
tastic Documentation
Release 1.8.2

Dave Young

2017

Getting Started

1 Installation 3
1.1 Development . 3

1.1.1 Sublime Snippets . 3
1.2 Issues . 3

2 Command-Line Usage 5

3 Documentation 7

4 Command-Line Tools Tutorial 9
4.1 Sorting Taskpaper Docs via Workflow Tags . 9
4.2 Moving Archived @done Tasks to a Markdown Log File . 9

5 Python Code Tutorial 11
5.1 Taskpaper Objects . 12
5.2 Working with documents . 12

5.2.1 Reading a document . 12
5.2.2 Writing a document . 13

5.3 Working with projects . 14
5.3.1 Get a project by name . 14
5.3.2 Lising projects . 14
5.3.3 Filtering projects by tag . 15
5.3.4 Sorting projects by tags . 15
5.3.5 Marking a project as done . 16
5.3.6 Adding a project . 16
5.3.7 Deleting a project . 17

5.4 Working with tasks . 18
5.4.1 Listing Tasks . 18
5.4.2 Filtering Tasks by tags . 19
5.4.3 Sorting tasks by tags . 19
5.4.4 Marking a task as done . 20
5.4.5 Adding a task . 20

5.5 Working with notes . 20
5.5.1 Listing notes . 21
5.5.2 Adding a note . 21

5.6 Working with tags . 21
5.6.1 Adding a tag to a project or task . 21
5.6.2 Setting a project’s or task’s tags . 22

i

5.6.3 Removing all tags from a project or task . 22

6 Installation 23
6.1 Development . 23

6.1.1 Sublime Snippets . 23
6.2 Issues . 23

7 Command-Line Usage 25

8 Documentation 27

9 Command-Line Tools Tutorial 29
9.1 Sorting Taskpaper Docs via Workflow Tags . 29
9.2 Moving Archived @done Tasks to a Markdown Log File . 29

10 Python Code Tutorial 31
10.1 Taskpaper Objects . 32
10.2 Working with documents . 32

10.2.1 Reading a document . 32
10.2.2 Writing a document . 33

10.3 Working with projects . 34
10.3.1 Get a project by name . 34
10.3.2 Lising projects . 34
10.3.3 Filtering projects by tag . 35
10.3.4 Sorting projects by tags . 35
10.3.5 Marking a project as done . 36
10.3.6 Adding a project . 36
10.3.7 Deleting a project . 37

10.4 Working with tasks . 38
10.4.1 Listing Tasks . 38
10.4.2 Filtering Tasks by tags . 39
10.4.3 Sorting tasks by tags . 39
10.4.4 Marking a task as done . 40
10.4.5 Adding a task . 40

10.5 Working with notes . 40
10.5.1 Listing notes . 41
10.5.2 Adding a note . 41

10.6 Working with tags . 41
10.6.1 Adding a tag to a project or task . 41
10.6.2 Setting a project’s or task’s tags . 42
10.6.3 Removing all tags from a project or task . 42

Subpackages . 42
tastic (subpackage) . 42
tastic.commonutils (subpackage) . 42
tastic.workspace (subpackage) . 42

Modules . 42
tastic.cl_utils (module) . 43
tastic.tastic (module) . 43
tastic.utKit (module) . 52

Classes . 52
tastic.reminders (class) . 52
Methods . 53
tastic.workspace.sync (class) . 53
Methods . 54
tastic.workspace.workspace (class) . 55

ii

Methods . 55
tastic.tastic.baseClass (class) . 55
Methods . 56
Attributes . 56
tastic.tastic.document (class) . 56
Methods . 57
Attributes . 57
tastic.tastic.note (class) . 57
Methods . 58
Attributes . 58
tastic.tastic.project (class) . 58
Methods . 58
Attributes . 59
tastic.tastic.task (class) . 59
Methods . 59
Attributes . 60
tastic.utKit.utKit (class) . 60
Methods . 60

Functions . 60
10.7 Indexes . 60
10.8 Todo . 61

Python Module Index 63

iii

iv

tastic Documentation, Release 1.8.2

A python package for working with taskpaper documents.

Here’s a summary of what’s included in the python package:

Classes

tastic.reminders the taskpaper reminders object
tastic.workspace.sync The worker class for the sync module
tastic.workspace.workspace tools for sorting, archiving and indexing tasks and maintaining the contents of all taskpaper files within a given workspace
tastic.tastic.baseClass This is the base class for all taskpaper objects: documents, projects and tasks
tastic.tastic.document This is the taskpaper document object - top level object
tastic.tastic.note The taskpaper note object
tastic.tastic.project The taskpaper project object
tastic.tastic.task The taskpaper task object

Functions

Getting Started 1

tastic Documentation, Release 1.8.2

2 Getting Started

CHAPTER 1

Installation

The easiest way to install tastic is to use pip:

pip install tastic

Or you can clone the github repo and install from a local version of the code:

git clone git@github.com:thespacedoctor/tastic.git
cd tastic
python setup.py install

To upgrade to the latest version of tastic use the command:

pip install tastic --upgrade

1.1 Development

If you want to tinker with the code, then install in development mode. This means you can modify the code from your
cloned repo:

git clone git@github.com:thespacedoctor/tastic.git
cd tastic
python setup.py develop

Pull requests are welcomed!

1.1.1 Sublime Snippets

If you use Sublime Text as your code editor, and you’re planning to develop your own python code with tastic, you
might find my Sublime Snippets useful.

1.2 Issues

Please report any issues here.

3

https://github.com/thespacedoctor/tastic
https://github.com/thespacedoctor/tastic/pulls
https://www.sublimetext.com/
https://github.com/thespacedoctor/tastic-Sublime-Snippets
https://github.com/thespacedoctor/tastic/issues

tastic Documentation, Release 1.8.2

4 Chapter 1. Installation

CHAPTER 2

Command-Line Usage

Documentation for tastic can be found here: http://tastic-for-taskpaper.readthedocs.io/en/stable/

Usage:
tastic init
tastic sort <pathToFileOrWorkspace> [-s <pathToSettingsFile>]
tastic archive <pathToFileOrWorkspace> [-s <pathToSettingsFile>]
tastic [-f] sync <pathToWorkspace> <workspaceName> <pathToSyncFolder> [<editorialRootPath>] [-s <pathToSettingsFile>]
tastic reminders import <listName> <pathToTaskpaperDoc>

Options:
init setup the tastic settings file for the first time
sort sort a taskpaper file or directory containing taskpaper files via workflow tags in settings file
archive move done tasks in the 'Archive' projects within taskpaper documents into markdown tasklog files
reminders commands to work with macOS reminders
import import tasks into a given taskpaper document

pathToFileOrWorkspace give a path to an individual taskpaper file or the root of a workspace containing taskpaper files
pathToTaskpaperDoc a path to a taskpaper document
pathToWorkspace root path of a workspace containing taskpaper files
workspaceName the name you give to the workspace
pathToSyncFolder path to the folder you wish to sync the index task files into
listName name of a reminders.app list (macOS only)
editorialRootPath the root path of editorial's dropbox sync folder (add to generate an editorial URL for each task)
-h, --help show this help message
-v, --version show version
-s, --settings the settings file
-f, --fileTags if the tag to sync is in the filepath (e.g. /@due/mytasks.taskpaper) include all items the file in that tag set

5

tastic Documentation, Release 1.8.2

6 Chapter 2. Command-Line Usage

CHAPTER 3

Documentation

Documentation for tastic is hosted by Read the Docs (last stable version and latest version).

7

http://tastic-for-taskpaper.readthedocs.io/en/stable/
http://tastic-for-taskpaper.readthedocs.io/en/stable/
http://tastic-for-taskpaper.readthedocs.io/en/latest/

tastic Documentation, Release 1.8.2

8 Chapter 3. Documentation

CHAPTER 4

Command-Line Tools Tutorial

As well as providing python objects and methods for working with your taskpaper documents, tastic also provides
some very useful command-line tools. These tools work not only with single taskpaper documents, but also with
entire workspaces (nested folders) containing taskpaper documents.

Before you begin using the tastic command-line tools you will need to populate some custom settings within your
tastic settings file.

To setup the default settings file at ~/.config/tastic/tastic.yaml run the command:

tastic init

This should create and open the settings file; follow the instructions in the file to populate the missing settings values
(usually given an XXX placeholder).

4.1 Sorting Taskpaper Docs via Workflow Tags

For details about exactly what happens when you sort a taskpaper document’s projects and tasks via workflow tags,
see the sorting projects by tags and sorting tasks by tags sections of the python code tutorial. But for now let’s see
how to achieve sorting via the command-line.

In the settings file you will find a set of workflow tags, which you can adapt to your liking:

workflowTags: "@due, @flag, @hold, @next, @someday, @wait"

To sort an individual taskpaper document’s projects and tasks via these workflow tags (ordered from most to least
prioritised) use the command:

tastic sort /path/to/my/doc.taskpaper

If you want to sort the taskpaper documents recursively contained within a workspace, pass instead the root-path of
the workspace:

tastic sort /path/to/my/workspace/

4.2 Moving Archived @done Tasks to a Markdown Log File

To move completed tasks found in the Archive project of a taskpaper document into an adjacent markdown file run the
command:

9

tastic Documentation, Release 1.8.2

tastic archive /path/to/my/doc.taskpaper

This moves the completed archived tasks into a markdown file located at /path/to/my/doc-tasklog.md and
formats them into a neat, complete-date ordered table (completed date only added if @done tags includes the comple-
tion date as an attribute, e.g. @done(2016-11-09)).

Again if you want to run this code on all taskpaper documents contained within a workspace, pass instead the root-path
of the workspace:

tastic archive /path/to/my/workspace/

10 Chapter 4. Command-Line Tools Tutorial

CHAPTER 5

Python Code Tutorial

Before we start, you’ll need an example taskpaper document to work with. Copy and paste the following example
document content into a taskpaper file somewhere on your file system:

- invite friends over for drinks

make coffee: @coffee @flag
- scoop 3 heaped tablespoons of coffee into cafetiere
- fill cafetiere with boiled water from kettle @hot @water
- wait for 3 minutes @wait
- plunge the coffee in the cafetiere
- pour into cup @hot
- drink

ahhhhhhh that's good

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.

