template used to run the test program in parallel. tc.nprocs is replaced with the
number of processors a test uses (see run_cmd_template). If tc.nprocs does not appear, then testcode has no
control over the number of processors a test is run on. Default: mpirun -np tc.nprocs.

run_cmd_template [string] Template of command used to run the program on the test with the following substitu-
tions made:

tc.program replaced with the program to be tested.

tc.args replaced with the arguments of the test.

tc.input replaced with the input filename of the test.

tc.output replaced with the filename for the standard output. The filename is selected at runtime.

tc.error replaced with the filename for the error output. The filename is selected at runtime.

tc.nprocs replaced with the number of processors the test is run on.

Default: ‘tc.program tc.args tc.input > tc.output 2> tc.error’ in serial and ‘launch_parallel tc.program tc.args
tc.input > tc.output 2> tc.error’ in parallel, where launch_parallel is specified above. The parallel version is only
used if the number of processors to run a test on is greater than zero.

skip_args [string] Arguments to supply to the program to test whether to skip the comparison of the test and bench-
mark. Default: null string.

skip_cmd_template [string] Template of command used to test whether test was successfully run or whether the
comparison of the benchmark and test output should be skipped. See below for more details. The following
strings in the template are replaced:

tc.skip replaced with skip_program.

tc.args replaced with skip_args.

tc.test replaced with the filename of the test output.

tc.error replaced with the filename for the error output.

12 Chapter 4. userconfig

testcode Documentation, Release dev

Default: tc.skip tc.args tc.test.

skip_program [string] Path to the program to test whether to skip the comparison of the test and benchmark. If null,
then this test is not performed. Default: null string.

submit_pattern [string] String in the submit template to be replaced by the run command. Default: test-
code.run_cmd.

tolerance [tolerance format (see below.)] Default tolerance for tests of this type. Default: inherits from [user].

verify [boolean] True if the extraction program compares the benchmark and test outputs directly. See Test verifica-
tion for more details. Default: False.

vcs [string] Version control system used for the source code. This is used to label the benchmarks. The program
binary is assumed to be in the same directory tree as the source code. Supported values are: hg, git and svn and
None. If vcs is set to None, then the version id of the program is requested interactively when benchmarks are
produced. Default: None.

Most settings are optional and need only be set if certain functionality is required or the default is not appropriate. Note
that at least one of data_tag, extract_fn or extract_program must be supplied and are used in that order of precedence.

In addition, the following variables are used, if present, as default settings for all tests of this type:

• inputs_args (no default)

• nprocs (default: 0)

• min_nprocs (default: 0)

• max_nprocs (default: 2^31-1 or 2^63-1)

• output (no default)

• run_concurrent (defailt: false)

• submit_template

See jobconfig for more details.

All other settings are assumed to be paths to other versions of the program (e.g. a stable version). Using one of these
versions instead of the one listed under the ‘exe’ variable can be selected by an option to testcode.py.

4.3 Tolerance format

The format for the tolerance for the data is very specific. Individual tolerance elements are specified in a comma-
separated list. Each individual tolerance element is a python tuple (essentially a comma-separated list enclosed in
parentheses) consisting of, in order, the absolute tolerance, the relative tolerance, the label of the field to which the
tolerances apply and a boolean value specifying the strictness of the tolerance (see below). The labels must be quoted.
If no label is supplied (or is set to None) then the setting is taken to be the default tolerance to be applied to all data. If
the strictness value is not given, the tolerance is assumed to be strict. For example, the setting:

(1e-8, 1.e-6), (1.e-4, 1.e-4, 'Force')

uses an absolute tolerance of 10^-8 and a relative tolerance of 10^-6 by default and an absolte tolerance and a relative
tolerance of 10^-4 for data items labelled with ‘Force’ (i.e. in columns headed by ‘Force’ using an external data
extraction program or labelled ‘Force’ by the internal data extraction program using data tags). If a tolerance is set to
None, then it is ignored. At least one of the tolerances must be set.

A strict tolerance requires both the test value to be within the absolute and relative tolerance of the benchmark value
in order to be considered to pass. This is the default behaviour. A non-strict tolerance only requires the test value to
be within the absolute or relative tolerance of the benchmark value. For example:

4.3. Tolerance format 13

testcode Documentation, Release dev

(1e-8, 1e-6, None, False), (1e-10, 1e-10, 'Energy')

sets the default absolute and relative tolerances to be 10^-8 and 10^-6 respectively and sets the default tolerance to be
non-strict except for the ‘Energy’ values, which have a strict absolute and relative tolerances of 10^-10. If only one of
the tolerances is set, then the strict and non-strict settings are equivalent.

