
Tattle Documentation
Release latest

Nick MacCarthy (nick@nickmaccarthy.com)

Nov 03, 2018

Contents

1 Tattle Intro - Alerting For Your Elasticsearch Data 1
1.1 Overview . 1
1.2 History . 1
1.3 Requirements . 2
1.4 Quick Setup & Install . 2

2 Getting Started - Install & Setup 3
2.1 Code . 3
2.2 Requirements . 3
2.3 Setup & Install . 4
2.4 Configuration . 4
2.5 Environment Variables . 5
2.6 Running . 5
2.7 Example Cron . 6

3 Tales, Alerts and Actions 7
3.1 Introduction . 7
3.2 Example Tales . 7
3.3 Tale Definitions . 8
3.4 Alert Types . 14
3.5 Alert Actions . 16
3.6 Multiple Tales . 21

4 Tattle Query Language (TQL) 25
4.1 Introduction . 25
4.2 Examples . 25
4.3 Lets break it down . 26
4.4 Nesting . 27
4.5 Mappings . 28
4.6 Ordering . 28
4.7 Scripting . 28

5 Logging 29
5.1 Levels . 29

6 Indices and tables 31

i

ii

CHAPTER 1

Tattle Intro - Alerting For Your Elasticsearch Data

Welcome to Tattle, an alerting tool for your Elasticsearch data.

Tattle aims to provide you with alerting capabilities for the data stored in your Elasticsearch cluster. Utilizing powerful
Elasticsearch features such as Aggregations and Lucene Query Syntax, coupled together with Tattle’s own query
language (TQL) our goal is to make alerts that are easy to build and most of all, easy to read (because lets face it, you
probably wont be the only one who has to read them)

1.1 Overview

Tattle was designed to make use of the powerful features of Elasticsearch (such as Aggregations) to alert us to a mul-
titude of various metrics and log or event type data. Things such as frequencys, event spikes, aggregation matches, etc
all play a big role in our capabilities for alerting. Coupled together with an extendable alert action mechanism,
Tattle can even fix problems for you as they arise (using the script action for example), notify a Pager Duty
Service, or even post to a Slack channel; or all of the above.

1.2 History

Back in 2013 when ELK was farily new term in most people vocabularies, I couldnt find any way to alert on the
data inside my Elasticsearch cluster. Since I was mostly using Elaticsearch to store log, metric and event type data,
I couldnt really call ELK a full logging solution until it had the alerting component. I then decided to build my own
system, and “Project Bluenote” was born (because I didnt have a better name for it at the time (and because I was
listening to some old Bluenote records when I wrote the first few lines of code)). Over the next year or so it was
developed on an off in my free time and eventually became an invaluable tool for keeping my site up. One day, after
it alerted me that someone had released some particularly questionable code, they said “Bluenote is such a tattle tale”.
Figuring that was a much more appropriate name for the project, Tattle was born.

1

Tattle Documentation, Release latest

1.3 Requirements

• Python 2.7 or Python 3.3+

• Virtualenv

• Pip

• Git

1.4 Quick Setup & Install

Lets assume we will assume will be installing Tattle to /opt/Tattle.

cd /opt
git clone https://github.com/nickmaccarthy/Tattle
cd /opt/Tattle
virtualenv env && source env/bin/activate
pip install -r requirements.txt

Note: $TATTLE_HOME refers to where you have installed Tattle. In the case of this documentation we installed it in
/opt/Tattle

Check out the Getting Started - Install & Setup section for more details.

Or check out the Tales, Alerts and Actions section on setting up your first Tale and working with Tattle.

2 Chapter 1. Tattle Intro - Alerting For Your Elasticsearch Data

CHAPTER 2

Getting Started - Install & Setup

Installing Tattle is pretty simple process. Tattle was written in Python, and was designed to work within a virtualenv.
Tattle works with both Python 2.7 and Python 3.3+ (it was tested against Python 3.5, which is the latest at the time of
this writing).

The first steps for getting Tattle installed are ensuring you have either Python 2.7 or Python 3.3+ installed on your
system, as well as pip and virtualenv (typically installing python 2.7 on a modern linux system is as easy as apt-get
install python27 python27-virtualenv python27-pip for Debian based systems (such as Ubuntu)
or yum install python27 python27-pip python27-virtualenv for CentOS based users)

Note: If you already have python 2.7.10 or above installed, then you should already have pip. You can typically
install virtualenv with pip as well

After Python 2.7, pip and virtualenv have been installed, you will need ensure you have git installed (apt-get
install git) to clone the repository where Tattle is located.

Note: We use git to pull down the source code for Tattle. If you dont have or want to install git, you can also download
the zip file for Tattle from the Tattle Github page and unzip it manually to a directory of your choice.

After you have these base applications installed, check our the Setup & Install section to continue.

2.1 Code

The source code for Tattle is located on Github: https://github.com/nickmaccarthy/Tattle

2.2 Requirements

• Python 2.7 or Python 3.3+

3

http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://pypi.python.org/pypi/pip
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://github.com/nickmaccarthy/Tattle
https://github.com/nickmaccarthy/Tattle

Tattle Documentation, Release latest

• Virtualenv

• Pip

• Git

2.3 Setup & Install

For the sake of this documentation we will be installing Tattle to /opt/Tattle. If you wish to install Tattle into a
different location, simply replace /opt/tattle with your install directory.

cd /opt
git clone https://github.com/nickmaccarthy/Tattle
cd /opt/Tattle
virtualenv env && source env/bin/activate
pip install -r requirements.txt

Note: Throughout the rest of this documentation, you will see reference to $TATTLE_HOME. This is a variable to
represent where Tattle was installed. In the case of this documentation we installed it in /opt/Tattle

2.4 Configuration

There are a few things we need to configure before we can start using Tattle.

