

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 The following is a list of ideas of functionality which would be nice
to have in rst.el. In the examples a @ stands for the cursor.

Convert to id

	Convert the region to an HTML id

	For instance “Eine ?berschrift” to “eine-berschrift”

	According the same rules as reST does this

Jump to internal target

	A command to jump to the internal target the point is on

	A target may be

	A section title

	Footnotes / citations

	Inline internal targets

	Hyperlink target definition

	Substitution definition

	See hunk #26 in rst_el-emacs_V23_1_patch1_1_2 vs. emacs_V23_1
for some ideas

Completion for directive options

	Imagine

.. list-table::
 :@

with the cursor at the asterisk

	There should be a command which offers all the possible options for
this particular directive as completion

	May be skeleton.el can also be useful

Completion for directives

	Imagine

.. @

	There should be a command which offers all directives as completion

	May be this should work for other keywords as well

	May be this could work even at the beginning of the line

	Completion must be bound to M-TAB

	Already existing binding must be chained

	May be expand.el can help (look in package finder)?

	May be hippie is good here

	Check (info)autotype

Completion for user-defined elements

	Imagine

|@

or

[@

or

_@

	There should be a command which offers all defined substitutions /
footnotes / links as completion

Insertion of link alias

	Imagine

Aspect of something
===================

This is about the `aspect of something`_@

	There should be a command which asks you for an alias for the link,
add the alias and change the link

.. _aspects of something:

Aspect of something
===================

This is about the `aspects of something`_@

Smart use of iimage-mode

	There is iimage-mode which shows .. image::s in Emacs

	May be we can add a binding to toggle it

TOC in speedbar

	If the TOC is displayed in the speedbar this could be used for
permanent navigation

	Probably imenu functionality can be used for this

	See imenu documentation and speedbar-use-imenu-flag

	See speedbar

toc-mode without markup

	The markup which may be contained in a section title is not useful
in toc-mode and should be suppressed

Sophisticated navigation in sections

	Navigation in sections similar to navigation in other structured data

	Like XML, Lisp

	C-M-u f?r Up

	C-M-d f?r Down

	C-M-f / C-M-b f?r Forward / Backward

Display of current location

	Display the “section path” to the current point

	Like in XML: In which element is the point?

toc-mode only to a certain level

	If a TOC buffer is created a prefix argument should limit the depth
of the listing to the given level

Imenu support or similar

	Imenu could be supported

	See (elisp)Imenu

	etags could be supported

	See (emacs)Tags and etags.el

	May be this can be used for generating HTML local tags somehow?

	As requested by Convert to id

	Could use complete-tag

Outline support

	Support for outline-mode / allout-mode would be nice

	Should consider section titles

	May be item lists can also be included

	Using allout-mode is difficult

	It’s not customizable enough for the complex syntax of
reStructuredText

	However, some commands make sense

	Motion commands

	Exposure commands

	Some alteration commands

	Should be reimplemented

	Key bindings need to be reused

	However, care must be taken if a file uses allout-mode for
instance by comment strings

	In this case key bindings must not be overridden

	A command adding / updating allout-mode tags could be a solution

Sophisticated filling

	These things must be filled special:

	Definitions

	Filling of

* VeryLongWordSuchAsAnURLVeryLongWordSuchAsAnURLVeryLongWordSuchAsAnURLVeryLongWordSuchAsAnURLVeryLongWordSuchAsAnURL

should work as expected by not breaking the line

	May be fill-nobreak-predicate can help here

	These things may not be filled at all

	Literal blocks

	Tables

	Section headers

	Link definitions

	May be fill-nobreak-predicate can help here, too

	May be defining an own auto-fill-function may be useful

	Might prevent auto-filling of literal text

	Filling of a re-indented item doesn’t work as expected:

* Something just indented once more by the user
though continuation line is not indented already

	Alternatively indentation could indent the whole item

	See Sophisticated indentation

Sophisticated indentation

	It should be generally possible to shift one more to the right

	This makes indentation for quotes possible

	But not for literal blocks

	For item lists the best tab should be on the same level as the last
item:

