JWST Pipeline Documentation
Release 0.0.0.dev4079+9a8594987

jwst

Nov 10, 2018






Contents

1 Introduction 3
2 Reference Files 5
3 CRDS 7
4 Running From the Command Line 9
4.1 EBXitStatus . . . . ... e e e e e e e e e e 10
5 Running From Within Python 11
6 Universal Parameters 13
6.1  Output Directory . . . . . . . . o o e e e e e 13
6.2 OutputFile . . . . . . . . e e 13
6.3 Override Reference File . . . . . . . . . . . . e 14
6.4  SKID. . . . e 14
6.5 Logging Configuration . . . . . . . . . . . L e 15
7 Input Files 17
8 Output File Names 19
8.1  Pipeline/Step Suffix Definitions . . . . . . . . . . . . . e e e e e 19
8.2 Individual Step Outputs . . . . . . . . e e e e e e e e e e e 20
9 Configuration Files 21
10 Available Pipelines 23
11 For More Information 25
12 Package Documentation 27
12.1 PackageIndex . . . . . . . . . e e 27
Python Module Index 573







JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

genindex | modindex

Contents 1



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

2 Contents



CHAPTER 1

Introduction

This document provides instructions on running the JWST Science Calibration Pipeline (referred to as “the pipeline”)
and individual pipeline steps.

Pipeline modules are available for detector-level (stage 1) processing of data from all observing modes, stage 2 pro-
cessing for imaging and spectroscopic modes, and stage 3 processing for imaging, spectroscopic, coronagraphic,
Aperture Masking Interferometry (AMI), and Time Series Observations (TSO).

Stage 1 processing consists of detector-level corrections that must be performed on a group-by-group basis before
ramp fitting is applied. The output of stage 1 processing is a countrate image per exposure or per integration for some
modes. Details of this pipeline can be found at Stage I Pipeline Step Flow (calwebb_detectorl).

Stage 2 processing consists of additional corrections and calibrations to produce fully calibrated exposures. The details
differ for imaging and spectroscopic exposures, and there are some corrections that are unique to certain instruments
or modes. Details are at Strage 2 Imaging Pipeline Step Flow (calwebb_image2) and Stage 2 Spectroscopic Pipeline
Step Flow (calwebb_spec2).

Stage 3 processing consists of routines that work with multiple exposures and in most cases produce some kind of
combined product. There are dedicated (and unique) pipeline modules for stage 3 processing of imaging, spectro-
scopic, coronagraphic, AMI, and TSO observations. Details of each are available at Stage 3 Imaging Pipeline Step
Flow (calwebb_image3), Stage 3 Spectroscopic Pipeline Step Flow (calwebb_spec3), Stage 3 Coronagraphic Pipeline
Step Flow (calwebb_coron3), Stage 3 Aperture Masking Interferometry (AMI) Pipeline Step Flow (calwebb_ami3),
and Stage 3 Time-Series Observation(TSO) Pipeline Step Flow (calwebb_tso3).

The remainder of this document discusses pipeline configuration files and gives examples of running pipelines as a
whole or in individual steps.




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

4 Chapter 1. Introduction



CHAPTER 2

Reference Files

Many pipeline steps rely on the use of a set of reference files essential to ensure the correct and accurate process of
the data. The reference files are instrument-specific, and are periodically updated as the data process evolves and the
understanding of the instruments improves. They are created, tested and validated by the JWST Instrument Teams.
They ensure all the files are in the correct format and have all required header keywords. The files are then delivered
to the Reference Data for Calibration and Tools (ReDCaT) Management Team. The result of this process is the files
being ingested into CRDS (the JWST Calibration Reference Data System), and made available to the pipeline team
and any other ground-subsystem that needs access to them.

Information about all the reference files used by the Calibration Pipeline can be found at reference-file-formats-
documentation as well as in the documentation for the Calibration Step using them.




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

6 Chapter 2. Reference Files



CHAPTER 3

CRDS

CRDS reference file mappings are usually set by default to always give access to the most recent reference file deliver-
ies and selection rules. On occasion it might be necessary or desirable to use one of the non-default mappings in order
to, for example, run different versions of the pipeline software or use older versions of the reference files. This can be
accomplished by setting the environment variable CRDS_CONTEXT to the desired project mapping version, e.g.

’$ export CRDS_CONTEXT='jwst_0421.pmap"

The current storage location for all JIWST CRDS reference files is:

’/grp/crds/jwst/references/jwst/

Each pipeline step records the reference file that it used in the value of a header keyword in the output data file. The
keyword names use the syntax “R_<ref>”, where <ref> corresponds to a 6-character version of the reference file type,
such as R_DARK, R_LINEAR, and R_PHOTOM.




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

8 Chapter 3. CRDS



CHAPTER 4

Running From the Command Line

Individual steps and pipelines (consisting of a series of steps) can be run from the command line using the st run
command:

$ strun <class_name or cfg_file> <input_file>

The first argument to st run must be either the python class name of the step or pipeline to be run, or the name of a
configuration (.cfg) file for the desired step or pipeline (see Configuration Files below for more details). The second
argument to st run is the name of the input data file to be processed.

For example, running the full stage 1 pipeline or an individual step by referencing their class names is done as follows:

$ strun Jjwst.pipeline.DetectorlPipeline jw00017001001_01101_00001_nrcal_uncal.fits
$ strun jwst.dg_ init.DQInitStep jw00017001001_01101_00001_nrcal_uncal.fits

When a pipeline or step is executed in this manner (i.e. by referencing the class name), it will be run using all default
parameter values. The same thing can be accomplished by using the default configuration file corresponding to each:

$ strun calwebb_detectorl.cfg jw00017001001_01101_00001_nrcal_uncal.fits
$ strun dg_init.cfg jw00017001001_01101_00001_nrcal_uncal.fits

If you want to use non-default parameter values, you can specify them as keyword arguments on the command line
or set them in the appropriate cfg file. To specify parameter values for an individual step when running a pipeline use
the syntax ——steps.<step_name>.<parameter>=value. For example, to override the default selection of a
dark current reference file from CRDS when running a pipeline:

$ strun jwst.pipeline.DetectorlPipeline jw00017001001_01101_00001_nrcal_uncal.fits
—--steps.dark_current.override_dark='my_dark.fits'

$ strun calwebb_detectorl.cfg jw00017001001_01101_00001_nrcal_uncal.fits
—-—steps.dark_current.override_dark="my_dark.fits'

You can get a list of all the available arguments for a given pipeline or step by using the ‘-h’ (help) argument to strun:

$ strun dg_init.cfg -h
$ strun jwst.pipeline.DetectorlPipeline -h




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

If you want to consistently override the default values of certain arguments and don’t want to specify them on the
command line every time you execute st run, you can specify them in the configuration (.cfg) file for the pipeline or
the individual step. For example, to always run Detector1Pipeline using the override in the previous example,
you could edit your calwebb_detectorl. cfg file to contain the following:

name = "DetectorlPipeline"
class = "jwst.pipeline.DetectorlPipeline"

[steps]
[ [dark_current]]
override_dark = 'my_dark.fits'

Note that simply removing the entry for a step from a pipeline cfg file will NOT cause that step to be skipped when
you run the pipeline (it will simply run the step with all default parameters). In order to skip a step you must use the
skip = True argument for that step (see Skip below).

Alternatively, you can specify arguments for individual steps within the step’s configuration file and then reference
those step cfg files in the pipeline cfg file, such as:

name = "DetectorlPipeline"
class = "jwst.pipeline.DetectorlPipeline"

[steps]
[ [dark_current]]
config file = my_dark_current.cfg

where my_dark_current .cfg contains:

name = "dark_current"
class = "jwst.dark_current.DarkCurrentStep"
override_dark = 'my_dark.fits'

4.1 Exit Status

strun produces the following exit status codes:
* 0: Successful completion of the step/pipeline
* 1: General error occurred
* 64: No science data found

The “No science data found” condition is returned by the assign_wcs step of calwebb_spec2 when, after
successfully determining the WCS solution for a file, the WCS indicates that no science data will be found. This
condition is most often found with NIRSpec’s NRS2 detector. There are certain optical and MSA configurations in
which dispersion will not cross to the NRS2 detector.

10 Chapter 4. Running From the Command Line




CHAPTER B

Running From Within Python

You can execute a pipeline or a step from within python by using the call method of the class:

from jwst.pipeline import DetectorlPipeline
result = DetectorlPipeline.call ('jw00017001001_01101_00001_nrcal_uncal.fits")

from jwst.linearity import LinearityStep
result = LinearityStep.call('jw00001001001_01101_00001_mirimage_uncal.fits")

The easiest way to use optional arguments when calling a pipeline from within python is to set those parameters in the
pipeline cfg file and then supply the cfg file as a keyword argument:

DetectorlPipeline.call ('jw00017001001_01101_00001_nrcal_uncal.fits', config_file=
—'calwebb_detectorl.cfg')

11




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

12 Chapter 5. Running From Within Python



CHAPTER O

Universal Parameters

6.1 Output Directory

By default, all pipeline and step outputs will drop into the current working directory, i.e., the directory in which
the process is running. To change this, use the output_dir argument. For example, to have all output from
calwebb_detectorl, including any saved intermediate steps, appear in the sub-directory calibrated, use

$ strun calwebb_detectorl.cfg jw00017001001_01101_00001_nrcal_uncal.fits
—-—output_dir=calibrated

output_dir can be specified at the step level, overriding what was specified for the pipeline. From the example
above, to change the name and location of the dark_current step, use the following

$ strun calwebb_detectorl.cfg jw00017001001_01101_00001_nrcal_uncal.fits
——-output_dir=calibrated
—--steps.dark_current.output_file="'dark_sub.fits'
—-—steps.dark_current.output_dir="'dark_calibrated’

6.2 Output File

When running a pipeline, the st pipe infrastructure automatically passes the output data model from one step to the
input of the next step, without saving any intermediate results to disk. If you want to save the results from individual
steps, you have two options:

* Specify save_results

This option will save the results of the step, using a filename created by the step.
 Specify a file name using output_file

This option will save the step results using the name specified.

For example, to save the result from the dark current step of calwebb_detectorl in a file named dark_sub.
fits, use

13




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

$ strun calwebb_detectorl.cfg jw00017001001_01101_00001_nrcal_uncal.fits
—--steps.dark_current.output_file="'dark_sub.fits'

You can also specify a particular file name for saving the end result of the entire pipeline using the ——output_file
argument also

$ strun calwebb_detectorl.cfg jw00017001001_01101_00001_nrcal_uncal.fits
——output_file="'detectorl_processed.fits'

6.2.1 Output File and Associations

Stage 2 pipelines can take an individual file or an association as input. Nearly all Stage 3 pipelines require an associ-
aiton as input. Normally, the output file is defined in each association’s product_name.

If there is need to produce multiple versions of a calibration based on an association, it is highly suggested to use
output_dir to place the results in a different directory instead of using output_f1ile to rename the output files.
Stage 2 pipelines do not allow the override of the output using output_file. Stage 3 pipelines do. However, since
Stage 3 pipelines generally produce many files per association, using different directories via output_dir will make
file keeping simpler.

6.3 Override Reference File

For any step that uses a calibration reference file you always have the option to override the automatic selec-
tion of a reference file from CRDS and specify your own file to use. Arguments for this are of the form
-—override_<ref_type>, where ref_type is the name of the reference file type, such as mask, dark, gain,
or linearity. When in doubt as to the correct name, just use the —h argument to st run to show you the list of
available override arguments.

To override the use of the default linearity file selection, for example, you would use:

$ strun calwebb_detectorl.cfg jw00017001001_01101_00001_nrcal_uncal.fits
—-—steps.linearity.override_linearity="my_lin.fits'

6.4 Skip

Another argument available to all steps in a pipeline is skip. If skip=True is set for any step, that step will be
skipped, with the output of the previous step being automatically passed directly to the input of the step following the
one that was skipped. For example, if you want to skip the linearity correction step, edit the calwebb_detectorl.cfg
file to contain:

[steps]
[[linearity]]
skip = True

Alternatively you can specify the skip argument on the command line:

$ strun calwebb_detectorl.cfg jw00017001001_01101_00001_nrcal_uncal.fits
——steps.linearity.skip=True

14 Chapter 6. Universal Parameters




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

6.5 Logging Configuration

If there’s no stpipe—-log. cfg file in the working directory, which specifies how to handle process log information,
the default is to display log messages to stdout. If you want log information saved to a file, you can specify the name
of a logging configuration file either on the command line or in the pipeline cfg file.

For example:

$ strun calwebb_detectorl.cfg jw00017001001_01101_00001_nrcal_uncal.fits
—--logcfg=pipeline-log.cfg

and the file pipeline-log.cfg contains:

[+]
handler = file:pipeline.log
level = INFO

In this example log information is written to a file called pipeline.log. The level argument in the log cfg file
can be set to one of the standard logging level designations of DEBUG, INFO, WARNING, ERROR, and CRITICAL.
Only messages at or above the specified level will be displayed.

6.5. Logging Configuration 15




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

16 Chapter 6. Universal Parameters



CHAPTER /

Input Files

There are two general types of input to any stage: references files and data files. The references files, unless explicitly
overridden, are provided through CRDS.

The input data files - the exposure FITS files, association JSON files and input catalogs - are presumed to all be in the
same directory as the primary input file. Sometimes the primary input is an association JSON file, and sometimes it is
an exposure FITS file.

17



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

18 Chapter 7. Input Files



CHAPTER 8

Output File Names

File names for the outputs from pipelines and steps come from three different sources:
* The name of the input file
* The product name defined in an association
* As specified by the output_file argument

Regardless of the source, each pipeline/step uses the name as a “base name”, on to which several different suffixes are
appended, which indicate the type of data in that particular file.

8.1 Pipeline/Step Suffix Definitions

However the file name is determined (see above), the various stage 1, 2, and 3 pipeline modules will use that file name,
along with a set of predetermined suffixes, to compose output file names. The output file name suffix will always
replace any existing suffix of the input file name. Each pipeline module uses the appropriate suffix for the product(s)
it is creating. The list of suffixes is shown in the following table.

19



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Product Suffix
Uncalibrated raw input uncal
Corrected ramp data ramp
Corrected countrate image rate
Corrected countrate per integration rateints
Optional fitting results from ramp_fit step fitopt
Background-subtracted image bsub
Per integration background-subtracted image | bsubints
Calibrated image cal
Calibrated per integration images calints
CR-flagged image crf
CR-flagged per integration images crfints
1D extracted spectrum x1d

1D extracted spectra per integration x1dints
Resampled 2D image i2d
Resampled 2D spectrum s2d
Resampled 3D IFU cube s3d
Source catalog cat
Time Series photometric catalog phot
Time Series white-light catalog whtlt
Coronagraphic PSF image stack psfstack
Coronagraphic PSF-aligned images psfalign
Coronagraphic PSF-subtracted images psfsub
AMI fringe and closure phases ami
AMI averaged fringe and closure phases amiavg
AMI normalized fringe and closure phases aminorm

8.2 Individual Step Outputs

If individual steps are executed without an output file name specified via the output_file argument, the stpipe
infrastructure automatically uses the input file name as the root of the output file name and appends the name of the
step as an additional suffix to the input file name. If the input file name already has a known suffix, that suffix will be
replaced. For example:

$ strun dg_init.cfg jw00017001001_01101_00001_nrcal_uncal.fits

produces an output file named jw00017001001_01101_00001_nrcal_dg_init.fits.

20 Chapter 8. Output File Names



CHAPTER 9

Configuration Files

Configuration (.cfg) files can be used to specify parameter values when running a pipeline or individual steps, as well
as for specifying logging options.

You can use the collect_pipeline_cfgs task to get copies of all the cfg files currently in use by the jwst
pipeline software. The task takes a single argument, which is the name of the directory to which you want the cfg files
copied. Use ‘. to specify the current working directory, e.g.

$ collect_pipeline_cfgs .

Each step and pipeline has their own cfg file, which are used to specify relevant parameter values. For each step in a
pipeline, the pipeline cfg file specifies either the step’s arguments or the cfg file containing the step’s arguments.

The name of a file in which to save log information, as well as the desired level of logging messages, can be specified
in an optional configuration file “stpipe-log.cfg”. This file must be in the same directory in which you run the pipeline
in order for it to be used. If this file does not exist, the default logging mechanism is STDOUT, with a level of INFO.
An example of the contents of the stpipe-log.cfg file is:

[+1]
handler = file:pipeline.log
level = INFO

which specifies that all log messages will be directed to a file called “pipeline.log” and messages at a severity level of
INFO and above will be recorded.

For a given step, the step’s cfg file specifies parameters and their default values; it includes parameters that are typically
not changed between runs. Parameters that are usually reset for each run are not included in the cfg file, but instead
specified on the command line. An example of a cfg file for the jump detection step is:

name = "jump"
class = "jwst.jump.JumpStep"
rejection_threshold = 4.0

You can list all of the parameters for this step using:

21




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

$ strun Jjump.cfg -h

which gives the usage, the positional arguments, and the optional arguments. More information on configuration files
can be found in the stpipe User’s Guide at For Users.

22 Chapter 9. Configuration Files



cHAaPTER 10

Available Pipelines

There are many pre-defined pipeline modules for processing data from different instrument observing modes through
each of the 3 stages of calibration. For all of the details see Pipeline Modules.

23



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

24 Chapter 10. Available Pipelines



cHAPTER 11

For More Information

More information on logging and running pipelines can be found in the st pipe User’s Guide at For Users.

More detailed information on writing pipelines can be found in the st pipe Developer’s Guide at For Developers.

25



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

26 Chapter 11. For More Information



cHAPTER 12

Package Documentation

12.1 Package Index

12.1.1 AMI Processing

Tasks in the Package

The Aperture Masking Interferometry (AMI) package currently consists of three tasks:
1) ami_analyze: apply the LG algorithm to a NIRISS AMI exposure
2) ami_average: average the results of LG processing for multiple exposures
3) ami_normalize: normalize the LG results for a science target using LG results from a reference target

The three tasks can be applied to an association of AMI exposures using the pipeline module calwebb_ami 3.

CALWEBB_AMI3 Pipeline

Overview

The calwebb_ami3 pipeline module can be used to apply all 3 steps of AMI processing to an association (ASN) of
AMI exposures. The processing flow through the pipeline is as follows:

1) Apply the ami_analyze step to all products listed in the input association table. Output files will have a
product type suffix of ami. There will be one ami product per input exposure.

2) Apply the ami_average step to combine the above results for both science target and reference target ex-
posures, if both types exist in the ASN table. If the optional parameter save_averages is set to true (see
below), the results will be saved to output files with a product type suffix of amiavg. There will be one amiavg
product for the science target and one for the reference target.

27



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

3) If reference target results exist, apply the ami_normalize step to the averaged science target result, using
the averaged reference target result to do the normalization. The output file will have a product type suffix of
aminorm.

Input

The only input to the calwebb_ami 3 pipeline is the name of a json-formatted association file. There is one optional
parameter save_averages. If set to true, the results of the ami_average step will be saved to files. It is assumed
that the ASN file will define a single output product for the science target result, containing a list of input member file
names, for both science target and reference target exposures. An example ASN file is shown below.

{"asn_rule": "NIRISS_AMI", "targname": "NGC-3603", "asn_pool": "jw00017_001_01_pool",
—"program": "00017",
"products": [
{"prodtype": "ami", "name": "jw87003-cl001_tO00l_niriss_f£f277w-nrm",
"members": [
{"exptype": "science", "expname": "test_targl4_cal.fits"},
{"exptype": "science", "expname": "test_targlb5_cal.fits"},
{"exptype": "science", "expname": "test_targl6_cal.fits"},
{"exptype": "psf", "expname": "test_refl_cal.fits"},
{"exptype": "psf", "expname": "test_ref2 cal.fits"},
{"exptype": "psf", "expname": "test_ref3_cal.fits"}1}],
"asn_type": "ami",
"asn_id": "cl1001"}

Note that the exptype attribute value for each input member is used to indicate which files contain science target
images and which contain reference psf images.

AMI_Analyze

Overview

The ami_analyze step applies the Lacour-Greenbaum (LG) image plane modeling algorithm to a NIRISS AMI
image. The routine computes a number of parameters, including a model fit (and residuals) to the image, fringe
amplitudes and phases, and closure phases and amplitudes.

The JWST AMI observing template allows for exposures to be obtained using either full-frame (SUBAR-
RAY="FULL”) or subarray (SUBARRAY="SUB80”) readouts. =When processing a full-frame exposure, the
ami_analyze step extracts (on the fly) a region from the image corresponding to the size and location of the
SUBSO subarray, in order to keep the processing time to a reasonable level.

Inputs

The ami_analyze step takes a single input image, in the form of a simple 2D ImageModel. There are two optional
parameters:

1) oversample: specifies the oversampling factor to be used in the model fit (default value = 3)

2) rotation: specifies an initial guess, in degrees, for the rotation of the PSF in the input image (default value =
0.0)

28 Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Output

The ami_analyze step produces a single output file, which contains the following list of extensions:
1) FIT: a2-D image of the fitted model
2) RESID: a2-D image of the fit residuals
3) CLOSURE_AMP: table of closure amplitudes
4) CLOSURE_PHA: table of closure phases
5) FRINGE_AMP: table of fringe amplitudes
6) FRINGE_PHA: table of fringe phases
7) PUPIL_PHA: table of pupil phases

8) SOLNS: table of fringe coefficients
AMI_Average
Overview

The ami_average step averages the results of LG processing from the ami_analyze step for multiple exposures
of a given target. It averages all 8 components of the ami_analyze output files for all input exposures.

Inputs

The only input to the ami_average step is a list of input files to be processed. These will presumably be output files
from the ami_analyze step. The step has no other required or optional parameters, nor does it use any reference
files.

Output

The step produces a single output file, having the same format as the input files, where the data for the 8 file components
are the average of each component from the list of input files.

AMI_Normalize

Overview

The ami_normalize step provides normalization of LG processing results for a science target using LG results of
a reference target. The algorithm subtracts the reference target closure phases from the science target closure phases
and divides the science target fringe amplitudes by the reference target fringe amplitudes.

Inputs

The ami_normalize step takes two input files: the first is the LG processed results for a science target and the
second is the LG processed results for the reference target. There are no optional parameters and no reference files are
used.

12.1. Package Index 29



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Output

The output is a new LG product for the science target in which the closure phases and fringe amplitudes have been
normalized using the reference target closure phases and fringe amplitudes. The remaining components of the science
target data model are left unchanged.

Reference File Types

The ami_analyze step uses a THROUGHPUT reference file, which contains throughput data for the filter used in
the input AMI image. (The ami_average and ami_normalize steps do not use any reference files.)

CRDS Selection Criteria

Throughput reference files are selected on the basis of INSTRUME and FILTER values for the input science data set.

Throughput Reference File Format

Throughput reference files are FITS files with one BINTABLE extension. The FITS primary data array is assumed to
be empty. The table extension uses EXTNAME=THROUGHPUT and the data table has the following characteristics:

Column name | Data type | Units
wavelength float Angstroms
throughput float (unitless)

jwst.ami Package

Classes

AmiAnalyzeStep([name, parent, config_file, ...]) AmiAnalyzeStep: Performs analysis of an AMI mode
exposure by applying the LG algorithm.

AmiAverageStep([name, parent, config_file, ...]) AmiAverageStep: Averages LG results for multiple
NIRISS AMI mode exposures

AmiNormalizeStep([name, parent, ...]) AmiNormalizeStep: Normalize target LG results using
reference LG results

AmiAnalyzeStep

class jwst.ami.AmiAnalyzeStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

AmiAnalyzeStep: Performs analysis of an AMI mode exposure by applying the LG algorithm.
Create a Step instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

30 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* parent (Step instance, optional)— The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config file(str path, optional)- The path to the config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

reference_file types
spec

Methods Summary

process(input) Performs analysis of an AMI mode exposure by ap-
plying the LG algorithm.

Attributes Documentation

reference_file types = ['throughput']

spec = '\n oversample = integer (default=3, min=1) # Oversampling factor\n rotation

Methods Documentation
process (input)
Performs analysis of an AMI mode exposure by applying the LG algorithm.
Parameters input (string) - input file name
Returns result — AMI image to which the LG fringe detection has been applied

Return type Amil.gModel object

AmiAverageStep

class jwst.ami.AmiAverageStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

AmiAverageStep: Averages LG results for multiple NIRISS AMI mode exposures
Create a Step instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

12.1. Package Index 31


https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* parent (Step instance, optional)— The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config file(str path, optional)- The path to the config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

spec

Methods Summary

process(input_list) Averages the results of LG analysis for a set of mul-
tiple NIRISS AMI mode exposures.

Attributes Documentation

spec = '\n '

Methods Documentation
process (input_list)
Averages the results of LG analysis for a set of multiple NIRISS AMI mode exposures.

Parameters input_list (Iist (https://docs.python.org/3/library/stdtypes.html#list)) — in-
put file names

Returns result — Averaged AMI data model
Return type Amil.gModel object

AmiNormalizeStep

class jwst.ami.AmiNormalizeStep (name=None, parent=None,  config_file=None,  _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

AmiNormalizeStep: Normalize target LG results using reference LG results
Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional)-— The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

32 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* config_file(str path, optional)-The path tothe config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

spec

Methods Summary

process(target, reference) Normalizes the LG results for a science target, using
the LG results for a reference target.

Attributes Documentation

spec = '\n '

Methods Documentation
process (target, reference)
Normalizes the LG results for a science target, using the LG results for a reference target.
Parameters
* target (string or model) — target input
* reference (string or model) - reference input
Returns result — AMI data model that’s been normalized

Return type Amil.gModel object

Class Inheritance Diagram

AmiAnalyzeStep

Step AmiAverageStep

\

AmiNormalizeStep

12.1. Package Index 33


https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

12.1.2 Assign WCS

Description

jwst.assign_wcs is run in the beginning of the level 2B JWST pipeline. It associates a WCS object with each
science exposure. The WCS object transforms positions in the detector frame to positions in a world coordinate frame
- ICRS and wavelength. In general there may be intermediate coordinate frames depending on the instrument. The
WCS is saved in the ASDF extension of the FITS file. It can be accessed as an attribute of the meta object when the
fits file is opened as a data model.

The forward direction of the transforms is from detector to world coordinates and the input positions are 0-based.

jwst .assign_wcs expects to find the basic WCS keywords in the SCI header. Distortion and spectral models are
stored in reference files in the ASDF (http://asdf-standard.readthedocs.org/en/latest/) format.

For each observing mode, determined by the value of EXP_TYPE in the science header, assign_wcs retrieves reference
files from CRDS and creates a pipeline of transforms from input frame detector to a frame v2v3. This part of the
WCS pipeline may include intermediate coordinate frames. The basic WCS keywords are used to create the transform
from frame v2v3 to frame world.

Basic WCS keywords and the transform from v2v3 to world

All JWST instruments use the following FITS header keywords to define the transform from v2v3 to world:
RA_REF, DEC_REF - a fiducial point on the sky, ICRS, [deg]

V2_REF, V3_REF - a point in the V2V3 system which maps to RA_REF, DEC_REF, [arcsec]

ROLL_REF - local roll angle associated with each aperture, [deg]

RADESYS - standard coordinate system [ICRS]

These quantities are used to create a 3D Euler angle rotation between the V2V3 spherical system, associated with the
telescope, and a standard celestial system.

Using the WCS interactively

Once a FITS file is opened as a DataModel the WCS can be accessed as an attribute of the meta object. Calling it as
a function with detector positions as inputs returns the corresponding world coordinates. Using MIRI LRS fixed slit
as an example:

>>> from jwst.datamodels import ImageModel
>>> exp = ImageModel ('miri_fixedslit_assign_wcs.fits")
>>> ra, dec, lam = exp.meta.wcs(x, V)
>>> print (ra, dec, lam)
(329.97260532549336, 372.0242999250267, 5.4176100046836675)

The GRISM modes for NIRCAM and NIRISS have a slightly different calling structure, in addition to the (x, y)
coordinate, they need to know other information about the spectrum or source object. In the JWST backward direction
(going from the sky to the detector) the WCS model also looks for the wavelength and order and returns the (x,y)
location of that wavelength+order on the dispersed image and the original source pixel location, as entered, along with
the order that was specified:

>>> form jwst.datamodels import ImageModel
>>> exp = ImageModel ('nircam_grism_assign_wcs.fits")
>>> x, y, x0, y0, order = exp.meta.wcs(x0, y0, wavelength, order)

(continues on next page)

34 Chapter 12. Package Documentation



http://asdf-standard.readthedocs.org/en/latest/

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

(continued from previous page)

>>> print (x0, y0, wavelength, order)
(365.523884327, 11.6539963919, 2.557881113, 2)
>>> print(x, y, x0, y0, order)
(1539.5898464615102, 11.6539963919, 365.523884327, 11.6539963919, 2)

The WCS provides access to intermediate coordinate frames and transforms between any two frames in the WCS
pipeline in forward or backward direction. For example, for a NIRSPEC fixed slits exposure, which has been through
the extract_2d step:

>>> exp = models.MultiSlitModel ('nrsl_fixed_assign_wcs_extract_2d.fits'")
>>> exp.slits[0] .meta.wcs.available_frames

['"detector', 'sca', 'bgwa', 'slit_frame', 'msa_frame', 'ote', 'v2v3', 'world']
>>> msal2detector = exp.slits[0].meta.wcs.get_transform('msa_frame', 'detector')
>>> msalZ2detector (0, 0, 2+x10x%-6)

(5042.064255529629, 1119.8937888372516)

For each exposure, assign_wcs uses reference files and WCS header keywords to create the WCS object. What
reference files are retrieved from CRDS is determined based on EXP_TYPE and other keywords in the science file
header.

The assign_wcs step can accept any type of DataModel as input. In particular, for multiple-integration datasets the
step will accept either of these data products: the slope results for each integration in the exposure, or the single slope
image that is the result of averaging over all integrations.

jwst.assign_wcs is based on gwcs and uses the modeling, units and coordinates subpackages in astropy.
Software dependencies:

» gwcs (https://github.com/spacetelescope/gwcs) 0.7

e numpy (http://www.numpy.org/) 1.9 or later

* astropy (http://www.astropy.org/) 1.2.1 or later

* asdf (http://asdf.readthedocs.io/en/latest/) 1.1.1 or later

Reference Files

WCS Reference files are in the Advanced Scientific Data Format (ASDF). The best way to create the file is to pro-
grammatically create the model and then save it to a file. A tutorial on creating reference files in ASDF format is
available at:

https://github.com/spacetelescope/jwreftools/blob/master/docs/notebooks/referece_files_asdf.ipynb

Transforms are 0-based. The forward direction is from detector to sky.

12.1. Package Index 35



https://github.com/spacetelescope/gwcs
http://www.numpy.org/
http://www.astropy.org/
http://asdf.readthedocs.io/en/latest/
https://github.com/spacetelescope/jwreftools/blob/master/docs/notebooks/referece_files_asdf.ipynb

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

List of reference types used by assign_wcs

reftype description Instrument

camera NIRSPEC Camera model NIRSPEC

collimator NIRSPEC Collimator Model NIRSPEC

disperser Disperser parameters NIRSPEC

distortion Spatial distortion model MIRI, FGS, NIRCAM, NIRISS
filteroffset MIRI Imager fiter offsets MIRI

fore Transform through the NIRSPEC FORE optics NIRSPEC

fpa Transform in the NIRSPEC FPA plane NIRSPEC

ifufore Transform from the IFU slicer to the IFU entrance NIRSPEC

ifupost Transform from the IFU slicer to the back of the IFU | NIRSPEC

ifuslicer FU Slicer geometric description NIRSPEC

msa Transformin the NIRSPEC MSA plane NIRSPEC

ote Transform through the Optical Telescope Element NIRSPEC

specwcs Wavelength calibration models MIRI, NIRCAM, NIRISS
regions Stores location of the regions on the detector MIRI

wavelength- Typical wavelength ranges MIRI, NIRSPEC, NIRCAM, NIRISS
range

CRDS Selection Criteria
CAMERA (NIRSPEC only)

CAMERA reference files are currently selected based only on the value of EXP_TYPE in the input science data set.

COLLIMATOR (NIRSPEC only)

For NIRSPEC, COLLIMATOR reference files are currently selected based only on the value of EXP_TYPE in the
input science data set.

DISPERSER (NIRSPEC only)

For NIRSPEC, DISPERSER reference files are currently selected based on the values of EXP_TYPE and GRATING
in the input science data set.

DISTORTION

For MIRI, DISTORTION reference files are currently selected based on the values of EXP_TYPE, DETECTOR,
CHANNEL, and BAND in the input science data set.

For FGS, DISTORTION reference files are currently selected based on the values of EXP_TYPE and DETECTOR in
the input science data set.

For NIRCAM, DISTORTION reference files are currently selected based on the values of EXP_TYPE, DETECTOR,
CHANNEL, and FILTER in the input science data set.

For NIRISS, DISTORTION reference files are currently selected based only on the value of EXP_TYPE and PUPIL
in the input science data set.

36 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

FILTEROFFSET (MIRI only)

For MIRI, FILTEROFFSET reference files are currently selected based on the values of EXP_TYPE and DETECTOR
in the input science data set.

FORE (NIRSPEC only)

For NIRSPEC, FORE reference files are currently selected based on the values of EXP_TYPE and FILTER in the
input science data set.

FPA (NIRSPEC only)

For NIRSPEC, FPA reference files are currently selected based only on the value of EXP_TYPE in the input science
data set.

IFUFORE (NIRSPEC only)

For NIRSPEC, IFUFORE reference files are currently selected based only on the value of EXP_TYPE in the input
science data set.

IFUPOST (NIRSPEC only)

For NIRSPEC, IFUPOST reference files are currently selected based only on the value of EXP_TYPE in the input
science data set.

IFUSLICER (NIRSPEC only)

For NIRSPEC, IFUSLICER reference files are currently selected based only on the value of EXP_TYPE in the input
science data set.

MSA (NIRSPEC only)

For NIRSPEC, MSA reference files are currently selected based only on the value of EXP_TYPE in the input science
data set.

OTE (NIRSPEC only)

For NIRSPEC, OTE reference files are currently selected based only on the value of EXP_TYPE in the input science
data set.

SPECWCS

For MIRI, SPECWCS reference files are currently selected based on the values of DETECTOR, CHANNEL, BAND,
SUBARRAY, and EXP_TYPE in the input science data set.

12.1. Package Index 37



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

For NIRCAM, SPECWCS reference files are currently selected based on the values of EXP_TYPE, MODULE, and
PUPIL in the input science data set.

For NIRCAM WESS, SPECWCS reference files are currently selected based on the values of EXP_TYPE, MODULE,
and PUPIL in the input science data set.

For NIRCAM TGRISM, SPECWCS reference files are currently selected based on the values of EXP_TYPE, MOD-
ULE, and PUPIL in the input science data set.

FOR NIRISS WESS, SPECWCS reference files are currently selected based on the values of EXP_TYPE, FILTER,
and PUPIL in the input science data set.

REGIONS (MIRI only)

For MIRI, REGIONS reference files are currently selected based on the values of DETECTOR, CHANNEL, BAND,
and EXP_TYPE in the input science data set.

WAVELENGTHRANGE

For NIRCAM, NIRISS, NIRSPEC, and MIRI, WAVELENGTHRANGE reference files are currently selected based
only on the value of EXP_TYPE in the input science data set.

Reference File Formats
CAMERA

The camera reference file contains an astropy compound model made up of polynomial models, rotations, and trans-
lations. The forward direction is from the FPA to the GWA.

model Transform through the CAMERA.

COLLIMATOR

This collimator reference file contains an astropy compound model made up of polynomial models, rotations, and
translations. The forward direction is from the GWA to the MSA.

model Transform through the COLLIMATOR.

DISPERSER

The disperser reference file contains reference data about the NIRSPEC dispersers (gratings or the prism).
Files applicable to gratings have a field:

groovedensity Number of grooves per meter in a grating
The following fields are common for all gratings and the prism:

grating Name of grating

gwa_tiltx

temperatures Temperatures measured where the GWA sensor is

38 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

zeroreadings Value of GWA sensor reading which corresponds to disperser model param-
eters

tilt_model Model of the relation between THETA_Y vs GWA_X sensor reading
gwa_tilty
temperatures Temperatures measured where the GWA sensor is

zeroreadings Value of GWA sensor reading which corresponds to disperser model param-
eters

tilt_model Model of the relation between THETA_X vs GWA_Y sensor reading
tilt_x Angle (in degrees) between the grating surface and the reference surface (the mirror)
tilt_y Angle (in degrees) between the grating surface and the reference surface (the mirror)
theta_x Element alignment angle in x-axis (in degrees)
theta_y FElement alignment angle in y-axis (in degrees)
theta_z Element alignment angle in z-axis (in degrees)
The prism reference file has in addition the following fields:
angle Angle between the front and back surface of the prosm (in degrees)
kcoef K coefficients of Selmeir equation, describing the material
Icoef L coeftficients describing the material
tcoef Six constants, describing the thermal behavior of the glass

tref Temperature (in K), used to compute the change in temperature relative to the reference temperature
of the glass

pref Reference pressure (in ATM)

wbound Min and Max wavelength (in meters) for which the model is valid

DISTORTION

The distortion reference file contains a combination of astropy models, representing the transform from detector to the
telescope V2, V3 system. The following convention was adopted:

* The output in the V2, V3 system is in units of arcsec.
* The input x and y are O-based coordinates in the DMS system.
* The center of the first pixel is (0, 0), so the first pixel goes from -0.5 to 0.5.

* The origin of the transform is taken to be (0, 0). Note, that while a different origin can be used for some
transforms the relevant offset should first be prepended to the distortion transform to account for the change in
origin of the coordinate frame. For instance, MIRI takes input in (0, 0) - indexed detector pixel coordinates,
but shifts these around prior to calling transforms that are defined with respect to science-frame pixels that omit
reference pixels.

Internally the WCS pipeline works with 0-based coordinates. When FITS header keywords are used, the 1 pixel offset
in FITS coordinates is accounterd for internally in the pipeline.

The model is a combination of polynomials.

model Transform from detector to an intermediate frame (instrument dependent).

12.1. Package Index 39



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

FILTEROFFSET

The filter offset reference file is an ASDF file that contains a dictionary of row and column offsets for the MIRI
imaging dataset. The filter offset reference file contains a dictionary in the tree that is indexed by the instrument filter.
Each filter points to two fields - row_offset and column_offset. The format is

miri_filter_name
column_offset Offset in x (in arcmin)

row_offset Offset in y (in arcmin)

FORE

The FORE reference file stores the transform through the Filter Wheel Assembly (FWA). It has two fields - “filter”
and “model”. The transform through the FWA is chromatic. It is represented as a Polynomial of two variables whose
coefficients are wavelength dependent. The compound model takes three inputs - X, y positions and wavelength.

filter Filter name.

model Transform through the Filter Wheel Assembly (FWA).

FPA

The FPA reference file stores information on the metrology of the Focal Plane Assembly (FPA) which consists of two
Sensor Chip Arrays (SCA), named NRS1 and NRS2.

The reference file contains two fields : “nrs1_model” and “nrs2_model”. Each of them stores the transform (shift and
rotation) to transform positions from the FPA to the respective SCA. The output units are in pixels.

nrsl_model Transform for the NRS1 detector.

nrs2_model Transform for the NRS2 detector.

IFUFORE

This file provides the parameters (Paraxial and distortions coefficients) for the coordinate transforms from the MSA
plane to the plane of the IFU slicer.

model Compound model, Polynomials

IFUPOST

The IFUPOST reference file provides the parameters (Paraxial and distortions coefficients) for the coordinate trans-
forms from the slicer plane to the MSA plane (out), that is the plane of the IFU virtual slits.

The reference file contains models made up based on an offset and a polynomial. There is a model for each of the slits
and is indexed by the slit number. The models is used as part of the conversion from the GWA to slit.

slice_<slice_number>

model Polynomial and rotation models.

40 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

IFUSLICER

The IFUSLICER stores information about the metrology of the IFU slicer - relative positioning and size of the aperture
of each individual slicer and the absolute reference with respect to the center of the field of view. The reference file
contains two fields - “data” and “model”. The “data” field is an array with 30 rows pertaining to the 30 slices and the
columns are

data Array with reference data for each slicer. It has 5 columns
NO Slice number (0 - 29)
x_center X coordinate of the center (in meters)
y_center Y coordinate of the center (in meters)
x_size X size of teh aperture (in meters)
y_size Y size of the aperture (in meters)

model Transform from relative positions within the IFU slicer to absolute positions within the field of
view. It’s a combination of shifts and rotation.

MSA

The MSA reference file contains information on the metrology of the microshutter array and the associated fixed slits -
relative positioning of each individual shutter (assumed to be rectangular) And the absolute position of each quadrant
within the MSA.

The MSA reference file has 5 fields, named
1
data Array with reference data for each shutter in Quadrant 1. It has 5 columns

NO Shutter number (1- 62415)

x_center X coordinate of the center (in meters)

y_center Y coordinate of the center (in meters)

x_size X size of teh aperture (in meters)

y_size Y size of the aperture (in meters)

model Transform from relative positions within Quadrant 1 to absolute positions within
the MSA

data Array with reference data for shutters in Quadrant 2, same as in 1 above

model Transform from relative positions within Quadrant 2 to absolute positions within
the MSA

data Array with reference data for shutters in Quadrant 3, same as in 1 above

model Transform from relative positions within Quadrant 3 to absolute positions within
the MSA

data Array with reference data for shutters in Quadrant 4, same as in 1 above

12.1. Package Index 41



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

model Transform from relative positions within Quadrant 4 to absolute positions within
the MSA

data Reference data for the fixed slits and the IFU, same as in 1, except NO is 6 rows (1-6)
and the mapping is 1 - S200A1, 2 - S200A1, 3 - S400A1, 4 - S200B1, 5 - S1600A1, 6
-IFU

model Transform from relative positions within eac aperture to absolute positions within
the MSA

OTE

This reference file contains a combination of astropy models - polynomial, shift, rotation and scaling.

model Transform through the Optical Telescope Element (OTE), from the FWA to XAN, YAN telescope
frame. The output units are in arcsec.

SPECWCS

For the MIRI LRS mode the file is in FITS format. The reference file contains the zero point offset for the slit relative
to the full field of view. For the Fixed Slit exposure type the zero points in X and Y are stored in the header of the
second HDU in the ‘IMX’ and ‘IMY’ keywords. For the Slitless exposure type they are stored in the header of the
second HDU in FITS keywords ‘IMXSLTI’ and ‘IMYSLTI’. For both of the exposure types, the zero point offset is 1
based and the X (e.g., IMX) refers to the column and Y refers to the row.

For the MIRI MRS the file is in ASDF format with the following structure.
channel The MIRI channels in the observation, e.g. “12”.
band The band for the observation (one of “LONG”, “MEDIUM”, “SHORT”).
model

slice_number The wavelength solution for each slice. <slice_number> is the actual slice
number (s), computed by s = channel * 100 + slice

For NIRISS SOSS mode the file is in ASDF format with the following structure.
model A tabular model with the wavelength solution.
For NIRCAM WEFSS and TSGRIM modes the file is in ASDF format with the following structure:
displ The wavelength transform models
dispx The x-dispersion models
dispy The y-dispersion models
invdispx The inverse x-dispersion models
invdispy The inverse y-dispersion models
invdispl The inverse wavelength transform models
orders a list of order numbers that the models relate to, in the same order as the models
For NIRISS WFSS mode the file is in ASDF format with the following structure:
displ The wavelength transform models

dispx The x-dispersion models

42 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

dispy The y-dispersion models

invdispx The inverse x-dispersion models

invdispl The inverse wavelength transform models
fwepos_ref The reference filter wheel position in degrees

orders a list of order numbers that the models relate to, in the same order as the models

Regions

The IFU takes a region reference file that defines the region over which the WCS is valid. The reference file should
define a polygon and may consist of a set of X,Y coordinates that define the polygon.

channel The MIRI channels in the observation, e.g. “12”.
band The band for the observation (one of “LONG”, “MEDIUM”, “SHORT”).

regions An array with the size of the MIRI MRS image where pixel values map to the MRS slice number.
0 indicates a pixel is not within any slice.

WAVELENGTHRANGE

FOR MIRI MRS the wavelengthrange file consists of two fields which define te wavelength range for each combination
of a channel and band.

channels An ordered list of all possible channel and band combinations for MIRI MRS, e.g. “1SHORT”.
wavelengthrange An ordered list of (lambda_min, lambda_max) for each item in the list above

For NIRSPEC the file is a dictionary storing information about default wavelength range and spectral order for each
combination of filter and grating.

filter_grating
order Default spectral order
range Default wavelength range

For NIRCAM WFSS and TSGRIM modes and NIRISS WFSS mode the wavelengthrange file contains the wavelength
limits to use when caluclating the minimum and maximum dispersion extents on the detector. The selection of the
correct minimum and maximum wavelength range is done with the following logic, where the index of the desired
filter is used as the reference into wrange_selector, and the same for the index of the order:

wave_min, wave_max = wrange[order][wrange_selector[filter name]]
order a list of orders
wrange a 2D list of wavelength ranges, ordered in the same way as the orders

wrange_selector The list of FILTER names, these are used to select the correct wavelength range

How To Create Reference files in ASDF format

All WCS reference files are in ASDF (http://asdf-standard.readthedocs.org/en/latest/) format. ASDF is a human-
readable, hierarchical metadata structure, made up of basic dynamic data types such as strings, numbers, lists and
mappings. Data is saved as binary arrays. It is primarily intended as an interchange format for delivering products
from instruments to scientists or between scientists. It’s based on YAML and JSON schema and as such provides
automatic structure and metadata validation.

12.1. Package Index 43


http://asdf-standard.readthedocs.org/en/latest/

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

While it is possible to write or edit an ASDF file in a text editor, or to use the ASDF interface,
the best way to create reference files is using the datamodels in the jwst pipeline jwst.datamodels
(http://jwst-pipeline.readthedocs.io/en/latest/jwst/datamodels/index.html#classes) and astropy.modeling
(http://astropy.readthedocs.io/en/latest/modeling/index.html) .

There are two steps in this process:
e create a transform using the simple models and the rules to combine them
* save the transform to an ASDF file (this automatically validates it)

The rest of this document provides a brief description and examples of models in astropy.modeling
(http://astropy.readthedocs.org/en/latest/modeling/index.html) which are most relevant to WCS and examples of cre-
ating WCS reference files.

Create a transform

astropy.modeling (http://astropy.readthedocs.org/en/latest/modeling/index.html) is a framework for representing, eval-
uating and fitting models. All available models can be imported from the mode 1 s module.

’>>> from astropy.modeling import models as astmodels

If necessary all fitters can be imported through the £itting module.

’>>> from astropy.modeling import fitting

Many analytical models are already implemented and it is easy to implement new ones. Models are initialized with
their parameter values. They are evaluated by passing the inputs directly, similar to the way functions are called. For
example,

>>> poly_x = astmodels.Polynomial2D (degree=2, c0_0=.2, cl_0=.11, c2_0=2.3, c0_1=.43,
—~c0_2=.1, cl_1=.5)
>>> poly_x(1, 1)

3.639999

Models have their analytical inverse defined if it exists and accessible through the inverse property. An inverse
model can also be (re)defined by assigning to the inverse property.

>>> rotation = astmodels.Rotation2D (angle=23.4)
>>> rotation.inverse
<Rotation2D (angle=-23.4)>
>>> poly_x.inverse = astmodels.Polynomial2D (degree=3, *=*coeffs)

astropy.modeling also provides the means to combine models in various ways.

Model concatenation uses the & operator. Models are evaluated on independent inputs and results are concatenated.
The total number of inputs must be equal to the sum of the number of inputs of all models.

>>> shift_x = astmodels.Shift (-34.2)
>>> shift_y = astmodels.Shift (-120)
>>> model = shift_x & shift_y
>>> model (1, 1)

(-33.2, -119.0)

Model composition uses the | operator. The output of one model is passed as input to the next one, so the number of
outputs of one model must be equal to the number of inputs to the next one.

44 Chapter 12. Package Documentation


http://jwst-pipeline.readthedocs.io/en/latest/jwst/datamodels/index.html#classes
http://astropy.readthedocs.io/en/latest/modeling/index.html
http://astropy.readthedocs.org/en/latest/modeling/index.html
http://astropy.readthedocs.org/en/latest/modeling/index.html

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

>>> model = poly_x | shift_x | scale_x
>>> model = shift_x & shift_y | poly_x

Two models, Mapping and Identity, are useful for axes manipulation - dropping or creating axes, or switching
the order of the inputs.

Mapping takes a tuple of integers and an optional number of inputs. The tuple represents indices into the inputs. For
example, to represent a 2D Polynomial distortion in x and y, preceded by a shift in both axes:

>>> poly_y = astmodels.Polynomial2D (degree=2, c0_0=.2, cl_0=1.1, c2_0=.023, c0_1=3, ,
—c0_2=.01, cl_1=2.2)
>>> model = shift_x & shift_y | astmodels.Mapping((0, 1, 0, 1)) | poly_x & poly_y
>>> model (1, 1)

(5872.03, 29242.892)

Identity takes an integer which represents the number of inputs to be passed unchanged. This can be useful when
one of the inputs does not need more processing. As an example, two spatial (V2V3) and one spectral (wavelength)
inputs are passed to a composite model which transforms the spatial coordinates to celestial coordinates and needs to
pass the wavelength unchanged.

>>> tan = astmodels.Pix2Sky_TAN ()
>>> model = tan & astmodels.Identity (1)
>>> model (0.2, 0.3, 10x%x-06)
(146.30993247402023, 89.63944963170002, 1e-06)

Arithmetic Operators can be used to combine models. In this case each model is evaluated with all inputs and the
operator is applied to the results, e.g. model = ml + m2 * m3 - m4/m5x+mé

>>> model = shift_x + shift_y
>>> model (1, 1)
-152.2

Create the reference file

The DictortionModel in jwst.datamodels is used as an example of how to create a reference file. Similarly data models
should be used to create other types of reference files as this process provides validaiton of the file structure.

>>> from jwst.datamodels import DistortionModel
>>> dist = DistortionModel (model=model)

>>> dist.validate ()

>>> dist.save ("new_distortion.asdf")

Save a transform to an ASDF file

asdf (http://asdf.readthedocs.io/en/latest/) is used to read and write reference files in ASDF (http://asdf-
standard.readthedocs.org/en/latest/) format. Once the model is create using the rules in the above section, it needs
to be assigned to the ASDF tree.

>>> from asdf import AsdfFile
>>> f = AsdfFile()

>>> f.tree['model'] = model
>>> f.write_to('reffile.asdf')

12.1. Package Index 45



http://asdf.readthedocs.io/en/latest/
http://asdf-standard.readthedocs.org/en/latest/

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

The write_to command validates the file and writes it to disk. It will catch any errors due to inconsistent in-
puts/outputs or invalid parameters.

To test the file, it can be read in again using the AsdfFile.open () method:

>>> ff = AsdfFile.open('reffile.asdf"')

>>> model = ff.tree['model']
>>> model (1, 1)
-152.2

WCS reference file information per EXP_TYPE

FGS_IMAGE, FGS_FOCUS, FGS_SKYFLAT, FGS_INTFLAT

reftypes: distortion
WCS pipeline coordinate frames: detector, v2v3, world
Implements: reference file provided by NIRISS team

MIR_IMAGE, MIR_TACQ, MIR_LYOT, MIR4QPM, MIR_CORONCAL

reftypes: distortion, filteroffset

WCS pipeline coordinate frames: detector, v2v3, world

Implements: CDP6 reference data delivery,

MIRI-TN-00070-ATC_Imager_distortion_CDP_Iss5.pdf
MIR_LRS-FIXEDSLIT, MIR_LRS-SLITLESS

reftypes: specwcs, distortion

WCS pipeline coordinate frames: detector, v2v3, world

Implements: CDP4 reference data delivery,

MIRI-TR-10020-MPI-Calibration-Data-Description_LRSPSFDistWave_v4.0.pdf
MIR_MRS

reftypes: distortion, specwcs, v2v3, wavelengthrange, regions
WCS pipeline coordinate frames: detector, miri_focal, xyan, v2v3, world

Implements: CDP4 reference data delivery,
MIRI-TN-00001-ETH_Iss1-3_Calibrationproduct_ MRS _d2c.pdf

NRC_IMAGE, NRC_TSIMAGE, NRC_FOCUS, NRC_TACONFIRM, NRC_TACQ

reftypes: distortion
WCS pipeline coordinate frames: detector, v2v3, world
Implements: Distortion file created from TEL team data.

