

Overview

The Test Helpers library exists to consolidate some of the repetition that
has arisen in our tests while providing a useful set of generic testing
utilities.

This library offers a set of base test cases, testing mixins, and testing
utilities to make interacting with third party services, testing metrics
generation, and creating mocks or patches easier.

Examples

The library is designed to be simple and modular. By using mixins to extend
the test cases functionality we can write more expressive tests in fewer lines
of code.

>>> from test_helpers import mixins, bases
>>> class WhenFooingBar(mixins.PatchMixin, bases.BaseTest):
...
... patch_prefix = 'module.submodule'
...
... @classmethod
... def configure(cls):
... cls.foo = cls.create_patch('foo', return_value=True)
...
... @classmethod
... def execute(cls):
... function_under_test()
...
... def should_have_called_foo(cls):
... self.foo.assert_called_once_with()

Documentation

	Base Test Cases

	Testing Mixins
	Tornado Specific Helpers

	MongoDB Helpers

	Postgres Helpers

	Rabbit MQ Helpers

	Testing Utilities

Indices and tables

	Index

	Search Page

Release History

	1.5.4 [https://github.com/aweber/test-helpers/compare/1.5.3...1.5.4]
	Relax the pin on the six [https://pythonhosted.org/six/] library

	1.5.3 [https://github.com/aweber/test-helpers/compare/1.5.2...1.5.3]
	test_helpers.postgres module added

	test_helpers.mongo module added

	1.5.2 [https://github.com/aweber/test-helpers/compare/1.5.1...1.5.2]
	test_helpers.rabbit module added

	1.5.1 [https://github.com/aweber/test-helpers/compare/1.5.0...1.5.1]
	Allow use of mixins module without requiring the tornado package

	1.5.0
	Initial public release.

Base Test Cases

The base test cases module contains useful classes that inherit from the
unit test standard library and optionally inherit from an arbitrary number of
mixins. The purpose of these classes is to provide an integration point for
the mixins and to help promote the usage of the Arrange-Act-Assert testing
methodology used here at AWeber.

	
class test_helpers.bases.BaseTest(methodName='runTest')

	Base class for the AWeber AAA testing style.

This implements the Arrange-Act-Assert style of unit testing though
the names were chosen to match existing convention. New unit tests
should use this as a base class and replace the configure() and
execute() methods as necessary.

	
classmethod annihilate()

	Clean up after a test.

Unlike tearDownClass(), this method is guaranteed to
be called in all cases. It will be called even if
configure() fails so do not do anything that depends
on it having been successful without checking if it was.

	
classmethod configure()

	Extend to configure your test environment.

	
classmethod execute()

	Override to execute your test action.

	
maxDiff = 100000

	

	
classmethod setUpClass()

	Arrange the test and do the action.

If you are extending this method, then you are required to call
this implementation as the last thing in your version of this
method.

	
classmethod tearDownClass()

	

Testing Mixins

Collection of functionality mix-ins.

This module contains standalone classes that can be safely mixed
into the BaseTest class. Each mixin
extends the functionality of the test case by adding behaviors,
methods, and attributes - for example, patching well-understood
functionality or automatically creating/destroying an in memory
UDP server.

When creating a mixin it is important to take not that you
should strive to keep the Method Resolution Order (MRO) as clean
as possible. Each mixin class should ideally only inherit from
object.

	
class test_helpers.mixins.EnvironmentMixin

	Mix this class in if you manipulate environment variables.

A common problem in testing code that uses environment variables
is forgetting that they are really globals that persist between
tests. This mixin exposes methods that make it easy and safe to
set and unset environment variables while ensuring that the
environment will be restored when the test has completed.

You need to mix this in over a class that calls the configure
annihilate class methods around the code under test such as
test_helpers.bases.BaseTest.

	
classmethod annihilate()

	

	
classmethod configure()

	

	
classmethod set_environment_variable(name, value)

	Set the value of an environment variable.

	
classmethod unset_environment_variable(name)

	Clear an environment variable.

	
class test_helpers.mixins.PatchMixin

	A mixin to allow inline patching and automatic un-patching.

This mixin adds one new method, create_patch that will create and
activate patch objects without having to use the decorator.

In order to make use of the patching functionality you need to set
the patch_prefix class attribute. This attribute should be the python
module path whose objects you want to patch. For example, if you wanted
to patch the baz object in the foo.bar module your patch prefix
might look like foo.bar. When creating a patch you can now just refer
to the object name like cls.create_patch('baz').

This usage of this mixin as opposed to the patch decorator results
in less pylint errors and not having to think about the order of decorator
application.

