

facadedevice

[image:]
 [http://tango-facadedevice.readthedocs.io/][image:]
 [https://coveralls.io/github/MaxIV-KitsControls/tango-facadedevice?branch=master][image:]
 [https://travis-ci.org/MaxIV-KitsControls/tango-facadedevice][image:]
 [https://pypi.python.org/pypi/facadedevice][image:]
 [https://pypi.python.org/pypi/facadedevice]A descritive interface for reactive high-level Tango devices.

	Presentation
	Requirements

	Installation

	Unit-testing

	Documentation

	Tutorial
	Creating an running a facade device

	Adding extra logic at initialization

	Local attributes

	Data model

	State attribute

	Logical attributes

	The triplet structure

	Proxy attribute

	Combined attributes

	Proxy commands

	Advanced features

	Limitations

	API Reference
	Simple attributes

	Remote attributes

	State handling

	Commands

	Facade base classes

	Examples
	Simple example

	Real-world example

Presentation

This python package provide a descriptive interface for reactive high-level
Tango devices.

Requirements

The library requires:

	python >= 2.7 or >= 3.4

	pytango >= 9.2.1

Installation

Install the library by running:

$ python setup.py install # Or
$ pip install .

Unit-testing

Run the tests using:

$ python setup.py test

The following libraries will be downloaded if necessary:

	pytest

	pytest-runner

	pytest-mock

	pytest-xdist

	pytest-coverage

Documentation

Generating the documentation requires:

	sphinx

	sphinx.ext.autodoc

	sphinx.ext.napoleon

Build the documentation using:

$ python setup.py build_sphinx
$ sensible-browser build/sphinx/html/index.html

Tutorial

This tutorial goes through most of the library features by presenting several
facade devices with increasing complexity.

Creating an running a facade device

A facade device is an enhanced pytango HLAPI device. It provides the same
methods and supports the same pytango object (device properties, attributes,
commands, etc.). In order to create a new facade device class, simply inherit
from the Facade base class:

from facadedevice import Facade

class Empty(Facade):
 pass

if __name__ == '__main__':
 Empty.run_server()

This example is already a working (empty) device. It is possible to run it
without a database using the tango.test_context module:

$ cd examples/
$ python -m tango.test_context examples.empty.Empty --debug=3
Ready to accept request
Empty started on port 8888 with properties {}
Device access: tango://hostname:8888/test/nodb/empty#dbase=no
Server access: tango://hostname:8888/dserver/Empty/empty#dbase=no

It is now accessible through itango:

In [1]: d = Device('tango://hostname:8888/test/nodb/empty#dbase=no')
In [2]: d.state()
Out[2]: tango._tango.DevState.UNKNOWN

Adding extra logic at initialization

The default state is UNKNOWN. Since facade devices are regular devices,
we can change it using the set_state method. However, the init_device
method shouldn’t be overridden because it performs specific exception handling.
Instead, override safe_init_device if you have to add some extra logic. Don’t
forget to call the parent method since it performs other useful steps:

class On(Facade):

 def safe_init_device(self):
 super(On, self).safe_init_device()
 self.set_state(DevState.ON)

Now let’s check the state:

In [2]: d.state()
Out[2]: tango._tango.DevState.ON

Local attributes

Good, but a static state is not really useful. Instead we’d like it to react to
the values of other attributes. Let’s create a device with a local counter using
the local_attribute object.

class Counter1(Facade):

 @local_attribute(
 dtype=int,
 access=AttrWriteType.READ_WRITE,)
 def count(self):
 return 0

Note that local_attribute can be used as a decorator to set a default value
for the attribute, although it is not mandatory. Also, local_attribute (and
other facade-specific attributes) supports all the arguments of the standard
pytango attribute object (e.g. access and dtype in the example above). Now
let’s try our counter:

In [2]: d.count
Out[2]: 0
In [3]: d.count += 1
In [4]: d.count
Out[4]: 1

See how the count attribute has been incremented successfully. Also note that
the facade devices have a full support for events, meaning a change event has
been pushed when the count value has been updated (no polling is required on
the attribute).