NRC_WFSS, NRC_TSGRISM

reftypes: specwcs, distortion wavelengthrange
WCS pipeline coordinate frames: grism_detector, detector, v2v3, world
Implements: reference files provided by NIRCAM team

NIS_IMAGE, NIS_TACQ, NIS_TACONFIRM, NIS_FOCUS

reftypes: distortion
WCS pipeline coordinate frames: detector, v2v3, world
Implements: reference file provided by NIRISS team

NIS_WFSS

46 Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

reftypes: specwcs, distortion
WCS pipeline coordinate frames: grism_detector, detector, v2v3, world
Implements: reference files provided by NIRISS team

NIS_SOSS

reftypes: distortion, specwcs
WCS pipeline coordinate frames: detector, v2v3, world
Implements: reference files provided by NIRISS team

NRS_FIXEDSLIT, NRS_MSASPEC, NRS_LAMP, NRS_BRIGHTOBJ

reftypes: fpa, camera, disperser, collimator, msa, wavelengthrange, fore, ote
WCS pipeline coordinate frames: detector, sca, bgwa, slit_frame, msa_frame, ote, v2v3, world
Implements: CDP 3 delivery

NRS_IFU

reftypes: fpa, camera, disperser, collimator, msa, wavelengthrange, fore, ote,

ifufore, ifuslicer, ifupost

WCS pipeline coordinate frames: detector, sca, bgwa, slit_frame, msa_frame, ote, v2v3, world
Implements: CDP 3 delivery

NRS_IMAGING, NRS_MIMF, NRS_BOTA, NRS_CONFIRM, NRS_TACONFIRM, NRS_TASLIT, NRS_TACQ

reftypes: fpa, camera, disperser, collimator, msa, wavelengthrange, fore, ote
WCS pipeline coordinate frames: detector, sca, bgwa, slit_frame, msa_frame, ote, v2v3, world
Implements: CDP 3 delivery

12.1.3 Reference/API
jwst.assign_wcs.fgs Module

FGS WCS pipeline - depends on EXP_TYPE.

Functions
create_pipeline(input_model, reference_files) Create a gWCS.pipeline using models from refer-
ence files.
imaging(input_model, reference_files) The FGS imaging WCS pipeline.

create_pipeline

jwst.assign_wcs.fgs.create_pipeline (input_model, reference._files)
Create a gWCS . pipeline using models from reference files.

Parameters

* input_model (jwst.datamodels.DataModel)—FEither an ImageModel or a Cube-
Model

* reference_files (dict (https://docs.python.org/3/library/stdtypes.html#dict)) —
{reftype: file_name} mapping. Reference files.

12.1. Package Index 47


https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

imaging

jwst.assign_wcs. fgs.imaging (input_model, reference._files)
The FGS imaging WCS pipeline.
It includes 3 coordinate frames - “detector”, “v2v3” and “world”.

Uses a distortion reference file.

jwst.assign_wcs.miri Module

Functions
create_pipeline(input_model, reference_files) Create the WCS pipeline for MIRI modes.
imaging(input_model, reference_files) The MIRI Imaging WCS pipeline.
1 rs(input_model, reference_files) The LRS-FIXEDSLIT and LRS-SLITLESS WCS
pipeline.
1 fu(input_model, reference_files) The MIRI MRS WCS pipeline.

create_pipeline

jwst.assign_wcs.miri.create_pipeline (input_model, reference_files)
Create the WCS pipeline for MIRI modes.

Parameters

* input_model (jwst.datamodels.ImagingModel, IFUImageModel,
CubeMode 1) — Data model.

* reference_files (dict (https://docs.python.org/3/library/stdtypes.html#dict)) —
{reftype: reference file name} mapping.

imaging
jwst.assign_wcs.miri.imaging (input_model, reference_files)
The MIRI Imaging WCS pipeline.
It includes three coordinate frames - “detector”, “v2v3” and “world”.
Parameters

* input_model (jwst.datamodels.ImagingModel) — Data model.

* reference_files (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Dic-
tionary {reftype: reference file name}. Uses “distortion” and “filteroffset” reference files.

Irs

jwst.assign_wcs.miri.lrs (input_model, reference_files)
The LRS-FIXEDSLIT and LRS-SLITLESS WCS pipeline.

It has two coordinate frames: “detecor” and “world”. Uses the “specwcs” and “distortion” reference files.

48 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

ifu

jwst.assign_wcs.miri.ifu (input_model, reference._files)
The MIRI MRS WCS pipeline.
It has the following coordinate frames: “detector”, “alpha_beta”, “v2v3”, “world”.

EEINT3 ¢

It uses the “distortion”, “regions”, “specwcs” and “wavelengthrange” reference files.

jwst.assign_wcs.nircam Module

Functions

create_pipeline(input_model, reference_files) Create the WCS pipeline based on EXP_TYPE.

imaging(input_model, reference_files) The NIRCAM imaging WCS pipeline.

t sgrism(input_model, reference_files) Create WCS pipeline for a NIRCAM Time Series Grism
observation.

wfss(input_model, reference_files) Create the WCS pipeline for a NIRCAM grism obser-
vation.

create_pipeline

jwst.assign_wcs.nircam.create_pipeline (input_model, reference._files)
Create the WCS pipeline based on EXP_TYPE.

imaging
jwst.assign_wcs.nircam.imaging (input_model, reference_files)
The NIRCAM imaging WCS pipeline.

It includes three coordinate frames - “detector”, “v2v3” and “world”.

It uses the “distortion” reference file.

tsgrism

jwst.assign_wcs.nircam.tsgrism (input_model, reference._files)
Create WCS pipeline for a NIRCAM Time Series Grism observation.

Parameters

* input_model (jwst.datamodels.ImagingModel) — The input datamodel, de-
rived from datamodels

* reference_files (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Dic-
tionary {reftype: reference file name}.

Notes

The TSGRISM mode should function effectively like the grism mode except that subarrays will be allowed.
Since the transform models depend on the original full frame coordinates of the observation, the regular grism
transforms will need to be shifted to the full frame coordinates around the trace transform.

12.1. Package Index 49


https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

wiss

TSGRISM is only slated to work with GRISMR and Mod A

jwst.assign_wcs.nircam.wEss (input_model, reference._files)

Create the WCS pipeline for a NIRCAM grism observation.
Parameters

* input_model (jwst.datamodels.ImagingModel) — The input datamodel, de-
rived from datamodels

* reference_files (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Dic-
tionary {reftype: reference file name}.

Notes

The tree in the grism reference file has a section for each order/beam not sure if there will be a sepa-
rate passband reference file needed for the wavelength scaling or wedge offsets. This helper is currently in
jwreftools/nircam/nircam_reftools.

The direct image the catalog has been created from was corrected for distortion, but the dispersed images have
not. This is OK if the trace and dispersion solutions are defined with respect to the distortion-corrected image.
The catalog from the combined direct image has object locations in in detector space and the RA DEC of the
object on sky.

The WCS information for the grism image plus the observed filter will be used to translate these to pixel locations
for each of the objects. The grism images will then use their grism trace information to translate to detector
space. The translation is assumed to be one-to-one for purposes of identifying the center of the object trace.

The extent of the trace for each object can then be calculated based on the grism in use (row or column). Where
the left/bottom of the trace starts at t = 0 and the right/top of the trace ends at t = 1, as long as they have been
defined as such by th team.

The extraction box is calculated to be the minimum bounding box of the object extent in the segmentation map
associated with the direct image. The values of the min and max corners are saved in the photometry catalog in
units of RA,DEC so they can be translated to pixels by the dispersed image’s imaging wcs.

For each spectral order, the configuration file contains a magnitude-cutoff value. Sources with magnitudes
fainter than the extraction cutoff MMAG_EXTRACT) will not be extracted, but are accounted for when com-
puting the spectral contamination and background estimates. The default extraction value is 99 right now.

The sensitivity information from the original aXe style configuration file needs to be modified by the passband
of the filter used for the direct image to get the min and max wavelengths which correspond to t=0 and t=1, this
currently has been done by the team and the min and max wavelengths to use to calculate t are stored in the
grism reference file as wavelengthrange, which can be selected by waverange_selector which contains the filter
names.

All the following was moved to the extract_2d stage.

Step 1: Convert the source catalog from the reference frame of the uberimage to that of the dispersed im-
age. For the Vanilla Pipeline we assume that the pointing information in the file headers is sufficient. This
will be strictly true if all images were obtained in a single visit (same guide stars).

Step 2: Record source information for each object in the catalog: position (RA and Dec), shape
(A_IMAGE, B_IMAGE, THETA_IMAGE), and all available magnitudes.

Step 3: Compute the trace and wavelength solutions for each object in the catalog and for each spectral or-
der. Record this information.

50

Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Step 4: Compute the WIDTH of each spectral subwindow, which may be fixed or variable (see discussion
of optimal extraction, below). Record this information.

Catalog and associated steps moved to extract_2d.

jwst.assign_wcs.niriss Module

Functions

create_pipeline(input_model, reference_files)

Create the WCS pipeline based on EXP_TYPE.

imaging(input_model, reference_files)

The NIRISS imaging WCS pipeline.

niriss_soss(input_model, reference_files)

The NIRISS SOSS WCS pipeline.

niriss_soss_set_input(model, order_number)

Extract a WCS fr a specific spectral order.

w1 ss(input_model, reference_files)

Create the WCS pipeline for a NIRISS grism observa-
tion.

create_pipeline

jwst.assign_wcs.niriss.create_pipeline (input_model, reference_files)

Create the WCS pipeline based on EXP_TYPE.

imaging

jwst.assign_wcs.niriss.imaging (input_model, reference_files)

The NIRISS imaging WCS pipeline.

It includes three coordinate frames - “detector” “v2v3” and “world”.

It uses the “distortion” reference file.

niriss_soss

jwst.assign_wcs.niriss.niriss_soss (input_model, reference_files)

The NIRISS SOSS WCS pipeline.

It includes tWO coordinate frames - “detector” and “world”.

It uses the “specwcs” reference file.

niriss_soss_set_input

jwst.assign_wcs.niriss.niriss_soss_set_input (model, order_number)

Extract a WCS fr a specific spectral order.
Parameters

* — ImageModel (model)—

* — the spectral order (order_number)—

Returns

Return type WCS - the WCS corresponding to the spectral order.

12.1. Package Index

51



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

wiss

jwst.assign_wcs.niriss.wEfss (input_model, reference._files)

Create the WCS pipeline for a NIRISS grism observation.
Parameters

* input_model (jwst.datamodels.ImagingModel) — The input datamodel, de-
rived from datamodels

* reference_files (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Dic-
tionary specifying reference file names

Notes
reference_files = { “specwcs”: ‘GR150C_F090W.asdf” “distortion”: ‘NRCA1_FULL_distortion.asdf” }

The tree in the grism reference file has a section for each order/beam as well as the link to the filter data file, not
sure if there will be a separate passband reference file needed for the wavelength scaling or the wedge offsets.
This file is currently created in jwreftools/niriss/niriss_reftools.

The direct image the catalog has been created from was corrected for distortion, but the dispersed images have
not. This is OK if the trace and dispersion solutions are defined with respect to the distortion-corrected image.
The catalog from the combined direct image has object locations in in detector space and the RA DEC of the
object on sky.

The WCS information for the grism image plus the observed filter will be used to translate these to pixel locations
for each of the objects. The grism images will then use their grism trace information to translate to detector
space. The translation is assumed to be one-to-one for purposes of identifying the center of the object trace.

The extent of the trace for each object can then be calculated based on the grism in use (row or column). Where
the left/bottom of the trace starts at t = 0 and the right/top of the trace ends at t = 1, as long as they have been
defined as such by th team.

The extraction box is calculated to be the minimum bounding box of the object extent in the segmentation map
associated with the direct image. The values of the min and max corners are saved in the photometry catalog in
units of RA,DEC so they can be translated to pixels by the dispersed image’s imaging wcs.

The sensitivity information from the original aXe style configuration file needs to be modified by the passband
of the filter used for the direct image to get the min and max wavelengths which correspond to t=0 and t=1, this
currently has been done by the team and the min and max wavelengths to use to calculate t are stored in the
grism reference file as wrange, which can be selected by wrange_selector which contains the filter names.

Source catalog use moved to extract_2d.

jwst.assign_wecs.nirspec Module

Tools to create the WCS pipeline NIRSPEC modes.
Calls create_pipeline() which redirects based on EXP_TYPE.

Functions
create_pipeline(input_model, reference_files) Create a pipeline list based on EXP_TYPE.
Continued on next page
52 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Table 12 — continued from previous page

imaging(input_model, reference_files) Imaging pipeline.

1 fu(input_model, reference_files) The Nirspec IFU WCS pipeline.

sl1its_wcs(input_model, reference_files) The WCS pipeline for MOS and fixed slits.

get_open_sl1its(input_model[, reference_files]) Return the opened slits/shutters in a MOS or Fixed Slits
exposure.

nrs_wcs_set_input(input_model, slit_name[, Returns a WCS object for a specific slit, slice or shutter.

D

nrs_1ifu_wcs(input_model) Return a list of WCSs for all NIRSPEC IFU slits.

get_spectral_order_wrange(input_model, Read the spectral order and wavelength range from the

)

reference file.

create_pipeline

jwst.assign_wcs.nirspec.create_pipeline (input_model, reference_files)

Create a pipeline list based on EXP_TYPE.
Parameters
* input_model (ImageModel, TFUImageModel, CubeMode 1) — The input exposure.

*» reference_files (dict (https://docs.python.org/3/library/stdtypes.html#dict)) —
{reftype: reference_file_name} mapping.

imaging

jwst.assign_wcs.nirspec.imaging (input_model, reference_files)

ifu

Imaging pipeline.

It has the following coordinate frames: “detector” : the science frame “sca” : frame associated with the SCA

13 39 9

gwa” ” just before the GWA going from detector to sky “msa_frame” : at the MSA “oteip” : after the FWA
“v2v3” and “world”

jwst.assign_wcs.nirspec.ifu (input_model, reference._files)

The Nirspec IFU WCS pipeline.

93 93

The coordinate frames are: “detector” : the science frame “sca” : frame associated with the SCA “gwa” ” just
before the GWA going from detector to sky “slit_frame” : frame associated with the virtual slit “slicer’ : frame
associated with the slicer “msa_frame” : at the MSA “oteip” : after the FWA “v2v3” and “world”

slits_wcs

jwst.assign_wcs.nirspec.slits_wes (input_model, reference_files)

The WCS pipeline for MOS and fixed slits.

99 99

The coordinate frames are: “detector” : the science frame “sca” : frame associated with the SCA “gwa” ” just
before the GWA going from detector to sky “slit_frame” : frame associated with the virtual slit “msa_frame” :
at the MSA “oteip” : after the FWA “v2v3” : at V2V3 “world” : sky and spectral

12.1. Package Index 53


https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

get_open_slits

jwst.assign_wcs.nirspec.get_open_slits (input_model, reference_files=None)
Return the opened slits/shutters in a MOS or Fixed Slits exposure.

nrs_wcs_set_input

jwst.assign_wcs.nirspec.nrs_wcs_set_input (input_model, slit_name, wave-

length_range=None)
Returns a WCS object for a specific slit, slice or shutter.

Parameters
* input_model (DataModel) — A WCS object for the all open slitlets in an observation.

* slit_name (int (https://docs.python.org/3/library/functions.html#int) or str
(https://docs.python.org/3/library/stdtypes.htmli#str)) — Slit.name of an open slit.

* wavelength_range (list (https://docs.python.org/3/library/stdtypes.html#list)) —
Wavelength range for the combination of fliter and grating.

Returns wcesobj — WCS object for this slit.
Return type WCS

nrs_ifu_wcs

jwst.assign_wcs.nirspec.nrs_ifu_wes (input_model)
Return a list of WCSs for all NIRSPEC IFU slits.

Parameters input_model (jwst .datamodels.DataModel) — The data model. Must have
been through the assign_wcs step.

get_spectral_order_wrange

jwst.assign_wcs.nirspec.get_spectral_order_wrange (input_model, wavelength-

range_file)
Read the spectral order and wavelength range from the reference file.

Parameters
* input_model (DataModel) — The input data model.

* wavelengthrange_file (str (https://docs.python.org/3/library/stdtypes.htmli#str)) —
Reference file of type “wavelengthrange”.

jwst.assign_wcs.pointing Module

Functions

compute_roll_ref(v2_ref, v3_ref, roll_ref, ...) Computes the position of V3 (measured N to E) at the
center af an aperture.

Continued on next page

54 Chapter 12. Package Documentation


https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Table 13 — continued from previous page

frame_from model(wcsinfo) Initialize a coordinate frame based on values in
model.meta.wcsinfo.

fitswecs transform from model(wcesinfol, Create a WCS object wusing from data-

wavetab]) model.meta.wcsinfo.

compute_roll_ref

jwst.assign_wcs.pointing.compute_roll_ref (v2_ref, v3_ref, roll_ref, ra_ref, dec_ref,

new_v2_ref, new_v3_ref’)
Computes the position of V3 (measured N to E) at the center af an aperture.

Parameters

* v3_ref (v2_ref,) — Reference point in the V2, V3 frame [in arcsec] (FITS keywords
V2_REF and V3_REF)

* roll_ref (float (https://docs.python.org/3/library/functions.html#float)) — Position an-
gle of V3 at V2_REF, V3_REF, [in deg] When ROLL_REF == PA_V3, then (V2_REF,
V3_REF) = (0, 0)

* dec_ref (ra_ref,) - RA and DEC corresponding to V2_REF and V3_REEF, [in deg]

* new_v3_ref (new_v2_ref,)— The new position in V2, V3 where the position of V3
is computed, [in arcsec] The center of the aperture in V2,V3

Returns new_roll — The value of ROLL_REF (in deg)
Return type float (https://docs.python.org/3/library/functions.html#float)

frame_from_model

jwst.assign_wcs.pointing.frame_from_model (wcsinfo)
Initialize a coordinate frame based on values in model.meta.wcsinfo.

Parameters wesinfo (DataModel or dict) — Either one of the JWST data moels or a dict with
model.meta.wcsinfo.

Returns frame

Return type CoordinateFrame

fitswes_transform_from_model

jwst.assign_wcs.pointing. fitswes_transform_ from model (wcsinfo, wavetab=None)
Create a WCS object using from datamodel.meta.wcsinfo. Transforms assume 0-based coordinates.

Parameters wesinfo (dict-1ike)— ~Jjwst.meta.wcsinfo structure.
Returns transform — WCS forward transform - from pixel to world coordinates.

Return type Model

jwst.assign_wecs.util Module

Utility function for assign_wcs.

12.1. Package Index 55


https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Functions

reproject(wcesl, wes2[, origin]) Given two WCSs return a function which takes pixel
coordinates in the first WCS and computes their location
in the second one.

wcs_from_footprints(dmodels[, refmodel,...])  Create a WCS from a list of input data models.

velocity_correction(velosys) Compute wavelength correction to Barycentric refer-
ence frame.

reproject

jwst.assign_wcs.util.reproject (wesl, wes2, origin=0)
Given two WCSs return a function which takes pixel coordinates in the first WCS and computes their location
in the second one.

It performs the forward transformation of wcs1 followed by the inverse of wcs2.
Parameters wes2 (wes1,)— WCS objects.

Returns _reproject — Function to compute the transformations. It takes x, y positions in wcs1 and
returns X, y positions in wcs2.

Return type func

wcs_from_footprints

jwst.assign_wcs.util.wes_from_footprints (dmodels, refmodel=None, transform=None,

bounding_box=None, domain=None)
Create a WCS from a list of input data models.

A fiducial point in the output coordinate frame is created from the footprints of all WCS objects. For a spatial
frame this is the center of the union of the footprints. For a spectral frame the fiducial is in the beginning of the
footprint range. If refmodel is None, the first WCS object in the list is considered a reference. The output
coordinate frame and projection (for celestial frames) is taken from refmodel. If t ransformis not suplied,
a compound transform is created using CDELTs and PC. If bounding_box is not supplied, the bounding_box
of the new WCS is computed from bounding_box of all input WCSs.

Parameters
¢ dmodels (list of DataModel) — A list of data models.

* refmodel (DataModel, optional) — This model’s WCS is used as a reference. WCS.
The output coordinate frame, the projection and a scaling and rotation transform is created
from it. If not supplied the first model in the list is used as refmodel.

* transform (Model, optional) — A transform, passed to wcs_from_fiducial () If
not supplied Scaling | Rotation is computed from refmodel.

* bounding_box (tuple (https://docs.python.org/3/library/stdtypes.html#tuple),
optional) — Bounding_box of the new WCS. If not supplied it is computed from the
bounding_box of all inputs.

56 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#tuple

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

velocity_correction

jwst.assign_wcs.util.velocity_ correction (velosys)
Compute wavelength correction to Barycentric reference frame.

Parameters velosys (float (https://docs.python.org/3/library/functions.html#float)) — Radial
velocity wrt Barycenter [m / s].

12.1.4 Associations
Association Overview

What are Associations?

Associations are basically just lists of things, mostly exposures, that are somehow related. With respect to JWST and
the Data Management System (DMS), associations have the following characteristics:

* Relationships between multiple exposures are captured in an association.

* An association is a means of identifying a set of exposures that belong together and may be dependent upon one
another.

» The association concept permits exposures to be calibrated, archived, retrieved, and reprocessed as a set rather
than as individual objects.

¢ For each association, DMS will generate the most combined and least combined data products.

Associations and JWST

The basic chunk in which science data arrives from the observatory is termed an exposure. An exposure contains
the data from a single set of integrations per detector per instrument. In general, it takes many exposures to make up a
single observation, and a whole program is made up of a large number of observations.

On first arrival, an exposure is termed to be at Level1lb: The only transformation that has occured is the extraction
of the science data from the observatory telemetry into a FITS file. At this point, the science exposures enter the
calibration pipeline.

The pipeline consists of two stages: Level2 processing and Level3 processing. Level2 processing is the calibration
necessary to remove instrumental effects from the data. The resulting files contain flux and spatially calibrated data,
called Level2b data. The information is still in individual exposures.

To be truly useful, the exposures need to be combined and, in the case of multi-object spectrometry, separated, into
data that is source-oriented. This type of calibration is called Leve 13 processing. Due to the nature of the individual
instruments, observing modes, and the interruptability of the observatory itself, how to group the right exposures
together is not straight-forward.

Enter the Association Generator. Given a set of exposures, called the Association Pool, and a set of rules found in
an Association Registry, the generator groups the exposures into individual associations. These associations are then
used as input to the Level3 calibration steps to perform the transformation from exposure-based data to source-based,
high(er) signal-to-noise data.

In short, Level 2 and Level 3 associations are created running the asn_generate task on an Association Pool using the
default Level 2 and Level 3 Association Rules to produce level2-associations and level3-associations.

12.1. Package Index 57


https://docs.python.org/3/library/functions.html#float

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Usage

Users should not need to run the generator. Instead, it is expected that one edits an already existing association that
accompanies the user’s JWST data. Or, if need be, an association can be created based on the existing Level2 or Level3
examples.

Once an association is in-hand, one can pass it as input to a pipeline routine. For example:

)

% strun calwebb_image3.cfg Jjwl2345_xxxx_asn.json

Programmatically, to read in an Association, one uses the 1oad_asn () function:

from jwst.associations import load_asn

with open('jwl2345_xxxx_asn.json') as fp:
asn = load_asn (fp)

What exactly is returned depends on what the association is. However, for all Level2 and Level3 associations, a Python
dict (https://docs.python.org/3/library/stdtypes.html#dict) is returned, whose structure matches that of the JSON or
YAML file. Continuing from the above example, the following shows how to access the first exposure file name of a
Level3 assocations:

exposure = asn|['products'][0]['members'][0] [ 'expname']

Since the JWST pipeline uses associations extensively, higher-level access is gained by opening an association as a
JWST Data Model:

from jwst.datamodels import open as dm_open
container_model = dm_open (' Jjwl2345_ xxxx_asn.json')

Utilities

Other useful utilities for creating and manipulating associations:
* asn_from list

* many other TBD

JWST Associations
JWST Conventions

Naming Conventions

When produced through the ground processing, all association files are named according to the following scheme:

jwPPPPP-TNNNN_YYYYMMDDtHHMMSS_ATYPE_MMM_asn. json

where:
e Jjw: All JWST-related products begin with jw
e PPPPP: 5 digit proposal number

e TNNNN: Canididate Identifier. Can be one of the following:

58 Chapter 12. Package Documentation



https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

— ONNN: Observation candidate specified by the letter o followed by a 3 digit number.
— c1NNN: Association candidate, specified by the letter ‘c’, followed by a number starting at 1001.

— a3NNN: Discovered whole program associations, specified by the letter ‘a’, followed by a number starting
at 3001

— rNNNN: Reserverd for future use. If you see this in practice, file an issue to have this document updated.

* YYYYMMDDtHHMMSS: This is generically referred to as the version_id. DMS specifies this as a timestamp.
Note: When used outside the workflow, this field is user-specifiable.

e ATYPE: The type of association. See Association Types

* MMM: A counter for each type of association created.

Association Types

Each association is intended to make a specific science product. The type of science product is indicated by the ATYPE
field in the association file name (see asn-DMS-naming), and in the asn_t ype meta keyword of the association itself
(see Association Meta Keywords).

The pipeline uses this type as the key to indicate which Level 2 or Level 3 pipeline module to use to process this
association.

The current association types are:
* image3: Intended for calwebb_image3 processing
* spec3: Intended for calwebb_spec3 processing
* wfs: Wave front sensing data, used by wfs_combine
* ami3: Intended for calwebb_ami3 processing
* coron3: Intended for calwebb_coron3 processing
* ts03: Intended for calwebb_tso3 processing
* image?2: Intended for calwebb_image2 processing
* spec2: Intended for calwebb_spec?2 processing
* nrslamp-spec?2: Intended for calwebb_nrslamp_spec?2 processing
* tso-image?2: Intended for calwebb_tso_image?2 processing

* tso-spec?2: Intended for calwebb_tso_spec?2 processing

Science Data Processing Workflow
General Workflow

See level3-asn-jwst-overview for an overview of how JWST uses associations. This document describes how associa-
tions are used by the ground processing system to execute the level 2 and level 3 pipelines based on.

Up to the initial calibration step calwebb_detectorl, the science exposures are treated individually. However,
starting at the level 2 calibration step, exposures may need other exposures in order to be further processed. Instead of
creating a single monolithic pipeline, the workflow uses the associations to determine what pipeline should be executed
and when to execute them. In the figure below, this wait-then-execute process is represented by the workflow
trigger. The workflow reads the contents of an association to determine what exposures, and possibly other files,

12.1. Package Index 59



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

are needed to continue processing. The workflow then waits until all exposures exist. At that point, the related
calibration step is executed with the association as input.

With this finer granularity, the workflow can run more processes parallel, and allows the operators deeper visibility
into the progression of the data through the system.

The figure represents the following workflow:
» Data comes down from the observatory and is converted to the raw FITS files.
e calwebb_detectorl is run on each file to convert the data to the countrate format.

¢ In parallel with calwebb_detectorl, the Pool Maker collects the list of downloaded exposures and places
them in the Association Pool

* When enough exposures have been download to complete and Association Candidate, such as an Observation
Candidate, the Pool Maker calls the Association Generator, asn_generate, to create the set of associations
based on that Candidate.

* For each association generated, the workflow creates a file watch list from the association, then waits until all
exposures needed by that association come into existence.

* When all exposures for an association exist, the workflow then executes the corresponding pipeline, passing the
association as input.

Wide Field Slitless Spectroscopy

In most cases, the data will flow from level 2 to level 3, completing calibration. However, more complicated situations
can be handled by the same wait-then-execute process. One particular case is for the Wide Field Slitless Spectrometry
(WFSS) modes. The specific flow is show in the figure below:

For WESS data, at least two observations are made, one consisting of a direct image of the field-of-view (FOV), and
a second where the FOV is dispersed using a grism. The direct image is first processed through level 3. At the level
3 stage, a source catalog of objects found in the image, and a segment map, are generated. These files are then used
as input to the level 2 processing of the spectral data. This extra link between the two major stages is represented by
the Segment & Catalog file set, show in red in the diagram. The level 2 association grism_spec2_asn not
only lists the needed countrate exposures, but also the catalog and segment map files produced by the level 3 image
processing. Hence, the workflow knows to wait for these files before continuing the spectral processing.

Field Guide to File Names

The high-level distinctions between level 2, level 3, exposure-centric, and target-centric files can be determined by the
following file patterns.

¢ Files produced by level 3 processing

Any file name that matches the following regex is a file that has been produced by a level 3 pipeline:

’.+[aocr] [0-9]1{3:4}.+

* Files containing exposure-centric data

Such data have files that match the following regex:

’jw[0*9] {11} _[0-91{5}_[0-91{5}_.+\.fits

* Files containing target-centric data

Such data have files that match the following regex:

60 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

General Image and Spectral
Association and Calibration
Workflow

Workflow Trigger

When all files listed in the
association exist, execute the
task.

12.1. 61



JWST Pipeline Documentation, Release 0.0.0.dev4079+9ga8594987

Wide Field Slitless Spectral
Association and Calibration
Workflow

Workflow Trigger

When all files listed in the
association exist, execute the
task.

e

62 ackage Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Jw[0-9]1{5}-[aocr] [0-9]{3:4}_.+

Such data is the result of the combination of data from several exposures, usually produced by a level 3 calibra-
tion pipeline.

Note that these patterns are not intended to fully define all the specific types of files there are. However, these are the
main classifications, from which the documentation for the individual calibrations steps and pipelines will describe
any further details.

Level 2 Associations: Technical Specifications
Logical Structure

Independent of the actual format, all Level 2 associations have the following structure. Again, the structure is defined
and enforced by the Level 2 schema

* Top level, or meta, key/values
* List of products, each consisting of
— Output product name template
— List of exposure members, each consisting of
+ filename of the input exposure
* Type of exposure
# Errors from the observatory log

% Association Candidates this exposure belongs to

Example Association

The following example will be used to explain the contents of an association:

{

"asn_rule": "Asn_Lv2Spec",
"asn_pool": "jw82600_001_20160304T145416_pool",
"program": "82600",
"asn_type": "spec2",
"products": [
{
"name": "test_lrsl",
"members": [
{
"expname": "test_lrsl_rate.fits",
"exptype": "science"
}
1
}I
{
"name": "test_lrs2bkg",
"members": [
{
"expname": "test_lrs2bkg_rate.fits",
"exptype": "science"

(continues on next page)

12.1. Package Index 63




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

(continued from previous page)

"name": "test_lrs2",
"members": [
{
"expname": "test_lrs2_rate.fits",
"exptype": "science"
}I
{
"expname": "test_lrs2bkg_rate.fits",
"exptype": "background"

Association Meta Keywords

The following are the top-level, or meta, keywords of an association.

program optional Program number for which this association was created.

asn_type optional The type of association represented. See level3-asn-association-types
asn_id optional The association id. The id is what appears in the asn-DMS-naming
asn_pool optional Association pool from which this association was created.

asn_rule optional Name of the association rule which created this association.

version_id optional Version identifier. DMS uses a time stamp with the format yyyymmddt hhmmss Can be None
or NULL

constraints optional List of constraints used by the association generator to create this association. Format and
contents are determined by the defining rule.

products Keyword

A list of products that would be produced by this association. For Level2, each product is an exposure. Each product
should have one science member, the exposure on which the Level2b processing will occur.

Association products have two components:

name optional The string template to be used by Level 2b processing tasks to create the output file names. The
product name, in general, is a prefix on which the individual pipeline and step modules will append whatever
suffix information is needed.

If not specified, the Level2b processing modules will create a name based off the name of the science member.

members required This is a list of the exposures to be used by the Level 2b processing tasks. This keyword is
explained in detail in the next section.

64 Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

members Keyword

members is a list of objects, each consisting of the following keywords
expname required The exposure file name
exptype required Type of information represented by the exposure. Possible values are
* science required
Primary science exposure. For each product, only one exposure can be science.
* background optional
Off-target background exposure to subtract.
e imprint optional
Imprint exposure to subtract.
* sourcecat optional

The catalog of sources to extract spectra for. Usually produced by calwebb_image3 for wide-field
slitless spectroscopy.

Editing the member list

As discussed previously, a member is made up of a number of keywords, formatted as follows:

{
"expname": "jw_00003_cal.fits",
"exptype": "science",

s

To remove a member, simply delete its corresponding set.

To add a member, one need only specify the two required keywords:

{
"expname": "Jjw_00003_cal.fits",
"exptype": "science"

I

Level 3 Associations: Technical Specifications
Logical Structure

Independent of the actual format, all Level 3 associations have the following structure. Again, the structure is defined
and enforced by the Level 3 schema

* Top level, or meta, key/values
* List of products, each consisting of
— Output product name template
— List of exposure members, each consisting of

+ filename of the input exposure

12.1. Package Index 65




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

+ Type of exposure
* Errors from the observatory log

* Association Candidates this exposure belongs to

Example Association

The following example will be used to explain the contents of an association:

{

"degraded_status": "No known degraded exposures in association.",

"version_id": "20160826t131159",

"asn_type": "image3",

"asn_id": "c3001",

"constraints": "Constraints:\n opt_elem2: CLEAR\n detector: (?!NULL).+\n
—target_name: 1\n exp_type: NRC_IMAGE\n wfsvisit: NULL\n instrument:
—NIRCAM\n opt_elem: F090W\n program: 99009",

"asn_pool": "mega_pool",

"asn_rule": "Asn_Image",

"target": "1",

"program": "99009",

"products": [

{
"name": "jw99009-a3001_t001_nircam_f090w",
"members": [
{
"exposerr": null,
"expname": "Jjw_00001_cal.fits",
"asn_candidate": "[('o001', 'observation')]",
"exptype": "science"
}I
{
"exposerr": null,
"expname": "Jjw_00002_cal.fits",
"asn_candidate": "[('o001', 'observation')]",
"exptype": "science"

[

Association Meta Keywords

The following are the top-level, or meta, keywords of an association.

program optional Program number for which this association was created.

target optional Target ID for which this association refers to. DMS currently uses the TARGETID header keyword

in the Level2 exposure files, but there is no formal restrictions on value.
asn_type optional The type of association represented. See level3-asn-association-types
asn_id optional The association id. The id is what appears in the asn-DMS-naming

asn_pool optional Association pool from which this association was created.

66 Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

asn_rule optional Name of the association rule which created this association.

degraded_status optional Error status from the observation logs. If none the phrase “No known degraded exposures
in association.” is used.

version_id optional Version identifier. DMS uses a time stamp with the format yyyymmddt hhmmss Can be None
or NULL

constraints optional List of constraints used by the association generator to create this association. Format and
contents are determined by the defining rule.

products Keyword

Association products have to components:

name optional The string template to be used by Level 3 processing tasks to create the output file names. The
product name, in general, is a prefix on which the individual pipeline and step modules will append whatever
suffix information is needed.

If not specified, the Level3 processing modules will create a name root.

members required This is a list of the exposures to be used by the Level 3 processing tasks. This keyword is explained
in detail in the next section.

members Keyword

members is a list of objects, each consisting of the following keywords

expname required The exposure file name

exptype required Type of information represented by the exposure. Possible values are
* science required

The primary science expsoures. There is usually more than one since Level3 calibration involves combin-
ing multiple science exposures. However, at least one exposure in an association needs to be science.

* psf optional
Exposures that should be considered PSF references for coronagraphic and AMI calibration.

exposerr optional If there was some issue the occured on the observatory that may have affected this exposure, that
condition is listed here. Otherwise the value is null

asn_candidate optional Contains the list of association candidates this exposure belongs to.

Editing the member list

As discussed previously, a member is made up of a number of keywords, formatted as follows:

{

"expname": "Jjw_00003_cal.fits",

"exptype": "science",

"exposerr": null,

"asn_candidate": "[('oc001', 'observation')]l"

by

12.1. Package Index 67




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

To remove a member, simply delete its corresponding set.

To add a member, one need only specify the two required keywords:

{
"expname": "Jjw_00003_cal.fits",
"exptype": "science"

}y

Level3 Associations: Rules
Data Grouping

JWST exposures are identified and grouped in a specific order, as follows:
* program

The entirety of a science observing proposal is contained within a program. All observations, regardless of
instruments, pertaining to a proposal are identified by the program id.

e observation

A set of visits, any corresponding auxiliary exposures, such as wavelength calibration, using a specific instru-
ment. An observation does not necessarily contain all the exposures required for a specific observation mode.
Also, exposures within an observation can be taken with different optical configurations of the same instrument

* visit
A set of exposures which sharing the same source, or target, whether that would be external to the observatory

or internal to the instrument. The can be many visits for the same target, and visits to different targets can be
interspersed among themselves.

* group

A set of exposures that share the same observatory configuration. This is basically a synchronization point
between observatory moves and parallel instrument observations.

* sequence
TBD

* activity
A set of exposures that are to be taken atomically. All exposures within an activity are associated with each
other and have been taken consecutively.

¢ exposure

The basic unit of science data. Starting at Levellb, an exposure contains a single integrations of a single detector
from a single instrument for a single snap. Note that a single integration actually is a number of readouts of the
detector during the integration.

Rules

All rules have as their base class DMS_ Level3_Base This class defines the association structure, enforces the DMS
naming conventions, and defines the basic validity checks on the Level3 associations.

Along with the base class, a number of mixin classes are defined. These mixins define some basic constraints that are
found in a number of rules. An example is the AsnMixin_Base, which provides the constraints that ensure that the
program identificaiton and instrument are the same in each association.

68 Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

The rules themselves are subclasses of AsnMixin_Base and whatever other mixin classes are necessary to build the
rule. Conforming to the Class Naming scheme, all the final Level3 association rules begin with Asn_. An example is
the Asn_ Image rule.

The following figure shows the above relationships. Note that this diagram is not meant to be a complete listing.

Association

P
‘ |Configurations | |
‘ —= AspMixin_Base l | AspMixin_OpticalPath l | AspMixin_Target l | |
I - |
r-—-——-=-=-=-=-=-=-=-=-=-=-=-=-===-==-==========-= bl
Instruments
| AspMixin_MIRI ] | AsnMixin_NIRSPEC I —_—
|
‘ | | AsnMixin_NIRISS ] | AsnMixin_MIRCAM ] | |
L o o o o e e e e 1
| - .
|Science
‘ —bl AsnMixin_Image l | AsnMixin_Spectrum l | AsnMixin_CrossCandidate l |
v
rules_level3
Asn_Image l
|Asn_I'-‘IIRI_LRS_FIXEDSLIT H Asn_MIRI_LRS_SLITLESS H Asn_MIRI_IFU l

| Asn_NIR_S0_SLITLESS ]

| Asn_NRS_FIXEDSLIT l | Asn_NRS_MSA l | Asn_MRS_IFU l

Fig. 3: Level3 Rule Class Inheritance

Level3 Rules

Association Definitions: DMS Level3 product associations

class jwst.associations.lib.rules_level3.Asn_Image (*args, **kwargs)
Non-Association Candidate Dither Associations

class jwst.associations.lib.rules_level3.Asn_WFSCMB ( *args, **kwargs)
Wavefront Sensing association

Notes

Defined by TRAC issue #269 (https://aeon.stsci.edu/ssb/trac/jwst/ticket/269)

class jwst.associations.lib.rules_level3.Asn_SpectralTarget (*args, **kwargs)
Slit-like, target-based, or single-object spectrographic modes

12.1. Package Index 69


https://aeon.stsci.edu/ssb/trac/jwst/ticket/269

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

class jwst.associations.lib.rules_level3.Asn_SpectralSource (*args, **kwargs)
Slit-like, multi-object spectrographic modes

dms_product_name
Define product name.

Returns product_name — The product name
Return type str (https://docs.python.org/3/library/stdtypes.html#str)

class jwst.associations.lib.rules_level3.Asn_IFU (*args, **kwargs)
IFU associations

dms_product_name
Define product name.

class jwst.associations.lib.rules_level3.Asn_Coron (*args, **kwargs)
Coronography .. rubric:: Notes

Coronography is nearly completely defined by the association candidates produced by APT. Tracking Issues: -
github #311

class jwst.associations.lib.rules_level3.Asn_AMI (*args, **kwargs)
Aperture Mask Interferometry .. rubric:: Notes

AMI is nearly completely defined by the association candidates produced by APT. Tracking Issues: - github
#310

class jwst.associations.lib.rules_level3.Asn_WFSS_NIS (*args, **kwargs)
WESS/Grism modes

dms_product_name
Define product name.

Returns product_name — The product name
Return type str (https://docs.python.org/3/library/stdtypes.html#str)

class jwst.associations.lib.rules_level3.Asn_TSO (*args, **kwargs)
Time-Series observations

Design

Association Design

As introduced in the overview, the figure above shows all the major players used in generating associations. Since this
section will be describing the code design, the figure below is the overview but using the class names involved.

Generator
Algorithm

The generator conceptual workflow is show below:

This workflow is encapsulated in the generate. Each member is first checked to see if it belongs to an already existing
association. If so, it is added to each association it matches with. Next, the set of association rules are check to see if
a new association, or associations, are created by the member. However, only associations that have not already been
created are checked for. This is to prevent cyclical creation of associations.

70 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Association

member |[Attr.l [Attr.2 |Attr.3

— member |[Attr.l [Attr.2 |Attr.3

member |[Attr.l [Attr.2 |Attr.3

Rule

Rule Association

member [Attr.l |[Attr.2 |Attr.3

Generator member |[Attr.l [Attr.2 |Attr.3
Table
member [Attr.l [Attr.2 |Attr.3
member [Attr.l [Attr.2 |Attr.3 — Association

member [Attr.l [Attr.2 |Attr.3

|member |Attr.1 |Attr.2 |Attr.3 |

member [Attr.l [Attr.2 |Attr.3

—
Fig. 4: Association Generator Overview
Association
member |[Attr.l [Attr.2 |Attr.3
AssociationRegistry e member |Attr.l |Attr.2 |Attr.3
member |[Attr.l [Attr.2 |Attr.3
Association
Association
Association Association
member |[Attr.l [Attr.2 |Attr.3
generate() member |[Attr.l |[Attr.2 |Attr.3
AssociationPool
member [Attr.l [Attr.2 |Attr.3
member [Attr.l [Attr.2 |Attr.3 — Association
member [Attr.l [Attr.2 |Attr.3
|member |Attr.1 |Attr.2 |Attr.3 |
member [Attr.l [Attr.2 |Attr.3
—

Fig. 5: Association Class Relationship overview

12.1. Package Index 71



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Create necessary new
associations

<-YES

New
associations

Association
List

AssociationPool
member |Attr. Attr. Attr.3
member |Attr. Attr. Attr.3 For each member
member [Attr. Attr. Attr.3
member [Attr. Attr. Attr.3
v v
Add to those Matches to any existing
associations <+—YES—— associations?
"
v

Match any other
association rules?

=
4«—O—

Orhpan Pool

Fig. 6: Generator Conceptual Workflow

72

Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

As discussed in Associations and Rules, associations are Python classes, often referred to as association rules,
and their instantiations, referred to as associations. An association is created by calling the Association.
create class method for each association rule. If the member matches the rule, an association is returned. Each
defined rule tried. This process of checking whether a member would create any associations is encapsulated in the
AssociationRegistry.match method

Conversely, to see if a member belongs to an already existing association, an attempt is made to add the member using
the Association.add method. If the addition succeeds, the member has been added to the association instance.
The generator uses mat ch_member function to loop through its list of existing associations.

Output

Before exiting, the generate checks the Association.is_valid property of each association to ensure that an
association has all the members it is required to have. With respect to JWST and Level3 processing, an example of an
association that would not be valid would be if an observation failed to complete, producing only a subset of exposures.
The result would be an invalid association, since any further processing would fail.

Once validation is complete, generate returns a 2-tuple. The first item is a list of the associations created. The second
item is another AssociationPool containing all the members that did not get added to any association.

Member Attributes that are Lists

As mentioned in Association Pool, most member attributes are simply treated as strings. The exception is when an
attribute value looks like a list:

[element, ...]

When this is the case, a mini pool is created. This pool consists of duplicates of the original member. However,
for each copy of the member, the attribute that was the list is now populated with consecutive members of that list.
This mini pool and the rule or association in which this was found, is passed back up to the generate function to be
reconsidered for membership. Each value of the list is considered separately because association membership may
depend on what those individual values are. The figure below demonstrates the member replication.

For JWST, this is used to filter through the various types of association candidates. Since an exposure can belong to
more than one association candidate, the exposure can belong to different associations depending on the candidates.

Association Candidates

TBD

Associations and Rules
Terminology

As has been described, an Association is a Python dict or list that is a list of things that belong together and are
created by association rules. However, as will be described, the association rules are Python classes which inherit from
the Association class.

Associations created from these rule classes, refered to as just rules, have the type of the class they are created from
and have all the methods and attributes of those classes. Such instances are used to populate the created associations
with new members and check the validity of said associations.

12.1. Package Index 73



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

AssociationPool

member |Attr.1 [Attr.2 [Attr.3

member |Attr.1 [Attr.2 |Attr.3 |—
Attr.1 |Attr.2 Attr.3
member [Attr.1 [Attr.2 |Attr.3 member r——=—=—==-=--=
> [valA, valB, valcl]|
member |Attr.l |Attr.2 |[Attr.3 U

is
expanded

[t

v

AssociationPool: minipool

Attr.1 |Attr.2 Attr.3
member | | = === === ==

Attr.1 |Attr.2 Attr.3
member r—=——=-—=-=--=-=

Attr.1 |Attr.2 Attr.3
member r-—-——-—------

Fig. 7: Member list expansion
Attr.2 is a list of three values which expands into three members in the mini pool.

However, once an association has been saved, or serialized, through the Association.dump method, then reload
through the corresponding Association. load method, the restored association is only the basic list or dict. The
whole instance of the originating association is not serialized with the basic membership information.

This relationship is shown in the following figure:

Note About Loading

Association.load will only validate the incoming data against whatever schema or other validation checks
the particular subclass calls for. The generally preferred method for loading an association is through the jwst.
associations.load asn () function.

Rules

Association rules are Python classes which must inherit from the Associat ion base class. What the rules do and
what they create are completely up to the rules themselves. Except for a few core methods, the only other requirement
is that any instance of an association rule must behave as the association it creates. If the association is a dict, the rule
instance must behave as the dict. If the association is a list, the rule instance must behave as a list. Otherwise, any
other methods and attributes the rules need for association creation may be added.

Rule Sets

In general, because a set of rules will share much the same functionality, for example how to save the association and
how to decide membership, it is suggested that an intermediate set of classes be created from which the rule classes
inherit. The set of rule classes which share the same base parent classes are referred to as a rule set. The IWST Level2-
associations and Level3-associations are examples of such rule sets. The below figure demonstrates the relationships
between the base Association, the defining ruleset classes, and the rule classes themselves.

74 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

generate

|

v

Association
(instance of Association
class)

Association.dump()

v

an_asn_file.json

Association. load()

v

dict or list
(called an association)

Fig. 8: Rule vs. Association Relationship

Association

v

| Ruleset_Base |

|
| | |

v v

v
| Ruleset_Mixin_A | | Ruleset_Mixin_B | | Ruleset_Mixin_C
v v v v

| Asn_Rule_A | | Asn_Rule_B | | Asn_Rule_C | | Asn_Rule_D |

Fig. 9: Rule Inheritance

12.1. Package Index 75



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Where Rules Live: The AssociationRegistry

In order to be used, rules are loaded into an Association Registry. The registry is used by the generate to produce the
associations. The registry is also used by the jwst.associations.load _asn () function to validate a potential
association data against list of rules.

Association Registry

The AssociationRegistry is the rule organizer. An AssociationRegistry is instantiated with the files
containing the desired rules. The match () method is used to find associations that a member belongs to.

AssociationRegistry is a subclass of py3:dict and supports all of its methods. In particular, multiple
AssociationRegistry’s can be combined using the update () method.

Association Pool

Association pools are simply tables. Pools are instantiated using the AssociationPool. This class is simply a subclass
of astropy Table (http://docs.astropy.org/en/stable/table/index.html). As such, any file that is supported by astropy /O
can be used as an association pool.

Each row of a pool defines a member, and the columns define the attributes of that member. It is these attributes that
the generator uses to determine which members go into which associations.

Regardless of any implied or explicit typing of data by a table file, internally all data are converted to lowercase strings.
It is left up to the individual association definitions on how they will use these attributes.

For JWST Level2/Level3 associations, there is a special case. If an attribute has a value that is equivalent to a Python
list:

[element, ...]

the list will be expanded by the Level2/Level3 associations. This expansion is explained in Member Attributes that are
Lists

Reference

asn_generate

Association generation is done either using the command line tool asn_generate or through the Python API using
either Main or generate

Command Line

asn_generate —-help

Association Candidates

A full explanation of association candidates be found under the design section.

76 Chapter 12. Package Documentation


http://docs.astropy.org/en/stable/table/index.html

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Default Rules

The default rules are the Level2 and Level3. Unless the ——ignore-default option is specified, these rules are
included regardless of any other rules also specified by the —r options.

DMS Workflow

The JWST pipeline environment has specific requirements that must be met by any task running in that environment.
The ——DMS option ensures that asn_generate conforms to those specifications.

API

There are two programmatic entry points: the Main class and the generate function. Main is the highest level entry
and is what is instantiated when the command line asn_generate is used. Main parses the command line options,
creates the AssociationPool and AssociationRegistry instances, calls generate, and saves the resulting associations.

generate is the main mid-level entry point. Given an AssociationPool and an AssociationRegistry,
generate returns a list of associations and the orphaned exposure table.

asn_from_list

Create an association using either the command line tool asn_from_list or through the Python API us-
ing either jwst.associatons.asn_from_list.Main or jwst.associations.asn_from_list.
asn_from_list ()

Command Line

asn_from_list —--help

Usage
Level2 Associations

Refer to Level 2 Associations: Technical Specifications for a full description of Level2 associations.

To create a Level2 association, use the following command:

asn_from_list -o 12_asn.json —-r DMSLevel2bBase «*.fits

The —o option defines the name of the association file to create.
The -r DMSLevel2bBase option indicates that a Level2 association is to be created.

Each file in the list will have its own product in the association file. When used as input to calwebb_image?2 or
calwebb_spec2, each product is processed independently, producing the Level2b result for each product.

For those exposures that require an off-target background or imprint image, modify the members list for those ex-
posure, adding a new member with an exptype of background or imprint as appropriate. The expname for
these members are the Level2a exposures the are the background/imprint to use.

An example product that has both a background and imprint exposure would look like the following:

12.1. Package Index 77



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

"products": [

{

"name": "jw99999001001_011001_00001_nirspec",
"members": [
{
"expname": "jw99999001001_011001_00001_nirspec_rate.fits",
"exptype": "science"
}I
{
"expname": "jw99999001001_011001_00002_nirspec_rate.fits",
"exptype": "background"
}l
{
"expname": "jw99999001001_011001_00003_nirspec_rate.fits",
"exptype": "imprint"

Level3 Associations

Refer to Level 3 Associations: Technical Specifications for a full description of Level3 associations.

To create a Level3 association, use the following command:

asn_from_list -o 13_asn.json ——-product-name 13_results x.fits

The —o option defines the name of the association file to create.

The ——product—-name will set the name field that the Level3 calibration code will use as the output name. For the
example, the output files created by calwebb_image3, or other Level3 pipelines, will all begin with 13_results.

The list of files will all become science members of the association, with the presumption that all files will be
combined.

