

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Pyodide documentation

Using Pyodide

	Using Pyodide directly from Javascript

	Using Pyodide from Iodide

	Type conversions: describes how data types are shared between Python and Javascript

	API Reference

Developing Pyodide

	Making new packages

	Development instructions

	Contributing

	Code of Conduct

API Reference

pyodide version 0.1.0

Backward compatibility of the API is not guaranteed at this point.

Python API

pyodide.open_url(url)

Fetches a given url and returns a io.StringIO to access its contents.

Parameters

name	type	description
——-	——	—————–
url	str	the URL to open

Returns

A io.StringIO object with the URL contents./

pyodide.eval_code(code, ns)

Runs a string of code. The last part of the string may be an expression, in which case, its value is returned.

This function may be overridden to change how pyodide.runPython interprets code, for example to perform
some preprocessing on the Python code first.

Parameters

name	type	description
——–	——-	———————–
code	str	the code to evaluate
ns	dict	evaluation name space

Returns

Either the resulting object or None.

pyodide.as_nested_list(obj)

Converts Javascript nested arrays to Python nested lists. This conversion can not
be performed automatically, because Javascript Arrays and Objects can be combined
in ways that are ambiguous.

Parameters

name	type	description
——–	——-	———————–
obj	JS Object	The object to convert

Returns

The object as nested Python lists.

Javascript API

pyodide.loadPackage(names)

Load a package or a list of packages over the network.

This makes the files for the package available in the virtual filesystem.
The package needs to be imported from Python before it can be used.

Parameters

name	type	description
——————-	—————–	—————————————
names	{String, Array}	package name, or URL. Can be either a single element, or an array.
messageCallback	function	A callback, called with progress messages. (optional)

Returns

Loading is asynchronous, therefore, this returns a Promise.

pyodide.loadedPackages

Array with loaded packages.

Use Object.keys(pyodide.loadedPackages) to access the names of the
loaded packages, and pyodide.loadedPackages[package_name] to access
install location for a particular package_name.

pyodide.pyimport(name)

Access a Python object from Javascript. The object must be in the global Python namespace.

For example, to access the foo Python object from Javascript:

var foo = pyodide.pyimport('foo')

Parameters

name	type	description
———	——–	———————-
names	String	Python variable name

Returns

name	type	description
———–	———	—————————————
object	any	If one of the basic types (string,
		number, boolean, array, object), the
		Python object is converted to
		Javascript and returned. For other
		types, a Proxy object to the Python
		object is returned.

pyodide.globals

An object whose attributes are members of the Python global namespace. This is a
more convenient alternative to pyodide.pyimport.

For example, to access the foo Python object from Javascript:

pyodide.globals.foo

pyodide.repr(obj)

Gets the Python’s string representation of an object.

This is equivalent to calling repr(obj) in Python.

Parameters

name	type	description
———	——–	———————
obj	any	Input object

Returns

name	type	description
————	———	——————————————-
str_repr	String	String representation of the input object

pyodide.runPython(code)

Runs a string of code. The last part of the string may be an expression, in which case, its value is returned.

Parameters

name	type	description
———	——–	——————————–
code	String	Python code to evaluate

Returns

name	type	description
————	———	———————————
jsresult	any	Result, converted to Javascript

pyodide.runPythonAsync(code, messageCallback)

Runs Python code, possibly asynchronously loading any known packages that the code
chunk imports.

For example, given the following code chunk

import numpy as np
x = np.array([1, 2, 3])

pyodide will first call pyodide.loadPackage(['numpy']), and then run the code
chunk, returning the result. Since package fetching must happen asynchronously,
this function returns a Promise which resolves to the output. For example, to
use:

pyodide.runPythonAsync(code, messageCallback)
 .then((output) => handleOutput(output))

Parameters

name	type	description
——————-	———-	——————————–
code	String	Python code to evaluate
messageCallback	function	Callback given status messages
		(optional)

Returns

name	type	description
————	———	——————————————
result	Promise	Resolves to the result of the code chunk

pyodide.version()

Returns the pyodide version.

It can be either the exact release version (e.g. 0.1.0), or
the latest release version followed by the number of commits since, and
the git hash of the current commit (e.g. 0.1.0-1-bd84646).

Parameters

None

Returns

name	type	description
———–	——–	————————
version	String	Pyodide version string

Creating a Pyodide package

Pyodide includes a set of automatic tools to make it easier to add new
third-party Python libraries to the build.