Data model

Now, instead of a writable attribute, we’d like to use a command to increment
the value of count. But first, we need to learn about the data model that
allows reactivity and the propagation of changes. Every facade device instance
has a graph of nodes that represents the different values that the device has
to manage. For instance, every local attribute has a corresponding node that
can be accessed through self.graph[attr_name]. A node can contain either:

	nothing

	a triplet result (value, stamp, quality)

	an exception

Accessing the node state is done through the following methods:

	node.result() == None if the node contains nothing

	value, stamp, quality = node.result() if the node contains a result

	node.exception() == None if the node doesn’t contain an exception

	exc = node.exception() if the node contains an exception

Also note that calling node.result() on a node containing an exception
will raise the corresponding exception. The node state is set using the
following methods:

	node.set_result(None)

	node.set_result(triplet(value, stamp, quality))

	node.set_exception(exc)

Note that stamp and quality are optional. They respectively default to the
current time and the VALID quality. The increment tango command can
now be implemented:

class Counter2(Facade):

 @local_attribute(
 dtype=int)
 def count(self):
 return 0

 @command
 def increment(self):
 node = self.graph['count']
 value, stamp, quality = node.result()
 new_result = triplet(value+1)
 node.set_result(new_result)

Let’s give it a try:

In [2]: d.count
Out[2]: 0
In [3]: d.increment()
In [4]: d.count
Out[4]: 1

State attribute

Now, we’d like to have the state react to the value of count. This can be
achieved using the state_attribute facade object. It is used as a decorator
and takes the list of the nodes to bind to as an argument:

class Counter3(Facade):

 @local_attribute(
 dtype=int)
 def count(self):
 return 0

 @command
 def increment(self):
 node = self.graph['count']
 value, stamp, quality = node.result()
 new_result = (value+1,)
 node.set_result(new_result)

 @state_attribute(
 bind=['count'])
 def state_and_status(self, count):
 if count == 0:
 return DevState.OFF, 'The count is 0'
 return DevState.ON, 'The count is {}'.format(count)

Note that it’s possible to return the status along with the state, although it
is not mandatory. Let’s run the counter:

In [2]: d.state()
Out[2]: tango._tango.DevState.OFF
In [3]: d.status()
Out[3]: 'The count is 0'
In [4]: d.increment()
In [5]: d.state()
Out[5]: tango._tango.DevState.ON
In [6]: d.status()
Out[6]: 'The count is 1'

See how the state is updated automatically. Remember that there is no polling
or periodic update involved: the changes are simply propagated through the
device graph.

Logical attributes

State and Status are not the only attributes that can react to changes.
It is possible to declare logical attributes using the same binding approach.
Let’s write a device that performs a division:

class Division1(Facade):

 A = local_attribute(
 dtype=float,
 access=AttrWriteType.READ_WRITE)

 B = local_attribute(
 dtype=float,
 access=AttrWriteType.READ_WRITE)

 @logical_attribute(
 dtype=float,
 bind=['A', 'B'])
 def C(self, a, b):
 return a / b

Here we defined the relationship C = A / B. Note how the arguments of the
method C are simply the value A and B. Let’s give it a try:

In [2]: d.A = 1
In [3]: d.B = 4
In [4]: d.C
Out[4]: 0.25
In [5]: d.B = 0
In [6]: d.C
PyDs_PythonError: Exception while updating node <C>:
 float division by zero

Remember that the computation of C does not happen when the attribute C is
being read but when the values of A and B are changing. For instance, the
zero division exception has been set to the node C right after we set B to
zero.

They are special rules about aggregation depending on the state of the
different input nodes:

	if node A or node B is empty, node C is empty too

	if node A or node B contains an exception, it’s propagated to C

	if the quality of A or the quality of B is invalid, the quality of C
is invalid

	otherwise, the C method is executed and the return value is used as a
result

Note that the return value of the C method can be:

	a single value (timestamp and quality are computed from the input nodes)

	a triplet result, in order to set the timestamp and/or the quality

The triplet structure

The triplet is a named tuple provided by the facade device. All the node
results are guaranteed to be a triplet when they exist. This is how it is
used:

from time import time
from tango import AttrQuality
from facadedevice import triplet

A triplet from a single value
result = triplet(1.)

A triplet from a value and a stamp
result = triplet(1., stamp=time())

A triplet from a value and a quality
result = triplet(1, quality=AttrQuality.ATTR_ALARM)

A triplet from value, a stamp and a quality
result = triplet(1, time(), AttrQuality.ATTR_CHANGING)

Triplets can be unpacked
value, stamp, quality = result

The values can be accessed through attributes
result.value, result.stamp, result.quality

The default quality is VALID and the default stamp is the time at the
triplet creation. It has another interesting property: a None value will
cause the quality to be INVALID and an INVALID quality will cause
the value to be None. This is enforced at triplet creation.