1. We need to define how to connect to our Elasticserach cluster. To do this, simple edit $TATTLE_HOME/etc/
tattle/elasticsearch.yaml

Note: There are example configuration files in the $TATTLE_HOME/examples directory you can use for reference.
In this case, You can use the included $TATTLE_HOME/examples/elasticsearch.yaml as guidance.

Example

servers:
- "elasticsearch.mycompany.com"

args:
port: 9200
use_ssl: false
timeout: 30

Note: The above YAML reference uses the directives defined the python elasticsearch client. The variables for the
args can be found here: https://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch

2. We need to define our email configuration, and or other alert output configurations such as pagerduty, slack, etc. In
this case will just set up our email output. Create a new file called $TATTLE_HOME/etc/tattle/email.yaml

Example

server: 'localhost'
port: 25

4 Chapter 2. Getting Started - Install & Setup

https://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch

Tattle Documentation, Release latest

default_sender: 'tattle@localhost'
subject_prefix: "Tattle Alert: "

3. Now we need to make Tale. A Tale is a definition for our alert. As Tales are specific to the type of data you
need to alert on, they will require more a more in-depth explination then what we can provide in this section. So
please go check out the Tales, Alerts and Actions section on setting up a Tale, and come back to the next step
once that is completed.

4. Once you have configured your Tale, please look at the Environment Variables section below.

Note: A note on yaml configuration files. You can use use both .yml or .yaml as your file extension

2.5 Environment Variables

Tattle can also support environment variables for configuration locations. This is useful if you wanted to place your
Tattle configurations in a directory other than $TATTLE_HOME, and makes container applications such a docker easier
to implement.

2.5.1 $TATTLE_CONFIG_DIR

$TATTLE_CONFIG_DIR is the location where Tattle will search for its config files like, tattle.yml,
elasticserach.yml, pagerduty.yml, etc

2.5.2 $TATTLE_TALES

$TATTLE_TALES is the location where Tattle will search for Tales.

Note: You can specify multiple directories in Environment Variables by delimiting them with a :. For example if we
wanted to search our home dir and /etc/tattle/tatles, we could use $TATTLE_TALES=/home/myuser/
tales:/etc/tattle/tales

2.6 Running

1. Tattle is designed (in its current form) to run standalone. Its best to run Tattle on a CRON job, typically with
an interval of every minute. You can run it manually yourself as well. Just run $TATTLE_HOME/bin/
tattled.py.

Note: There are thoughts of having Tattle run as daemon in the future.

2. Tattle also comes with a tale/alert testing utility. This is how you can check your Tale before you put it into ‘pro-
duction’. If there are matches, tattle will run whatever is in the Tale action. Simply run $TATTLE_HOME/
bin/test_alert.py /path/to/the/tale.yaml.

2.5. Environment Variables 5

Tattle Documentation, Release latest

2.7 Example Cron

Its typical for Tattle run on a CRON job, with a one minute interval. Everytime Tattle runs, it will check all alerts/Tales.
So if you add additonal tales, Tattle should pick them on its next run

*/1 * * * * /opt/Tattle/env/bin/python /opt/Tattle/bin/tattled.py

6 Chapter 2. Getting Started - Install & Setup

CHAPTER 3

Tales, Alerts and Actions

3.1 Introduction

Tales are the heart and soul of the system. Tales are definitions for alerts and define such things as our time window
for the events we seek, what query will run, thresholds, actions to take, etc.

Note: Tales are kept in yaml files in $TATTLE_HOME/etc/tattle/tales, $TATTLE_HOME/etc/tales or
in $TATTLE_HOME/etc/alerts.

To understand Tales, lets take a look at an example below. Please note, we will use this as a reference for the rest of
the Tales documentation.

3.2 Example Tales

In this example, we will be finding all hosts in our environment that have a disk usage of greater than or equal to 90%
for the past 1 hour. When a match is found, it will send us an alert via Pagerduty as well as an email for each key (
host in this case) that was matched.

TQL Query with multiple aggregations and multiple actions example

name: "Disk Usage over 90 %"
description: "Disk Usage High on a host or series of hosts"
severity: "High"
tql_query: "summary.fullest_disk:>=90 | terms name=server, field=host.raw | avg
→˓name=fullest_disk, field=summary.fullest_disk"
exclude: 'host.raw:database4.mycompany.com'
index: "system-metrics-*"
enabled: 1
schedule: '* 8-18 * * mon-fri'
exclude_schedule: '30 12 * * *
timeperiod:

7

Tattle Documentation, Release latest

start: "now-1h"
end: "now"

alert:
type: "frequency"
relation: "gt"
qty: 0
realert: "4h"
return_matches:

length: 10
random: true

action:
pagerduty:

enabled: 1
service_key: "TattleAlerts"
once_per_match:

match_key: "key"

email:
enabled: 1
once_per_match:

match_key: "key"
to:

- 'my_email@company.com'
- 'alerts@company.com'

For more breakdown on this Tale, lets look at the Tale Definitions section.

