

Tempus Edge - Edge Compute Framework

[image: _images/TempusEdgeforWeb.png]
Tempus Edge [https://www.hashmapinc.com/tempusedge/] is an edge framework for deploying microservices (edge applications) to the edge.

Contents:

	Getting Started Tutorial

	Edge Applications

	Developer Documentation

Getting Started Tutorial

This document discusses how IoFog can be used to filter data at the edge. The IoFog platform provides a way to run code remotely.The code/logic which we want to run is packaged as small micro services which are provided as a docker images.IoFog provide interface to communicate between
these micro services. Flow of data is assume to be starting from a microservices which generate time series data. This data is then filtered using Tempus Filter service. Using MQTT service the filtered data is sent to ThingsBoard server.

Features

Tempus IoFog services has following feature:

	Create Micro-service for creating simulated timeseries data.

	Create a filter service which filter out data at source.

	Send only filtered data to the ThingsBoard.

Requirements

	JDK 1.8 at a minimum

	Maven 3.1 or newer

	Git client (to build locally)

Install IoFog

Create an account with IOTRACKS to use IoFog service here [https://iotracks.com/signup]

Next, setup your docker-based development fog here.

Provision the Fog

Login [https://iotracks.com/login] to IoFog to access tracks and fogs.

After login go to the fog tab drag a fog instance on fog page.And click on new fog instance.

[image: ../_images/1.png]
Click on new fog instance. On right hand you will see properties of fog.

Press the generate key to get id of the fog for provisioning.

[image: ../_images/2.png]
Go to your Linux command line, type sudo iofog provision ABCDWXYZ and replace the ABCDWXYZ with your provisioning key (it is case sensitive) and verify the results

Creating edge applications

IoFog provides an SDK in four languages to create edge applications:

	Java

	Python

	NodeJS

	Go

Publishing edge applications

	Log in to the ioAuthoring page. [https://iotracks.com/login]

	Use the “Publish” menu to access the publishing portal.

	Drag and drop the proper hardware element to the main area. Make sure the element matches the hardware you want your applicaiton to run on.

	Add Name to your Element.

	Add Container Image URL. It is the path to repository where the container is posted. Be sure to enter your container image string properly.

[image: ../_images/3.png]
Click here to see in detail how to create and publish microservices. [https://iotracks.com/creatingmicroservices]

Configuring Services

	
	Time Series Service:

	No Configuration Needed.

	
	Json Filter Service:

	Basic building block of the service has 3 terms:

{
 "term": "value.density",
 "OP" : "GTE",
 "value": 0
}

term: The term in json on which filter needs to be applied. The child term can be accessec using dot.

Example:

{
"range": {
 "start":0,
 "end":100
}
}

if you want to filter on “start” mention “range.start” in the term.

OP: Operation is what operation you need to perform on the the term.Allowed operation

	LEQ : less than equal

	GEQ : greater than equal

	LT : less than

	GT : greater tham

	EQ : equals

	NEQ : not equal

value: Value with which operation on term need to be done

Filters are furthur divided into

	String Filters

	Double Filters

	Boolean Filters

{
"DOUBLE":{
 "term": "value.density",
 "OP" : "GTE",
 "value": 0
}
}

This tells filter type of term.

To create complex query AND and OR Filters are also provided.

{
 "EXP1":"..",
 "EXP2":".."
}

Both EXP1/EXP2 both can be again AND ,OR filter or and of String,Double or Boolean Filter

{
 "OR": {
 "EXP1": {
 "AND": {
 "EXP1": {
 "DOUBLE": {
 "term": "value.density",
 "OP": "GTE ",
 "value": 0
 }
 },
 "EXP2": {
 "DOUBLE": {
 "term": "value.density",
 "OP": "LTE",
 "value": 1
 }
 }
 }
 },
 "EXP2": {
 "STRING": {
 "term": "value.TYPE.id",
 "OP": "NEQ",
 "value": "TEST"
 }
 }
 }
}

	MQTT-Service (iofog default)

For MQTT service you need to define:

	Publishers

	Broker

	User of device in thingsboard

{
 "subscriptions": [{
 "topic": "v1/devices/me/telemetry",
 "qos": 2
 }],
 "publishers": [{
 "topic": "v1/devices/me/telemetry",
 "qos": 2
 }],
 "broker": {
 "host": "192.168.1.183",
 "port": 1883
 },
 "user": {
 "username": "ioFogToken",
 "password": " "
 }
}

Usage

	Publish the 3 tempus services as discussed above.

