
Tale Documentation
Release 4.7

Irmen de Jong

Mar 21, 2023

Contents of this manual:

1 What is Tale? 3
1.1 Getting started . 3
1.2 Features . 5
1.3 MUD mode versus Interactive Fiction mode . 6
1.4 Copyright . 7
1.5 API documentation . 7

Python Module Index 39

Index 41

i

ii

Tale Documentation, Release 4.7

Contents of this manual: 1

Tale Documentation, Release 4.7

2 Contents of this manual:

CHAPTER 1

What is Tale?

It is a library for building Interactive Fiction, mudlibs and muds in Python.

It is some sort of cross-breed between LPMud, CircleMud/DikuMud, and Infocom™ Z-machine.

Tale requires Python 3.5 or newer. (If you have an older version of Python, stick to Tale 2.8 or older, which still
supports Python 2.7 as well)

You can run Tale in console mode, where it is a pure text interface running in your console window. But you can also
run Tale in a simple GUI application (built with Tkinter) or in your web browser.

Note: The multi-user aspects are fairly new and still somewhat incomplete. Until recently, the focus has been on
the (single player) interactive fiction things. However if my server is up, you can find running MUD instances here:
http://www.razorvine.net/tale/ and here: http://www.razorvine.net/circle/

Note: This documentation is still a stub. I hope to write some real documentation soon, but in the meantime, use the
source, Luke.

Tale can be found on Pypi as tale. The source is on Github: https://github.com/irmen/Tale

1.1 Getting started

Install tale, preferably using pip install tale. You can also download the source, and then execute python
setup.py install.

Tale requires the appdirs library to sensibly store data files such as savegames.

It requires the smartypants library to print out nicely formatted quotes and dashes.

It requires the colorama library to print out text accents (bold, bright, underlined, reversevideo etc).

It requires the serpent library to be able to save and load game data (savegames).

3

http://en.wikipedia.org/wiki/Interactive_fiction
http://en.wikipedia.org/wiki/MUD
http://www.razorvine.net/tale/
http://www.razorvine.net/circle/
http://pypi.python.org/pypi/tale/
https://github.com/irmen/Tale
http://pypi.python.org/pypi/appdirs/
http://pypi.python.org/pypi/smartypants/
http://pypi.python.org/pypi/colorama/
http://pypi.python.org/pypi/serpent/

Tale Documentation, Release 4.7

(All of these libraries should be installed automatically if you use pip to install tale itself)

Optionally, you can install the prompt_toolkit library for a nicer console text interface experience, but this one is not
strictly required to be able to run.

After all that, you’ll need a story to run it on (tale by itself doesn’t do anything, it’s only a framework to build games
with). There’s a tiny demo embedded in the library itself, you can start that with:

python -m tale.demo.story

You can add several command line options:

• --gui add this to get a GUI interface

• --web add this to get a web browser interface

• --mud add this to launch the demo game as mud (multi-user) server

Fool around with your pet and try to get out of the house. There’s a larger demo story included in the source distri-
bution, in the stories directory. But you will have to download and extract the source distribution manually to get
it.

Start the demo story using one of the supplied start scripts. You don’t have to install Tale first, the script can figure it
out.

You can also start it without the script and by using the tale driver directly, but then it is recommended to properly
install tale first. This method of launching stories won’t work from the distribution’s root directory itself.

Anyway, the command to do so is:

$ python -m tale.main --game <path-to-the-story/demo-directory>`

or, with the installed launcher script:
$ tale-run --game <path-to-the-story/demo-directory>`

You can use the --help argument to see some help about this command. You can use --gui or --web to start
the GUI or browser version of the interface rather than the text console version. There are some other command line
arguments such as --mode that allow you to select other things, look at the help output to learn more.

The story might prompt you with a couple of questions: Choose not to load a saved game (you will have none at first
start anyway). Choose to create a default player character or build a custom one. If you choose wizard privileges, you
gain access to a whole lot of special wizard commands that can be used to tinker with the internals of the game.

Type help and help soul to get an idea of the stuff you can type at the prompt.

You may want to go to the Town Square and say hello to the people standing there:

>> look

[Town square]
The old town square of the village. It is not much really, and narrow
streets quickly lead away from the small fountain in the center.
There's an alley to the south. A long straight lane leads north towards
the horizon.
You see a black gem, a blue gem, a bag, a box1 (a black box), a box2 (a
white box), a clock, a newspaper, and a trashcan. Laish the town crier,
ant, blubbering idiot, and rat are here.

>> greet laish and the idiot

You greet Laish the town crier and blubbering idiot. Laish the town

(continues on next page)

4 Chapter 1. What is Tale?

https://pypi.python.org/pypi/prompt_toolkit/

Tale Documentation, Release 4.7

(continued from previous page)

crier says: "Hello there, Irmen." Blubbering idiot drools on you.

>> recoil

You recoil with fear.

>>

1.2 Features

A random list of the features of the current codebase:

• requires Python 3.5 or newer

• game engine and framework code is separated from the actual game code

• single-player Interactive Fiction mode and multi-player MUD mode

• selectable interface types: text console interface, GUI (Tkinter), or web browser interface

• MUD mode runs as a web server (no old-skool console access via telnet or ssh for now)

• can load and run games/stories directly from a zipfile or from extracted folders.

• wizard and normal player privileges, wizards gain access to a set of special ‘debug’ commands that are helpful
while testing/debugging/administrating the game.

• the parser uses a soul based on the classic LPC-MUD’s ‘soul.c’ from the late 90’s

• the soul has 250+ ‘emotes’ such as ‘bounce’, ‘shrug’ and ‘ponder’.

• it knows 2200+ adverbs that you can use with these emotes. It does prefix matching so you don’t have to type it
out in full (gives a list of suggestions if multiple words match).