- do get hair cut @due

tidy the garden: @flag
build bbq: @someday
cut the grass:

- has it stopped raining yet @hold
you can check the weather here: http://forecast.io/

- get the mower out
- put welly boots on
- cut the grass

replace hedge with fence: @due
- watch a couple of youtube videos about putting up a fence @flag
buy fence materials:
the hedge at the rear of the garden
- ask neighbours if I can work from their garden to fix the fence

this is a rolling document where I can add projects and task I know I can only get done on saturdays

- take the boys to the cinema if it's raining @someday

grocery shop: @due
- carrots
- shampoo
- beer

11

tastic Documentation, Release 1.8.2

- washing detergent
The super-market closes at 8pm on saturdays

- take the boys to the park @next

- put up shelves in living room @flag

Archive:
- research the price of fencing online @done(2016-09-15) @project(tidy the garden / replace hedge with fence)
- clear the garden @done(2016-09-15) @project(tidy the garden / cut the grass)

[Searches]: @hide
- do: due @search(/project @due//* union //@due and not @done)
- do: flag @search(/project @flag//* union //@flag and not @done)
- do: projects to tag @search(/project not "@" and not "archive"//*)
- review: next or someday @search(project @next or @someday//*)
- Project List @search(/project not @someday)
- Next and Someday List @search(/project @next or @someday)

5.1 Taskpaper Objects

If you’re unfamiliar with the taskpaper syntax, head over to Jesse Grosjean’s User Guide for Taskpaper 3.

There are 5 basic components to the taskpaper syntax that tastic recognises; these are:

1. documents

2. projects

3. tasks

4. notes

5. tags

5.2 Working with documents

I’m going to assume that you’ve saved the example file above to your desktop and named the file saturday-
tasks.taskpaper. Fire up ipython and let’s get stuck in.

5.2.1 Reading a document

To read the file into memory use the following python code:

from tastic.tastic import document
doc = document("/Users/<yourusername>/Desktop/saturday-tasks.taskpaper")

This command reads the content of the file and automatically tidies it for you. To view the content of the file run the
following:

print doc.content

And as you can see we now have a nice clean, ordered document; notes first, then tasks, then projects, then searches:

12 Chapter 5. Python Code Tutorial

https://www.taskpaper.com/
https://guide.taskpaper.com/

tastic Documentation, Release 1.8.2

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.
this is a rolling document where I can add projects and task I know I can only get done on saturdays
- invite friends over for drinks
- do get hair cut @due
- take the boys to the cinema if it's raining @someday
- take the boys to the park @next
- put up shelves in living room @flag
make coffee: @coffee @flag

- scoop 3 heaped tablespoons of coffee into cafetiere
- fill cafetiere with boiled water from kettle @hot @water
- wait for 3 minutes @wait
- plunge the coffee in the cafetiere
- pour into cup @hot
- drink

ahhhhhhh that's good
tidy the garden: @flag

build bbq: @someday
cut the grass:

- has it stopped raining yet @hold
you can check the weather here: http://forecast.io/

- get the mower out
- put welly boots on
- cut the grass

replace hedge with fence: @due
the hedge at the rear of the garden
- watch a couple of youtube videos about putting up a fence @flag
- ask neighbours if I can work from their garden to fix the fence
buy fence materials:

grocery shop: @due
The super-market closes at 8pm on saturdays
- carrots
- shampoo
- beer
- washing detergent

Archive:
- research the price of fencing online @done(2016-09-15) @project(tidy the garden / replace hedge with fence)
- clear the garden @done(2016-09-15) @project(tidy the garden / cut the grass)

[Searches]: @hide
- do: due @search(/project @due//* union //@due and not @done)
- do: flag @search(/project @flag//* union //@flag and not @done)
- do: projects to tag @search(/project not "@" and not "archive"//*)
- review: next or someday @search(project @next or @someday//*)
- Project List @search(/project not @someday)
- Next and Someday List @search(/project @next or @someday)

If at any stage in your code you want to tidy the document again (not that you should need to), run the command:

doc.tidy()

5.2.2 Writing a document

Note any changes you make to the content of the document will have to be saved back to the file. To save the document
at any stage run the command:

doc.save()

or to save the content to a different file:

5.2. Working with documents 13

tastic Documentation, Release 1.8.2

doc.save("/Users/<yourusername>/Desktop/saturday-tasks-copy.taskpaper")

Note, if you save the content to another file, any further edits to the content of the file will be saved to this new location
with save().

5.3 Working with projects

Both documents and projects themselves can contain sub-projects.

5.3.1 Get a project by name

To select out a single project by it’s title use the get_project method:

gardenProject = doc.get_project("tidy the garden")
print gardenProject.to_string()

.. code-block:: text

tidy the garden: @flag
build bbq: @someday
cut the grass:

- has it stopped raining yet @hold
you can check the weather here: http://forecast.io/

- get the mower out
- put welly boots on
- cut the grass

replace hedge with fence: @due
the hedge at the rear of the garden
- watch a couple of youtube videos about putting up a fence @flag
- ask neighbours if I can work from their garden to fix the fence
buy fence materials:

Also note the use of the to_string() method. This method can be used on documents, projects, tasks and notes to
convert the object to a string.

5.3.2 Lising projects

To compile a list of root-level projects within your document, use the projects attribute:

docProjects = doc.projects
for p in docProjects:

print p.title

make coffee:
tidy the garden:
grocery shop:
Archive:

All projects also have a projects attribute so you can drill down into a document’s project tree to work with any
sub-project. For example:

subProjects = gardenProject.projects
for p in subProjects:

print p.title

14 Chapter 5. Python Code Tutorial

tastic Documentation, Release 1.8.2

build bbq:
cut the grass:
replace hedge with fence:

5.3.3 Filtering projects by tag

To filter projects by an associated tag, use the tagged_projects method:

dueProjects = doc.tagged_projects("@due")
for p in dueProjects:

print p.title

replace hedge with fence:
grocery shop:

The keen eyed among you will notice that this filter is in fact recursive, picking up all projects within the document
with the “@due” tag and not just the root level projects. Again each project has a tagged_projects method to
allow for finer grain filtering of projects.

5.3.4 Sorting projects by tags

sort_projects is one of my favorite methods. Given a list of workflow tags, you can sort projects recursively
within a taskpaper document or project. In the example below projects tagged with @due rise to the top of their parent
object, followed by @flag projects and so on. Projects not associated with any of the workflow tags are sorted after
matched projects.

doc.sort_projects("@due, @flag, @hold, @next, @someday, @wait")
doc.save()
print doc.content()

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.
this is a rolling document where I can add projects and task I know I can only get done on saturdays
- invite friends over for drinks
- do get hair cut @due
- take the boys to the cinema if it's raining @someday
- take the boys to the park @next
- put up shelves in living room @flag
grocery shop: @due

The super-market closes at 8pm on saturdays
- carrots
- shampoo
- beer
- washing detergent

make coffee: @coffee @flag
- scoop 3 heaped tablespoons of coffee into cafetiere
- fill cafetiere with boiled water from kettle @hot @water
- wait for 3 minutes @wait
- plunge the coffee in the cafetiere
- pour into cup @hot
- drink

ahhhhhhh that's good
tidy the garden: @flag

replace hedge with fence: @due
the hedge at the rear of the garden
- watch a couple of youtube videos about putting up a fence @flag

5.3. Working with projects 15

tastic Documentation, Release 1.8.2

- ask neighbours if I can work from their garden to fix the fence
buy fence materials:

build bbq: @someday
cut the grass:

- has it stopped raining yet @hold
you can check the weather here: http://forecast.io/

- get the mower out
- put welly boots on
- cut the grass

Archive:
- research the price of fencing online @done(2016-09-15) @project(tidy the garden / replace hedge with fence)
- clear the garden @done(2016-09-15) @project(tidy the garden / cut the grass)

[Searches]: @hide
- do: due @search(/project @due//* union //@due and not @done)
- do: flag @search(/project @flag//* union //@flag and not @done)
- do: projects to tag @search(/project not "@" and not "archive"//*)
- review: next or someday @search(project @next or @someday//*)
- Project List @search(/project not @someday)
- Next and Someday List @search(/project @next or @someday)

5.3.5 Marking a project as done

To mark a project as done, use the done() method:

coffee = doc.get_project("make coffee").done()
print coffee.to_string()

make coffee: @done(2016-09-17 21:49:49)
- scoop 3 heaped tablespoons of coffee into cafetiere
- fill cafetiere with boiled water from kettle @hot @water
- wait for 3 minutes @wait
- plunge the coffee in the cafetiere
- pour into cup @hot
- drink

ahhhhhhh that's good

It’s also possible to mark all descendant items of the object as @done by using done("all").

5.3.6 Adding a project

After sorting all the projects in the document you may have to use the refresh attribute for any project you have in
the local namespace to refresh its attributes.

gardenProject.refresh

Now to add a sub-project use the add_project method (this also works on the document object):

ADD A NEW PROJECT
shedProject = gardenProject.add_project(

title="build a shed",
tags="@someday @garden"

)

researchShedProject = shedProject.add_project(
title="research shed designs",
tags="@research"

16 Chapter 5. Python Code Tutorial

tastic Documentation, Release 1.8.2

)

print doc.content

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.
this is a rolling document where I can add projects and task I know I can only get done on saturdays
- invite friends over for drinks
- do get hair cut @due
- take the boys to the cinema if it's raining @someday
- take the boys to the park @next
- put up shelves in living room @flag
grocery shop: @due

The super-market closes at 8pm on saturdays
- carrots
- shampoo
- beer
- washing detergent

make coffee: @coffee @flag
- scoop 3 heaped tablespoons of coffee into cafetiere
- fill cafetiere with boiled water from kettle @hot @water
- wait for 3 minutes @wait
- plunge the coffee in the cafetiere
- pour into cup @hot
- drink

ahhhhhhh that's good
tidy the garden: @flag

replace hedge with fence: @due
the hedge at the rear of the garden
- watch a couple of youtube videos about putting up a fence @flag
- ask neighbours if I can work from their garden to fix the fence
buy fence materials:

build bbq: @someday
cut the grass:

- has it stopped raining yet @hold
you can check the weather here: http://forecast.io/

- get the mower out
- put welly boots on
- cut the grass

build a shed: @someday @garden
research shed designs: @research

Archive:
- research the price of fencing online @done(2016-09-15) @project(tidy the garden / replace hedge with fence)
- clear the garden @done(2016-09-15) @project(tidy the garden / cut the grass)

[Searches]: @hide
- do: due @search(/project @due//* union //@due and not @done)
- do: flag @search(/project @flag//* union //@flag and not @done)
- do: projects to tag @search(/project not "@" and not "archive"//*)
- review: next or someday @search(project @next or @someday//*)
- Project List @search(/project not @someday)
- Next and Someday List @search(/project @next or @someday)

5.3.7 Deleting a project

To delete a project, use the delete() method

doc.get_project("replace hedge with fence").delete()
print doc.content

5.3. Working with projects 17

tastic Documentation, Release 1.8.2

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.
this is a rolling document where I can add projects and task I know I can only get done on saturdays
- invite friends over for drinks
- do get hair cut @due
- take the boys to the cinema if it's raining @someday
- take the boys to the park @next
- put up shelves in living room @flag
grocery shop: @due