Example Usage:

class MyTest(mixins.PatchMixin, bases.BaseTest):

 patch_prefix = 'my_application.module.submodule'

 @classmethod
 def configure(cls):
 cls.foo_mock = cls.create_patch('foo')
 cls.bar_mock = cls.create_patch('bar', return_value=100)

 @classmethod
 def execute(cls):
 function_under_test()

 def should_call_foo(self):
 self.foo_mock.assert_called_once_with()

 def should_return_100_from_bar(self):
 self.assertEqual(100, self.bar_mock.return_value)

	
classmethod create_patch(target, **kwargs)

	Create and apply a patch.

This method calls mock.patch() with the keyword parameters
and returns the running patch. This approach has the benefit of
applying a patch without scoping the patched code which, in turn,
lets you apply patches without having to override setUpClass()
to do it.

	Parameters:	target (str [https://docs.python.org/2/library/functions.html#str]) – the target of the patch. This is passed as
an argument to cls.patch_prefix.format() to create the
fully-qualified patch target.

	
patch_prefix = ''

	

	
classmethod setUpClass()

	

	
classmethod stop_patches()

	Stop any active patches when the class is finished.

	
classmethod tearDownClass()

	

Tornado Specific Helpers

	
class test_helpers.mixins.tornado.JsonMixin

	Mix in over TornadoMixin to enable JSON handling.

This mix in extends TornadoMixin.request() so that it will
automatically serialize request data and deserialize responses
as JSON. It does honor the HTTP content type headers so it will
not accidentally deserialize a non-JSON response or serialize an
already serialized request.

	
classmethod request(*args, **kwargs)

	Send a request and process the response.

	Parameters:	
	args – positional parameters to send to super().request

	kwargs – keyword parameters to send to super().request

	Returns:	either a tornado.httpclient.HTTPResponse [http://www.tornadoweb.org/en/branch3.2/httpclient.html#tornado.httpclient.HTTPResponse]
instance or None [https://docs.python.org/2/library/constants.html#None] if the request timed out.

	
class test_helpers.mixins.tornado.TornadoMixin

	Test tornado applications with AAA testing.

Mix this class in over test_helpers.bases.BaseTest or
similar classmethod-based testing class and you can directly
test tornado-based applications.

Usage

from unittest import TestCase
import test_helpers.mixins.tornado
import myproject

class WhenMyApplicationsGets(mixins.tornado.TornadoMixin, TestCase):

 @classmethod
 def setUpClass(cls):
 super(WhenMyApplicationGets, cls).setUpClass()
 cls.start_tornado(myproject.Application())
 cls.execute()

 @classmethod
 def tearDownClass(cls):
 super(WhenMyApplicationGets, cls).tearDownClass()
 cls.stop_tornado()

 @classmethod
 def execute(cls):
 cls.response = cls.get('/index')

 def should_return_ok(self):
 self.assertEqual(self.response.code, 200)

Attributes

This mix-in creates three useful attributes in addition to the
methods. Each of the attributes is initialized by start_tornado()
and will be None [https://docs.python.org/2/library/constants.html#None] until that method is called.

	
client

	The tornado.httpclient.HTTPClient [http://www.tornadoweb.org/en/branch3.2/httpclient.html#tornado.httpclient.HTTPClient] instance used to
interact with the application.

	
io_loop

	The tornado.ioloop.IOLoop [http://www.tornadoweb.org/en/branch3.2/ioloop.html#tornado.ioloop.IOLoop] instance that the application
is attached to.

	
url_root

	The URL root used to interact with the application. This refers
to host and port that io_loop is attached to.

	
request_timeout

	The number of seconds to run the IO loop for before giving up
on the request.

	
classmethod delete(path, **kwargs)

	Issue a DELETE request.

	
classmethod get(path, **kwargs)

	Issue a GET request.

	
classmethod head(path, **kwargs)

	Issue a HEAD request.

	
classmethod options(path, **kwargs)

	Issue a OPTIONS request.

	
classmethod patch(path, body, **kwargs)

	Issue a PATCH request.

	
classmethod post(path, body, **kwargs)

	Issue a POST request.

	
classmethod put(path, body, **kwargs)

	Issue a PUT request.

	
classmethod request(method, path, **kwargs)

	Issue a request to the application.

	Parameters:	
	method (str [https://docs.python.org/2/library/functions.html#str]) – HTTP method to invoke

	path (str [https://docs.python.org/2/library/functions.html#str]) – possibly absolute path of the resource
to invoke

	kwargs – additional arguments passed to the
tornado.httpclient.HTTPRequest [http://www.tornadoweb.org/en/branch3.2/httpclient.html#tornado.httpclient.HTTPRequest] initializer

	Returns:	either a tornado.httpclient.HTTPResponse [http://www.tornadoweb.org/en/branch3.2/httpclient.html#tornado.httpclient.HTTPResponse]
instance or None [https://docs.python.org/2/library/constants.html#None] if the request timed out.