For coronagraphic or AMI processing, set the expt ype of the exposures that are the PSF reference exposures to psf£.
If the PSF files are not in the members list, edit the association and add them as members. An example product with
a psf exposure would look like:

"products": [

{

"name": "jw99999-0001_t14_nircam_fl182m-mask210r",
"members": [
{
"expname": "jw99999001001_011001_00001_nircam_cal.fits",
"exptype": "science"
}I
{
"expname": "Jjw99999001001_011001_00002_nircam_cal.fits",
"exptype": "science"
}I
{
"expname": "jw99999001001_011001_00003_nircam_cal.fits",
"exptype": "psf"

(continues on next page)

78 Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

(continued from previous page)

API

There are two programmatic entry points: The Main is the highest level entry and is what is instantiated when the
command line asn_from_11ist is used. Main handles the command line interface.

asn_from_list () isthe main mid-level entry point.

Association Rules

Association definitions, or rules, are Python classes, all based on the association. The base class provides only a
framework, much like an abstract base class; all functionality must be implemented in sub-classes.

Any subclass that is intended to produce an association is referred to as a rule. Any rule subclass must have a name
that begins with the string Asn_. This is to ensure that any other classes involved in defining the definition of the rule
classes do not get used as rules themselves, such as the association itself.

Association Dynamic Definition

Associations are created by matching members to rules. However, an important concept to remember is that an
association is defined by both the rule matched, and by the initial member that matched it. The following example will
illustrate this concept.

For JWST level3-associations, many associations created must have members that all share the same filter. To avoid
writing rules for each filter, the rules have a condition that states that it doesn’t matter what filter is specified, as long
as the association contains all the same filter.

To accomplish this, the association defines a constraint where filter must have a valid value, but can be any valid
value. When the association is first attempted to be instantiated with a member, and that member has a valid filter,
the association is created. However, the constraint on filter value in the newly created association is modified to
match exactly the filter value that the first member had. Now, when other members are attempted to be added to the
association, the filter of the new members must match exactly with what the association is expecting.

This dynamic definition allows rules to be written where each value of a specific attribute of a member does not have
to be explicitly stated. This provides for very robust, yet concise, set of rule definitions.

User-level API
Core Keys

To be repetitive, the basic association is simply a dict (default) or list. The structure of the dict is completely determined
by the rules. However, the base class defines the following keys:

asn_type The type of the association.
asn_rule The name of the rule.
version_id A version number for any associations created by this rule.

code_version The version of the generator library in use.

12.1. Package Index 79




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

These keys are accessed in the same way any dict key is accessed:

asn = Asn_MyAssociation ()
print (asn['asn_rule'])

#-—-> MyAssociation

Core Methods

These are the methods of an association rule deal with creation or returning the created association. A rule may define
other methods, but the following are required to be implemented.

create () Create an association.
add () Add a member to the current association.
dump () Return the string serialization of the association.

load () Return the association from its serialization.

Creation

To create an association based on a member, the create method of the rule is called:

(association, reprocess_list) = Asn_SomeRule.create (member)

create returns a 2-tuple: The first element is the association and the second element is a list of reprocess
instances.

If the member matches the conditions for the rule, an association is returned. If the member does not belong, None
(https://docs.python.org/3/library/constants.html#None) is returned for the association.

Whether an association is created or not, it is possible a list of reprocess instances may be returned. This list
represents the expansion of the pool in Member Attributes that are Lists

Addition

To add members to an existing association, one uses the Association.add method:

(matches, reprocess_list) = association.add(new_member)

If the association accepts the member, the matches element of the 2-tuple will be True
(https://docs.python.org/3/library/constants.html#True).

Typically, one does not deal with a single rule, but a collection of rules. For association creation, one typically uses
an AssociationRegistry to collect all the rules a pool will be compared against. Association registries provide extra
functionality to deal with a large and varied set of association rules.

Saving and Loading

Once created, an association can be serialized using its Association.dump method. Serialization creates a string
representation of the association which can then be saved as one wishes. Some code that does a basic save looks like:

80 Chapter 12. Package Documentation



https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

file_name, serialized = association.dump ()
with open(file_name, 'w') as file_handle:
file_handle.write (serialized)

Note that dump returns a 2-tuple. The first element is the suggested file name to use to save the association. The
second element is the serialization.

To retrieve an association, one uses the Association. load method:

with open(file_name, 'r') as file_handle:
association = Association.load(file_handle)

Association.load will only validate the incoming data against whatever schema or other validation checks
the particular subclass calls for. The generally preferred method for loading an association is through the jwst.
associations.load_asn () function.

Defining New Associations

All association rules are based on the Association base class. This class will not create associations on its own;
subclasses must be defined. What an association is and how it is later used is completely left to the subclasses. The
base class itself only defines the framework required to create associations. The rest of this section will discuss the
minimum functionality that a subclass needs to implement in order to create an association.

Class Naming

The AssociationRegistry is used to store the association rules. Since rules are defined by Python classes, a way of
indicating what the final rule classes are is needed. By definition, rule classes are classes that begin with the string
Asn_. Only these classes are used to produce associations.

Core Attributes

Since rule classes will potentially have a large number of attributes and methods, the base Association class
defines two attributes: data, which contains the actual association, and meta, the structure that holds auxiliary
information needed for association creation. Subclasses may redefine these attributes as they see fit. However, it is
suggested that they be used as conceptually defined here.

data Attribute

data contains the association itself. Currently, the base class predefines data as a dict. The base class itself is a
subclass of MutableMapping. Any instance behaves as a dict. The contents of that dict is the contents of the data
attribute. For example:

asn = Asn_MyAssociation ()

asn.data['value'] = 'a value'

assert asn['value'] == 'a value'

# True

asn['value'] = 'another value'

assert asn.data['value'] == 'another value'
# True

12.1. Package Index 81




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Instantiation

Instantiating a rule, in and of itself, does nothing more than setup the constraints that define the rule, and basic structure
initialization.

Implementing create ()

The base class function performs the following steps:
* Instantiates an instance of the rule
e Calls add () to attempt to add the member to the instance

If add () returnsmatches==False, then create returns None (https://docs.python.org/3/library/constants.html#None)
as the new association.

Any override of this method is expected to first call super (https://docs.python.org/3/library/functions.html#super).
On success, any further initialization may be performed.

Implementing add ()

The add () method adds members to an association.
If a member does belong to the association, the following events occur:

Constraint Modification Any wildcard constraints are modified so that any further matching must match exactly the
value provided by the current member.

self._init_hook () is executed If a new association is being created, the rule’s _init_hook method is ex-
ecuted, if defined. This allows a rule to do further initialization before the member is officially added to the
association.

self._add/() is executed The rule class must define _add (). This method officially adds the member to the
association.

Implementing dump () and load()

The base Association class defines the dump () and 1oad () methods to serialize the data structured pointing
to by the data attribute. If the new rule uses the data attribute for storing the association information, no further
overriding of these methods is necessary.

However, if the new rule does not define dat a, then these methods will need be overridden.

Rule Registration

In order for a rule to be used by generate, the rule must be loaded into an AssociationRegistry. Since a
rule is just a class that is defined as part of a, most likely, larger module, the registry needs to know what classes are
rules. Classes to be used as rules are marked with the RegistryMarker. rule decorator as follows:

# myrules.py
from jwst.associations import (Association, RegistryMarker)

@RegistryMarker.rule
class MyRule (Association):

82 Chapter 12. Package Documentation


https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#super

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Then, when the rule file is used to create an AssociationRegistry, the class MyRule will be included as one

of the available rules:

>>> from jwst.associations import AssociationRegistry
>>> registry = AssociationRegistry('myrules.py', include_default=False)

>>> print (registry)
{'MyRule': <class 'abc.MyRule'>}

jwst.associations Package

Setup default and environment

Functions

generate(pool, rules[, version_id])

Generate associations in the pool according to the rules.

generate_from_ item(item, version_id, ...)

Either match or generate a new assocation

1ibpath(filepath)

Return the full path to the module library.

load_asn(serialized[, format, first, ...])

Load an Association from a file or object

make_timestamp()

match_1tem(item, associations)

Match item to a list of associations

generate

jwst.associations.generate (pool, rules, version_id=None)
Generate associations in the pool according to the rules.

Parameters

* pool (AssociationPool) - The pool to generate from.

* rules (Associations)— The associaton rule set.

* version_id (None (https://docs.python.org/3/library/constants.html#None), True,
or str (https://docs.python.org/3/library/stdtypes.html#str)) — The string to use to tag as-
sociations and products. If None, no tagging occurs. If True, use a timestamp If a string, the

string.

Returns associations — List of associations

Return type [association],..]]

Notes

Refer to the Association Generator documentation for a full description.

generate_from_item

jwst.associations.generate_from_item (item, version_id, associations, rules, process_list)

Either match or generate a new assocation

Parameters

12.1. Package Index

83



https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Returns

item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — The item to match to
existing associations or generate new associations from

version_id (str  (https://docs.python.org/3/library/stdtypes.html#str) or None
(https://docs.python.org/3/library/constants.html#None)) — Version id to use with associa-
tion creation. If None, no versioning is used.

associations ([association, ..])-— Listof already existing associations. If the
item matches any of these, it will be added to them.

rules (AssociationRegistry or None (https://docs.python.org/3/library/constants.html#None))
— List of rules to create new associations

process_list (ProcessList) — The ProcessList from which the current item
belongs to.

(associations, process_list) —

existing_asns: [association,...] List of existing associations item belongs to. Empty if none

match

new_asns: [association,...] List of new associations item creates. Empty if none match

process_list: [ProcessList, ...] List of process events.

Return type 3-tuple where

libpath

jwst.associations.libpath (filepath)
Return the full path to the module library.

load_asn

jwst.associations.load_asn (serialized, format=None, first=True, validate=True, registry=<class

‘jwst.associations.registry.AssociationRegistry’>, **kwargs)

Load an Association from a file or object

Parameters

serialized (object (https://docs.python.org/3/library/functions.html#object)) — The
serialized form of the association.

format (str (https://docs.python.org/3/library/stdtypes.html#str) or None
(https://docs.python.org/3/library/constants.html#None)) — The format to force. If
None, try all available.

validate (bool (https://docs.python.org/3/library/functions.html#bool)) — Validate
against the class’ defined schema, if any.

first (bool (https://docs.python.org/3/library/functions.html#bool)) — A serialization
potentially matches many rules. Only return the first succesful load.

registry (AssociationRegistry or None (https://docs.python.org/3/library/constants.html#None))
—The AssociationRegistry to use. If None, no registry is used. Can be passed just
a registry class instead of instance.

kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Other arguments
to pass to the 1oad methods defined in the Association.IORegistry

84

Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Returns

Return type The Association object

Raises AssociationNotValidError — Cannot create or validate the association.

Notes

The serialized object can be in any format supported by the registered I/O routines. For example, for json
(https://docs.python.org/3/library/json.html#module-json) and yaml formats, the input can be either a string or

a file object containing the string.

If no registry is specified, the default Association. load method is used.

make_timestamp

jwst.associations.make_timestamp ()

match_item

Jjwst.associations.match_item (ifem, associations)

Match item to a list of associations

Parameters

* item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — The item to match to

the associations.

* associations ([association,

.. ]) — List of already existing associations. If the

item matches any of these, it will be added to them.

Returns

(associations, process_list) —

associations: [association,...] List of associations item belongs to. Empty if none match

process_list: [ProcessList, ...] List of process events.

Return type 2-tuple where

Classes

Association([version_id])

Association Base Class

AssociationError([message])

Basic errors related to Associations

AssociationNotAConstraint([message])

No matching constraint found

AssociationNotValidError([message])

Given data structure is not a valid association

AssociationPool([data, masked, names, ...])

Association Pool

AssociationReqgistry([definition_files, ...])

The available assocations

ProcessList([items, rules, work_over, ...])

A Process list

ProcessQueueSorted([init])

Sort ProcessItem based on work_over

RegistryMarker

Mark rules, callbacks, and module

12.1. Package Index

85


https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Association

class jwst.associations.Association (version_id=None)

Bases: collections.abc.MutableMapping (https://docs.python.org/3/library/collections.abc.html#collections.abc.Mutal
Association Base Class

Parameters version_id (str (https://docs.python.org/3/library/stdtypes.html#str) or None
(https://docs.python.org/3/library/constants.html#None)) — Version_Id to use in the name of this
association. If None, nothing is added.

Raises AssociationError —If aitem doesn’t match any of the registered associations.

instance
The instance is the association data structure. See data below

Type dict-like

meta
Information about the association.

Type dict (https://docs.python.org/3/library/stdtypes.html#dict)

data
The association. The format of this data structure is determined by the individual assocations and, if
defined, valided against their specified schema.

Type dict (https://docs.python.org/3/library/stdtypes.html#dict)

schema_file
The name of the output schema that an association must adhere to.

Type str (https://docs.python.org/3/library/stdtypes.html#str)

registry
The registry this association came from.

Type AssociationRegistry

asn_name
The suggested file name of association

Type str (https://docs.python.org/3/library/stdtypes.html#str)

asn_rule
The name of the rule

Type str (https://docs.python.org/3/library/stdtypes.html#str)

Attributes Summary

DEFAULT EVALUATE

DEFAULT _FORCE_UNIQUE

DEFAULT _REQUIRE _CONSTRAINT

GLOBAL_CONSTRAINT

INVALID VALUES

asn_name

asn_rule

iloregistry

Continued on next page

86

Chapter 12. Package Documentation


https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Table 17 — continued from previous page

is valid Check if association is valid

registry

Methods Summary

add(item[, check_constraints]) Add the item to the association

check_and_set_constraints(item) Check whether the given dictionaries match parame-
ters for for this association

create(item[, version_id]) Create association if item belongs

dump([format]) Serialize the association

finalize() Finalize assocation

is_item_member(item) Check if item is already a member of this association

items()

keys()

I oad(serialized[, format, validate]) Marshall a previously serialized association

match_constraint(item, constraint, condi- Generic constraint checking

tions)

validate(asn) Validate an association against this rule

values()

Attributes Documentation

DEFAULT_EVALUATE = False
DEFAULT_FORCE_UNIQUE = False
DEFAULT REQUIRE_CONSTRAINT = True
GLOBAL_CONSTRAINT = None

INVALID_ VALUES = None

asn_name

asn_rule

ioregistry = {'json': <class 'jwst.associations.association_io.json'>, 'yaml':

is_valid
Check if association is valid

registry = None

Methods Documentation
add (item, check_constraints=True)
Add the item to the association
Parameters
e item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — The item to add.

* check_constraints (bool (https://docs.python.org/3/library/functions.html#bool))
— If True, see if the item should belong to this association. If False, just add it.

Returns 2-tuple consisting of: - bool: True if match - [ProcessList[, ...]]: List of items to
process again.

12.1.

Package Index 87

<clas.


https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Return type (matching_constraint, reprocess_list)

check_and_set_constraints (item)
Check whether the given dictionaries match parameters for for this association

Parameters item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — The param-
eters to check/set for this association. This can be a list of dictionaries.

Returns

2-tuple consisting of: - Constraint or False: The successfully matching constraint

or False if not matching.
* [Processltem][, ...]]: List of items to process again.

Return type (match, reprocess)

classmethod create (item, version_id=None)
Create association if item belongs

Parameters

* item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — The item to initial-
ize the association with.

e version_id (str (https://docs.python.org/3/library/stdtypes.html#str) or None
(https://docs.python.org/3/library/constants.html#None)) — Version_Id to use in the name
of this association. If None, nothing is added.

Returns
2-tuple consisting of: - association: The association or, if the item does not

this rule, None
* [ProcessList[, ...]]: List of items to process again.

Return type (association, reprocess_list)

dump (format="json’, **kwargs)
Serialize the association

Parameters

e format (str (https://docs.python.org/3/library/stdtypes.htmli#str)) — The format to use
to dump the association into.

* kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — List of argu-
ments to pass to the registered routines for the current association type.

Returns Tuple where the first item is the suggested base name for the file. Second item is the
serialization.

Return type (name, serialized)
Raises
* AssociationError —If the operation cannot be done

* AssociationNotValidError —If the given association does not validate.

88 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

finalize ()
Finalize assocation

Finalize or close-off this association. Peform validations, modifications, etc. to ensure that the association
is complete.

Returns associations — List of fully-qualified associations that this association represents. None
(https://docs.python.org/3/library/constants.html#None) if a complete association cannot be
produced.

Return type [association], ..]] or None (https://docs.python.org/3/library/constants.html#None)

is_item member (item)
Check if item is already a member of this association

Parameters item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — The item to
add.

Returns is_item_member — True if item is a member.

Return type bool (https://docs.python.org/3/library/functions.html#bool)
items () — a set-like object providing a view on D’s items
keys () — aset-like object providing a view on D’s keys

classmethod load (serialized, format=None, validate=True, **kwargs)
Marshall a previously serialized association

Parameters

* serialized (object (https://docs.python.org/3/library/functions.html#object)) — The
serialized form of the association.

e format (str (https://docs.python.org/3/library/stdtypes.html#str) or None
(https://docs.python.org/3/library/constants.html#None)) — The format to force. If
None, try all available.

* validate (bool (https://docs.python.org/3/library/functions.html#bool)) — Validate
against the class’ defined schema, if any.

* kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Other arguments
to pass to the Zoad method

Returns
Return type The Association object

Raises AssociationNotValidError — Cannot create or validate the association.

Notes

The serialized object can be in any format supported by the registered I/O routines. For example,
for json (https://docs.python.org/3/library/json.html#module-json) and yaml formats, the input can be
either a string or a file object containing the string.

match_constraint (item, constraint, conditions)
Generic constraint checking

Parameters

* item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — The item to retrieve
the values from

12.1. Package Index 89


https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* constraint (str (https://docs.python.org/3/library/stdtypes.html#str)) — The name of
the constraint

* conditions (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — The con-
ditions structure

Returns 2-tuple consisting of: - bool: True if the all constraints are satisfied - [ProcessList[,
... ]]: List of items to process again.

Return type (matches, reprocess_list)

classmethod validate (asn)
Validate an association against this rule

Parameters asn(Association or association-1ike)-The association structure to
examine

Returns valid — True if valid. Otherwise the AssociationNotValidError israised
Return type bool (https://docs.python.org/3/library/functions.html#bool)
Raises AssociationNotValidError — If there is some reason validation failed.

Notes

The base method checks against the rule class’ schema If the rule class does not define a schema, a warning
is issued but the routine will return True.

values () — an object providing a view on D’s values

AssociationError

exception jwst.associations.AssociationError (message=’No explanation given’)
Basic errors related to Associations

AssociationNotAConstraint

exception Jjwst.associations.AssociationNotAConstraint (message='No explanation

given’)

No matching constraint found
AssociationNotValidError
exception jwst.associations.AssociationNotValidError (message="No explanation

given’)

Given data structure is not a valid association
AssociationPool
class jwst.associations.AssociationPool (data=None, masked=None, names=None,

dtype=None, meta=None, copy=True, rows=None,

copy_indices=True, **kwargs)
Bases: astropy.table.table.Table

Association Pool

920 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

An AssociationPool is essentially and astropy Table with the following default behaviors:
» ASCII tables with a default delimiater of |

* All values are read in as strings

Methods Summary

read(filename|[, delimiter, format]) Read in a Pool file
write(*args, **kwargs) Write the pool to a file.

Methods Documentation

classmethod read (filename, delimiter="\", format="ascii’, **kwargs)
Read in a Pool file

write (*args, **kwargs)
Write the pool to a file.

AssociationRegistry

class jwst.associations.AssociationRegistry (definition_files=None, in-
clude_default=True,
global_constraints=None, name=None,

include_bases=Fualse)
Bases: dict (https://docs.python.org/3/library/stdtypes.html#dict)

The available assocations
Parameters

* definition_files ([str (https://docs.python.org/3/library/stdtypes.html#str), J) —
The files to find the association definitions in.

* include_default (bool (https://docs.python.org/3/library/functions.html#bool)) —
True to include the default definitions.

* global_constraints (Constraint) - Constraints to be added to each rule.

* name (str (https://docs.python.org/3/library/stdtypes.html#str)) — An identifying string,
used to prefix rule names.

* include_bases (bool (https://docs.python.org/3/library/functions.html#bool)) — If
True, include base classes not considered rules.

rule_set
The rules in the registry.

Type {rule [, ..]}

match (item)
Return associations where item matches any of the rules.

validate (association)
Determine whether an association is valid, or complete, according to any of the rules in the registry.

finalize (associations)
Validate and execute post-processing hooks to produce a completed and valid set of associations.

12.1. Package Index 91


https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

load (serialized)
Create an association from a serialized form.

Notes

The general workflow is as follows:

* Create the registry

’>>> registry = AssociationRegistry ()

¢ Create associations from an item

’>>> associations, reprocess = registry.match(item)

¢ Finalize the associations

’>>> final_asns = registry.finalize (assocations)

In practice, this is one step in a larger loop over all items to be associated. This does not account for adding
items to already existing associations. See generate for a full example of using the registry.

Attributes Summary

rule set

Methods Summary

add_rule(name, obj[, global_constraints]) Add object as rule to registry

I oad(serialized[, format, validate, first]) Marshall a previously serialized association

mat ch(item[, version_id, allow, ignore]) See if item belongs to any of the associations defined.
populate(module[, global_constraints, ...]) Parse out all rules and callbacks in a module
validate(association) Validate a given association against schema

Attributes Documentation

rule_set

Methods Documentation
add_rule (name, obj, global_constraints=None)
Add object as rule to registry
Parameters
* name (st r (https://docs.python.org/3/library/stdtypes.html#str)) — Name of the object

* obj (object (https://docs.python.org/3/library/functions.html#object)) — The object to
be considered a rule

* global_constraints (dict (https://docs.python.org/3/library/stdtypes.html#dict))
— The global constraints to attach to the rule.

92 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

load (serialized, format=None, validate=True, first=True, **kwargs)
Marshall a previously serialized association

Parameters

* serialized (object (https://docs.python.org/3/library/functions.html#object)) — The
serialized form of the association.

e format (str (https://docs.python.org/3/library/stdtypes.html#str) or None
(https://docs.python.org/3/library/constants.html#None)) — The format to force. If
None, try all available.

* validate (bool (https://docs.python.org/3/library/functions.html#bool)) — Validate
against the class’ defined schema, if any.

e first (bool (https://docs.python.org/3/library/functions.html#bool)) — A serialization
potentially matches many rules. Only return the first succesful load.

* kwargs (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Other arguments
to pass to the 1 oad method

Returns
Return type The Association object, or the list of association objects.
Raises AssociationError — Cannot create or validate the association.

match (item, version_id=None, allow=None, ignore=None)
See if item belongs to any of the associations defined.

Parameters

e item (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — A item, like from a
Pool, to find assocations for.

* version_id (str (https://docs.python.org/3/library/stdtypes.html#str)) — If specified,
a string appened to association names. If None, nothing is used.

* allow ([t ype (https://docs.python.org/3/library/functions.html#type) (Association),
.. ]) — List of rules to allow to be matched. If None, all available rules will be used.

» ignore (11ist (https://docs.python.org/3/library/stdtypes.html#list)) — A list of associa-
tions to ignore when looking for a match. Intended to ensure that already created associa-
tions are not re-created.

Returns
(associations, reprocess_list) —
associations: [association,...] List of associations item belongs to. Empty if none match
reprocess_list: [AssociationReprocess, ...] List of reprocess events.

Return type 2-tuple

populate (module, global_constraints=None, include_bases=None)
Parse out all rules and callbacks in a module

Parameters
* module (module)— The module, and all submodules, to be parsed.

e Modifies -

* self.callback - Found callbacks are added to the callback registry

12.1. Package Index 93


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#list

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

validate (association)
Validate a given association against schema

Parameters association (association—-11ike)— The data to validate
Returns rules — List of rules that validated
Return type list (https://docs.python.org/3/library/stdtypes.html#list)

Raises AssociationNotValidError — Association did not validate

ProcesslList

class jwst.associations.ProcessList (items=None, rules=None, work_over=1,

only_on_match=False)
Bases: object (https://docs.python.org/3/library/functions.html#object)

A Process list

Parameters
e items ([item[, ..]])-Thelistof items to process
* rules ([Association/[, ..]])— Listofrulesto process the items against.

* work_over (int (https://docs.python.org/3/library/functions.html#int)) — What the re-
processing should work on: - ProcessList.EXISTING: Only existing associations -
ProcessList.RULES: Only on the rules to create new associations - ProcessList.
BOTH: Compare to both existing and rules

* only_on_match (bool (https://docs.python.org/3/library/functions.html#bool)) — Only
use this object if the overall condition is True.

Attributes Summary

BOTH
EXISTING
NONSCIENCE
RULES

Attributes Documentation

BOTH = 1
EXISTING = 2
NONSCIENCE = 3
RULES = 0

ProcessQueueSorted

class jwst.associations.ProcessQueueSorted (init=None)
Bases: object (https://docs.python.org/3/library/functions.html#object)

Sort Processltem based on work_over

ProcessList's are handled in order of "RULES, BOTH, EXISTING, and NONSCIENCE.

94 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Parameters init (/ProcessList [, ..]])—Listof ProcessList to start the queue with.

Methods Summary

extend(process_lists) Add the list of process items to their appropriate
queues

Methods Documentation

extend (process_lists)
Add the list of process items to their appropriate queues

RegistryMarker

class jwst.associations.RegistryMarker
Bases: object (https://docs.python.org/3/library/functions.html#object)

Mark rules, callbacks, and module

Methods Summary

callback(event) Mark object as a callback for an event
1s_marked(obj)

mark(obj) Mark that object should be part of the registry
rule(obj) Mark object as rule

schema(filename) Mark a file as a schema source
utility(class_obj) Mark the class as a Utility class

Methods Documentation
static callback (event)
Mark object as a callback for an event
Parameters

* event (str (https://docs.python.org/3/library/stdtypes.html#str)) — Event this is a call-
back for.

* obj (func) — Function, or any callable, to be called when the corresponding event is
triggered.

e Modifies —

* _asnreg_role ('callback')— Attributed added to object and set to rule

* _asnreg_events ([event [, ..]])- The events this callable object is a callback
for.

* _asnreg_mark (True) — Attributed added to object and set to True
Returns obj — Return object to enable use as a decorator.

Return type object (https://docs.python.org/3/library/functions.html#object)

12.1. Package Index 95


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

static is_marked (0bj)

static mark (0bj)
Mark that object should be part of the registry

Parameters

* obj (object (https://docs.python.org/3/library/functions.html#object)) — The object to
mark

e Modifies -

* _asnreg_mark (True) — Attribute added to object and is set to True

* _asnreg_role (str (https://docs.python.org/3/library/stdtypes.html#str) or None
(https://docs.python.org/3/library/constants.html#None)) — Attribute added to object in-
dicating role this object plays. If None, no particular role is indicated.

Returns obj — Return object to enable use as a decorator.
Return type object (https://docs.python.org/3/library/functions.html#object)

static rule (0bj)
Mark object as rule

Parameters

* obj (object (https://docs.python.org/3/library/functions.html#object)) — The object that
should be treated as a rule

* Modifies —

* _asnreg_role ('rule')— Attributed added to object and set to rule
* _asnreg_mark (True) — Attributed added to object and set to True
Returns obj — Return object to enable use as a decorator.
Return type object (https://docs.python.org/3/library/functions.html#object)

static schema (filename)
Mark a file as a schema source

static utility (class_obj)
Mark the class as a Utility class

96 Chapter 12. Package Documentation


https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Class Inheritance Diagram

‘ ProcessQueueSorted ‘

‘ AssociationError }—+ AssociationNotAConstraint

\

‘ AssociationNotValidError ‘

Collection

Iterable

Mapping }—»{ MutableMapping H Association

12.1.5 Background Image Subtraction

Description

The background subtraction step performs image-from-image subtraction in order to accomplish subtraction of back-
ground signal. The step takes as input one target exposure, to which the subtraction will be applied, and a list of
one or more background exposures. Two different approaches to background image subtraction are used, depending
on the observing mode. Imaging and most spectroscopic modes use one method, while a special method is used for
Wide-Field Slitless Spectroscopy (WFSS).

Non-WFSS Modes

If more than one background exposure is provided, they will be averaged together before being sub-
tracted from the target exposure. Iterative sigma clipping is applied during the averaging process, to re-
ject sources or other outliers.  The clipping is accomplished using the function astropy.stats.sigma_clip
(http://docs.astropy.org/en/stable/api/astropy.stats.sigma_clip.html). The background step allows users to supply val-
ues for the sigma_clip parameters sigma and maxiters (see Step Arguments), in order to control the clipping
operation.

The average background image is produced as follows:
* Clip the combined SCI arrays of all background exposures
* Compute the mean of the unclipped SCI values

e Sum in quadrature the ERR arrays of all background exposures, clipping the same input values as determined
for the SCI arrays, and convert the result to an uncertainty in the mean

12.1. Package Index 97


http://docs.astropy.org/en/stable/api/astropy.stats.sigma_clip.html

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* Combine the DQ arrays of all background exposures using a bitwise-OR operation

The average background exposure is then subtracted from the target exposure. The subtraction consists of the following
operations:

* The SCI array of the average background is subtracted from the SCI array of the target exposure

* The ERR array of the target exposure is currently unchanged, until full error propagation is implemented in the
entire pipeline

» The DQ arrays of the average background and the target exposure are combined using a bitwise-OR operation

If the target exposure is a simple ImageModel, the background image is subtracted from it. If the target exposure is
in the form of a 3-D CubeModel (e.g. the result of a time series exposure), the background image is subtracted from
each plane of the CubeModel.

WFSS Mode

For Wide-Field Slitless Spectroscopy expsoures (NIS_WFSS and NRC_WFSS), a background reference image is
subtracted from the target exposure. Before being subtracted, the background reference image is scaled to match the
signal level of the target data within background (source-free) regions of the image.

The locations of source spectra are determined from a source catalog (specified by the primary header keyword SCAT-
FILE), in conjunction with a reference file that gives the wavelength range (based on filter and grism) that is relavant
to the target data. All regions of the image that are free of source spectra are used for scaling the background reference
image. Robust mean values are obtained for the background regions in the target image and for the same regions in the
background reference image, and the ratio of those two mean values is used to scale the background reference image.
The robust mean is computed by excluding the lowest 25% and highest 25% of the data (using the numpy.percentile
function), and taking a simple arithmetic mean of the remaining values. Note that NaN values (if any) in the back-
ground reference image are currently set to zero. If there are a lot of NaNs, it may be that more than 25% of the lowest
values will need to be excluded.

For both background methods the output results are always returned in a new data model, leaving the original input
model unchanged.

Upon successful completion of the step, the S_BKDSUB keyword will be set to ‘COMPLETE’ in the output product.

Step Arguments

The background image subtraction step has two optional arguments, both of which are used only when the step is
applied to non-WFSS exposures. They are used in the process of creating an average background image, to control
the sigma clipping, and are passed as arguments to the astropy sigma_clip function:

—-sigma The number of standard deviations to use for the clipping limit. Defaults to 3.

—-maxiters The number of clipping iterations to perform, or None to clip until convergence is achieved. Defaults
to None.

Reference Files

The background image subtraction step uses reference files only when processing Wide-Field Slitless Spectroscopy
(WFSS) exposures. Two reference files are used for WFSS mode.

98 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

WFSS Background reference file

REFTYPE WFSSBKG

Data model WfssBkgModel

The WESS background reference file contains a “master” image of the dispersed background produced by a particular

filter+grism combination.

CRDS Selection Criteria

WFSSBKG reference files are selected by:
INSTRUME, DETECTOR, EXP_TYPE, FILTER, and PUPIL

Required Keywords

The following table lists the keywords that are required to be present in a WFSSBKG reference file. An asterisk

following a keyword name indicates a standard keyword that is required in all reference files, regardless of type.

Reference File Format

Keyword Model Name
AUTHOR* meta.author
DATAMODL* | meta.model_type
DATE* meta.date

DESCRIP* meta.description
DETECTOR meta.instrument.detector
EXP_TYPE meta.exposure.type
FILENAME* meta.filename
FILTER meta.instrument.filter
INSTRUME* meta.instrument.name
PEDIGREE* meta.pedigree

PUPIL meta.instrument.pupil
REFTYPE* meta.reftype
TELESCOP* meta.telescope
USEAFTER* meta.useafter

WESSBKG reference files are FITS files with 3 IMAGE extensions and 1 BINTABLE extension. The FITS primary
data array is assumed to be empty. The characteristics of the FITS extensions are as follows:

EXTNAME | XTENSION | NAXIS | Dimensions | Data type
SCI IMAGE 2 ncols x nrows | float

ERR IMAGE 2 ncols x nrows | float

DQ IMAGE 2 ncols X nrows | integer
DQ_DEF BINTABLE | 2 TFIELDS =4 | N/A

The DQ_DEF extension contains the bit assignments used in the DQ array. It contains the following 4 columns:

12.1. Package Index

99



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

TTYPE TFORM | Description

BIT integer The bit number, starting at zero

VALUE integer The equivalent base-10 value of BIT

NAME string The mnemonic name of the data quality condition
DESCRIPTION | string A description of the data quality condition

Wavelength Range reference file

REFTYPE WAVELENGTHRANGE
Data model WavelengthrangeModel

The wavelength range reference file contains information about the range of wavelengths in the exposure. It is used,
together with a source catalog, to create a mask giving the locations of source spectra in the target image and hence
where the background regions are.

CRDS Selection Criteria

Wavelengthrange reference files are selected by:

INSTRUME, EXP_TYPE, PUPIL (NIRCam only), and MODULE (NIRCam only)

jwst.background Package

Classes

SubtractImagesStep([name, parent, ...]) SubtractlmagesStep: Subtract two exposures from one
another to accomplish background subtraction.

BackgroundStep([name, parent, config_file, ...]) BackgroundStep: Subtract background exposures from
target exposures.

SubtractimagesStep

class jwst.background.SubtractImagesStep (name=None, parent=None, config_file=None,

_validate_kwds=True, **kws)
Bases: jwst.stpipe.Step

SubtractlmagesStep: Subtract two exposures from one another to accomplish background subtraction.
Create a Step instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional)— The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config file(str path, optional)- The path to the config file that this step was
initialized with. Use to determine relative path names.

100 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

spec

Methods Summary

process(inputl, input2) Subtract the background signal from a JWST data
model by subtracting a background image from it.

Attributes Documentation

spec = '\n '

Methods Documentation
process (inputl, input2)
Subtract the background signal from a JWST data model by subtracting a background image from it.
Parameters
e inputl (JWST data model)— inputscience data model to be background-subtracted
e input2 (UWST data model)— background data model
Returns result — background-subtracted science data model

Return type JWST data model

BackgroundStep

class jwst.background.BackgroundStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

BackgroundStep: Subtract background exposures from target exposures.
Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional)— The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config_file (str path, optional)-The path tothe config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

12.1. Package Index 101


https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Summary

reference_file types
spec

Methods Summary

process(input, bkg_list) Subtract the background signal from target expo-
sures by subtracting designated background images
from them.

Attributes Documentation

reference_file_types = ['wfssbkg', 'wavelengthrange']

spec = '\n sigma = float (default=3.0) # Clipping threshold\n maxiters = integer (defaul

Methods Documentation

process (input, bkg_list)

Subtract the background signal from target exposures by subtracting designated background images from
them.

Parameters

* input (UWST data model) — input target data model to which background subtrac-
tion is applied

* bkg_list (filename 1ist) - list of background exposure file names
Returns result — the background-subtracted target data model

Return type JWST data model

Class Inheritance Diagram

BackgroundStep

Step

SubtractimagesStep

102 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

12.1.6 Barshadow Correction

Description

Overview

The barshadow step calculates the correction to be applied to NIRSpec MSA data for uniform sources due to the
bar that separates adjacent microshutters. This correction is applied to multislit data after the pathloss correction has
been applied in the calspec2 pipeline.

Input details

The input data should be from after the extract_2d step, so that it contains cutouts around each slitlet.

Algorithm

The reference file contains the correction as a function of Y and wavelength for a single open shutter (the DATA1X1
extension), and for 2 adjacent open shutters (DATA1X3). This allows on-the-fly construction of a model for any
combination of open and closed shutters. The shutter configuration of a slitlet is contained in the attribute shutter_state,
which shows whether the shutters of the slitlet are open, closed or contain the source. Once the correction as a function
of Y and wavelength is calculated, the WCS transformation from the detector to the slit frame is used to calculate Y
and wavelength for each pixel in the cutout. The Y values are scaled from shutter heights to shutter spacings, and then
the Y and wavelength values are interpolated into the model to determine the correction for each pixel.

Output product

The output product has the barshadow correction attached to each slit of the multislit datamodel in the BARSHADOW
extension.

Reference File
The barshadow step does uses the barshadow reference file.
CRDS Selection Criteria

The Barshadow reference file is selected only for exposures with EXP_TYPE=NRS_MSASPEC. All other
EXP_TYPEs should return N/A.

Reference File Format

The barshadow reference file is a FITS file that contains four extensions:

EXTNAME | NAXIS | Dimensions | Data type
DATA1X1 2 101x1001 float

VARI1X1 2 101x1001 float
DATA1X3 2 101x1001 float
VAR1X3 2 101x1001 float

12.1. Package Index 103



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

The slow direction has 1001 rows and gives the dependence of the bar shadow correction on the Y location of a pixel
from the center of the shutter. The fast direction has 101 rows and gives the dependence of the bar shadow correction
of wavelength. The WCS keywords CRPIX1/2, CRVAL1/2 and CDELT1/2 tell how to convert the pixel location in
the reference file into a Y location and wavelength. The initial version of the reference file has Y varying from -1.0
for row 1 to +1.0 at row 1001, and the wavelength varying from 0.6x10*-6m to 5.3x10"-6m.

The extension headers look like this:

XTENSION | = | ‘IMAGE ¢ /| Image extension
BITPIX = | -64 /| array data type
NAXIS =12 /| number of array dimensions
NAXIS1 = | 101

NAXIS2 = | 1001

PCOUNT =10 /| number of parameters
GCOUNT =11 /| number of groups
EXTNAME | = | ‘DATAIx1 ¢ | / | extension name
BSCALE =10

BZERO =100

BUNIT = | ‘UNITLESS’

CTYPEI = | ‘METER °

CTYPE2 = | ‘UNITLESS’

CDELT1 = | 4.7E-08

CDELT2 = | 0.002

CRPIX1 =| 10

CRPIX2 =10

CRVALI1 = | 6E-07

CRVAL2 =|-1.0

APERTURE | = | ‘MOSI1x1 *

HEIGHT = | 0.00020161

Step Arguments

The barshadow step has no step-specific arguments.

jwst.barshadow Package

Classes
BarShadowStep([name, parent, config_file, ...]) BarShadowStep: Inserts the bar shadow and wavelength
arrays into the data.
BarShadowStep

class jwst.barshadow.BarShadowStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

BarShadowStep: Inserts the bar shadow and wavelength arrays into the data.

Bar shadow correction depends on the position of a pixel along the slit and the wavelength. It is only applied to
uniform sources and only for NRS MSA data.

104 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional)— The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config_file (str path, optional)-The path tothe config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

reference_file types
spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

reference_file types = ['barshadow']
spec = '\n '

Methods Documentation

process (input)

This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

Step BarShadowStep

12.1. Package Index 105


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

12.1.7 Combine 1D Spectra

Description

The combine_1d step computes a weighted average of 1-D spectra and writes the combined 1-D spectrum as output.

The combination of spectra proceeds as follows. For each pixel of each input spectrum, the corresponding pixel in the
output is identified (based on wavelength), and the input value multiplied by the weight is added to the output buffer.
Pixels that are flagged (via the DQ column) with DO_NOT_USE will not contribute to the output. After all input
spectra have been included, the output is normalized by dividing by the sum of the weights.

The weight will typically be the integration time or the exposure time, but uniform (unit) weighting can be specified
instead. It is the net count rate that uses this weight; that is, the net count rate is multiplied by the integration time to
get net counts, and it is the net counts that are added together and finally divided by the sum of the integration times.
The flux weighted by an additional factor of the instrumental sensitivity, count rate per unit flux. The idea is that the
quantity that is added up should be in units of counts. If unit weight was specified, however, unit weight will be used
for both flux and net. The data quality (DQ) columns will be combined using bitwise OR.

The only part of this step that is not completely straightforward is the determination of wavelengths for the output
spectrum. The output wavelengths will be increasing, regardless of the order of the input wavelengths. In the ideal case,
all input spectra would have wavelength arrays that were very nearly the same. In this case, each output wavelength
would be computed as the average of the wavelengths at the same pixel in all the input files. The combine_1d step is
intended to handle a more general case where the input wavelength arrays may be offset with respect to each other, or
they might not align well due to different distortions.

All the input wavelength arrays will be concatenated and then sorted. The code then looks for “clumps” in wavelength,
based on the standard deviation of a slice of the concatenated and sorted array of input wavelengths; a small standard
deviation implies a clump. In regions of the spectrum where the input wavelengths overlap with somewhat random
offsets and don’t form any clumps, the output wavelengths are computed as averages of the concatenated, sorted input
wavelengths taken N at a time, where N is the number of overlapping input spectra at that point.

Input

An association file specifies which file or files to read for the input data. Each input data file contains one or more
1-D spectra in table format, e.g. as written by the extract_1d step. An input data file can be either SpecModel (for one
spectrum) or MultiSpecModel format (which can contain more than one spectrum).

The association file should have an object called “products”, which is a one-element list containing a dictionary. This
dictionary contains two entries (at least), one with key “name” and one with key “members”. The value for key “name”
is a string, the name that will be used as a basis for creating the output file name. “members” is a list of dictionaries,
each of which contains one input file name, identified by key “expname”.

Output
The output will be in CombinedSpecModel format, with a table extension having the name COMBINEI1D. This exten-
sion will have six columns, giving the wavelength, flux, error estimate for the flux, net countrate in counts/second, the

sum of the weights that were used when combining the input spectra, and the number of input spectra that contributed
to each output pixel.

Reference File

This step does not use any reference file.

106 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Step Arguments

The combine_1d step has two step-specific arguments:
¢ ——exptime_key

This is a case-insensitive string that identifies the metadata element (or FITS keyword) for the weight to apply to the
input data. The default is “integration_time”. If the string is “effinttm” or starts with “integration”, the integration time
(FITS keyword EFFINTTM) is used as the weight. If the string is “effexptm” or starts with “exposure”, the exposure
time (FITS keyword EFFEXPTM) is used as the weight. If the string is “unit_weight” or “unit weight”, the same
weight (1) will be used for all input spectra. If the string is anything else, a warning will be logged and unit weight
will be used.

¢ ——interpolation

This is a string that specifies how to interpolate between pixels of the input data. The default value is “nearest”, which
means that no actual interpolation will be done; the pixel number will be rounded to an integer, and the input value at
that pixel will be used.

This argument is not currently used. It is included as a placeholder for a possible future enhancement.

jwst.combine_1d Package

Classes

CombineldStep([name, parent, config_file, ...]) CombineldStep: Combine 1-D spectra

Combine1dStep

class jwst.combine_1ld.CombineldStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

CombineldStep: Combine 1-D spectra
Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional)— The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

*» config_file (str path, optional)- The path to the config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

12.1. Package Index 107


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

spec

Methods Summary

process(input_file) This is where real work happens.

Attributes Documentation

spec = '\n # integration_time or exposure_time.\n exptime_key = string(default="integr

Methods Documentation
process (input_file)

This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

Step CombineldStep

12.1.8 Coronagraphic Processsing

Tasks in the package

The coronagraphic package currently consists of the following tasks:
o stack_refs
* align_refs
* klip
* hlsp

Briefly, the stack_refs step is used to load images of reference PSF targets, as listed in an Association file, and
stack the images into a data cube in a single file to be used in subsequent processing steps. The align_refs step is
then used to align the stacked reference PSF images with the images contained in a science target exposure. The k1ip
step applies the Karhunen-Loeve Image Plane (KLIP) algorithm to the aligned reference PSF and science target images
and produces PSF-subtracted science target images. The h1sp task produces high-level science products (HLSP’s)
from a KLIP-subtracted image.

108 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

CALWEBB_CORON3

Currently the individual steps can only be run in a convenient way by running the calwebb_coron3 pipeline, which
calls the individual steps and takes care of all the necessary loading and passing of data models for the input and output
products of each step. The input to the calwebb_coron3 pipeline is expected to be an ASN file. The ASN file
should define a single output product, which will be the combined image formed from the PSF-subtracted results of
all the input science target data. That output product should then define, as its members, the various input reference
PSF and science target files to be used in the processing. An example ASN file is shown below.

{"asn_rule": "CORON", "target": "NGC-3603", "asn_pool": "Jjw00017_001_01_pool",
—"program": "00017",
"products": [
{"prodtype": "coroncmb", "name": "Jjw89001-cl1001_t00l_nircam_fl60w",
"members": [
{"exptype": "science", "expname": "test_targl_calints.fits"},
{"exptype": "science", "expname": "test_targ2_calints.fits"},
{"exptype": "psf", "expname": "test_psfl_calints.fits"},
{"exptype": "psf", "expname": "test_psf2_calints.fits"},
{"exptype": "psf", "expname": "test_psf3_calints.fits"}]1}1],
"asn_type": "coron",
"asn_id": "cl001"}

In this example the output product “jw89001-c1001_t001_nircam_f160w” is defined to consist of 2 science target
inputs and 3 reference psf inputs. Note that the values of the expt ype attribute for each member are very important
and used by the calwebb_coron3 pipeline to know which members are to be used as reference PSF data and which
are data for the science target. The output product name listed in the ASN file is used as the root name for some of the
products created by the calwebb_coron3 pipeline. This includes:

 rootname_psfstack: the output of the stack_refs step
* rootname_i2d: the final combined target image

Other products will be created for each individual science target member, in which case the root names of the original
input science target products will be used as a basis for the output products. These products include:

* targetname_psfalign: the output of the align_refs step

* targetname_psfsub: the output of the k1ip step

Stack_refs

Overview

The stack_refs step takes a list of reference PSF products and stacks all of the images in the PSF products into
a single 3D data cube. It is assumed that the reference PSF products are in the form of a data cube (jwst CubeModel
type data model) to begin with, in which images from individual integrations are stacked along the 3rd axis of the
data cube. Each data cube from an input reference PSF file will be appended to a new output 3D data cube (again
a CubeModel), such that the dimension of the 3rd axis of the output data cube will be equal to the total number of
integrations contained in all of the input files.

Inputs and Outputs

The stack_refs step is called from the calwebb_coron3 pipeline module. The calwebb_coron3 pipeline
will find all of the ps £ members listed in the input ASN file, load each one into a CubeModel data model, and construct
a ModelContainer that is the list of all psf CubeModels. The ModelContainer is passed as input to the stack_refs

12.1. Package Index 109




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

step. The output of stack_refs will be a single CubeModel containing all of the concatenated data cubes from the
input psf files.

jwst.coron.stack_refs_step Module

Classes
StackRefsStep([name, parent, config_file, ...]) StackRefsStep: Stack multiple PSF reference exposures
into a single CubeModel, for use by subsequent corona-
graphic steps.
StackRefsStep
class jwst.coron.stack_refs_step.StackRefsStep (name=None, parent=None, con-
fig_file=None, _validate_kwds=True,
**kWS)

Bases: jwst.stpipe.Step

StackRefsStep: Stack multiple PSF reference exposures into a single CubeModel, for use by subsequent coron-
agraphic steps.

Create a Step instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional) - The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config file(str path, optional)-The path to the config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

spec = '\n '

110 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Methods Documentation
process (input)

This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

Step StackRefsStep

Align_refs

Overview

The align_refs step is used to compute offsets between science target images and the reference PSF images and
shift the PSF images into alignment. Each integration contained in the stacked PSF data is aligned to each integration
within a given science target product. The calwebb_coron3 pipeline applies the align_refs step to each input
science target product individually, resulting in a set of PSF images that are aligned to the images in that science target
product.

Inputs and Outputs

The align_refs step takes 2 inputs: a science target product, in the form of a CubeModel data model, and the
stacked PSF product, also in the form of a CubeModel data model. The resulting output is a 4D data model (Quad-
Model), where the 3rd axis has length equal to the total number of reference PSF images in the input PSF stack and
the 4th axis has length equal to the number of integrations in the input science target product.

jwst.coron.align_refs_step Module

Classes

AlignRefsStep([name, parent, config_file, ...]) AlignRefsStep: Align coronagraphic PSF images with
science target images.

AlignRefsStep

class jwst.coron.align_refs_step.AlignRefsStep (name=None, parent=None, con-
fig_file=None, _validate_kwds=True,
*Fhws )

Bases: jwst.stpipe.Step

12.1. Package Index 111



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

AlignRefsStep: Align coronagraphic PSF images with science target images.
Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional) - The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config_file (str path, optional)- The path to the config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

reference_file types
spec

Methods Summary

process(target, psf) This is where real work happens.

Attributes Documentation
reference_file types = ['psfmask']
spec = '\n '

Methods Documentation

process (target, psf)

This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

Step

AlignRefsStep

Y

112 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Klip
Overview

The k1ip task applies the KLIP algorithm to coronagraphic images, using an accompanying set of reference PSF
images, in order to fit and subtract an optimal PSF from the source. The KLIP algorithm uses a KL. decomposition of
the set of reference PSF’s, and generates a model PSF from the projection of the target on the KL vectors. The model
PSF is then subtracted from the target image (Soummer, Pueyo, and Larkin 2012). KLIP is a Principle Component
Analysis (PCA) method and is very similar to LOCI. The main advantages of KLIP over LOCI is the possibility of
direct forward modeling and a significant speed increase.

The KLIP algorithm consists of the following steps:

1) Partition the target and reference images in a set of search areas, and subtract their average values so that they
have zero mean.

2) Compute the KL transform of the set of reference PSF’s
3) Choose the number of modes to keep in the estimated target PSF
4) Compute the best estimate of the target PSF from the projection of the target image on the KL eigenvectors

5) Calculate the PSF-subtracted target image

Inputs and Outputs

The k1ip task takes two inputs: a science target product, in the form of a 3D CubeModel data model, and a set of
aligned PSF images, in the form of a 4D QuadModel data model. Each ‘layer’ in the 4th dimension of the PSF data
contains all of the aligned PSF images corresponding to a given integration (3rd dimension) in the science target cube.
The output from the klip step is a 3D CubeModel data model, having the same dimensions as the input science target
product, and contains the PSF-subtracted images for every integration of the science target product.

Arguments

The task takes one optional argument, t runcate, which is used to specify the number of KL transform rows to keep
when computing the PSF fit to the target. The default value is 50.

jwst.coron.klip_step Module

Classes
K1ipStep([name, parent, config_file, ...]) KlipStep: Performs KLIP processing on a science target
coronagraphic exposure.
KlipStep

class jwst.coron.klip_step.KlipStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

KlipStep: Performs KLIP processing on a science target coronagraphic exposure. The input science exposure
is assumed to be a fully calibrated level-2b image. The processing is performed using a set of reference PSF
images observed in the same coronagraphic mode.

12.1. Package Index 113



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional)— The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config_file (str path, optional)-The path tothe config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

spec

Methods Summary

process(target, psfrefs) This is where real work happens.

Attributes Documentation

spec = '\n truncate = integer (default=50,min=0) # The number of KL transform rows to k

Methods Documentation
process (target, psfrefs)

This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

4

Step KlipStep

114 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

HLSP

Overview

The h1lsp task produces high-level science products for KLIP-processed images. The task currently produces two
such products: a signal-to-noise ratio (SNR) image and a table of contrast data. The SNR image is computed by
simply taking the ratio of the SCI and ERR arrays of the input target image. The contrast data are in the form of
azimuthally-averaged noise versus radius. The noise is computed as the 1-sigma standard deviation within a set of
concentric annuli centered in the input image. The annuli regions are computed to the nearest whole pixel; no sub-
pixel calculations are performed.

Input Arguments

The h1lsp task takes one input file name argument, which is the name of the KLIP-processed target product to be
analyzed. One optional argument is available, annuli_width, which specifies the width (in pixels) of the annuli to
use in calculating the contrast data. The default value is 2 pixels.