The super-market closes at 8pm on saturdays
- carrots
- shampoo
- beer
- washing detergent

make coffee: @done(2016-09-19 10:02:58)
- scoop 3 heaped tablespoons of coffee into cafetiere
- fill cafetiere with boiled water from kettle @hot @water
- wait for 3 minutes @wait
- plunge the coffee in the cafetiere
- pour into cup @hot
- drink

ahhhhhhh that's good
tidy the garden: @flag

build bbq: @someday
cut the grass:

- has it stopped raining yet @hold
you can check the weather here: http://forecast.io/

- get the mower out
- put welly boots on
- cut the grass

build a shed: @someday @garden
research shed designs: @research

Archive:
- research the price of fencing online @done(2016-09-15) @project(tidy the garden / replace hedge with fence)
- clear the garden @done(2016-09-15) @project(tidy the garden / cut the grass)

[Searches]: @hide
- do: due @search(/project @due//* union //@due and not @done)
- do: flag @search(/project @flag//* union //@flag and not @done)
- do: projects to tag @search(/project not "@" and not "archive"//*)
- review: next or someday @search(project @next or @someday//*)
- Project List @search(/project not @someday)
- Next and Someday List @search(/project @next or @someday)

5.4 Working with tasks

5.4.1 Listing Tasks

Documents, projects and tasks can all contain tasks. To get a list of the objects tasks, use its tasks attribute.

docTasks = doc.tasks
for t in docTasks:

print t.title

- invite friends over for drinks
- do get hair cut
- take the boys to the cinema if it's raining

18 Chapter 5. Python Code Tutorial

tastic Documentation, Release 1.8.2

- take the boys to the park
- put up shelves in living room

5.4.2 Filtering Tasks by tags

To filter tasks by an associated tag, use the tagged_tasks method:

hotTasks = doc.tagged_tasks("@hot")
for t in hotTasks:

print t.title

- fill cafetiere with boiled water from kettle
- pour into cup

As with the project filter, the task filter is recursive, picking up all tasks within the document with the “@hot” tag
and not just the root level tasks. Again each project and task has a tagged_tasks method to allow for finer grain
filtering of tasks.

5.4.3 Sorting tasks by tags

Given a list of workflow tags, you can sort tasks recursively within a taskpaper document, project or task. In the
example below tasks tagged with @due rise to the top of their parent object, followed by @flag task and so on. Tasks
not associated with any of the workflow tags are sorted after matched tasks.

doc.sort_tasks("@due, @flag, @hold, @next, @someday, @wait")
doc.save()
print doc.content

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.
this is a rolling document where I can add projects and task I know I can only get done on saturdays
- do get hair cut @due
- put up shelves in living room @flag
- take the boys to the park @next
- take the boys to the cinema if it's raining @someday
- invite friends over for drinks
grocery shop: @due

The super-market closes at 8pm on saturdays
- carrots
- shampoo
- beer
- washing detergent

make coffee: @done(2016-09-19 13:27:19)
- wait for 3 minutes @wait
- scoop 3 heaped tablespoons of coffee into cafetiere
- fill cafetiere with boiled water from kettle @hot @water
- plunge the coffee in the cafetiere
- pour into cup @hot
- drink

ahhhhhhh that's good
tidy the garden: @flag

build bbq: @someday
cut the grass:

- has it stopped raining yet @hold
you can check the weather here: http://forecast.io/

- get the mower out

5.4. Working with tasks 19

tastic Documentation, Release 1.8.2

- put welly boots on
- cut the grass

build a shed: @someday @garden
research shed designs: @research

Archive:
- research the price of fencing online @done(2016-09-15) @project(tidy the garden / replace hedge with fence)
- clear the garden @done(2016-09-15) @project(tidy the garden / cut the grass)

[Searches]: @hide
- do: due @search(/project @due//* union //@due and not @done)
- do: flag @search(/project @flag//* union //@flag and not @done)
- do: projects to tag @search(/project not "@" and not "archive"//*)
- review: next or someday @search(project @next or @someday//*)
- Project List @search(/project not @someday)
- Next and Someday List @search(/project @next or @someday)

5.4.4 Marking a task as done

To mark a task as done, use the done() method:

coffee.refresh
for t in coffee.tasks:

t.done("all")

print coffee.to_string()

make coffee: @done(2016-09-19 16:05:50)
- wait for 3 minutes @done(2016-09-19 16:05:50)
- scoop 3 heaped tablespoons of coffee into cafetiere @done(2016-09-19 16:05:50)
- fill cafetiere with boiled water from kettle @done(2016-09-19 16:05:50)
- plunge the coffee in the cafetiere @done(2016-09-19 16:05:50)
- pour into cup @done(2016-09-19 16:05:50)
- drink @done(2016-09-19 16:05:50)

ahhhhhhh that's good

5.4.5 Adding a task

A task can be added to a document, project or task object using the add_task method:

aTask = researchShedProject.add_task("look for 5 videos on youtube", "@online")
aTask.add_task("note the urls of the most useful videos")
print researchShedProject.to_string()

research shed designs: @research
- look for 5 videos on youtube @online

- note the urls of the most useful videos

5.5 Working with notes

Documents, project and tasks can all have notes assigned to them.

20 Chapter 5. Python Code Tutorial

tastic Documentation, Release 1.8.2

5.5.1 Listing notes

To list the notes for any given object use the notestr() method.

doc.notestr()

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.
this is a rolling document where I can add projects and task I know I can only get done on saturdays

print doc.get_project("grocery shop").notestr()

The super-market closes at 8pm on saturdays

5.5.2 Adding a note

Use the add_note() method to add notes to documents, projects and tasks:

newNote = doc.add_note("make sure to make time to do nothing")
print doc.notestr()

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.
this is a rolling document where I can add projects and task I know I can only get done on saturdays
make sure to make time to do nothing

newNote = aTask.add_note(
"good video: https://www.youtube.com/watch?v=nMaGTP82DtI")

print aTask.to_string()

- look for 5 videos on youtube @online
good video: https://www.youtube.com/watch?v=nMaGTP82DtI
- note the urls of the most useful videos

5.6 Working with tags

5.6.1 Adding a tag to a project or task

To add (append) a tag to a task or project use the add_tag method.

aTask.add_tag("@due")
print aTask.to_string()

- look for 5 videos on youtube @online @due
good video: https://www.youtube.com/watch?v=nMaGTP82DtI
- note the urls of the most useful videos

researchShedProject.add_tag("@hold")
print researchShedProject.to_string()

research shed designs: @research @hold
- look for 5 videos on youtube @online @due

good video: https://www.youtube.com/watch?v=nMaGTP82DtI
- note the urls of the most useful videos

5.6. Working with tags 21

tastic Documentation, Release 1.8.2

5.6.2 Setting a project’s or task’s tags

Instead of adding a tag, you can replace all of the tags using the set_tags() method.

researchShedProject.set_tags("@someday")
print researchShedProject.to_string()

research shed designs: @someday
- look for 5 videos on youtube @someday

good video: https://www.youtube.com/watch?v=nMaGTP82DtI
- note the urls of the most useful videos

researchShedProject.set_tags("@someday")
print researchShedProject.to_string()

research shed designs: @someday
- look for 5 videos on youtube @someday

good video: https://www.youtube.com/watch?v=nMaGTP82DtI
- note the urls of the most useful videos

5.6.3 Removing all tags from a project or task

To delete all of the tags, use the set_tags() method with no argument:

researchShedProject.set_tags()
print researchShedProject.to_string()

- look for 5 videos on youtube
good video: https://www.youtube.com/watch?v=nMaGTP82DtI
- note the urls of the most useful videos

22 Chapter 5. Python Code Tutorial

CHAPTER 6

Installation

The easiest way to install tastic is to use pip:

pip install tastic

Or you can clone the github repo and install from a local version of the code:

git clone git@github.com:thespacedoctor/tastic.git
cd tastic
python setup.py install

To upgrade to the latest version of tastic use the command:

pip install tastic --upgrade

6.1 Development

If you want to tinker with the code, then install in development mode. This means you can modify the code from your
cloned repo:

git clone git@github.com:thespacedoctor/tastic.git
cd tastic
python setup.py develop

Pull requests are welcomed!

6.1.1 Sublime Snippets

If you use Sublime Text as your code editor, and you’re planning to develop your own python code with tastic, you
might find my Sublime Snippets useful.

6.2 Issues

Please report any issues here.

23

https://github.com/thespacedoctor/tastic
https://github.com/thespacedoctor/tastic/pulls
https://www.sublimetext.com/
https://github.com/thespacedoctor/tastic-Sublime-Snippets
https://github.com/thespacedoctor/tastic/issues

tastic Documentation, Release 1.8.2

24 Chapter 6. Installation

CHAPTER 7

Command-Line Usage

Documentation for tastic can be found here: http://tastic-for-taskpaper.readthedocs.io/en/stable/

Usage:
tastic init
tastic sort <pathToFileOrWorkspace> [-s <pathToSettingsFile>]
tastic archive <pathToFileOrWorkspace> [-s <pathToSettingsFile>]
tastic [-f] sync <pathToWorkspace> <workspaceName> <pathToSyncFolder> [<editorialRootPath>] [-s <pathToSettingsFile>]
tastic reminders import <listName> <pathToTaskpaperDoc>

Options:
init setup the tastic settings file for the first time
sort sort a taskpaper file or directory containing taskpaper files via workflow tags in settings file
archive move done tasks in the 'Archive' projects within taskpaper documents into markdown tasklog files
reminders commands to work with macOS reminders
import import tasks into a given taskpaper document

pathToFileOrWorkspace give a path to an individual taskpaper file or the root of a workspace containing taskpaper files
pathToTaskpaperDoc a path to a taskpaper document
pathToWorkspace root path of a workspace containing taskpaper files
workspaceName the name you give to the workspace
pathToSyncFolder path to the folder you wish to sync the index task files into
listName name of a reminders.app list (macOS only)
editorialRootPath the root path of editorial's dropbox sync folder (add to generate an editorial URL for each task)
-h, --help show this help message
-v, --version show version
-s, --settings the settings file
-f, --fileTags if the tag to sync is in the filepath (e.g. /@due/mytasks.taskpaper) include all items the file in that tag set

25

tastic Documentation, Release 1.8.2

26 Chapter 7. Command-Line Usage

CHAPTER 8

Documentation

Documentation for tastic is hosted by Read the Docs (last stable version and latest version).

27

http://tastic-for-taskpaper.readthedocs.io/en/stable/
http://tastic-for-taskpaper.readthedocs.io/en/stable/
http://tastic-for-taskpaper.readthedocs.io/en/latest/

tastic Documentation, Release 1.8.2

28 Chapter 8. Documentation

CHAPTER 9

Command-Line Tools Tutorial

As well as providing python objects and methods for working with your taskpaper documents, tastic also provides
some very useful command-line tools. These tools work not only with single taskpaper documents, but also with
entire workspaces (nested folders) containing taskpaper documents.

