
TerraSnow Enterprise Documentation
Release 0.0.1

Plus3 IT Systems

Aug 27, 2018





Contents

1 Overview 3

2 Contents 5

3 Project Flow Diagrams 21

4 Supported Versions of ServiceNow 25

i



ii



TerraSnow Enterprise Documentation, Release 0.0.1

Enables the deployment of AWS resources from ServiceNow via Terraform Enterprise

Contents 1



TerraSnow Enterprise Documentation, Release 0.0.1

2 Contents



CHAPTER 1

Overview

TerraSnow Enterprise is a collection of scripts that enable the deployment of Terraform resources from a ServiceNow
instance via Terraform Enterprise. It was designed to simplify cloud resource consumption at the user level and to
operate within a multi-tenant AWS environment.

This project contains a terraform template to deploy a Ngnix reverse proxied, Flask based endpoint that handles Gitlab
Tag and Push events by creating a ServiceNow Terraform Module Catalog Item.

3

https://docs.gitlab.com/ee/user/project/integrations/webhooks.html#tag-events
https://docs.gitlab.com/ee/user/project/integrations/webhooks.html#push-events


TerraSnow Enterprise Documentation, Release 0.0.1

4 Chapter 1. Overview



CHAPTER 2

Contents

2.1 Installation

TerraSnow is maintained in two separate repositories.

The first maintains the TerraSnow Enterprise Instance and backing code as a terraform deployable host. It is maintained
in this project’s repo under /scripting_host.

The second repository hosts the accompanying ServiceNow scoped application.

2.1.1 Overview

1. Configure ServiceNow

(a) Create the TerraSnow Configuration File

(b) Configure/Deploy your MID Server

(c) Install the TerraSnow Scoped Application

(d) Associate the TerraSnow application with your MID server

(e) Create the TerraSnow API User

(f) Collect the required sys_ids

2. Configure Terraform Enterprise

3. Upload the TerraSnow Configuration file to S3

4. Deploy the TerraSnow Instance

5. Proceed to the usage section to create your first terraform catalog item

5

https://github.com/userhas404d/terrasnow-enterprise-scoped-app
doc:usage


TerraSnow Enterprise Documentation, Release 0.0.1

2.1.2 Assumptions

• Working familiarity with terraform module development and terraform based resource deployment within AWS

• Passing understanding of ServiceNow application development

• Familiarity with AWS IAM role assignment and configuration

2.1.3 Requirements

• Admin access to the target AWS account

• The latest version of terraform installed on the machine from which the TerraSnow Instance template will be
deployed

• Pre-configured Gitlab instance

• Pre-configured ServiceNow Instance

• Web console access to Terraform Enterprise

• A MID Server ..

NOTE:

The MID Server must be deployed in the target AWS account with an instance role that has been
granted assume role privileges to the accounts in which terraform resources will be deployed.

The MID Server must be associated with your ServiceNow instance

All of these services can be used with TerraSnow Enterprise in their SaaS form(s) with the exception
of the ServiceNow MidServer.

2.1.4 Setup

1. Clone the TerraSnow Enterprise repo to your workstation.

2. Create a file called config.ini in the root of the terrasnow-enterprise directory. See the Configu-
ration File section of this document for this file’s structure.

3. Fork the TerraSnow Enterprise Scoped Application project into a personal repo.

NOTE: The scoped application can be loaded into your ServiceNow instance directly from this repo.
However, you will be unable to commit any local changes you make unless you follow these steps to
point your application at a different repository.

Configure ServiceNow

The following instructions outline the steps required to configure your ServiceNow instance for use with the TerraSnow
application.

Create the TerraSnow Configuration File

NOTE: Terraform Enterprise and ServiceNow environment specific details are stored within a configura-
tion file.

These settings are pulled by the TerraSnow Instance automatically and as needed.