3.3 Tale Definitions

3.3.1 name

• Required: Yes

• Description: Name of the alert

Example:

name: "Disk Usage >= 90%"``

3.3.2 description

• Required: Yes

• Description: A brief description of the tale.

Example:

description: "The disk usage on the server >= 90% on the root filesystem``

3.3.3 severity

• Required: No

• Description: The severity of the alert. This is a string, and can be whatever you want. 1-5, Low-Crit, etc

8 Chapter 3. Tales, Alerts and Actions

Tattle Documentation, Release latest

Example:

severity: "High"

3.3.4 enabled

• Required: Yes

• Description: Whteher this Tale is enabled (1)(True) or disabled (0)(False)

Example:

This alert is enabled
enabled: 1
This alert is disabled
enabled: 0
You can even use strings
enabled: "yes"
Or even booleans
enabled: true

3.3.5 disabled

• Required: Yes but only if you didnt specify an enabled

• Description: The same thing as as enabled above, but with opposite logic. Tattle used to use the term
disabled instead of enabled, but this old method is left in for legacy support. Please use the enabled
term going forward with new Tales.

Example:

This alert is enabled, not disabled
disabled: 0
this alert is disabled
disabled: 1

3.3.6 tql_query

• Required: Yes

• Description: The TQL query for the Tale. See the Tattle Query Language (TQL) page for more details on TQL

Example:

tql_query: "summary.fullest_disk:>=90 | terms name=server, field=host.raw | avg
→˓name=fullest_disk, field=summary.fullest_disk"

3.3.7 index

• Required Yes

• Description: The index pattern where you the events you are searching reside. Default is logstash-*

• More information:

3.3. Tale Definitions 9

Tattle Documentation, Release latest

– Builds the index names that Tattle will search data against

* It uses the start and end time in timeperiod of the Tale to determine which indexes to
build/query against.

– Its common to store timeseries based indexes in Elasticsearch. The most common format is store your
data by day and append a date timestamp at the end of index. The most common format is YYYY.
MM.DD. If you specify a * at the end of the index pattern in Tattle, ie logstash-*, then Tattle will
build the indexs for you by day when it does its search.

– If you store your indexes in a different time pattern or interval other than daily, then you can specify
the time pattern and interval. See examples 2-4

– If you done specify a pattern or interval or a *, then Tattle will search just that single index.

– For more information on the tokens allowd for the patterns, please see the documentation for Arrow.

Example 1:

index: "system-metrics-*"

Makes index names similar to:

system-metrics-2016.01.01, system-metrics-2016.12.29 etc

Example 2 - specifying pattern and interval:

index:
name: "system-metrics-"
pattern: "YYYY.MM.DD"
interval: "day"

This would give us index names such as:

system-metrics-2016.01.01, system-metrics-2015.12.29, etc

Example 3 - specifying pattern as string:

index: "system-metrics-%{+YYYY.MM.DD}"

This would give us the same index names as Example 1 and 2 Example 4 - specifying pattern and interval as a string,
not the interval at the end of the string after the : :

index: "system-metrics-%{+YYYY.MM.DD.HH}:hour"

Valid intervals are python datetime - year, month, week, day, hour, second This would build index names with
hour intervals such as:

some-index-2015.12.29.00,some-index-2015.12.29.01,some-index-2015.12.29.02,some-index-
→˓2015.12.29.03,some-index-2015.12.29.04,some-index-2015.12.29.05,some-index-2015.12.
→˓29.06,some-index-2015.12.29.07, ... etc

3.3.8 schedule

• Required No

• Description: Specifies when a Tale should run, using cron syntax.

10 Chapter 3. Tales, Alerts and Actions

http://crsmithdev.com/arrow/#tokens

Tattle Documentation, Release latest

• More Information: Sometimes you may only want to have a Tale run during business hours (8am - 6pm ,
mon-fri). This allows you to specify when this Tale will run in cron format (see example below)

• Credit: This is using the parse-crontab module by Josiah Carlson which can be found here

Note: If you do not specify a schedule for your Tale, then Tattle will run this Tale every time it runs.

Note: The CRON scheulde you specify here will pertain to the timezone of the system Tattle is running on. If Tattle’s
system is UTC, but you need this scheduled in EST, please account for that time difference.

Example:

schedule: "* 8-18 * * mon-fri"

Cron Examples:

30 */2 * * * -> 30 minutes past the hour every 2 hours
15,45 23 * * * -> 11:15PM and 11:45PM every day
0 1 ? * SUN -> 1AM every Sunday
0 1 * * SUN -> 1AM every Sunday (same as above)
0 0 1 jan/2 * 2011-2013 -> midnight on January 1, 2011 and the first of every odd
→˓month until the end of 2013
24 7 L * * -> 7:24 AM on the last day of every month
24 7 * * L5 -> 7:24 AM on the last friday of every month
24 7 * * Lwed-fri -> 7:24 AM on the last wednesday, thursday, and friday of every
→˓month

3.3.9 exclude_schedule

• Required No

• Description: Allows you to specify a time period for when this Tale will not run, in cron format. This would be
the opposite of the schedule option

• More information: Lets say you have a something that runs every saturday and sunday morning between 4am
and 7am. You know its normal so you dont want to be alerted about it, but any other time you do. This parameter
allows you to specify a window for Tale to not run at.