Before you begin using the tastic command-line tools you will need to populate some custom settings within your
tastic settings file.

To setup the default settings file at ~/.config/tastic/tastic.yaml run the command:

tastic init

This should create and open the settings file; follow the instructions in the file to populate the missing settings values
(usually given an XXX placeholder).

9.1 Sorting Taskpaper Docs via Workflow Tags

For details about exactly what happens when you sort a taskpaper document’s projects and tasks via workflow tags,
see the sorting projects by tags and sorting tasks by tags sections of the python code tutorial. But for now let’s see
how to achieve sorting via the command-line.

In the settings file you will find a set of workflow tags, which you can adapt to your liking:

workflowTags: "@due, @flag, @hold, @next, @someday, @wait"

To sort an individual taskpaper document’s projects and tasks via these workflow tags (ordered from most to least
prioritised) use the command:

tastic sort /path/to/my/doc.taskpaper

If you want to sort the taskpaper documents recursively contained within a workspace, pass instead the root-path of
the workspace:

tastic sort /path/to/my/workspace/

9.2 Moving Archived @done Tasks to a Markdown Log File

To move completed tasks found in the Archive project of a taskpaper document into an adjacent markdown file run the
command:

29

tastic Documentation, Release 1.8.2

tastic archive /path/to/my/doc.taskpaper

This moves the completed archived tasks into a markdown file located at /path/to/my/doc-tasklog.md and
formats them into a neat, complete-date ordered table (completed date only added if @done tags includes the comple-
tion date as an attribute, e.g. @done(2016-11-09)).

Again if you want to run this code on all taskpaper documents contained within a workspace, pass instead the root-path
of the workspace:

tastic archive /path/to/my/workspace/

30 Chapter 9. Command-Line Tools Tutorial

CHAPTER 10

Python Code Tutorial

Before we start, you’ll need an example taskpaper document to work with. Copy and paste the following example
document content into a taskpaper file somewhere on your file system:

- invite friends over for drinks

make coffee: @coffee @flag
- scoop 3 heaped tablespoons of coffee into cafetiere
- fill cafetiere with boiled water from kettle @hot @water
- wait for 3 minutes @wait
- plunge the coffee in the cafetiere
- pour into cup @hot
- drink

ahhhhhhh that's good

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.

- do get hair cut @due

tidy the garden: @flag
build bbq: @someday
cut the grass:

- has it stopped raining yet @hold
you can check the weather here: http://forecast.io/

- get the mower out
- put welly boots on
- cut the grass

replace hedge with fence: @due
- watch a couple of youtube videos about putting up a fence @flag
buy fence materials:
the hedge at the rear of the garden
- ask neighbours if I can work from their garden to fix the fence

this is a rolling document where I can add projects and task I know I can only get done on saturdays

- take the boys to the cinema if it's raining @someday

grocery shop: @due
- carrots
- shampoo
- beer

31

tastic Documentation, Release 1.8.2

- washing detergent
The super-market closes at 8pm on saturdays

- take the boys to the park @next

- put up shelves in living room @flag

Archive:
- research the price of fencing online @done(2016-09-15) @project(tidy the garden / replace hedge with fence)
- clear the garden @done(2016-09-15) @project(tidy the garden / cut the grass)

[Searches]: @hide
- do: due @search(/project @due//* union //@due and not @done)
- do: flag @search(/project @flag//* union //@flag and not @done)
- do: projects to tag @search(/project not "@" and not "archive"//*)
- review: next or someday @search(project @next or @someday//*)
- Project List @search(/project not @someday)
- Next and Someday List @search(/project @next or @someday)

10.1 Taskpaper Objects

If you’re unfamiliar with the taskpaper syntax, head over to Jesse Grosjean’s User Guide for Taskpaper 3.

There are 5 basic components to the taskpaper syntax that tastic recognises; these are:

1. documents

2. projects

3. tasks

4. notes

5. tags

10.2 Working with documents

I’m going to assume that you’ve saved the example file above to your desktop and named the file saturday-
tasks.taskpaper. Fire up ipython and let’s get stuck in.

10.2.1 Reading a document

To read the file into memory use the following python code:

from tastic.tastic import document
doc = document("/Users/<yourusername>/Desktop/saturday-tasks.taskpaper")

This command reads the content of the file and automatically tidies it for you. To view the content of the file run the
following:

print doc.content

And as you can see we now have a nice clean, ordered document; notes first, then tasks, then projects, then searches:

32 Chapter 10. Python Code Tutorial

https://www.taskpaper.com/
https://guide.taskpaper.com/

tastic Documentation, Release 1.8.2

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.
this is a rolling document where I can add projects and task I know I can only get done on saturdays
- invite friends over for drinks
- do get hair cut @due
- take the boys to the cinema if it's raining @someday
- take the boys to the park @next
- put up shelves in living room @flag
make coffee: @coffee @flag

- scoop 3 heaped tablespoons of coffee into cafetiere
- fill cafetiere with boiled water from kettle @hot @water
- wait for 3 minutes @wait
- plunge the coffee in the cafetiere
- pour into cup @hot
- drink

ahhhhhhh that's good
tidy the garden: @flag

build bbq: @someday
cut the grass:

- has it stopped raining yet @hold
you can check the weather here: http://forecast.io/

- get the mower out
- put welly boots on
- cut the grass

replace hedge with fence: @due
the hedge at the rear of the garden
- watch a couple of youtube videos about putting up a fence @flag
- ask neighbours if I can work from their garden to fix the fence
buy fence materials:

grocery shop: @due
The super-market closes at 8pm on saturdays
- carrots
- shampoo
- beer
- washing detergent

Archive:
- research the price of fencing online @done(2016-09-15) @project(tidy the garden / replace hedge with fence)
- clear the garden @done(2016-09-15) @project(tidy the garden / cut the grass)

[Searches]: @hide
- do: due @search(/project @due//* union //@due and not @done)
- do: flag @search(/project @flag//* union //@flag and not @done)
- do: projects to tag @search(/project not "@" and not "archive"//*)
- review: next or someday @search(project @next or @someday//*)
- Project List @search(/project not @someday)
- Next and Someday List @search(/project @next or @someday)

If at any stage in your code you want to tidy the document again (not that you should need to), run the command:

doc.tidy()

10.2.2 Writing a document

Note any changes you make to the content of the document will have to be saved back to the file. To save the document
at any stage run the command:

doc.save()

or to save the content to a different file:

10.2. Working with documents 33

tastic Documentation, Release 1.8.2

doc.save("/Users/<yourusername>/Desktop/saturday-tasks-copy.taskpaper")

Note, if you save the content to another file, any further edits to the content of the file will be saved to this new location
with save().

10.3 Working with projects

Both documents and projects themselves can contain sub-projects.

10.3.1 Get a project by name

To select out a single project by it’s title use the get_project method:

gardenProject = doc.get_project("tidy the garden")
print gardenProject.to_string()

.. code-block:: text

tidy the garden: @flag
build bbq: @someday
cut the grass:

- has it stopped raining yet @hold
you can check the weather here: http://forecast.io/

- get the mower out
- put welly boots on
- cut the grass

replace hedge with fence: @due
the hedge at the rear of the garden
- watch a couple of youtube videos about putting up a fence @flag
- ask neighbours if I can work from their garden to fix the fence
buy fence materials:

Also note the use of the to_string() method. This method can be used on documents, projects, tasks and notes to
convert the object to a string.

10.3.2 Lising projects

To compile a list of root-level projects within your document, use the projects attribute:

docProjects = doc.projects
for p in docProjects:

print p.title

make coffee:
tidy the garden:
grocery shop:
Archive:

All projects also have a projects attribute so you can drill down into a document’s project tree to work with any
sub-project. For example:

subProjects = gardenProject.projects
for p in subProjects:

print p.title

34 Chapter 10. Python Code Tutorial

tastic Documentation, Release 1.8.2

build bbq:
cut the grass:
replace hedge with fence:

10.3.3 Filtering projects by tag

To filter projects by an associated tag, use the tagged_projects method:

dueProjects = doc.tagged_projects("@due")
for p in dueProjects:

print p.title

replace hedge with fence:
grocery shop:

The keen eyed among you will notice that this filter is in fact recursive, picking up all projects within the document
with the “@due” tag and not just the root level projects. Again each project has a tagged_projects method to
allow for finer grain filtering of projects.

10.3.4 Sorting projects by tags

sort_projects is one of my favorite methods. Given a list of workflow tags, you can sort projects recursively
within a taskpaper document or project. In the example below projects tagged with @due rise to the top of their parent
object, followed by @flag projects and so on. Projects not associated with any of the workflow tags are sorted after
matched projects.

doc.sort_projects("@due, @flag, @hold, @next, @someday, @wait")
doc.save()
print doc.content()

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.
this is a rolling document where I can add projects and task I know I can only get done on saturdays
- invite friends over for drinks
- do get hair cut @due
- take the boys to the cinema if it's raining @someday
- take the boys to the park @next
- put up shelves in living room @flag
grocery shop: @due

The super-market closes at 8pm on saturdays
- carrots
- shampoo
- beer
- washing detergent

make coffee: @coffee @flag
- scoop 3 heaped tablespoons of coffee into cafetiere
- fill cafetiere with boiled water from kettle @hot @water
- wait for 3 minutes @wait
- plunge the coffee in the cafetiere
- pour into cup @hot
- drink

ahhhhhhh that's good
tidy the garden: @flag

replace hedge with fence: @due
the hedge at the rear of the garden
- watch a couple of youtube videos about putting up a fence @flag

10.3. Working with projects 35

tastic Documentation, Release 1.8.2

- ask neighbours if I can work from their garden to fix the fence
buy fence materials:

build bbq: @someday
cut the grass:

- has it stopped raining yet @hold
you can check the weather here: http://forecast.io/

- get the mower out
- put welly boots on
- cut the grass

Archive:
- research the price of fencing online @done(2016-09-15) @project(tidy the garden / replace hedge with fence)
- clear the garden @done(2016-09-15) @project(tidy the garden / cut the grass)

[Searches]: @hide
- do: due @search(/project @due//* union //@due and not @done)
- do: flag @search(/project @flag//* union //@flag and not @done)
- do: projects to tag @search(/project not "@" and not "archive"//*)
- review: next or someday @search(project @next or @someday//*)
- Project List @search(/project not @someday)
- Next and Someday List @search(/project @next or @someday)

10.3.5 Marking a project as done

To mark a project as done, use the done() method:

coffee = doc.get_project("make coffee").done()
print coffee.to_string()

make coffee: @done(2016-09-17 21:49:49)
- scoop 3 heaped tablespoons of coffee into cafetiere
- fill cafetiere with boiled water from kettle @hot @water
- wait for 3 minutes @wait
- plunge the coffee in the cafetiere
- pour into cup @hot
- drink

ahhhhhhh that's good

It’s also possible to mark all descendant items of the object as @done by using done("all").

