
test-helpers
Release 1.5.4

May 11, 2015

Contents

1 Examples 3

2 Documentation 5
2.1 Base Test Cases . 5
2.2 Testing Mixins . 5
2.3 MongoDB Helpers . 7
2.4 Postgres Helpers . 7
2.5 Rabbit MQ Helpers . 7
2.6 Testing Utilities . 7
2.7 Indices and tables . 7
2.8 Release History . 8

Python Module Index 9

i

ii

test-helpers, Release 1.5.4

The Test Helpers library exists to consolidate some of the repetition that has arisen in our tests while providing a useful
set of generic testing utilities.

This library offers a set of base test cases, testing mixins, and testing utilities to make interacting with third party
services, testing metrics generation, and creating mocks or patches easier.

Contents 1

test-helpers, Release 1.5.4

2 Contents

CHAPTER 1

Examples

The library is designed to be simple and modular. By using mixins to extend the test cases functionality we can write
more expressive tests in fewer lines of code.

>>> from test_helpers import mixins, bases
>>> class WhenFooingBar(mixins.PatchMixin, bases.BaseTest):
...
... patch_prefix = 'module.submodule'
...
... @classmethod
... def configure(cls):
... cls.foo = cls.create_patch('foo', return_value=True)
...
... @classmethod
... def execute(cls):
... function_under_test()
...
... def should_have_called_foo(cls):
... self.foo.assert_called_once_with()

3

test-helpers, Release 1.5.4

4 Chapter 1. Examples

CHAPTER 2

Documentation

2.1 Base Test Cases

The base test cases module contains useful classes that inherit from the unit test standard library and optionally inherit
from an arbitrary number of mixins. The purpose of these classes is to provide an integration point for the mixins and
to help promote the usage of the Arrange-Act-Assert testing methodology used here at AWeber.

class test_helpers.bases.BaseTest(methodName=’runTest’)
Base class for the AWeber AAA testing style.

This implements the Arrange-Act-Assert style of unit testing though the names were chosen to match existing
convention. New unit tests should use this as a base class and replace the configure() and execute()
methods as necessary.

classmethod annihilate()
Clean up after a test.

Unlike tearDownClass(), this method is guaranteed to be called in all cases. It will be called even if
configure() fails so do not do anything that depends on it having been successful without checking if
it was.

classmethod configure()
Extend to configure your test environment.

classmethod execute()
Override to execute your test action.

maxDiff = 100000

classmethod setUpClass()
Arrange the test and do the action.

If you are extending this method, then you are required to call this implementation as the last thing in your
version of this method.

classmethod tearDownClass()

2.2 Testing Mixins

Collection of functionality mix-ins.

5

test-helpers, Release 1.5.4

This module contains standalone classes that can be safely mixed into the BaseTest class. Each mixin extends the
functionality of the test case by adding behaviors, methods, and attributes - for example, patching well-understood
functionality or automatically creating/destroying an in memory UDP server.

When creating a mixin it is important to take not that you should strive to keep the Method Resolution Order (MRO)
as clean as possible. Each mixin class should ideally only inherit from object.

class test_helpers.mixins.EnvironmentMixin
Mix this class in if you manipulate environment variables.

A common problem in testing code that uses environment variables is forgetting that they are really globals
that persist between tests. This mixin exposes methods that make it easy and safe to set and unset environment
variables while ensuring that the environment will be restored when the test has completed.

You need to mix this in over a class that calls the configure annihilate class methods around the code
under test such as test_helpers.bases.BaseTest.

classmethod annihilate()

classmethod configure()

classmethod set_environment_variable(name, value)
Set the value of an environment variable.

classmethod unset_environment_variable(name)
Clear an environment variable.

class test_helpers.mixins.PatchMixin
A mixin to allow inline patching and automatic un-patching.

This mixin adds one new method, create_patch that will create and activate patch objects without having
to use the decorator.

In order to make use of the patching functionality you need to set the patch_prefix class attribute. This
attribute should be the python module path whose objects you want to patch. For example, if you wanted to
patch the baz object in the foo.bar module your patch prefix might look like foo.bar. When creating a
patch you can now just refer to the object name like cls.create_patch(’baz’).

This usage of this mixin as opposed to the patch decorator results in less pylint errors and not having to think
about the order of decorator application.