• Credit: This is using the parse-crontab module by Josiah Carlson which can be found here

Example:

exclude_schedule: '* 4-7 * sat * '

Cron Examples:

30 */2 * * * -> 30 minutes past the hour every 2 hours
15,45 23 * * * -> 11:15PM and 11:45PM every day
0 1 ? * SUN -> 1AM every Sunday
0 1 * * SUN -> 1AM every Sunday (same as above)
0 0 1 jan/2 * 2011-2013 -> midnight on January 1, 2011 and the first of every odd
→˓month until the end of 2013
24 7 L * * -> 7:24 AM on the last day of every month
24 7 * * L5 -> 7:24 AM on the last friday of every month
24 7 * * Lwed-fri -> 7:24 AM on the last wednesday, thursday, and friday of every
→˓month

3.3. Tale Definitions 11

https://github.com/josiahcarlson/parse-crontab
https://github.com/josiahcarlson/parse-crontab

Tattle Documentation, Release latest

3.3.10 timeperiod

• start, end

• Required: Yes

• Description: The timeperiod for events this Tale searches for. This is a rolling window using python-datemath
as our start and end times.

• More information:

– More documentation on python-datemath can be found here: https://github.com/nickmaccarthy/
python-datemath

Example:

timeperiod:
The start of our alert window
start: 'now-1h'
The end of our alert window
end: 'now'

3.3.11 exclude

• Required: No

• Description: Allows you to specify query parameters to exclude form this Tale

• Can also be a list of items as well, which Tattle will “OR” together

• More information: For this example, lets say we dont want to see alerts for the host database4.company.
com because its supposed to have a full disk, we can use this to parameter to exclude that host from the tale.
This parameter accepts Lucne query syntax

Example:

exclude: "host:database4.company.com OR host:database5.company.com"

or

exclude:

• “host:database4.company.com”

• “host:database5.company.com”

• “some other string

3.3.12 alert

3.3.13 type

• Required: Yes

• Description: The type of the alert

12 Chapter 3. Tales, Alerts and Actions

https://github.com/nickmaccarthy/python-datemath
https://github.com/nickmaccarthy/python-datemath

Tattle Documentation, Release latest

• Values

– frequency or number_of_events

* Description: If the number of events meets our relation and qty

– agg_match

* Description: If our value meets a regular expression match of “something”

3.3.14 relation

• Required: Yes

• Description: If our event count meets our relation, then the alert should fire

• Values

– eq, = - Equal To

– ne, != - Not Equal To

– lt, < - Less Than

– gt, > - Greater Than

– le, <= - Less Than or Equal To

– ge, >= - Greater Than or Equal To

3.3.15 qty

• Required: Yes

• Description: What we compare our relation to

Example”:

If our number of events is greater than or equal to 10, then we should alert
relation: ">="
qty: 10

3.3.16 realert

• Required: Yes

• Description: How long Tattle will wait before it will re-alert on this Tale. If Tattle is still finding matches for
this Tale, but we are within the re-alert threshold, then Tattle will not alert.

• Notes:

– Every time Tattle fires an alert, it stores it in the Tattle index in Elasticserach (default is tattle-int
). When the Tale gets loaded, one of the first thing it does it check to see when the last time this Tale
fired. It then compares the last time to the realert threshold, diffs the two and if we are beyone our
re-alert threshold, then Tattle will re-fire the Tale.

– It uses simple datemath like so:

* 1h

* 2m

3.3. Tale Definitions 13

Tattle Documentation, Release latest

* 3d

Example:

Don't alert us to this again for 1 hour
realert: "1h"

3.3.17 return_matches

• Required: Yes

• Description: If Tattle should return the matches it found. It will return those matches in whatever action you
have configured

• Notes:

– Sometimes you can get many matches (hundreds or thousands for example). With the random:
True or length: 10 stanzas Tattle can return a randam sample of 10 results

Example:

Assuming we could get hundreds of matches back
return_matches:

Return back a random sample of 20 results
random: true
length: 20

3.3.18 action

3.4 Alert Types

3.4.1 Frequency

Frequency alerts occur when a certain number of events (as defined by relation and qty) occur within a certain
period of time.

Here are some examples:

• “20 or more failed login events with in the past 1 hour”

Example

name: "Too many login failures"
tql_query: '"failed login"'
index: "secure-log-*"
timeperiod:

start: "now-1h"
end: "now"

alert:
type: "frequency"
qty: 20
relation: ">="

• “300 or more Nginx logs with an error code of 502 in the last 1 minute”

Example

14 Chapter 3. Tales, Alerts and Actions

Tattle Documentation, Release latest

name: "NGINX 502 errors"
tql_query: "status:502 | terms field=hostname"
index: "nginx-access-*"
timeperiod:

start: "now-1m"
end: "now"

alert:
type: "frequency"
qty: 300
relation: ">="

• “Less than 1000 events on all of our NGINX logs for the past 1 hour”

Example

name: "Low event count on NGINX, possible log outage"
tql_query: "*"
index: "nginx-access-*"
timeperiod:

start: "now-1h"
end: "now"

alert:
type: "frequency"
qty: 1000
relation: "le"

3.4.2 Aggregation Match

Agg Match alerts are useful for aggregation based alerts where the keys and values can change depending on your
data. Often times the result of most metric based aggregtions will a field called value. This type of alert type can
use a regular expression to match the value and compare it to our qty and relation fields

When you use an agg_match, Tattle will flatten the aggregation returned so it can be iterated against and matched by
a regular expression.