Warning

An empty node and a none (invalid) triplet can easily be confused! They
are however very different:

	node.set_result(None) empty the node

	node.set_result(triplet(None)) set an INVALID result with a
timestamp

The both behave differently when reading the corresponding attribute or
when used as an input node to propagate changes.

Proxy attribute

The division device is working nicely but it doesn’t really communicate with
the outside world. More precisely, the A and B might come from another
device. In this case, we can simply replace the local attributes with proxy
attributes:

class Division2(Facade):

 A = proxy_attribute(
 dtype=float,
 property_name='AAttribute')

 B = proxy_attribute(
 dtype=float,
 property_name='BAttribute')

 @logical_attribute(
 dtype=float,
 bind=['A', 'B'])
 def C(self, a, b):
 return a / b

The only special argument we need to provide a proxy attribute with is
property_name: its the name of the device property that will contain
the access to the remote attribute. In this case, the device properties
could be:

	AAttribute: some/device/somewhere/x

	BAttribute: some/other/device/y

Those remote attributes are expected to push either change or periodic events.
Facade devices have an expert command called GetInfo that provides extra
information about the event subscription, e.g:

In [2]: print(d.getinfo())
The device is currently connected.
It subscribed to event channel of the following attribute(s):
- some/device/somewhere/x (CHANGE_EVENT)
- some/other/device/y (PERIODIC_EVENT)

No errors in history since Tue Apr 25 18:26:47 2017 (last initialization).

Once properly set up, any event comming from those remote attributes will
cause A (or B) and C to be updated. Note that facade devices can easily
be chained together since they both publish and subscribe.

It is also possible to apply a conversion to the input data by using
proxy_attribute as a decorator:

@proxy_attribute(
 dtype=float,
 property_name='AAttribute')
def A(self, a):
 return a * 10

Here, the data coming from the event channel is multiplied by 10. Note that
the device property can also be a value if the remote attribute doesn’t
exist:

$ python -m tango.test_context --prop "{'AAttribute': 1.0, 'BAttribute': 4.0}" \
 division2.Division2
Ready to accept request
Division2 started on port 8888 with properties {'AAttribute': 1.0, 'BAttribute': 4.0}
Device access: tango://vinmic-t440p:8888/test/nodb/division2#dbase=no
Server access: tango://vinmic-t440p:8888/dserver/Division2/division2#dbase=no

Let’s check the values:

In [2]: d.A = 1
In [3]: d.B = 4
In [4]: d.C
Out[4]: 0.25

Combined attributes

In some cases, it is interesting to access remote attributes in a more dynamic
way. The facadedevice library does not support dymanic attributes directly,
but it provides a combined_attributes object that can be used for similar
purposes. Let’s say we’d like to compute the average of the values of an
arbitrary list of attributes:

class Average(Facade):

 @combined_attribute(
 dtype=float,
 property_name='AttributesToAverage')
 def average(self, *args):
 return sum(args) / len(args)

Here, the AttributesToAverage device property is simply the list of all the
attributes that should be used for the computation. The attributes may come
from the same device, or different devices. If that device property is a single
line, it’s used a pattern for listing the attributes. For instance, the pattern
a/b/*/x[12] might yield:

	a/b/c/x1

	a/b/c/x2

	a/b/whatever/x1

	a/b/whatever/x2

	etc.

It includes all the attributes called x1 or x2 from any device starting
with a/b/. Note that the aggregation works the same as for logical
attributes.

Proxy commands

The library also provides an interface for proxy attributes, although it doesn’t
use of the concepts explained earlier (graph, node, triplets, etc.). It’s simply a
helper to bind a tango command to a command on a remote device. Consider the
following example:

class Commands(Facade):

 reset = proxy_command(
 property_name="ResetCommand")

 echo = proxy_command(
 dtype_in=str,
 dtype_out=str,
 property_name="EchoCommand")

 set_level = proxy_command(
 dtype_in=float,
 property_name="LevelAttribute",
 write_attribute=True)

 @proxy_command(
 dtype_in=int,
 dtype_out=int,
 property_name="EchoCommand")
 def identity(self, subcommand, arg):
 return int(subcommand(str(arg)))

The reset command here simply delegates to the ResetCommand provided in the
device properties. It has no input argument, no return value, and the remote
command is expected to have the same interface.