6 Chapter 2. Contents

https://www.terraform.io/downloads.html
https://about.gitlab.com/
https://github.com/userhas404d/terrasnow-enterprise/
https://github.com/userhas404d/terrasnow-enterprise-scoped-app
https://community.servicenow.com/community?id=community_blog&sys_id=d2cc6265dbd0dbc01dcaf3231f9619ee


TerraSnow Enterprise Documentation, Release 0.0.1

This file must be stored in an S3 bucket that is read-accessible by the TerraSnow instance (configurable via the asso-
ciated AWS Instance Role). Additionally, it is recommended that this file be stored in an encrypted S3 bucket due to
its sensitive nature.

The expected file structure is as follows:

File Name: config.ini

Contents:

[SERVICENOW]
INSTANCE_NAME=
SN_API_USER_NAME=
SN_API_USER_PWD=
TF_CATALOG=
CATEGORY=
TFE_WORKFLOW=
SYS_PACKAGE=

[TERRAFORM_ENTERPRISE]
INSTANCE_NAME=
ATLAS_TOKEN=

ServiceNow

Overview of the config.ini settings for ServiceNow specific information

Value Description
INSTANCE_NAME url of the target ServiceNow instance ex: https://mysninstance.com
SN_API_USER_NAME user name of the user performing API actions against ServiceNow
SN_API_USER_PWD password of the user performing API actions against ServiceNow
TF_CATALOG sys_id of the target Catalog
CATEGORY sys_id of the target Category
TFE_WORKFLOW sys_id of the TF catalog item order workflow
SYS_PACKAGE sys_id of the TerraSnow scoped application

Terraform enterprise

Overview of the config.ini settings for Terraform Enterprise specific information

Value Description
INSTANCE_NAME url of the target TFE instance ex: https://app.terraform.io
ATLAS_TOKEN User API access token to create and populate TFE workspaces

Configure/Deploy your MID Server

Deploy a MID server into the target AWS environment. This mid server will be making the API calls against the
TerraSnow Instance in order to deploy resources against TerraForm Enterprise.

NOTE:

The MID Server must be deployed in the target AWS account with an instance role that has been granted
assume role privileges to the accounts in which terraform resources will be deployed.

2.1. Installation 7

https://mysninstance.com
https://app.terraform.io


TerraSnow Enterprise Documentation, Release 0.0.1

The MID Server must be associated with your ServiceNow instance

Install the TerraSnow Scoped Application

Import the TerraSnow scoped application from your personal repo by following the official ServiceNow instructions
for Importing applications from source control.

Associate the TerraSnow application with your MID server

1. From your ServiceNow instance navigate to Service Mapping > MID Servers

2. Select the MID server that was deployed to your target AWS account.

3. Select the Supported Applications tab and click Edit...

4. Add terraform-snow and confirm that it now shows in the Supported Applications list

Create the TerraSnow API User

1. Create an account on the ServiceNow instance that has the following roles:

role_name requirement
admin place_holder
api_analytics_read place_holder
catalog_editor place_holder
catalog place_holder
catalog_admin place_holder
credential_admin place_holder
rest_api_explorer place_holder
user_criteria_admin place_holder
web_service_admin place_holder

1. Add the user name and the user’s password to the values for SN_API_USER_NAME and SN_API_USER_PWD
respectively in config.ini

NOTE: You must login to your ServiceNow instance with this user at least once and select the
terraform-snow application scope. If you fail to do so TerraSnow catalog items will be created
in the global scope.

Collect the required sys_ids

From the Terraform Resources Catalog

1. Within the TerraSnow Scoped application locate the Terraform Template Catalog (Terraform Resources
Scoped App)

2. Copy the sys_id of the catalog (Retrievable from the sys_id option of the right click context menu in the
catalog list view) and update the value of TF_CATALOG in config.ini

3. Copy the sys_id of the terraform resources catalog category (retrievable from the sys_id option of the right
click context menu in the catalog Categories tab) and update the value of CATEGORY in config.ini

8 Chapter 2. Contents

https://docs.servicenow.com/bundle/kingston-application-development/page/build/applications/task/t_ImportAppFromSourceControl.html


TerraSnow Enterprise Documentation, Release 0.0.1

From the Terraform Resources Workflow

1. Locate the terrasnow-enterprise - scoped workflow within the TerraSnow scoped application

2. From the workflow properties context menu, right click and copy its sys_id

3. Update the value of TFE_WORKFLOW in config.ini

Configure Terraform Enterprise

NOTE: Testing and development was done against Terraform Enterprise using a single Organization.