Alternatively, the tolerance can be labelled by a regular expression, in which case any data labels which match the
regular expression will use that tolerance unless there is a tolerance with that specific label (i.e. exact matches override
a regular expression match). Note that this is the case even if the tolerance using the exact tolerance is defined in
userconfig and the regular expression match is defined in jobconfig.

4.4 Skipping tests

Sometimes a test should not be compared to the benchmark—for example, if the version of the program does not
support a given feature or can only be run in parallel. testcode supports this by running a command to detect whether
a test should be skipped.

If the skipped program is set, then the skipped command is ran before extracting data from output files. For example,
if

skip_program = grep skip_args = “is not implemented.”

are set, then testcode will run:

grep "is not implemented." test_file

where test_file is the test output file. If grep returns 0 (i.e. test_file contains the string “is not implemented”) then the
test is marked as skipped and the test file is not compared to the benchmark.

14 Chapter 4. userconfig

CHAPTER 5

Test verification

testcode compares selected data from an output with previously obtained output (the ‘benchmark’); a test passes if all
data is within a desired tolerance. The data can be compared using an absolute tolerance and/or a relative tolerance.
testcode needs some way of knowing what data from the output files should be validated. There are four options.

• label output with a ‘data tag’

If a data tag is supplied, then testcode will search each output file for lines starting with that tag. The first
numerical entry on those lines will then be checked against the benchmark. For example, if the data tag is set to
be ‘[QA]’, and the line

[QA] Energy = 1.23456 eV

appears in the test output, then testcode will ensure the value 1.23456 is identical (within the specified tolerance)
to the equivalent line in the benchmark output. The text preceding the value is used to label that data item; lines
with identical text but different values are handled but it is assumed that such lines always come in the same
(relative) order.

• user-supplied data extraction python function

An arbitrary python module can be imported and a function contained in the module called with a test or
benchmark output filename as its sole argument. The function must return the extracted data from the output
file as a python dict with keys labelling each data item (corresponding to the keys used for setting tolerances)
and lists or tuples as values containing the data to be compared. For example:

{
'val 1': [1.2, 8.7],
'val 2': [2, 4],
'val 3': [3.32, 17.2],

}

Each entry need not contain the same amount of data:

{
'val 1': [1.2, 8.7],
'val 2': [2, 4],
'val 3': [3.32, 17.2],
'val 4': [11.22],
'val 5': [221.0],

}

• user-supplied data extraction program

An external program can be used to extract data from the test and benchmark output. The program must print
the data to be compared in an output file in either a tabular format (default) or in a YAML format to standard
output. Using YAML format requires the PyYAML module to be installed.

15

http://pyyaml.org

testcode Documentation, Release dev

tabular format A row of text is assumed to start a table. Multiple tables are permitted, but each table must be
square (i.e. no gaps and the same number of elements on each row) and hence each column heading must
contain no spaces. For example, a single table is of the format:

val_1 val_2 val3
1.2 2 3.32
8.7 4 17.2

and a table containing multiple subtables:

val_1 val_2 val3
1.2 2 3.32
8.7 4 17.2

val_4 val_5
11.22 221.0

Tables need not be beautifully presented: the amount of whitespace between each table cell is not impor-
tant, so long as there’s at least one space separating adjacent cells.

Column headings are used to label the data in the subsequent rows. These labels can be used to specify
different tolerances for different types of data.

YAML format The format accepted is a very restricted subset of YAML. Specifically, only one YAML docu-
ment is accepted and that document must contain a single block mapping. Each key in the block mapping
can contain a single data element to be compared or block sequence containing a series of data elements
to be compared. However, block sequences may not be nested. The equivalent YAML formats for the two
examples given above are:

val_1:
- 1.2
- 8.7

val_2:
- 2
- 4

val_3:
- 3.32
- 17.2

and:

val_1:
- 1.2
- 8.7

val_2:
- 2
- 4

val_3:
- 3.32
- 17.2

val_4: 11.22
val_5: 221.0

See the PyYAML documentation for more details.

Non-numerical values apart from the column headings in tabular ouput are required to be equal (within python’s
definition of equality for a given object).

• user-supplied verification program

An external program can be used to validate the test output; the program must set an exit status of 0 to indicate
the test passed and a non-zero value to indicate failure.

16 Chapter 5. Test verification

http://pyyaml.org/wiki/PyYAMLDocumentation

CHAPTER 6

testcode.py

6.1 Synopsis

testcode.py [options] [action1 [action2...]]

6.2 Description

Run a set of actions on a set of tests.