These tools automate the following steps to build a package:

	Download a source tarball (usually from PyPI)

	Confirm integrity of the package by comparing it to a checksum

	Apply patches, if any, to the source distribution

	Add extra files, if any, to the source distribution

	If the package includes C/C++/Cython extensions:

	Build the package natively, keeping track of invocations of the native
compiler and linker

	Rebuild the package using emscripten to target WebAssembly

	If the package is pure Python:

	Run the setup.py script to get the built package

	Package the results into an emscripten virtual filesystem package, which
comprises:

	A .data file containing the file contents of the whole package,
concatenated together

	A .js file which contains metadata about the files and installs them into
the virtual filesystem.

Lastly, a packages.json file is output containing the dependency tree of all
packages, so pyodide.loadPackage can load a package’s dependencies
automatically.

The meta.yaml file

Packages are defined by writing a meta.yaml file. The format of these files is
based on the meta.yaml files used to build Conda
packages [https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html],
though it is much more limited. The most important limitation is that Pyodide
assumes there will only be one version of a given library available, whereas
Conda allows the user to specify the versions of each package that they want to
install. Despite the limitations, keeping the file format as close as possible
to conda’s should make it easier to use existing conda package definitions as a
starting point to create Pyodide packages. In general, however, one should not
expect Conda packages to “just work” with Pyodide. (In the longer term, Pyodide
may use conda as its packaging system, and this should hopefully ease that
transition.)

There is a helper tool that will generate a meta.yaml for packages on PyPI
that will work for many pure Python packages. This tool will populate the latest
version, download link and sha256 hash by querying PyPI. It doesn’t currently
handle package dependencies. To run it, do:

bin/pyodide mkpkg $PACKAGE_NAME

The supported keys in the meta.yaml file are described below.

package

package/name

The name of the package. It must match the name of the package used when
expanding the tarball, which is sometimes different from the name of the package
in the Python namespace when installed. It must also match the name of the
directory in which the meta.yaml file is placed. It can only contain
alpha-numeric characters and -, _.

package/version

The version of the package.

source

source/url

The url of the source tarball.

The tarball may be in any of the formats supported by Python’s
shutil.unpack_archive: tar, gztar, bztar, xztar, and zip.

source/md5

The MD5 checksum of the tarball. It is recommended to use SHA256 instead of MD5.
At most one checksum entry should be provided per package.

source/sha256

The SHA256 checksum of the tarball. It is recommended to use SHA256 instead of MD5.
At most one checksum entry should be provided per package.

source/patches

A list of patch files to apply after expanding the tarball. These are applied
using patch -p1 from the root of the source tree.

source/extras

Extra files to add to the source tree. This should be a list where each entry is
a pair of the form (src, dst). The src path is relative to the directory in
which the meta.yaml file resides. The dst path is relative to the root of
source tree (the expanded tarball).

build

build/skip_host

Skip building C extensions for the host environment. Default: True.

Setting this to False will result in ~2x slower builds for packages that
include C extensions. It should only be needed when a package is a build
time dependency for other packages. For instance, numpy is imported during
installation of matplotlib, importing numpy also imports included C extensions,
therefore it is built both for host and target.

build/cflags

Extra arguments to pass to the compiler when building for WebAssembly.

(This key is not in the Conda spec).

build/ldflags

Extra arguments to pass to the linker when building for WebAssembly.

(This key is not in the Conda spec).

build/post

Shell commands to run after building the library. These are run inside of
bash, and there are two special environment variables defined:

	$SITEPACKAGES: The site-packages directory into which the package has been installed.

	$PKGDIR: The directory in which the meta.yaml file resides.

(This key is not in the Conda spec).

requirements

requirements/run

A list of required packages.

(Unlike conda, this only supports package names, not versions).

Installing packages from PyPI

Pyodide has experimental support for installing pure Python wheels from PyPI.

IMPORTANT: Since the packages hosted at files.pythonhosted.org don’t
support CORS requests, we use a CORS proxy at cors-anywhere.herokuapp.com to
get package contents. This makes a man-in-the-middle attack on the package
contents possible. However, this threat is minimized by the fact that the
integrity of each package is checked using a hash obtained directly from
pypi.org. We hope to have this improved in the future, but for now, understand
the risks and don’t use any sensitive data with the packages installed using
this method.