* bla

@

	The second best tab should be where text starts:

* bla

 @

	<backtab> should be used to indent in the other direction

	Or may be C-u <tab> but this has a different meaning

	<tab> could obsolete C-c C-r <tab>

	For this the indentation needs to be determined at the start
instead of per line

	<tab> over list works:

Text

 * GGGGGG
 * SSSSSSSSSSSSSSS
 * TTTTTTTT
 * ZZZZZZZZ

	<tab> over list doesn’t work:

Text

* GGGGGG
* SSSSSSSSSSSSSSS
* TTTTTTTT
* ZZZZZZZZ

	An indenting tab on the head of a list item should indent the whole
list item instead of only the first line

	Alternatively fill-paragraph could do so

	See Sophisticated filling

	May be refill-mode can be useful

List to sections

	A command would be nice which

	transforms the first level of a nested list in a region into a
header

	removes one level of indentation from the rest of the list

Change section level by more than one step

	It would be nice if <C-h> rst-adjust could rotate a section
adornment more than one level

	A modification of the semantic of the prefix arguments could do this

	Non-zero numeric prefix arg n rotates n step in the given direction

	Prefix arg 0 toggles overline / underline

	This would be different from current setup

Compiling for syntax check

	Compiling with results going to /dev/null would be useful

	This would just do a syntax check with no files lying around

	Toolset choice for <C-c C-c C-c> rst-compile must be by
customizable if at all necessary

	Customization group must be used

Renumber an exisiting enumeration

	Renumbering an exisiting enumeration is not possible yet

Command to move across blocks

	A command moving forward / backward across the content blocks of the
current block would be nice

	For instance: Move across all blocks contained in an item or field

	This would move to the start of the sibling of the current block

	Would allow to jump to the next item on the same level in a list

	<C-M-f> forward-sexp could be a nice binding

rst-toc-insert features

	The contents:: options could be parsed to figure out how deep to
render the inserted TOC

	On load, detect any existing TOCs and set the properties for links

	TOC insertion should have an option to add empty lines

	TOC insertion should deal with multiple lines

	Automatically detect if we have a section-numbering:: in the
corresponding section, to render the toc.

Automatic handling of .txt files

It would be nice to differentiate between text files using
reStructuredText and other general text files. If we had a function to
automatically guess whether a .txt file is following the
reStructuredText conventions, we could trigger rst-mode without
having to hard-code this in every text file, nor forcing the user to
add a local mode variable at the top of the file. We could perform
this guessing by searching for a valid adornment at the top of the
document or searching for reStructuredText directives further on.

Entry level for rst-straighten-adornments

	rst-straighten-adornments should have an entry level to start at a
lower than the top level

	I for one prefer a verbose style for top level titles which is not
appropriate for documents without titles

	Should be done by a prefix argument

Support for ispell

	ispell may skip certain things

	Using ispell-skip-region-alist

	Code should be skipped

	Literal text after :: should be skipped

	A customization should switch this on so users are not surprised

Marriage with forms-mode

	Like I married forms-mode with sdf-mode

	Would allow editing a number of records with a fixed layout

	The base reStructuredText file should be either

	a list consisting of field lists

	The separator needs to be defined, however

	A section header or transition may be a useful separator

	a list-table

	a CSV file

	That would call for a general support for CSV support for forms

	May be orgtbl-to-csv in org/org-table.el could be useful for
this

Marriage with org-mode

	May be Org mode can be utilized instead of forms-mode

	See orgtbl-mode

	See orgstruct-mode

	Though this looks more like allout-mode

Intelligent quote insertion

	Use or develop something like insert-pair

	Main use for forgotten quoting

	Thus may rather quote preceding word than following one

	If forward-sexp could be overridden insert-pair might me
usable directly

	Also add something like delete-pair

Sophisticated alignment

	May be aligning can be used to get results like this

	Some

	Field

	Longer name

	Aligned

	Even longer name

	More aligned

	See align.el

Restructure docutils’ docs

Mentally separate / distinguish docutils from reStructuredText.