Requires two configuration files, jobconfig and userconfig. See testcode documentation for further details.

testcode.py provides a command-line interface to testcode, a simple framework for comparing output from (principally
numeric) programs to previous output to reveal regression errors or miscompilation.

6.3 Actions

‘’run” is th default action.

compare compare set of test outputs from a previous testcode run against the benchmark outputs.

diff diff set of test outputs from a previous testcode run against the benchmark outputs.

make-benchmarks create a new set of benchmarks and update the userconfig file with the new benchmark id. Also
runs the ‘run’ action unless the ‘compare’ action or ‘recheck’ action is also given.

recheck compare set of test outputs from a previous testcode run against benchmark outputs and rerun any failed
tests.

run run a set of tests and compare against the benchmark outputs.

tidy Remove files from previous testcode runs from the test directories.

6.4 Options

-h, --help show this help message and exit

-b BENCHMARK, --benchmark=BENCHMARK Set the file ID of the benchmark files. If
BENCHMARK is in the format t:ID, then the test files with the corresponding

17

testcode Documentation, Release dev

ID are used. This allows two sets of tests to be compared. Default: specified in
the [user] section of the userconfig file.

-c CATEGORY, --category=CATEGORY Select the category/group of tests. Can be specified mul-
tiple times. Wildcards or parent directories can be used to select multiple direc-
tories by their path. Default: use the _default_ category if run is an action unless
make-benchmarks is an action. All other cases use the _all_ category by default.
The _default_ category contains all tests unless otherwise set in the jobconfig file.

-e EXECUTABLE, --executable=EXECUTABLE Set the executable(s) to be used to run the tests.
Can be a path or name of an option in the userconfig file, in which case all test
programs are set to use that value, or in the format program_name=value, which
affects only the specified program. Only relevant to the run action. Default: exe
variable set for each program listed in the userconfig file.

-f, --first-run Run tests that were not were not run in the previous testcode run. Only relevant
to the recheck action. Default: False.

-i, --insert Insert the new benchmark into the existing list of benchmarks in userconfig rather
than overwriting it. Only relevant to the make-benchmarks action. Default: False.

--jobconfig=JOBCONFIG Set path to the job configuration file. Default: jobconfig.

--job-option=JOB_OPTION Override/add setting to jobconfig. Takes three arguments. Format: sec-
tion_name option_name value. Default: none.

--older-than=OLDER_THAN Set the age (in days) of files to remove. Only relevant to the tidy action.
Default: 14 days.

-p NPROCS, --processors=NPROCS Set the number of processors to run each test on. Only relevant
to the run action. Default: run tests as serial jobs.

-q, --quiet Print only minimal output. Default: False.

-s QUEUE_SYSTEM, --submit=QUEUE_SYSTEM Submit tests to a queueing system of the spec-
ified type. Only PBS system is currently implemented. Only relevant to the run
action. Default: none.

-t TEST_ID, --test-id=TEST_ID Set the file ID of the test outputs. If TEST_ID is in the format b:ID,
then the benchmark files with the corresponding ID are used. This allows two
sets of benchmarks to be compared. Default: unique filename based upon date if
running tests and most recent test_id if comparing tests.

--total-processors=TOT_NPROCS Set the total number of processors to use to run as many tests as
possible at the same time. Relevant only to the run option. Default: run all tests
concurrently run if –submit is used; run tests sequentially otherwise.

--userconfig=USERCONFIG Set path to the user configuration file. Default: userconfig.

--user-option=USER_OPTION Override/add setting to userconfig. Takes three arguments. Format:
section_name option_name value. Default: none.

-v, --verbose Increase verbosity of output. Can be specified up to two times. The default
behaviour is to print out the test and its status. (See the –quiet option to suppress
even this.) Specify -v or –verbose once to show (if relevant) which data values
caused warnings or failures. Specify -v or –verbose twice to see all (external)
commands run and all data extracted from running the tests. Using the maximum
verbosity level is highly recommended for debugging.

18 Chapter 6. testcode.py

testcode Documentation, Release dev

6.5 Exit status

1 if one or more tests fail (run and compare actions only) and 0 otherwise.

6.6 License

Modified BSD License. See LICENSE in the source code for more details.

6.7 Bugs

Contact James Spencer (j.spencer@imperial.ac.uk) regarding bug reports, suggestions for improvements or code con-
tributions.

6.5. Exit status 19

mailto:j.spencer@imperial.ac.uk

testcode Documentation, Release dev

20 Chapter 6. testcode.py

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

21

	Installation
	Configuration files
	jobconfig
	userconfig
	Test verification
	testcode.py
	Indices and tables