The echo command delegates to the EchoCommand provided in the device properties
by passing the input string argument to the remote command and returning its
return value. Again, both interfaces are expected to match (otherwise an exception
will be raised at runtime).

It is also possible to write a remote attribute instead of running a remote command.
The set_level command does exactly that by setting write_attribute=True. Note
that value to write is directly given by the float input argument.

In some cases, we need a finer control over the command behavior. For instance, we
might need to apply some conversion before or after running the remote command. It
is then possible to use proxy_command as a decorator of a method implementing this
extra bit of logic.

The identity command in the code above is one example of that:
the remote command can only handle string, while we’d like our command to work with
integers. See how the identity method receives the remote command and the input
argument, and how it converts the different values to make the types match.

Advanced features

TODO

Limitations

TODO

API Reference

Simple attributes

	
class facadedevice.local_attribute(create_attribute=True, **kwargs)

	Tango attribute with event support.

Local attributes support the standard attribute keywords.

It can be used as a decorator to set a method providing the
default value for the corresponding attribute.

	Parameters

	create_attribute (str) – Create the corresponding tango attribute. Default is True.

	
class facadedevice.logical_attribute(bind, standard_aggregation=True, **kwargs)

	Tango attribute computed from the values of other attributes.

Use it as a decorator to register the function that make this computation.
Logical attributes also support the standard attribute keywords.

	Parameters

	
	bind (list of str) – List of node names to bind to. It has to contain at least one name.

	standard_aggregation (optional, bool) – Use the default aggregation mecanism. Default is True.

	create_attribute (optional, bool) – Create the corresponding tango attribute. Default is True.

Remote attributes

	
class facadedevice.proxy_attribute(property_name, create_property=True, **kwargs)

	Tango attribute linked to the attribute of a remote device.

	Parameters

	
	property_name (str) – Name of the property containing the attribute name.

	create_property (optional, bool) – Create the corresponding device property. Default is True.

	standard_aggregation (optional, bool) – Use the default aggregation mecanism. Default is True.

	create_attribute (optional, bool) – Create the corresponding tango attribute. Default is True.

Also supports the standard attribute keywords.

	
class facadedevice.combined_attribute(property_name, create_property=True, **kwargs)

	Tango attribute computed from the values of other remote attributes.

Use it as a decorator to register the function that make this computation.
The remote attribute names are provided by a property, either as a list or
a pattern.

	Parameters

	
	property_name (str) – Name of the property containing the attribute names.

	create_property (optional, bool) – Create the corresponding device property. Default is True.

	standard_aggregation (optional, bool) – Use the default error aggregation mecanism. Default is True.

	create_attribute (optional, bool) – Create the corresponding tango attribute. Default is True.

Also supports the standard attribute keywords.

State handling

	
class facadedevice.state_attribute(bind=None, standard_aggregation=True)

	Tango state attribute with event support.

	Parameters

	
	bind (list of str) – List of node names to bind to, or None to disable the binding.
Default is None.

	standard_aggregation (optional, bool) – Use the default error aggregation mecanism. Default is True.

Commands

	
class facadedevice.proxy_command(property_name, create_property=True, write_attribute=False, **kwargs)

	Command to write an attribute or run a command of a remote device.

It can be used as a decorator to define a more precise behavior.
The decorated method takes the subcommand as its firt argument.

	Parameters

	
	property_name (str) – Name of the property containing the attribute or command name.

	create_property (str) – Create the corresponding device property. Default is True.

	write_attribute (bool) – True if the subcommand should an attribute write, False otherwise.
Default is false.

Also supports the standard command keywords.

Facade base classes

	
class facadedevice.Facade(cl, name)

	Base class for facade devices.

It supports the following objects:

	facadedevice.local_attribute

	facadedevice.logical_attribute

	facadedevice.proxy_attribute

	facadedevice.combined_attribute

	facadedevice.state_attribute

	facadedevice.proxy_command

It also provides a few helpers:

	self.graph: act as a <key, node> dictionnary

	self.get_combined_results: return the subresults of a combined
attribute

The init_device method shouldn’t be overridden. It performs specific
exception handling. Instead, override safe_init_device if you have to
add some extra logic. Don’t forget to call the parent method since it
performs a few useful steps:

	load device properties

	configure and build the graph

	run the connection routine

It also provides an expert command called GetInfo that displays useful
information such as:

	the connection status

	the list of all event subscriptions

	the exception history

	
class facadedevice.TimedFacade(cl, name)

	Similar to the facadedevice.Facade base class with time handling.