The path parameter can be a relative path or an absolute
URL. It will be joined to url_root before the
request object is created.

	
classmethod start_tornado(application)

	Start up tornado and register application.

	Parameters:	application – anything suitable as a Tornado request
callback (see tornado.httpserver.HTTPServer [http://www.tornadoweb.org/en/branch3.2/httpserver.html#tornado.httpserver.HTTPServer])

This method binds a socket to an arbitrary temporary port,
creates a new Tornado IOLoop, and adds the application‘
to it. Calling any of the request-related methods will
start the IOLoop and run it until a response is received.

	
classmethod stop_tornado()

	Terminate the tornado IO loop.

	
class test_helpers.mixins.tornado.TornadoTest(methodName='runTest')

	Tornado version of BaseTest.

This class acts as a replacement for BaseTest
with the Tornado magic pre-mixed. All that you have to do
is:

	set tornado_application as a top-level class
attribute OR

	pass the application keyword to configure()
and make sure that this class is the first one in the
__mro__

In either case, the application is the Tornado request
callback that is being tested. See
tornado.httpserver.HTTPServer [http://www.tornadoweb.org/en/branch3.2/httpserver.html#tornado.httpserver.HTTPServer] for a complete
description of what constitutes a “request callback”.

	
classmethod annihilate()

	Terminates the Tornado application.

	
classmethod configure(application=None)

	Configures the Tornado IOLoop.

	Parameters:	application – overrides tornado_application

	
tornado_application = None

	The Tornado request handler callable.

MongoDB Helpers

	
class test_helpers.mongo.TemporaryDatabase(**kwargs)

	Creates a temporary MongoDB database that is destroyed automatically.

	Parameters:	
	host (str [https://docs.python.org/2/library/functions.html#str]) – Database to connect to. This defaults to
:envvar: MONGOHOST or localhost if omitted.

	port (int [https://docs.python.org/2/library/functions.html#int]) – Port number that the database is listening on. This
defaults to :envvar: MONGOPORT` or ``27017 if omitted.

Instances of this class will create a bare MongoDB database with a single
collection named test_helpers containing a single document with a
create date for tracking purposes. When the test process exits all
databases created will be destroyed automatically. Under the hood it uses
pymongo and registers a single cleanup function with
:func`atexit.register`.

Usage Example

from test_helpers import mongo

_testing_db = mongo.TemporaryDatabase()

def setup_module():
 _testing_db.create()

	
create()

	Create the temporary database if it does not exist.

	
drop()

	Drop the temporary database if it was created.

	
set_environment()

	Export MongoDB environment variables for the database.

This exports the MONGOHOST, MONGOPORT, and
MONGODATABASE environment variables

Postgres Helpers

	
class test_helpers.postgres.TemporaryDatabase(**kwargs)

	Creates a temporary database that is destroyed automatically.

	Parameters:	
	user (str [https://docs.python.org/2/library/functions.html#str]) – the database user to connect with. This defaults
to PGUSER or postgres if unset.

	password (str [https://docs.python.org/2/library/functions.html#str]) – the database password to connect with. This
defaults to None [https://docs.python.org/2/library/constants.html#None].

	host (str [https://docs.python.org/2/library/functions.html#str]) – the database server to connect to. This defaults
to PGHOST or localhost if omitted.

	port (str [https://docs.python.org/2/library/functions.html#str]) – port number that the database server is listening
on. This defaults to PGPORT or 5432 if omitted.

	kwargs – additional psycopg2 connection parameters

Instances of this class will create an isolated database from a
template and ensure that it is destroyed when the test process
exits. Under the hood it issues DDL commands over a psycopg2
connection to manage the database and registers a single cleanup
function with atexit.register() [https://docs.python.org/2/library/atexit.html#atexit.register].

Usage Example

from test_helpers import postgres

_testing_db = postgres.TemporaryDatabase()

def setup_module():
 _testing_db.create()
 _testing_db.set_environment()

 # from this point on, the standard Postgres environment
 # variables PGDATABASE, PGHOST, PGPORT, and PGUSER are
 # set to connect to the temporary database

By default, this will connect to postgres using the postgres database
and clone the template0 database. The starting database is controlled
by the STARTING_DATABASE class attribute and the template database
can be changed by passing it to the create() method.