	Configure the services.

	Create a track with services as shown below.

[image: ../_images/4.png]

	You can check data flowing into ThingsBoard.

License

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Edge Applications

Tempus Edge currently supports the following edge applications:

	JSON Translator

	service for converting back and forth between JSON and Tempus Edge messages.

	Golang MQTT Client

	MQTT client implemented in golang.

	Python MQTT Client

	Python implementation of an MQTT client.

	OPC Client

	OPC client for monitoring and publishing to OPC UA servers.

	OPC Tag Filter

	service for searching OPC UA servers for monitorable tags.

	Timeseries Generator

	generates changing timeseries data.

	Track Manager

	core track management service.

Applications:

	JSON Translator

	Golang MQTT Client

	Python MQTT Client

	OPC Client

	OPC Tag Filter

	Timeseries Generator

	Track Manager

JSON Translator

This edge application provides interoperability between Tempus Edge applications that use a protobuf message serialization and default IoFog applications that serialize to JSON.

This scala application accepts incoming ioFog messages. If the incoming message is a JSON, a protobuf wrapper is created around the JSON and the message is then written to the ioFog message stream. If the incoming message is a tempus edge protobuf message, it is deserialized and converted to a JSON string that is written to the ioFog message stream.

Because Tempus Edge messages also contain 2 descriptive bytes at the beginning of incoming ioFog messageContent byte arrays, the Translator will treat all protobuf’d JSON strings as messages using the DATA protocol and of type JSON.

Expected IoFog Config

There is no expected config for this edge app.

Building

Build the project and docker image using:

mvn package

Usage

Deploy this image to dockerhub and publish to ioFog. From there, the image can be used in your tracks. Put it in between default IoFog services (like the stream viewer or the JSON REST API) and Tempus Edge applications (like the track-manager).

One use case would be to connect track-manager outputs to the json-translator and feed translations to the JSON REST API element so configuration events could be monitored by an external web GUI or dashboard application.

Help

If you need any help, please reach out to Randy Pitcher [https://github.com/randypitcherii].

Golang MQTT Client

This edge application is designed to act as a 2 way client between ioFog messages and MQTT messages. It is responsible for:

	accepting incoming MQTT messages and converting them to outgoing ioFog messages

	accepting incoming ioFog messages and converting them to outgoing MQTT messages

At this time, MQTT client is the core communication service between Tempus Edge and Tempus Cloud. Because of the way configuration is currently done, each Tempus Edge track will only support 1 MQTT client, which will always need to be Tempus Cloud.

In the future, this edge application may be split into the following 2 applications:

	a dedicated Tempus Cloud client

	a standard MQTT client

This will also result in separate TrackConfig entries for MqttConfig and TempusConfig based on the underlying MqttConfig.proto message definition.

Building

Make sure your $GOPATH contains the src directory when you’re ready to build.

Build the project and docker image using:

make docker

Usage

Build and deploy this image to dockerhub using:

make deploy

Publish the image to ioFog. From there, the image can be used in your tracks.

Any configurations you need should be provided through the track-manager.

Supported Messages

The client supports the following incoming tempus edge messages:

	Protocol

	Type

	MQTT-CLIENT Behavior

	CONFIG

	UPDATE_ALERT

	updates current configs

	DATA

	JSON

	attempts to convert the json string value into a MQTT message type then sends to the current broker.

	DATA

	MQTT

	uses the qos, topic, and payload fields of the message to send an mqtt message to the current broker.