10.3.6 Adding a project

After sorting all the projects in the document you may have to use the refresh attribute for any project you have in
the local namespace to refresh its attributes.

gardenProject.refresh

Now to add a sub-project use the add_project method (this also works on the document object):

ADD A NEW PROJECT
shedProject = gardenProject.add_project(

title="build a shed",
tags="@someday @garden"

)

researchShedProject = shedProject.add_project(
title="research shed designs",
tags="@research"

36 Chapter 10. Python Code Tutorial

tastic Documentation, Release 1.8.2

)

print doc.content

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.
this is a rolling document where I can add projects and task I know I can only get done on saturdays
- invite friends over for drinks
- do get hair cut @due
- take the boys to the cinema if it's raining @someday
- take the boys to the park @next
- put up shelves in living room @flag
grocery shop: @due

The super-market closes at 8pm on saturdays
- carrots
- shampoo
- beer
- washing detergent

make coffee: @coffee @flag
- scoop 3 heaped tablespoons of coffee into cafetiere
- fill cafetiere with boiled water from kettle @hot @water
- wait for 3 minutes @wait
- plunge the coffee in the cafetiere
- pour into cup @hot
- drink

ahhhhhhh that's good
tidy the garden: @flag

replace hedge with fence: @due
the hedge at the rear of the garden
- watch a couple of youtube videos about putting up a fence @flag
- ask neighbours if I can work from their garden to fix the fence
buy fence materials:

build bbq: @someday
cut the grass:

- has it stopped raining yet @hold
you can check the weather here: http://forecast.io/

- get the mower out
- put welly boots on
- cut the grass

build a shed: @someday @garden
research shed designs: @research

Archive:
- research the price of fencing online @done(2016-09-15) @project(tidy the garden / replace hedge with fence)
- clear the garden @done(2016-09-15) @project(tidy the garden / cut the grass)

[Searches]: @hide
- do: due @search(/project @due//* union //@due and not @done)
- do: flag @search(/project @flag//* union //@flag and not @done)
- do: projects to tag @search(/project not "@" and not "archive"//*)
- review: next or someday @search(project @next or @someday//*)
- Project List @search(/project not @someday)
- Next and Someday List @search(/project @next or @someday)

10.3.7 Deleting a project

To delete a project, use the delete() method

doc.get_project("replace hedge with fence").delete()
print doc.content

10.3. Working with projects 37

tastic Documentation, Release 1.8.2

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.
this is a rolling document where I can add projects and task I know I can only get done on saturdays
- invite friends over for drinks
- do get hair cut @due
- take the boys to the cinema if it's raining @someday
- take the boys to the park @next
- put up shelves in living room @flag
grocery shop: @due

The super-market closes at 8pm on saturdays
- carrots
- shampoo
- beer
- washing detergent

make coffee: @done(2016-09-19 10:02:58)
- scoop 3 heaped tablespoons of coffee into cafetiere
- fill cafetiere with boiled water from kettle @hot @water
- wait for 3 minutes @wait
- plunge the coffee in the cafetiere
- pour into cup @hot
- drink

ahhhhhhh that's good
tidy the garden: @flag

build bbq: @someday
cut the grass:

- has it stopped raining yet @hold
you can check the weather here: http://forecast.io/

- get the mower out
- put welly boots on
- cut the grass

build a shed: @someday @garden
research shed designs: @research

Archive:
- research the price of fencing online @done(2016-09-15) @project(tidy the garden / replace hedge with fence)
- clear the garden @done(2016-09-15) @project(tidy the garden / cut the grass)

[Searches]: @hide
- do: due @search(/project @due//* union //@due and not @done)
- do: flag @search(/project @flag//* union //@flag and not @done)
- do: projects to tag @search(/project not "@" and not "archive"//*)
- review: next or someday @search(project @next or @someday//*)
- Project List @search(/project not @someday)
- Next and Someday List @search(/project @next or @someday)

10.4 Working with tasks

10.4.1 Listing Tasks

Documents, projects and tasks can all contain tasks. To get a list of the objects tasks, use its tasks attribute.

docTasks = doc.tasks
for t in docTasks:

print t.title

- invite friends over for drinks
- do get hair cut
- take the boys to the cinema if it's raining

38 Chapter 10. Python Code Tutorial

tastic Documentation, Release 1.8.2

- take the boys to the park
- put up shelves in living room

10.4.2 Filtering Tasks by tags

To filter tasks by an associated tag, use the tagged_tasks method:

hotTasks = doc.tagged_tasks("@hot")
for t in hotTasks:

print t.title

- fill cafetiere with boiled water from kettle
- pour into cup

As with the project filter, the task filter is recursive, picking up all tasks within the document with the “@hot” tag
and not just the root level tasks. Again each project and task has a tagged_tasks method to allow for finer grain
filtering of tasks.

10.4.3 Sorting tasks by tags

Given a list of workflow tags, you can sort tasks recursively within a taskpaper document, project or task. In the
example below tasks tagged with @due rise to the top of their parent object, followed by @flag task and so on. Tasks
not associated with any of the workflow tags are sorted after matched tasks.

doc.sort_tasks("@due, @flag, @hold, @next, @someday, @wait")
doc.save()
print doc.content

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.
this is a rolling document where I can add projects and task I know I can only get done on saturdays
- do get hair cut @due
- put up shelves in living room @flag
- take the boys to the park @next
- take the boys to the cinema if it's raining @someday
- invite friends over for drinks
grocery shop: @due

The super-market closes at 8pm on saturdays
- carrots
- shampoo
- beer
- washing detergent

make coffee: @done(2016-09-19 13:27:19)
- wait for 3 minutes @wait
- scoop 3 heaped tablespoons of coffee into cafetiere
- fill cafetiere with boiled water from kettle @hot @water
- plunge the coffee in the cafetiere
- pour into cup @hot
- drink

ahhhhhhh that's good
tidy the garden: @flag

build bbq: @someday
cut the grass:

- has it stopped raining yet @hold
you can check the weather here: http://forecast.io/

- get the mower out

10.4. Working with tasks 39

tastic Documentation, Release 1.8.2

- put welly boots on
- cut the grass

build a shed: @someday @garden
research shed designs: @research

Archive:
- research the price of fencing online @done(2016-09-15) @project(tidy the garden / replace hedge with fence)
- clear the garden @done(2016-09-15) @project(tidy the garden / cut the grass)

[Searches]: @hide
- do: due @search(/project @due//* union //@due and not @done)
- do: flag @search(/project @flag//* union //@flag and not @done)
- do: projects to tag @search(/project not "@" and not "archive"//*)
- review: next or someday @search(project @next or @someday//*)
- Project List @search(/project not @someday)
- Next and Someday List @search(/project @next or @someday)

10.4.4 Marking a task as done

To mark a task as done, use the done() method:

coffee.refresh
for t in coffee.tasks:

t.done("all")

print coffee.to_string()

make coffee: @done(2016-09-19 16:05:50)
- wait for 3 minutes @done(2016-09-19 16:05:50)
- scoop 3 heaped tablespoons of coffee into cafetiere @done(2016-09-19 16:05:50)
- fill cafetiere with boiled water from kettle @done(2016-09-19 16:05:50)
- plunge the coffee in the cafetiere @done(2016-09-19 16:05:50)
- pour into cup @done(2016-09-19 16:05:50)
- drink @done(2016-09-19 16:05:50)

ahhhhhhh that's good

10.4.5 Adding a task

A task can be added to a document, project or task object using the add_task method:

aTask = researchShedProject.add_task("look for 5 videos on youtube", "@online")
aTask.add_task("note the urls of the most useful videos")
print researchShedProject.to_string()

research shed designs: @research
- look for 5 videos on youtube @online

- note the urls of the most useful videos

10.5 Working with notes

Documents, project and tasks can all have notes assigned to them.

40 Chapter 10. Python Code Tutorial

tastic Documentation, Release 1.8.2

10.5.1 Listing notes

To list the notes for any given object use the notestr() method.

doc.notestr()

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.
this is a rolling document where I can add projects and task I know I can only get done on saturdays

print doc.get_project("grocery shop").notestr()

The super-market closes at 8pm on saturdays

10.5.2 Adding a note

Use the add_note() method to add notes to documents, projects and tasks:

newNote = doc.add_note("make sure to make time to do nothing")
print doc.notestr()

I need to review this document every month or so to add new tasks and project, refresh and tidy current projects and clear out stale ones.
this is a rolling document where I can add projects and task I know I can only get done on saturdays
make sure to make time to do nothing

newNote = aTask.add_note(
"good video: https://www.youtube.com/watch?v=nMaGTP82DtI")

print aTask.to_string()

- look for 5 videos on youtube @online
good video: https://www.youtube.com/watch?v=nMaGTP82DtI
- note the urls of the most useful videos

10.6 Working with tags

10.6.1 Adding a tag to a project or task

To add (append) a tag to a task or project use the add_tag method.

aTask.add_tag("@due")
print aTask.to_string()

- look for 5 videos on youtube @online @due
good video: https://www.youtube.com/watch?v=nMaGTP82DtI
- note the urls of the most useful videos

researchShedProject.add_tag("@hold")
print researchShedProject.to_string()

research shed designs: @research @hold
- look for 5 videos on youtube @online @due

good video: https://www.youtube.com/watch?v=nMaGTP82DtI
- note the urls of the most useful videos

10.6. Working with tags 41

tastic Documentation, Release 1.8.2

10.6.2 Setting a project’s or task’s tags

Instead of adding a tag, you can replace all of the tags using the set_tags() method.

researchShedProject.set_tags("@someday")
print researchShedProject.to_string()

research shed designs: @someday
- look for 5 videos on youtube @someday

good video: https://www.youtube.com/watch?v=nMaGTP82DtI
- note the urls of the most useful videos

researchShedProject.set_tags("@someday")
print researchShedProject.to_string()

research shed designs: @someday
- look for 5 videos on youtube @someday

good video: https://www.youtube.com/watch?v=nMaGTP82DtI
- note the urls of the most useful videos

10.6.3 Removing all tags from a project or task

To delete all of the tags, use the set_tags() method with no argument:

researchShedProject.set_tags()
print researchShedProject.to_string()

- look for 5 videos on youtube
good video: https://www.youtube.com/watch?v=nMaGTP82DtI
- note the urls of the most useful videos