Generate a user API Token

1. Generate an API token for a Terraform Enterprise user: TFE console > User Settings > Tokens

2. Update the value of ATLAS_TOKEN in config.ini

Upload the configuration file to S3

Requirements:

1. This bucket must be private

2. The IAM Instance Role that is assigned to the TerraSnow Instance must have read access to this bucket

Recommendations:

1. Ensure the bucket is encrypted.

2. Configure the bucket with versioning to prevent inadvertent loss of information

Deploy the TerraSnow Instance

This instance will perform all the ‘heavy lifting’ when it comes to building the catalog item(s) within ServiceNow as
well as the Workspace creation within Terraform Enterprise when the catalog item is ordered.

Deployment

NOTE: Successful deployment requires that the environment specific configuration file has been populated with the
correct information and uploaded to S3.

1. Navigate to the scripting_host folder and create a terraform.tfvars file specific to the target AWS env

2. Configure the local env to target the correct AWS account either via the AWS cli or by modifying the provider
block in main.tf

3. Run terraform apply

4. Proceed to the usage section for catalog item creation and gitlab repo configuration.

2.1. Installation 9

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html


TerraSnow Enterprise Documentation, Release 0.0.1

API Endpoints

On successful deployment the instance is configured with the following endpoints:

Endpoint Description
/ Sends 200 regardless of content, used for testing
/
aws-assume-role-webhook

Listens for AWS assume role data, creates the required TFE credential env vars

/gitlab-webhook Listens for tag update events sent from gitlab and creates the associated SN catalog
item

/tfe-run-webhook Listens for workflow run events, uploads the source terraform module to the target
workspace to trigger a TFE workflow event

/
variables-webhook

Listens for ServiceNow variables creation requests, sends associated API call to SN to
create the variable

/
workflow-webhook

Listens for TFE workspace creation events, creates an empty workspace

Create your first Terraform Catalog item

See the usage section of this guide for more details.

2.2 Usage

2.2.1 Requirements

• The Installation procedures have been completed successfully.

• A working Gitlab instance

Notes:

• Module repositories must meet the same requirements as those outlined for addition to the Terraform
Module Private Registry

• This project was successfully tested against the watchmaker lx-instance module.

• The source terraform module has a separate main.tf and variables.tf file. Variables not
defined in variables.tf will not be included in the resulting ServiceNow catalog item.

2.2.2 ServiceNow TF catalog item creation

1. Create a Gitlab repo with the terraform-<PROVIDER>-<MODULE_NAME> name format

2. Add the TerraSnow instance public key to the repo (available at the https://
YOUR_TERRASNOW_INSTANCE/pub-key/key.txt) and grant the TerraSnow instance read access
to the repo.

3. Add a version tag to the project before commit that follows the PEP 440 standard (ex: 1.0.2)

4. Add the TerraSnow instance url as a webhook under Repo > Settings > Integrations

• Select Tag push events and Enable SSL verification

10 Chapter 2. Contents

doc:usage
https://www.terraform.io/docs/enterprise/registry/publish.html
https://www.terraform.io/docs/enterprise/registry/publish.html
https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/lx-instance
https://www.python.org/dev/peps/pep-0440/


TerraSnow Enterprise Documentation, Release 0.0.1

• Paste in the TerraSnow instance gitlab webhook url: http://YOUR_TERRASNOW_INSTANCE/
gitlab-webhook

• Click the Add Webhook button to complete

5. Kick off the ServiceNow catalog item build process by either manually triggering the webhook or incrementing
the project’s version tag: git tag -a v0.0.1 -m 'test' && git push origin --tags

6. The Terraform resource catalog item should now be available for order via the target ServiceNow instance.

Note: There is an issue with the ServiceNow catalog item OnLoad client scripts associating with their
target variables (see the comments in the embedded client scripts for more details). Unfortunately, this is
a manual step for now.