	DATA

	OPC

	attempts to convert this message into an MQTT message type. qos is set to 2, topic is set to the value of
the deviceName field, and payload is the byte array resulting from an fmt.Sprintf of the value oneof field
where the formatting is based on the type of the oneof value. No set value will send an empty byte array as the payload

The client converts all messages from the current broker into DATA MQTT tempus edge messages and sends them to the iofog message bus.

payloads from the broker are not altered and are sent as the byte arrays that they are.

Help

If you need any help, please reach out to Randy Pitcher [https://github.com/randypitcherii].

Python MQTT Client

This edge application is designed to act as a 2 way client between ioFog messages and MQTT messages. It is responsible for:

	accepting incoming MQTT messages and converting them to outgoing ioFog messages

	accepting incoming ioFog messages and converting them to outgoing MQTT messages

At this time, MQTT client is the core communication service between Tempus Edge and Tempus Cloud. Because of the way configuration is currently done, each Tempus Edge track will only support 1 MQTT client, which will always need to be Tempus Cloud.

In the future, this edge application may be split into the following 2 applications:

	a dedicated Tempus Cloud client

	a standard MQTT client

This will also result in separate TrackConfig entries for MqttConfig and TempusConfig based on the underlying MqttConfig.proto message definition.

Building

Build the project and docker image using:

make

Supported Messages

The client supports the following incoming tempus edge messages:

	Protocol

	Type

	MQTT-CLIENT Behavior

	CONFIG

	UPDATE_ALERT

	updates current configs

	DATA

	JSON

	attempts to convert the json string value into a MQTT message type then sends to the current broker.

	DATA

	MQTT

	uses the qos, topic, and payload fields of the message to send an mqtt message to the current broker.

	DATA

	OPC

	attempts to convert this message into an MQTT message type. qos is set to 2, topic is set to the value of
the deviceName field, and payload is the byte array resulting from an fmt.Sprintf of the value oneof field
where the formatting is based on the type of the oneof value. No set value will send an empty byte array as the payload

The client converts all messages from the current broker into DATA MQTT tempus edge messages and sends them to the iofog message bus.

payloads from the broker are not altered and are sent as the byte arrays that they are.

Help

If you need any help, please reach out to Randy Pitcher [https://github.com/randypitcherii].

OPC Client

This edge application uses the track’s config.pb file to connect to an OPC UA server.

It performs 2 main functions:

	subscribes to OPC nodes and writes value changes to the IoFog message bus.

	writes OPC values when a new DATA OPC message arrives.

On startup and when new CONFIG UPDATE messages arrive, this edge application will use the latest config.pb to refresh its OPC UA subscriptions.

The latest values for each subscribed OPC node will be written to the IoFog message bus each time subscriptions are updated, regardless of whether the values are actually new or not.

Building

Build the edge application and docker image using:

mvn package

Help

If you need any help, please reach out to Randy Pitcher [https://github.com/randypitcherii].

OPC Tag Filter

This edge application uses the track’s config.pb file to connect to an OPC UA server and search for subscriptions.

Subscriptions are defined by any OPC node that matches the whitelist and does not match the blacklist regex arrays in the OpcConfig of the TrackConfig.

The matching subscriptions are then assigned a deviceName based on a deviceMap structure in the OpcConfig.

On startup and when new CONFIG UPDATE messages arrive, this edge application will use the latest config.pb to find new subscriptions and will send them to the Track Manager.

Building

Build the edge application and docker image using:

mvn package

Help

If you need any help, please reach out to Randy Pitcher [https://github.com/randypitcherii].

Timeseries Generator

This edge application generates test timeseries data in JSON format continuously.

It requires no configuraiton.

Usage

Simply add this element to a track and attach it to a desired endpoint. Data will begin flowing immediately.

Track Manager

This edge application is core to Tempus Edge.
It is the “brain” that allows for seamless control of individual tracks within a fog from both ioFog and Tempus.