Subpackages

tastic
tastic.commonutils common tools used throughout package
tastic.workspace tools for sorting, archiving and indexing tasks and maintaining the contents of all taskpaper files within a given workspace

tastic (subpackage)

tastic.commonutils (subpackage)

common tools used throughout package

tastic.workspace (subpackage)

methods for working with workspaces containing taskpaper project documents

Modules

42 Chapter 10. Python Code Tutorial

tastic Documentation, Release 1.8.2

tastic.cl_utils Documentation for tastic can be found here: http://tastic-for-taskpaper.readthedocs.io/en/stable/
tastic.tastic A library of tools for working with plain-text taskpaper documents
tastic.utKit Unit testing tools

tastic.cl_utils (module)

Documentation for tastic can be found here: http://tastic-for-taskpaper.readthedocs.io/en/stable/

Usage: tastic init tastic sort <pathToFileOrWorkspace> [-s <pathToSettingsFile>] tastic archive <pathToFileOr-
Workspace> [-s <pathToSettingsFile>] tastic [-f] sync <pathToWorkspace> <workspaceName> <pathToSync-
Folder> [<editorialRootPath>] [-s <pathToSettingsFile>] tastic reminders import <listName> <pathToTaskpa-
perDoc>

Options: init setup the tastic settings file for the first time sort sort a taskpaper file or directory containing taskpaper
files via workflow tags in settings file archive move done tasks in the ‘Archive’ projects within taskpaper doc-
uments into markdown tasklog files reminders commands to work with macOS reminders import import tasks
into a given taskpaper document

pathToFileOrWorkspace give a path to an individual taskpaper file or the root of a workspace containing taskpa-
per files pathToTaskpaperDoc a path to a taskpaper document pathToWorkspace root path of a workspace con-
taining taskpaper files workspaceName the name you give to the workspace pathToSyncFolder path to the folder
you wish to sync the index task files into listName name of a reminders.app list (macOS only) editorialRootPath
the root path of editorial’s dropbox sync folder (add to generate an editorial URL for each task) -h, –help show
this help message -v, –version show version -s, –settings the settings file -f, –fileTags if the tag to sync is in the
filepath (e.g. /@due/mytasks.taskpaper) include all items the file in that tag set

tastic.cl_utils.main(arguments=None)
The main function used when ‘‘cl_utils.py‘‘ is run as a single script from the cl, or when installed as a cl
command

tastic.tastic (module)

A library of tools for working with plain-text taskpaper documents

Authors @thespacedoctor

Date Created September 2, 2016

class tastic.tastic.baseClass(matchObject, parentObject=None)
This is the base class for all taskpaper objects: documents, projects and tasks

Key Arguments:

• matchObject – a dictionary containing the constituent parts of the object

• parentObject – the parent object containing this taskpaper object. Default None

add_note(note)
Add a note to this taskpaper object

Key Arguments:

• note – the note (string)

Return:

• None

Usage:

10.6. Working with tags 43

http://tastic-for-taskpaper.readthedocs.io/en/stable/
http://tastic-for-taskpaper.readthedocs.io/en/stable/
mailto:/@due/mytasks.taskpaper

tastic Documentation, Release 1.8.2

To add a note to a document, project or task object:

newNote = doc.add_note(And another note with a link http://www.thespacedoctor.co.uk")

add_project(title, tags=None)
Add a project to this taskpaper object

Key Arguments:

• title – the title for the project.

• tags – tag string (“@one @two(data)”) or list of tags ([’one’, ‘two(data)’])

• oldContent – the old content to be replaced in parent object (user sould not need to give this)

• newContent – the replacement text for the parent object (user sould not need to give this)

Return:

• project – the new taskpaper project object

Usage:

To add a sub-project to a taskpaper document or project use:

newProject = doc.add_project(
title="this is a projects I added",
tags="@with @tags"

)

add_tag(tag)
Add a tag this taskpaper object

Key Arguments:

• tag – the tag to add to the object

Usage:

aTask.add_tag("@due")

add_task(title, tags=None)
Add a task to this taskpaper object

Key Arguments:

• title – the title for the task.

• tags – tag string (‘@one @two(data)’) or list of tags ([’one’, ‘two(data)’])

Return:

• task – the new taskpaper task object

Usage:

To add a task to an object (document, project, or task) use:

newTask = doc.add_task("this is a task I added", "@with @tags")

all_tasks()
return a flat list of all tasks contained within this taskpaper object

Return:

44 Chapter 10. Python Code Tutorial

tastic Documentation, Release 1.8.2

• taskList – a flat list of all tasks

Usage:

To return a flat list of all tasks recursively found with a taskpaper document object, use the
following:

allTasks = doc.all_tasks()
for t in allTasks:

print t.title

content
The text content of this object (excluding title)

Much like the raw_content of an object, but does not include a title or tags. The initial indentation is
also removed. For a document object the content is synonymous with raw_content.

Usage:

pContent = aProject.content
tContent = aTask.content

del_tag(tag)
delete a tag this taskpaper object

Key Arguments:

• tag – the tag to delete to the object

Usage:

aTask.del_tag("@due")

done(depth=’root’)
mark this object as done

Key Arguments:

• depth – either mark root item as done or all recursive items. Default “root”. [”root”|”all”]

Usage:

To mark a task or project as done”

aTask.done()

Or or mark the object as done as well all descendant tasks and projects:

aTask.done("all")

get_project(projectName)
recursively scan this taskpaper object to find a descendant project by name

Key Arguments:

• projectName – the name, or title, of the project you want to return

Return:

• project – the taskpaper project object you requested (or None if no project was matched)

Usage:

10.6. Working with tags 45

tastic Documentation, Release 1.8.2

archiveProject = doc.get_project("Archive")

get_task(taskName)
recursively scan this taskpaper object to find a descendant task by name

Key Arguments:

• taskName – the name, or title, of the task you want to return

Return:

• task – the taskpaper task object you requested (or None if no task was matched)

Usage:

aTask = doc.get_task("cut the grass")

notes
list of the notes assoicated with this object

Usage:

The document, project and task objects can all contain notes.

docNotes = doc.notes
projectNotes = aProject.notes
taskNotes = aTask.notes

notestr()
return the notes of this object as a string

Return:

• notestr – the notes as a string

Usage:

doc.notestr

parent
This taskpaper object’s parent object (if any)

Usage:

To reserve up the taskpaper document tree and find the parent object that contains this object (e.g.
the document containing the task you’re working with) use the following:

taskParent = aTasks.parent
print taskParent

prints the following

<Taskpaper Document `saturday-tasks.taskpaper`>

projects
All child projects of this taskpaper object

Usage:

Given a taskpaper document object (doc), to get a list of the project objects found within the
document use:

46 Chapter 10. Python Code Tutorial

tastic Documentation, Release 1.8.2

docProjects = doc.projects

The same is true of project objects which may contain sub-projects:

aProject = docProjects[0]
subProjects = aProject.projects

raw_content
The raw, untidied content of the taskpaper object

Usage:

To return the inital raw content for the matched object (document, project, task or note)

print project.raw_content
print note.raw_content
print task.raw_content

set_tags(tags=’‘)
Set the tags for this taskpaper object

Key Arguments:

• tags – a tag string to set

Usage:

aTask.set_tags("@due @mac")

sort_projects(workflowTags)
order the projects within this taskpaper object via a list of tags

The order of the tags in the list dictates the order of the sort - first comes first*

Key Arguments:

• workflowTags – a string of space/comma seperated tags.

Return:

• None

Usage:

To recursively sort the projects within a taskpaper document with the following order:

1.@due

2.@flag

3.@hold

4.@next

5.@someday

6.@wait

use the following:

doc.sort_projects("@due, @flag, @hold, @next, @someday, @wait")

10.6. Working with tags 47

tastic Documentation, Release 1.8.2

sort_tasks(workflowTags, indentLevel=1)
order tasks within this taskpaper object via a list of tags

The order of the tags in the list dictates the order of the sort - first comes first*

Key Arguments:

• workflowTags – a string of space seperated tags.

Return:

• None

Usage:

To recursively sort the tasks within a taskpaper document with the following order:

1.@due

2.@flag

3.@hold

4.@next

5.@someday

6.@wait

use the following:

doc.sort_tasks("@due, @flag, @hold, @next, @someday, @wait")

tagged_projects(tag)
return a list of projects contained within this taskpaper object filtered by a given tag

Key Arguments:

• tag – the tag to filter the projects by.

Return:

• projectList – the list of filtered projects

Usage:

To filter the projects recursively found with a taskpaper document object and return only those
projects tagged with flag, using the following:

filteredProjects = doc.tagged_projects("flag")
for p in filteredProjects:

print p.title

Note you can give the tag with or without the @, and you can also give a tag attribute, e.g.
@due(today)

tagged_tasks(tag)
return a list of tasks contained within this taskpaper object filtered by a given tag

Key Arguments:

• tag – the tag to filter the tasks by.

Return:

• taskList – the list of filtered tasks

48 Chapter 10. Python Code Tutorial

tastic Documentation, Release 1.8.2

Usage:

To filter the tasks recursively found with a taskpaper document object and return only those tasks
tagged with flag, using the following:

filteredTasks = doc.tagged_tasks("@flag")
for t in filteredTasks:

print t.title

Note you can give the tag with or without the @, and you can also give a tag attribute, e.g.
@due(today)

tags
The list of tags associated with this taskpaper object

Usage: project and task objects can have associated tags. To get a list of tags assigned to an object use:

projectTag = aProject.tags
taskTags = aTasks.tags

print projectTag
> ['flag', 'home(bathroom)']

tasks
list of the tasks assoicated with this object

Usage:

Given a taskpaper document object (doc), get a list of top-level tasks associated with the docu-
ment using:

docTasks = doc.tasks

The same is true of project and task objects that may contain sub-tasks:

aProject.tasks
aTasks.tasks

tidy()
Tidy this taskpapaer object so that sub-objects appear in this order: title, tags, notes, tasks, projects

Return:

• None

Usage:

When a taskpaper document is opened it is tidied by default. To tidy the document object (or
project or task) use the command:

doc.tidy()

title
The title of this taskpaper object

Usage:

aProject.title
aTasks.title
aNote.title

10.6. Working with tags 49

tastic Documentation, Release 1.8.2

to_string(indentLevel=1, title=True, tags=None, projects=None, tasks=None, notes=None)
convert this taskpaper object to a string

Key Arguments:

• indentLevel – the level of the indent for this object. Default 1.