For use in Iodide:

%% py
import micropip
micropip.install('snowballstemmer')

Iodide implicitly waits for the promise to resolve when the packages have finished
installing...

%% py
import snowballstemmer
snowballstemmer.stemmer('english')
stemmer.stemWords('go goes going gone'.split())

For use outside of Iodide (just Python), you can use the then method on the
Promise that micropip.install returns to do work once the packages have
finished loading:

def do_work(*args):
 import snowballstemmer
 snowballstemmer.stemmer('english')
 stemmer.stemWords('go goes going gone'.split())

import micropip
micropip.install('snowballstemmer').then(do_work)

Type conversions

Python to Javascript conversions occur:

	when returning the final expression from a pyodide.runPython call (evaluating a Python cell in Iodide)

	using pyodide.pyimport

	passing arguments to a Javascript function from Python

Javascript to Python conversions occur:

	when using the from js import ... syntax

	returning the result of a Javascript function to Python

Basic types

The following basic types are implicitly converted between Javascript and
Python. The values are copied and any connection to the original object is lost.

Python	Javascript
—————–	———————
int, float	Number
str	String
True	true
False	false
None	undefined, null
list, tuple	Array
dict	Object

Typed arrays

Javascript typed arrays (Int8Array and friends) are converted to Python
memoryviews. This happens with a single binary memory copy (since Python can’t
access arrays on the Javascript heap), and the data type is preserved. This
makes it easy to correctly convert it to a Numpy array using numpy.asarray:

array = Float32Array([1, 2, 3])

from js import array
import numpy as np
numpy_array = np.asarray(array)

Python bytes and buffer objects are converted to Javascript as
Uint8ClampedArrays, without any memory copy at all, and is thus very
efficient, but be aware that any changes to the buffer will be reflected in both
places.

Numpy arrays are currently converted to Javascript as nested (regular) Arrays. A
more efficient method will probably emerge as we decide on an ndarray
implementation for Javascript.

Class instances

Any of the types not listed above are shared between languages using proxies
that allow methods and some operators to be called on the object from the other
language.

Javascript from Python

When passing a Javascript object to Python, an extension type is used to
delegate Python operations to the Javascript side. The following operations are
currently supported. (More should be possible in the future – work in ongoing
to make this more complete):

Python	Javascript
—————-	—————–
repr(x)	x.toString()
x.foo	x.foo
x.foo = bar	x.foo = bar
del x.foo	delete x.foo
x(...)	x(...)
x.foo(...)	x.foo(...)
X.new(...)	new X(...)
len(x)	x.length
x[foo]	x[foo]
x[foo] = bar	x[foo] = bar
del x[foo]	delete x[foo]
x == y	x == y
x.typeof	typeof x

One important difference between Python objects and Javascript objects is that
if you access a missing member in Python, an exception is raised. In Javascript,
it returns undefined. Since we can’t make any assumptions about whether the
Javascript member is missing or simply set to undefined, Python mirrors the
Javascript behavior. For example:

// Javascript
class Point {
 constructor(x, y) {
 this.x = x;
 this.y = y;
 }
}
point = new Point(42, 43))

python
from js import point
assert point.y == 43
del point.y
assert point.y is None

Python from Javascript

When passing a Python object to Javascript, the Javascript Proxy
API [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy]
is used to delegate Javascript operations to the Python side. In general, the
Proxy API is more limited than what can be done with a Python extension, so
there are certain operations that are impossible or more cumbersome when using
Python from Javascript than vice versa. The most notable limitation is that
while Python has distinct ways of accessing attributes and items (x.foo and
x[foo]), Javascript conflates these two concepts. The following operations are
currently supported:

Javascript	Python
—————-	————————–
foo in x	hasattr(x, 'foo')
x.foo	getattr(x, 'foo')
x.foo = bar	setattr(x, 'foo', bar)
delete x.foo	delattr(x, 'foo')
x.ownKeys()	dir(x)
x(...)	x(...)
x.foo(...)	x.foo(...)