Outputs

The hs1p task produces two output products. The first is the snr image (file name suffix “_snr”) and the second is the
table of contrast data (file name suffix “_contrast”). The contrast data are stored as a 2-column table giving radius (in
pixels) and noise (1-sigma).

jwst.coron.hisp_step Module

Classes
H1spStep([name, parent, config_file, ...]) HispStep: Make High-Level Science Products (HLSP’s)
from the results of coronagraphic exposure that’s had
KLIP processing applied to it.
HispStep

class jwst.coron.hlsp_step.HlspStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

HlspStep: Make High-Level Science Products (HLSP’s) from the results of coronagraphic exposure that’s had
KLIP processing applied to it.

Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional)— The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

12.1. Package Index 115


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* config_file(str path, optional)-The path tothe config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

spec

Methods Summary

process(target) This is where real work happens.

Attributes Documentation

spec = '\n annuli_width = integer (default=2, min=1l) # Width of contrast annuli\n save_

Methods Documentation
process (target)

This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

Step HlspStep

jwst.coron Package

Classes
StackRefsStep([name, parent, config_file, ...]) StackRefsStep: Stack multiple PSF reference exposures
into a single CubeModel, for use by subsequent corona-
graphic steps.
AlignRefsStep([name, parent, config_file, ...]) AlignRefsStep: Align coronagraphic PSF images with
science target images.
K1ipStep([name, parent, config_file, ...]) KlipStep: Performs KLIP processing on a science target

coronagraphic exposure.

Continued on next page

116 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Table 48 — continued from previous page
H1spStep([name, parent, config_file, ...]) HispStep: Make High-Level Science Products (HLSP’s)
from the results of coronagraphic exposure that’s had
KLIP processing applied to it.

StackRefsStep

class jwst.coron.StackRefsStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

StackRefsStep: Stack multiple PSF reference exposures into a single CubeModel, for use by subsequent coron-
agraphic steps.

Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional)— The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config file(str path, optional)- The path to the config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

spec = '\n '

Methods Documentation

process (input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

12.1. Package Index 117


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

AlignRefsStep

class jwst.coron.AlignRefsStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

AlignRefsStep: Align coronagraphic PSF images with science target images.
Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional) - The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

*» config_file (str path, optional)- The path to the config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

reference_file types
spec

Methods Summary

process(target, psf) This is where real work happens.

Attributes Documentation
reference_file types = ['psfmask']
spec = '\n '

Methods Documentation

process (target, psf)

This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

KlipStep

class jwst.coron.KlipStep (name=None, parent=None, config_file=None, _validate_kwds=True,

s )
Bases: jwst.stpipe.Step

118 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

KlipStep: Performs KLIP processing on a science target coronagraphic exposure. The input science exposure
is assumed to be a fully calibrated level-2b image. The processing is performed using a set of reference PSF
images observed in the same coronagraphic mode.

Create a Step instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional) - The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config file(str path, optional)-The path to the config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

spec

Methods Summary

process(target, psfrefs) This is where real work happens.

Attributes Documentation

spec = '\n truncate = integer (default=50,min=0) # The number of KL transform rows to k

Methods Documentation

process (target, psfrefs)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

HispStep

class jwst.coron.HlspStep (name=None, parent=None, config_file=None, _validate_kwds=True,

**kws)
Bases: jwst.stpipe.Step

HlspStep: Make High-Level Science Products (HLSP’s) from the results of coronagraphic exposure that’s had
KLIP processing applied to it.

Create a Step instance.

Parameters

12.1. Package Index 119


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional)- The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config file (str path, optional)- The path to the config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

spec

Methods Summary

process(target) This is where real work happens.

Attributes Documentation

spec = '\n annuli_width = integer (default=2, min=1) # Width of contrast annuli\n save_

Methods Documentation

process (target)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

120 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Class Inheritance Diagram

AlignRefsStep

HlspStep

S
T

Step

KlipStep

StackRefsStep

12.1.9 CSV Tools

CSV TOOLS

TBD

csvconvert

Command-line script to convert CSV files to JSON, or FITS

csvconvert —-help

jwst.csv_tools Package
12.1.10 Cube Building

Description

The cube_build step takes MIRI or NIRSpec IFU calibrated 2-D images and produces 3-D spectral cubes. The 2-D
disjointed IFU slice spectra are corrected for distortion and assembled into a rectangular cube with three orthogonal

axes: two spatial and one spectral.

The cube_build step can accept several different forms of input data, including:
* asingle file containing a 2-D slice image
* a data model (IFUImageModel) containing a 2-D slice image
* an association table (in json format) containing a list of input files

¢ a model container with several 2-D slice data models

12.1. Package Index 121



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

There are a number of arguments the user can provide either in a configuration file or on the command line that control
the sampling size of the cube, as well as the type of data that is combined to create the cube. See the Step Arguments
section for more details.

Assumptions

Itis assumed that the assign_wcs step has been applied to the data, attaching the distortion and pointing information
to the image(s). It is also assumed that the photom step has been applied to convert the pixel values from units of
countrate to surface brightness. This step will only work with MIRI or NIRSpec IFU data.

Instrument Information

The JWST integral field unit (IFU) spectrographs obtain simultaneous spectral and spatial data on a relatively compact
region of the sky. The MIRI Medium Resolution Spectrometer (MRS) consists of four IFU’s providing four simulta-
neous and overlapping fields of view ranging from 3.3” x 3.7 to ~7.2” x 7.7” and covering a wavelength range of 5-28
microns. The optics system for the four IFU’s is split into two paths. One path is dedicated to the two short wavelength
IFU’s and the other one handles the two longer wavelength IFU’s. There is one 1024 x 1024 detector for each path.
Light entering the MRS is spectrally separated into four channels by dichroic mirrors. Each of these channels has
its own IFU that divides the image into several slices. Each slice is then dispersed using a grating spectrograph and
imaged on one half of a detector. While four channels are observed simultaneously, each exposure only records the
spectral coverage of approximately one third of the full wavelength range of each channel. The full 5-28 micron spec-
trum is obtained by making three exposures using three different gratings and three different dichroic sets. We refer to
a sub-channel as one of the three possible configurations (A/B/C) of the channel where each sub-channel covers ~1/3
of the full wavelength range for the channel. Each of the four channels has a different sampling of the field, so the
FOV, slice width, number of slices, and plate scales are different for each channel.

The NIRSpec IFU has a 3 x 3 arcsecond field of view that is sliced into thirty 0.1 arcsecond bands. Each slice is
dispersed by a prism or one of six diffraction gratings. When using diffraction gratings as dispersive elements, three
separate gratings are employed in combination with specific filters in order to avoid the overlapping of spectra caused
by different grating orders. The three gratings span four partially overlapping bands (1.0 - 1.8 microns; 1.7 - 3.0
microns; 2.9 - 5 microns) covering the total spectral range in four separate exposures. Six gratings provide high-
resolution (R = 1400-3600) and medium resolution (R = 500-1300) spectroscopy over the wavelength range 0.7-5
microns, while the prism yields lower-resolution (R = 30-300) spectroscopy over the range 0.6-5 microns.

The NIRSpec detector focal plane consists of two HgCdTe sensor chip assemblies (SCAs). Each SCA is a 2-D array
of 2048 x 2048 pixels. The light-sensitive portions of the two SCAs are separated by a physical gap of 3.144 mm,
which corresponds to 17.8 arcseconds on the sky. For low or medium resolution IFU data the 30 slices are imaged on
a single NIRSpec SCA. In high resolution mode the 30 slices are imaged on the two NIRSpec SCAs. The physical
gap between the SCAs causes a loss of spectral information over a range in wavelength that depends on the location
of the target and dispersive element used. The lost information can be recovered by dithering the targets.

Terminology
MIRI Spectral Range Divisions

We use the following terminology to define the spectral range divisions of MIRI:
Channel The spectral range covered by each MIRI IFU. The channels are labeled as 1, 2, 3 and 4.

Sub-Channel The 3 sub-ranges that a channel is divided into. These are designated as Short (A), Medium (B), and
Long (C).

122 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Band For MIRI, “band” is one of the 12 contiguous wavelength intervals (four channels times three sub-channels
each) into which the spectral range of the MRS is divided. Each band has a unique channel/sub-channel com-
bination. For example, the shortest wavelength range on MIRI is covered by Band 1-SHORT (aka 1A) and the
longest is covered by Band 4-LONG (aka 4C).

NIRSpec IFU Disperser and Filter Combinations

Grating | Filter Wavelength (microns)
Prism Clear 0.6-53

G140M | FO70LP | 0.7-1.2

G140M | FIOOLP | 1-1.8

G235M | FI70LP | 1.7-3.1

G395M | F290LP | 2.9-5.2

G140H | FO70LP | 0.7-1.2

G140H | FIOOLP | 1-1.8

G235H | FI70LP | 1.7-3.1

G395H | F290LP | 2.9-5.2

For NIRSpec we define a band as a single grating-filter combination, e.g. G140M-FO70LP.

Coordinate Systems

An IFU spectrograph measures the intensity of a region of the sky as a function of wavelength. There are a number of
different coordinate systems used in the cube building process. Here is an overview of these coordinate systems:

Detector System Defined by the hardware and presents raw detector pixel values. Each detector or SCA will
have its own pixel-based coordinate system. In the case of MIRI we have two detector systems because the
MIRI IFUs disperse data onto two detectors.

Telescope (V2,V3) The V2,V3 coordinates locate points on a spherical coordinate system. The frame is tied
to the JWST focal plane and applies to the whole field of view, encompassing all the instruments. The V2,V3
coordinates are Euler angles in a spherical frame rather than Cartesian coordinates.

XAN, YAN Similar to V2,V3, but flipped and shifted so the origin lies between the NIRCam detectors instead of at the
telescope boresight. Note that what OSIM and OTE call ‘V2,V3’ are actually XAN,YAN.

Absolute The standard astronomical equatorial RA/Dec system.
Cube A three-dimensional system with two spatial axes and one spectral axis.

MRS-FOV A MIRI-specific system that is the angular coordinate system attached to the FOV of each MRS band.
There are twelve MRS-FOV systems for MIRI, because there are twelve bands (1A, 1B, 1C,... 4C). Each
system has two orthogonal axes, one parallel (alpha) and the other perpendicular (beta) to the projection of the
long axes of the slices in the FOV.

Types of Output Cubes

As mentioned above, the input data to cube_build can take a variety of forms, including a single file, a data model
passed from another pipeline step, a list of files in an association table, or a collection of exposures in a data model
container (ModelContainer) passed in by the user or from a preceding pipeline step. Because the MIRI IFUs project
data from two channels onto a single detector, choices can or must be made as to which parts of the input data to
use when constructing the output cube even in the simplest case of a single input image. The default behavior varies
according to the context in which cube_build is being run.

12.1. Package Index 123



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

In the case of the calwebb_spec? pipeline, for example, where the input is a single MIRI or NIRSpec IFU exposure,
the default output cube will be built from all the data in that single exposure. For MIRI this means using the data from
both channels (e.g. 1A and 2A) that are recorded in a single exposure. For NIRSpec this means using data from the
single grating+filter combination contained in the exposure.

In the calwebb_spec3 pipeline, on the other hand, where the input can be a collection of data from multiple
exposures covering multiple bands, the default behavior is to create a set of single-band cubes. For MIRI, for example,
this can mean separate cubes for bands 1A, 2A, 3A, 4A, 1B, 2B, ..., 3C, 4C, depending on what’s included in the
input. For NIRSpec this may mean multiple cubes, one for each grating+filter combination contained in the input
collection.

Several cube_build step arguments are available to allow the user to control exactly what combinations of input
data are used to construct the output cubes. See the Step Arguments section for details.

Output Cube Format

The output spectral cubes are stored in FITS files that contain 4 IMAGE extensions. The primary data array is empty
and the primary header holds the basic parameters of the observations that went into making the cube. The 4 IMAGE
extensions have the following characteristics:

EXTNAME | NAXIS | Dimensions Data type
SCI 3 2 spatial and 1 spectral | float

ERR 3 2 spatial and 1 spectral | float

DQ 3 2 spatial and 1 spectral | integer
WMAP 3 2 spatial and 1 spectral | integer

The SCI image contains the surface brightness of cube spaxels in units of mJy/arcsecond”2. The ERR image contains
the uncertainty on the SCI values, the DQ image contains the data quality flags for each spaxel, and the WMAP image
contains the number of point cloud elements contained in the region of interest of the spaxel.

Output Product Name

If the input data is passed in as an ImageModel, then the IFU cube will be passed back as an IFUCubeModel. The
cube model will be written to disk at the end of processing. The file name of the output cube is based on a rootname
plus a string defining the type of IFU cube, along with the suffix ‘s3d.fits’. If the input data is a single exposure,
then the rootname is taken from the input filename. If the input is an association table, the rootname is defined in the
association table. The string defining the type of IFU is created according to the following rules:

» For MIRI the output string name is determined from the channels and sub-channels used. The IFU string for
MIRI is ‘ch’+ channel numbers used plus a string for the subchannel. For example if the IFU cube contains
channel 1 and 2 data for the short subchannel, the output name would be, rootname_ch1-2_SHORT_s3d.fits. If
all the sub-channels were used then the output name would be rootname_ch-1-2_ALL_s3d.fits.

e For NIRSpec the output string is determined from the gratings and filters used. The gratings are grouped
together in a dash (-) separated string and likewise for the filters. For example if the IFU cube contains data from
grating G140M and G235M and from filter FO70LP and F100LP, the output name would be, rootname_G140M-
G225_F070LP-F100LP_s3d.fits

Algorithm

The default IFU Cubes contain data from a single band (channel/sub-channel or grating/filter). There are several
options which control the type of cubes to create (see description given above). Based on the arguments defining the

124 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

type of cubes to create, the program selects the data from each exposure that should be included in the spectral cube.
The output cube is defined using the WCS information of all the included input data. This output cube WCS defines
a field-of-view that encompasses the undistorted footprints on the sky of all the input images. The output sampling
scale in all three dimensions for the cube is defined by a ‘cubepars’ reference file as a function of wavelength, and can
also be changed by the user. The cubepars reference file contains a predefined scale to use for each dimension for each
band. If the output IFU cube contains more than one band, then for MIRI the output scale corresponds to the channel
with the smallest scale. In the case of NIRSpec only gratings of the same resolution are combined together in an IFU
cube. The output spatial coordinate system is right ascension-declination.

All the pixels on each exposure that are included are mapped to the cube coordinate system. This input-to-output
pixel mapping is determined via a mapping function derived from the WCS of each input image and the WCS of
output cube. The mapping process corrects for the optical distortions and uses the spacecraft telemetry informa-
tion to map each pixel location to its projected location in the cube coordinate system. The mapping is actually
a series of chained transformations (detector -> alpha-beta-lambda), (alpha-beta-lambda -> v2-v3-lambda), (v2-v3-
lambda - > right ascension-declination-lambda), and (right ascension-declination-lambda -> Cube coordinate1-Cube
Coordinate2-lambda). The reverse of each transformation is also possible.

The mapping process results in an irregular spaced “cloud of points” that sample the specific intensity distribution at
a series of locations on the sky. A schematic of this process is shown in Figure 1.

ya
L T
S
-~ " * !
+ " o I $,
3 R T~
Decl. . 7 £ i <Ll A
al \IL 7& % 7L Vi \L
7~ NI
s Ia 7; - % Wavelength
H T *
A *
= 7 ~
RA. *+

Figure 1: Schematic of two dithered exposures mapped to the IFU output coordinate system (black regular grid). The
plus symbols represent the point cloud mapping of detector pixels to effective sampling locations relative to the output
coordinate system at a given wavelength. The black points are from exposure one and the red points are from exposure
two.

Each point in the cloud represents a measurement of the specific intensity (with corresponding uncertainty) of the
astronomical scene at a particular location. The final data cube is constructed by combining each of the irregularly-
distributed samples of the scene into a regularly-sampled grid in three dimensions for which each spaxel (i.e., a spatial
pixel in the cube) has a spectrum composed of many spectral elements.

The best algorithm with which to combine the irregularly-distributed samples of the point cloud to a rectilinear data
cube is the subject of ongoing study, and depends on both the optical characteristics of the IFU and the science goals
of a particular observing program. At present, the default method uses a flux-conserving variant of Shepards method
in which the value of a given element of the cube is a distance-weighted average of all point-cloud members within a
given region of influence. In order to explain this method we will introduce the follow definitions:

12.1. Package Index 125



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

» xdistance = distance between point in the cloud and spaxel center in units of arc seconds along the x axis
* ydistance = distance between point in the cloud and spaxel center in units of arc seconds along the y axis

* zdistance = distance between point cloud and spaxel center in the lambda dimension in units of microns along
the wavelength axis

These distances are then normalized by the IFU cube sample size for the appropriate axis:
» xnormalized = xdistance/(cube sample size in x dimension [cdelt1])
» ynormalized = ydistance/(cube sample size in y dimension [cdelt2])
 znormalized = zdistance/(cube sample size in z dimension [cdelt3])

The final spaxel value at a given wavelength is determined as the weighted sum of the point cloud members with a
spatial and spectral region of influence centered on the spaxel. The default size of the region of influence is defined in
the cubepar reference file, but can be changed by the user with the options: rois and roiw.

If n point cloud members are located within the ROI of a spaxel, the spaxel flux K = ZwilFﬂ

i=1 Wi
where

1.0

w,; =
¢ \/(znormalized?+ynormalized?+znormalized?)1’

The default value for p is 2, although the optimal choice for this value (along with the size of the region of influence
and the cube sampling scale) is still under study. Similarly, other algorithms such as a 3d generalization of the drizzle
algorithm are also being studied and may provide better performance for some science applications.

Additional constraints for weighting=MIRIPSF

For MIRI the weighting function can be adapted to use the width of the PSF and LSF in weighting the point cloud
members within the ROI centered on the spaxel. The width of the MIRI PSF varies with wavelength, broader for longer
wavelengths. The resolving power of the MRS varies with wavelength and band. Adjacent point-cloud elements may
in fact originate from different exposures rotated from one another and even from different spectral bands. In order to
properly weight the MIRI data the distances between the point cloud element and spaxel the distances are determined
in the alpha-beta coordinate system and then normalized by the width of the PSF and the LSF. To weight in the
alpha-beta coordinates system each cube spaxel center must be mapped to the alpha-beta system corresponding to the
channel-band of the point cloud member. The xdistance and ydistances are redefined to mean:

» xdistance = distance between point in the cloud and spaxel center along the alpha dimension in units of arc
seconds

* ydistance = distance between point in the cloud and spaxel center along the beta dimension in units of arc
seconds

* zdistance = distance between point cloud and spaxel center in the lambda dimension in units of microns along
the wavelength axis

The spatial distances are then normalized by PSF width and the spectral distance is normalized by the LSF:
 xnormalized = xdistance/(width of the PSF in the alpha dimension in units of arc seconds)
» ynormalized = ydistance/(width of the PSF in the beta dimension in units of arc seconds)

* znormalized = zdistance/( width of LSF in lambda dimension in units of microns)

Step Arguments

As discussed earlier, the input to the cube_build step can take many forms, containing data from one or more
wavelength bands for each of the MIRI and NIRSpec IFUs. The following step arguments can be used to control

126 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

which subsets of data are used to produce the output cubes. Note that some options will result in multiple cubes being
created. For example, if the input data span several bands, but single-band cubes are selected, then a cube for each
band will be created.

channel [string] This is a MIRI only option and the valid values are 1, 2, 3, 4, and ALL. If the channel
argument is given, then only data corresponding to that channel will be used in constructing the cube. A comma-
separated list can be used to designate multiple channels. For example, to create a cube with data from channels
1 and 2, specify the list as ——channel="1, 2"'. If this argument is not specified, the output will be a set of
IFU cubes, one for each channel/sub-channel combination contained in the input data.

band [string] This is a MIRI only option and the valid values are SHORT, MEDIUM, LONG, and ALL. If the
band argument is given, then only data corresponding to that sub-channel will be used in constructing the cube.
Only one value can be specified, so IFU cubes are created either per sub-channel or using all the sub-channels
of the data. If this argument is not specified, a set of IFU cubes is created, one for each band. Note we use the
name band for this argument instead of subchannel, because the keyword band in the input images is used
to indicate which MIRI subchannel the data covers.

grating [string] This is a NIRSpec only option with valid values PRISM, G140M, G140H, G235M, G235H,
G395M, G395H, and ALL. If the option “ALL” is used, then all the gratings in the association are used. Because
association tables only contain exposures of the same resolution, the use of “ALL” will at most combine data
from gratings G140M, G235M, and G395M or G140H, G235H, and G395H. The user can supply a comma-
separated string containing the names of multiple gratings to use.

filter [string] This is a NIRSpec only option with values of Clear, F1I00LP, FO70LP, F170LP, F290LP, and
ALL. To cover the full wavelength range of NIRSpec, the option “ALL” can be used (provided the exposures in
the association table contain all the filters). The user can supply a comma-separated string containing the names
of multiple filters to use.

output_type [string] This parameter has four valid options of Band, Channel, Grating, and Multi. This
parameter can be combined with the options above [band, channel, grating, filter] to fully control the type of
IFU cubes to make.

e output_type = band is the default mode and creates IFU cubes containing only one band
(channel/sub-channel or grating/filter combination).

* output_type = channel combines all the MIRI channels in the data or set by the channel option
into a single IFU cube.

* output_type = grating combines all the gratings in the NIRSpec data or set by the grating option
into a single IFU cube.

* output_type = multi combines data into a single “uber” IFU cube. If in addition, channel, band,
grating, or filter are also set, then only the data set by those parameters will be combined into an “uber”
cube.

The following arguments control the size and sampling characteristics of the output IFU cube.
scalel The output cube’s spaxel size in axis 1 (spatial).

scale2 The output cube’s spaxel size in axis 2 (spatial).

scalew The output cube’s spaxel size in axis 3 (wavelength).

wavemin The minimum wavelength, in microns, to use in constructing the IFU cube.
wavemax The maximum wavelength, in microns, to use in constructing the IFU cube.

coord_system [string] Options are ra-dec and alpha-beta. The alpha-beta option is a special coordinate
system for MIRI data and should only be used by advanced users.

There are a number of arguments that control how the point cloud values are combined together to produce the final
flux associated with each output spaxel flux. The first set defines the the region of interest, which defines the boundary

12.1. Package Index 127



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

centered on the spaxel center of point cloud members that are used to find the final spaxel flux. The arguments related
to region of interest and how the fluxes are combined together are:

rios [float] The radius of the region of interest in the spatial dimensions.
riow [float] The size of the region of interest in the spectral dimension.
There are two arguments that control how to interpolate the point cloud values:

weighting [string] The type of weighting to use when combining points cloud fluxes to represent the spaxel
flux. Allowed values are STANDARD and MIRPSF. This defines how the distances between the point cloud
members and spaxel centers are determined. The default value is STANDARD and the distances are determined
in the cube output coordinate system. STANDARD is the only option available for NIRSpec. If set to MIRIPSF,
the distances are determined in the alpha-beta coordinate system of the point cloud member and are normalized
by the PSF and LSF. For more details on how the weight of the point cloud members are used in determining
the final spaxel flux see the Algorithm section.

weight_power [float] Controls the weighting of the distances between the point cloud member and spaxel
center. The weighting function used for determining the spaxel flux was given in the Algorithm description:

m . Fluz;w;
spaxel flux K = Ligy Fluww,
P S wi

where n = the number of point cloud points within the region of interest of spaxel flux K

w; = 1.0\/(xnormalized2 + ynormalized® + znormalized®)

by default currently p=2, but is controlled by the weight_power argument.

Examples of How to Run Cube_Build

It is assumed that the input data have been processed through the calwebb_detectorl pipeline and up through
the photom step of the calwebb_spec?2 pipeline.

Cube Building for MIRI data

To run cube_build on a single MIRI exposure (containing channel 1 and 2), but only creating an IFU cube for channel
1:

strun cube_build.cfg MIRM103-Q0-SHORT_495_cal.fits —--ch=1 --band=SHORT

The output 3D spectral cube will be saved in a file called MIRM103-Q0-SHORT _495_ch1-short_s3d.fits

To run cube_build using an association table containing 4 dithered images:

strun cube_build.cfg cube_build_4dither_asn. json

where the ASN file cube_build_4dither_asn.json contains:

{"asn_rule": "Asn_MIRIFU_Dither",
"target": "MYTarget",
"asn_id": "c3001",
"asn_pool": "jw00024_001_01_pool",
"program": "00024","asn_type":"dither",
"products": [
{"name": "MIRM103-Q0-Q3",
"members":
[{"exptype": "SCIENCE", "expname": "MIRM103-Q0-SHORT_495_cal.fits"},
{"exptype": "SCIENCE", "expname": "MIRM103-Q1-SHORT_495_cal.fits"},

(continues on next page)

128 Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

(continued from previous page)

{"exptype": "SCIENCE", "expname": "MIRM103-Q2-SHORT_495_cal.fits"},
{"exptype": "SCIENCE", "expname": "MIRM103-Q3-SHORT_495_cal.fits"}]}
1

The default output will be two IFU cubes. The first will contain the combined dithered images for channel 1, sub-
channel SHORT and the second will contain the channel 2, sub-channel SHORT data. The output root file names
are defined by the product “name” attribute in the association table and results in files MIRM103-Q0-Q3_chl-
short_s3d.fits and MIRM103-Q0-Q3_ch2-short_s3d.fits.

To use the same association table, but combine all the data, use the output_type=multi option:

strun cube_build.cfg cube_build_4dither_asn.json --output_type=multi

The output IFU cube file will be MIRM103-Q0-Q3_ch1-2-short_s3d.fits

Cube building for NIRSpec data

To run cube_build on a single NIRSpec exposure that uses grating G140H and filter F100LP:

strun cube_build.cfg jwtest1004001_01101_00001_nrs2_cal.fits

The output file will be jwtest1004001_01101_00001_nrs2_g140h-f1001p_s3d.fits

To run cube_build using an association table containing data from exposures using G140H+F100LP and
G140H+F070LP:

strun cube_build.cfg nirspec_multi_asn. json

where the association file contains:

{"asn_rule": "Asn_NIRSPECFU_Dither",

"target": "MYTarget",

"asn_pool": "Jjw00024_001_01_pool",

"program": "00024","asn_type":"NRSIFU",

"asn_id":"a3001",

"products": [

{"name": "JW3-6-NIRSPEC",

"members":

[{"exptype": "SCIENCE", "expname": "jwtestl1003001_01101_00001_nrsl_cal.fits"},
{"exptype": "SCIENCE", "expname": "Jjwtest1004001_01101_00001_nrs2_cal.fits"},
{"exptype": "SCIENCE", "expname": "Jjwtestl1l005001_01101_00001_nrsl_cal.fits"},
{"exptype": "SCIENCE", "expname": "Jjwtestl1l006001_01101_00001_nrs2_cal.fits"}]}

]
}

The output will be two IFU cubes, one for each grating+filter combination: JW3-6-NIRSPEC_g140h-f070Ip_s3d.fits
and JW3-6-NIRSPEC_g140h-f1001p_s3d.fits.

Reference File

There are two types of reference files used by the cube_build step. The first type holds the default cube parameters
used in setting up the output IFU Cube. The reftype for this reference file is cubepars and there is a reference file of
this type for MIRI data and one for NIRSPEC data. These files contain tables for each band of the spatial and spectral
size and the size of the region of interest to use to construct the IFU cube. If more than one band is used to build

12.1. Package Index 129




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

the IFU cube, then the final spatial and spectral size will be the smallest one from the list of input bands. Currently
cube_build can only produce IFU cubes with a linear spatial and spectral dimension. In the future we plan to allow a
varying spectral step with wavelength.

The other type of reference file pertains only to MIRI data and contains the width of the PSF and LSF per band. The
reftype for this reference file is resol. This information is used if the weight function incorporates the size of the psf
and Isf, i.e. —weighting = miripsf

CRDS Selection Criteria

The cube parameter reference file selection is based on Instrument. CRDS selection criteria for the MIRI resolution
reference file is also based on Instrument (a N/Q is returned for NIRSPEC data).

Cube Building Parameter Reference File Format

The cube parameter reference files are FITS files with BINTABLE extensions. The FITS primary data array is assumed
to be empty. The MIRI cube parameter file contains three BINTABLE extensions, while the NIRSPEC file contains
five BINTABLE extensions. In both files the first extension contains the spatial and spectral cube sample size for each
band. The second extension holds the Modified Shepard weighting values to use for each band. The third extension
will be used in Build 7.2 and contains the wavelengths and associated region of interest size to use if the IFU cubes are
created from several bands and the final output is to have an IFU cube of varying spectral scale. In the case of MIRI
the twelve spectral bands can be combined into a single IFU cube an all the information to create cubes of varying
wavelength sampling is contained in this third BINTABLE extension. However for NIRSPEC data there are three types
of multi-band cubes: PRISM, MEDIUM and HIGH resolution. The third, forth and fifth BINTABLE extensions in
the NIRSPEC reference file contains the wavelength sampling and region of interest size to use for PRISM, MEDIUM
resolution, and HIGH resolution multi-band cubes, respectively.

MIRI Resolution reference file

The MIRI resolution reference file is a FITS file with four BINTABLE extensions. The FITS primary data array is
assumed to be empty. The first BINTABLE extension contains the RESOLVING_POWER the information to use for
each band. This table has 12 rows and 11 columns, one row of information for each band. The parameters in the 11
columns provide the polynomial coefficients to determine the resolving power for band that row corresponds to. The
second BINTABLE extension, PSF_ FWHM_ALPHA, has a format of 1 row and 5 columns. The 5 columns hold the
polynomial coefficients for determining the alpha PSF size. The third BINTABLE extension, PSF_FWHM_BETA,
has a format of 1 row and 5 columns. The 5 columns hold the polynomial coefficients for determining the beta PSF
size.

jwst.cube_build Package

Classes

CubeBuildStep([name, parent, config_file, ...]) CubeBuildStep: Creates a 3-D spectral cube from a
given association, single model, single input file, or
model container.

130 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

CubeBuildStep

class jwst.cube_build.CubeBuildStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

CubeBuildStep: Creates a 3-D spectral cube from a given association, single model, single input file, or model
container. Input parameters allow the spectral cube to be built from a provided channel/subchannel (MIRI) or
grating/filer (NIRSPEC)

Create a Step instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional) - The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config file(str path, optional)-The path to the config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

reference_file types
spec

Methods Summary

process(input) This is where real work happens.
read_user._input() Short Summary

Attributes Documentation

reference_file types = ['cubepar',K 'resol']

spec = "\n channel = option('1l','2','3','4','all',default="'all') # Options: 1,2,3,4,

Methods Documentation

process (input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

read_user_input ()
figure out if any of the input paramters channel,band,filter or grating have been set. If they have been check
that they are valid and fill in input_pars paramters

Parameters none —

12.1. Package Index 131


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Returns
e self.pars_input[ ‘channel’]
* self.pars_input[ ‘sub_channel’]
e self.pars_input[ ‘grating’]
e self-pars_input[ filter’]

Class Inheritance Diagram

Step CubeBuildStep

12.1.11 Dark Current Subtraction

Description

Assumptions

It is assumed that the input science data have NOT had the zero group (or bias) subtracted. We also do not want the
dark subtraction process to remove the bias signal from the science exposure, therefore the dark reference data should
have their own group zero subtracted from all groups. This means that group zero of the dark reference data will
effectively be zero-valued.

Algorithm

The dark current step removes dark current from a JWST exposure by subtracting dark current data stored in a dark
reference file.

The current implementation uses dark reference files that have been constructed from exposures using nframes=1
and groupgap=0 (i.e. one frame per group and no dropped frames) and the maximum number of frames allowed
for an integration. If the science exposure that’s being processed also used nf rames=1 and groupgap=0, then the
dark reference file data are directly subtracted frame-by-frame from the science exposure.

If the science exposure used nframes>1 or groupgap>0, the dark reference file data are reconstructed internally to
match the frame averaging and groupgap settings of the science exposure. The reconstructed dark data are constructed
by averaging nframes adjacent dark frames and skipping groupgap intervening frames.

The frame-averaged dark is constructed using the following scheme:

* SCI arrays are computed as the mean of the original dark SCI arrays

v/ > ERR2

* ERR arrays are computed as the uncertainty of the mean, using - Frames

For each integration in the input science exposure, the averaged dark data are then subtracted, group-by-group, from
the science exposure groups, as follows:

132 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

» Each SCI group of the dark data are subtracted from the corresponding SCI group of the science data
* The ERR arrays of the science data are not modified

Any pixel values in the dark reference data that are set to NaN will have their values reset to zero before being
subtracted from the science data, which will effectively skip the dark subtraction operation for those pixels.

The dark DQ array is combined with the science exposure PIXELDQ array using a bitwise OR operation.

Note: If the input science exposure contains more frames than the available dark reference file, no dark subtraction
will be applied and the input data will be returned unchanged.

Subarrays

It is assumed that dark current will be subarray-dependent, therefore this step makes no attempt to extract subarrays
from the dark reference file to match input subarrays. It instead relies on the presence of matching subarray dark
reference files in CRDS.

Reference File
The dark current step uses a DARK reference file.
CRDS Selection Criteria

Dark reference files are selected on the basis of INSTRUME, DETECTOR, and SUBARRAY values for the input
science data set. For MIRI exposures, the value of READPATT is used as an additional selection criterion.

DARK Reference File Format

Dark reference files are FITS files with 3 IMAGE extensions and 1 BINTABLE extension. The FITS primary data
array is assumed to be empty. The characteristics of the three image extensions for darks used with the Near-IR
instruments are as follows:

EXTNAME | NAXIS | Dimensions Data type
SCI 3 ncols x nrows x ngroups | float

ERR 3 ncols x nrows x ngroups | float

DQ 2 ncols X nrows integer

The dark reference files for the MIRI detectors depend on the integration number, because the first integration of MIRI
exposures contains effects from the detector reset and are slightly different from subsequent integrations. Currently the
MIRI dark reference files contain a correction for only two integrations: the first integration of the dark is subtracted
from the first integration of the science data, while the second dark integration is subtracted from all subsequent science
integrations. The format of the MIRI dark reference files is as follows:

EXTNAME | NAXIS | Dimensions Data type
SCI 4 ncols x nrows x ngroups x nints | float

ERR 4 ncols X nrows X ngroups x nints | float

DQ 4 ncols x nrows x 1 X nints integer

The BINTABLE extension in dark reference files contains the bit assignments used in the DQ array. It uses
EXTNAME=DQ DEF and contains 4 columns:

12.1. Package Index 133



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* BIT: integer value giving the bit number, starting at zero

VALUE: the equivalent base-10 integer value of BIT
* NAME: the string mnemonic name of the data quality condition

DESCRIPTION: a string description of the condition

Step Arguments

The dark current step has one step-specific argument:
¢ ——dark_output

If the dark_output argument is given with a filename for its value, the frame-averaged dark data that are created
within the step will be be saved to that file.

jwst.dark_current Package

Classes

DarkCurrentStep([name, parent, config_file,...])  DarkCurrentStep: Performs dark current correction by
subtracting dark current reference data from the input
science data model.

DarkCurrentStep

class jwst.dark_current .DarkCurrentStep (name=None, parent=None, config_file=None,

_validate_kwds=True, **kws)
Bases: jwst.stpipe.Step

DarkCurrentStep: Performs dark current correction by subtracting dark current reference data from the input
science data model.

Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional)— The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config_file (str path, optional)-The path tothe config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

134 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

reference_file types
spec

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

reference_file_types = ['dark']

spec = '\n dark_output = output_file(default = None) # Dark model or averaged dark sub
Methods Documentation

process (input)

This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

4

Step

DarkCurrentStep

12.1.12 Data Models

About models

The purpose of the data model is to abstract away the peculiarities of the underlying file format. The same data model
may be used for data created from scratch in memory, or loaded from FITS or ASDF files or some future file format.

Hierarchy of models

There are different data model classes for different kinds of data.

One model instance, many arrays

Each model instance generally has many arrays that are associated with it. For example, the ImageModel class has
the following arrays associated with it:

¢ data: The science data

12.1. Package Index 135



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* dg: The data quality array
e err: The error array

The shape of these arrays must be broadcast-compatible. If you try to assign an array to one of these members that is
not broadcast-compatible with the data array, an exception is raised.

Working with models
Creating a data model from scratch

To create a new ImageModel, just call its constructor. To create a new model where all of the arrays will have default
values, simply provide a shape as the first argument:

from jwst.datamodels import ImageModel
with ImageModel ((1024, 1024)) as im:

In this form, the memory for the arrays will not be allocated until the arrays are accessed. This is useful if, for example,
you don’t need a data quality array — the memory for such an array will not be consumed:

# Print out the data array. It is allocated here on first access
# and defaults to being filled with zeros.
print (im.data)

If you already have data in a numpy array, you can also create a model using that array by passing it in as a data
keyword argument:

data = np.empty ((50, 50))
dg = np.empty ((50, 50))
with ImageModel (data=data, dg=dqg) as im:

Creating a data model from a file

The jwst.datamodels. open function is a convenient way to create a model from a file on disk. It may be passed
any of the following:

* apath to a FITS file

 apath to an ASDF file

* aastropy.io.fits.HDUList object
* areadable file-like object

The file will be opened, and based on the nature of the data in the file, the correct data model class will be returned.
For example, if the file contains 2-dimensional data, an ImageModel instance will be returned. You will generally
want to instantiate a model using a with statement so that the file will be closed automatically when exiting the with
block.

from jwst import datamodels
with datamodels.open("myimage.fits") as im:
assert isinstance (im, datamodels.ImageModel)

136 Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

If you know the type of data stored in the file, or you want to ensure that what is being loaded is of a particular type,
use the constructor of the desired concrete class. For example, if you want to ensure that the file being opened contains
2-dimensional image data:

from jwst.datamodels import ImageModel

with ImageModel ("myimage.fits") as im:
# raises exception if myimage.fits is not an image file
pass

This will raise an exception if the file contains data of the wrong shape.

Saving a data model to a file

Simply call the save method on the model instance. The format to save into will either be deduced from the filename
(if provided) or the format (https://docs.python.org/3/library/functions.html#format) keyword argument:

im.save ("myimage.fits")

Note: Unlike astropy.io.fits, save always clobbers the output file.

It also accepts a writable file-like object (opened in binary mode). In that case, a format must be specified:

with open("myimage.fits", "wb") as fd:
im.save (fd, format="fits")

Copying a model

To create a new model based on another model, simply use its copy
(https://docs.python.org/3/library/copy.html#module-copy) method. This will perform a deep-copy: that is, no
changes to the original model will propagate to the new model:

’new_model = old_model.copy ()

It is also possible to copy all of the known metadata from one model into a new one using the update method:

’new_model.update(old_model)

History information

Models contain a list of history records, accessed through the history attribute. This is just an ordered list of strings
— nothing more sophisticated.

To get to the history:

’model.history

To add an entry to the history:

’model.history.append("Processed through the frobulator step")

These history entries are stored in HISTORY keywords when saving to FITS format.

12.1. Package Index 137


https://docs.python.org/3/library/functions.html#format
https://docs.python.org/3/library/copy.html#module-copy

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Converting from astropy.io.fits

This section describes how to port code that uses astropy.io.fits touse jwst.datamodels.

Opening a file

Instead of:

astropy.io.fits.open("myfile.fits")

use:

from jwst.datamodels import ImageModel
with ImageModel ("myfile.fits") as model:

In place of ImageModel, use the type of data one expects to find in the file. For example, if spectrographic data is
expected, use SpecModel. If it doesn’t matter (perhaps the application is only sorting FITS files into categories) use
the base class DataModel.

An alternative is to use:

from jwst import datamodels
with datamodels.open("myfile.fits") as model:

The datamodels.open () method checks if the DATAMODL FITS keyword has been set, which records the Data-
Model that was used to create the file. If the keyword is not set, then datamodels.open () does its best to guess
the best DataModel to use.

Accessing data

Data should be accessed through one of the pre-defined data members on the model (data, dqg, err). There is no
longer a need to hunt through the HDU list to find the data.

Instead of:

’hdulist['SCI'}.data

use:

’model.data

Accessing keywords

The data model hides direct access to FITS header keywords. Instead, use the Metadata tree.

There is a convenience method, find_fits_keyword to find where a FITS keyword is used in the metadata tree:

>>> from jwst.datamodels import DataModel

# First, create a model of the desired type
>>> model = DataModel ()

>>> model.find_fits_keyword ('DATE-OBS")
[u'meta.observation.date']

138 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

This information shows that instead of:

’print(hdulist[O].header['DATE

-0BS'1)

use:

’print(model.meta.observation.date)

Extra FITS keywords

When loading arbitrary FITS files, there may be keywords that are not listed in the schema for that data model. These
“extra” FITS keywords are put under the model in the _extra_fits namespace.

Under the _extra_fits namespace is a section for each header data unit, and under those are the extra FITS
keywords. For example, if the FITS file contains a keyword FOO in the primary header, its value can be obtained

using:

’model._extra_fits.PRIMARY.FOO

This feature is useful to retain any extra keywords from input files to output products.

To get a list of everything in _extra_

fits:

’model._extra_fits._instance

returns a dictionary of of the instance at the model._extra_fits node.

_instance can be used at any node in the tree to return a dictionary of rest of the tree structure at that node.

Data model attributes

The purpose of the data model is to abstract away the peculiarities of the underlying file format. The same data model
may be used for data created from scratch in memory, loaded from FITS or ASDF files, or from some other future

format.

Calling sequences of models

List of current models

The current models are as follows:

AmiLgModel, AsnModel, BarshadowModel, CameraModel, CollimatorModel,
ContrastModel, CubeModel, IFUCubeModel, DarkModel, DarkMIRIModel,
DisperserModel, DistortionModel, DistortionMRSModel, DrizParsModel,
DrizProductModel, ExtractldImageModel, FilteroffsetModel, FlatModel,
CubeFlatModel, NRSFlatModel, NirspecFlatModel, NirspecQuadFlatModel,
FOREModel, FPAModel, FringeModel, GainModel, GLS_RampFitModel,
NIRCAMGrismModel, NIRISSGrismModel, GuiderCalModel, GuiderRawModel,
ImageModel, IFUImageModel, IFUCubeParsModel, NirspecIFUCubeParsModel,
MiriIFUCubeParsModel, IFUFOREModel, IFUPostModel, IFUSlicerModel,
IPCModel, IRS2Model, LastFrameModel, LevellbModel, LinearityModel,

MaskModel, MSAModel, ModelContainer, MultiExposureModel, MultiProductModel,
MultiSlitModel, MultiSpecModel, OTEModel, OutlierParsModel, PathlossModel,

PersistenceSatModel,

PhotomModel,

FgsPhotomModel, MiriImgPhotomModel,

12.1. Package Index

139



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

MiriMrsPhotomModel, NircamPhotomModel, NirissPhotomModel,
NirspecPhotomModel, NirspecFSPhotomModel, PixelAreaModel, PsfMaskModel,
QuadModel, RampModel, MIRIRampModel, RampFitOutputModel, ReadnoiseModel,
ReferenceFileModel, ReferenceImageModel, ReferenceCubeModel,
ReferenceQuadModel, RegionsModel, ResetModel, ResolutionModel,
MiriResolutionModel, RSCDModel, SaturationModel, SpecModel, SpecwcsModel,
StrayLightModel, SuperBiasModel, ThroughputModel, TrapDensityModel,
TrapParsModel, TrapsFilledModel, TsoPhotModel, WaveCorrModel,
WavelengthrangeModel, WEfssBkgModel

Commonly used attributes

Here are a few model attributes that are used by some of the pipeline steps.

For uncalibrated data _uncal. fits. Getting the number of integrations and the number of groups from the first and
second axes assumes that the input data array is 4-D data. Pixel coordinates in the data extensions are 1-indexed as in
FORTRAN and FITS headers, not 0-indexed as in Python.

e input_model.data.shape [0]: number of integrations

e input_model.data.shape[1]: number of groups

* input_model.meta.exposure.nframes: number of frames per group

e input_model.meta.exposure.groupgap: number of frames dropped between groups
* input_model.meta.subarray.xstart: starting pixel in X (1-based)

e input_model.meta.subarray.ystart: starting pixel in Y (1-based)

* input_model .meta.subarray.xsize: number of columns

e input_model.meta.subarray.ysize: number of rows

The data, err, dq, etc., attributes of most models are assumed to be numpy.ndarray arrays, or at least objects that
have some of the attributes of these arrays. numpy is used explicitly to create these arrays in some cases (e.g. when a
default value is needed). The data and err arrays are a floating point type, and the data quality arrays are an integer

type.

Some of the step code makes assumptions about image array sizes. For example, full-frame MIRI data have 1032
columns and 1024 rows, and all other detectors have 2048 columns and rows; anything smaller must be a subarray.
Also, full-frame MIRI data are assumed to have four columns of reference pixels on the left and right sides (the
reference output array is stored in a separate image extension). Full-frame data for all other instruments have four
columns or rows of reference pixels on each edge of the image.

DataModel Base Class

class jwst.datamodels.DataModel (init=None, schema=None, extensions=None,

pass_invalid_values=False, strict_validation=False)
Base class of all of the data models.

Parameters

e init (shape tuple, file path, file object,
astropy.io.fits.HDUList, numpy array, None
(https://docs.python.org/3/library/constants.html#None)) —

— None: A default data model with no shape

— shape tuple: Initialize with empty data of the given shape

140 Chapter 12. Package Documentation


https://docs.python.org/3/library/constants.html#None

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

file path: Initialize from the given file (FITS or ASDF)

readable file object: Initialize from the given file object

astropy.io.fits.HDUList: Initialize from the given HDUList.

A numpy array: Used to initialize the data array
— dict: The object model tree for the data model

* schema (tree of objects representing a JSON schema, or string
naming a schema, optional)— The schema to use to understand the elements on
the model. If not provided, the schema associated with this class will be used.

* extensions (classes extending the standard set of extensions,
optional.)—If an extension is defined, the prefix used should be ‘url’.

* pass_invalid_values (If true, values that do not validate the
schema) — will be added to the metadata. If false, they will be set to None

e strict_validation (if true, an schema validation errors will
generate) — an excption. If false, they will generate a warning.

e available built-in formats are (The)-—

. (= =====) — Format Read Write Auto-identify

* Yes Yes Yes (datamodel)—

add_schema_entry (position, new_schema)
Extend the model’s schema by placing the given new_schema at the given dot-separated position in the
tree.

Parameters
e position (st r (https://docs.python.org/3/library/stdtypes.html#str)) —
* new_schema (schema tree)-—

copy (memo=None)
Returns a deep copy of this model.

extend schema (new_schema)
Extend the model’s schema using the given schema, by combining it in an “allOf” array.

Parameters new_schema (schema tree)-—

find_ fits_keyword (keyword, return_result=True)
Utility function to find a reference to a FITS keyword in this model’s schema. This is intended for interac-
tive use, and not for use within library code.

Parameters keyword (str (https://docs.python.org/3/library/stdtypes.html#str)) — A FITS
keyword name

Returns locations —If return_result is True (https://docs.python.org/3/library/constants.html#True),
a list of the locations in the schema where this FITS keyword is used. Each element is a
dot-separated path.

Return type list of str

12.1. Package Index 141


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Example

>>> model.find_fits_keyword ('DATE-OBS"')
['observation.date']

classmethod from_asdf (init, schema=None)
Load a data model from a ASDF file.

Parameters
e init (file path, file object, asdf.AsdfFile object)-—
— file path: Initialize from the given file
— readable file object: Initialize from the given file object
— asdf.AsdfFile: Initialize from the given AsdfFile.
* schema — Sameasfor __init___
Returns model
Return type DataModel instance

classmethod from_ fits (init, schema=None)
Load a model from a FITS file.

Parameters
e init (file path, file object, astropy.io.fits.HDUList)-—
— file path: Initialize from the given file
— readable file object: Initialize from the given file object
— astropy.io.fits. HDUList: Initialize from the given HDUList.
e schema —Sameasfor ___init_
Returns model
Return type DataModel instance

get_fits_wes (hdu_name="SCI’, hdu_ver=1, key="")
Geta astropy.wcs.WCS object created from the FITS WCS information in the model.

Note that modifying the returned WCS object will not modify the data in this model. To update the model,
use set_fits_ wcs.

Parameters

* hdu_name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) —
The name of the HDU to get the WCS from. This must use named HDU’s, not numerical
order HDUs. To get the primary HDU, pass 'PRIMARY '.

* key (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of a particular WCS transform to use. This may be either ' ' or 'A'-'Z"' and
corresponds to the "a" part of the CTYPEia cards. key may only be provided if header
is also provided.

* hdu_ver (int (https://docs.python.org/3/library/functions.html#int), optional) —
The extension version. Used when there is more than one extension with the same name.
The default value, 1, is the first.

Returns wes — The type will depend on what libraries are installed on this system.

142 Chapter 12. Package Documentation



https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Return type astropy.wcs.WCS or pywcs . WCS object

get_item_as_json_value (key)
Equivalent to __getitem__, except returns the value as a JSON basic type, rather than an arbitrary Python
type.

get_primary_array_ name ()
Returns the name “primary” array for this model, which controls the size of other arrays that are implicitly
created. This is intended to be overridden in the subclasses if the primary array’s name is not “data”.

history
Get the history as a list of entries

info ()
Return datatype and dimension for each array or table

items ()
Iterates over all of the schema items in a flat way.

Each element is a pair (key, value). Each key is a dot-separated name. For example, the schema
element meta.observation.date will end up in the result as:

("meta.observation.date": "2012-04-22T03:22:05.432")

iteritems ()
Iterates over all of the schema items in a flat way.

Each element is a pair (key, value). Each key is a dot-separated name. For example, the schema
element meta.observation.date will end up in the result as:

("meta.observation.date": "2012-04-22T03:22:05.432")

iterkeys ()
Iterates over all of the schema keys in a flat way.

Each result of the iterator is a key. Each key is a dot-separated name. For example, the schema element
meta.observation.date will end up in the result as the string "meta.observation.date".

itervalues ()
Iterates over all of the schema values in a flat way.

keys ()
Iterates over all of the schema keys in a flat way.

Each result of the iterator is a key. Each key is a dot-separated name. For example, the schema element
meta.observation.date will end up in the result as the string "meta.observation.date".

my_attribute (atfr)
Test if attribute is part of the NDData interface

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

read (init=None, schema=None, extensions=None, pass_invalid_values=False,
strict_validation=False)

12.1. Package Index 143


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Parameters

e init (shape tuple, file path, file object,
astropy.io.fits.HDUList, numpy array, None
(https://docs.python.org/3/library/constants.html#None)) —

None: A default data model with no shape

shape tuple: Initialize with empty data of the given shape

file path: Initialize from the given file (FITS or ASDF)

readable file object: Initialize from the given file object

astropy.io.fits.HDUList: Initialize from the given HDUList.

A numpy array: Used to initialize the data array

dict: The object model tree for the data model

* schema (tree of objects representing a JSON schema, or
string naming a schema, optional) — The schema to use to understand
the elements on the model. If not provided, the schema associated with this class will be

used.

* extensions (classes extending the standard set of
extensions, optional.) — If an extension is defined, the prefix used should
be ‘url’.

* pass_invalid_values (If true, values that do not validate

the schema)— will be added to the metadata. If false, they will be set to None

e strict_validation (if true, an schema validation errors will
generate) — an excption. If false, they will generate a warning.

e available built-in formats are (The)-—

. (m======== — Format Read Write Auto-identify

* Yes Yes Yes (datamodel)—

save (path, dir_path=None, *args, **kwargs)
Save to either a FITS or ASDF file, depending on the path.

Parameters

* path(string or func)-File path to save to. If function, it takes one argument with
is model.meta.filename and returns the full path string.

e dir_path (string)- Directory to save to. If not None, this will override any directory
information in the path

Returns output_path — The file path the model was saved in.
Return type str (https://docs.python.org/3/library/stdtypes.html#str)

search_schema (substring)
Utility function to search the metadata schema for a particular phrase.

This is intended for interactive use, and not for use within library code.

The searching is case insensitive.

144 Chapter 12. Package Documentation


https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Parameters substring (str (https://docs.python.org/3/library/stdtypes.html#str)) — The
substring to search for.