This scala application takes initial configs from ioFog and stores them as a protobuf file.

This file is accessible to all track elements through a shared volume
(mounted at /iofog/config/<YOUR_TRACK_NAME> on the host).

As updated configurations come from ioFog and Tempus (through the mqtt client element),
Track Manager updates the protobuf config file and sends newConfig messages to the iofog message bus.
Other elements in the track are then responsible for handling new configs in response to this newConfig message.
Most often, this will involve loading configs from the protobuf file.

Expected IoFog Config

The following config JSON shows the expected format for an IoFog Container configuration. Each root-level field is optional:

{
 "trackMetadata": {
 "trackName" : "my-track",
 "trackId": 0,
 "metadata": "{myMetadata: meta}"
 },

 "mqttConfig": {
 "subscriptions": [{
 "topic": "v1/devices/me/telemetry",
 "qos": 2
 }],
 "publishers": [{
 "topic": "v1/devices/me/telemetry",
 "qos": 2
 }],
 "broker": {
 "host": "192.168.1.183",
 "port": 1883
 },
 "securityType": 0,
 "user": {
 "username": "ioFogToken",
 "password": " "
 }
 },

 "opcConfig": {
 "endpoint": "opc.tcp://myHost:8080/myEndpoint",
 "securityType": 0
 }
}

The following Volume Mappings config is expected for this element:

{
 "volumemappings": [
 {
 "hostdestination": "/iofog/config/<YOUR_TRACK_NAME>",
 "containerdestination": "/mnt/config",
 "accessmode": "rw"
 }
]
}

Do not forget to update <YOUR_TRACK_NAME> and make sure that all elements in this track have this same volume mapping config to ensure configs can be shared between containers.

Building

Build the project and docker image using:

mvn package

Usage

Deploy this image to dockerhub and publish to ioFog. From there, the image can be used in your tracks.

Any configurations you need to make available to your track elements should be provided through ioAuthoring to this element.

Help

If you need any help, please reach out to Randy Pitcher [https://github.com/randypitcherii].

Developer Documentation

Welcome, developers!

To make it easy to use and contribute to Tempus Edge, we have provided the following documentation:

	Repository Standards

	describe general guidelines for the Tempus Edge repository.

	Development Fog

	describes how to create a docker-based development fog environment.

	Track Configuration

	describes how tracks are configured.

	Tempus Edge Messaging

	describes how to use Tempus Edge messages.

Sections:

	Repository Standards

	Development Fog

	Track Configuration

	Tempus Edge Messaging

Repository Standards

	Application folders should be all lower case with ‘-‘ to separate words; no underscores, no spaces, no camelCase.

	Application folders should contain Dockerfiles defining the applicaiton image.

	Docker images should be named using the pattern hashmapinc/tempus-edge-<APPLICATION-NAME>:<VERSION>

	Application folders should contain a README.md describing the application and usage. This includes instructions for building and running both the Docker image and the source code.

	Build files / directories should not be committed to the repository. This means no .jar files, no *.pyc files, and no mvn **/target/ build directories.

	All commits should result in buildable code. The code may be buggy, but please do not commit unbuildable code if you can help it.

NOTE: Please submit pull requests to udpate these rules if you think something else makes more sense!

Development Fog

For development purposes, it is often easier to run iofog in a docker container locally.

To run this docker container, clone this repository, cd into this directory [https://github.com/hashmapinc/tempus-edge/tree/dev/development-fog] (development-fog), and execute the following commands

mvn package
sh startFog.sh

Development Notes

This container will run a full docker instance inside itself. This may have security implications and is therefore not suitable for anything other than local development on a dev machine.

To make this work, 3 special steps were necessary:

	The Dockerfile must include VOLUME /var/lib/docker in order for the internal docker daemon to be able to create internal containers.

	The container must be ran with the --privileged argument to allow the docker daemon to start.

	The docker service must be started manually. This is acheived by the [entrypoint.sh](entrypoint/entrypoint.sh) script that is executed at container launch.