An additional limitation is that when passing a Python object to Javascript,
there is no way for Javascript to automatically garbage collect that object.
Therefore, custom Python objects must be manually destroyed when passed to Javascript, or
they will leak. To do this, call .destroy() on the object, after which Javascript will no longer have access to the object.

var foo = pyodide.pyimport('foo');
foo.call_method();
foo.destroy();
foo.call_method(); // This will raise an exception, since the object has been
 // destroyed

Using Python objects from Javascript

A Python object (in global scope) can be brought over to Javascript using the
pyodide.pyimport function. It takes a string giving the name of the variable,
and returns the object, converted to Javascript (See type
conversions).

var sys = pyodide.pyimport('sys');

Using Javascript objects from Python

Javascript objects can be accessed from Python using the special js module.
This module looks up attributes of the global (window) namespace on the
Javascript side.

import js
js.document.title = 'New window title'

Performance considerations

Looking up and converting attributes of the js module happens dynamically. In
most cases, where the value is small or results in a proxy, this is not an
issue. However, if the value takes a long time to convert from Javascript to
Python, you may want to store it in a Python variable or use the from js import ... syntax.

For example, given this large Javascript variable:

var x = new Array(1000).fill(0)

Use it from Python as follows:

import js
x = js.x # conversion happens once here
for i in range(len(x)):
 item = x[i] # we don't pay the conversion price each time here

Or alternatively:

from js import x # conversion happens once here
for i in range(len(x)):
 item = x[i] # we don't pay the conversion price each time here

Using Pyodide from Iodide

This document describes using Pyodide inside Iodide. For information
about using Pyodide directly from Javascript, see Using Pyodide from
Javascript.

Running basic Python

Create a Python chunk, by inserting a line like this:

%% py

Type some Python code into the chunk, and press Shift+Enter to evaluate it. If
the last clause in the cell is an expression, that expression is evaluated,
converted to Javascript and displayed in the console like all other output
in Javascript. See type conversions for more information
about how data types are converted between Python and Javascript.

%% py
import sys
sys.version

Loading packages

Only the Python standard library and six are available after importing
Pyodide. Other available libraries, such as numpy and matplotlib are loaded
on demand.

If you just want to use the versions of those libraries included with Pyodide,
all you need to do is import and start using them:

%% py
import numpy as np
np.arange(10)

For most uses, that is all you need to know.

However, if you want to use your own custom package or load a package from
another provider, you’ll need to use the pyodide.loadPackage function from a
Javascript chunk. For example, to load a special distribution of Numpy from
custom.com:

%% js
pyodide.loadPackage('https://custom.com/numpy.js')

After doing that, the numpy you import from a Python chunk will be this special
version of Numpy.

Using a local build of Pyodide with Iodide

You may want to build a local copy of Pyodide with some changes and test it
inside of Iodide.

By default, Iodide will use a copy of Pyodide deployed to Netlify. However, it
will use locally-installed copy of Pyodide if USE_LOCAL_PYODIDE is set.

Set that environment variable in your shell:

export USE_LOCAL_PYODIDE=1

Then follow the building and running instructions for Iodide as usual.

Next, build Pyodide using the regular instructions in ../README.md. Copy the
contents of Pyodide’s build directory to your Iodide checkout’s build/pyodide
directory:

mkdir $IODIDE_CHECKOUT/build/pyodide
cp $PYODIDE_CHECKOUT/build/* $IODIDE_CHECKOUT/build/pyodide

Using Pyodide from Javascript

This document describes using Pyodide directly from Javascript. For information
about using Pyodide from Iodide, see Using Pyodide from
Iodide.

Startup

Include pyodide.js in your project.

The recommended way to include Pyodide in your project is to download a release
from here [https://github.com/iodide-project/pyodide/releases] and include the
contents in your distribution, and import the pyodide.js file there from a
<script> tag.

For prototyping purposes, you may also use the following CDN URL, though doing
so is not recommended, since it isn’t versioned and could change or be unstable
at any time:

https://pyodide.cdn.iodide.io/pyodide.js

This file has a single Promise object which bootstraps the Python environment:
languagePluginLoader. Since this must happen asynchronously, it is a
Promise, which you must call then on to complete initialization. When the
promise resolves, pyodide will have installed a namespace in global scope:
pyodide.

languagePluginLoader.then(() => {
 // pyodide is now ready to use...
 console.log(pyodide.runPython('import sys\nsys.version'));
});

Running Python code

Python code is run using the pyodide.runPython function. It takes as input a
string of Python code. If the code ends in an expression, it returns the result
of the expression, converted to Javascript objects (See type
conversions).

pyodide.runPython('import sys\nsys.version'));

Loading packages

Only the Python standard library and six are available after importing
Pyodide. To use other libraries, you’ll need to load their package using
pyodide.loadPackage. This downloads the file data over the network (as a
.data and .js index file) and installs the files in the virtual filesystem.