Returns locations
Return type list of tuples

set_fits wes (wces, hdu_name=’SCI’)
Sets the FITS WCS information on the model using the given astropy .wcs . WCS object.

Note that the “key” of the WCS is stored in the WCS object itself, so it can not be set as a parameter to
this method.

Parameters

* wes (astropy.wes.WCS or pywcs . WCS object) — The object containing FITS WCS
information

* hdu_name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) —
The name of the HDU to set the WCS from. This must use named HDU’s, not numer-
ical order HDUs. To set the primary HDU, pass 'PRIMARY '.

to_asdf (init, *args, **kwargs)
Write a DataModel to an ASDF file.

Parameters
e init (file path or file object)-—

* kwargs (args,) — Any additional arguments are passed along to asdf .AsdfFile.
write_to.

to_fits (init, *args, **kwargs)
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

to_flat_dict (include_arrays=True)
Returns a dictionary of all of the schema items as a flat dictionary.

Each dictionary key is a dot-separated name. For example, the schema element meta.observation.
date will end up in the dictionary as:

{ "meta.observation.date": "2012-04-22T03:22:05.432" }

update (d, only=")
Updates this model with the metadata elements from another model.

Parameters

* d(model or dictionary-like object)— The model to copy the metadata ele-
ments from. Can also be a dictionary or dictionary of dictionaries or lists.

* only (only update the named hdu from extra_fits, e.g.) -
only="PRIMARY’. Can either be a list of hdu names or a single string. If left
blank, update all the hdus.

validate ()
Re-validate the model instance againsst its schema

12.1. Package Index 145


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

values ()
Iterates over all of the schema values in a flat way.

Specific Model Classes

class jwst.datamodels.AmiLgModel (init=None, fit_image=None, resid_image=None, clo-
sure_amp_table=None, closure_phase_table=None,
fringe_amp_table=None, fringe_phase_table=None,
pupil_phase_table=None, solns_table=None, **kwargs)
A data model for AMI LG analysis results.

get_primary_ array_ name ()
Returns the name “primary” array for this model, which controls the size of other arrays that are implicitly
created. This is intended to be overridden in the subclasses if the primary array’s name is not “data”.

class jwst.datamodels.AsnModel (init=None, asn_table=None, **kwargs)
A data model for association tables.

class jwst.datamodels.BarshadowModel (init=None, datalxI=None, varlxl=None,

datalx3=None, varlx3=None, **kwargs)
A data model for Bar Shadow correction information.

Parameters
* init (any) — Any of the initializers supported by DataModel.

* data (numpy array) - Array defining the bar shadow correction as a function of Y and
wavelength.

* variance (numpy array)— Variance array.

class jwst.datamodels.CameraModel (init=None, model=None, input_units=None, out-
put_units=None, **kwargs)
A model for a reference file of type “camera”.

populate_meta ()
Subclasses can overwrite this to populate specific meta keywords.

class jwst.datamodels.CollimatorModel (init=None, model=None, input_units=None, out-
put_units=None, **kwargs)
A model for a reference file of type “collimator”.

populate_meta ()
Subclasses can overwrite this to populate specific meta keywords.

class jwst.datamodels.ContrastModel (init=None, contrast_table=None, **kwargs)
A data model for coronagraphic contrast curve files.

class jwst.datamodels.CubeModel (init=None, data=None, dg=None, err=None, ze-
roframe=None, relsens=None, int_times=None, area=None,
wavelength=None, var_poisson=None, var_rnoise=None,
**kwargs)
A data model for 3D image cubes.

Parameters
* init (any) - Any of the initializers supported by DataModel.
* data (numpy array) - The science data. 3-D.
* dgq (numpy array)— The data quality array. 3-D.

* err (numpy array)— The error array. 3-D

146 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* zeroframe (numpy array)— The zero-frame array. 3-D

* relsens (numpy array) - The relative sensitivity array.

e int_times (table) - The int_times table

* area (numpy array)— The pixel area array. 2-D

* wavelength (numpy array) - The wavelength array. 2-D

* var_poisson (numpy array) - The variance due to Poisson noise array. 3-D
* var_rnoise (numpy array)— The variance due to read noise array. 3-D

class jwst.datamodels.IFUCubeModel (init=None, data=None, dg=None, err=None,
weightmap=None, wavetable=None, hdrtab=None,

**kwargs)
A data model for 3D IFU cubes.

Parameters
* init (any) — Any of the initializers supported by DataModel.
* data (numpy array) - The science data. 3-D.
* dq (numpy array)— The data quality array. 3-D.
* err (numpy array) - The error array. 3-D
* weightmap (numpy array)— The weight map array. 3-D
* wavetable (1-D table) - Optional table of wavelengths of IFUCube slices

class jwst.datamodels.DarkModel (init=None, data=None, dq=None, err=None, dq_def=None,
**kwargs)
A data model for dark reference files.

Parameters
* init (any)— Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* dg (numpy array) - The data quality array.
* err (numpy array)- The error array.
* dgq_def (numpy array)- The data quality definitions table.

class jwst.datamodels.DarkMIRIModel (init=None, data=None, dgq=None, err=None,
dq_def=None, **kwargs)
A data model for dark MIRI reference files.

Parameters
* init (any) — Any of the initializers supported by DataModel.
* data (numpy array) - The science data (integration dependent)
* dg (numpy array) - The data quality array. (integration dependent)
* err (numpy array (integration dependent))— The error array.

* dq_def (numpy array)-— The data quality definitions table.

12.1. Package Index 147



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

class jwst.datamodels.DisperserModel (init=None, angle=None, gwa_tiltx=None,
gwa_tilty=None, kcoef=None, lcoef=None,
tcoef=None, pref=None, tref=None, theta_x=None,
theta_y=None, theta_z=None, groovedensity=None,
*kkwargs)
A model for a NIRSPEC reference file of type “disperser”.

on_save (path=None)

This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

to_fits()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

class jwst.datamodels.DistortionModel (init=None, model=None, input_units=None, out-
put_units=None, **kwargs)
A model for a reference file of type “distortion”.
validate ()

Convenience function to be run when files are created. Checks that required reference file keywords are
set.

class jwst.datamodels.DistortionMRSModel (init=None, x_model=None, y_model=None,
alpha_model=None, beta_model=None,
bzero=None, bdel=None, input_units=None,

output_units=None, **kwargs)
A model for a reference file of type “distortion” for the MIRI MRS.

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

to_fits()
Write a DataModel to a FITS file.

Parameters

e init (file path or file object)—

148 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

class jwst.datamodels.DrizParsModel (init=None, data=None, **kwargs)
A data model for drizzle parameters reference tables.

class jwst.datamodels.DrizProductModel (init=None, data=None, con=None, wht=None,

hdrtab=None, relsens=None, **kwargs)
A data model for drizzle-generated products.

class jwst.datamodels.ExtractldImageModel (init=None, data=None, **kwargs)
A data model for the extract_1d reference image array.

Parameters
* init (any)— Any of the initializers supported by DataModel.
* data (numpy array)— An array of values that define the extraction regions.

class jwst.datamodels.FilteroffsetModel (init=None, filters=None, **kwargs)
A model for a NIRSPEC reference file of type “disperser”.

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

class jwst.datamodels.FlatModel (init=None, data=None, dq=None, err=None, dq_def=None,

**kwargs)
A data model for 2D flat-field images.

Parameters
* init (any) — Any of the initializers supported by DataModel.
* data (numpy array) - The science data. 2-D.
* dgq (numpy array)— The data quality array. 2-D.
* err (numpy array)- The error array. 2-D.
* dg_def (numpy array)- The data quality definitions table.

class jwst.datamodels.NRSFlatModel (init=None, flat_table=None, **kwargs)
A base class for NIRSpec flat-field reference file models.

class jwst.datamodels.NirspecFlatModel (init=None, data=None, dgq=None, err=None,
wavelength=None, flat_table=None, dq_def=None,

**kwargs)
A data model for NIRSpec flat-field reference files.

Parameters

12.1. Package Index 149


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

init (any) — Any of the initializers supported by DataModel.
data (numpy array)— The science data. 2-D or 3-D.

dg (numpy array)— The data quality array. 2-D or 3-D.

err (numpy array) - The error array. 2-D or 3-D.

wavelength (numpy array)— The wavelength for each plane of the data array. This
will only be needed if data is 3-D.

flat_table (numpy array)— A table of wavelengths and flat-field values, to specify
the component of the flat field that can vary over a relatively short distance (can be pixel-to-
pixel).

class jwst.datamodels.NirspecQuadFlatModel (init=None, **kwargs)
A data model for NIRSpec flat-field files that differ by quadrant.

Parameters

init (any) — Any of the initializers supported by DataModel.
data (numpy array)— The science data. 2-D or 3-D.

dq (numpy array) - The data quality array. 2-D or 3-D.

err (numpy array)- The error array. 2-D or 3-D.

wavelength (numpy array)— The wavelength for each plane of the data array. This
will only be needed if data is 3-D.

flat_table (numpy array)— A table of wavelengths and flat-field values, to specify
the component of the flat field that can vary over a relatively short distance (can be pixel-to-
pixel).

dq def (numpy array) - The data quality definitions table.

class jwst.datamodels.FOREModel (init=None, model=None, input_units=None, out-

put_units=None, **kwargs)

A model for a reference file of type “fore”.

on_save (path=None)

This is a hook that is called just before saving the file. It can be used, for example, to update values in the

metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since

it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the

file that we’re about to save to.

populate_meta ()
Subclasses can overwrite this to populate specific meta keywords.

validate ()

Convenience function to be run when files are created. Checks that required reference file keywords are

set.

class jwst.datamodels.FPAModel (init=None, nrsl_model=None, nrs2_model=None, **kwargs)
A model for a NIRSPEC reference file of type “fpa”.

on_save (path=None)

This is a hook that is called just before saving the file. It can be used, for example, to update values in the

metadata that are based on the content of the data.

150

Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

to_fits()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are

set.

class jwst.datamodels.FringeModel (init=None, data=None, dg=None, err=None, dq_def=None,
**kwargs)
A data model for 2D fringe correction images.

Parameters
* init (any)— Any of the initializers supported by DataModel.
* data (numpy array) - The science data.
* dg (numpy array) - The data quality array.
* err (numpy array) - The error array.
* dq_def (numpy array)-— The data quality definitions table.

class jwst.datamodels.GainModel (init=None, data=None, **kwargs)
A data model for 2D gain.

Parameters
* init (any) — Any of the initializers supported by DataModel.

* data (numpy array) - The 2-D gain array

class jwst.datamodels.GLS_RampFitModel (init=None, yint=None, sigyint=None,
pedestal=None, crmag=None, sigcrmag=None,
*rkwargs)

A data model for the optional output of the ramp fitting step for the GLS algorithm.

class jwst.datamodels.NIRCAMGrismModel (init=None, displ=None, dispx=None, dispy=None,
invdispl=None, invdispx=None, invdispy=None, or-
ders=None, **kwargs)
A model for a reference file of type “specwcs” for NIRCAM grisms.

This reference file contains the models for wave, X, and y polynomial solutions that describe dispersion through
the grism

to_fits()
Write a DataModel to a FITS file.

Parameters

e init (file path or file object)—

12.1. Package Index 151


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

class jwst.datamodels.NIRISSGrismModel (init=None, displ=None, dispx=None, dispy=None,
invdispl=None, orders=None, fwcpos_ref=None,
**kwargs)
A model for a reference file of type “specwcs” for NIRISS grisms.

to_fits()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)-—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

class jwst.datamodels.GuiderCalModel (init=None, data=None, dgq=None, err=None,
plan_star_table=None, flight_star_table=None,
pointing_table=None, centroid_table=None,

track_sub_table=None, **kwargs)
A data model for FGS pipeline output files

Parameters
* init (any)— Any of the initializers supported by DataModel.
e data (numpy array) - The science data. 3-D
* dgq (numpy array)— The data quality array. 2-D
* err (numpy array)— The error array. 3-D
* plan_star_table (table)— The planned reference star table
* flight_star_table (table)— The flight reference star table
* pointing_table (table)— The pointing table
* centroid_table (table) - The centroid packet table
* track_sub_table (table)— The track subarray table

class jwst.datamodels.GuiderRawModel (init=None, data=None, dg=None, err=None,
plan_star_table=None, flight_star_table=None,
pointing_table=None, centroid_table=None,

track_sub_table=None, **kwargs)
A data model for FGS pipeline input files

Parameters
* init (any)— Any of the initializers supported by DataModel.
* data (numpy array) - The science data. 4-D
* dgq (numpy array)— The data quality array. 2-D.

152 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* err (numpy array)— The error array. 4-D.

* plan_star_table (table)— The planned reference star table
» flight_star_table (table) - The flight reference star table
* pointing_table (table)— The pointing table

* centroid_table (table) — The centroid packet table

* track_sub_table (table)— The track subarray table

class jwst.datamodels.ImageModel (init=None, data=None, dg=None, err=None, relsens=None,
relsens2d=None, zeroframe=None, area=None, wave-
length=None, var_poisson=None, var_rnoise=None,

**kwargs)
A data model for 2D images.

Parameters
* init (any)— Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* dgq (numpy array)— The data quality array.
* err (numpy array) - The error array.
* relsens (numpy array)— The relative sensitivity table.
* relsens2d (numpy array)— The relative sensitivty 2D array.
* zeroframe (numpy array)— The zero-frame array.
* area (numpy array)— The pixel area array.
* wavelength (numpy array) - The wavelength array.
* var_poisson (numpy array)- The variance due to Poisson noise array.

* var_rnoise (numpy array)— The variance due to read noise array.

class jwst.datamodels.IFUImageModel (init=None, data=None, dq=None,
err=None, relsens2d=None, zeroframe=None,
area=None, pathloss_uniformsource=None,
pathloss_pointsource=None, wave-
length_pointsource=None, wave-

length_uniformsource=None, **kwargs)
A data model for 2D IFU images.

Parameters
* init (any)— Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* dg (numpy array) - The data quality array.
* err (numpy array)— The error array.
* relsens2d (numpy array)- The relative sensitivity 2D array.

class jwst.datamodels.IFUCubeParsModel (init=None, ifucubepars_table=None, ifu-

cubepars_msn_table=None, **kwargs)
A data model for IFU Cube parameters reference tables.

12.1. Package Index 153



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

class jwst.datamodels.NirspecIFUCubeParsModel (init=None, ifucubepars_table=None,
ifucubepars_msn_table=None, ifu-
cubepars_prism_wavetable=None,
ifucubepars_med_wavetable=None,
ifucubepars_high_wavetable=None,

*Ekwargs)
A data model for Nirspec ifucubepars reference files.
class jwst.datamodels.MiriIFUCubeParsModel (init=None, ifucubepars_table=None,
ifucubepars_msn_table=None, ifu-
cubepars_multichannel_wavetable=None,
**kwargs)

A data model for MIRI mrs ifucubepars reference files.

class jwst.datamodels.IFUFOREModel (init=None, model=None, input_units=None, out-

put_units=None, **kwargs)
A model for a NIRSPEC reference file of type “ifufore”.

populate_meta ()
Subclasses can overwrite this to populate specific meta keywords.

class jwst.datamodels.IFUPostModel (init=None, slice_models=None, **kwargs)
A model for a NIRSPEC reference file of type “ifupost”.

Parameters
e init (str (https://docs.python.org/3/library/stdtypes.html#str)) — A file name.

* slice_models (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — A dic-
tionary with slice transforms with the following entries: {“slice_N”: {‘linear’: as-
tropy.modeling.Model,

’xpoly’:  astropy.modeling.Model, ‘xpoly_distortion’:  astropy.modeling.Model,
‘ypoly’: astropy.modeling.Model, ‘ypoly_distortion’: astropy.modeling.Model, }

}

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

to_fits ()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

class jwst.datamodels.IFUSlicerModel (init=None, model=None, data=None, **kwargs)
A model for a NIRSPEC reference file of type “ifuslicer”.

154 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

to_fits ()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

class jwst.datamodels.IPCModel (init=None, data=None, **kwargs)
A data model for IPC kernel checking information.

Parameters
* init (any) - Any of the initializers supported by DataModel.
* data (numpy array) - The deconvolution kernel (a very small image).

class jwst.datamodels.IRS2Model (init=None, irs2_table=None, **kwargs)
A data model for the IRS2 refpix reference file.

Parameters
* init (any)— Any of the initializers supported by DataModel.

e irs2_table (numpy array) - A table with 8 columns and 2916352 (2048 * 712 * 2)
rows. All values are float, but these are interpreted as alternating real and imaginary parts
(real, imag, real, imag, ...) of complex values. There are four columns for ALPHA and
four for BETA.

class jwst.datamodels.LastFrameModel (init=None, data=None, dg=None, err=None,
dq_def=None, **kwargs)
A data model for Last frame correction reference files.

Parameters
* init (any)— Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* dgq (numpy array)— The data quality array.
* err (numpy array)- The error array.
* dgq_def (numpy array)— The data quality definitions table.

class jwst.datamodels.LevellbModel (init=None, data=None, refout=None, zeroframe=None,
group=None, int_times=None, **kwargs)
A data model for raw 4D ramps level-1b products.

Parameters

12.1. Package Index 155


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* init (any)— Any of the initializers supported by DataModel.
e data (numpy array) - The science data

* zeroframe (numpy array)— The zero-frame data

* refout (numpy array)- The MIRI reference output data

* group (table)— The group parameters table

* int_times (table)— The int_times table

class jwst.datamodels.LinearityModel (init=None, coeffs=None, dq=None, dq_def=None,
*rkwargs)
A data model for linearity correction information.

Parameters
* init (any) — Any of the initializers supported by DataModel.
* coeffs (numpy array)— Coefficients defining the nonlinearity function.
* dgq (numpy array) - The data quality array.
* dq _def (numpy array)- The data quality definitions table.

get_primary_array_ name ()
Returns the name “primary” array for this model, which controls the size of other arrays that are implicitly
created. This is intended to be overridden in the subclasses if the primary array’s name is not “data”.

class jwst.datamodels.MaskModel (init=None, dg=None, dq_def=None, **kwargs)
A data model for 2D masks.

Parameters
* init (any) — Any of the initializers supported by DataModel.
* dgq (numpy array)— The data quality array.
* dgq _def (numpy array)- The data quality definitions table.

get_primary_array_ name ()
Returns the name “primary” array for this model, which controls the size of other arrays that are implicitly
created. This is intended to be overridden in the subclasses if the primary array’s name is not “data”.

class jwst.datamodels.MSAModel (init=None, models=None, data=None, **kwargs)
A model for a NIRSPEC reference file of type “msa”.

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

to_fits ()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

156 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

class jwst.datamodels.ModelContainer (init=None, persist=True, **kwargs)
A container for holding DataModels.

This functions like a list for holding DataModel objects. It can be iterated through like a list, DataModels
within the container can be addressed by index, and the datamodels can be grouped into a list of lists for
grouped looping, useful for NIRCam where grouping together all detectors of a given exposure is useful for
some pipeline steps.

Parameters

e init (file path, list of DataModels, or None
(https://docs.python.org/3/library/constants.html#None)) —

— file path: initialize from an association table
— list: a list of DataModels of any type

— None: initializes an empty ModelContainer instance, to which DataModels can be
added via the append () method.

* persist (boolean. If True, do not close model after opening
it)-—
Examples
>>> container = datamodels.ModelContainer ('example_asn. json')

>>> for dm in container:
print (dm.meta.filename)

Say the association was a NIRCam dithered dataset. The models_grouped attribute is a list of lists, the first
index giving the list of exposure groups, with the second giving the individual datamodels representing each
detector in the exposure (2 or 8 in the case of NIRCam).

>>> total_exposure_time = 0.0
>>> for group in container.models_grouped:
total_exposure_time += group[0].meta.exposure.exposure_time

>>> ¢ = datamodels.ModelContainer ()
>>> m = datamodels.open('myfile.fits")
>>> c.append (m)

copy (memo=None)
Returns a deep copy of the models in this model container.

from_asn (filepath, **kwargs)
Load fits files from a JWST association file.

Parameters filepath (st r (https://docs.python.org/3/library/stdtypes.htmlé#str)) — The path
to an association file.

get_recursively (field)
Returns a list of values of the specified field from meta.

group_names
Return list of names for the DataModel groups by exposure.

12.1. Package Index 157


https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

models_grouped
Returns a list of a list of datamodels grouped by exposure.

Data from different detectors of the same exposure will have the same group id, which allows grouping by
exposure. The following metadata is used for grouping:

meta.observation.program_number meta.observation.observation_number meta.observation.visit_number
meta.observation.visit_group meta.observation.sequence_id meta.observation.activity_id
meta.observation.exposure_number

save (path=None, dir_path=None, save_model_func=None, *args, **kwargs)
Write out models in container to FITS or ASDF.

Parameters

e path (str (https://docs.python.org/3/library/stdtypes.html#str) or func or None
(https://docs.python.org/3/library/constants.html#None)) —

— If None, the meta.filename is used for each model.
— If a string, the string is used as a root and an index is appended.

— If a function, the function takes the two arguments: the value of model.meta.filename
and the idx index, returning constructed file name.

* dir_path (str (https://docs.python.org/3/library/stdtypes.html#str)) — Directory to
write out files. Defaults to current working dir. If directory does not exist, it creates it.
Filenames are pulled from meta . filename of each datamodel in the container.

* save_model_func (func or None (https://docs.python.org/3/library/constants.html#None))
— Alternate function to save each model instead of the models save method. Takes one
argument, the model, and keyword argument idx for an index.

Returns output_paths — List of output file paths of where the models were saved.
Return type [str (https://docs.python.org/3/library/stdtypes.html#str)[, ..]]

class jwst.datamodels.MultiExposureModel (init=None, **kwargs)
A data model for multi-slit images derived from numerous exposures. The intent is that all slits in this model
are of the same source, with each slit representing a separate exposure of that source.

This model has a special member exposures that can be used to deal with an entire slit at a time. It behaves
like a list:

>>> multislit_model.exposures.append (image_model)
>>> multislit_model.exposures[0]
<ImageModel>

Also, there is an extra attribute, meta. This will contain the meta attribute from the exposure from which each
slit has been taken.

See the module exp_to_source for the initial creation of these models. This is part of the Level 3 processing
of multi-objection observations.

class jwst.datamodels.MultiProductModel (init=None, **kwargs)
A data model for multi-DrizProduct images.

This model has a special member products that can be used to deal with each DrizProduct at a time. It
behaves like a list:

>>> multiprod_model.products.append (image_model)
>>> multislit_model.products[0]
<DrizProductModel>

158 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

If init is afile name or an DrizProductModel instance, an empty DrizProductModel will be created
and assigned to attribute products[0], and the data, wht, con, and relsens attributes from the input
file or DrizProductModel will be copied to the first element of products.

Parameters init (any)— Any of the initializers supported by DataModel.

class jwst.datamodels.MultiSlitModel (init=None, **kwargs)
A data model for multi-slit images.

This model has a special member s1its that can be used to deal with an entire slit at a time. It behaves like a
list:

>>> multislit_model.slits.append(image_model)
>>> multislit_model.slits[0]

>>> multislit[0]

<SlitModel>

If init is a file name or an ImageModel ora S1itModel  "instance, an empty ~ SlitModel
will be created and assigned to attribute slits[0], and the data, dg, err, var_rnoise,
var_poisson’ “and " relsens attributes from the input file or model will be copied to the first element
of slits.

Parameters init (any)— Any of the initializers supported by DataModel.

class jwst.datamodels.MultiSpecModel (init=None, int_times=None, **kwargs)
A data model for multi-spec images.

This model has a special member spec that can be used to deal with an entire spectrum at a time. It behaves
like a list:

>>> multispec_model.spec.append (spec_model)
>>> multispec_model.spec[0]
<SpecModel>

If init is a SpecModel instance, an empty SpecMode 1 will be created and assigned to attribute spec[0],
and the spec_table attribute from the input SpecModel instance will be copied to the first element of
spec. SpecModel objects can be appended to the spec attribute by using its append method.

Parameters init (any)— Any of the initializers supported by DataMode 1.

Examples
>>> output_model = datamodels.MultiSpecModel ()
>>> spec = datamodels.SpecModel () # for the default data type
>>> for slit in input_model.slits:
>>> slitname = slit.name
>>> slitmodel = ExtractModel ()
>>> slitmodel. fromJSONFile (extref, slitname)
>>> column, wavelength, countrate = slitmodel.extract(slit.data)
>>> otab = np.array(zip(column, wavelength, countrate),
>>> dtype=spec.spec_table.dtype)
>>> spec = datamodels.SpecModel (spec_table=otab)
>>> output_model.spec.append (spec)
class jwst.datamodels.OTEModel (init=None, model=None, input_units=None, out-

put_units=None, **kwargs)
A model for a reference file of type “ote”.

12.1. Package Index 159



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

populate_meta ()
Subclasses can overwrite this to populate specific meta keywords.

class jwst.datamodels.OutlierParsModel (init=None, outlierpars_table=None, **kwargs)
A data model for outlier detection parameters reference tables.

class jwst.datamodels.PathlossModel (init=None, pointsource=None, psvar=None, uni-

form=None, **kwargs)
A data model for pathloss correction information.

Parameters
* init (any)— Any of the initializers supported by DataModel.

* pointsource (numpy array) — Array defining the pathloss parameter for point
sources.

* psvar (numpy array)-— Variance array.
* uniform (numpy array) - Pathloss parameter for uniform illumination

class jwst.datamodels.PersistenceSatModel (init=None, data=None, dg=None,

dq_def=None, **kwargs)
A data model for the persistence saturation value (full well).

Parameters
* init (any) — Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* dgq (numpy array)— The data quality array.
* dgq_def (numpy array)— The data quality definitions table.

class jwst.datamodels.PhotomModel (init=None, phot_table=None, **kwargs)
A base class for photometric reference file models.

class jwst.datamodels.FgsPhotomModel (init=None, phot_table=None, **kwargs)
A data model for FGS photom reference files.

Parameters
* init (any) - Any of the initializers supported by DataModel.

* phot_table (numpy array) — A table-like object containing row selection criteria
made up of instrument mode parameters and photometric conversion factors associated with
those modes.

photmjsr: float32

uncertainty: float32
nelem: int16

wavelength: float32[5000]
relresponse: float32[5000]

class jwst.datamodels.MiriImgPhotomModel (init=None, phot_table=None, **kwargs)
A data model for MIRI imaging photom reference files.

Parameters

* init (any) - Any of the initializers supported by DataModel.

160 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

phot_table (numpy array) — A table-like object containing row selection criteria
made up of instrument mode parameters and photometric conversion factors associated with
those modes.

— filter: str[12]

— subarray: str[15]

— photmjsr: float32

— uncertainty: float32

— nelem: intl6

— wavelength: float32[500]
— relresponse: float32[500]

class jwst.datamodels.MiriMrsPhotomModel (init=None, data=None, err=None, dq=None,

dq_def=None, pixsiz=None, **kwargs)

A data model for MIRI MRS photom reference files.

Parameters

init (any) — Any of the initializers supported by DataModel.

data (numpy array) — An array-like object containing the pixel-by-pixel conversion
values in units of DN / sec / mJy / pixel.

err (numpy array)-— An array-like object containing the uncertainties in the conversion
values, in the same units as the data array.

dg (numpy array) — An array-like object containing bit-encoded data quality flags, in-
dicating problem conditions for values in the data array.

dq def (numpy array)— A table-like object containing the data quality definitions ta-
ble.

pixsiz (numpy array) - An array-like object containing pixel-by-pixel size values, in
units of square arcseconds (arcsec”2).

class jwst.datamodels.NircamPhotomModel (init=None, phot_table=None, **kwargs)
A data model for NIRCam photom reference files.

Parameters

init (any) — Any of the initializers supported by DataModel.

phot_table (numpy array) — A table-like object containing row selection criteria
made up of instrument mode parameters and photometric conversion factors associated with
those modes.

— filter: str[12]

— pupil: str[12]

— order: intl6

— photmjsr: float32

— uncertainty: float32

— nelem: intl6

— wavelength: float32[3000]
— relresponse: float32[3000]

12.1. Package Index

161



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

class jwst.datamodels.NirissPhotomModel (init=None, phot_table=None, **kwargs)

A data model for NIRISS photom reference files.

Parameters

* init (any)— Any of the initializers supported by DataModel.

* phot_table (numpy array) — A table-like object containing row selection criteria
made up of instrument mode parameters and photometric conversion factors associated with
those modes.

filter: str[12]

pupil: str[12]

order: intl6

photmjsr: float32
uncertainty: float32
nelem: int16

wavelength: float32[5000]
relresponse: float32[5000]

class jwst.datamodels.NirspecPhotomModel (init=None, phot_table=None, **kwargs)
A data model for NIRSpec imaging, IFU, and MOS photom reference files.

Parameters

* init (any) — Any of the initializers supported by DataModel.

* phot_table (numpy array) — A table-like object containing row selection criteria
made up of instrument mode parameters and photometric conversion factors associated with
those modes.

filter: str[12]

grating: str[12]
photmjsr: float32
uncertainty: float32
nelem: int16
wavelength: float32[150]
relresponse: float32[150]

reluncertainty: float32[150]

class jwst.datamodels.NirspecFSPhotomModel (init=None, phot_table=None, **kwargs)

A data model for NIRSpec Fixed-Slit (FS) photom reference files.

Parameters

* init (any) - Any of the initializers supported by Dat aModel.

* phot_table (numpy array) — A table-like object containing row selection criteria
made up of instrument mode parameters and photometric conversion factors associated with
those modes.

filter: str[12]
grating: str[12]

162

Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

— slit: str[12]

— photmjsr: float32

— uncertainty: float32

— nelem: intl6

— wavelength: float32[150]
— relresponse: float32[150]
— reluncertainty: float32[150]

class jwst.datamodels.PixelAreaModel (init=None, data=None, **kwargs)
A data model for the pixel area map

class jwst.datamodels.PsfMaskModel (init=None, data=None, **kwargs)
A data model for coronagraphic 2D PSF mask reference files

Parameters
* init (any) — Any of the initializers supported by DataModel.
* data (numpy array) - The 2-D mask array

class jwst.datamodels.QuadModel (init=None, data=None, dg=None, err=None, **kwargs)
A data model for 4D image arrays.

Parameters
* init (any)— Any of the initializers supported by DataModel.
* data (numpy array) - The science data. 4-D.
* dgq (numpy array)— The data quality array. 4-D.
* err (numpy array)— The error array. 4-D

class jwst.datamodels.RampModel (init=None, data=None, pixeldg=None, groupdq=None,
err=None, zeroframe=None, group=None, int_times=None,
**kwargs)
A data model for 4D ramps.

Parameters
* init (any)— Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* pixeldq (numpy array) - 2-D data quality array.
* groupdq (numpy array) - 3-D or 4-D data quality array.
* err (numpy array) - The error array.
* group (table)— The group parameters table
* int_times (table)— The int_times table

class jwst.datamodels.MIRIRampModel (init=None, data=None, pixeldg=None, groupdgq=None,
err=None, refout=None, zeroframe=None, group=None,
*rkwargs)
A data model for MIRI ramps. Includes the refout array.

Parameters

* init (any)— Any of the initializers supported by DataModel.

12.1. Package Index 163



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

e data (numpy array) - The science data.

* pixeldq (numpy array) - 2-D data quality array.

* groupdq (numpy array) - 3-D or 4-D data quality array.

* err (numpy array) - The error array.

* refout (numpy array)— The array of reference output data.
* group (table)— The group parameters table.

class jwst.datamodels.RampFitOutputModel (init=None, slope=None, sigslope=None,
var_poisson=None, var_rnoise=None,
yint=None,  sigyint=None,  pedestal=None,
weights=None, crmag=None, **kwargs)
A data model for the optional output of the ramp fitting step.

In the parameter definitions below, n_int is the number of integrations, max_segq is the maximum number
of segments that were fit, nreads is the number of reads in an integration, and ny and nx are the height and
width of the image.

Parameters

* init (any) — Any of the initializers supported by DataModel.

* slope (numpy array (n_int, max_seg, ny, nx))-

* sigslope (numpy array (n_int, max_seg, ny, nx))-

* var_poisson (numpy array (n_int, max_seg, ny, nx))-
* var_rnoise (numpy array (n_int, max_seg, ny, nx))-
e yint (numpy array (n_int, max_seg, ny, nx))-—

* sigyint (numpy array (n_int, max_seg, ny, nx))-—

* pedestal (numpy array (n_int, max_seg, ny, nx))-—

* weights (numpy array (n_int, max_seg, ny, nx))-—

* crmag (numpy array (n_int, max_seg, ny, nx))-

class jwst.datamodels.ReadnoiseModel (init=None, data=None, **kwargs)
A data model for 2D readnoise.

Parameters
* init (any) — Any of the initializers supported by DataModel.
* data (numpy array)— Read noise for all pixels. 2-D.

class jwst.datamodels.ReferenceFileModel (init=None, **kwargs)
A data model for reference tables

Parameters init (any) — Any of the initializers supported by DataModel.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

class jwst.datamodels.ReferenceImageModel (init=None, data=None, dg=None, err=None,

**kwargs)
A data model for 2D reference images

Parameters

164 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* init (any)— Any of the initializers supported by DataModel.
* data (numpy array) - The science data.

* dgq (numpy array)— The data quality array.

* err (numpy array) - The error array.

class jwst.datamodels.ReferenceCubeModel (init=None, data=None, dq=None, err=None,
**kwargs)
A data model for 3D reference images

Parameters
* init (any) — Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* dg (numpy array) - The data quality array.
* err (numpy array) - The error array.

class jwst.datamodels.ReferenceQuadModel (init=None, data=None, dq=None, err=None,
**kwargs)
A data model for 4D reference images

Parameters
* init (any) — Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* dgq (numpy array)— The data quality array.
* err (numpy array)— The error array.

class jwst.datamodels.RegionsModel (init=None, regions=None, **kwargs)
A model for a reference file of type “regions”.

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

to_fits ()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)-—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

class jwst.datamodels.ResetModel (init=None, data=None, dg=None, err=None, dq_def=None,
**kwargs)
A data model for reset correction reference files.

12.1. Package Index 165


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Parameters
* init (any) — Any of the initializers supported by DataModel.
* data (numpy array) - The science data.
* dgq (numpy array)— The data quality array.
* err (numpy array)— The error array.
* dg_def (numpy array)- The data quality definitions table.

class jwst.datamodels.ResolutionModel (init=None, resolution_table=None, **kwargs)
A data model for Spectral Resolution parameters reference tables.

class jwst.datamodels.MiriResolutionModel (init=None, resolving_power_table=None,
psf_fwhm_alpha_table=None,

psf_fwhm_beta_table=None, **kwargs)
A data model for MIRI Resolution reference files.

Parameters
* init (any) — Any of the initializers supported by ‘~jwst.datamodels.DataModel’

* resolving power_table (table)— A table containing resolving power of the MRS.
THe table consist of 11 columns and 12 rows. Each row corresponds to a band. The columns
give the name of band, central wavelength, and polynomial coefficeints (a,b,c) needed to
obtain the limits and average value of the spectral resolution.

» psf_fwhm_alpha_table (table) — A table with 5 columns. Column 1 gives the
cutoff wavelength where the polynomials describing alpha FWHM change. Columns 2 and
3 give the polynomial cofficients (a,b) describing alpha FWHM for wavelengths shorter than
cuttoff. Columns 4 and 5 give the polynomial coefficients (a,b) describing alpha FWHM for
wavelengths longer than the cutoff.

* psf_fwhm_beta_table (table)— A table with 5 columns. Column 1 gives the cutoff
wavelength where the polynomials describing alpha FWHM change. Columns 2 and 3
give the polynomial cofficients (a,b) describing beta FWHM for wavelengths shorter than
cuttoff. Columns 4 and 5 give the polynomial coefficients (a,b) describing beta FWHM for
wavelengths longer than the cutoff.

class jwst.datamodels.RSCDModel (init=None, rscd_table=None, **kwargs)
A data model for the RSCD reference file.

Parameters
* init (any) — Any of the initializers supported by DataModel.

* rscd_table (numpy array) — A table with seven columns, three string-valued that
identify which row to select, and four float columns containing coefficients.

class jwst.datamodels.SaturationModel (init=None, data=None, dg=None, dq_def=None,

**kwargs)
A data model for saturation checking information.

Parameters
* init (any)— Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* dgq (numpy array)— The data quality array.
* dgq_def (numpy array)— The data quality definitions table.

166 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

class jwst.datamodels.SpecModel (init=None, spec_table=None, **kwargs)
A data model for 1D spectra.

Parameters
* init (any)— Any of the initializers supported by DataModel.

* spec_table (numpy array)-— A table with at least four columns: wavelength, flux, an
error estimate for the flux, and data quality flags.

class jwst.datamodels.SpecwcsModel (init=None, = model=None, input_units=None,  out-
put_units=None, **kwargs)
A model for a reference file of type “specwcs”.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

class jwst.datamodels.StrayLightModel (init=None, data=None, **kwargs)
A data model for 2D straylight mask.

Parameters
* init (any) - Any of the initializers supported by DataModel.
* data (numpy array) - 2-D straylight mask array.

class jwst.datamodels.SuperBiasModel (init=None, data=None, dg=None, err=None,
dq_def=None, **kwargs)
A data model for 2D super-bias images.

class jwst.datamodels.ThroughputModel (init=None, filter_table=None, **kwargs)
A data model for filter throughput.

class jwst.datamodels.TrapDensityModel (init=None, data=None, dg=None, dq_def=None,
**kwargs)
A data model for the trap density of a detector, for persistence.

Parameters
* init (any) — Any of the initializers supported by DataModel.
* data (numpy array) - The science data.
* dgq (numpy array)— The data quality array.
* dqg_def (numpy array) - The data quality definitions table.

class jwst.datamodels.TrapParsModel (init=None, trappars_table=None, **kwargs)
A data model for trap capture and decay parameters.

Parameters
* init (any) — Any of the initializers supported by DataModel.

* trappars_table (numpy array) — A table with three columns for trap-capture pa-
rameters and one column for the trap-decay parameter. Each row of the table is for a different
trap family.

class jwst.datamodels.TrapsFilledModel (init=None, data=None, **kwargs)
A data model for the number of traps filled for a detector, for persistence.

Parameters

* init (any)— Any of the initializers supported by DataModel.

12.1. Package Index 167



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* data (numpy array)- The map of the number of traps filled over the detector, with one
plane for each “trap family.”

class jwst.datamodels.TsoPhotModel (init=None, radii=None, **kwargs)
A model for a reference file of type “tsophot”.

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

to_fits ()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

class jwst.datamodels.WaveCorrModel (init=None, apertures=None, **kwargs)

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are

set.
class jwst.datamodels.WavelengthrangeModel (init=None, wrange_selector=None,
wrange=None, order=None, wunits=None,
**hwargs)
A model for a reference file of type “wavelengthrange”. The model is used by MIRI, NIRSPEC, NIRCAM, and
NIRISS

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

168 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

to_fits()

Write a DataModel to a FITS file.

Parameters

e init (file path or file object)-—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()

Convenience function to be run when files are created. Checks that required reference file keywords are

set.

class jwst.datamodels.WfssBkgModel (init=None, data=None, dgq=None, err=None,

dq_def=None, **kwargs)

A data model for 2D WFSS master background reference files.

Parameters

* init (any) — Any of the initializers supported by DataModel.

* data (numpy array) - The science data. 2-D.

* dq (numpy array)— The data quality array. 2-D.

* err (numpy array) - The error array. 2-D.

* dg_def (numpy array)- The data quality definitions table.

Metadata

Metadata information associated with a data model is accessed through its met a member. For example, to access the

date that an observation was made:

print (model.meta.observation.date)

Metadata values are automatically type-checked against the schema when they are set. Therefore, setting a keyword
which expects a number to a string will raise an exception:

>>> from jwst.datamodels import ImageModel

>>> model = ImageModel ()

>>> model.meta.target.ra = "foo"
Traceback (most recent call last):

File "<stdin>", line 1,

in <module>

File "site-packages/jwst.datamodels/schema.py", line 672, in __setattr___

object.__setattr__ (self,

attr, wval)

File "site-packages/]jwst.datamodels/schema.py", line 490, in __set_
val = self.to_basic_type(val)
File "site-packages/jwst.datamodels/schema.py", line 422, in to_basic_type
raise ValueError (e.message)
ValueError: 'foo' is not of type u'number'

The set of available metadata elements is defined in a YAML Schema that ships with jwst . datamodels.

There is also a utility method for finding elements in the metadata schema. search_schema will search the schema
for the given substring in metadata names as well as their documentation. The search is case-insensitive:

>>> from jwst.datamodels import ImageModel
# Create a model of the desired type

(continues on next page)

12.1. Package Index

169




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

(continued from previous page)

>>> model = ImageModel ()

# Call "search_schema’ on it to find possibly related elements.
>>> model.search_schema ('target'")

target: Information about the target

target.dec: DEC of the target

target.name: Standard astronomical catalog name for the target
target.proposer: Proposer's name for the target

target.ra: RA of the target

target.type: Fixed target, moving target, or generic target

An alternative method to get and set metadata values is to use a dot-separated name as a dictionary lookup. This is
useful for databases, such as CRDS, where the path to the metadata element is most conveniently stored as a string.
The following two lines are equivalent:

print (model['meta.observation.date'])
print (model.meta.observation.date)

Working with lists

Unlike ordinary Python lists, lists in the schema may be restricted to only accept a certain set of values. Items may be
added to lists in two ways: by passing a dictionary containing the desired key/value pairs for the object, or using the
lists special method item to create a metadata object and then assigning that to the list.

For example, suppose the metadata element meta.transformations is a list of transformation objects, each of
which has a type (https://docs.python.org/3/library/functions.html#type) (string) and a coeff (number) member.
We can assign elements to the list in the following equivalent ways:

>>> trans = model.meta.transformations.item()
>>> trans.type = 'SIN'
>>> trans.coeff = 42.0
>>> model.meta.transformations.append (trans)

>>> model.meta.transformations.append ({'type': 'SIN', 'coeff': 42.0})

When accessing the items of the list, the result is a normal metadata object where the attributes are type-checked:

>>> trans = model.meta.transformations([0]
>>> print (trans)
<jwst.datamodels.schema.Transformations object at 0x123a810>
>>> print (trans.type)
SIN
>>> trans.type = 42.0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

File "site-packages/jwst.datamodels/schema.py", line 672, in __ setattr_
object.__setattr__ (self, attr, wval)
File "site-packages/jwst.datamodels/schema.py", line 490, in __ set_

val = self.to_basic_type(val)
File "site-packages/jwst.datamodels/schema.py", line 422, in to_basic_type
raise ValueError (e.message)
ValueError: 42.0 is not of type u'string'

170 Chapter 12. Package Documentation



https://docs.python.org/3/library/functions.html#type

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

JSON Schema

The jwst.datamodels library defines its metadata using Draft 4 of the JSON Schema speci-
fication (http://tools.ietf.org/html/draft-zyp-json-schema-04), but jwst.datamodels uses YAML for the syn-
tax. A good resource for learning about JSON schema is the book Understanding JSON Schema
(http://spacetelescope.github.com/understanding-json-schema). The mapping from Javascript to Python concepts
(such as Javascript “array” == Python “list”) is added where applicable.

In addition to the standard JSON Schema keywords, jwst .datamodels also supports the following additional
keywords.

Arrays

The following keywords have to do with validating n-dimensional arrays:
e ndim: The number of dimensions of the array.
* max_ndim: The maximum number of dimensions of the array.
* datatype: For defining an array, dat at ype should be a string. For defining a table, it should be a list.
e array: datatype should be one of the following strings, representing fixed-length datatypes:

bool8, int8, intl6, int32, int64, uint8, uintl6, uint32, uint64, floatl6, float32, float64, float128, complex64,
complex 128, complex256

Or, for fixed-length strings, an array [ascii, XX] where XX is the maximum length of the string.
(Datatypes whose size depend on the platform are not supported since this would make files less portable).

e table: datatype should be a list of dictionaries. Each element in the list defines a column and has the
following keys:

— datatype: A string to select the type of the column. This is the same as the datatype for an array (as
described above).

— name (optional): An optional name for the column.

— shape (optional): The shape of the data in the column. May be either an integer (for a single-dimensional
shape), or a list of integers.

FITS-specific Schema Attributes

jwst.datamodels also adds some new keys to the schema language in order to handle reading and writing FITS
files. These attributes all have the prefix fits_.

e fits_keyword: Specifies the FITS keyword to store the value in. Must be a string with a maximum length
of 8 characters.

e fits_hdu: Specifies the FITS HDU to store the value in. May be a number (to specify the nth HDU) or a
name (to specify the extension with the given EXTNAME). By default this is set to 0, and therefore refers to the
primary HDU.

Creating a new model

This tutorial describes the steps necessary to define a new model type using jwst .datamodels.

For further reading and details, see the reference materials in Metadata.

12.1. Package Index 171


http://tools.ietf.org/html/draft-zyp-json-schema-04
http://tools.ietf.org/html/draft-zyp-json-schema-04
http://spacetelescope.github.com/understanding-json-schema

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

In this tutorial, we’ll go through the process of creating a new type of model for a file format used for storing the bad
pixel mask for JWST’s MIRI instrument. This file format has a 2D array containing a bit field for each of the pixels,
and a table describing what each of the bits in the array means.

Note: While an attempt is made to present a real-world example here, it may not reflect the actual final format of this
file type, which is still subject to change at the time of this writing.

This example will be built as a third-party Python package, i.e. not part of jwst . datamodels itself. Doing so adds
a few extra wrinkles to the process, and it’s most helpful to show what those wrinkles are. To skip ahead and just see
the example in its entirety, see the examples/custom_model directory within the jwst .datamodels source
tree.

Directory layout

The bare minimum directory layout for a Python package that creates a custom model is as below:

| |-——— __init__.py

| | -—— bad_pixel_mask.py

| | ——— schemas

| | -—— bad_pixel_mask.schema.yaml
| |-—— tests

| |-—— _init__ .py

\ | -—— test_bad_pixel_mask.py
| | -—— data

| |-—— bad_pixel_mask.fits

| -—— setup.py

The main pieces are the new schema in bad_pixel_mask.schema.yaml, the custom model class in
bad_pixel_mask.py, a distutils-based setup.py file to install the package, and some unit tests and associ-
ated data. Normally, you would also have some code that uses the custom model included in the package, but that isn’t
included in this minimal example.

The schema file

Let’s start with the schema file, bad_pixel_mask.schema.yaml. There are a few things it needs to do:

1) It should contain all of the core metadata from the core schema that ships with jwst . datamodels. In JSON
Schema parlance, this schema “extends” the core schema. In object-oriented programming terminology, this
could be said that our schema “inherits from” the core schema. It’s all the same thing.

2) Define the pixel array containing the information about each of the bad pixels. This will be an integer for each
pixel where each bit is ascribed a particular meaning.

3) Define a table describing what each of the bit fields in the pixel array means. This will have three columns: one
for the bit field’s number (a power of 2), one for a name token to identify it, and one with a human-readable
description.

At the top level, every JSON schema must be a mapping (dictionary) of type “object”, and should include the core
schema:

172 Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

allof:
- Sref: "http://jwst.stsci.edu/schemas/core.schema.yaml"
- type: object
properties:

There’s a lot going on in this one item. $ref declares the schema fragment that we want to include (the “base class”
schema). Here, the $ref mapping causes the system to go out and fetch the content at the given URL, and then
replace the mapping with that content.

The Sref URL can be a relative URL, in which case it is relative to the schema file where Sref is used. In our case,
however, it’s an absolute URL. Before you visit that URL to see what’s there, I’ll save you the trouble: there is nothing
at that HTTP address. The host jwst . stsci.edu isrecognized as a “special” address by the system that causes the
schema to be looked up alongside installed Python code. For example, to refer to a (hypothetical) my_instrument
schema that ships with a Python package called ast roboy, use the following URL:

’http://jwst.stsci.edu/schemas/astroboy/my_instrument.schema.yaml

The “package” portion may be omitted to refer to schemas in the jwst . datamodels core, which is how we arrive
at the URL we’re using here:

’http://jwst.stsci.edu/schemas/core.schema.yaml

Note: At some time in the future, we will actually be hosting schemas at a URL similar to the one above. This will
allow schemas to be shared with tools built in languages other than Python. Until we have that hosting established,
this works quite well and does not require any coordination among Python packages that define new models. Keep an
eye out if you use this feature, though — the precise URL used may change.

The next part of the file describes the array data, that is, things that are Numpy arrays on the Python side and images
or tables on the FITS side.

First, we describe the main "dg" array. It’s declared to be 2-dimensional, and each element is an unsigned 32-bit
integer:

properties:
dg:
title: Bad pixel mask
fits_hdu: DQ
default: 0
ndim: 2
datatype: uintlé6

The next entry describes a table that will store the mapping between bit fields and their meanings. This table has four
columns:

e BIT: The value of the bit field (a power of 2)
e VALUE: The value resulting when raising 2 to the BIT power
e NAME: The name used to refer to the bit field

* DESCRIPTION: A longer, human-readable description of the bit field

dg_def:
title: DQ flag definitions
fits_hdu: DQ _DEF

(continues on next page)

12.1. Package Index 173



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

(continued from previous page)

dtype:
— name: BIT
datatype: uint32
- name: VALUE
datatype: uint32
— name: NAME

datatype: [ascii, 40]
— name: DESCRIPTION
datatype: [ascii, 80]

And finally, we add a metadata element that is specific to this format. To avoid recomputing it repeatedly, we’d like
to store a sum of all of the “bad” (i.e. non-zero) pixels stored in the bad pixel mask array. In the model, we want to
refer to this value as model .meta.bad_pixel_count. In the FITS file, lets store this in the primary header in a
keyword named BPCOUNT:

meta:
properties:
bad_pixel_count:
type: integer
title: Total count of all bad pixels
fits_keyword: BPCOUNT

That’s all there is to the schema file, and that’s the hardest part.

The model class

Now, let’s see how this schema is tied in with a new Python class for the model.

First, we need to import the Dat aMode1 class, which is the base class for all models:

from jwst.datamodels import DataModel

Then we create a new Python class that inherits from DataModel, and set its schema_url class member to point
to the schema that we just defined above:

class MiriBadPixelMaskModel (DataModel) :
schema_url = "bad_pixel_mask.schema.yaml"

Here, the schema_url has all of the “magical” URL abilities described above when we used the Sref feature.
However, here we are using a relative URL. In this case, it is relative to the file in which this class is defined, with
a small twist to avoid intermingling Python code and schema files: It looks for the given file in a directory called
schemas inside the directory containing the Python module in which the class is defined.

As an alternative, we could just as easily have said that we want to use the image schema from the core without
defining any extra elements, by setting schema_url to:

schema_url = "http://jwst.stsci.edu/schemas/image.schema.yaml"

Note: At this point you may be wondering why both the schema and the class have to inherit from base classes.
Certainly, it would have been more convenient to have the inheritance on the Python side automatically create the
inheritance on the schema side (or vice versa). The reason we can’t is that the schema files are designed to be
language-agnostic: it is possible to use them from an entirely different implementation of the jwst.datamodels
framework possibly even written in a language other than Python. So the schemas need to “stand alone” from the
Python classes. It’s certainly possible to have the schema inherit from one thing and the Python class inherit from

174 Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

another, and the jwst.datamodels framework won’t and can’t really complain, but doing that is only going to
lead to confusion, so just don’t do it.

Within this class, we’ll define a constructor. All model constructors must take the highly polymorphic init value
as the first argument. This can be a file, another model, or all kinds of other things. See the docstring of jwst.
datamodels.DataModel.__init__ for more information. But we’re going to let the base class handle that
anyway.

The rest of the arguments are up to you, but generally it’s handy to add a couple of keyword arguments so the user
can data arrays when creating a model from scratch. If you don’t need to do that, then technically writing a new
constructor for the model is optional:

def _ _init__ (self, init=None, dg=None, dqg_def=None, =*xkwargs):

mmn

A data model to represent MIRI bad pixel masks.