Take this example a return

{
"hits": {

"hits": [],
"total": 2,
"max_score": 0.0

},
"_shards": {

"successful": 5,
"failed": 0,
"total": 5

},
"took": 31,
"aggregations": {

"terms": {
"buckets": [

{
"avg": {

"value": 90.8
},
"key": "someserver1.somecompany.net",

3.4. Alert Types 15

Tattle Documentation, Release latest

"doc_count": 1
},
{

"avg": {
"value": 93.5

},
"key": "someserver2.somecompany.net",
"doc_count": 1

}
],
"sum_other_doc_count": 0,
"doc_count_error_upper_bound": 0

}
},
"timed_out": false

}

Tattle would flatten the aggregations section this to

aggregations.terms.buckets.0.avg.value = 90.8
aggregations.terms.buckets.0.key = someserver1.somecompany.net
aggregations.terms.buckets.1.avg.value = 93.5
aggregations.terms.buckets.1.key = someserver2.somecompany.net

So if we wanted to look for any values in our aggs that are >= 90 we would use the regular expression ^.value$
as our match key.

Some examples

Basic example where we look for any value that is >= 90

alert:
type: "agg_match"
field: '^.*value$'
relation: ">="
qty: 90

Or if we wanted to only look at only the first bucket, for a value >= 20

alert:
type: "agg_match"
field: '^\.buckets\.0.*value$'
relation: ">="
qty: 20

3.5 Alert Actions

Actions are what is taken after the Tale has met its alert threshold.

You can also have multiple actions per Tale. In our example Tale, you can we have two actions configured, one to send
Emails, and one to send the alerts to Pager Duty as well.

3.5.1 Email

Probably the most common alert action. Tattle sends a formatted, HTML email to recipient(s)

16 Chapter 3. Tales, Alerts and Actions

Tattle Documentation, Release latest

The email server properties are stored in $TATTLE_HOME/etc/tattle/tattle.yaml, so please set that up
first before you proceed with email alerts

Tale Examples:

Example

action:
email:

Optional - We can enable or disable this action with this flag
enabled: 1
Required - Who the email should go to
to: ['alerts@company.com', 'manager@company.com']
Optional - If we should send a sperate email for every match. If this is

→˓not set, then the all of the results are sent in one email
once_per_match:

The match key, is the part of the result we use our primary key for
→˓sperating the results in seperate emails

In this case its "key" since its the key of the aggregation. In our
→˓case this will be the hostname

If we had 4 hosts that matched then we would have 4 seperate emails.
→˓Tattle will append the 'match_key' to the subject of the email as well

match_key: "key"
Optional - A link to a external url to be shown in the email
client_url: 'https://someapp.company.com'
Optional - kibana4_dashbaord to link to a kibana dashbaord. When using

→˓this, Tattle will add the times from the Tale into the dashboard link, note this
→˓works for kibana4 dashbaords only

kibana4_dashboard: 'http://kibana.company.com/app/kibana#/dashboard/
→˓OurAwesomeDashboard'

Email are generated from a template via the Jinja Templating framework. By default the email template is located in
$TATTLE_HOME/usr/share/templates/html/email.html .

You can use your own template(s) if you wish. Just specify template_dir and template_name in
$TATTLE_HOME/etc/tattle/email.yml.

Example $TATTLE_HOME/etc/tattle/email.yml

server: 127.0.0.1
port: 25
default_sender: 'tattle@dev.local'
subject_prefix: 'Tattle PROD - '
Specify where we are storing our Jinja tempaltes for our email
template_dir: /some/dir/with/my/templates
Specify which template name we need to use in our template_dir
template_name: my_custom_email_template.html.j2

If you want to know more about Jinja, checkout the Jinja Docs

3.5.2 Script

The script alert action allows you to specify a script to run when the alert is fired/triggerd. When Tattle fires off the
script, it passes in the results from the alert, the Tale definition, and the TQL query intentions for use within the script.

When the script is called, three arguments are passed in to, each argument will contain JSON as its data.

Arguments

• $1 - The results, or matches from the alert

3.5. Alert Actions 17

http://jinja.pocoo.org/docs/2.10/

Tattle Documentation, Release latest

• $2 - The Tale details that was responsible for triggering this alert

• $3 - The TQL Query intentions

Your script must be in $TATTLE_HOME/bin/scripts and must be executable.

Note: The script will run as whatever user Tattle runs as. For example if you run Tattle under a user called tattle, then
the script will run as the user tattle.

Here is an example script that will echo out each of the ARGV’s

#!/bin/bash
echo 'RESULTS:'
echo $1

echo 'TALE:'
echo $2

echo 'INTENTIONS:'
echo $3

3.5.3 Pager Duty

Another very common use for Tattle is to send its alert direclty to Pager Duty.

Pager Duty alerts can be setup to Service Key, as defined in Pager Duty itself. The service Key definitions can be stored
in the $TATTLE_HOME/etc/tattle/pagerduty.yaml and can be referenced in the action by thier title.