• title – print the title of the taskpaper object alongside the contents. Default True

• tags – replace tags with these tags. Default None

• projects – replace projects with these projects, pass empty list to delete all projects. Default
None

• tasks – replace tasks with these ones, pass empty list to delete all tasks. Default None

• notes – replace notes with these ones, pass empty list to delete all notes. Default None

Return:

• objectString – the taskpaper object as a string

Usage:

If we have the archive project from a taskpaper document, we can convert it to a string using:

print archiveProject.to_string()

Archive:
- and a third task @done(2016-09-04) @project(parent project / child-project)
- and a forth task @done(2016-09-04) @project(parent project / child-project)
- fill the kettle @done(2016-09-04) @project(parent project / make coffee)
- boil the kettle @done(2016-09-04) @project(parent project / make coffee)

class tastic.tastic.document(filepath, parentObject=None)
This is the taskpaper document object - top level object

Key Arguments:

• filepath – path to the taskpaper document

Usage:

To read a taskpaper document, use something like this:

READ IN A TASKPAPER FILE
from tastic.tastic import document
taskpaperFile = "path/to/saturday-tasks.taskpaper"
doc = document(taskpaperFile)

Note that tastic will tidy the contents of the file when it is read into memory. See the tidy()method
for details.

raw_content
The raw, untidied content of this taskpaper document

Usage:

DISPLAY THE RAW CONTENT OF THE DOCUMENT
print doc.raw_content

50 Chapter 10. Python Code Tutorial

tastic Documentation, Release 1.8.2

refresh
Refreshs this documents’s attributesd

Usage:

To refresh the taskpaper document:

doc.refresh

save(copypath=None)
save the content of the document back to the file

Key Arguments:

• copypath – the path to a new file if you want to make a copy of the document instead of saving
it to the original filepath. Default None

Usage:

To save the document to file run:

doc.save()

Or to copy the content to another file run the save method with a new filepath as an argument:

doc.save("/path/to/saturday-tasks-copy.taskpaper")

searches
The search-block (if any) associated with this document

Usage:

DOCUMENT SEARCHES
docSearchBlock = doc.searches

tags
document objects have no tags

class tastic.tastic.note(matchObject, parentObject=None)
The taskpaper note object

class tastic.tastic.project(matchObject, parentObject=None)
The taskpaper project object

delete()
delete a project from the document

Return:

• None

Usage:

myProject.delete()

refresh
Refreshs this project’s attributes if, for example, the parent document’s projects or tasks has been sorted

Usage:

To refresh the project:

10.6. Working with tags 51

tastic Documentation, Release 1.8.2

myProject.refresh

class tastic.tastic.task(matchObject, parentObject=None)
The taskpaper task object

refresh
Refreshs this tasks’s attributes if, for example, the parent document’s projects or tasks has been sorted

Usage:

To refresh the task:

aTask.refresh

tastic.utKit (module)

Unit testing tools

class tastic.utKit.utKit(moduleDirectory)
Override dryx utKit

Classes

tastic.reminders the taskpaper reminders object
tastic.workspace.sync The worker class for the sync module
tastic.workspace.workspace tools for sorting, archiving and indexing tasks and maintaining the contents of all taskpaper files within a given workspace
tastic.tastic.baseClass This is the base class for all taskpaper objects: documents, projects and tasks
tastic.tastic.document This is the taskpaper document object - top level object
tastic.tastic.note The taskpaper note object
tastic.tastic.project The taskpaper project object
tastic.tastic.task The taskpaper task object
tastic.utKit.utKit Override dryx utKit

tastic.reminders (class)

class tastic.reminders(log, settings=False)
the taskpaper reminders object

Key Arguments:

• log – logger

• settings – the settings dictionary

Usage:

To setup your logger, settings and database connections, please use the fundamentals package
(see tutorial here).

To initiate a reminders object, use the following:

from tastic import reminders
r = reminders(

log=log,

52 Chapter 10. Python Code Tutorial

http://fundamentals.readthedocs.io/en/latest/#tutorial

tastic Documentation, Release 1.8.2

settings=settings
)

__init__(log, settings=False)

Methods

__init__(log[, settings])
import_list(listName, pathToTaskpaperDoc) import tasks from a reminder.app list into a given taskpaper document

tastic.workspace.sync (class)

class tastic.workspace.sync(log, workspaceRoot, workspaceName, syncFolder, settings=False, edito-
rialRootPath=False, includeFileTags=True)

The worker class for the sync module

Key Arguments:

• log – logger

• settings – the settings dictionary

• workspaceRoot – path to the root folder of a workspace containing taskpaper files

• workspaceName – the name of the workspace

• syncFolder – path to a folder to host your synced tag taskpaper documents.

• editorialRootPath – the root path of editorial’s dropbox sync folder. Default False

• includeFileTags – if the tag is in the filepath (e.g. /@due/mytasks.taskpaper) include all items
the file in that tag set. Default True

Usage:

To setup your logger, settings and database connections, please use the fundamentals package
(see tutorial here).

To initiate a sync object, use the following:

from tastic.workspace import sync
tp = sync(

log=log,
settings=settings,
workspaceRoot="/path/to/workspace/root",
workspaceName="myWorkspace",
syncFolder="/path/to/sync/folder",
includeFileTags=True

)
tp.sync()

After this it is simply a matter of running tp.sync() to sync the sync-tag set into a taskpaper
document in the syncFolder called <workspaceName>-synced-tasks.taskpaper

__init__(log, workspaceRoot, workspaceName, syncFolder, settings=False, editorialRootPath=False,
includeFileTags=True)

10.6. Working with tags 53

mailto:/@due/mytasks.taskpaper
http://fundamentals.readthedocs.io/en/latest/#tutorial

tastic Documentation, Release 1.8.2

Methods

54 Chapter 10. Python Code Tutorial

tastic Documentation, Release 1.8.2

__init__(log, workspaceRoot, workspaceName, ...)
sync() sync the tasks tagged with a tag in the sync-tags set to index taskpaper document and HTML page

tastic.workspace.workspace (class)

class tastic.workspace.workspace(log, fileOrWorkspacePath, settings=False)
tools for sorting, archiving and indexing tasks and maintaining the contents of all taskpaper files within a given
workspace

Key Arguments:

• log – logger

• fileOrWorkspacePath – the root path of the workspace you wish to sort the taskpaper docs
within, or the path to a single taskpaper file

• settings – the settings dictionary

Usage:

To setup your logger, settings and database connections, please use the fundamentals package
(see tutorial here).

To initiate a taskpaper workspace object, use the following:

from tastic.workspace import workspace
ws = workspace(

log=log,
settings=settings,
fileOrWorkspacePath="/path/to/root/of/workspace"

)

or to target a single taskpaper document use instead the path to the file:

from tastic.workspace import workspace
ws = workspace(

log=log,
settings=settings,
fileOrWorkspacePath="/path/to/doc.taskpaper"

)

__init__(log, fileOrWorkspacePath, settings=False)

Methods

__init__(log, fileOrWorkspacePath[, settings])
archive_done() move done tasks from the document’s ‘Archive’ project into an adjacent markdown tasklog file
sort() sort the workspace or individual taskpaper document via the workflow tags found in the settings file

tastic.tastic.baseClass (class)

class tastic.tastic.baseClass(matchObject, parentObject=None)
This is the base class for all taskpaper objects: documents, projects and tasks

Key Arguments:

10.6. Working with tags 55

http://fundamentals.readthedocs.io/en/latest/#tutorial

tastic Documentation, Release 1.8.2

• matchObject – a dictionary containing the constituent parts of the object

• parentObject – the parent object containing this taskpaper object. Default None

__init__(matchObject, parentObject=None)

Methods

__init__(matchObject[, parentObject])
add_note(note) Add a note to this taskpaper object
add_project(title[, tags]) Add a project to this taskpaper object
add_tag(tag) Add a tag this taskpaper object
add_task(title[, tags]) Add a task to this taskpaper object
all_tasks() return a flat list of all tasks contained within this taskpaper object
del_tag(tag) delete a tag this taskpaper object
done([depth]) mark this object as done
get_project(projectName) recursively scan this taskpaper object to find a descendant project by name
get_task(taskName) recursively scan this taskpaper object to find a descendant task by name
notestr() return the notes of this object as a string
set_tags([tags]) Set the tags for this taskpaper object
sort_projects(workflowTags) order the projects within this taskpaper object via a list of tags
sort_tasks(workflowTags[, indentLevel]) order tasks within this taskpaper object via a list of tags
tagged_projects(tag) return a list of projects contained within this taskpaper object filtered by a given tag
tagged_tasks(tag) return a list of tasks contained within this taskpaper object filtered by a given tag
tidy() Tidy this taskpapaer object so that sub-objects appear in this order: title, tags, notes, tasks, projects
to_string([indentLevel, title, tags, ...]) convert this taskpaper object to a string

Attributes

content The text content of this object (excluding title)
notes list of the notes assoicated with this object
parent This taskpaper object’s parent object (if any)
projects All child projects of this taskpaper object
raw_content The raw, untidied content of the taskpaper object
tags The list of tags associated with this taskpaper object
tasks list of the tasks assoicated with this object
title The title of this taskpaper object

tastic.tastic.document (class)

class tastic.tastic.document(filepath, parentObject=None)
This is the taskpaper document object - top level object

Key Arguments:

• filepath – path to the taskpaper document

Usage:

To read a taskpaper document, use something like this:

56 Chapter 10. Python Code Tutorial

tastic Documentation, Release 1.8.2

READ IN A TASKPAPER FILE
from tastic.tastic import document
taskpaperFile = "path/to/saturday-tasks.taskpaper"
doc = document(taskpaperFile)

Note that tastic will tidy the contents of the file when it is read into memory. See the tidy()method
for details.

__init__(filepath, parentObject=None)

Methods

__init__(filepath[, parentObject])
add_note(note) Add a note to this taskpaper object
add_project(title[, tags]) Add a project to this taskpaper object
add_tag()
add_task(title[, tags]) Add a task to this taskpaper object
all_tasks() return a flat list of all tasks contained within this taskpaper object
del_tag(tag) delete a tag this taskpaper object
done()
get_project(projectName) recursively scan this taskpaper object to find a descendant project by name
get_task(taskName) recursively scan this taskpaper object to find a descendant task by name
notestr() return the notes of this object as a string
save([copypath]) save the content of the document back to the file
set_tags()
sort_projects(workflowTags) order the projects within this taskpaper object via a list of tags
sort_tasks(workflowTags[, indentLevel]) order tasks within this taskpaper object via a list of tags
tagged_projects(tag) return a list of projects contained within this taskpaper object filtered by a given tag
tagged_tasks(tag) return a list of tasks contained within this taskpaper object filtered by a given tag
tidy() Tidy this taskpapaer object so that sub-objects appear in this order: title, tags, notes, tasks, projects
to_string([indentLevel, title, tags, ...]) convert this taskpaper object to a string

Attributes

content The text content of this object (excluding title)
notes list of the notes assoicated with this object
parent This taskpaper object’s parent object (if any)
projects All child projects of this taskpaper object
raw_content The raw, untidied content of this taskpaper document
refresh Refreshs this documents’s attributesd
searches The search-block (if any) associated with this document
tags document objects have no tags
tasks list of the tasks assoicated with this object
title The title of this taskpaper object

tastic.tastic.note (class)

class tastic.tastic.note(matchObject, parentObject=None)
The taskpaper note object