Parameters
init : any
Any of the initializers supported by ~~jwst.datamodels.DataModel"

dg : numpy array
The data quality array.

dg_def : numpy array
The data quality definitions table.

mon

super (MiriBadPixelMaskModel, self).__init__ (init=init, =*xkwargs)

if dg is not None:
self.dg = dg

if dg_def is not None:
self.dg def = dg_def

The super. . line is just the standard Python way of calling the constructor of the base class. The rest of the
constructor sets the arrays on the object if any were provided.

The other methods of your class may provide additional conveniences on top of the underlying file format. This is
completely optional and if your file format is supported well enough by the underlying schema alone, it may not be
necessary to define any extra methods.

In the case of our example, it would be nice to have a function that, given the name of a bit field, would return a new
array that is True (https://docs.python.org/3/library/constants.html#True) wherever that bit field is true in the main
mask array. Since the order and content of the bit fields are defined in the dg_de £ table, the function should use it in
order to do this work:

def get_mask_for_field(self, name):

mmn

Returns an array that is 'True' everywhere a given bitfield is
True in the mask.

Parameters
name : str
The name of the bit field to retrieve

(continues on next page)

12.1. Package Index 175



https://docs.python.org/3/library/constants.html#True

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

(continued from previous page)

Returns

array : boolean numpy array
‘True® everywhere the requested bitfield is "True . This
is the same shape as the mask array. This array 1is a copy
and changes to it will not affect the underlying model.

mmn

# Find the field value that corresponds to the given name

field_value = None
for value, field _name, title in self.dqg_def:
if field name == name:
field_value = value
break

if field value is None:
raise ValueError ("Field name {0} not found".format (name))

# Create an array that is "True' only for the requested
# bit field
return self.dqg & field_value

One thing to note here: this array is semantically a “copy” of the underlying data. Most Numpy arrays in the model
framework are mutable, and we expect that changing their values will update the model itself, and be saved out by
subsequent saves to disk. Since the array we are returning here has no connection back to the model’s main data array
(mask), it’s helpful to remind the user of that in the docstring, and not present it as a member or property, but as a
getter function.

Note: Since handling bit fields like this is such a commonly useful thing, it’s possible that this functionality will
become a part of jwst .datamodels itself in the future. However, this still stands as a good example of something
someone may want to do in a custom model class.

Lastly, remember the meta.bad_pixel_count element we defined above? We need some way to make sure that
whenever the file is written out that it has the correct value. The model may have been loaded and modified. For this,
DataModel has the on_save method hook, which may be overridden by the subclass to add anything that should
happen just before saving:

def on_save(self, path):
super (MiriBadPixelMaskModel, self) .on_save (path)

self.meta.bad_pixel_count = np.sum(self.mask != 0)

Note that here, like in the constructor, it is important to “chain up” to the base class so that any things that the base
class wants to do right before saving also happen.

The setup.py script

Writing a distutils setup.py script is beyond the scope of this tutorial but it’s worth noting one thing. Since the
schema files are not Python files, they are not automatically picked up by distutils, and must be included in the
package_data option. A complete, yet minimal, setup . py is presented below:

#!/usr/bin/env python

from distutils.core import setup

(continues on next page)

176 Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

(continued from previous page)

setup (
name="'custom_model"',
description='Custom model example for jwst.datamodels',

packages=['custom_model', 'custom_model.tests'],

package_dir={'custom_model': 'lib'},

package_data={'custom_model': ['schemas/*.schema.yaml'],
'custom_model.tests' : ['data/x.fits']}

Using the new model

The new model can now be used. For example, to get the locations of all of the “hot” pixels:

from custom model.bad pixel mask import MiriBadPixelMaskModel

with MiriBadPixelMaskModel ("bad_pixel mask.fits") as dm:
hot_pixels = dm.get_mask_for_field('HOT")

A table-based model

In addition to n-dimensional data arrays, models can also contain tabular data. For example, the photometric correction
reference file used in the JWST calibration pipeline consists of a table with 7 columns. The schema file for this model
looks like this:

title: Photometric flux conversion data model

allof:
- S$ref: "core.schema.yaml"
- type: object
properties:

phot_table:
title: Photometric flux conversion factors table
fits_hdu: PHOTOM

datatype:
- name: filter
datatype: [ascii, 12]

— name: photflam
datatype: float32

— name: photerr
datatype: float32

- name: nelem
datatype: intlé6

- name: wavelength
datatype: float32
shape: [50]

- name: response
datatype: float32
shape: [50]

- name: resperr
datatype: float32

shape: [50]

In this particular table the first 4 columns contain scalar entries of types string, float, and integer. The entries in the
final 3 columns, on the other hand, contain 1-D float arrays (vectors). The “shape” attribute is used to designate the

12.1. Package Index 177




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

dimensions of the arrays.

The corressponding python module containing the data model class is quite simple:

class PhotomModel (model_ base.DataModel) :

mon

A data model for photom reference files.

mmn

schema_url = "photom.schema. json"
def _ init__ (self, init=None, phot_table=None, +*xkwargs):
super (PhotomModel, self).__init__ (init=init, ==*kwargs)

if phot_table is not None:
self.phot_table = phot_table

FITS file structures and contents

Here we describe the structure and content of the most frequently used forms of FITS files for JWST science data
products. Each type of FITS file is the result of serialization of a corresponding data model.

Common Features

All FITS science products have a few common features to their structure and organization:

1. The primary Header-Data Unit (HDU) only contains header information, in the form of keyword records, with
an empty data array, which is indicated by the occurence of NAXIS=0 in the primary header. Meta data that
pertains to the entire product is stored in keywords in the primary header. Meta data related to specific extensions

(see below) should be stored in keywords in the headers of those extensions.

2. All data related to the product are contained in one or more FITS Image or Table extensions. The header of each

extension may contain keywords that pertain uniquely to that extension.

Level-1 and Level-2 exposure-based products, which contain the data from an individual exposure on an individual

detector, use the following file naming scheme:

Jjw{ppppp}{ocoo}{vvv}_{gg}l{s}{aa}_{eeeee}_{detector}_ {suffix}.fits

where:
* ppppp: program ID number
* 000: observation number
* vvv: visit number
e gg: visit group
* s: parallel sequence ID (1=prime, 2-5=parallel)
* aa: activity number (base 36)
* eeeee: exposure number
e detector: detector name (e.g. ‘nrcal’, ‘nrcblong’, ‘mirimage’)
* suffix: product type identifier (e.g. ‘uncal’, ‘rate’, ‘cal’)

An example Level-2a product FITS file name is:

178 Chapter 12

. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

jw93065002001_02101_00001_nrcal_rate.fits

Specific products

This section lists the organization and contents of each type of science product in FITS form.

Raw Level-1b (suffix = uncal)

Exposure raw data (level-1b) products are designated with a file name suffix of “uncal.” These files usually contain
only the raw pixel values from an exposure, with the addition of a table extension that contains some downlinked meta
data pertaining to individual groups. Additional extensions can be included for certain instruments and readout types.
If the zero-frame was requested to be downlinked, an additional image extension is included that contains those data.
MIRI exposures also contain an additional image extension with the values from the reference output. The FITS file
structure is as follows.

HDU | Content EXTNAME HDU Type | Data Type | Dimensions

0 Primary header N/A N/A N/A N/A

1 Pixel values SCI IMAGE uint16 ncols X nrows X ngroups X nints
2 Group meta GROUP BINTABLE | N/A variable

3 Zero frame images | ZEROFRAME | IMAGE uint16 ncols X nrows X nints

4 Reference output REFOUT IMAGE uint16 ncols x 256 x ngroups X nints

The raw pixel values in the SCI extension are stored as a 4-D data array, having dimensions equal to the 2-D size of
the detector readout, with the data from the multiple groups (ngroups) within each integration stored along the 3rd
axis, and the multiple integrations (nints) stored along the 4th axis.

If zero-frame data are downlinked, there will be one zero-frame image for each integration, stored as a 3-D cube (each
cube plane corresponds to an integration).

Level-2 ramp data (suffix = ramp)

As soon as raw level-1b products are loaded into the calibration pipeline the contents of the product is modified to
include additional data extensions, as well as converting the raw SCI (and ZEROFRAME and REFOUT, if present)
array values from integer to floating-point data type. New data arrays that are added include an ERR extension and
two types of data quality flag extensions. There is a 2-D PIXELDQ extension that will contain flags that pertain to all
groups and all integrations, and there is also a 4-D GROUPDQ extension for containing flags that pertain to individual
groups within individual integrations. The FITS file layout is as follows:

HDU | Content EXTNAME | HDU Type | Data Type | Dimensions

0 Primary header | N/A N/A N/A N/A

1 Pixel values SCI IMAGE float32 ncols X nrows X ngroups x nints
2 2-D data quality | PIXELDQ IMAGE uint32 ncols x nrows

3 4-D data quality | GROUPDQ | IMAGE uint8 ncols X nrows X ngroups X nints
4 Error values ERR IMAGE float32 ncols X nrows X ngroups X nints

Any additional extensions that were present in the raw level-1b file (e.g. GROUP, ZEROFRAME, REFOUT) will be

carried along and will also appear in the level-2 ramp product.

12.1. Package Index

179



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Level-2a countrate products (suffix = rate and rateints)

Countrate products are produced by applying ramp-fitting to the integrations within an exposure, in order to compute
count rates from the original accumulating signal. For exposures that contain multiple integrations (nints > 1) this is
done in two ways, which results in two separate products that are produced. First, countrates are computed for each
integration within the exposure, the resuls of which are stored in a rateints product. These products will contain
3-D science data arrays, where each plane of the data cube contains the countrate image for an integration.

The results for each integration are also averaged together to form a single 2-D countrate image for the entire exposure.

These resuls are stored in a rate product.

The FITS file structure for a rateints product is as follows:

HDU | Content EXTNAME | HDU Type | Data Type | Dimensions
0 Primary header | N/A N/A N/A N/A
1 Pixel values SCI IMAGE float32 ncols X nrows x nints
2 Data quality DQ IMAGE uint32 ncols x nrows X nints
3 Error values ERR IMAGE float32 ncols X nrows x nints
The FITS file structure for a rate product is as follows:

HDU | Content EXTNAME | HDU Type | Data Type | Dimensions

0 Primary header | N/A N/A N/A N/A

1 Pixel values SCI IMAGE float32 ncols X nrows

2 Data quality DQ IMAGE uint32 ncols x nrows

3 Error values ERR IMAGE float32 ncols X nrows

Note that the two separate forms of PIXELDQ and GROUPDQ flags from the previous types of products have been

combined into a single DQ extension with the same dimensions as the SCI and ERR components.

Level-2b calibrated products (suffix = cal and calints)

Single exposure calibrated products duplicate the format and content of level-2a products. As with level-2a, there are
two different forms of calibrated products: one containing results for individual integrations (calints) and one for

exposure-wide results (cal).

The FITS file structure for a calints product is as follows:

HDU | Content EXTNAME | HDU Type | Data Type | Dimensions
0 Primary header | N/A N/A N/A N/A
1 Pixel values SCI IMAGE float32 ncols x nrows x nints
2 Data quality DQ IMAGE uint32 ncols X nrows X nints
3 Error values ERR IMAGE float32 ncols x nrows X nints
The FITS file structure for a cal product is as follows:

HDU | Content EXTNAME | HDU Type | Data Type | Dimensions

0 Primary header | N/A N/A N/A N/A

1 Pixel values SCI IMAGE float32 ncols X nrows

2 Data quality DQ IMAGE uint32 ncols X nrows

3 Error values ERR IMAGE float32 ncols X nrows

180

Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

jwst.datamodels Package

Functions

open([init, extensions])

Creates a DataModel from a number of different types

open

jwst.datamodels . open (init=None, extensions=None, **kwargs)
Creates a DataModel from a number of different types

Parameters

e init (shape tuple,

file path, file object,
HDUList,)—numpy array, dict, None

astropy.io.fits.

None: A default data model with no shape

shape tuple: Initialize with empty data of the given shape

file path: Initialize from the given file (FITS , JSON or ASDF)
readable file object: Initialize from the given file object
astropy.io.fits. HDUList: Initialize from the given HDUList

A numpy array: A new model with the data array initialized to what was passed in.

— dict: The object model tree for the data model

* extensions (1ist of AsdfExtension)— A list of extensions to the ASDF to sup-
port when reading and writing ASDF files.

Returns model

Return type DataModel instance

Classes

DataMode1([init, schema, extensions, ...])

Base class of all of the data models.

AmiLgMode 1([init, fit_image, resid_image, ...])

A data model for AMI LG analysis results.

AsnMode 1([init, asn_table])

A data model for association tables.

BarshadowModeI([init, datalx1, varlxl,...])

A data model for Bar Shadow correction information.

CameraMode 1([init, model, input_units, ...])

A model for a reference file of type “camera”.

CollimatorModel([init, model, input_units, ...])

A model for a reference file of type “collimator”.

CombinedSpecMode 1([init, spec_table])

A data model for combined 1D spectra.

ContrastModel([init, contrast_table])

A data model for coronagraphic contrast curve files.

CubeMode 1([init, data, dq, err, zeroframe, .. .])

A data model for 3D image cubes.

DarkMode1([init, data, dq, err, dq_def])

A data model for dark reference files.

DarkMIRIModeI([init, data, dq, err, dq_def])

A data model for dark MIRI reference files.

DisperserModel([init, angle, gwa_tiltx, ...])

A model for a NIRSPEC reference file of type “dis-
perser”.

DistortionModel([init, model, input_units, ...])

A model for a reference file of type “distortion”.

DistortionMRSModel([init, X_model, y_model,

)

A model for a reference file of type “distortion” for the
MIRI MRS.

Continued on next page

12.1. Package Index

181



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Table 64 — continued from previous page

DrizProductModel([init, data, con, wht, ...])

A data model for drizzle-generated products.

DrizParsModeI([init, data])

A data model for drizzle parameters reference tables.

ExtractldImageMode1([init, data])

A data model for the extract_1d reference image array.

FilteroffsetModel([init, filters])

A model for a NIRSPEC reference file of type “dis-
perser”.

FlatModel([init, data, dq, err, dq_def])

A data model for 2D flat-field images.

NRSF1latMode I([init, flat_table])

A base class for NIRSpec flat-field reference file mod-
els.

NirspecFlatModel([init, data, dq, err, ...])

A data model for NIRSpec flat-field reference files.

NirspecQuadFlatMode I([init])

A data model for NIRSpec flat-field files that differ by
quadrant.

FOREMode 1([init, model, input_units, ... ])

A model for a reference file of type “fore”.

FPAMode I1([init, nrs1_model, nrs2_model])

A model for a NIRSPEC reference file of type “fpa”.

FringeModeI([init, data, dq, err, dq_def])

A data model for 2D fringe correction images.

GainMode 1([init, data])

A data model for 2D gain.

GLS_RampFitModeI([init, yint, sigyint, ...])

A data model for the optional output of the ramp fitting
step for the GLS algorithm.

GuiderRawMode1([init, data, dq, err, ...])

A data model for FGS pipeline input files

GuiderCalModeI([init, data, dq, err, ...])

A data model for FGS pipeline output files

IFUCubeMode I1([init, data, dq, err, ...])

A data model for 3D IFU cubes.

IFUCubeParsModel([init, ifucubepars_table, ...])

A data model for IFU Cube parameters reference tables.

NirspecIFUCubeParsModel([init,...])

A data model for Nirspec ifucubepars reference files.

MiriIFUCubeParsModel([init,...])

A data model for MIRI mrs ifucubepars reference files.

IFUFOREMode I([init, model, input_units, ...])

A model for a NIRSPEC reference file of type “ifufore”.

IFUImageModel([init, data, dq, err, ...])

A data model for 2D IFU images.

IFUPostMode 1([init, slice_models])

A model for a NIRSPEC reference file of type “ifupost”.

TFUS1icerMode I([init, model, data])

A model for a NIRSPEC reference file of type “ifus-
licer”.

ImageMode1([init, data, dq, err, relsens, ... ])

A data model for 2D images.

IPCMode I1([init, data])

A data model for IPC kernel checking information.

IRS2Mode1([init, irs2_table])

A data model for the IRS2 refpix reference file.

LastFrameMode1([init, data, dq, err, dq_def])

A data model for Last frame correction reference files.

LevellbModel([init, data, refout, ...])

A data model for raw 4D ramps level-1b products.

LinearityModel([init, coeffs, dq, dq_def])

A data model for linearity correction information.

MaskMode 1([init, dq, dq_def])

A data model for 2D masks.

ModelContainer([init, persist])

A container for holding DataModels.

MSAMode 1([init, models, data])

A model for a NIRSPEC reference file of type “msa”.

MultiExposureMode 1([init])

A data model for multi-slit images derived from numer-
ous exposures.

MultiExtractldImageModel([init])

A data model for extract_1d reference images.

MultiProductMode1([init])

A data model for multi-DrizProduct images.

MultiS1itModel([init])

A data model for multi-slit images.

MultiSpecMode 1([init, int_times])

A data model for multi-spec images.

OTEMode 1([init, model, input_units, . ..])

A model for a reference file of type “ote”.

NIRCAMGrismMode1([init, displ, dispx, ...])

A model for a reference file of type “specwcs” for NIR-
CAM grisms.

NIRISSGrismMode I1([init, displ, dispx, ...])

A model for a reference file of type “specwcs” for
NIRISS grisms.

OutlierParsModel([init, outlierpars_table])

A data model for outlier detection parameters reference
tables.

PathlossMode I([init, pointsource, psvar, ... ])

A data model for pathloss correction information.

Continued on next page

182

Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Table 64 — continued from previous page

PersistenceSatMode I([init, data, dq, dq_def]) A data model for the persistence saturation value (full
well).

PixelAreaMode1([init, data]) A data model for the pixel area map

NirspecSlitAreaModeI([init, area_table]) A data model for the NIRSpec fixed-slit pixel area ref-
erence file

NirspecMosAreaMode 1([init, area_table]) A data model for the NIRSpec MOS pixel area reference
file

NirspecIfuAreaModel([init, area_table]) A data model for the NIRSpec IFU pixel area reference
file

PhotomMode 1([init, phot_table]) A base class for photometric reference file models.

FgsPhotomMode I1([init, phot_table]) A data model for FGS photom reference files.

MiriImgPhotomMode 1([init, phot_table]) A data model for MIRI imaging photom reference files.

MiriMrsPhotomMode I([init, data, err, dq, ...]) A data model for MIRI MRS photom reference files.

NircamPhotomMode 1([init, phot_table]) A data model for NIRCam photom reference files.

NirissPhotomMode I([init, phot_table]) A data model for NIRISS photom reference files.

NirspecPhotomMode 1([init, phot_table]) A data model for NIRSpec imaging, IFU, and MOS
photom reference files.

NirspecFSPhotomMode 1([init, phot_table]) A data model for NIRSpec Fixed-Slit (FS) photom ref-
erence files.

PsfMaskMode 1([init, data]) A data model for coronagraphic 2D PSF mask reference
files

QuadMode 1([init, data, dq, err]) A data model for 4D image arrays.

RampMode 1([init, data, pixeldq, groupdq, ...]) A data model for 4D ramps.

MIRIRampMode 1([init, data, pixeldq, ...]) A data model for MIRI ramps.

RampF1itOutputModel([init, slope, sigslope, ...]) A data model for the optional output of the ramp fitting
step.

ReadnoiseMode1([init, data]) A data model for 2D readnoise.

ReferenceFileModel([init]) A data model for reference tables

ReferenceCubeModel([init, data, dq, err]) A data model for 3D reference images

ReferenceImageModel([init, data, dq, err]) A data model for 2D reference images

ReferenceQuadModeI([init, data, dq, err]) A data model for 4D reference images

RegionsMode1([init, regions]) A model for a reference file of type “regions”.

ResetMode 1([init, data, dq, err, dq_def]) A data model for reset correction reference files.

ResolutionMode1([init, resolution_table]) A data model for Spectral Resolution parameters refer-
ence tables.

MiriResolutionModel([init,...]) A data model for MIRI Resolution reference files.

RSCDMode 1([init, rscd_table]) A data model for the RSCD reference file.

SaturationModel([init, data, dq, dq_def]) A data model for saturation checking information.

S1itDataModel([init, data, dq, err, ...]) A data model for 2D images.

S11itModel([init, data, dq, err, wavelength, ...]) A data model for 2D images.

SpecMode 1([init, spec_table]) A data model for 1D spectra.

SourceModelContainer([init]) A container to make MultiExposureModel look like
ModelContainer

StrayLightMode I([init, data]) A data model for 2D straylight mask.

SuperBiasModel([init, data, dq, err, dq_def]) A data model for 2D super-bias images.

SpecwcsMode I([init, model, input_units, . ..]) A model for a reference file of type “specwcs”.

ThroughputMode 1([init, filter_table]) A data model for filter throughput.

TrapDensityModel([init, data, dq, dq_def]) A data model for the trap density of a detector, for per-
sistence.

TrapParsMode I([init, trappars_table]) A data model for trap capture and decay parameters.

Continued on next page

12.1. Package Index 183



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Table 64 — continued from previous page

TrapsFilledMode I([init, data]) A data model for the number of traps filled for a detec-
tor, for persistence.
TsoPhotMode 1([init, radii]) A model for a reference file of type “tsophot”.
WavelengthrangeModel([init,...]) A model for a reference file of type “wavelengthrange”.
WaveCorrMode1([init, apertures])
WfssBkgMode1([init, data, dq, err, dq_def]) A data model for 2D WFSS master background refer-
ence files.
DataModel
class jwst.datamodels.DataModel (init=None, schema=None, extensions=None,

Bases: jwst

pass_invalid_values=False, strict_validation=False)

.datamodels.properties.ObjectNode, jwst.datamodels.ndmodel.NDModel

Base class of all of the data models.

Parameters

init (shape tuple, file path, file object,
astropy.io.fits.HDUList, numpy array, None
(https://docs.python.org/3/library/constants.html#None)) —

— None: A default data model with no shape

shape tuple: Initialize with empty data of the given shape
file path: Initialize from the given file (FITS or ASDF)

readable file object: Initialize from the given file object

astropy.io.fits.HDUList: Initialize from the given HDUList.

A numpy array: Used to initialize the data array

dict: The object model tree for the data model

schema (tree of objects representing a JSON schema, or string
naming a schema, optional)— The schema to use to understand the elements on
the model. If not provided, the schema associated with this class will be used.

extensions (classes extending the standard set of extensions,
optional.)—If an extension is defined, the prefix used should be ‘url’.

pass_invalid_values (If true, values that do not validate the
schema) — will be added to the metadata. If false, they will be set to None

strict_validation (if true, an schema validation errors will
generate) — an excption. If false, they will generate a warning.

available built-in formats are (The)-—

( ====) — Format Read Write Auto-identify

Yes Yes Yes (datamodel) —

184

Chapter 12. Package Documentation


https://docs.python.org/3/library/constants.html#None

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Summary

history

Get the history as a list of entries

schema

schema_url

shape

Methods Summary

add_schema_ent ry(position, new_schema)

Extend the model’s schema by placing the given
new_schema at the given dot-separated position in
the tree.

clone(target, source[, deepcopy, memo])

close()

copy([memo])

Returns a deep copy of this model.

extend_schema(new_schema)

Extend the model’s schema using the given schema,
by combining it in an “allOf” array.

find_fits_keyword(keyword[, return_result])

Utility function to find a reference to a FITS keyword
in this model’s schema.

from_asdf(init[, schemal])

Load a data model from a ASDF file.

from_f1its(init[, schemal)

Load a model from a FITS file.

get_envar(name, value)

get_rileext()

get_fits_wcs([hdu_name, hdu_ver, key])

Geta astropy.wcs.WCS object created from the
FITS WCS information in the model.

get_item _as_json_value(key)

Equivalent to __getitem__, except returns the value
as a JSON basic type, rather than an arbitrary Python

type.

get_primary_array_name()

Returns the name “primary” array for this model,
which controls the size of other arrays that are im-
plicitly created.

get_resolver(asdf_file)

get_ section(name)

info() Return datatype and dimension for each array or ta-
ble

items() Iterates over all of the schema items in a flat way.

iteritems() Iterates over all of the schema items in a flat way.

iterkeys() Iterates over all of the schema keys in a flat way.

itervalues() Iterates over all of the schema values in a flat way.

keys() Iterates over all of the schema keys in a flat way.

my_attribute(attr)

Test if attribute is part of the NDData interface

on_save([path])

This is a hook that is called just before saving the
file.

read([init, schema, extensions, ...])

param init

save(pathl, dir_path])

Save to either a FITS or ASDF file, depending on the
path.

search_schema(substring)

Utility function to search the metadata schema for a
particular phrase.

Continued on next page

12.1. Package Index

185



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Table 66 — continued from previous page

set_rfits_wcs(wcs[, hdu_name]) Sets the FITS WCS information on the model using
the given astropy.wcs.WCS object.

to_asdf(init, *args, **kwargs) Write a DataModel to an ASDF file.

to_ fits(init, *args, **kwargs) Write a DataModel to a FITS file.

to_flat_dict([include_arrays]) Returns a dictionary of all of the schema items as a
flat dictionary.

update(d[, only]) Updates this model with the metadata elements from
another model.

validate() Re-validate the model instance againsst its schema

values() Iterates over all of the schema values in a flat way.

write(path, *args, **kwargs)

Attributes Documentation

history

Get the history as a list of entries
schema
schema_url = 'core.schema.yaml'
shape

Methods Documentation

add_schema_entry (position, new_schema)
Extend the model’s schema by placing the given new_schema at the given dot-separated position in the
tree.

Parameters
* position (str (https://docs.python.org/3/library/stdtypes.html#str)) —
* new_schema (schema tree)-—
static clone (farget, source, deepcopy=~False, memo=None)
close ()

copy (memo=None)
Returns a deep copy of this model.

extend_ schema (new_schema)
Extend the model’s schema using the given schema, by combining it in an “allOf” array.

Parameters new_schema (schema tree)-—

find_ fits_keyword (keyword, return_result=True)
Utility function to find a reference to a FITS keyword in this model’s schema. This is intended for interac-
tive use, and not for use within library code.

Parameters keyword (str (https://docs.python.org/3/library/stdtypes.html#str)) — A FITS
keyword name

Returns locations —If return_result is True (https://docs.python.org/3/library/constants.html#True),
a list of the locations in the schema where this FITS keyword is used. Each element is a
dot-separated path.

Return type list of str

186

Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Example

>>> model.find_fits_keyword ('DATE-OBS"')
['observation.date']

classmethod from_asdf (init, schema=None)
Load a data model from a ASDF file.

Parameters
e init (file path, file object, asdf.AsdfFile object)-—
— file path: Initialize from the given file
— readable file object: Initialize from the given file object
— asdf.AsdfFile: Initialize from the given AsdfFile.
* schema — Sameasfor __init___
Returns model
Return type DataModel instance

classmethod from_ fits (init, schema=None)
Load a model from a FITS file.

Parameters
e init (file path, file object, astropy.io.fits.HDUList)-—
— file path: Initialize from the given file
— readable file object: Initialize from the given file object
— astropy.io.fits. HDUList: Initialize from the given HDUList.
e schema —Sameasfor ___init_
Returns model
Return type DataModel instance
get_envar (name, value)
get_fileext ()

get_fits_wes (hdu_name="SCI’, hdu_ver=1, key="")
Geta astropy.wcs.WCS object created from the FITS WCS information in the model.

Note that modifying the returned WCS object will not modify the data in this model. To update the model,
use set_fits_wcs.

Parameters

* hdu_name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) —
The name of the HDU to get the WCS from. This must use named HDU’s, not numerical
order HDUs. To get the primary HDU, pass 'PRIMARY '.

* key (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of a particular WCS transform to use. This may be either ' ' or 'A'-'Z"' and
corresponds to the "a" part of the CTYPEia cards. key may only be provided if header
is also provided.

12.1. Package Index 187


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* hdu_ver (int (https://docs.python.org/3/library/functions.html#int), optional) —
The extension version. Used when there is more than one extension with the same name.
The default value, 1, is the first.

Returns wcs — The type will depend on what libraries are installed on this system.
Return type astropy.wcs.WCS or pywcs . WCS object

get_item_as_json_value (key)
Equivalent to __getitem__, except returns the value as a JSON basic type, rather than an arbitrary Python
type.

get_primary_array_ name ()
Returns the name “primary” array for this model, which controls the size of other arrays that are implicitly
created. This is intended to be overridden in the subclasses if the primary array’s name is not “data”.

get_resolver (asdf file)
get_section (name)

info ()
Return datatype and dimension for each array or table

items ()
Iterates over all of the schema items in a flat way.

Each element is a pair (key, value). Each key is a dot-separated name. For example, the schema
element meta.observation.date will end up in the result as:

("meta.observation.date": "2012-04-22T03:22:05.432")

iteritems ()
Iterates over all of the schema items in a flat way.

Each element is a pair (key, value). Each key is a dot-separated name. For example, the schema
element meta.observation.date will end up in the result as:

("meta.observation.date": "2012-04-22T03:22:05.432")

iterkeys ()
Iterates over all of the schema keys in a flat way.

Each result of the iterator is a key. Each key is a dot-separated name. For example, the schema element
meta.observation.date will end up in the result as the string "meta.observation.date".

itervalues ()
Iterates over all of the schema values in a flat way.

keys ()
Iterates over all of the schema keys in a flat way.

Each result of the iterator is a key. Each key is a dot-separated name. For example, the schema element
meta.observation.date will end up in the result as the string "meta.observation.date".

my_attribute (atfr)
Test if attribute is part of the NDData interface

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

188 Chapter 12. Package Documentation


https://docs.python.org/3/library/functions.html#int

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Parameters path (st r (https://docs.python.org/3/library/stdtypes.htmli#str)) — The path to the
file that we’re about to save to.

read (init=None, schema=None, extensions=None, pass_invalid_values=False,
strict_validation=Fualse)
Parameters
e init (shape tuple, file path, file object,

astropy.io.fits.HDUList, numpy array, None
(https://docs.python.org/3/library/constants.html#None)) —

None: A default data model with no shape

shape tuple: Initialize with empty data of the given shape
file path: Initialize from the given file (FITS or ASDF)

readable file object: Initialize from the given file object

astropy.io.fits.HDUList: Initialize from the given HDUList.

A numpy array: Used to initialize the data array
— dict: The object model tree for the data model

* schema (tree of objects representing a JSON schema, or
string naming a schema, optional) — The schema to use to understand
the elements on the model. If not provided, the schema associated with this class will be

used.

* extensions (classes extending the standard set of
extensions, optional.) — If an extension is defined, the prefix used should
be ‘url’.

* pass_invalid_values (If true, values that do not validate

the schema)— will be added to the metadata. If false, they will be set to None

e strict_validation (if true, an schema validation errors will
generate) — an excption. If false, they will generate a warning.

* available built-in formats are (The)-

. (===== ) — Format Read Write Auto-identify

* Yes Yes Yes (datamodel)—

save (path, dir_path=None, *args, **kwargs)
Save to either a FITS or ASDF file, depending on the path.

Parameters

* path(string or func)-File path to save to. If function, it takes one argument with
is model.meta.filename and returns the full path string.

* dir path (string)- Directory to save to. If not None, this will override any directory
information in the path

Returns output_path — The file path the model was saved in.

Return type str (https://docs.python.org/3/library/stdtypes.html#str)

12.1. Package Index 189


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

search_schema (substring)
Utility function to search the metadata schema for a particular phrase.

This is intended for interactive use, and not for use within library code.
The searching is case insensitive.

Parameters substring (str (https://docs.python.org/3/library/stdtypes.html#str)) — The
substring to search for.

Returns locations
Return type list of tuples

set_fits wes (wces, hdu_name=’"SCI’)
Sets the FITS WCS information on the model using the given astropy .wcs .WCS object.

Note that the “key” of the WCS is stored in the WCS object itself, so it can not be set as a parameter to
this method.

Parameters

* wes (astropy.wes.WCS or pywcs . WCS object) — The object containing FITS WCS
information

* hdu_name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) —
The name of the HDU to set the WCS from. This must use named HDU'’s, not numer-
ical order HDUs. To set the primary HDU, pass 'PRIMARY '.

to_asdf (init, *args, **kwargs)
Write a DataModel to an ASDF file.

Parameters
e init (file path or file object)—

* kwargs (args,) — Any additional arguments are passed along to asdf .AsdfFile.
write_to.

to_fits (init, *args, **kwargs)
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

e kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

to_flat_dict (include_arrays=True)
Returns a dictionary of all of the schema items as a flat dictionary.

Each dictionary key is a dot-separated name. For example, the schema element meta.observation.
date will end up in the dictionary as:

{ "meta.observation.date": "2012-04-22T03:22:05.432" }

update (d, only=")
Updates this model with the metadata elements from another model.

Parameters

* d(model or dictionary-like object)— The model to copy the metadata ele-
ments from. Can also be a dictionary or dictionary of dictionaries or lists.

190 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* only (only update the named hdu from extra_fits, e.g.) -
only="PRIMARY’. Can either be a list of hdu names or a single string. If left
blank, update all the hdus.

validate ()
Re-validate the model instance againsst its schema

values ()
Iterates over all of the schema values in a flat way.

write (path, *args, **kwargs)
AmiLgModel

class jwst.datamodels.AmiLgModel (init=None, fit_image=None, resid_image=None, clo-
sure_amp_table=None, closure_phase_table=None,
fringe_amp_table=None, fringe_phase_table=None,

pupil_phase_table=None, solns_table=None, **kwargs)

Bases: jwst.datamodels.DataModel

A data model for AMI LG analysis results.

Attributes Summary

schema_url

Methods Summary

get_primary_array_name() Returns the name “primary” array for this model,
which controls the size of other arrays that are im-
plicitly created.

Attributes Documentation

schema_url = 'amilg.schema.yaml'

Methods Documentation

get_primary_array_ name ()
Returns the name “primary” array for this model, which controls the size of other arrays that are implicitly
created. This is intended to be overridden in the subclasses if the primary array’s name is not “data”.

AsnModel
class jwst.datamodels.AsnModel (init=None, asn_table=None, **kwargs)

Bases: jwst.datamodels.DataModel

A data model for association tables.

12.1. Package Index 191



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Summary

schema_url
supported_formats

Methods Summary

parse_table()

Attributes Documentation

schema_url = 'asn.schema.yaml'

supported_formats = ['yaml', 'Json',K 'fits']

Methods Documentation

parse_table ()

BarshadowModel

class jwst.datamodels.BarshadowModel (init=None, datalxI=None, varlxI=None,

datalx3=None, varlx3=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for Bar Shadow correction information.
Parameters
* init (any)— Any of the initializers supported by DataModel.

* data (numpy array)— Array defining the bar shadow correction as a function of Y and
wavelength.

* variance (numpy array) - Variance array.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'barshadow.schema.yaml'
CameraModel
class jwst.datamodels.CameraModel (init=None, model=None, input_units=None, out-

put_units=None, **kwargs)
Bases: jwst.datamodels.wcs_ref_models._SimpleModel

A model for a reference file of type “camera”.

192 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Summary

reftype
schema_url

Methods Summary

populate_metal) Subclasses can overwrite this to populate specific
meta keywords.

Attributes Documentation

reftype = 'camera'

schema_url = 'camera.schema.yaml'
Methods Documentation

populate_meta ()
Subclasses can overwrite this to populate specific meta keywords.

CollimatorModel

class jwst.datamodels.CollimatorModel (init=None, model=None, input_units=None, out-

put_units=None, **kwargs)
Bases: jwst.datamodels.wcs_ref_models._SimpleModel

A model for a reference file of type “collimator”.

Attributes Summary

reftype
schema_url

Methods Summary

populate_metal) Subclasses can overwrite this to populate specific
meta keywords.

Attributes Documentation

reftype = 'collimator'

schema _url = 'collimator.schema.yaml'

12.1. Package Index 193



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Methods Documentation

populate_meta ()
Subclasses can overwrite this to populate specific meta keywords.

CombinedSpecModel
class jwst.datamodels.CombinedSpecModel (init=None, spec_table=None, **kwargs)

Bases: jwst.datamodels.DataModel

A data model for combined 1D spectra.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'combinedspec.schema.yaml'

ContrastModel

class jwst.datamodels.ContrastModel (init=None, contrast_table=None, **kwargs)
Bases: jwst.datamodels.DataModel

A data model for coronagraphic contrast curve files.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'contrast.schema.yaml'

CubeModel

class jwst.datamodels.CubeModel (init=None, data=None, dg=None, err=None, ze-
roframe=None, relsens=None, int_times=None, area=None,
wavelength=None, var_poisson=None, var_rnoise=None,

**kwargs)
Bases: jwst.datamodels.DataModel

A data model for 3D image cubes.
Parameters
* init (any) — Any of the initializers supported by DataModel.

* data (numpy array) - The science data. 3-D.

194 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* dgq (numpy array)— The data quality array. 3-D.

* err (numpy array)— The error array. 3-D

* zeroframe (numpy array)-— The zero-frame array. 3-D

* relsens (numpy array) - The relative sensitivity array.

e int_times (table)— The int_times table

* area (numpy array) - The pixel area array. 2-D

* wavelength (numpy array) - The wavelength array. 2-D

* var_poisson (numpy array) - The variance due to Poisson noise array. 3-D

* var_rnoise (numpy array) - The variance due to read noise array. 3-D

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'cube.schema.yaml'

DarkModel

class jwst.datamodels.DarkModel (init=None, data=None, dq=None, err=None, dq_def=None,
**kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for dark reference files.
Parameters
* init (any)— Any of the initializers supported by DataModel.
* data (numpy array) - The science data.
* dgq (numpy array)— The data quality array.
* err (numpy array) - The error array.

* dq_def (numpy array) - The data quality definitions table.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'dark.schema.yaml'

12.1. Package Index 195



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

DarkMIRIModel

class jwst.datamodels.DarkMIRIModel (init=None, data=None, dg=None, err=None,
dq_def=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for dark MIRI reference files.
Parameters
* init (any) — Any of the initializers supported by DataModel.
* data (numpy array) - The science data (integration dependent)
* dg (numpy array) - The data quality array. (integration dependent)
* err (numpy array (integration dependent))— The error array.

* dq_def (numpy array)-— The data quality definitions table.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'darkMIRI.schema.yaml'

DisperserModel

class jwst.datamodels.DisperserModel (init=None, angle=None, gwa_tiltx=None,
gwa_tilty=None, kcoef=None, lcoef=None,
tcoef=None, pref=None, tref=None, theta_x=None,
theta_y=None, theta_z=None, groovedensity=None,

**kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A model for a NIRSPEC reference file of type “disperser”.

Attributes Summary

reftype
schema_url

Methods Summary

on_save([path]) This is a hook that is called just before saving the
file.

populate_meta()

to_fits() Write a DataModel to a FITS file.

validate() Convenience function to be run when files are cre-
ated.

196 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Documentation

reftype = 'disperser'

schema_url = 'disperser.schema.yaml'

Methods Documentation

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

populate_meta ()

to_fits ()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()

Convenience function to be run when files are created. Checks that required reference file keywords are
set.

DistortionModel

class jwst.datamodels.DistortionModel (init=None, model=None, input_units=None, out-

put_units=None, **kwargs)
Bases: jwst.datamodels.wcs_ref_models._SimpleModel

A model for a reference file of type “distortion”.

Attributes Summary

reftype

schema_url

Methods Summary

validate() Convenience function to be run when files are cre-
ated.

12.1. Package Index 197


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Documentation

reftype = 'distortion'

schema_url = 'distortion.schema.yaml'

Methods Documentation

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

DistortionMRSModel

class jwst.datamodels.DistortionMRSModel (init=None, x_model=None, y_model=None,
alpha_model=None, beta_model=None,
bzero=None, bdel=None, input_units=None,

output_units=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A model for a reference file of type “distortion” for the MIRT MRS.

Attributes Summary

reftype
schema_url

Methods Summary

on_save([path]) This is a hook that is called just before saving the
file.

populate_metal)

to_fits() Write a DataModel to a FITS file.

validate() Convenience function to be run when files are cre-
ated.

Attributes Documentation

reftype = 'distortion'

schema_url = 'distortion_mrs.schema.yaml'

Methods Documentation

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

198 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Parameters path (st r (https://docs.python.org/3/library/stdtypes.htmli#str)) — The path to the
file that we’re about to save to.

populate_meta ()

to_fits()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

e kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

DrizProductModel

class jwst.datamodels.DrizProductModel (init=None, data=None, con=None, wht=None,

hdrtab=None, relsens=None, **kwargs)
Bases: jwst.datamodels.DataModel

A data model for drizzle-generated products.

Attributes Summary

hdrtab
schema_url

Attributes Documentation

hdrtab

schema_url = 'drizproduct.schema.yaml'

DrizParsModel

class jwst.datamodels.DrizParsModel (init=None, data=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for drizzle parameters reference tables.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'drizpars.schema.yaml'

12.1. Package Index 199


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Extract1idimageModel

class jwst.datamodels.ExtractldImageModel (init=None, data=None, **kwargs)
Bases: jwst.datamodels.DataModel

A data model for the extract_1d reference image array.
Parameters
* init (any)— Any of the initializers supported by DataModel.

* data (numpy array)— An array of values that define the extraction regions.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'extractldimage.schema.yaml'

FilteroffsetModel
class jwst.datamodels.FilteroffsetModel (init=None, filters=None, **kwargs)

Bases: jwst.datamodels.ReferenceFileModel

A model for a NIRSPEC reference file of type “disperser”.

Attributes Summary

reftype
schema_url

Methods Summary

on_save([path]) This is a hook that is called just before saving the
file.

populate_meta()

validate() Convenience function to be run when files are cre-
ated.

Attributes Documentation

reftype = 'filteroffset'

schema_url = 'filteroffset.schema.yaml'

200 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Methods Documentation

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

populate_meta ()

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

FlatModel

class jwst.datamodels.FlatModel (init=None, data=None, dg=None, err=None, dq_def=None,

**kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for 2D flat-field images.
Parameters
* init (any)— Any of the initializers supported by DataModel.
* data (numpy array) - The science data. 2-D.
* dg (numpy array) - The data quality array. 2-D.
* err (numpy array) - The error array. 2-D.

* dq_def (numpy array)-— The data quality definitions table.

Attributes Summary

schema_url

Attributes Documentation
schema_url = 'flat.schema.yaml'
NRSFlatModel

class jwst.datamodels.NRSFlatModel (init=None, flat_table=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A base class for NIRSpec flat-field reference file models.

Attributes Summary

12.1. Package Index 201


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

schema_url

Attributes Documentation

schema_url = 'nirspec.flat.schema.yaml’

NirspecFlatModel

class jwst.datamodels.NirspecFlatModel (init=None, data=None, dgq=None, err=None,
wavelength=None, flat_table=None, dq_def=None,

*kkwargs)
Bases: jwst.datamodels.NRSFlatModel

A data model for NIRSpec flat-field reference files.
Parameters
* init (any)— Any of the initializers supported by DataModel.
* data (numpy array) - The science data. 2-D or 3-D.
* dgq (numpy array)— The data quality array. 2-D or 3-D.
* err (numpy array)- The error array. 2-D or 3-D.

* wavelength (numpy array)— The wavelength for each plane of the data array. This
will only be needed if data is 3-D.

» flat_table (numpy array) - A table of wavelengths and flat-field values, to specify
the component of the flat field that can vary over a relatively short distance (can be pixel-to-
pixel).

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'nirspec_flat.schema.yaml'

NirspecQuadFlatModel

class jwst.datamodels.NirspecQuadFlatModel (init=None, **kwargs)
Bases: jwst.datamodels.NRSFlatModel

A data model for NIRSpec flat-field files that differ by quadrant.
Parameters
* init (any) — Any of the initializers supported by DataModel.
* data (numpy array) - The science data. 2-D or 3-D.
* dq (numpy array)— The data quality array. 2-D or 3-D.

* err (numpy array) - The error array. 2-D or 3-D.

202 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* wavelength (numpy array)— The wavelength for each plane of the data array. This
will only be needed if data is 3-D.

 flat_table (numpy array)— A table of wavelengths and flat-field values, to specify
the component of the flat field that can vary over a relatively short distance (can be pixel-to-
pixel).

* dq_def (numpy array)-— The data quality definitions table.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'nirspec_quad flat.schema.yaml'
FOREModel
class jwst.datamodels.FOREModel (init=None, model=None, input_units=None, out-

put_units=None, **kwargs)
Bases: jwst.datamodels.wcs_ref_models._SimpleModel

A model for a reference file of type “fore”.

Attributes Summary

reftype
schema_url

Methods Summary

on_save([path]) This is a hook that is called just before saving the
file.

populate_metal) Subclasses can overwrite this to populate specific
meta keywords.

validate() Convenience function to be run when files are cre-
ated.

Attributes Documentation

reftype = 'fore'

schema_url = 'fore.schema.yaml'
Methods Documentation

on_save (path=None)

This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

12.1. Package Index 203



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

populate_meta ()
Subclasses can overwrite this to populate specific meta keywords.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

FPAModel
class jwst.datamodels.FPAModel (init=None, nrsl_model=None, nrs2_model=None, **kwargs)

Bases: jwst.datamodels.ReferenceFileModel

A model for a NIRSPEC reference file of type “fpa”.

Attributes Summary

reftype
schema_url

Methods Summary

on_save([path]) This is a hook that is called just before saving the
file.

populate_metal)

to_fits() Write a DataModel to a FITS file.

validate() Convenience function to be run when files are cre-
ated.

Attributes Documentation

reftype = 'fpa'

schema_url = 'fpa.schema.yaml'

Methods Documentation

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

populate_meta ()

204 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

to_fits()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)-—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

FringeModel

class jwst.datamodels.FringeModel (init=None, data=None, dg=None, err=None, dq_def=None,
**kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for 2D fringe correction images.
Parameters
* init (any) — Any of the initializers supported by DataModel.
* data (numpy array) - The science data.
* dq (numpy array)— The data quality array.
* err (numpy array)— The error array.

* dg_def (numpy array)- The data quality definitions table.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'fringe.schema.yaml'

GainModel

class jwst.datamodels.GainModel (init=None, data=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for 2D gain.
Parameters
* init (any)— Any of the initializers supported by DataModel.

* data (numpy array)— The 2-D gain array

12.1. Package Index 205



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'gain.schema.yaml'

GLS_RampFitModel

class jwst.datamodels.GLS_RampFitModel (init=None, yint=None, sigyint=None,
pedestal=None, crmag=None, sigcrmag=None,
**kwargs)

Bases: jwst.datamodels.DataModel

A data model for the optional output of the ramp fitting step for the GLS algorithm.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'gls_rampfit.schema.yaml'

GuiderRawModel

class jwst.datamodels.GuiderRawModel (init=None, data=None, dgq=None, err=None,
plan_star_table=None, flight_star_table=None,
pointing_table=None, centroid_table=None,

track_sub_table=None, **kwargs)
Bases: jwst.datamodels.DataModel

A data model for FGS pipeline input files
Parameters

* init (any) — Any of the initializers supported by DataModel.
* data (numpy array) - The science data. 4-D
* dgq (numpy array)— The data quality array. 2-D.
* err (numpy array) - The error array. 4-D.
* plan_star_table (table) - The planned reference star table
* flight_star_table (table) - The flight reference star table
* pointing_table (table)— The pointing table
* centroid_table (table) - The centroid packet table
* track_sub_table (table) - The track subarray table

206 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'guider_raw.schema.yaml'

GuiderCalModel

class jwst.datamodels.GuiderCalModel (init=None, data=None, dgq=None, err=None,
plan_star_table=None, flight_star_table=None,
pointing_table=None, centroid_table=None,

track_sub_table=None, **kwargs)
Bases: jwst.datamodels.DataModel

A data model for FGS pipeline output files
Parameters

* init (any)— Any of the initializers supported by DataModel.
e data (numpy array) - The science data. 3-D
* dgq (numpy array)- The data quality array. 2-D
* err (numpy array) - The error array. 3-D
* plan_star_table (table)— The planned reference star table
» flight_star_table (table) - The flight reference star table
* pointing_table (table) - The pointing table
* centroid_table (table)— The centroid packet table

* track_sub_table (table)— The track subarray table

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'guider_cal.schema.yaml'

IFUCubeModel

class jwst.datamodels.IFUCubeModel (init=None, data=None, dgq=None, err=None,
weightmap=None, wavetable=None, hdrtab=None,
*rkwargs)
Bases: jwst.datamodels.DataModel

A data model for 3D IFU cubes.

Parameters

12.1. Package Index 207



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* init (any)— Any of the initializers supported by DataModel.

e data (numpy array) - The science data. 3-D.

* dgq (numpy array)— The data quality array. 3-D.

* err (numpy array) - The error array. 3-D

* weightmap (numpy array)— The weight map array. 3-D

* wavetable (1-D table) - Optional table of wavelengths of IFUCube slices

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'ifucube.schema.yaml'
IFUCubeParsModel
class jwst.datamodels.IFUCubeParsModel (init=None, ifucubepars_table=None, ifu-

cubepars_msn_table=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for IFU Cube parameters reference tables.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'ifucubepars.schema.yaml'

NirspeclFUCubeParsModel

class jwst.datamodels.NirspecIFUCubeParsModel (init=None, ifucubepars_table=None,
ifucubepars_msn_table=None, ifu-
cubepars_prism_wavetable=None,
ifucubepars_med_wavetable=None,
ifucubepars_high_wavetable=None,
*rkwargs)
Bases: jwst.datamodels.IFUCubeParsModel

A data model for Nirspec ifucubepars reference files.

Attributes Summary

208 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

schema_url

Attributes Documentation

schema_url = 'nirspec_ifucubepars.schema.yaml'

MirilFUCubeParsModel

class jwst.datamodels.MiriIFUCubeParsModel (init=None, ifucubepars_table=None,
ifucubepars_msn_table=None, ifu-
cubepars_multichannel_wavetable=None,

**kwargs)
Bases: jwst.datamodels.IFUCubeParsModel

A data model for MIRI mrs ifucubepars reference files.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'miri_ifucubepars.schema.yaml'

IFUFOREModel

class jwst.datamodels.IFUFOREModel (init=None, model=None, input_units=None, out-

put_units=None, **kwargs)
Bases: jwst.datamodels.wcs_ref_models._SimpleModel

A model for a NIRSPEC reference file of type “ifufore”.

Attributes Summary

reftype
schema_url

Methods Summary

populate_meta() Subclasses can overwrite this to populate specific
meta keywords.

Attributes Documentation

reftype = 'ifufore'

schema_url = 'ifufore.schema.yaml'

12.1. Package Index 209



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Methods Documentation

populate_meta ()
Subclasses can overwrite this to populate specific meta keywords.

IFUImageModel

class jwst.datamodels.IFUImageModel (init=None, data=None, dgq=None,
err=None, relsens2d=None, zeroframe=None,
area=None, pathloss_uniformsource=None,
pathloss_pointsource=None, wave-
length_pointsource=None, wave-

length_uniformsource=None, **kwargs)
Bases: jwst.datamodels.DataModel

A data model for 2D IFU images.
Parameters
* init (any)— Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* dq (numpy array) - The data quality array.
* err (numpy array)— The error array.

* relsens2d (numpy array)- The relative sensitivity 2D array.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'ifuimage.schema.yaml'

IFUPostModel

class jwst.datamodels.IFUPostModel (init=None, slice_models=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A model for a NIRSPEC reference file of type “ifupost”.
Parameters
e init (str (https://docs.python.org/3/library/stdtypes.html#str)) — A file name.

* slice_models (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — A dic-
tionary with slice transforms with the following entries: {“slice_N”: {‘linear’: as-
tropy.modeling.Model,

’xpoly’:  astropy.modeling.Model, ‘xpoly_distortion’:  astropy.modeling.Model,
‘ypoly’: astropy.modeling.Model, ‘ypoly_distortion’: astropy.modeling.Model, }

210 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Summary

reftype
schema_url

Methods Summary

on_save([path]) This is a hook that is called just before saving the
file.

populate_metal)

to_fits() Write a DataModel to a FITS file.

validate() Convenience function to be run when files are cre-
ated.

Attributes Documentation

reftype = 'ifupost'

schema _url = 'ifupost.schema.yaml'

Methods Documentation

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

populate_meta ()

to_fits ()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

IFUSIlicerModel

class jwst.datamodels.IFUSlicerModel (init=None, model=None, data=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A model for a NIRSPEC reference file of type “ifuslicer”.