Once a temporary database has been created, you can either call the
set_environment() method to export the standard set of Postgres
environment variables (e.g., PGHOST) or get a copy of the
connection parameters from the connection_parameters property.

	
STARTING_DATABASE = 'postgres'

	Database to connect to when cloning the template.

	
connection_parameters

	Keyword parameters for psycopg2.connect() [http://initd.org/psycopg/docs/module.html#psycopg2.connect].

	
create(template='template0', **options)

	Create the temporary database if it does not exist.

	Parameters:	
	template (str [https://docs.python.org/2/library/functions.html#str]) – the name of the database to use as a
template for the new database. This defaults to
template0 if omitted.

	options – additional parameters to use in the
CREATE DATABASE command.

	
drop()

	Drop the temporary database if it was created.

	
set_environment()

	Export Postgres environment variables for the database.

This exports the PGUSER, PGHOST,
PGPORT, and PGDATABASE environment variables
set to match connection_parameters.

Rabbit MQ Helpers

	
class test_helpers.rabbit.RabbitMqFixture(host, user, password)

	Manages a Rabbit MQ virtual host.

Create an instance of this class when you need to programmatically
manage a Rabbit MQ cluster. Pika gives you the ability to create
exchanges and queues and bind them together using the AMQP protocol
but there is no way to create a new virtual host. Despite that,
running tests on randomly unique virtual hosts is quite convenient.

This class uses Rabbit’s HTTP API to manipulate the cluster. It
exposes the management functions that have proven useful for writing
tests against a shared RabbitMQ cluster.

Usage Example

from test_helpers import rabbit

_fixture = rabbit.RabbitMqFixture('localhost', 'guest', 'guest')

def setup_module():
 _fixture.install_virtual_host()
 _fixture.create_binding('accounts', 'my_queue', 'status.added')

 # from this point on, os.environ['AMQP'] points to a
 # newly created, isolated virtual host that will be
 # removed when the test is complete

	
create_binding(exchange_name, queue_name, routing_key)

	Create a message binding.

	Parameters:	
	exchange_name (str [https://docs.python.org/2/library/functions.html#str]) – name of the exchange to create/update

	queue_name (str [https://docs.python.org/2/library/functions.html#str]) – name of the queue to create/update

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – routing key that binds the exchange
and the queue

This method creates the specified queue and exchange if they
do not already exist and then binds routing_key such that
messages with it are routed through the exchange and queue.

	
host

	The URL-quoted rabbit server.

	
install_virtual_host()

	Create a new virtual host.

	Returns:	the name of the virtual host

The virtual host will be created and the current user will
be granted full permission to it.

This method also sets the AMQP environment
variable to the appropriate URL for connecting to the
virtual host.

	
password

	The URL-quoted rabbit password.

	
purge_queue(queue_name)

	Purge a Rabbit MQ queue.

	
remove_virtual_host()

	Remove the generated virtual host.

	
user

	The URL-quoted rabbit user name.

	
virtual_host

	The URL-quoted virtual host ready to use as-is.

Testing Utilities

The testing utilities module contains standalone functionality for that might
be useful for a select number of test cases. These functions can be
selectively applied to a small subset of tests so they might not warrant the
full capacity of mixin behavior.

The utilities within this module are typically simple functions or decorators
that ease a specific testing task, such as creating patches.

	
test_helpers.utils.create_ppatch(path)

	Create a partial ppatch object that will only require the object name

	
test_helpers.utils.ppatch(path, object_name, **kwargs)

	Creates a fully qualified patch object.

This function will act as a wrapper that will allow us to create a partial
function representation. That will remove the need to keep passing the
same path to the patch object.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 test_helpers	

 	
 	
 test_helpers.bases	

 	
 	
 test_helpers.mixins	

 	
 	
 test_helpers.mixins.tornado	

 	
 	
 test_helpers.utils	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | J
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	AMQP

 	annihilate() (test_helpers.bases.BaseTest class method)

 	(test_helpers.mixins.EnvironmentMixin class method)

 	(test_helpers.mixins.tornado.TornadoTest class method)

B

 	
 	BaseTest (class in test_helpers.bases)

C

 	
 	client (test_helpers.mixins.tornado.TornadoMixin attribute)

 	configure() (test_helpers.bases.BaseTest class method)

 	(test_helpers.mixins.EnvironmentMixin class method)

 	(test_helpers.mixins.tornado.TornadoTest class method)

 	connection_parameters (test_helpers.postgres.TemporaryDatabase attribute)

 	
 	create() (test_helpers.mongo.TemporaryDatabase method)