Example $TATTLEHOME/etc/tattle/pagerduty.yaml

TattleAlerts:
service_key: "<service key>"

DataSystems:
service_key: "<service_key>"

WebSystem:
service_key: "<service_key>"

Example Tale action

action:
pagerduty:

Optional - We can enable or disable this action here
enabled: 1
Required - The name of the service key to use, as defined in pagerduty.yaml
service_key: "TattleAlerts"
Optional - The URL to specify for the 'View In' part of Pagerduty. This

→˓could be Kibana dashboard or any web application you wish
client_url: "https://kibana.company.com/app/kibana#/dashboard/

→˓OurAwesomeDashboard"
Optional - kibana4_dashbaord to link to a kibana dashbaord which will be

→˓shown in 'View In'. When using this, Tattle will add the times from the Tale into
→˓the dashboard link, note this works for kibana4 dashbaords only

kibana4_dashboard: 'http://kibana.company.com/app/kibana#/dashboard/
→˓OurAwesomeDashboard'

Optional - If we should compile seperate pagerduty alerts for each match.
→˓If this is not set, then the all of the results are sent in one PD alert

once_per_match:

18 Chapter 3. Tales, Alerts and Actions

Tattle Documentation, Release latest

The match key, is the part of the result we use our primary key for
→˓sperating the results in seperate PD alerts

In this case its "key" since its the key of the aggregation. In our
→˓case this will be the hostname

If we had 4 hosts that matched then we would have 4 seperate Pagerduty
→˓alerts. Tattle will append the 'match_key' to the subject of the Pagerduty alert
→˓as well

match_key: "key"

3.5.4 Microsoft Teams

Tattle supports posting a MessageCard to the MS Teams channel of your choice via a webhook

Before you proceed, please fill in the defaults (which can be overridden on a per Tale/Action basis) in
$TATTLE_HOME/etc/tattle/msteams.yml

Default

default:
The Webhook URL for the MS Teams channel you wish to post to
webhook_url: https://outlook.office.com/webhook/.....
What to prefix the Tale Title with
title_prefix: 'Tattle -'
If we should verify SSL or not, useful when behind some corporate proxies,

→˓default is True
ssl_verify: true
Proxy address if needed
proxy: http://user:password@some.corp.proxy.com:80

channel_alisases:
My Teams Alert Channel Name:

Webhook url for your channel
webhook_url: https://outlook.office.com/webhook/.....

Some Other Channel Name:
webhook_url: https://outlook.office.com/webhook/.....<some other channel name>

AnotherAlertChannel:
webhook_url: https://outlook.office.com/webhook/.....<some other channel name>

Example

action:
msteams:

enabled: 1
Optional teams_channel - The alias of the teams channel you wish to send

→˓the alert to
This can be a list of channels if you wish to sent to multiple channels at

→˓the same time
Note the channel aliases are defined in $TATTLE_HOME/etc/tattle/msteams.yml
teams_channel:

- My Teams Alert Channel
- Some Other Channel Name
- AnotherAlertChannel

once_per_match: # Optional
The match key, is the part of the result we use our primary key for

→˓sperating the results in seperate PD alerts
In this case its "key" since its the key of the aggregation. In our

→˓case this will be the hostname

3.5. Alert Actions 19

Tattle Documentation, Release latest

If we had 4 hosts that matched then we would have 4 seperate Pagerduty
→˓alerts. Tattle will append the 'match_key' to the subject of the Tale Title as well

match_key: "key"
kibana4_dashboard: 'http://kibana.company.com/app/kibana#/dashboard/

→˓OurAwesomeDashboard'

Or if you wanted to post this message to a differnt channel, simply overwrite the webhook_url that points to your
desired channel in the action. Example

action:
msteams:

webhook_url: https://outlook.office.com/webhook/<my_other_channel>

3.5.5 Slack

Tattle has support for posting its alert into a Slack channel of your choice

Before you proceed with Slack alerting, please fill in the defaults (which can be overridden on a per Tale/Action basis
) in $TATTLE_HOME/etc/tattle/slack.yml

In the defaults section, fill in the info with whatever makes sense for your envionment. As stated, these can be
overridden on a per-tale/action basis if you wish as well (example below). Default

default:
webhook_url: 'https://mywebhook.slack.com'
channel: 'eng-alerts'
username: 'Tattle'
msg_color: 'danger'
title_prefix: 'Tattle -'
emoji: ':squirrel:'

Then in your Tale action, just specify slack Example

action:
slack:

enabled: 1
once_per_match: # Optional

The match key, is the part of the result we use our primary key for
→˓sperating the results in seperate PD alerts

In this case its "key" since its the key of the aggregation. In our
→˓case this will be the hostname

If we had 4 hosts that matched then we would have 4 seperate Pagerduty
→˓alerts. Tattle will append the 'match_key' to the subject of the Tale Title alert
→˓as well

match_key: "key"
kibana4_dashboard: 'http://kibana.company.com/app/kibana#/dashboard/

→˓OurAwesomeDashboard'