12.1. Package Index 211


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Summary

reftype

schema_url

Methods Summary

on_save([path]) This is a hook that is called just before saving the
file.

populate_metal)

to_fits() Write a DataModel to a FITS file.

validate() Convenience function to be run when files are cre-
ated.

Attributes Documentation

reftype = 'ifuslicer'

schema_url = 'ifuslicer.schema.yaml'

Methods Documentation

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

populate_meta ()

to_fits ()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

ImageModel

class jwst.datamodels.ImageModel (init=None, data=None, dg=None, err=None, relsens=None,
relsens2d=None, zeroframe=None, area=None, wave-
length=None, var_poisson=None, var_rnoise=None,

**kwargs)
Bases: jwst.datamodels.DataModel

212 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

A data model for 2D images.
Parameters

* init (any)— Any of the initializers supported by Dat aModel.
e data (numpy array) - The science data.
* dq (numpy array) - The data quality array.
* err (numpy array)— The error array.
* relsens (numpy array)— The relative sensitivity table.
* relsens2d (numpy array)-— The relative sensitivty 2D array.
* zeroframe (numpy array)— The zero-frame array.
* area (numpy array) - The pixel area array.
* wavelength (numpy array)-— The wavelength array.
* var_poisson (numpy array)— The variance due to Poisson noise array.

* var_rnoise (numpy array) - The variance due to read noise array.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'image.schema.yaml'

IPCModel

class jwst.datamodels.IPCModel (init=None, data=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for IPC kernel checking information.
Parameters
* init (any)— Any of the initializers supported by DataModel.

* data (numpy array) - The deconvolution kernel (a very small image).

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'ipc.schema.yaml'

12.1. Package Index 213



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

IRS2Model

class jwst.datamodels.IRS2Model (init=None, irs2_table=None, **kwargs)
Bases: jwst.datamodels.DataModel

A data model for the IRS2 refpix reference file.
Parameters
* init (any)— Any of the initializers supported by DataModel.

e irs2_ table (numpy array) - A table with 8 columns and 2916352 (2048 * 712 * 2)
rows. All values are float, but these are interpreted as alternating real and imaginary parts
(real, imag, real, imag, ...) of complex values. There are four columns for ALPHA and
four for BETA.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'irs2.schema.yaml'

LastFrameModel

class jwst.datamodels.LastFrameModel (init=None, data=None, dg=None, err=None,

dq_def=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for Last frame correction reference files.
Parameters
* init (any) — Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* dg (numpy array)— The data quality array.
* err (numpy array)— The error array.

* dg_def (numpy array)- The data quality definitions table.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'lastframe.schema.yaml'

214 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

LevelibModel

class jwst.datamodels.LevellbModel (init=None, data=None, refout=None, zeroframe=None,
group=None, int_times=None, **kwargs)
Bases: jwst.datamodels.DataModel

A data model for raw 4D ramps level-1b products.
Parameters
* init (any) — Any of the initializers supported by DataModel.
* data (numpy array) - The science data
* zeroframe (numpy array) - The zero-frame data
* refout (numpy array)-— The MIRI reference output data
* group (table)— The group parameters table

e int_times (table) - The int_times table

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'levellb.schema.yaml'

LinearityModel

class jwst.datamodels.LinearityModel (init=None, coeffs=None, dq=None, dq_def=None,
**kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for linearity correction information.
Parameters
* init (any)— Any of the initializers supported by DataModel.
* coeffs (numpy array)- Coefficients defining the nonlinearity function.
* dgq (numpy array)— The data quality array.
* dq_def (numpy array) - The data quality definitions table.

Attributes Summary

schema_url

Methods Summary

12.1. Package Index 215



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

get_primary_array._name() Returns the name “primary” array for this model,
which controls the size of other arrays that are im-
plicitly created.

Attributes Documentation

schema_url = 'linearity.schema.yaml'

Methods Documentation

get_primary array name ()
Returns the name “primary” array for this model, which controls the size of other arrays that are implicitly
created. This is intended to be overridden in the subclasses if the primary array’s name is not “data”.

MaskModel

class jwst.datamodels.MaskModel (init=None, dg=None, dq_def=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for 2D masks.
Parameters
* init (any)— Any of the initializers supported by DataModel.
* dq (numpy array) - The data quality array.
* dg_def (numpy array)- The data quality definitions table.

Attributes Summary

schema_url

Methods Summary

get_primary_array._name() Returns the name “primary” array for this model,
which controls the size of other arrays that are im-
plicitly created.

Attributes Documentation

schema_url = 'mask.schema.yaml'

Methods Documentation

get_primary array name ()
Returns the name “primary” array for this model, which controls the size of other arrays that are implicitly
created. This is intended to be overridden in the subclasses if the primary array’s name is not “data”.

216 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

ModelContainer

class jwst.datamodels.ModelContainer (init=None, persist=True, **kwargs)

Bases: jwst.datamodels.DataModel
A container for holding DataModels.

This functions like a list for holding DataModel objects. It can be iterated through like a list, DataModels
within the container can be addressed by index, and the datamodels can be grouped into a list of lists for
grouped looping, useful for NIRCam where grouping together all detectors of a given exposure is useful for
some pipeline steps.

Parameters

e init (file path, list of DataModels, or None
(https://docs.python.org/3/library/constants.html#None)) —

— file path: initialize from an association table
— list: a list of DataModels of any type

— None: initializes an empty ModelContainer instance, to which DataModels can be
added via the append () method.

* persist (boolean. If True, do not close model after opening
it)-—

Examples

>>> container = datamodels.ModelContainer ('example_asn. json')
>>> for dm in container:
print (dm.meta.filename)

Say the association was a NIRCam dithered dataset. The mode1s_ grouped attribute is a list of lists, the first
index giving the list of exposure groups, with the second giving the individual datamodels representing each
detector in the exposure (2 or 8 in the case of NIRCam).

>>> total_exposure_time = 0.0
>>> for group in container.models_grouped:
total_exposure_time += group|[0].meta.exposure.exposure_time

>>> ¢ = datamodels.ModelContainer ()
>>> m = datamodels.open('myfile.fits")
>>> c.append (m)

Attributes Summary

group_names Return list of names for the DataModel groups by
exposure.

models_grouped Returns a list of a list of datamodels grouped by ex-
posure.

schema_url

12.1. Package Index 217


https://docs.python.org/3/library/constants.html#None

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Methods Summary

append(model)

copy([memo]) Returns a deep copy of the models in this model con-
tainer.

extend(models)

from_asn(filepath, **kwargs) Load fits files from a JWST association file.

get_recursively(field) Returns a list of values of the specified field from
meta.

insert(index, model)

pop([index])

save([path, dir_path, save_model_func]) Write out models in container to FITS or ASDF.

Attributes Documentation
group_names
Return list of names for the DataModel groups by exposure.

models_grouped
Returns a list of a list of datamodels grouped by exposure.

Data from different detectors of the same exposure will have the same group id, which allows grouping by
exposure. The following metadata is used for grouping:

meta.observation.program_number meta.observation.observation_number meta.observation.visit_number
meta.observation.visit_group meta.observation.sequence_id meta.observation.activity_id
meta.observation.exposure_number

schema_url = 'container.schema.yaml'

Methods Documentation

append (model)

copy (memo=None)
Returns a deep copy of the models in this model container.

extend (models)

from_asn (filepath, **kwargs)
Load fits files from a JWST association file.

Parameters filepath (st r (https://docs.python.org/3/library/stdtypes.htmlé#str)) — The path
to an association file.

get_recursively (field)
Returns a list of values of the specified field from meta.

insert (index, model)
pop (index=-1)

save (path=None, dir_path=None, save_model_func=None, *args, **kwargs)
Write out models in container to FITS or ASDF.

Parameters

* path (str (https://docs.python.org/3/library/stdtypes.html#str) or func or None
(https://docs.python.org/3/library/constants.html#None)) —

218

Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

— If None, the meta.filename is used for each model.
— If a string, the string is used as a root and an index is appended.

— If a function, the function takes the two arguments: the value of model.meta.filename
and the idx index, returning constructed file name.

* dir_path (str (https://docs.python.org/3/library/stdtypes.html#str)) — Directory to
write out files. Defaults to current working dir. If directory does not exist, it creates it.
Filenames are pulled from meta. filename of each datamodel in the container.

* save_model_ func(func or None (https://docs.python.org/3/library/constants.html#None))
— Alternate function to save each model instead of the models save method. Takes one
argument, the model, and keyword argument idx for an index.

Returns output_paths — List of output file paths of where the models were saved.

Return type [str (https://docs.python.org/3/library/stdtypes.html#str)[, ..]]

MSAModel
class jwst.datamodels.MSAModel (init=None, models=None, data=None, **kwargs)

Bases: jwst.datamodels.ReferenceFileModel

A model for a NIRSPEC reference file of type “msa”.

Attributes Summary

reftype
schema_url

Methods Summary

on_save([path]) This is a hook that is called just before saving the
file.

populate_metal)

to_fits() Write a DataModel to a FITS file.

validate() Convenience function to be run when files are cre-
ated.

Attributes Documentation

reftype = 'msa'’

schema_url = 'msa.schema.yaml'

Methods Documentation

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

12.1. Package Index 219


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Parameters path (st r (https://docs.python.org/3/library/stdtypes.htmli#str)) — The path to the
file that we’re about to save to.

populate_meta ()

to_fits()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

e kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

MultiExposureModel

class jwst.datamodels.MultiExposureModel (init=None, **kwargs)
Bases: jwst.datamodels.DataModel

A data model for multi-slit images derived from numerous exposures. The intent is that all slits in this model
are of the same source, with each slit representing a separate exposure of that source.

This model has a special member exposures that can be used to deal with an entire slit at a time. It behaves
like a list:

>>> multislit_model.exposures.append (image_model)
>>> multislit_model.exposures[0]
<ImageModel>

Also, there is an extra attribute, meta. This will contain the meta attribute from the exposure from which each
slit has been taken.

See the module exp_to_source for the initial creation of these models. This is part of the Level 3 processing
of multi-objection observations.

Attributes Summary

core_schema_url
schema_url

Attributes Documentation

core_schema_url = 'core.schema.yaml'

schema_url = 'multiexposure.schema.yaml’

MultiExtractidimageModel

class jwst.datamodels.MultiExtractldImageModel (init=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

220 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

A data model for extract_1d reference images.

This model has a special member images that can be used to deal with each image separately. It behaves like
alist:

>>> multiextrld_img_model.images.append (ref_image_model)
>>> multiextrld_img_model.images[0]
<ExtractldImageModelModel>

If init is a file name or an ExtractldImageModel instance, an empty ExtractldImageModel
will be created and assigned to attribute images[0], and the data attribute from the input array or
ExtractldImageModel will be copied to the first element of images.

Parameters init (any)— Any of the initializers supported by DataMode 1.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'multiextractld.schema.yaml'

MultiProductModel

class jwst.datamodels.MultiProductModel (init=None, **kwargs)
Bases: jwst.datamodels.DataModel

A data model for multi-DrizProduct images.

This model has a special member products that can be used to deal with each DrizProduct at a time. It
behaves like a list:

>>> multiprod_model.products.append (image_model)
>>> multislit_model.products|[0]
<DrizProductModel>

If init is afile name or an DrizProductModel instance, an empty DrizProductModel will be created
and assigned to attribute products [0], and the data, wht, con, and relsens attributes from the input
file or DrizProductModel will be copied to the first element of products.

Parameters init (any)— Any of the initializers supported by DatalModel.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'multiproduct.schema.yaml'

12.1. Package Index 221



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

MultiSlitModel

class jwst.datamodels.MultiSlitModel (init=None, **kwargs)

Bases: jwst.datamodels.DataModel
A data model for multi-slit images.

This model has a special member s1its that can be used to deal with an entire slit at a time. It behaves like a
list:

>>> multislit_model.slits.append(image_model)
>>> multislit_model.slits[0]

>>> multislit[0]

<SlitModel>

If init is a file name or an ImageModel ora S1itModel  "instance, an empty ~ SlitModel
will be created and assigned to attribute slits[0], and the data, dg, err, var_rnoise,
var_poisson’ “and ' relsens attributes from the input file or model will be copied to the first element
of slits.

Parameters init (any)— Any of the initializers supported by DataModel.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'multislit.schema.yaml'

MultiSpecModel

class jwst.datamodels.MultiSpecModel (init=None, int_times=None, **kwargs)

Bases: jwst.datamodels.DataModel
A data model for multi-spec images.

This model has a special member spec that can be used to deal with an entire spectrum at a time. It behaves
like a list:

>>> multispec_model.spec.append (spec_model)
>>> multispec_model.spec[0]
<SpecModel>

If init is a SpecModel instance, an empty SpecMode 1 will be created and assigned to attribute spec[0],
and the spec_table attribute from the input SpecModel instance will be copied to the first element of
spec. SpecMode 1 objects can be appended to the spec attribute by using its append method.

Parameters init (any)— Any of the initializers supported by DataModel.

Examples

222

Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

>>> output_model = datamodels.MultiSpecModel ()

>>> spec = datamodels.SpecModel () # for the default data type
>>> for slit in input_model.slits:

>>> slitname = slit.name

>>> slitmodel = ExtractModel ()

>>> slitmodel. fromJSONFile (extref, slitname)

>>> column, wavelength, countrate = slitmodel.extract(slit.data)
>>> otab = np.array(zip(column, wavelength, countrate),

>>> dtype=spec.spec_table.dtype)

>>> spec = datamodels.SpecModel (spec_table=otab)

>>> output_model . spec.append (spec)

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'multispec.schema.yaml'
OTEModel
class jwst.datamodels.OTEModel (init=None, model=None, input_units=None, out-

put_units=None, **kwargs)
Bases: jwst.datamodels.wcs_ref_models._SimpleModel

A model for a reference file of type “ote”.

Attributes Summary

reftype
schema_url

Methods Summary

populate_metal) Subclasses can overwrite this to populate specific
meta keywords.

Attributes Documentation

reftype = 'ote'

schema_url = 'ote.schema.yaml'
Methods Documentation

populate_meta ()
Subclasses can overwrite this to populate specific meta keywords.

12.1. Package Index 223



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

NIRCAMGrismModel

class jwst.datamodels.NIRCAMGrismModel (init=None, displ=None, dispx=None, dispy=None,
invdispl=None, invdispx=None, invdispy=None, or-
ders=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A model for a reference file of type “specwcs” for NIRCAM grisms.

This reference file contains the models for wave, x, and y polynomial solutions that describe dispersion through
the grism

Attributes Summary

reftype
schema_url

Methods Summary

populate_metal()

to fits() Write a DataModel to a FITS file.
validate() Convenience function to be run when files are cre-
ated.

Attributes Documentation

reftype = 'specwcs'

schema_url = 'specwcs_nircam grism.schema.yaml'

Methods Documentation

populate_meta ()

to_fits ()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)-—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

224 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

NIRISSGrismModel

class jwst.datamodels.NIRISSGrismModel (init=None, displ=None, dispx=None, dispy=None,
invdispl=None, orders=None, fwcpos_ref=None,

**kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A model for a reference file of type “specwcs” for NIRISS grisms.

Attributes Summary

reftype
schema_url

Methods Summary

populate_metal)

to_fits() Write a DataModel to a FITS file.
validate() Convenience function to be run when files are cre-
ated.

Attributes Documentation

reftype = 'specwcs'

schema_url = 'specwcs_niriss_grism.schema.yaml'

Methods Documentation

populate_meta ()

to_fits()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

e kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

OutlierParsModel

class jwst.datamodels.OutlierParsModel (init=None, outlierpars_table=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for outlier detection parameters reference tables.

12.1. Package Index 225



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'outlierpars.schema.yaml'

PathlossModel

class jwst.datamodels.PathlossModel (init=None, pointsource=None, psvar=None, uni-

form=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for pathloss correction information.
Parameters
* init (any)— Any of the initializers supported by DataModel.

* pointsource (numpy array) — Array defining the pathloss parameter for point
sources.

* psvar (numpy array)-— Variance array.

* uniform (numpy array) - Pathloss parameter for uniform illumination

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'pathloss.schema.yaml'

PersistenceSatModel

class jwst.datamodels.PersistenceSatModel (init=None, data=None, dg=None,

dq_def=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for the persistence saturation value (full well).
Parameters
* init (any) — Any of the initializers supported by DataModel.
* data (numpy array) - The science data.
* dgq (numpy array)— The data quality array.
* dq_def (numpy array)-— The data quality definitions table.

226 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'persat.schema.yaml'

PixelAreaModel

class jwst.datamodels.PixelAreaModel (init=None, data=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for the pixel area map

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'pixelarea.schema.yaml'

NirspecSlitAreaModel

class jwst.datamodels.NirspecSlitAreaModel (init=None, area_table=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel
A data model for the NIRSpec fixed-slit pixel area reference file

Parameters
* init (any)— Any of the initializers supported by DataModel.

* area_table (numpy array) — A table-like object containing row selection criteria
made up of the slit id and the pixel area values associated with the slits.

— slit_id: str[15]

— pixarea: float32

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'nirspec_area_slit.schema.yaml'

12.1. Package Index 227



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

NirspecMosAreaModel

class jwst.datamodels.NirspecMosAreaModel (init=None, area_table=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for the NIRSpec MOS pixel area reference file
Parameters
* init (any)— Any of the initializers supported by DataModel.

* area_table (numpy array) — A table-like object containing row selection criteria
made up of MOS shutter parameters and the pixel area values associated with the shutters.

quadrant: int16

shutter_x: int16

shutter_y: intl6

pixarea: float32

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'nirspec_area_mos.schema.yaml'

NirspeclfuAreaModel

class jwst.datamodels.NirspecIfuAreaModel (init=None, area_table=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for the NIRSpec IFU pixel area reference file
Parameters
* init (any)— Any of the initializers supported by DataModel.

* area_table (numpy array) — A table-like object containing row selection criteria
made up of IFU slice id and the pixel area values associated with the slices.

— slice_id: int16

— pixarea: float32

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'nirspec_area_ifu.schema.yaml'

228 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

PhotomModel
class jwst.datamodels.PhotomModel (init=None, phot_table=None, **kwargs)

Bases: jwst.datamodels.ReferenceFileModel

A base class for photometric reference file models.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'photom.schema.yaml'

FgsPhotomModel

class jwst.datamodels.FgsPhotomModel (init=None, phot_table=None, **kwargs)
Bases: jwst.datamodels.PhotomModel

A data model for FGS photom reference files.
Parameters
* init (any) — Any of the initializers supported by DataModel.

* phot_table (numpy array) — A table-like object containing row selection criteria
made up of instrument mode parameters and photometric conversion factors associated with
those modes.

photmjsr: float32

uncertainty: float32
nelem: int16

wavelength: float32[5000]
relresponse: float32[5000]

Attributes Summary

schema_url

Attributes Documentation
schema_url = 'fgs_photom.schema.yaml'
MirilmgPhotomModel

class jwst.datamodels.MiriImgPhotomModel (init=None, phot_table=None, **kwargs)
Bases: jwst.datamodels.PhotomModel

12.1. Package Index 229



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

A data model for MIRI imaging photom reference files.

Parameters

init (any) — Any of the initializers supported by DataModel.

phot_table (numpy array) — A table-like object containing row selection criteria
made up of instrument mode parameters and photometric conversion factors associated with
those modes.

filter: str[12]

subarray: str[15]
photmjsr: float32
uncertainty: float32
nelem: int16
wavelength: float32[500]
relresponse: float32[500]

Attributes Summary

schema_url

Attributes Documentation

schema_url

= 'mirimg_photom.schema.yaml'

MiriMrsPhotomModel

class jwst.datamodels.MiriMrsPhotomModel (init=None, data=None, err=None, dq=None,

Bases: jwst.datamodels.PhotomModel
A data model for MIRI MRS photom reference files.

Parameters

dq_def=None, pixsiz=None, **kwargs)

* init (any)— Any of the initializers supported by DataModel.

data (numpy array) — An array-like object containing the pixel-by-pixel conversion

values in units of DN / sec / mJy / pixel.

err (numpy array)— An array-like object containing the uncertainties in the conversion
values, in the same units as the data array.

dq (numpy array) — An array-like object containing bit-encoded data quality flags, in-
dicating problem conditions for values in the data array.

dg def (numpy array) - A table-like object containing the data quality definitions ta-
ble.

pixsiz (numpy array)— An array-like object containing pixel-by-pixel size values, in

units of square arcseconds (arcsec”2).

230

Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'mirmrs_photom.schema.yaml'

NircamPhotomModel

class jwst.datamodels.NircamPhotomModel (init=None, phot_table=None, **kwargs)
Bases: jwst.datamodels.PhotomModel

A data model for NIRCam photom reference files.
Parameters
* init (any) — Any of the initializers supported by DataModel.

* phot_table (numpy array) — A table-like object containing row selection criteria
made up of instrument mode parameters and photometric conversion factors associated with
those modes.

— filter: str[12]

— pupil: str[12]

— order: intl6

— photmjsr: float32

— uncertainty: float32

— nelem: intl6

— wavelength: float32[3000]
— relresponse: float32[3000]

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'nircam_photom.schema.yaml'

NirissPhotomModel

class jwst.datamodels.NirissPhotomModel (init=None, phot_table=None, **kwargs)
Bases: jwst.datamodels.PhotomModel

A data model for NIRISS photom reference files.

Parameters

12.1. Package Index 231



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

init (any) — Any of the initializers supported by DataModel.

phot_table (numpy array) — A table-like object containing row selection criteria
made up of instrument mode parameters and photometric conversion factors associated with
those modes.

filter: str[12]

pupil: str[12]

order: int16

photmyjsr: float32
uncertainty: float32
nelem: int16

wavelength: float32[5000]
relresponse: float32[5000]

Attributes Summary

schema_url

Attributes Documentation

schema_url

NirspecPhotomModel

'niriss_photom.schema.yaml'

class jwst.datamodels.NirspecPhotomModel (init=None, phot_table=None, **kwargs)

Bases: jwst.datamodels.PhotomModel

A data model for NIRSpec imaging, IFU, and MOS photom reference files.

Parameters

init (any) — Any of the initializers supported by DataModel.

phot_table (numpy array) — A table-like object containing row selection criteria
made up of instrument mode parameters and photometric conversion factors associated with
those modes.

filter: str[12]

grating: str[12]

photmyjsr: float32
uncertainty: float32

nelem: int16

wavelength: float32[150]
relresponse: float32[150]
reluncertainty: float32[150]

232

Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'nirspec_photom.schema.yaml'

NirspecFSPhotomModel

class jwst.datamodels.NirspecFSPhotomModel (init=None, phot_table=None, **kwargs)
Bases: jwst.datamodels.PhotomModel

A data model for NIRSpec Fixed-Slit (FS) photom reference files.
Parameters
* init (any) — Any of the initializers supported by DataModel.

* phot_table (numpy array) — A table-like object containing row selection criteria
made up of instrument mode parameters and photometric conversion factors associated with
those modes.

— filter: str[12]

— grating: str[12]

— slit: str[12]

— photmjsr: float32

— uncertainty: float32

— nelem: intl6

— wavelength: float32[150]
— relresponse: float32[150]

— reluncertainty: float32[150]

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'nirspecfs_photom.schema.yaml'

PsfMaskModel

class jwst.datamodels.PsfMaskModel (init=None, data=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for coronagraphic 2D PSF mask reference files

Parameters

12.1. Package Index 233



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* init (any)— Any of the initializers supported by DataModel.

* data (numpy array)— The 2-D mask array

Attributes Summary

schema_url

Attributes Documentation

schema _url = 'psfmask.schema.yaml'

QuadModel

class jwst.datamodels.QuadModel (init=None, data=None, dg=None, err=None, **kwargs)
Bases: jwst.datamodels.DataModel

A data model for 4D image arrays.
Parameters
* init (any) — Any of the initializers supported by DataModel.
e data (numpy array) - The science data. 4-D.
* dg (numpy array) - The data quality array. 4-D.

* err (numpy array)— The error array. 4-D

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'quad.schema.yaml'

RampModel

class jwst.datamodels.RampModel (init=None, data=None, pixeldg=None, groupdg=None,
err=None, zeroframe=None, group=None, int_times=None,

**kwargs)
Bases: jwst.datamodels.DataModel

A data model for 4D ramps.
Parameters
* init (any)— Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* pixeldq (numpy array)-—2-D data quality array.

* groupdq (numpy array) - 3-D or 4-D data quality array.

234 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* err (numpy array)— The error array.
* group (table)— The group parameters table

e int_times (table) - The int_times table

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'ramp.schema.yaml'

MIRIRampModel

class jwst.datamodels.MIRIRampModel (init=None, data=None, pixeldg=None, groupdg=None,
err=None, refout=None, zeroframe=None, group=None,

**kwargs)
Bases: jwst.datamodels.RampModel

A data model for MIRI ramps. Includes the refout array.
Parameters

* init (any) - Any of the initializers supported by DataModel.
* data (numpy array) - The science data.
* pixeldq (numpy array)-—2-D data quality array.
* groupdq (numpy array)— 3-D or 4-D data quality array.
* err (numpy array)— The error array.
* refout (numpy array)- The array of reference output data.

* group (table)— The group parameters table.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'miri_ ramp.schema.yaml'

RampFitOutputModel

class jwst.datamodels.RampFitOutputModel (init=None, slope=None, sigslope=None,
var_poisson=None, var_rnoise=None,
yint=None,  sigyint=None,  pedestal=None,

weights=None, crmag=None, **kwargs)
Bases: jwst.datamodels.DataModel

12.1. Package Index 235



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

A data model for the optional output of the ramp fitting step.

In the parameter definitions below, n_int is the number of integrations, max_seqg is the maximum number
of segments that were fit, nreads is the number of reads in an integration, and ny and nx are the height and
width of the image.

Parameters

* init (any) — Any of the initializers supported by DataModel.

* slope (numpy array (n_int, max_seg, ny, nx))-

* sigslope (numpy array (n_int, max_seg, ny, nx))-—

* var_poisson (numpy array (n_int, max_seg, ny, nx))-—
* var_rnoise (numpy array (n_int, max_seg, ny, nx))-—
e yint (numpy array (n_int, max_seg, ny, nx))-

* sigyint (numpy array (n_int, max_seg, ny, nx))-—

* pedestal (numpy array (n_int, max_seg, ny, nx))-—

* weights (numpy array (n_int, max_seg, ny, nx))-—

* crmag (numpy array (n_int, max_seg, ny, nx))-

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'rampfitoutput.schema.yaml'

ReadnoiseModel

class jwst.datamodels.ReadnoiseModel (init=None, data=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for 2D readnoise.
Parameters
* init (any) — Any of the initializers supported by DataModel.

* data (numpy array)— Read noise for all pixels. 2-D.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'readnoise.schema.yaml'

236 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

ReferenceFileModel

class jwst.datamodels.ReferenceFileModel (init=None, **kwargs)
Bases: jwst.datamodels.DataModel

A data model for reference tables

Parameters init (any)— Any of the initializers supported by DatalModel.

Attributes Summary

schema_url

Methods Summary

validate() Convenience function to be run when files are cre-
ated.

Attributes Documentation

schema_url = 'referencefile.schema.yaml'

Methods Documentation

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

ReferenceCubeModel

class jwst.datamodels.ReferenceCubeModel (init=None, data=None, dq=None, err=None,

**kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for 3D reference images
Parameters
* init (any) — Any of the initializers supported by DataModel.
* data (numpy array) - The science data.
* dgq (numpy array)— The data quality array.

* err (numpy array)— The error array.

Attributes Summary

schema_url

12.1. Package Index 237



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Documentation

schema_url = 'referencecube.schema.yaml'

ReferencelmageModel

class jwst.datamodels.ReferenceImageModel (init=None, data=None, dg=None, err=None,
**kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for 2D reference images
Parameters
* init (any)— Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* dg (numpy array) - The data quality array.

* err (numpy array)— The error array.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'referenceimage.schema.yaml'

ReferenceQuadModel

class jwst.datamodels.ReferenceQuadModel (init=None, data=None, dq=None, err=None,
**kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for 4D reference images
Parameters
* init (any) - Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* dg (numpy array)— The data quality array.

* err (numpy array)— The error array.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'referencequad.schema.yaml'

238 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

RegionsModel
class jwst.datamodels.RegionsModel (init=None, regions=None, **kwargs)

Bases: jwst.datamodels.ReferenceFileModel

A model for a reference file of type “regions”.

Attributes Summary

reftype
schema_url

Methods Summary

on_save([path]) This is a hook that is called just before saving the
file.

populate_metal)

to_fits() Write a DataModel to a FITS file.

validate() Convenience function to be run when files are cre-
ated.

Attributes Documentation

reftype = 'regions'

schema_url = 'regions.schema.yaml'

Methods Documentation

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

populate_meta ()

to_fits ()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

12.1. Package Index 239


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

ResetModel

class jwst.datamodels.ResetModel (init=None, data=None, dg=None, err=None, dq_def=None,
**wargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for reset correction reference files.
Parameters
* init (any) — Any of the initializers supported by DataModel.
* data (numpy array) - The science data.
* dq (numpy array)— The data quality array.
* err (numpy array)— The error array.

* dg_def (numpy array)- The data quality definitions table.

Attributes Summary

schema_url

Attributes Documentation
schema_url = 'reset.schema.yaml'
ResolutionModel

class jwst.datamodels.ResolutionModel (init=None, resolution_table=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for Spectral Resolution parameters reference tables.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'resolution.schema.yaml'

MiriResolutionModel

class jwst.datamodels.MiriResolutionModel (init=None, resolving_power_table=None,
psf_fwhm_alpha_table=None,
psf_fwhm_beta_table=None, **kwargs)
Bases: jwst.datamodels.ResolutionModel

A data model for MIRI Resolution reference files.

Parameters

240 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

* init (any)— Any of the initializers supported by ‘~jwst.datamodels.DataModel’

* resolving_power_ table (table)— A table containing resolving power of the MRS.
THe table consist of 11 columns and 12 rows. Each row corresponds to a band. The columns
give the name of band, central wavelength, and polynomial coefficeints (a,b,c) needed to
obtain the limits and average value of the spectral resolution.

* psf_fwhm_alpha_table (table) — A table with 5 columns. Column 1 gives the
cutoff wavelength where the polynomials describing alpha FWHM change. Columns 2 and
3 give the polynomial cofficients (a,b) describing alpha FWHM for wavelengths shorter than
cuttoff. Columns 4 and 5 give the polynomial coefficients (a,b) describing alpha FWHM for
wavelengths longer than the cutoff.

* psf_fwhm beta_table (table)— A table with 5 columns. Column 1 gives the cutoff
wavelength where the polynomials describing alpha FWHM change. Columns 2 and 3
give the polynomial cofficients (a,b) describing beta FWHM for wavelengths shorter than
cuttoff. Columns 4 and 5 give the polynomial coefficients (a,b) describing beta FWHM for
wavelengths longer than the cutoff.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'miri_resolution.schema.yaml'

RSCDModel

class jwst.datamodels.RSCDModel (init=None, rscd_table=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for the RSCD reference file.
Parameters
* init (any) — Any of the initializers supported by DataModel.

* rscd_table (numpy array) — A table with seven columns, three string-valued that
identify which row to select, and four float columns containing coefficients.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'rscd.schema.yaml'

12.1. Package Index 241



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

SaturationModel

class jwst.datamodels.SaturationModel (init=None, data=None, dg=None, dq_def=None,

*rkwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for saturation checking information.
Parameters
* init (any) — Any of the initializers supported by DataModel.
* data (numpy array) - The science data.
* dgq (numpy array)— The data quality array.
* dgq_def (numpy array)— The data quality definitions table.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'saturation.schema.yaml'

SlitDataModel

class jwst.datamodels.SlitDataModel (init=None, data=None, dg=None, err=None,
wavelength=None, var_poisson=None,
var_rnoise=None, relsens=None, area=None, wave-
length_pointsource=None, pathloss_pointsource=None,
wavelength_uniformsource=None,

pathloss_uniformsource=None, **kwargs)
Bases: jwst.datamodels.DataModel

A data model for 2D images.
Parameters
* init (any)— Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* dgq (numpy array)— The data quality array.
* err (numpy array)— The error array.

* relsens (numpy array)— The relative sensitivity table.

Attributes Summary

schema_url

242 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Documentation

schema_url = 'slitdata.schema.yaml'

SlitModel

class jwst.datamodels.SlitModel (init=None, data=None, dg=None, err=None, wave-
length=None, var_poisson=None, var_rnoise=None,
bunit_data=None, bunit_err=None, name=None, xstart=None,
xsize=None, ystart=None, ysize=None, slitlet_id=None,
source_id=None, source_name=None, source_alias=None,
stellarity=None,  source_type=None,  source_xpos=None,
source_ypos=None, shutter_state=None, area=None,
relsens=None, int_times=None, barshadow=None, wave-
length_pointsource=None, pathloss_pointsource=None, wave-
length_uniformsource=None, pathloss_uniformsource=None,

**kwargs)
Bases: jwst.datamodels.DataModel

A data model for 2D images.
Parameters
* init (any) - Any of the initializers supported by DataModel.
* data (numpy array) - The science data.
* dgq (numpy array)— The data quality array.
* err (numpy array)— The error array.
* relsens (numpy array)— The relative sensitivity table.

e int_times (table)— The int_times table

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'slit.schema.yaml'

SpecModel

class jwst.datamodels.SpecModel (init=None, spec_table=None, **kwargs)
Bases: jwst.datamodels.DataModel

A data model for 1D spectra.
Parameters
* init (any) — Any of the initializers supported by DataModel.

* spec_table (numpy array)— A table with at least four columns: wavelength, flux, an
error estimate for the flux, and data quality flags.

12.1. Package Index 243



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Summary

schema_url

Attributes Documentation
schema_url = 'spec.schema.yaml'
SourceModelContainer

class jwst.datamodels.SourceModelContainer (init=None, **kwargs)
Bases: jwst.datamodels.ModelContainer

A container to make MultiExposureModel look like ModelContainer

Methods Summary

save([path, dir_path, save_model_func]) Save out the container as a MultiExposureModel

Methods Documentation

save (path=None, dir_path=None, save_model_func=None, *args, **kwargs)
Save out the container as a MultiExposureModel

StrayLightModel

class jwst.datamodels.StrayLightModel (init=None, data=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for 2D straylight mask.
Parameters
* init (any) — Any of the initializers supported by DataModel.

* data (numpy array)— 2-D straylight mask array.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'straylight.schema.yaml'

244 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

SuperBiasModel

class jwst.datamodels.SuperBiasModel (init=None, data=None, dg=None, err=None,

dq_def=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for 2D super-bias images.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'superbias.schema.yaml'
SpecwcsModel
class jwst.datamodels.SpecwcsModel (init=None, model=None, input_units=None,  out-

put_units=None, **kwargs)
Bases: jwst.datamodels.wcs_ref_models._SimpleModel

A model for a reference file of type “specwcs”.

Attributes Summary

reftype
schema_url

Methods Summary

validate() Convenience function to be run when files are cre-
ated.

Attributes Documentation

reftype = 'specwcs'

schema_url = 'specwcs.schema.yaml'
Methods Documentation

validate ()

Convenience function to be run when files are created. Checks that required reference file keywords are
set.

12.1. Package Index 245



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

ThroughputModel

class jwst.datamodels.ThroughputModel (init=None, filter_table=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for filter throughput.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'throughput.schema.yaml'

TrapDensityModel

class jwst.datamodels.TrapDensityModel (init=None, data=None, dq=None, dq_def=None,
*tkwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for the trap density of a detector, for persistence.
Parameters
* init (any)— Any of the initializers supported by DataModel.
e data (numpy array) - The science data.
* dgq (numpy array)— The data quality array.
* dgq _def (numpy array)- The data quality definitions table.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'trapdensity.schema.yaml'

TrapParsModel

class jwst.datamodels.TrapParsModel (init=None, trappars_table=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for trap capture and decay parameters.
Parameters
* init (any)— Any of the initializers supported by DataModel.

* trappars_table (numpy array) — A table with three columns for trap-capture pa-
rameters and one column for the trap-decay parameter. Each row of the table is for a different

246 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

trap family.

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'trappars.schema.yaml'

TrapsFilledModel

class jwst.datamodels.TrapsFilledModel (init=None, data=None, **kwargs)
Bases: jwst.datamodels.DataModel

A data model for the number of traps filled for a detector, for persistence.
Parameters
* init (any)— Any of the initializers supported by DataModel.

* data (numpy array)- The map of the number of traps filled over the detector, with one
plane for each “trap family.”

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'trapsfilled.schema.yaml'

TsoPhotModel

class jwst.datamodels.TsoPhotModel (init=None, radii=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A model for a reference file of type “tsophot”.

Attributes Summary

reftype
schema_url

Methods Summary

12.1. Package Index 247



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

on_save([path]) This is a hook that is called just before saving the
file.

populate_metal)

to_fits() Write a DataModel to a FITS file.

validate() Convenience function to be run when files are cre-
ated.

Attributes Documentation

reftype = 'tsophot'

schema_url = 'tsophot.schema.yaml'

Methods Documentation

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

populate_meta ()

to_fits ()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)-—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

WavelengthrangeModel

class jwst.datamodels.WavelengthrangeModel (init=None, wrange_selector=None,
wrange=None, order=None, wunits=None,
**kwargs)

Bases: jwst.datamodels.ReferenceFileModel

A model for a reference file of type “wavelengthrange”. The model is used by MIRI, NIRSPEC, NIRCAM, and
NIRISS

Attributes Summary

248 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

reftype
schema_url

Methods Summary

on_save([path]) This is a hook that is called just before saving the
file.

to fits() Write a DataModel to a FITS file.

validate() Convenience function to be run when files are cre-
ated.

Attributes Documentation

reftype = 'wavelengthrange'

schema_url = 'wavelengthrange.schema.yaml'

Methods Documentation

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

to_fits ()
Write a DataModel to a FITS file.

Parameters
e init (file path or file object)—

* kwargs (args,) — Any additional arguments are passed along to astropy.io.
fits.writeto.

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

WaveCorrModel

class jwst.datamodels.WaveCorrModel (init=None, apertures=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

Attributes Summary

aperture_names

Continued on next page

12.1. Package Index 249


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Table 189 — continued from previous page

reftype

schema_url

Methods Summary

on_save([path]) This is a hook that is called just before saving the
file.

populate_meta()

validate() Convenience function to be run when files are cre-
ated.

Attributes Documentation

aperture_names
reftype = 'wavecorr'

schema_url = 'wavecorr.schema.yaml'

Methods Documentation

on_save (path=None)
This is a hook that is called just before saving the file. It can be used, for example, to update values in the
metadata that are based on the content of the data.

Override it in the subclass to make it do something, but don’t forget to “chain up” to the base class, since
it does things there, too.

Parameters path (st r (https://docs.python.org/3/library/stdtypes.html#str)) — The path to the
file that we’re about to save to.

populate_meta ()

validate ()
Convenience function to be run when files are created. Checks that required reference file keywords are
set.

WissBkgModel

class jwst.datamodels.WfssBkgModel (init=None, data=None, dg=None, err=None,

dq_def=None, **kwargs)
Bases: jwst.datamodels.ReferenceFileModel

A data model for 2D WFSS master background reference files.
Parameters
* init (any)— Any of the initializers supported by DataModel.
e data (numpy array) - The science data. 2-D.
* dgq (numpy array) - The data quality array. 2-D.
* err (numpy array) - The error array. 2-D.

* dgq _def (numpy array)— The data quality definitions table.

250

Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Summary

schema_url

Attributes Documentation

schema_url = 'wfssbkg.schema.yaml'

12.1. Package Index 251



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Class Inheritance Diagram

12.1.13 Data Quality (DQ) Initialization

Description

The Data Quality Initialization step in the calibration pipeline populates the Data Quality mask for the input dataset.
DQ flags from the appropriate static mask reference file in CRDS are copied into the PIXELDQ object of the input
dataset, because it is assumed that flags in the mask reference file pertain to problem conditions that are group- and

252 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

integration-independent.
The actual process consists of the following steps:
* Determine what mask reference file to use via the interface to the bestref utility in CRDS.

* If the PIXELDQ and GROUPDAQ objects of the input dataset do not already exist, which is the case for raw
Level-1b input products, create these objects in the input data model and initialize them to zero. The PIXELDQ
array will be 2-D, with the same number of rows and columns as the input science data. The GROUPDQ array
will be 4-D with the same dimensions (nints, ngroups, nrows, ncols) as the input science data array.

¢ Check to see if the input science data is in subarray mode. If so, extract a matching subarray from the full frame
mask reference file.

* Copy the DQ flags from the reference file mask to the science data PIXELDQ array using numpy’s bitwise_or
function.

Step Arguments

The Data Quality Initialization step has no step-specific arguments.

Reference File Types

The Data Quality Initialization step uses a MASK reference file.

CRDS Selection Criteria

MASK reference files are currently selected based only on the value of DETECTOR in the input science data set.
There is one MASK reference file for each JWST instrument detector.

MASK Reference File Format

The MASK reference file is a FITS file with a primary HDU, 1 IMAGE extension HDU and 1 BINTABLE extension.
The primary data array is assumed to be empty. The MASK data are stored in the first IMAGE extension, which shall
have EXTNAME="DQ’. The data array in this extension has integer data type and is 2-D, with dimensions equal to
the number of columns and rows in a full frame raw readout for the given detector, including reference pixels. Note
that this does not include the reference output for MIRI detectors.

The BINTABLE extension contains the bit assignments used in the DQ array. It uses EXTNAME=DQ_DEF and contains
4 columns:

» BIT: integer value giving the bit number, starting at zero
* VALUE: the equivalent base-10 integer value of BIT
* NAME: the string mnemonic name of the data quality condition

* DESCRIPTION: a string description of the condition

jwst.dg_init Package

Classes

12.1. Package Index 253



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

DQOInitStep([name, parent, config_file, ...]) DQInitStep: Initialize the Data Quality extension from
the mask reference file.

DQInitStep

class jwst.dg_init.DQInitStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

DQInitStep: Initialize the Data Quality extension from the mask reference file. Also initialize the error extension
Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional)- The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config_file (str path, optional)- The path to the config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

reference_file types

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

reference_file types = ['mask']

Methods Documentation

process (input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

254 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Class Inheritance Diagram

Step DQInitStep

Y

12.1.14 Emission

Description

This step currently is a no-op; it passes the input file to the next step unchanged.

jwst.emission Package

Classes

EmissionStep([name, parent, config_file, ...]) EmissionStep: This step currently is a no-op; it passes
the input file to the next step unchanged.

EmissionStep

class jwst.emission.EmissionStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

EmissionStep: This step currently is a no-op; it passes the input file to the next step unchanged.
Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional)- The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config_file (str path, optional)- The path to the config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Methods Summary

12.1. Package Index 255


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

process(input_file) This is where real work happens.

Methods Documentation
process (input_file)

This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

Y

Step EmissionStep

12.1.15 Exposure to Source Conversion

Description

Overview

The exp_to_source is a Level2b->Level3 tool. It will take a list of Level2b MSA exposures and rearrange the
data to produce files that are source-centric.

Usage

exp_to_source

jwst.exp_to_source Package

Functions
exp_to_source(inputs) Reformat exposure-based MSA data to source-based.
multislit_to_container(inputs) Reformat exposure-based MSA data to source-based

containers.

exp_to_source

Jjwst.exp_to_source.exp_to_source (inputs)
Reformat exposure-based MSA data to source-based.

Parameters inputs ([MultiSlitModel, ..]J) - List of MultiSlitModel instances to refor-
mat.

256 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Returns {str — Returns a dict of MultiExposureModel instances wherein each instance contains slits
belonging to the same source. The key is the name of each source.

Return type MultiExposureModel, }

multislit_to_container

jwst.exp_to_source.multislit_to_container (inputs)
Reformat exposure-based MSA data to source-based containers.

Parameters inputs ([MultiSlitModel, ..]J) - List of MultiSlitModel instances to refor-
mat, or just a ModelContainer full of MultiSlitModels.

Returns {str — Returns a dict of ModelContainer instances wherein each instance contains Image-
Models of slits belonging to the same source. The key is the name of each slit.

Return type ModelContainer, }

12.1.16 Extract 1D Spectra

Description

The extract_1d step extracts a 1-d signal from a 2-d or 3-d dataset and writes a spectrum to a product. This works
on fixed-slit data (NIRSpec data through any one or more of the fixed slits, MIRI LRS data through the slit or in the
slitless region, and NIRISS slitless data) as well as IFU data and NIRSpec MOS (micro-shutter array) data.

For GRISM data (NIS_WFSS or NRC_WFSS), no reference file is used. The extraction region is taken to be the full
size of the input subarray or cutout, or it could be restricted to the region within which the world coordinate system is
defined. The dispersion direction is the one along which the wavelengths change more rapidly.

For IFU data, the extraction options differ depending on whether the target is a point source or an extended source.
For a point source, the spectrum will be extracted using circular aperture photometry, optionally including background
subtraction using a circular annulus. For an extended source, rectangular aperture photometry will be used, with no
background subtraction. The photometry makes use of astropy photutils. The region of overlap between an aperture
and a pixel can be calculated by one of three different methods: “exact”, limited only by finite precision arithmetic;
“center”, i.e. the full value in a pixel will be included if its center is within the aperture; or “subsample”, which means
pixels will be subsampled N x N, and the “center” option will be used for each sub-pixel.

Input

Level 2-b countrate data, or level-3 data. The format should be a CubeModel, a SlitModel, an IFUCubeModel, an
ImageModel, a DrizProductModel, a MultiSlitModel, a MultiProductModel, or a ModelContainer. The SCI extensions
should have keyword SLTNAME to specify which slit was extracted, though if there is only one slit (e.g. full-frame
data), the slit name can be taken from the JSON reference file instead.

Output

The output will be in MultiSpecModel format; for each input slit there will be an output table extension with the name
EXTRACTID. This extension will have columns WAVELENGTH, FLUX, ERROR, DQ, NET, NERROR, BACK-
GROUND, and BERROR. WAVELENGTH is the value calculated using the WCS. NET is the count rate minus back-
ground, in counts/pixel of spectral width, summed along the direction perpendicular to the dispersion. Currently only
a simple summation is done, with no weighting. A more sophisticated algorithm will be introduced in future builds.
BACKGROUND is the measured background, scaled to the extraction width used for the NET. BACKGROUND will

12.1. Package Index 257



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

be zero if the reference file did not specify that background should be determined. FLUX will be computed from NET
if there is a RELSENS table for the input slit; otherwise, FLUX will be zero. ERROR, DQ, NERROR, and BERROR
are not populated with useful values yet.

Reference File

The reference file is a text file that uses JSON to hold the information needed.

CRDS Selection Criteria

The file is selected based on the values of DETECTOR and FILTER (and GRATING for NIRSpec).

Extract_1D Reference File Format

All the information is specified in a list with key apertures. Each element of this list is a dictionary, one for each
aperture (e.g. a slit) that is supported by the given reference file. The particular dictionary to use is found by matching
the slit name in the science data with the value of key id. Key spectral_order is optional, but if it is present, it
must match the expected spectral order number.

The following keys are supported (but for IFU data, see below). Key id is the primary criterion for selecting which
element of the apertures list to use. The slit name (except for a full-frame input image) is compared with the
values of 1d in the apertures list to select the appropriate aperture. In order to allow the possibility of multiple
spectral orders for the same slit name, there may be more than one element of apertures with the same value
for key id. These should then be distinguished by using the secondary selection criterion spectral_order. In
this case, the various spectral orders would likely have different extraction locations within the image, so different
elements of apertures are needed in order to specify those locations. If key dispaxis is specified, that value
will be used. If it was not specified, the dispersion direction will be taken to be the axis along which the wavelengths
change more rapidly. Key region_type can be omitted, but if it is specified, its value must be “target”. The source
extraction region can be specified with ystart, ystop, etc., but a more flexible alternative is to use src_coeff.
If background is to be subtracted, this should be specified by giving bkg_coeff. These are described in more detail
below.

* id: the slit name, e.g. “S200A1” (string)

* spectral_order: the spectral order number (optional); this can be either positive or negative, but it should not be
zero (int)

* dispaxis: dispersion direction, 1 for X, 2 for Y (int)

e xstart: first pixel in the horizontal direction, X (int)

* xstop: last pixel in the horizontal direction, X (int)

« ystart: first pixel in the vertical direction, Y (int)

* ystop: last pixel in the vertical direction, Y (int)

* src_coeff: this takes priority for specifying the source extraction region (list of lists of float)

* bkg_coeff: for specifying background subraction regions (list of lists of float)

* independent_var: “wavelength” or “pixel” (string)

» smoothing_length: width of boxcar for smoothing background regions along the dispersion direction (odd int)
* bkg_order: order of polynomial fit to background regions (int)

* extract_width: number of pixels in cross-dispersion direction (int)

258 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

If src_coeff is given, those coefficients take priority for specifying the source extraction region in the cross-
dispersion direction. xstart and xstop (or ystart and ystop if dispaxis is 2) will still be used for the limits
in the dispersion direction. Background subtraction will be done if and only if bkg_coeff is given. See below for
further details.

For IFU cube data, these keys are used instead of the above:
¢ id: the slit name, but this can be “ANY”’ (string)
» x_center: X pixel coordinate of the target (pixels, float, the default is the center of the image along the X axis)
» y_center: Y pixel coordinate of the target (pixels, float, the default is the center of the image along the Y axis)

* radius: (only used for a point source) the radius of the circular extraction aperture (pixels, float, default is one
quarter of the smaller of the image axis lengths)

* subtract_background: (only used for a point source) if true, subtract a background determined from an annulus
with inner and outer radii given by inner_bkg and outer_bkg (boolean)

* inner_bkg: (only for a point source) radius of the inner edge of the background annulus (pixels, float, default =
radius)

 outer_bkg: (only for a point source) radius of the outer edge of the background annulus (pixels, float, default =
inner_bkg * sqgrt(2))

¢ width: (only for an extended source) the width of the rectangular extraction region; if theta = 0, the width
side is along the X axis (pixels, float, default is half of the smaller image axis length)

* height: (only for an extended source) the height of the rectangular extraction region; if theta = 0, the height
side is along the Y axis (pixels, float, default is half of the smaller image axis length)

« angle: (only for an extended source) the counterclockwise rotation angle of the width side from the positive X
axis (degrees)

CLINY3

» method: one of “exact”, “subpixel”, or “center”, the method used by photutils for computing the overlap between
apertures and pixels (string, default is “exact”)

* subpixels: if method is “subpixel”, pixels will be resampled by this factor in each dimension (int, the default
is 5)

The rest of this description pertains to the parameters for non-IFU data.

If src_coeff is not given, the extraction limits can be specified by xstart, xstop, ystart, ystop, and
extract_width. Note that all of these values are integers, and that the start and stop limits are inclusive. If
dispaxis is 1, the zero-indexed limits in the dispersion direction are xstart and xstop; if dispaxis is 2, the
dispersion limits are ystart and ystop. (The dispersion limits can be given even if src_coef f has been used for
defining the cross-dispersion limits.) The limits in the cross-dispersion direction can be given by ystart and ystop
(or xstart and xstop if dispaxisis2). If extract_width is also given, that takes priority over ystart to
ystop (for dispaxis = 1) for the extraction width, but ystart and ystop (for dispaxis = 1) will still be used
to define the middle in the cross-dispersion direction. Any of these parameters can be modified by the step code if the
extraction region would extend outside the input image, or outside the domain specified by the WCS.

The source extraction region can be specified more precisely by giving src_coeff, coefficients for polynomial
functions for the lower and upper limits of the source extraction region. As described in the previous paragraph, using
this key will override the values of ystart and ystop (if dispaxisis 1) or xstart and xstop (if dispaxis
is 2), and extract_width. These polynomials are functions of either wavelength (in microns) or pixel number
(pixels in the dispersion direction, with respect to the input 2-D slit image), specified by the key independent_var.
The default is “pixel”. The values of these polynomial functions are pixel numbers in the direction perpendicular to
dispersion. More than one source extraction region may be specified, though this is not expected to be a typical case.