In particular, it adds:

	the UpdateTime polled command, used trigger updates periodically

	the Time local attribute, a float updated at every tick

	the on_time method, a callback that runs at every tick

Examples

This section contains a few extra examples.

Simple example

The following example shows the definition of a rectangle device,
getting its width and height from other devices:

from facadevice import Facade, proxy_attribute, logical_attribute

class Rectangle(Facade):

 Width = proxy_attribute(
 property_name='WidthAttribute')

 Height = proxy_attribute(
 property_name='HeightAttribute')

 @logical_attribute(
 bind=['Width', 'Height'])
 def Area(width, height):
 return width * height

if __name__ == '__main__':
 Rectangle.run_server()

A rectangle device is configured using 2 device properties, e.g.:

	WidthAttribute: geometry/point/a/x

	HeightAttribute: geometry/point/b/y

The remote attributes are expected to push either change or periodic events.

A rectangle device exposes 3 float attributes:

	Width

	Height

	Area

Those attributes will be updated as soon as a corresponding event is received.
They also pushes events, allowing other high-level devices to react to their changes.

Real-world example

A real-world example of a camera screen device used at MAX-IV:

from tango import DevState
from facadedevice import Facade, proxy_command
from facadedevice import proxy_attribute, logical_attribute, state_attribute

class CameraScreen(Facade):

 # Proxy attributes

 StatusIn = proxy_attribute(
 dtype=bool,
 property_name="StatusInAttribute")

 StatusOut = proxy_attribute(
 dtype=bool,
 property_name="StatusOutAttribute")

 # Logical attributes

 @logical_attribute(
 dtype=bool,
 bind=['StatusIn', 'StatusOut'])
 def Error(self, status_in, status_out):
 return status_in and status_out

 @logical_attribute(
 dtype=bool,
 bind=['StatusIn', 'StatusOut'])
 def Moving(self, status_in, status_out):
 return not status_in and not status_out

 # Proxy commands

 @proxy_command(
 property_name="MoveInAttribute",
 write_attribute=True)
 def MoveIn(self, subcommand):
 subcommand(1)

 @proxy_command(
 property_name="MoveOutAttribute",
 write_attribute=True)
 def MoveOut(self, subcommand):
 subcommand(1)

 # State and status

 @state_attribute(
 bind=['Error', 'Moving', 'StatusIn'])
 def state(self, error, moving, status_in):
 if error:
 return DevState.FAULT, "A conflict has been detected"
 elif moving:
 return DevState.MOVING, "The screen is moving"
 elif status_in:
 return DevState.INSERT, "The screen is inserted"
 else:
 return DevState.EXTRACT, "The screen is exctracted"

if __name__ == '__main__':
 CameraScreen.run_server()

 Python Module Index

 f

 		 	

 		
 f	

 	
 	
 facadedevice	

Index

 C
 | F
 | L
 | P
 | S
 | T

C

 	
 	combined_attribute (class in facadedevice)

F

 	
 	Facade (class in facadedevice)

 	
 	facadedevice (module)

L

 	
 	local_attribute (class in facadedevice)

 	
 	logical_attribute (class in facadedevice)

P

 	
 	proxy_attribute (class in facadedevice)

 	
 	proxy_command (class in facadedevice)

S

 	
 	state_attribute (class in facadedevice)

T

 	
 	TimedFacade (class in facadedevice)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 facadedevice

 		
 Presentation

 		
 Requirements

 		
 Installation

 		
 Unit-testing

 		
 Documentation

 		
 Tutorial

 		
 Creating an running a facade device

 		
 Adding extra logic at initialization

 		
 Local attributes

 		
 Data model

 		
 State attribute

 		
 Logical attributes

 		
 The triplet structure

 		
 Proxy attribute

 		
 Combined attributes

 		
 Proxy commands

 		
 Advanced features

 		
 Limitations

 		
 API Reference

 		
 Simple attributes

 		
 Remote attributes

 		
 State handling

 		
 Commands

 		
 Facade base classes

 		
 Examples

 		
 Simple example

 		
 Real-world example

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