10.6. Working with tags 57

tastic Documentation, Release 1.8.2

__init__(matchObject, parentObject=None)

Methods

__init__(matchObject[, parentObject])
add_note()
add_project()
add_tag()
add_task()
all_tasks() return a flat list of all tasks contained within this taskpaper object
del_tag(tag) delete a tag this taskpaper object
done()
get_project()
get_task()
notestr() return the notes of this object as a string
set_tags()
sort_projects()
sort_tasks()
tagged_projects()
tagged_tasks()
tidy() Tidy this taskpapaer object so that sub-objects appear in this order: title, tags, notes, tasks, projects
to_string([indentLevel, title, tags, ...]) convert this taskpaper object to a string

Attributes

content The text content of this object (excluding title)
notes
parent This taskpaper object’s parent object (if any)
projects
raw_content The raw, untidied content of the taskpaper object
tags The list of tags associated with this taskpaper object
tasks
title The title of this taskpaper object

tastic.tastic.project (class)

class tastic.tastic.project(matchObject, parentObject=None)
The taskpaper project object

__init__(matchObject, parentObject=None)

Methods

__init__(matchObject[, parentObject])
add_note(note) Add a note to this taskpaper object
add_project(title[, tags]) Add a project to this taskpaper object
add_tag(tag) Add a tag this taskpaper object

Continued on next page

58 Chapter 10. Python Code Tutorial

tastic Documentation, Release 1.8.2

Table 10.13 – continued from previous page
add_task(title[, tags]) Add a task to this taskpaper object
all_tasks() return a flat list of all tasks contained within this taskpaper object
del_tag(tag) delete a tag this taskpaper object
delete() delete a project from the document
done([depth]) mark this object as done
get_project(projectName) recursively scan this taskpaper object to find a descendant project by name
get_task(taskName) recursively scan this taskpaper object to find a descendant task by name
notestr() return the notes of this object as a string
set_tags([tags]) Set the tags for this taskpaper object
sort_projects(workflowTags) order the projects within this taskpaper object via a list of tags
sort_tasks(workflowTags[, indentLevel]) order tasks within this taskpaper object via a list of tags
tagged_projects(tag) return a list of projects contained within this taskpaper object filtered by a given tag
tagged_tasks(tag) return a list of tasks contained within this taskpaper object filtered by a given tag
tidy() Tidy this taskpapaer object so that sub-objects appear in this order: title, tags, notes, tasks, projects
to_string([indentLevel, title, tags, ...]) convert this taskpaper object to a string

Attributes

content The text content of this object (excluding title)
notes list of the notes assoicated with this object
parent This taskpaper object’s parent object (if any)
projects All child projects of this taskpaper object
raw_content The raw, untidied content of the taskpaper object
refresh Refreshs this project’s attributes if, for example, the parent document’s projects or tasks has been sorted
tags The list of tags associated with this taskpaper object
tasks list of the tasks assoicated with this object
title The title of this taskpaper object

tastic.tastic.task (class)

class tastic.tastic.task(matchObject, parentObject=None)
The taskpaper task object

__init__(matchObject, parentObject=None)

Methods

__init__(matchObject[, parentObject])
add_note(note) Add a note to this taskpaper object
add_project()
add_tag(tag) Add a tag this taskpaper object
add_task(title[, tags]) Add a task to this taskpaper object
all_tasks() return a flat list of all tasks contained within this taskpaper object
del_tag(tag) delete a tag this taskpaper object
done([depth]) mark this object as done
get_project()
get_task(taskName) recursively scan this taskpaper object to find a descendant task by name

Continued on next page

10.6. Working with tags 59

tastic Documentation, Release 1.8.2

Table 10.15 – continued from previous page
notestr() return the notes of this object as a string
set_tags([tags]) Set the tags for this taskpaper object
sort_projects()
sort_tasks(workflowTags[, indentLevel]) order tasks within this taskpaper object via a list of tags
tagged_projects()
tagged_tasks(tag) return a list of tasks contained within this taskpaper object filtered by a given tag
tidy() Tidy this taskpapaer object so that sub-objects appear in this order: title, tags, notes, tasks, projects
to_string([indentLevel, title, tags, ...]) convert this taskpaper object to a string

Attributes

content The text content of this object (excluding title)
notes list of the notes assoicated with this object
parent This taskpaper object’s parent object (if any)
projects
raw_content The raw, untidied content of the taskpaper object
refresh Refreshs this tasks’s attributes if, for example, the parent document’s projects or tasks has been sorted
tags The list of tags associated with this taskpaper object
tasks list of the tasks assoicated with this object
title The title of this taskpaper object

tastic.utKit.utKit (class)

class tastic.utKit.utKit(moduleDirectory)
Override dryx utKit

__init__(moduleDirectory)

Methods

__init__(moduleDirectory)
setupModule() The setupModule method
tearDownModule() The tearDownModule method

Functions

10.7 Indexes

• Module Index

• Full Index

60 Chapter 10. Python Code Tutorial

tastic Documentation, Release 1.8.2

10.8 Todo

• Todolist

10.8. Todo 61

tastic Documentation, Release 1.8.2

62 Chapter 10. Python Code Tutorial

Python Module Index

t
tastic, 42
tastic.cl_utils, 43
tastic.commonutils, 42
tastic.tastic, 43
tastic.utKit, 52
tastic.workspace, 42

63

tastic Documentation, Release 1.8.2

64 Python Module Index

Index

Symbols
__init__() (tastic.reminders method), 53
__init__() (tastic.tastic.baseClass method), 56
__init__() (tastic.tastic.document method), 57
__init__() (tastic.tastic.note method), 57
__init__() (tastic.tastic.project method), 58
__init__() (tastic.tastic.task method), 59
__init__() (tastic.utKit.utKit method), 60
__init__() (tastic.workspace.sync method), 53
__init__() (tastic.workspace.workspace method), 55

A
add_note() (tastic.tastic.baseClass method), 43
add_project() (tastic.tastic.baseClass method), 44
add_tag() (tastic.tastic.baseClass method), 44
add_task() (tastic.tastic.baseClass method), 44
all_tasks() (tastic.tastic.baseClass method), 44

B
baseClass (class in tastic.tastic), 43, 55

C
content (tastic.tastic.baseClass attribute), 45

D
del_tag() (tastic.tastic.baseClass method), 45
delete() (tastic.tastic.project method), 51
document (class in tastic.tastic), 50, 56
done() (tastic.tastic.baseClass method), 45

G
get_project() (tastic.tastic.baseClass method), 45
get_task() (tastic.tastic.baseClass method), 46

M
main() (in module tastic.cl_utils), 43

N
note (class in tastic.tastic), 51, 57

notes (tastic.tastic.baseClass attribute), 46
notestr() (tastic.tastic.baseClass method), 46

P
parent (tastic.tastic.baseClass attribute), 46
project (class in tastic.tastic), 51, 58
projects (tastic.tastic.baseClass attribute), 46

R
raw_content (tastic.tastic.baseClass attribute), 47
raw_content (tastic.tastic.document attribute), 50
refresh (tastic.tastic.document attribute), 50
refresh (tastic.tastic.project attribute), 51
refresh (tastic.tastic.task attribute), 52
reminders (class in tastic), 52

S
save() (tastic.tastic.document method), 51
searches (tastic.tastic.document attribute), 51
set_tags() (tastic.tastic.baseClass method), 47
sort_projects() (tastic.tastic.baseClass method), 47
sort_tasks() (tastic.tastic.baseClass method), 47
sync (class in tastic.workspace), 53

T
tagged_projects() (tastic.tastic.baseClass method), 48
tagged_tasks() (tastic.tastic.baseClass method), 48
tags (tastic.tastic.baseClass attribute), 49
tags (tastic.tastic.document attribute), 51
task (class in tastic.tastic), 52, 59
tasks (tastic.tastic.baseClass attribute), 49
tastic (module), 42
tastic.cl_utils (module), 43
tastic.commonutils (module), 42
tastic.tastic (module), 43
tastic.utKit (module), 52
tastic.workspace (module), 42
tidy() (tastic.tastic.baseClass method), 49
title (tastic.tastic.baseClass attribute), 49
to_string() (tastic.tastic.baseClass method), 49

65

tastic Documentation, Release 1.8.2

U
utKit (class in tastic.utKit), 52, 60

W
workspace (class in tastic.workspace), 55

66 Index

	Installation
	Development
	Sublime Snippets

	Issues

	Command-Line Usage
	Documentation
	Command-Line Tools Tutorial
	Sorting Taskpaper Docs via Workflow Tags
	Moving Archived @done Tasks to a Markdown Log File

	Python Code Tutorial
	Taskpaper Objects
	Working with documents
	Reading a document
	Writing a document

	Working with projects
	Get a project by name
	Lising projects
	Filtering projects by tag
	Sorting projects by tags
	Marking a project as done
	Adding a project
	Deleting a project

	Working with tasks
	Listing Tasks
	Filtering Tasks by tags
	Sorting tasks by tags
	Marking a task as done
	Adding a task

	Working with notes
	Listing notes
	Adding a note

	Working with tags
	Adding a tag to a project or task
	Setting a project's or task's tags
	Removing all tags from a project or task

	Installation
	Development
	Sublime Snippets

	Issues

	Command-Line Usage
	Documentation
	Command-Line Tools Tutorial
	Sorting Taskpaper Docs via Workflow Tags
	Moving Archived @done Tasks to a Markdown Log File

	Python Code Tutorial
	Taskpaper Objects
	Working with documents
	Reading a document
	Writing a document

	Working with projects
	Get a project by name
	Lising projects
	Filtering projects by tag
	Sorting projects by tags
	Marking a project as done
	Adding a project
	Deleting a project

	Working with tasks
	Listing Tasks
	Filtering Tasks by tags
	Sorting tasks by tags
	Marking a task as done
	Adding a task

	Working with notes
	Listing notes
	Adding a note

	Working with tags
	Adding a tag to a project or task
	Setting a project's or task's tags
	Removing all tags from a project or task
	Subpackages
	tastic (subpackage)
	tastic.commonutils (subpackage)
	tastic.workspace (subpackage)

	Modules
	tastic.cl_utils (module)
	tastic.tastic (module)
	tastic.utKit (module)

	Classes
	tastic.reminders (class)
	Methods
	tastic.workspace.sync (class)
	Methods
	tastic.workspace.workspace (class)
	Methods
	tastic.tastic.baseClass (class)
	Methods
	Attributes
	tastic.tastic.document (class)
	Methods
	Attributes
	tastic.tastic.note (class)
	Methods
	Attributes
	tastic.tastic.project (class)
	Methods
	Attributes
	tastic.tastic.task (class)
	Methods
	Attributes
	tastic.utKit.utKit (class)
	Methods

	Functions

	Indexes
	Todo

	Python Module Index