2.2.3 Deploying TF resources from ServiceNow

Navigate to the TerraForm ServiceNow Catalog via either the Terraform service portal https://
YOUR_SNOW_INSTANCE/tfcm or via the application studio.

On order, the workflow should be triggered and a workspace will be created on the target Terraform Enterprise instance.

Current workspace naming convention is the ServiceNow REQ sys_id but this may be updated in a future release

2.3 Scripting Host

Documentation that outlines the configuration of the terraform deployable scripting host.

2.3.1 Module Input Variables

Variable: subnet_id Description: The target subnet id for the TerraSnow instance

Variable: env_type Description: Suffix added to the instance name (dev, test, prod, etc.)

Variable: alias_name Description: Value used in building the instance name and the instance domain name.

Variable: target_r53_zoneDescription: Target route 53 zone in which to build the resulting domain name entry.

Variable: pub_access_sg Description: The security group within the target AWS account that allows public
access.

Variable: priv_access_vpc_id Description: ID of the VPC that provides private access within the target AWS
account.

Variable: priv_alb_subnets Description: List of subnets that are backed by the private ALB.

Variable: subnet_id Description: The id of the security group in which to place the instance

Variable: sg_allow_inbound_from Description: Source security group to allow inbound traffic into the in-
stance’s private security group.

Variable: instance_type Description: AWS instance type (t2.micro, t2.medium, etc.)

Variable: key_name Description: SSH public key used to login to the TerraSnow instance.

Variable: instance_role Description: Role to associate with the TerraForm Scripting host instance. Requires
read access to the S3 bucket where the TerraSnow configuration file is stored.

Variable: private_gitlab_server Description: “hostname of the gitlab server. ex: gitlab.mydomain.net.
Passed as a variable into the TerraSnow host initialization script. Used to add the gitlab host as a trusted ssh endpoint
and enable use of git clone via SSH.

2.3. Scripting Host 11



TerraSnow Enterprise Documentation, Release 0.0.1

2.3.2 Outputs

Variable: _private_ip Value: IPv4 IP address Description: The private IP address of the TerraSnow instance

Variable: aws_assume_role_webhookValue: https://INSTANCE_FQDN/aws-assume-role-webhook Descrip-
tion: The AWS assume role API endpoint of the TerraSnow instance

Variable: gitlab_webhook Value: https://INSTANCE_FQDN/gitlab-webhook Description: The gitlab webhook
endpoint of the TerraSnow instance

Variable: pub_deployment_key Value: https://INSTANCE_FQDN/pub-key/key.txt Description: The web ac-
cessible path to the public key of the TerraSnow instance. This key is added to the target gitlab repo as a deploy key
with read access to enable the TerraSnow instance to successfully git clone.

Variable: tfe_workflow_webhook Value: https://INSTANCE_FQDN/workflow-webhook Description: The
Terraform Enterprise workspace API endpoint of the TerraSnow instance.

Variable: sn_variables_webhook Value: http://INSTANCE_FQDN/variables-webook Description: The web-
hook that triggers the ServiceNow catalog item variables.

2.3.3 Overview

The included terraform module will deploy the following resources.

Terraform Enterprise Scripting Host

Description: An EC2 instance of the size of your choosing (via the instance_type variable).

Requirements:

• An IAM role that at a minimum has read access to the S3 bucket where the TerraSnow configuration file is
stored.

• An AWS environment that has a security group that provides public access. Port 443 is required as all commu-
nications done with the TerraSnow api endpoints are over https via the TerraSnow alb.