Help

Please reach out to Randy Pitcher [https://github.com/randypitcherii] if you have any questions.

Track Configuration

Configuration for each application will be managed by an instance of the track-manager service.

Configurations will be made available through a shared volume in each application’s docker container.

config.pb Files

Configurations are stored as protobuf files. The track-manager will store incoming configurations in the shared volume using the following convention:

/mnt/config/config.pb

When new configurations are available, the track-manager will send a config protocol message to the track and each application will be responsible for updating their configs with the new config.pb contents.

Application Volume Mapping

The config.pb file in each application container is accessible through a shared volume at:

/mnt/config/config.pb

The host machine where the ioFog agent is running will store shared configs at:

/iofog/config/<YOUR_TRACK_NAME>/config.pb

This allows multiple tracks to run on the same fog host.

The volume mapping from the host machine to each application container is performed in ioAuthoring on each element in the volume mappings section.

The JSON that defines this volume mapping is:

{
 "volumemappings": [
 {"hostdestination": "/iofog/config/<YOUR_TRACK_NAME>",
 "containerdestination": "/mnt/config",
 "accessmode": "rw"}
]
}

Tempus Edge Messaging

Standard message formatting should be used by all edge applications. The purpose of standard message formatting is:

	reduce message parsing cost

	promote reusability between edge applications

	maintain flexibility for future edge application requirements

	improve the ease of application debugging

Message Anatomy

A Tempus Edge message is a single byte array that lives in the contentdata field of an IoFog message.

In general, Tempus Edge messages consist of 3 parts:

	protocol

	first byte of the array defining the Tempus Edge message protocol to use.

	type

	optional second byte of the array defining the Tempus Edge message type for the given protocol.

	payload

	optional remaining byte array containing a serialized protobuf message of the type defined by type.

Contents:

	Message Protocols

	Message Types

Message Protocols

Each IoFog message should contain a messageProtocol byte that describes the kind of message being sent.

This value is a byte or uint8 depending on the language. It is the first byte in the messageContent field of the IoFog message.

The significance of each value is detailed below:

	Protocol Byte

	Protocol Name

	Description

	000

	Undefined protocol

	This can indicate a message that didn’t originate from a Hashmap application. This is used to allow support for JSON-based messaging used in default ioFog elements.

	001

	Config protocol

	describes messages relating to configurations. This is generally either commanding a receiving element to accept new configs or alerting elements that new configs are available.

	002

	Data protocol

	used for standard data passing from element to element.

NOTE: new message protocols will be defined here as new protocols become necessary. Please send a pull request if you’d like to suggest other protocols!

Message Types

In general, a messageType will be similar to a messageProtocol. It will also be a byte value and will be the second byte in the ioFog message content field.

The type will serve to further specify how to decode the incoming message content or further specify what action a container should take when receiving a message.

The message types for each message protocol are defined below:

Configuration Message Types

	Protocol Byte

	Type Byte

	Protobuf Enum

	Description

	001

	000

	UPDATE_ALERT

	informs the receiver that new configs are available. The receiver is expected to update their own configs.

	001

	001

	TRACK_CONFIG_SUBMISSION

	informs the receiver that a new track config is contained in this message and that the receiver should parse and persist the new track config. The track-manager is the intended consumer of this message type.

NOTE: this config will be accepted as the new config by the track manager. This means changes will not be ‘merged’ with current configs. Use this message type when you want to submit a completely new config. Use other message types to update individual pieces of a track’s configuration.

	001

	002

	TRACK_METADATA_SUBMISSION

	this message contains a TrackMetadata protobuf byte array and commands the receiver to update a track’s metadata.

	001

	003

	MQTT_CONFIG_SUBMISSION

	this message contains an MqttConfig protobuf byte array and commands the receiver to update a track’s MQTT configuration.

	001

	004

	OPC_CONFIG_SUBMISSION

	this message contains an OpcConfig protobuf byte array and commands the receiver to update a track’s OPC configuration.