Or if you wanted to post this alert in another channel from the default, and change the default emoji

action:
slack:

emoji: ':fire:'
channel: someotherchannel

20 Chapter 3. Tales, Alerts and Actions

Tattle Documentation, Release latest

By default slack will map the severity of an alert to an emoji as specified in $TATTLE_HOME/etc/tattle/
slack.yml. This can be customized by changing the regex keys in the emoji_severity_map to match your
severity system in your environment. The default is

emoji_severity_map:
'crit|5': ':fire:'
'high|4': ':rage:'
'med|3': ':grimacing:'
'low|2': ':disappointed:'
'info|1': ':sunglasses:'

If you want to override the defaults, you can do so on a per Tale/action basis like so:‘

Example

action:
slack:

Optional - if the action is enabled or not (default is True)
enabled: 1
Required - The webhook url to use for the slack intergration
webhook_url: 'https://hooks.slack.com/services/TTAsdfQ/asdfasdf/asdfasdfasdf'
Required - the slack channel to post the alert to
channel: 'engineering-channel'
once_per_match: # Optional

The match key, is the part of the result we use our primary key for
→˓sperating the results in seperate PD alerts

In this case its "key" since its the key of the aggregation. In our
→˓case this will be the hostname

If we had 4 hosts that matched then we would have 4 seperate Pagerduty
→˓alerts. Tattle will append the 'match_key' to the subject of the Pagerduty alert
→˓as well

match_key: "key"
optional - A link to a external url which will be displayed in the Title of

→˓the Slack alert
client_url: 'https://someapp.company.com'
optional kibana4_dashbaord to link to a kibana dashbaord. When using this,

→˓Tattle will add the times from the Tale into the dashboard link, note this works
→˓for kibana4 dashbaords only

kibana4_dashboard: 'http://kibana.company.com/app/kibana#/dashboard/
→˓OurAwesomeDashboard'

3.6 Multiple Tales

Its often useful to group Tales by their purpose. For example, you might want to group your Nginx Access Tales
together, your Nginx Error Tales sperately, and your Securelog Tales together. Lets say we have 20 differnt Nginx
Tales, and 10 different Securelog Tales; that would mean we would have have at least 30 seperate Tale .yaml files in
our $TATTLE_HOME/etc/tales directory. As you can imagine, the more you use Tattle, the more unwieldy this
can get.

Luckily Tattle allows you to define multiple Tales in one .yaml file to alleviate this issue. Using the example below,
you can see how we grouped two Nginx Tales into one file. There can be as many Tales as you want this one in one
yaml file.

3.6. Multiple Tales 21

Tattle Documentation, Release latest

3.6.1 Syntax

multi_tale_example.yaml

tales:
-

<tale #1>
-

<tale #2>
-

<tale #3>

3.6.2 Example Multi Tale

Example for NGINX logs

tales:
Tale 1
-

name: "NGINX 502 Spike"
description: "A high number of 501's have occured in our NGINX logs"
severity: "Criticial"
tql_query: "status:502"
index: "nginx-access-*"
enabled: 1
schedule_interval: "1m"
timeperiod:

start: "now-1m"
end: "now"

alert:
type: "frequency"
relation: "ge"
qty: 10
realert: "15m"
return_matches: false

action:
email:

enabled: 1
to: 'alerts@mycompany.com'

Tale 2
-

name: "NGINX 404 Spike"
description: "A high number of 404's have occured in our NGINX logs"
severity: "Medium"
tql_query: "status:404"
index: "nginx-access-*"
enabled: 1
schedule_interval: "1m"
timeperiod:

start: "now-1m"
end: "now"

alert:
type: "frequency"
relation: "ge"
qty: 400
realert: "15m"

22 Chapter 3. Tales, Alerts and Actions

Tattle Documentation, Release latest

return_matches: false
action:

email:
enabled: 1
to: 'alerts@mycompany.com'

pagerduty:
enabled: 1
service_key: "TattleAlerts"
once_per_match:

match_key: "key"

3.6. Multiple Tales 23

Tattle Documentation, Release latest

24 Chapter 3. Tales, Alerts and Actions

CHAPTER 4

Tattle Query Language (TQL)

The Tattle Query Language (TQL) is a short hand syntax used for building Elasticsearh DSL queries.

4.1 Introduction

When I was building the first verion of Tattle (project Bluenote), I noticed a pattern in the Elasticserach queries I was
making to find events. For example, They all had time windows, they all had a query_string (Lucene query), a
size, a to and from, etc. So I thought it would be nice to have a short hand syntax to represent an Elasticsearch
query that was easy to understand and write, which in turn would make managing hundreds or thousands of Tales
easier. Through some experimentation I came up with TQL which aims to do just that.

4.2 Examples

Let uses NGINX logs for our example (if you are familiar with Apache access-combined logs, this will be similar as
well).

Lets get a count of events that have a status code of 502, grouped by their respective host for the past hour.

The Elasticsearch query will look like

{
"query": {

"bool": {
"must_not": [

{
"query_string": {

"query": ""
}

}
],
"must": [

{

25

Tattle Documentation, Release latest

"query_string": {
"query": "status:502"

}
},
{

"range": {
"@timestamp": {

"to": "now",
"from": "now-1h"

}
}

}
]

}
},
"_source": {

"include": [
"*"

]
},
"from": 0,
"aggs": {

"hostname": {
"terms": {

"field": "host.raw"
}

}
},
"size": 0

}

The TQL equivilent would be

status:502 | terms name=hostname, field=host.raw

Note: The times for these queries not handled in TQL, but instead are determined in the alert/tale. For demo purposes,
we left the times in the DSL query.