Application Load balancer

Description: Created via the included alb module. An ALB that proxies http connections from the TerraSnow
instance to https. Backed by an AWS issued https certificate.

Requirements: A separate public access security group within the target AWS account.

TerraSnow Initialization Script

Description: A bash script that will install and configure the flask application on an EC2 instance.

Requirements: The EC2 instance on which this script is run will require internet access.

12 Chapter 2. Contents

https://INSTANCE_FQDN/aws-assume-role-webhook
https://INSTANCE_FQDN/gitlab-webhook
https://INSTANCE_FQDN/pub-key/key.txt
https://docs.gitlab.com/ee/ssh/#per-repository-deploy-keys
https://INSTANCE_FQDN/workflow-webhook
http://INSTANCE_FQDN/variables-webook


TerraSnow Enterprise Documentation, Release 0.0.1

2.4 API Reference

2.4.1 TerraSnow API endpoints

Endpoint Description
/ Sends 200 regardless of content, used for testing
/
aws-assume-role-webhook

Listens for AWS assume role data, creates the required TFE credential env vars

/gitlab-webhook Listens for tag update events sent from gitlab and creates the associated SN catalog
item

/tfe-run-webhook Listens for workflow run events, uploads the source terraform module to the target
workspace to trigger a TFE workflow event

/
variables-webhook

Listens for ServiceNow variables creation requests, sends associated API call to SN to
create the variable

/
workflow-webhook

Listens for TFE workspace creation events, creates an empty workspace

Assume Role

Listens for AWS assume role data, and creates the following TFE workspace environment variables:

• AWS_ACCESS_KEY_ID

• AWS_SECRET_ACCESS_KEY (created with is_senative=True)

• AWS_DEFAULT_REGION

• AWS_SESSION_TOKEN

Request Syntax

{
"data": [
{
"region": "us-east-1",
"org_name": "MyTFEorg",
"workspace_name": "ws-123456ASDFhjklmn",
"role": "arn:aws:iam::0123456789123:role/target_role",
"duration": "900"

}
]

}

Parameters

• region (string) – [REQUIRED] – Target region for resource creation.

• org_name (string) – [REQUIRED] – Name of the target TFE region

• workspace_name (string) – [REQUIRED] – Id of the target TFE workspace

• role (string) – [REQUIRED] – The target AWS role to assume. This role requires the necessary permissions to
deploy the source terraform template in the target account.

• duration (string) – [REQUIRED] – Maps to the DurationSections option in boto3’s assume_role and
is subject to the same limitations. Set to 15 minutes by default.

2.4. API Reference 13



TerraSnow Enterprise Documentation, Release 0.0.1

Returns

The response contains the TFE api responses for each environment variable that is created within the target TFE
workspace.

{
"access_key_id": "TFE VARIABLE CREATION RESPONSE",
"secret_access_key": "TFE VARIABLE CREATION RESPONSE",
"region": "TFE VARIABLE CREATION RESPONSE",
"aws_session_token": "TFE VARIABLE CREATION RESPONSE"

}

Gitlab

Designed to be triggered on Gitlab tag update events. This endpoint triggers a query against the target ServiceNow
instance for a catalog item of the source terraform module. If a ServiceNow catalog item is found and its version
is less than the current repo’s version tag a new ServiceNow catalog item will be created and the previous version’s
catalog item will be disabled, otherwise no actions are taken.

Request Syntax

Expects the standard gitlab tag update request body

Returns

{
"Status": "200"

}

TFE run

This endpoint will query the target workspace for the configuration upload url, git clone the target repo from
Gitlab, and upload the resulting zip of your repo to the workspace. Currently workspace creation sets Auto Apply
to true so any change in the configuration will trigger a Plan and Apply events.