Background regions are specified by giving bkg_coef £, coefficients for polynomial functions for the lower and
upper limits of one or more regions. Background subtraction will be done only if bkg_coeff is given in the reference

12.1. Package Index 259



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

file. See below for an example. See also bkg_order below.

The coefficients are specified as a list of an even number of lists (an even number because both the lower and upper
limits of each extraction region must be specified). The source extraction coefficients will normally be a list of just
two lists, the coefficients for the lower limit function and the coefficients for the upper limit function of one extraction
region. The limits could just be constant values, e.g. [[324.5], [335.5]]. Straight but tilted lines are linear functions:

[[324.5,0.0137], [335.5, 0.0137]]

Multiple regions may be specified for either the source or background, or both. It will be common to specify more
than one background region. Here is an example for specifying two background regions:

[[315.2, 0.0135], [320.7, 0.0135], [341.1, 0.0139], [346.8, 0.0139]]
This is interpreted as follows:
* [315.2,0.0135]: lower limit for first background region
* [320.7, 0.0135]: upper limit for first background region
* [341.1, 0.0139]: lower limit for second background region
* [346.8, 0.0139]: upper limit for second background region
If the dispersion direction is vertical, replace “lower” with “left” and “upper” with “right” in the above description.

Note especially that src_coeff and bkg_coef f contain floating-point values. For interpreting fractions of a pixel,
the convention used here is that the pixel number at the center of a pixel is a whole number. Thus, if a lower or upper
limit is a whole number, that limit splits the pixel in two, so the weight for that pixel will be 0.5. To include all the
pixels between 325 and 335 inclusive, for example, the lower and upper limits would be given as 324.5 and 335.5
respectively.

The order of a polynomial is specified implicitly to be one less than the number of coefficients (this should not be
confused with bkg_order, described below). The number of coefficients must be at least one, and there is no
predefined upper limit. The various polynomials (lower limits, upper limits, possibly multiple regions) do not need to
have the same number of coefficients; each of the inner lists specifies a separate polynomial. However, the independent
variable (wavelength or pixel) does need to be the same for all polynomials for a given slit image (identified by key
id).

The background is determined independently for each column (or row, if dispaxis is 2) of the spectrum. The
smoothing_length parameter is the width of a boxcar for smoothing the background in the dispersion direction.
If this is not specified, either in the reference file, the config file, or on the command line, no smoothing will be done
along the dispersion direction. Following background smoothing (if any), for each column (row), a polynomial of
order bkg_order will be fit to the pixel values in that column (row) in all the background regions. If not specified,
a value of O will be used, i.e. a constant function, the mean value. The polynomial will then be evaluated at each pixel
within the source extraction region for that column (row), and the fitted values will be subtracted (pixel by pixel) from
the source count rate.

Step Arguments

The extract_1d step has three step-specific arguments. Currently none of these is used for IFU data.
¢ ——smoothing_length

If smoothing_length is greater than 1 (and is an odd integer), the background will be smoothed in the dispersion
direction with a boxcar of this width. If smoothing_length is None (the default), the step will attempt to read
the value from the reference file. If a value was specified in the reference file, that will be used. Note that in this case
a different value can be specified for each slit. If no value was specified either by the user or in the reference file, no
background smoothing will be done.

e ——bkg_order

260 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

This is the order of a polynomial function to be fit to the background regions. The fit is done independently for each
column (or row, if the dispersion is vertical) of the input image, and the fitted curve will be subtracted from the target
data. bkg_order =0 (the minimum allowed value) means to fit a constant. The user-supplied value (if any) overrides
the value in the reference file. If neither is specified, a value of 0 will be used.

e ——log_increment

Most log messages are suppressed while looping over integrations, i.e. when the input is a CubeModel or a 3-D
SlitModel. Messages will be logged while processing the first integration, but since they would be the same for
every integration, most messages will only be written once. However, since there can be hundreds or thousands of
integrations, which can take a long time to process, it would be useful to log a message every now and then to let the
user know that the step is still running.

log_increment is an integer, with default value 50. If it is greater than 0, an INFO message will be printed every
log_increment integrations, e.g. “... 150 integrations done”.

jwst.extract_1d Package

Classes

ExtractldStep([name, parent, config_file, ...]) Extract1dStep: Extract a 1-d spectrum from 2-d data

Extract1dStep

class jwst.extract_1d.ExtractldStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

Extract1dStep: Extract a 1-d spectrum from 2-d data
Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional) - The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config_file (str path, optional)- The path to the config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

reference_file types
spec

12.1. Package Index 261


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Methods Summary

process(input) This is where real work happens.

Attributes Documentation

reference_file types = ['extractld']

spec = '\n # Boxcar smoothing width for background regions.\n smoothing length

Methods Documentation
process (input)

This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

Step ExtractldStep

12.1.17 Extract 2D Spectra

Description

Overview

The extract_2d step extracts 2D arrays from spectral images. The extractions are performed within all of the SCI,
ERR, and DQ arrays of the input image model. It also computes an array of wavelengths. The SCI, ERR, DQ and
WAVELENGTH arrays are stored as one or more s1it objects in an output MultiSlitModel and saved as separate
extensions in the output FITS file.

Assumptions

This step uses the bounding_box attribute of the WCS stored in the data model, which is populated by the
assign_wcs step. Hence the assign_wcs step must be applied to the science exposure before running this
step.

For WFSS modes in NIRCAM and NIRSS, no bounding_box has been attached to the datamodel. This is to keep
the WCS flexible enough to be used with any source catalog that may be associated with the dispersed image. Instead,
there is a helper method that is used to calculate the bounding boxes that contain the dispersed spectra for each object.
One box is made for each order. ext ract2d uses the source catalog referenced in the input models meta information

262 Chapter 12. Package Documentation

integ



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

to create the list of objects and their corresponding bounding box, this list is used to make the 2D cutouts from the
dispersed image.

Algorithm

The step is currently applied only to NIRSpec Fixed Slit, NIRSPEC MSA, NIRSPEC TSO, NIRCAM WEFSS and
NIRISS WFSS observations.

For NIRSPEC:

If the step parameter s1it_name is left unspecified, the default behavior is to extract all slits which project on the
detector. Only one slit may be extracted by specifying the slit name with the s1it_name argument, using one of the
following accepted names: S1600A1, S200A1, S200A2, S200B1 or S400A1 in the case of NIRSPEC FS exposure
or any of the slitlet names in the case of the MSA.

To find out what slits are available for extraction:

>>> from jwst.assign_wcs import nirspec
>>> nirspec.get_open_slits (input_model)

The corner locations of the regions to be extracted are determined from the bounding_box contained in the expo-
sure’s WCS, which defines the range of valid inputs along each axis. The input coordinates are in the image frame,
i.e. subarray shifts are accounted for.

The output MultiSlit data model will have the meta data associated with each slit region populated with the name
and region characteristic for the slits, corresponding to the FITS keywords SLTNAME, SLTSTRT1, SLTSIZEL,
SLTSTRT2, and SLTSIZEZ2.

For NIRCAM WESS and NIRISS WESS :

If the step parameter grism_objects is left unspecified, the default behavior is to use the source catalog that is
specified in the input model’s meta information, input_model .meta.source_catalog.filename. Oth-
erwise, a user can submit of list of GrismObjects that contains information about the objects that should be
extracted. The GrismObject list can be created automatically by using the method in jwst.assign_wcs.
utils.create_grism_bbox. This method also uses the name of the source catalog saved in the input model’s
meta information. If it’s better to construct a list of GrismOb jects outside of these, the GrismObject itself can
be imported from jwst .transforms.models.

Step Arguments

The extract_2d step has two optional arguments for NIRSPEC observations:

e ——slit_name: name (string value) of a specific slit region to extract. The default value of None will cause
all known slits for the instrument mode to be extracted. Currently only used for NIRspec fixed slit exposures.

* ——apply_wavecorr: bool (default is True). Flag indicating whether to apply the Nirspec wavelength
zero-point correction.

For NIRCAM and NIRISS, the extract_2d step has only one optional argument:

e ——grism_objects: list (default is empty). A list of jwst .transforms.models.GrismObject.

Reference Files

To apply the Nirspec wavelength zero-point correction, this step uses the WAVECORR reference file. The
zero-point correction is applied to observations with EXP_TYPE of “NRS_FIXEDSLT”, “NRS_BRIGHTOBJ”

12.1. Package Index 263




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

or “NRS_MSASPEC”. This is an optional correction (on by default). It can be turned off by specifying
apply_wavecorr=False when running the step.

NIRCAM WEFSS and NIRISS WESS observations use the wavelengthrange reference file in order to construct the
bounding boxes around each objects orders. If a list of GrismOb ject is supplied, then no reference file is neccessary.

jwst.extract_2d Package

Classes

Extract2dStep([name, parent, config_file, ...]) This Step performs a 2D extraction of spectra.

Extract2dStep

class jwst.extract_2d.Extract2dStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

This Step performs a 2D extraction of spectra.
Create a Step instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional) - The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config file(str path, optional)-The path to the config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

reference_file types
spec

Methods Summary

process(input_model, *args, **kwargs) This is where real work happens.

Attributes Documentation

reference_file_types = ['wavecorr', 'wavelengthrange']

spec = '\n slit_name = string(default=None)\n apply wavecorr = boolean(default=True)\n

264 Chapter 12. Package Documentation


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Methods Documentation
process (input_model, *args, **kwargs)

This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

Step Extract2dStep

Y

12.1.18 FITS Generator

Description

Overview

The FITS generator is used to convert data from several different types of ground test data to DMS Levellb
format data. This format is described in the document DMS Level 1 and 2 Data Product Design -
JWST-STScI-002111 by Daryl Swade. The code uses a collection of templates that govern the population of
Level 1b header keyword values from the data in the input file headers, with different templates for different file types.
The FITS generator will transform the input data (in detector coordinates) to the DMS coordinate system, where all of
the imaging data has the same parity as the sky and very similar orientations.

Input details

To run the FITS generator, a ‘proposal’ file is required. There should be only one proposal file per directory, and it
should have a name like

ddddd.prop

where d stands for a decimal digit. This file gives the names of each input FITS datafile, whether a subarray needs to be
extracted from it and the exposure type (EXP_TYPE), as well as the relationship between the files from an operational
viewpoint (i.e. Observation, Visit, ParallelSequencelD, Activity, Exposure, Detector). The file has a structure similar
to XML with nested groups:

<Proposal title="MIRI FM IMG_OPT_01_FOV">
<Observation>
<Visit>
<VisitGroup>
<ParallelSequencelID>
<Activity>
<Exposure>
<Detector>
<base>MIRFM1T00012942_1_493_SE_2011-07-13T10h45m00.fits</base>

(continues on next page)

12.1. Package Index 265




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

(continued from previous page)

<subarray></subarray>
<exp_type>MIR_IMAGE</exp_type>
</Detector>
</Exposure>
</Activity>
</ParallelSequencelID>
</VisitGroup>
</Visit>
</Observation>
</Proposal>

Each nest can be repeated as needed. The <Detector></Detector> tags contain the information for each input/output
file, with the input file name inside the <base> tags, the name of the subarray to be extracted within the <subarray>
tag, and the exposure type within the <exp_type> tag.

The files within the <base> tag should be in the same directory as the proposal file.
The input FITS files can be from any of several different sources:

1. MIRI VM2 testing

2. MIRI FM testing

3. NIRSPEC FM testing

4. NIRSPEC IPS Simulator

5. NIRCAM NCONT testing (detector only)

6. NIRCAM FM testing

7. NIRISS CV testing

8. FGS CV testing

Most data that has been taken using the FITSWriter tool can be successfully converted to Level 1b format.

Command-line scripts

create_data directory

create_data followed by a directory will process the proposal file (generally a 5-digit string followed by ‘.prop’) in
that directory. The proposal file contains the names of the FITS files to be processed and the relationship between the
exposures, allowing a unique numbering scheme.

Each FITS file referred to in the exposure will be processed to make a Levellb format JWST dataset with the pixel
data flipped and/or rotated to make it conform to the DMS coordinate system, in which all imaging data has roughly
the same orientation and parity on the sky.

The 5-digit string is used in the name of the Level 1b product, in that file 12345.prop will make data of the form
jw12345aaabbb_cccdd_eeeee_ DATATYPE_uncal fits.

The numbers that fill in the other letter spaces come from the structure of the proposal file, which is a sequence of
nested levels. As each level is repeated, the number assigned to repesent that level increments by 1.

266 Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Create_data Proposal File Format

The proposal file has an XML-like format that lays out the relationship between a set of exposures. The layout looks
like this:

<Proposal title="Test">
<Observation>
<Visit>
<VisitGroup>
<ParallelSequencelID>
<Activity>
<Exposure>
<Detector>
<base></base>
<subarray></subarray>
<exp_type></exp_type>
</Detector>
</Exposure>
</Activity>
</ParallelSequenceID>
</VisitGroup>
</Visit>
</Observation>
</Proposal>

The file to be converted is put between the <base></base> tags, and if a subarray is needed to be extracted from a
full-frame exposure, the name of the subarray can be put between the <subarray></subarray> tags. Finally, the type
of exposure can be placed between the <exp_type> </exp_type> tags. The values of EXP_TYPE are:

MIRI NIRCAM NIRSPEC NIRISS FGS
MIR_IMAGE NRC_IMAGE | NRS_TASLIT NIS_IMAGE | FGS_IMAGE
MIR_TACQ NRC_TACQ NRS_TACQ NIS_FOCUS | FGS_FOCUS
MIR_LYOT NRC_CORON | NRS_TACONFIRM NIS_DARK | FGS_SKYFLAT
MIR_4QPM NRC_FOCUS | NRS_CONFIRM NIS_WFSS FGS_INTFLAT

MIR_LRS-FIXEDSLIT | NRC_DARK NRS_FIXEDSLIT
MIR_LRS-SLITLESS NRC_FLAT NRS_AUTOWAVECAL

MIR_MRS NRS_IFU

MIR_DARK NRS_MSA

MIR_FLAT NRS_AUTOFLAT
NRS_DARK
NRS_LAMP

Sections of this file can be replicated to represent, for example, all of the NIRCAM exposures from each of the 10
detectors at a single pointing by just replicating the <detector></detector> blocks.

Template file format

File types are described using a simple file format that vaguely resembles FITS headers.

Since it is necessary to create templates for several different flavors of data (FITSWriter, NIRSpec simulations, NIR-
Cam homebrew etc) as well as different EXP_TYPEs that share many sections of data header but differ in other
sections, the templates are divided into sections that are included. So a typical template for a particular flavor of data
might look like this:

12.1. Package Index 267




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

<<file nirspec_ifu_levellb>>
<<header primary>>

#include "levellb.gen.inc"

#include 'observation_identifiers.gen.inc'
#include 'exposure_parameters.gen.inc'

#include 'program information.gen.inc'

#include 'observation_information.gen.inc'
#include 'visit_information.gen.inc'

g

#include 'exposure_information.gen.inc'

#include 'target_information.gen.inc'

#include 'exposure_times.gen.inc'

#include 'exposure time parameters.gen.inc'

P p g

#include 'subarray_ parameters.gen.inc'

#include 'nirspec_configuration.gen.inc'
#include 'lamp_configuration.gen.inc'

#include 'guide_ star_information.gen.inc'
#include 'jwst_ephemeris information.gen.inc'

J

#include 'spacecraft_ _pointing information.gen.inc'
#include 'aperture_pointing_ information.gen.inc'
#include 'wcs_parameters.gen.inc'

#include 'velocity_ aberration_correction.gen.inc'
include 'nirspec_ifu dither pattern.gen.inc

# lude ' fu_dith tt !
#include 'time_ related.gen.inc'

<<data>>

<<header science>>
#include 'levellb sci_extension_basic.gen.inc'

<<data>>

input [0] .data.reshape ((input[0] .header ['NINT'], \
input [0] .header [ '"NGROUP'], \
input [0] .header [ '"NAXIS2'], \
input [0] .header [ "NAXISI1'])). \
astype ('uintle")

<<header error>>
EXTNAME = 'ERR'

<<data>>

np.ones ( (input [0] .header [ 'NINT'], \
input [0] .header [ "NGROUP '], \
input [0] .header [ "NAXIS2'], \
input [0] .header [ "NAXISI'])). \
astype('float32")

<<header data_quality>>

EXTNAME = "DQ"
<<data>>
np.zeros ( (input [0] .header ['NINT'], \
input [0] .header [ 'NGROUP'], \
input [0] .header [ 'NAXIS2'], \
input [0] .header['NAXIS1'"']), dtype='"intlé6")

This has some regular generator syntax, but the bulk of the content comes from the #include directives.

By convention, templates have the extension gen . t xt, while include files have the extension inc.

268 Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Basic syntax

Template files are in a line-based format.

Sections of the file are delimited with lines surrounded by << and >>. For example:

<<header primary>>

indicates the beginning of the primary header section.
Comments are lines beginning with #.

Lines can be continued by putting a backslash character (\) at the end of the line:

DETECTOR = { Oxlel: 'NIR', \
Oxle2: 'NIR', \

Oxlee: 'MIR', \

)

}[input ('SCA_ID')] / Detector type

Other files can be included using the include directive:

#include "other.file.txt"

Generator template

The generator template follows this basic structure:
e fileline
e Zero or more HDUs, each of which has
— a header section defining how keywords are generated

— an optional dat a section defining how the data is converted

file line

The template must begin with a file line to give the file type a name. The name must be a valid Python identifier. For
example:

<<file levellb>>

HDUs

Each HDU is defined in two sections, the header and data.

Header

The header begins with a header section line, giving the header a name, which must be a valid Python identifier. For
example:

<<header primary>>

Following that is a list of keyword definitions. Each line is of the form:

12.1. Package Index 269




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

KEYWORD = expression / comment

KEYWORD is a FITS keyword, may be up to 8 characters, and must contain only A through Z, _ and -.

The expression section is a Python expression that defines how the keyword value is generated. Within the namespace
of the expression are the following:

* Source functions: Functions to retrieve keyword values from the input files. input gets values from the
input FITS file, and there are any number of additional functions which get values from the input data files.
For example, if the input data files include a file for program data, the function program is available to the
expression that retrieves values from the program data file. If the function is provided with no arguments, it
retrieves the value with the same key as the output keyword. If the function is provided with one argument, it is
the name of the source keyword. For example:

’OBS_ID

input ()

copies the OBS_ID value from the corresponding HDU in the source FITS file to the OBS_ID keyword in the
output FITS file. It is also possible to copy from a keyword value of a different name:

’CMPLTCND

input ('CMPLTCON"')

To grab a value from the program data file, use the program function instead:

’TARGET

program()

* Generator functions: There are a number of helper functions in the generators module that help convert
and generate values of different kinds. For example:

’END_TIME

date_and_time_to_cds (input ('DATE-END'), input ('TIME-END'"))

creates a CDS value from an input date and time.

¢ Python expression syntax: It’s possible to do a lot of useful things just by using regular Python expression
syntax. For example, to make the result a substring of a source keyword:

’PARASEQN

input ('OBS_ID') [13:14] / Parallel Sequence ID

or to calculate the difference of two values:

’DURATION

input ('END_TIME') - input ('START_TIME')

The optional comment section following a / character will be attached to the keyword in the output FITS file. There
is an important distinction between these comments which end up in the output FITS file, and comments beginning
with # which are included in the template for informational purposes only and are ignored by the template parser.

It is also possible to include comments on their own lines to create section headings in the output FITS file. For

example:

/ MIRI-specific keywords

FILTER =
FLTSUITE
WAVLNGTH
GRATING
LAMPON =
CCCSTATE =

[}

SN N N

Filter element used

Flat field element used

Wavelength requested in the exposure specification
Grating/dichroic wheel position

Internal calibration lamp

Contamination control cover state

/ Exposure parameters

(continues on next page)

270

Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

(continued from previous page)

READPATT = '' / Readout pattern

NEFRAME = 1 / Number of frames per read group
NSKIP = 0 / Number of frames dropped

FRAMEO = 0 / zero-frame read

INTTIME = 0 / Integration time

EXPTIME = 0 / Exposure time

DURATION = 0 / Total duration of exposure
OBJ_TYPE = 'FAINT' / Object type

#include files will typically be just lines defining keyword definitions as above, for example, the file
target_information.gen. inc looks like this:

/ Target information

TARGPROP = input ('TARGNAME') / proposer's name for the target

TARGNAME = 'NGC 104" / standard astronomical catalog name for target
TARGTYPE = 'FIXED' / fixed target, moving target, or generic target
TARG_RA = 0.0 / target RA computed at time of exposure

TARGURA = 0.0 / target RA uncertainty

TARG_DEC = 0.0 / target DEC computed at time of exposure

TARRUDEC = 0.0 / target Dec uncertainty

PROP_RA = 0.0 / proposer specified RA for the target
PROP_DEC = 0.0 / proposer specified Dec for the target
PROPEPOC = 2000.0 / proposer specified epoch for RA and Dec

and is used in many of the top-level level1b templates.

Data

The data section consists of a single expression that returns a Numpy array containing the output data.
The following are available in the namespace:

* np: import numpy as np

e input: A fits HDUList object containing the content of the input FITS file.

e output: A fits HDUList object containing the content of the output FITS file. Note that the output FITS file
may only be partially contructed. Importantly, higher-number HDUs will not yet exist.

A complete example

# This file defines the structure of a MIRI level 1b file
<<file miri_levellb>>
<<header primary>>

SIMPLE =T

BITPIX = 32

NAXIS =0

EXTEND =T

ORIGIN = 'STScI'

TELESCOP = '"JWST'

FILENAME = '' / The filename

DATE = now() / Date this file was generated

#include "levella.gen.inc"

(continues on next page)

12.1. Package Index 271




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

(continued from previous page)

#include "levellb.gen.inc"

/ MIRI-specific keywords

FILTER = '" / Filter element used

FLTSUITE = '' / Flat field element used

WAVLNGTH = '' / Wavelength requested in the exposure specification
GRATING = '' / Grating/dichroic wheel position
LAMPON = '" / Internal calibration lamp
CCCSTATE = '' / Contamination control cover state
/ Exposure parameters

READPATT = '' / Readout pattern

NEFRAME = 1 / Number of frames per read group
NSKIP = 0 / Number of frames dropped

FRAMEO = 0 / zero-frame read

INTTIME = 0 / Integration time

EXPTIME = 0 / Exposure time

DURATION = 0 / Total duration of exposure
OBJ_TYPE = 'FAINT' / Object type

/ Subarray parameters

SUBARRAY = '' / Name of subarray used

SUBXSTRT = 0 / x—axis pixel number of subarray origin
SUBXSIZE = 0 / length of subarray along x—axis
SUBTSTRT = 0 / y-axis pixel number of subarray origin
SUBYSIZE = 0 / length of subarray along y-axis
LIGHTCOL = 0 / Number of light-sensitive columns
<<data>>

<<header science>>

XTENSION = 'IMAGE' / FITS extension type
BITPIX = / bits per data value
NAXIS = / number of data array dimensions
NAXIS1 = / length of first data axis (#columns)
NAXIS2 = / length of second data axis (#rows)
NAXIS3 = / length of third data axis (#groups/integration)
NAXIS4 = / length of fourth data axis (#integrations)
PCOUNT =0 / number of parameter bytes following data table
GCOUNT =1 / number of groups
EXTNAME = 'SCI' / extension name
BSCALE = 1.0 / scale factor for array value to physical value
BZERO = 32768 / physical value for an array value of zero
BUNIT = 'DN' / physical units of the data array values
<<data>>
input [0] .data.reshape ((input[0] .header ['NINT'], \

input [0] .header [ 'NGROUP'], \

input [0] .header [ '"NAXIS2'], \

input [0] .header [ "NAXIS1'])). \

astype ('uintl6')

272 Chapter 12. Package Documentation




JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

jwst.fits_generator Package
12.1.19 First Frame Correction
Description

The MIRI first frame correction step flags the first group in every integration as bad (the DO_NOT_USE group data
quality flag is added), if the number of groups is greater than 1. No correction or flagging is done otherwise.

Reference File

This step does not use any reference file.

Step Arguments

The first frame correction has no step-specific arguments.

jwst.firstframe Package

Classes

FirstFrameStep([name, parent, config_file, ...]) FirstFrameStep: This is a MIRI specific task.

FirstFrameStep

class jwst.firstframe.FirstFrameStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

FirstFrameStep: This is a MIRI specific task. If the number of groups is greater than 3, the DO_NOT_USE
group data quality flag is added to first group.

Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional) - The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

*» config_file (str path, optional)- The path to the config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Methods Summary

12.1. Package Index 273


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

process(input) This is where real work happens.

Methods Documentation
process (input)

This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

Y

Step FirstFrameStep

12.1.20 Flatfield

Description

At its basic level this step flat-fields an input science data set by dividing by a flat-field reference image. In particular,
the SCI array from the flat-field reference file is divided into both the SCI and ERR arrays of the science data set, and
the flat-field DQ array is combined with the science DQ array using a bit-wise OR operation.

Non-NIRSpec Data

MultiSlit data models are handled as follows. First, if the flat-field reference file supplied to the step is also in the form
of a MultiSlit model, it searches the reference file for slits with names that match the slits in the science exposure (e.g.
‘S1600A1° or ‘S200B1°). When it finds a match, it uses the flat-field data for that slit to correct the particular slit data
in the science exposure. If, on the other hand, the flat-field consists of a single image model, the region corresponding
to each slit in the science data is extracted on-the-fly from the flat-field data and applied to the corresponding slit in
the science data.

Multiple-integration datasets (the _rateints.fits products from the ramp_fit step) are handled by applying the flat-field
to each integration.

NIRSpec imaging data are corrected the same as non-NIRSpec data, i.e. they will just be divided by a flat-field
reference image.

For pixels whose DQ is NO_FLAT_FIELD in the reference file, the flat value is reset to 1.0. Similarly, for pixels whose
flat value is NaN, the flat value is reset to 1.0 and DQ value in the output science data is set to NO_FLAT_FIELD. In
both cases, the effect is that no flat-field is applied.

If any part of the input data model gets flat-fielded (e.g. at least one slit of a MultiSlit model), the status keyword
S_FLAT will be set to COMPLETE in the output science data.

274 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

NIRSpec Data

Flat-fielding of NIRSpec spectrographic data differs from other modes in that the flat field array that will be divided
into the SCI and ERR arrays of the input science data set is not read directly from CRDS. This is because the flat field
varies with wavelength, and the wavelength of light that falls on any given pixel depends on mode and on which slit or
slits are open. The flat-field array that is divided into the SCI and ERR arrays is constructed on-the-fly by extracting
the relevant section from the reference files, and then — for each pixel — interpolating to the appropriate wavelength for
that pixel. See the Reference File section for further details. There is an option to save the on-the-fly flat field to a file.

NIRSpec NRS_BRIGHTOBIJ data are processed much like other NIRSpec spectrographic data, except that
NRS_BRIGHTOBJ data are in a CubeModel, rather than a MultiSlitModel or ImageModel (used for IFU data). A
2-D flat field image will be constructed on-the-fly as usual, but this image will be divided into each plane of the 3-D
science data and error array, resulting in an output CubeModel.

When this step is called with NIRSpec imaging data as input, the data will be flat-fielded as described in the section
for non-NIRSpec data.

Subarrays

This step handles input science exposures that were taken in subarray modes in a flexible way. If the reference data
arrays are the same size as the science data, they will be applied directly. If there is a mismatch, the routine will
extract a matching subarray from the reference file data arrays and apply them to the science data. Hence full-frame
reference files can be used for both full-frame and subarray science exposures, or subarray-dependent reference files
can be provided if desired.

Reference File

There are four reference file types for the flat_field step. Reftype FLAT is used for all exposure types except NIR-
Spec spectra. NIRSpec spectra use three reftypes: FFLAT (fore optics), SFLAT (spectrograph optics), and DFLAT
(detector).

CRDS Selection Criteria

For MIRI Imaging, flat-field reference files are selected based on the values of INSTRUME, DETECTOR, FILTER,
READPATT, and SUBARRAY in the science data file.

For MIRI MRS, flat-field reference files are selected based on the values of INSTRUME, DETECTOR, BAND, READ-
PATT, and SUBARRAY in the science data file.

For NIRCam, flat-field reference files are selected based on the values of INSTRUME, DETECTOR, FILTER, and
PUPIL in the science data file.

For NIRISS, flat-field reference files are selected based on the values of INSTRUME, DETECTOR, and FILTER in
the science data file.

For NIRSpec, flat-field reference files are selected based on the values of INSTRUME, DETECTOR, FILTER, GRAT-
ING, and EXP_TYPE in the science data file.

Reference File Formats for MIRI, NIRCAM, and NIRISS

Except for NIRSpec modes, flat-field reference files are FITS format with 3 IMAGE extensions and 1 BINTABLE
extension. The primary data array is assumed to be empty. The 3 IMAGE extensions have the following characteristics:

12.1. Package Index 275



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

EXTNAME | NAXIS | Dimensions | Data type
SCI 2 ncols x nrows | float

ERR 2 ncols x nrows | float

DQ 2 ncols x nrows | integer

The BINTABLE extension uses EXTNAME=DQ_DEF and contains the bit assignments of the conditions flagged in the
DQ array.

For application to imaging data, the FITS file contains a single set of SCI, ERR, DQ, and DQ_DEF extensions. Image
dimensions should be 2048x2048 for the NIR detectors and 1032 x 1024 for MIRI, unless data were taken in subarray
mode.

For slit spectroscopy, a set of SCI, ERR and DQ extensions can be provided for each aperture (identified by the detector
subarray onto which the spectrum is projected).

A single DQ_DEF extension provides the data-quality definitions for all of the DQ arrays, which must use the same
coding scheme. The DQ_DEF table contains the bit assignments used in the DQ array, and contains 4 columns:

* BIT: integer value giving the bit number, starting at zero
* VALUE: the equivalent base-10 integer value of BIT
* NAME: the string mnemonic name of the data quality condition

* DESCRIPTION: a string description of the condition

Reference File Formats for NIRSpec

For NIRSpec data, the flat-field reference files allow for variations in the flat field with wavelength as well as from
pixel to pixel. There is a separate flat-field reference file for each of three sections of the instrument: the fore optics
(FFLAT), the spectrograph (SFLAT), and the detector (DFLAT). The contents of the reference files differ from one
mode to another (see below), but in general there may be a flat-field image and a 1-D array. The image provides
pixel-to-pixel values for the flat field that may vary slowly (or not at all) with wavelength, while the 1-D array is for a
pixel-independent fast variation with wavelength. Details of the file formats are given in the following sections.

If there is no significant slow variation with wavelength, the image will be a 2-D array; otherwise, the image will
be a 3-D array, with each plane corresponding to a different wavelength. In the latter case, the wavelength for each
plane will be given in a table extension called WAVELENGTH in the flat-field reference file. The fast variation is
given in a table extension called FAST_VARIATION, with column names “slit_name”, “nelem”, “wavelength”, and
“data” (an array of wavelength-dependent flat-field values). Each row of the table contains a slit name (for fixed-slit
data, otherwise “ANY”), an array of flat-field values, an array of the corresponding wavelengths, and the number of
elements (“nelem”) of “data” and “wavelength” that are populated, as the allocated array size can be larger than is
needed. For some reference files there will not be any image array, in which case all the flat field information will be

taken from the FAST_VARIATION table.

The SCI extension of the reference file may contain NaNs. If so, the flat_field step will replace these values with 1 and
will flag the corresponding pixel in the DQ extension with NO_FLAT_FIELD. The WAVELENGTH extension is not
expected to contain NaNs.

For the detector section, there is only one flat-field reference file for each detector. For the fore optics and the spectro-
graph sections, however, there are different flat fields for fixed-slit data, IFU data, and for multi-object spectroscopic
data. Here is a summary of the contents of these files.

For the fore optics, the flat field for fixed-slit data contains just a FAST_VARIATION table (i.e. there is no image). This
table has five rows, one for each of the fixed slits. The flat field for IFU data also contains just a FAST_VARIATION
table, but it has only one row with the value “ANY” in the “slit_name” column. For multi-object spectroscopic data, the
flat field contains four sets (one for each MSA quadrant) of images, WAVELENGTH tables, and FAST_VARIATION

276 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

tables. The images are unique to the fore optics flat fields, however. The image “pixels” correspond to micro-shutter
array slits, rather than to detector pixels. The array size is 365 rows by 171 columns, and there are multiple planes to
handle the slow variation of flat field with wavelength.

For the spectrograph optics, the flat-field files have nearly the same format for fixed-slit data, IFU, and multi-object
data. The difference is that for fixed-slit and IFU data, the image is just a single plane, i.e. the only variation with
wavelength is in the FAST_VARIATION table, while there are multiple planes in the image for multi-object spectro-
scopic data (and therefore there is also a corresponding WAVELENGTH table, with one row for each plane of the
image).

For the detector section, the flat field file contains a 3-D image (i.e. the flat field at multiple wavelengths), a corre-
sponding WAVELENGTH table, and a FAST_VARIATION table with one row.

As just described, there are 3 types of reference files for NIRSpec (FFLAT, SFLAT, and DFLAT), and within each of
these types, there are several formats, which are now described.

Fore Optics (FFLAT)

There are 3 types of FFLAT reference files: fixed slit, msa spec, and IFU. For each type the primary data array is
assumed to be empty.

Fixed Slit

The fixed slit references files have EXP_TYPE=NRS_FIXEDSLIT, and have a single BINTABLE extension, labeled
FAST_VARIATION.

The table contains four columns:
e slit_name: string, name of slit
* nelem: integer, maximum number of wavelengths
» wavelength: float 1-D array, values of wavelength
e data: float 1-D array, flat field values for each wavelength

The number of rows in the table is given by NAXIS2, and each row corresponds to a separate slit.

MSA Spec

The MSA Spec references files have EXP_TYPE=NRS_MSASPEC, and contain data pertaining to each of the 4
quadrants. For each quadrant, there are 3 IMAGE extensions, a BINTABLE extension labeled WAVELENGTH, and
a BINTABLE extension labeled FAST_VARIATION. The file also contains one BINTABLE labeled DQ_DEF.

The IMAGE extensions have the following characteristics:

EXTNAME | NAXIS | Dimensions Data type
SCI 3 ncols x nrows x nelem | float

ERR 3 ncols x nrows x nelem | float

DQ 3 ncols x nrows X nelem | integer

For all 3 of these extensions, the EXTVER keyword indicates the quadrant number, 1 to 4. Each plane of the SCI
array gives the flat_field value for every pixel in the quadrant for the corresponding wavelength, which is specified in
the WAVELENGTH table.

The WAVELENGTH table contains a single column:

12.1. Package Index 277



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

» wavelength: float 1-D array, values of wavelength
Each of these wavelength values corresponds to a single plane of the IMAGE arrays.
The FAST_VARIATION table contains four columns:

¢ slit_name: the string “ANY”

* nelem: integer, maximum number of wavelengths

» wavelength: float 1-D array, values of wavelength

* data: float 1-D array, flat field values for each wavelength

The flat field values in this table are used to account for a wavelength-dependence on a much finer scale than given by
the values in the SCI array. There is a single row in this table, as the same wavelength-dependent value is applied to
all pixels in the quadrant.

The DQ_DETF table contains the bit assignments used in the DQ array, and contains 4 columns:
* BIT: integer value giving the bit number, starting at zero
* VALUE: the equivalent base-10 integer value of BIT
* NAME: the string mnemonic name of the data quality condition

¢ DESCRIPTION: a string description of the condition

IFU

The IFU reference files have EXP_TYPE=NRS_IFU. These have one extensions, a BINTABLE extension labeled
FAST_VARIATION.

The FAST_VARIATION table contains four columns:
* slit_name: the string “ANY”
 nelem: integer, maximum number of wavelengths
» wavelength: float 1-D array, values of wavelength
* data: float 1-D array, flat field values for each wavelength

The flat field values in this table are used to account for a wavelength-dependence on a much finer scale than given by
the values in the SCI array. For each pixel in the science data, the wavelength of the light that fell on that pixel will
be determined by using the WCS interface. The flat-field value for that pixel will then be obtained by interpolating
within the wavelength and data arrays from the FAST_VARIATION table.

The DQ_DEF table contains the bit assignments used in the DQ arrays. The table contains the 4 columns:
* BIT: integer value giving the bit number, starting at zero
* VALUE: the equivalent base-10 integer value of BIT
* NAME: the string mnemonic name of the data quality condition

* DESCRIPTION: a string description of the condition

Spectrograph (SFLAT)

There are 3 types of SFLAT reference files: fixed slit, msa spec, and IFU. For each type the primary data array is
assumed to be empty.

278 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Fixed Slit

The fixed slit references files have EXP_TYPE=NRS_ FIXEDSLIT, and have a BINTABLE extension labeled
FAST_VARIATION. The table contains four columns:

e slit_name: string, name of slit

* nelem: integer, maximum number of wavelengths

» wavelength: float 1-D array, values of wavelength

e data: float 1-D array, flat field values for each wavelength

The number of rows in the table is given by NAXIS2, and each row corresponds to a separate slit.

MSA Spec

The MSA Spec references files have EXP_TYPE=NRS_MSASPEC. There are 3 IMAGE extensions, a BINTABLE
extension labeled WAVELENGTH, a BINTABLE extension labeled FAST_VARIATION, and a BINTABLE labeled
DQ_DEFE

The IMAGE extensions have the following characteristics:

EXTNAME | NAXIS | Dimensions Data type
SCI 3 ncols x nrows x n_wl | float

ERR 3 ncols x nrows x n_wl | float

DQ 3 ncols x nrows x n_wl | integer

The keyword NAXIS3 in these extensions specifies the number n_wl of monochromatic slices, each of which gives
the flat_field value for every pixel for the corresponding wavelength, which is specified in the WAVELENGTH table.

The WAVELENGTH table contains a single column:

» wavelength: float 1-D array, values of wavelength
Each of these wavelength values corresponds to a single plane of the IMAGE arrays.
The FAST_VARIATION table contains four columns:

* slit_name: the string “ANY”

 nelem: integer, maximum number of wavelengths

» wavelength: float 1-D array, values of wavelength

* data: float 1-D array, flat field values for each wavelength

The flat field values in this table are used to account for a wavelength-dependence on a much finer scale than given by
the values in the SCI array. For each pixel in the science data, the wavelength of the light that fell on that pixel will
be determined by using the WCS interface. The flat-field value for that pixel will then be obtained by interpolating
within the wavelength and data arrays from the FAST_VARIATION table.

The DQ_DEF table contains the bit assignments used in the DQ array, and contains 4 columns:
* BIT: integer value giving the bit number, starting at zero
* VALUE: the equivalent base-10 integer value of BIT
e NAME: the string mnemonic name of the data quality condition

* DESCRIPTION: a string description of the condition

12.1. Package Index 279



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Detector (DFLAT)

There is only one type of DFLAT reference file, and it contains 3 IMAGE extensions, a BINTABLE extension labeled
WAVELENGTH, a BINTABLE extension labeled FAST_VARIATION, and a BINTABLE labeled DQ_DEF.

The IMAGE extensions have the following characteristics:

EXTNAME | NAXIS | Dimensions Data type
SCI 3 ncols x nrows x n_wl | float

ERR 3 ncols X nrows float

DQ 3 ncols X nrows integer

The keyword NAXIS3 in the SCI IMAGE extension specifies the number n_wl of monochromatic slices, each of which
gives the flat_field value for every pixel for the corresponding wavelength, which is specified in the WAVELENGTH
table.

The WAVELENGTH table contains a single column:

» wavelength: float 1-D array, values of wavelength
Each of these wavelength values corresponds to a single plane of the SCI IMAGE array.
The FAST_VARIATION table contains four columns:

¢ slit_name: the string “ANY”

* nelem: integer, maximum number of wavelengths

» wavelength: float 1-D array, values of wavelength

* data: float 1-D array, flat field values for each wavelength

The flat field values in this table are used to account for a wavelength-dependence on a much finer scale than given by
the values in the SCI array. There is a single row in this table, as the same wavelength-dependent value is applied to
all pixels.

The DQ_DETF table contains the bit assignments used in the DQ array, and contains 4 columns:
* BIT: integer value giving the bit number, starting at zero
* VALUE: the equivalent base-10 integer value of BIT
* NAME: the string mnemonic name of the data quality condition

¢ DESCRIPTION: a string description of the condition

Step Arguments

The flat_field step has one step-specific argument, and it is only relevant for NIRSpec data.
e ——flat_suffix

flat_suffix is a string, the suffix to use when constructing the name of on optional output file for on-the-fly flat
fields. If f1at_suf fix is specified (and if the input data are NIRSpec), the extracted and interpolated flat fields will
be saved to a file with this suffix. The default (if £1at_suffix was not specified) is to not write this optional output
file.

280 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

jwst.flatfield Package

Classes

FlatFieldStep([name, parent, config_file, ...]) FlatFieldStep: Flat-field a science image using a flat-
field reference image.

FlatFieldStep

class jwst.flatfield.FlatFieldStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

FlatFieldStep: Flat-field a science image using a flatfield reference image.
Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional)— The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config_file(str path, optional)-The path tothe config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

reference_file types
spec

Methods Summary

process(input) This is where real work happens.
skip_step(input_model) Set the calibration switch to SKIPPED.

Attributes Documentation

reference_file types = ['flat', 'fflat',6 'sflat', 'dflat’']

spec = '\n # Suffix for optional output file for interpolated flat fields.\n # Note
Methods Documentation

process (input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour

12.1. Package Index 281


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

is to raise a NotImplementedError exception.

skip_step (input_model)
Set the calibration switch to SKIPPED.

This method makes a copy of input_model, sets the calibration switch for the flat_field step to SKIPPED
in the copy, closes input_model, and returns the copy.

Class Inheritance Diagram

Step FlatFieldStep

12.1.21 Fringe Correction

Description

This step applies a fringe correction to the SCI data of an input data set by dividing the SCI and ERR arrays by a fringe
reference image. In particular, the SCI array from the fringe reference file is divided into the SCI and ERR arrays of
the science data set. Only pixels that have valid values in the SCI array of the reference file will be corrected.

This correction is applied only to MIRI MRS (IFU) mode exposures, which are always single full-frame 2-D images.

The input to this step is always an ImageModel data model. The fringe reference file that matches the input de-
tector (MIRIFUSHORT or MIRIFULONG) and wavelength band (SHORT, MEDIUM, or LONG, as specified by
GRATNGI14) is used.

Upon successful application of this correction, the status keyword S_FRINGE will be set to COMPLETE.

Reference File Types

The fringe correction step uses a FRINGE reference file, which has the same format as the FLAT reference file. This
correction is applied only to MIRI MRS (IFU) mode exposures, which are always single full-frame 2-D images.

CRDS Selection Criteria

Fringe reference files are selected by DETECTOR and GRATNG14.

Reference File Format

Fringe reference files are FITS format with 3 IMAGE extensions and 1 BINTABLE extension. The primary data array
is assumed to be empty. The 3 IMAGE extensions have the following characteristics:

282 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

EXTNAME | NAXIS | Dimensions | Data type
SCI 2 ncols x nrows | float

ERR 2 ncols x nrows | float

DQ 2 ncols x nrows | integer

Image dimensions should be 1032 x 1024.

The BINTABLE extension uses EXTNAME=DQ_DEF and contains the bit assignments of the conditions flagged in the
DQ array.

jwst.fringe Package

Classes
FringeStep([name, parent, config_file, ...]) FringeStep: Apply fringe correction to a science image
using a fringe reference image.
FringeStep
class jwst.fringe.FringeStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

FringeStep: Apply fringe correction to a science image using a fringe reference image.
Create a St ep instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional)-— The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config file(str path, optional)-The path tothe config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

reference_file types

Methods Summary

process(input) This is where real work happens.

12.1. Package Index 283


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Documentation

reference_file_types = ['fringe']

Methods Documentation
process (input)

This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

Step FringeStep

12.1.22 Gain Scale Processing

Description

The gain_scale step rescales pixel values in JWST countrate science data products in order to correct for the effect
of using a non-standard detector gain setting. The countrate data are rescaled to make them appear as if they had been
obtained using the standard gain setting.

This currently only applies to NIRSpec exposures that are read out using a subarray pattern, in which case a gain setting
of 2 is used instead of the standard setting of 1. Note that this only applies to NIRSpec subarray data obtained after
April 2017, which is when the change was made in the instrument flight software to use gain=2. NIRSpec subarray
data obtained previous to that time used the standard gain=1 setting.

The gain_scale step is applied at the end of the calwebb_detectorl pipeline, after the ramp_fit step has
been applied. It is applied to both the rate and rateints products from ramp_fit, if both types of products
were created. The science (SCI) and error (ERR) arrays are both rescaled.

The scaling factor is obtained from the GAINFACT keyword in the header of the gain reference file. Normally the
ramp_fit step will read that keyword value during its execution and store the value in the science data keyword
GAINFACT, so that the gain reference file does not have to be loaded again by the gain_scale step. If, however,
the step does not find that keyword populated in the science data, it will load the gain reference file to retreive it. If all
attempts to find the scaling factor fail, the step will be skipped.

Gain reference files for instruments or modes that use the standard gain setting will typically not have the GAINFACT
keyword in their header, which will cause the gain_scale step to be skipped. Alternatively, gain reference files for
modes that use the standard gain can have GAINFACT=1 . 0, in which case the correction will be benign.

Upon successful completion of the step, the S_GANSCL keyword in the science data will be set to “COMPLETE.”

Arguments

The gain_scale correction has no step-specific arguments.

284 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Reference File

The gain_scale correction step uses the gain reference file. The only purpose of the reference file is to retrieve the
GAINFACT keyword value from its header (the reference file data are not used in any way). If the ramp_fit step,
which also uses the gain reference file, succeeded in finding the GAINFACT keyword in this reference file, it will store
the value in the GAINFACT keyword in the science data, in which case the gain_scale step will not reload the gain
reference file.

jwst.gain_scale Package

Classes

GainScaleStep([name, parent, config_file, ...]) GainScaleStep: Rescales countrate data to account for
use of a non-standard gain value.

GainScaleStep

class jwst.gain_scale.GainScaleStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

GainScaleStep: Rescales countrate data to account for use of a non-standard gain value. All integrations are
multiplied by the factor GAINFACT.

Create a Step instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional) - The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config file(str path, optional)-The path tothe config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Attributes Summary

reference_file types

Methods Summary

process(input) This is where real work happens.

12.1. Package Index 285


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Attributes Documentation

reference_file types = ['gain']

Methods Documentation
process (input)

This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

Class Inheritance Diagram

Step GainScaleStep

12.1.23 Group Scale Processing

Description

The group_scale step rescales pixel values in raw JWST science data products in order to correct for the effect of
using a value of NFRAMES for on-board frame averaging that is not a power of 2.

When multiple frames are averaged together on-board into a single group, the sum of the frames is computed and then
the sum is divided by the number of frames to compute an average. Division by the number of frames is accomplished
by simply bit-shifting the sum by an appropriate number of bits, corresponding to the decimal value of the number of
frames. For example, when 2 frames are averaged into a group, the sum is shifted by 1 bit to achieve the equivalent
of dividing by 2, and for 8 frames, the sum is shifted by 3 bits. The number of frames that are averaged into a group
is recorded in the NFRAMES header keyword in science products and the divisor that was used is recorded in the
FRMDIVSR keyword.

This method only results in the correct average when NFRAMES is a power of 2. When NFRAMES is not a power of
2, the next largest divisor is used to perform the averaging. For example, when NFRAMES=5, a divisor of 8 (bit shift
of 3) is used to compute the average. This results in averaged values for every group that are too low by the factor
NFRAMES/FRMDIVSR.

This step rescales raw pixel values to the correct level by multiplying all groups in all integrations by the factor
FRMDIVSR/NFRAMES.

It is assumed that this step will always be applied to raw data before any other processing is done to the pixel values
and hence rescaling is applied only to the SCI data array of the input product. It assumes that the ERR array has not
yet been populated and hence there’s no need for rescaling that array.

If the step detects that the values of NFRAMES and FRMDIVSR are equal to one another, which means the data were
scaled correctly on-board, it skips processing and returns the input data unchanged. In this case, the calibration step
status keyword S_GRPSCL will be set to SKIPPED. After successful correction of data that needs to be rescaled, the
S_GRPSCL keyword will be set to COMPLETE.

286 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Arguments

The group_scale correction has no step-specific arguments.

Reference File

The group_scale correction step does not use any reference files.

jwst.group_scale Package

Classes
GroupScaleStep([name, parent, config_file, ...]) GroupScaleStep: Rescales group data to account for on-
board frame averaging that did not use NFRAMES that
is a power of two.
GroupScaleStep

class jwst.group_scale.GroupScaleStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

GroupScaleStep: Rescales group data to account for on-board frame averaging that did not use NFRAMES that
is a power of two. All groups in the exposure are rescaled by FRMDIVSR/NFRAMES.

Create a Step instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional)— The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

*» config file(str path, optional)- The path to the config file that this step was
initialized with. Use to determine relative path names.

o xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Methods Summary

process(input) This is where real work happens.

Methods Documentation

process (input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

12.1. Package Index 287


https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Class Inheritance Diagram

Step GroupScaleStep

Y

12.1.24 Guider CDS Processing

Description

The guider_cds step computes countrate images from the Correlated Double Sampling (CDS) detector readouts
used in FGS guiding mode data. The exact way in which the countrate images are computed depends on the guiding
mode (ID, ACQ1, ACQ2, TRACK, FineGuide) in use.

ID mode

The ID mode has 2 integrations (NINTS=2) with 2 groups per integration (NGROUPS=2). For this mode the
guider_cds step first computes a difference image for each integration by subtracting group 1 from group 2. A final
difference image is then computed by taking the minimum value at each pixel from the 2 integrations. The minimum
difference image is then divided by the group time to produce a countrate image. The output data array will be 3D,
with dimensions of (ncols x nrows x 1).

ACQ1, ACQ2, and TRACK modes

These modes use multiple integrations (NINTS>1) with 2 groups per integration (NGROUPS=2). For these modes
the guider_cds step computes a countrate image for each integration, by subtracting group 1 from group 2 and
dividing by the group time. The output data array will be 3D, with dimensions of (ncols x nrows x nints).

FineGuide mode

The FineGuide mode uses many integrations (NINTS>>1) with 4 groups at the beginning and 4 groups at the end of
each integration. The guider_cds step computes a countrate image for each integration by subtracting the average
of the first 4 groups from the average of the last 4 groups and dividing by the group time. The output data array will
be 3D, with dimensions of (ncols x nrows X nints).

After successful completion of the step, the BUNIT keyword in the output data is updated to ‘DN/s’ and the
S_GUICDS keyword is set to COMPLETE.

Arguments

The guider_cds correction has no step-specific arguments.

288 Chapter 12. Package Documentation



JWST Pipeline Documentation, Release 0.0.0.dev4079+ga8594987

Reference File

The guider_cds step does not use any reference files.

jwst.guider_cds Package

Classes
GuiderCdsStep([name, parent, config_file, ...]) This step calculates the countrate for each pixel for FGS
modes.
GuiderCdsStep

class jwst.guider_cds.GuiderCdsStep (name=None, parent=None, config_file=None, _vali-

date_kwds=True, **kws)
Bases: jwst.stpipe.Step

This step calculates the countrate for each pixel for FGS modes.
Create a Step instance.
Parameters

* name (str (https://docs.python.org/3/library/stdtypes.html#str), optional) — The
name of the Step instance. Used in logging messages and in cache filenames. If not pro-
vided, one will be generated based on the class name.

* parent (Step instance, optional) - The parent step of this step. Used to deter-
mine a fully-qualified name for this step, and to determine the mode in which to run this
step.

* config file(str path, optional)-The path tothe config file that this step was
initialized with. Use to determine relative path names.

* xxkws (dict (https://docs.python.org/3/library/stdtypes.html#dict)) — Additional parame-
ters to set. These will be set as member variables on the new Step instance.

Methods Summary

process(input) This is where real work happens.

Methods Documentation

process (input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

12.1. Package Index 289


https://docs.python.org/3/library