4.3 Lets break it down

Anything before the first | (pipe) is going to be Lucey Query Syntax. There are many tutorials out there that can
explain it much better than here, but in essance what we did was run a lucene query for any logs/events that have a
status of 502. But just keep in mind, that any lucene query you would use in Kibana or Elasticsearch you will put
here.

To the right of our first | is our terms aggregation. In this case we are running a terms agg on the field host.raw,
and we are naming that aggregation hostname.

If we ran this against our Elasticsearch cluster, we would get results similar to the following:

{
"aggregations": {

"hostname": {
"buckets": [

{
"key": "host1.mycompany.com",

26 Chapter 4. Tattle Query Language (TQL)

Tattle Documentation, Release latest

"doc_count": 37
},
{

"key": "host2.mycompany.com",
"doc_count": 29

},
{

"key": "host3.mycompany.com",
"doc_count": 16

}
],
"sum_other_doc_count": 0,
"doc_count_error_upper_bound": 0

}
},
"timed_out": false

}

In this case we have three hosts in the hostname aggregation that have had 502 errors in the last hour, host1.
mycompany.com (37 events), host2.mycompany.com (29 events), host3.mycompany.com (16 events).

4.4 Nesting

Aggregations in Elasticserach can be nested, and this is the default behaviour in TQL. You can nest as many aggrega-
tions as you with by using |.

In this example, we can want to average a metric and group it by the host.

metric:DatabaseConnections | terms field=database.raw, name=DB_Name | avg
→˓field=connections, name=connection_avg

Here we used two aggregations, a terms and and avg. The avg aggregation will nest below the terms. Here are the
aggregations for the Elasticsearch Query TQL would generate:

{
"aggs": {

"DB_Name": {
"terms": {

"field": "database.raw"
},
"aggs": {

"connection_avg": {
"avg": {

"field": "connections"
}

}
}

}
},
"size": 0

}

4.4. Nesting 27

Tattle Documentation, Release latest

4.5 Mappings

Generally all of the aggregations available in Elasticsearch can be used in TQL. Simply use the syntax
<agg_name> <arguments> - example terms field=host.raw, name=hostname, order={
"hostname": "desc" }, cardinality field=author_hash, precision_threshold=100,
stats field=grade

However this rule applies all but one name, fields. The fields name is special to TQL and will display only the
fields you want to see in your tale/alert.

For example, let use NGINX events. They can have many different fields, but we might only want to see one or two
fields in our alert. We can use the fields argument to help with that

status:502 | fields @timestamp, message

In this example we would only see two fields, the @timestamp for the event, an the message for the event.

Read up more on Elasticsearch Aggregations here: https://www.elastic.co/guide/en/elasticsearch/reference/current/
search-aggregations.html

4.6 Ordering

Certain Elasticserach aggregations, such as terms can order your results. You can pass along your order syntax as
documented by Elasticsearch into the order argument

....| terms field=database.raw, name=database, order=[{ "database.raw": "desc"}, {"_
→˓count": "desc"}]

4.7 Scripting

Like ordering, certain Elasticsearch aggs can contain scripts to enhance their values during search time. Much like the
order function, these are evaluated just like they are in the Elasticsearch docs.

.... | stats name=grades_stats, script={"inline": "_value * correction", "params": {
→˓"correction": 1.2}}

An example demonstrating inline scripting with the choice of language, and converting bytes to MB

host.raw:app-servers* | avg name=mb_sent, script="doc['body_bytes_sent']/1024/1024",
→˓lang=expression

Note: Groovy inline scripting is disabled by default in modern Elasticsearch clusters. As always, check out the script-
ing documentation on elastic.co for more examples: https://www.elastic.co/guide/en/elasticsearch/reference/current/
modules-scripting.html

Note: Script style syntax should be evauluted for most, if not all aggregations. For example, percentiles
field=status percents=[85, 99, 99.9] will be evauated into the correct JSON needed for the ES query

28 Chapter 4. Tattle Query Language (TQL)

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-scripting.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-scripting.html

CHAPTER 5

Logging

When Tattle runs, it emits log messages about what it is doing.

By default, these logs can be found in $TATTLE_HOME/var/log/tattle.log

If you would rather Tattle log to another directory, simply overwrite the logging_directory in
$TATTLE_HOME/etc/tattle/logging.yml

5.1 Levels

The default setup for logging is to log only WARN messages and below. You can turn on debug if you wish by editing
$TATTLE_HOME/etc/tattle/logging.yaml and changing the level.

29

Tattle Documentation, Release latest

30 Chapter 5. Logging

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

31

	Tattle Intro - Alerting For Your Elasticsearch Data
	Overview
	History
	Requirements
	Quick Setup & Install

	Getting Started - Install & Setup
	Code
	Requirements
	Setup & Install
	Configuration
	Environment Variables
	Running
	Example Cron

	Tales, Alerts and Actions
	Introduction
	Example Tales
	Tale Definitions
	Alert Types
	Alert Actions
	Multiple Tales

	Tattle Query Language (TQL)
	Introduction
	Examples
	Lets break it down
	Nesting
	Mappings
	Ordering
	Scripting

	Logging
	Levels

	Indices and tables