	001

	005

	OPC_SUBSCRIPTIONS_SUBMISSION

	this message contains an OpcConfig.subs value (OpcConfig.Subscriptions protobuf message) and commands the receiver to u pdate a track’s OPC configuration subscriptions value.

Data Message Types

	Protocol Byte

	Type Byte

	Protobuf Enum

	Description

	002

	000

	JSON

	used to define a message that is a protobuf byte array that will decode into a JSON string that will need to be parsed by the receiver.

	002

	001

	MQTT

	used to define a message that is a protobuf byte array that will decode into an MQTT message. This message contains everything necessary for the mqtt-client to send this message in MQTT format.

	002

	002

	OPC

	used to define a message that is a protobuf byte array that will decode into an OPC message. This message contains everything necessary for the opc-client to send this message in OPC format.

NOTE: new message types will be defined here as new types become necessary. Please send a pull request if you’d like to suggest other types!

Index

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/favicon.png

_static/plus.png

_static/ajax-loader.gif

_images/4.png
@D I0TRACKS publish fog account forum logout

Name

Multiple-Pub-Sub-Matt

Hello Web Demo -&
® * FistFog
more
®

TS-Element

TS Tempus2
e Element status : RUNNING.

[Multiple-Pub-Sub-Mqtt|
A .& MattPub-sub Contguraton 50N

. {

J-Filter “publishers": [{

JsonFitter "topic’: v1/devices/me/telemetry’,
“qos":2

‘Open Weather Map Da...
more

1

“broker”: {
"host’:"192.168.1.139",
“port’: 1884

)

JSON REST API user {
“usemame’:"ioFogToken,

v v “oassword" **

more

rransferring data from iotracks.com.

_images/TempusEdgeforWeb.png
T=-MPUSEDGE

ANALYTICS INTELLIGENCE
AT THE EDGE

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Tempus Edge - Edge Compute Framework

 		
 Getting Started Tutorial

 		
 Features

 		
 Requirements

 		
 Install IoFog

 		
 Provision the Fog

 		
 Creating edge applications

 		
 Publishing edge applications

 		
 Configuring Services

 		
 Usage

 		
 License

 		
 Edge Applications

 		
 JSON Translator

 		
 Expected IoFog Config

 		
 Building

 		
 Usage

 		
 Help

 		
 Golang MQTT Client

 		
 Building

 		
 Usage

 		
 Supported Messages

 		
 Help

 		
 Python MQTT Client

 		
 Building

 		
 Supported Messages

 		
 Help

 		
 OPC Client

 		
 Building

 		
 Help

 		
 OPC Tag Filter

 		
 Building

 		
 Help

 		
 Timeseries Generator

 		
 Usage

 		
 Track Manager

 		
 Expected IoFog Config

 		
 Building

 		
 Usage

 		
 Help

 		
 Developer Documentation

 		
 Repository Standards

 		
 Development Fog

 		
 Development Notes

 		
 Help

 		
 Track Configuration

 		
 config.pb Files

 		
 Application Volume Mapping

 		
 Tempus Edge Messaging

 		
 Message Anatomy

_images/2.png
Standard Linux (x86...

more

ARM Linux
more

FirstFog

First

O Enable Bluetooth
Enable Debug Console

Enable Stream Viewer

Provisioning Key: mRwdxrkX

_images/3.png
&

Mqtt-Pub-Sub
Standard Linux (x86)

build [XNEN fog account forum

Name

Mqtt-Pub-Sub

Description

Category

ontainer Image.

hashmapinc/iofogmatt-client

Publisher

Disk Space Required (GiB)
0

_static/up-pressed.png

_images/1.png
+ BLUEBOX

Standard Linux (x86...
more

ARM Linux
more

Name.

FirstFog

FirstFog

Location
First

First

O Enable Bluetooth
Enable Debug Console

Enable Stream Viewer

Provisioning Key: -

NERATE

_static/up.png