Packages can be loaded by name, for those included in the official pyodide
repository (e.g. pyodide.loadPackage('numpy')). It is also possible to load
packages from custom URLs (e.g.
pyodide.loadPackage('https://foo/bar/numpy.js')), in which case the URL must
end with <package-name>.js.

When you request a package from the official repository, all of that package’s
dependencies are also loaded. Dependency resolution is not yet implemented
when loading packages from custom URLs.

Multiple packages can also be loaded in a single call,

pyodide.loadPackage(['cycler', 'pytz'])

pyodide.loadPackage returns a Promise.

pyodide.loadPackage('matplotlib').then(() => {
 // matplotlib is now available
});

Complete example

TODO

Using Pyodide from a web worker

This document describes how to use pyodide to execute python scripts
asynchronously in a web worker.

Startup

Setup your project to serve webworker.js. You should also serve
pyodide.js, and all its associated .asm.js, .data, .json, and .wasm
files as well, though this is not strictly required if pyodide.js is pointing
to a site serving current versions of these files.

Update the webworker.js sample so that it has as valid URL for pyodide.js, and sets
self.languagePluginUrl to the location of the supporting files.

In your application code create a web worker, and add listeners for onerror
and onmessage.

Call postMessage on your web worker, passing an object with the key python
containing the script to execute as a string. You may pass other keys in the
data object. By default the web worker assigns these to its global scope so that
they may be imported from python. The results are returned as the results key,
or if an error was encountered, it is returned in the error key.

For example:

var pyodideWorker = new Worker('./webworker.js')

pyodideWorker.onerror = (e) => {
 console.log(`Error in pyodideWorker at ${e.filename}, Line: ${e.lineno}, ${e.message}`)
}

pyodideWorker.onmessage = (e) => {
 const {results, error} = e.data
 if (results) {
 console.log('pyodideWorker return results: ', results)
 } else if (error) {
 console.log('pyodideWorker error: ', error)
 }
}

const data = {
 A_rank: [0.8, 0.4, 1.2, 3.7, 2.6, 5.8],
 python:
 'import statistics\n' +
 'from js import A_rank\n' +
 'statistics.stdev(A_rank)'
}

pyodideWorker.postMessage(data)

Loading packages

Packages referenced from your python script will be automatically downloaded
the first time they are encountered. Please note that some of the larger
packages such as numpy or pandas may take several seconds to load.
Subsequent uses of these packages will not incur the download overhead of the
first run, but there is still some time required for the import in python
itself.

If you would like to pre-load some packages, or the automatic package loading
does not work for you for some reason, you may modify the webworker.js source
to load some specific packages as described in
Using Pyodide directly from Javascript.

For example, to always load packages numpy and pytz, you would insert the
line self.pyodide.loadPackage(['numpy', 'pytz']).then(() => { as shown below:

self.languagePluginUrl = 'http://localhost:8000/'
importScripts('./pyodide.js')

var onmessage = function(e) { // eslint-disable-line no-unused-vars
 languagePluginLoader.then(() => {
 self.pyodide.loadPackage(['numpy', 'pytz']).then(() => {
 const data = e.data;
 const keys = Object.keys(data);
 for (let key of keys) {
 if (key !== 'python') {
 // Keys other than python must be arguments for the python script.
 // Set them on self, so that `from js import key` works.
 self[key] = data[key];
 }
 }
 self.pyodide.runPythonAsync(data.python, () => {})
 .then((results) => { self.postMessage({results}); })
 .catch((err) => {
 // if you prefer messages with the error
 self.postMessage({error : err.message});
 // if you prefer onerror events
 // setTimeout(() => { throw err; });
 });
 });
 });
}

Caveats

Using a web worker is advantageous because the python code is run in a separate
thread from your main UI, and hence does not impact your application’s
responsiveness.
There are some limitations, however.
At present, Pyodide does not support sharing the Python interpreter and
packages between multiple web workers or with your main thread.
Since web workers are each in their own virtual machine, you also cannot share
globals between a web worker and your main thread.
Finally, although the web worker is separate from your main thread,
the web worker is itself single threaded, so only one python script will
execute at a time.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up.png

_static/up-pressed.png