Request Syntax

{
"data" : [
{
"project_name": "terraform-aws-lx-instance",
"repo_url": "git@your_gitlab_instance:gitlab.user/terraform-aws-lx-instance.git",
"module_version": "vx.y.z",
"workspace_id": "ws-123456ASDFhjklmn",
"region": "us-east-1"
}

]
}

Parameters

• project_name (string) – [REQUIRED] – Name of your terraform module project.

• repo_url (string) – [REQUIRED] – SSH URI to the target gitlab repo containing your terraform module

• module_version (string) – [REQUIRED] – specific version tag of your repo that you want to associate the
workspace with.

14 Chapter 2. Contents

https://docs.gitlab.com/ee/user/project/integrations/webhooks.html#tag-events


TerraSnow Enterprise Documentation, Release 0.0.1

• workspace_id (string) – [REQUIRED] – target TFE workspace id

• region (string) – [REQUIRED] – target AWS region in which your terraform resources will be deployed.

Returns

If successful:

{
"Status": "SUCCESS"

}

In the event of an error TerraSnow will return the response given by the TFE instance against it’s call to PUT
https://archivist.terraform.io/v1/object/<UNIQUE OBJECT ID>

Workflow

Listens for TFE workspace events, creates an empty TFE workspace and backs it with your source repo and version
tag

Request Syntax

{
"data" :

[
{
"region": "us-east-1",
"org_name": "your_tfe_org",
"workspace_name": "your_tfe_workspace_name",
"repo_id": "gitlab.user/tf_project",
"repo_version": "x.y.z",
"action": "CREATE"

}
]

}

Parameters

• region (string) – [REQUIRED] – target AWS region in which the terraform resources will be deployed

• org_name (string) – [REQUIRED] – the target TFE organization name

• workspace_name (string) – [REQUIRED] – the target TFE workspace name

• repo_id (string) – [REQUIRED] – the id of the source terraform module’s repo

• repo_version (string) – [REQUIRED] – the target version tag of the terraform module’s repo

• action (string) – [REQUIRED] – the desired action on the target workspace, accepts CREATE or DELETE

Returns

TerraSnow simply passes back the response to the workspace creation api endpoint from the TFE instance.

From the official TFE workspace api documentation:

{
"data": {
"id": "ws-SihZTyXKfNXUWuUa",
"type": "workspaces",
"attributes": {

(continues on next page)

2.4. API Reference 15

https://www.terraform.io/docs/enterprise/api/workspaces.html


TerraSnow Enterprise Documentation, Release 0.0.1

(continued from previous page)

"name": "workspace-2",
"environment": "default",
"auto-apply": false,
"locked": false,
"created-at": "2017-11-02T23:55:16.142Z",
"working-directory": null,
"terraform-version": "0.10.8",
"can-queue-destroy-plan": true,
"vcs-repo": {

"identifier": "skierkowski/terraform-test-proj",
"branch": "",
"oauth-token-id": "ot-hmAyP66qk2AMVdbJ",
"ingress-submodules": false

},
"permissions": {

"can-update": true,
"can-destroy": false,
"can-queue-destroy": false,
"can-queue-run": false,
"can-update-variable": false,
"can-lock": false,
"can-read-settings": true

}
},
"relationships": {

"organization": {
"data": {
"id": "my-organization",
"type": "organizations"

}
},
"ssh-key": {

"data": null
},
"latest-run": {

"data": null
}

},
"links": {

"self": "/api/v2/organizations/my-organization/workspaces/workspace-2"
}

}
}

2.5 ServiceNow Catalog Item

The details below include descriptions of the variables, client scripts, and script includes utilized in each ServiceNow
terraform resource catalog item. Unless otherwise stated variables and client scripts are created automatically.

2.5.1 Variables

ServiceNow catalog item variables are automatically populated with the default values of their terraform module coun-
terparts. Variables that are defined in the terraform module without a default value are created as required ServiceNow

16 Chapter 2. Contents



TerraSnow Enterprise Documentation, Release 0.0.1

catalog item variables.