This is refactor that needs to be backed with redirects if it were to go
live. See 301 redirects below.

Test

$./tools/buildhtml.py . && python -m SimpleHTTPServer

todo

Reorganize files inside of reST folder

After a preliminary look /docs/reST/{howto,user}/ may be better if
consolidated into /docs/reST/usage/.

/docs/reST “Hub” page

/docs/reST would be served best by an index page which lays out the
available docs for the user.

This can be organized in a visually friendly fashion and incorporate
touches of CSS for positioning.

Update internal links

Update internal links for all changed files.

301 redirects

For this to work successfully on the SourceForge project pages, without
breaking the old conventions, the old URL’s must be made into 301 Moved
Permanently redirects for the following:

dev/rst
> moved to reST/dev
dev/rst/alternatives.html
dev/rst/problems.html
howto/rst-directives.html
> moved to reST/howto/rst-directives.html
howto/rst-roles.html
> moved to reST/howto/rst-roles.html
reST
reST/dev
> moved from dev/rst
reST/howto
reST/howto/rst-directives.html
> moved from howto/rst-directives.html
reST/howto/rst-roles.html
> moved from howto/rst-roles.html
reST/ref
reST/ref/definitions.html
> moved from ref/rst/definitions.html
reST/ref/directives.html
> moved from ref/rst/directives.html
reST/ref/introduction.html
> moved from ref/rst/introduction.html
reST/ref/restructuredtext.html
> moved from ref/rst/restructuredtext.html
reST/ref/roles.html
> moved from ref/rst/roles.html
reST/user
reST/user/cheatsheet.html
> moved from user/rst/cheatsheet.html
reST/user/demo.html
> moved from user/rst/demo.html
reST/user/images
> moved from user/rst/images
reST/user/quickref.html
> moved from user/rst/quickref.html
reST/user/quickstart.html
> moved from user/rst/quickstart.html
ref/rst
ref/rst/definitions.html
> moved to reST/ref/definitions.html
ref/rst/directives.html
> moved to reST/ref/directives.html
ref/rst/introduction.html
> moved to reST/ref/introduction.html
ref/rst/restructuredtext.html
> moved to reST/ref/restructuredtext.html
ref/rst/roles.html
> moved to reST/ref/roles.html
user/rst
user/rst/cheatsheet.html
> moved to reST/user/cheatsheet.html
user/rst/demo.html
> moved to reST/user/demo.html
user/rst/images
> moved to reST/user/images

According to SourceForge Project Web Services [http://sourceforge.net/p/forge/documentation/Project%20Web%20Services/] there is mod_rewrite
support.

Example of .htaccess rule:

Options +FollowSymlinks -MultiViews
RewriteEngine On
RewriteBase /
RewriteRule ^user/rst/demo.html /reST/user/demo.html [R=301,NC,L]

setuptools

Configure docutils to use setuptools instead of distutils.

The history around python packaging is convuluted 1 2 3.

The internals of docutil would be benefit from upgrading the tooling to be
on par with the python ecosystem. This is especially important since many
modern python projects rely on docutils.

	distutils was merged into setuptools [https://mail.python.org/pipermail/distutils-sig/2013-March/020126.html] in 2013.

	It is recommended as a tool in the Python Packaging User Guide [https://packaging.python.org/en/latest/], which
is ran by PyPA, who runs the official python package index (PyPI).

However, this cannot come at the expense of breaking compatibility with
existing functionality. This sandbox / branch also incorporates
researching concrete details on the implications setuptools would have to
the tooling of the project and its’ compatibility.

Links

	setuptools docs [https://pythonhosted.org/setuptools/setuptools.html]

	1

	http://www.aosabook.org/en/packaging.html

	2

	http://lucumr.pocoo.org/2012/6/22/hate-hate-hate-everywhere/

	3

	http://stackoverflow.com/a/14753678

 The following is a list of ideas of functionality which would be nice
to have in rst.el. In the examples a @ stands for the cursor.