 	(test_helpers.postgres.TemporaryDatabase method)

 	create_binding() (test_helpers.rabbit.RabbitMqFixture method)

 	create_patch() (test_helpers.mixins.PatchMixin class method)

 	create_ppatch() (in module test_helpers.utils)

D

 	
 	delete() (test_helpers.mixins.tornado.TornadoMixin class method)

 	
 	drop() (test_helpers.mongo.TemporaryDatabase method)

 	(test_helpers.postgres.TemporaryDatabase method)

E

 	
 	
 environment variable

 	AMQP

 	MONGODATABASE

 	MONGOHOST

 	MONGOPORT

 	PGDATABASE

 	PGHOST, [1], [2]

 	PGPORT, [1]

 	PGUSER, [1]

 	
 	EnvironmentMixin (class in test_helpers.mixins)

 	execute() (test_helpers.bases.BaseTest class method)

G

 	
 	get() (test_helpers.mixins.tornado.TornadoMixin class method)

H

 	
 	head() (test_helpers.mixins.tornado.TornadoMixin class method)

 	
 	host (test_helpers.rabbit.RabbitMqFixture attribute)

I

 	
 	install_virtual_host() (test_helpers.rabbit.RabbitMqFixture method)

 	
 	io_loop (test_helpers.mixins.tornado.TornadoMixin attribute)

J

 	
 	JsonMixin (class in test_helpers.mixins.tornado)

M

 	
 	maxDiff (test_helpers.bases.BaseTest attribute)

 	MONGODATABASE

 	
 	MONGOHOST

 	MONGOPORT

O

 	
 	options() (test_helpers.mixins.tornado.TornadoMixin class method)

P

 	
 	password (test_helpers.rabbit.RabbitMqFixture attribute)

 	patch() (test_helpers.mixins.tornado.TornadoMixin class method)

 	patch_prefix (test_helpers.mixins.PatchMixin attribute)

 	PatchMixin (class in test_helpers.mixins)

 	PGDATABASE

 	PGHOST, [1], [2]

 	
 	PGPORT, [1]

 	PGUSER, [1]

 	post() (test_helpers.mixins.tornado.TornadoMixin class method)

 	ppatch() (in module test_helpers.utils)

 	purge_queue() (test_helpers.rabbit.RabbitMqFixture method)

 	put() (test_helpers.mixins.tornado.TornadoMixin class method)

R

 	
 	RabbitMqFixture (class in test_helpers.rabbit)

 	remove_virtual_host() (test_helpers.rabbit.RabbitMqFixture method)

 	
 	request() (test_helpers.mixins.tornado.JsonMixin class method)

 	(test_helpers.mixins.tornado.TornadoMixin class method)

 	request_timeout (test_helpers.mixins.tornado.TornadoMixin attribute)

S

 	
 	set_environment() (test_helpers.mongo.TemporaryDatabase method)

 	(test_helpers.postgres.TemporaryDatabase method)

 	set_environment_variable() (test_helpers.mixins.EnvironmentMixin class method)

 	setUpClass() (test_helpers.bases.BaseTest class method)

 	(test_helpers.mixins.PatchMixin class method)

 	
 	start_tornado() (test_helpers.mixins.tornado.TornadoMixin class method)

 	STARTING_DATABASE (test_helpers.postgres.TemporaryDatabase attribute)

 	stop_patches() (test_helpers.mixins.PatchMixin class method)

 	stop_tornado() (test_helpers.mixins.tornado.TornadoMixin class method)

T

 	
 	tearDownClass() (test_helpers.bases.BaseTest class method)

 	(test_helpers.mixins.PatchMixin class method)

 	TemporaryDatabase (class in test_helpers.mongo)

 	(class in test_helpers.postgres)

 	test_helpers.bases (module)

 	
 	test_helpers.mixins (module)

 	test_helpers.mixins.tornado (module)

 	test_helpers.utils (module)

 	tornado_application (test_helpers.mixins.tornado.TornadoTest attribute)

 	TornadoMixin (class in test_helpers.mixins.tornado)

 	TornadoTest (class in test_helpers.mixins.tornado)

U

 	
 	unset_environment_variable() (test_helpers.mixins.EnvironmentMixin class method)

 	
 	url_root (test_helpers.mixins.tornado.TornadoMixin attribute)

 	user (test_helpers.rabbit.RabbitMqFixture attribute)

V

 	
 	virtual_host (test_helpers.rabbit.RabbitMqFixture attribute)

 _static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/down-pressed.png

_static/minus.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Overview

 		Base Test Cases

 		Testing Mixins

 		Tornado Specific Helpers

 		MongoDB Helpers

 		Postgres Helpers

 		Rabbit MQ Helpers

 		Testing Utilities

_static/plus.png