Example Usage:

class MyTest(mixins.PatchMixin, bases.BaseTest):

patch_prefix = 'my_application.module.submodule'

@classmethod
def configure(cls):

cls.foo_mock = cls.create_patch('foo')
cls.bar_mock = cls.create_patch('bar', return_value=100)

@classmethod
def execute(cls):

function_under_test()

def should_call_foo(self):
self.foo_mock.assert_called_once_with()

def should_return_100_from_bar(self):
self.assertEqual(100, self.bar_mock.return_value)

6 Chapter 2. Documentation

test-helpers, Release 1.5.4

classmethod create_patch(target, **kwargs)
Create and apply a patch.

This method calls mock.patch() with the keyword parameters and returns the running patch. This
approach has the benefit of applying a patch without scoping the patched code which, in turn, lets you
apply patches without having to override setUpClass() to do it.

Parameters target (str) – the target of the patch. This is passed as an argument to
cls.patch_prefix.format() to create the fully-qualified patch target.

patch_prefix = ‘’

classmethod setUpClass()

classmethod stop_patches()
Stop any active patches when the class is finished.

classmethod tearDownClass()

2.2.1 Tornado Specific Helpers

2.3 MongoDB Helpers

2.4 Postgres Helpers

2.5 Rabbit MQ Helpers

2.6 Testing Utilities

The testing utilities module contains standalone functionality for that might be useful for a select number of test cases.
These functions can be selectively applied to a small subset of tests so they might not warrant the full capacity of mixin
behavior.

The utilities within this module are typically simple functions or decorators that ease a specific testing task, such as
creating patches.

test_helpers.utils.create_ppatch(path)
Create a partial ppatch object that will only require the object name

test_helpers.utils.ppatch(path, object_name, **kwargs)
Creates a fully qualified patch object.

This function will act as a wrapper that will allow us to create a partial function representation. That will remove
the need to keep passing the same path to the patch object.

2.7 Indices and tables

• genindex

• search

2.3. MongoDB Helpers 7

http://docs.python.org/library/functions.html#str

test-helpers, Release 1.5.4

2.8 Release History

• Next Release

– Removed Makefile from the development environment.

– Make overriding execute optional.

• 1.5.4

– Relax the pin on the six library

• 1.5.3

– test_helpers.postgres module added

– test_helpers.mongo module added

• 1.5.2

– test_helpers.rabbit module added

• 1.5.1

– Allow use of mixins module without requiring the tornado package

• 1.5.0

– Initial public release.

8 Chapter 2. Documentation

https://github.com/aweber/test-helpers/compare/1.5.3...1.5.4
https://pythonhosted.org/six/
https://github.com/aweber/test-helpers/compare/1.5.2...1.5.3
https://github.com/aweber/test-helpers/compare/1.5.1...1.5.2
https://github.com/aweber/test-helpers/compare/1.5.0...1.5.1

Python Module Index

t
test_helpers.bases, 5
test_helpers.mixins, 5
test_helpers.utils, 7

9

test-helpers, Release 1.5.4

10 Python Module Index

Index

A
annihilate() (test_helpers.bases.BaseTest class method), 5
annihilate() (test_helpers.mixins.EnvironmentMixin class

method), 6

B
BaseTest (class in test_helpers.bases), 5

C
configure() (test_helpers.bases.BaseTest class method), 5
configure() (test_helpers.mixins.EnvironmentMixin class

method), 6
create_patch() (test_helpers.mixins.PatchMixin class

method), 6
create_ppatch() (in module test_helpers.utils), 7

E
EnvironmentMixin (class in test_helpers.mixins), 6
execute() (test_helpers.bases.BaseTest class method), 5

M
maxDiff (test_helpers.bases.BaseTest attribute), 5

P
patch_prefix (test_helpers.mixins.PatchMixin attribute), 7
PatchMixin (class in test_helpers.mixins), 6
ppatch() (in module test_helpers.utils), 7

S
set_environment_variable()

(test_helpers.mixins.EnvironmentMixin class
method), 6

setUpClass() (test_helpers.bases.BaseTest class method),
5

setUpClass() (test_helpers.mixins.PatchMixin class
method), 7

stop_patches() (test_helpers.mixins.PatchMixin class
method), 7

T
tearDownClass() (test_helpers.bases.BaseTest class

method), 5
tearDownClass() (test_helpers.mixins.PatchMixin class

method), 7
test_helpers.bases (module), 5
test_helpers.mixins (module), 5
test_helpers.utils (module), 7

U
unset_environment_variable()

(test_helpers.mixins.EnvironmentMixin class
method), 6

11

	Examples
	Documentation
	Base Test Cases
	Testing Mixins
	MongoDB Helpers
	Postgres Helpers
	Rabbit MQ Helpers
	Testing Utilities
	Indices and tables
	Release History

	Python Module Index