The provided terraform module’s variable description is populated in both the ServiceNow variable question text and
tool tip.

tfv

Type: String

Description: Denotes the prefix given to the variables included in the terraform module’s variables.tf file.

adv_toggle

Type: CheckBox

Description: Advanced mode toggle that is used to show/hide catalog item variables that are not marked as required.

Roles

Type: Select Box

Description: Used in conjunction with the populateAWSRoleInfoOnLoad.js client script. Contains the AWS
account information for the user’s select role.

gen_OS_Type

Type: String

Description: not currently in use

gen_aws_role

Type: String

Description: Holds the ARN of the role selected from the Roles dropdown. Auto filled via the
enableAfterPopulateRolesOnChange.js OnChange event

gen_AwsAccountInfo

Type: Multi Line Text

Description: Used to hold a JSON object of AWS account info. Details on how this information is populated are not
currently documented. More information to follow in a later release.

gen_module_version

Type: String

Description: The version of the terraform module as provided in the Gitlab repo tag event.

2.5. ServiceNow Catalog Item 17



TerraSnow Enterprise Documentation, Release 0.0.1

gen_region

Type: String

Description: The target region in which AWS resources will be provisioned. Populated via the
enableAfterPopulateRolesOnChange.js OnChange event.

gen_org_name

Type: String

Description: The name of the Terraform Enterprise Organization. Currently populated from the TerraSnow configu-
ration file.

gen_repo_url

Type: String

Description: SSH URI to the gitlab repo

2.5.2 Client Scripts

This project contains several ServiceNow client scripts contained within the /sn_javascript directory that sup-
port ease of use when ordering a terraform resource catalog item.

createDiaplyToggleOnChange.js

Type: OnChange

Associated Variable: adv_toggle

Description: Used to show or hide ‘advanced’/default terraform module options (those variables included in the the
terraform module that were provided with default values.)

hideGenericVariablesOnLoad.js

Type: OnLoad

Description: Hides variables prefixed with gen_ on the catalog item load event.

populateAWSRoleInfoOnLoad.js

Type: OnLoad

Description: invokes the populateAWSRoleInfoScriptInclude to populate the roles variable dropdown.
This variable’s selection value is then passed to TerraSnow via the /aws-assume-role-webhook endpoint.

18 Chapter 2. Contents



TerraSnow Enterprise Documentation, Release 0.0.1

enableAfterPopulateRolesOnChange.js

Type: OnChange

Associated Variable: Roles

Description: popluates the gen_aws_role, gen_region variables on selection of the AWS role provided in the Roles
variable dropdown

2.5.3 Script Includes

populateAWSRoleInfoScriptInclude.js

Description: Queries a custom table for the ServiceNow user’s associated Active directory group, their default AWS
region, and the AWS account ARN that has been associated with that Active Directory group. Returns a JSON object
containing this information.

2.5. ServiceNow Catalog Item 19



TerraSnow Enterprise Documentation, Release 0.0.1

20 Chapter 2. Contents



21



TerraSnow Enterprise Documentation, Release 0.0.1

CHAPTER 3

Project Flow Diagrams

3.1 Terraform Module Creation Workflow

22 Chapter 3. Project Flow Diagrams

images/Terrasnow_Enterprise_Module_Creation_Workflow_diagram.png


TerraSnow Enterprise Documentation, Release 0.0.1

3.2 ServiceNow Catalog Item Order

3.2. ServiceNow Catalog Item Order 23

images/ServiceNow_Catalog_item_order_diagram.png


TerraSnow Enterprise Documentation, Release 0.0.1

3.3 ServiceNow Catalog Item Creation - Detailed

24 Chapter 3. Project Flow Diagrams

images/ServiceNow_Catalog_item_creation_detailed_diagram.png


CHAPTER 4

Supported Versions of ServiceNow

• Jakarta (tested working)

25


	Overview
	Contents
	Project Flow Diagrams
	Supported Versions of ServiceNow