Convert to id

	Convert the region to an HTML id

	For instance “Eine ?berschrift” to “eine-berschrift”

	According the same rules as reST does this

Jump to internal target

	A command to jump to the internal target the point is on

	A target may be

	A section title

	Footnotes / citations

	Inline internal targets

	Hyperlink target definition

	Substitution definition

	See hunk #26 in rst_el-emacs_V23_1_patch1_1_2 vs. emacs_V23_1
for some ideas

Completion for directive options

	Imagine

.. list-table::
 :@

with the cursor at the asterisk

	There should be a command which offers all the possible options for
this particular directive as completion

	May be skeleton.el can also be useful

Completion for directives

	Imagine

.. @

	There should be a command which offers all directives as completion

	May be this should work for other keywords as well

	May be this could work even at the beginning of the line

	Completion must be bound to M-TAB

	Already existing binding must be chained

	May be expand.el can help (look in package finder)?

	May be hippie is good here

	Check (info)autotype

Completion for user-defined elements

	Imagine

|@

or

[@

or

_@

	There should be a command which offers all defined substitutions /
footnotes / links as completion

Insertion of link alias

	Imagine

Aspect of something
===================

This is about the `aspect of something`_@

	There should be a command which asks you for an alias for the link,
add the alias and change the link

.. _aspects of something:

Aspect of something
===================

This is about the `aspects of something`_@

Smart use of iimage-mode

	There is iimage-mode which shows .. image::s in Emacs

	May be we can add a binding to toggle it

TOC in speedbar

	If the TOC is displayed in the speedbar this could be used for
permanent navigation

	Probably imenu functionality can be used for this

	See imenu documentation and speedbar-use-imenu-flag

	See speedbar

toc-mode without markup

	The markup which may be contained in a section title is not useful
in toc-mode and should be suppressed

Sophisticated navigation in sections

	Navigation in sections similar to navigation in other structured data

	Like XML, Lisp

	C-M-u f?r Up

	C-M-d f?r Down

	C-M-f / C-M-b f?r Forward / Backward

Display of current location

	Display the “section path” to the current point

	Like in XML: In which element is the point?

toc-mode only to a certain level

	If a TOC buffer is created a prefix argument should limit the depth
of the listing to the given level

Imenu support or similar

	Imenu could be supported

	See (elisp)Imenu

	etags could be supported

	See (emacs)Tags and etags.el

	May be this can be used for generating HTML local tags somehow?

	As requested by Convert to id

	Could use complete-tag

Outline support

	Support for outline-mode / allout-mode would be nice

	Should consider section titles

	May be item lists can also be included

	Using allout-mode is difficult

	It’s not customizable enough for the complex syntax of
reStructuredText

	However, some commands make sense

	Motion commands

	Exposure commands

	Some alteration commands

	Should be reimplemented

	Key bindings need to be reused

	However, care must be taken if a file uses allout-mode for
instance by comment strings

	In this case key bindings must not be overridden

	A command adding / updating allout-mode tags could be a solution

Sophisticated filling

	These things must be filled special:

	Definitions

	Filling of

* VeryLongWordSuchAsAnURLVeryLongWordSuchAsAnURLVeryLongWordSuchAsAnURLVeryLongWordSuchAsAnURLVeryLongWordSuchAsAnURL

should work as expected by not breaking the line

	May be fill-nobreak-predicate can help here

	These things may not be filled at all

	Literal blocks

	Tables

	Section headers

	Link definitions

	May be fill-nobreak-predicate can help here, too

	May be defining an own auto-fill-function may be useful

	Might prevent auto-filling of literal text

	Filling of a re-indented item doesn’t work as expected:

* Something just indented once more by the user
though continuation line is not indented already

	Alternatively indentation could indent the whole item

	See Sophisticated indentation

Sophisticated indentation

	It should be generally possible to shift one more to the right

	This makes indentation for quotes possible

	But not for literal blocks

	For item lists the best tab should be on the same level as the last
item:

* bla

@

	The second best tab should be where text starts:

* bla

 @

	<backtab> should be used to indent in the other direction

	Or may be C-u <tab> but this has a different meaning

	<tab> could obsolete C-c C-r <tab>

	For this the indentation needs to be determined at the start
instead of per line

	<tab> over list works:

Text

 * GGGGGG
 * SSSSSSSSSSSSSSS
 * TTTTTTTT
 * ZZZZZZZZ

	<tab> over list doesn’t work:

Text

* GGGGGG
* SSSSSSSSSSSSSSS
* TTTTTTTT
* ZZZZZZZZ

	An indenting tab on the head of a list item should indent the whole
list item instead of only the first line

	Alternatively fill-paragraph could do so

	See Sophisticated filling

	May be refill-mode can be useful

List to sections

	A command would be nice which

	transforms the first level of a nested list in a region into a
header

	removes one level of indentation from the rest of the list

Change section level by more than one step

	It would be nice if <C-h> rst-adjust could rotate a section
adornment more than one level

	A modification of the semantic of the prefix arguments could do this

	Non-zero numeric prefix arg n rotates n step in the given direction

	Prefix arg 0 toggles overline / underline

	This would be different from current setup

Compiling for syntax check

	Compiling with results going to /dev/null would be useful

	This would just do a syntax check with no files lying around

	Toolset choice for <C-c C-c C-c> rst-compile must be by
customizable if at all necessary

	Customization group must be used

Renumber an exisiting enumeration

	Renumbering an exisiting enumeration is not possible yet

Command to move across blocks

	A command moving forward / backward across the content blocks of the
current block would be nice

	For instance: Move across all blocks contained in an item or field

	This would move to the start of the sibling of the current block

	Would allow to jump to the next item on the same level in a list

	<C-M-f> forward-sexp could be a nice binding

rst-toc-insert features

	The contents:: options could be parsed to figure out how deep to
render the inserted TOC

	On load, detect any existing TOCs and set the properties for links

	TOC insertion should have an option to add empty lines

	TOC insertion should deal with multiple lines

	Automatically detect if we have a section-numbering:: in the
corresponding section, to render the toc.

Automatic handling of .txt files

It would be nice to differentiate between text files using
reStructuredText and other general text files. If we had a function to
automatically guess whether a .txt file is following the
reStructuredText conventions, we could trigger rst-mode without
having to hard-code this in every text file, nor forcing the user to
add a local mode variable at the top of the file. We could perform
this guessing by searching for a valid adornment at the top of the
document or searching for reStructuredText directives further on.

Entry level for rst-straighten-adornments

	rst-straighten-adornments should have an entry level to start at a
lower than the top level

	I for one prefer a verbose style for top level titles which is not
appropriate for documents without titles

	Should be done by a prefix argument

Support for ispell

	ispell may skip certain things

	Using ispell-skip-region-alist

	Code should be skipped

	Literal text after :: should be skipped

	A customization should switch this on so users are not surprised

Marriage with forms-mode

	Like I married forms-mode with sdf-mode

	Would allow editing a number of records with a fixed layout

	The base reStructuredText file should be either

	a list consisting of field lists

	The separator needs to be defined, however

	A section header or transition may be a useful separator

	a list-table

	a CSV file

	That would call for a general support for CSV support for forms

	May be orgtbl-to-csv in org/org-table.el could be useful for
this

Marriage with org-mode

	May be Org mode can be utilized instead of forms-mode

	See orgtbl-mode

	See orgstruct-mode

	Though this looks more like allout-mode

Intelligent quote insertion

	Use or develop something like insert-pair

	Main use for forgotten quoting

	Thus may rather quote preceding word than following one

	If forward-sexp could be overridden insert-pair might me
usable directly

	Also add something like delete-pair

Sophisticated alignment

	May be aligning can be used to get results like this

	Some

	Field

	Longer name

	Aligned

	Even longer name

	More aligned

	See align.el

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