• it knows about bodyparts that you can target certain actions (such as kick or pat) at.

• it can deal with object names that consist of multiple words (i.e. contain spaces). For instance, it understands
when you type ‘get the blue pill’ when there are multiple pills on the table.

• tab-completion of commands on systems that support readline

• you can alter the meaning of a sentence by using words like fail, attempt, don’t, suddenly, pretend

• you can put stuff into a bag and carry the bag, to avoid cluttering your inventory.

• you can refer to earlier used items and persons by using a pronoun (“examine box / drop it”, “examine idiot /
slap him”).

• yelling something will actually be heard by creatures in adjacent locations. They’ll get a message that someone
is yelling something, and if possible, where the sound is coming from.

• text is nicely formatted when outputted (dynamically wrapped to a configurable width).

• uses ansi sequence to spice up the console output a bit (needs colorama on windows, falls back to plain text if
not installed)

• uses smartypants to automatically render quotes, dashes, ellipsis in a nicer way.

• game can be saved (and reloaded)

• save game data is placed in the operating system’s user data directory instead of some random location

• there’s a list of 70+ creature races, adapted from the Dead Souls 2 mudlib

1.2. Features 5

Tale Documentation, Release 4.7

• supports two kinds of money: fantasy (gold/silver/copper) and modern (dollars). Text descriptions adapt to this.

• money can be given away, dropped on the floor, and picked up.

• it’s possible for items to be combined into new items.

• game clock is independent of real-time wall clock, configurable speed and start time

• server ‘tick’ synced with command entry, or independent. This means things can happen in the background.

• there is a simple decorator that makes that a method gets invoked periodically, for asynchronous actions

• for more control you can make a ‘deferred call’ to schedule something to be called at a later time

• you can also quite easily schedule calls to be executed at a defined later moment in time

• using generators (yield statements) instead of regular input() calls, it is easy to create sequential dialogs
(question-response) that will be handled without blocking the driver (the driver loop is not yet fully asyn-
chronous but that may come in the future)

• easy definition of commands in separate functions, uses docstrings to define command help texts

• command function implementations are quite compact due to convenient parameters, and available methods on
the game objects

• command code gets parse information from the soul parser as parameter; very little parsing needs to be done in
the command code itself

• there’s a large set of configurable parameters on a per-story basis

• stories can define their own introduction text and completion texts

• stories can define their own commands or override existing commands

• a lock/unlock/open/close door mechanism is provided with internal door codes to match keys (or key-like ob-
jects) against.

• action and event notification mechanism: objects are notified when things happen (such as the player entering a
room, or someone saying a line of text) and can react on that.

• contains a simple virtual file system to provide easy resource loading / datafile storage.

• provides a simple pubsub/event signaling mechanism

• crashes are reported as detailed tracebacks showing local variable values per frame, to ease error reporting and
debugging

• I/O abstraction layer to be able to create alternative interfaces to the engine

• for now, the game object model is object-oriented. You defined objects by instantiating prebuilt classes, or
derive new classes from them with changed behavior. Currently this means that writing a game is very much a
programming job. This may or may not improve in the future (to allow for more natural ways of writing a game
story, in a DSL or whatever).

• a set of unit tests to validate a large part of the code

1.3 MUD mode versus Interactive Fiction mode

The Tale game driver launches in Interactive Fiction mode by default.

To run a story (or world, rather) in multi-user MUD mode, use the --mode mud command line switch. A whole lot
of new commands and features are enabled when you do this (amongst others: message-of-the-day support and the
‘stats’ command). Running a IF story in MUD mode may cause some problems. Therefore you can specify in the
story config what game modes your story supports.

6 Chapter 1. What is Tale?

Tale Documentation, Release 4.7

1.4 Copyright

Tale is copyright © Irmen de Jong (irmen@razorvine.net | http://www.razorvine.net). Since version 3.4, it’s licensed
under GNU LGPL v3, see https://www.gnu.org/licenses/lgpl-3.0.html Versions older than that have a different license
(GPL v3).

1.5 API documentation

Preliminary (auto-generated) API documentation:

1.5.1 Tale API

tale.accounts — Player account logic

Player account code.

class tale.accounts.MudAccounts(databasefile: str)
Handles the accounts (login, creation, etc) of mud users

Database: account(name, email, pw_hash, pw_salt, created, logged_in, locked) privilege(account, privilege)
charstat(account, gender, stat1, stat2,. . .)

tale.author — Story Author tools

Utilities for story authors

tale.author.do_zip(path: str, zipfilename: str, embed_tale: bool = False, verbose: bool = False) →
None

Zip a story (possibly including the tale library itself - but not its dependencies, to avoid license hassles) into a
zip file.

tale.author.run_from_cmdline(args: Sequence[str])→ None
Entrypoint from the commandline to invoke the available tools from this module.

tale.base — Base classes

Mudlib base objects.

‘Tale’ mud driver, mudlib and interactive fiction framework Copyright by Irmen de Jong (irmen@razorvine.net)

object hierarchy:

MudObject (abstract base class, don't use directly)
|
+-- Location
|
+-- Item
| |
| +-- Weapon
| +-- Armour
| +-- Container
| +-- Key
|

(continues on next page)

1.4. Copyright 7

mailto:irmen@razorvine.net
http://www.razorvine.net
https://www.gnu.org/licenses/lgpl-3.0.html
mailto:irmen@razorvine.net

Tale Documentation, Release 4.7

(continued from previous page)

+-- Living (abstract base class, don't use directly)
| |
| +-- Player
| +-- NPC
| |
| +-- Shopkeeper
|
+-- Exit

|
+-- Door

Every object that can hold other objects does so in its “inventory” (a set). You can’t access it directly, object.inventory
returns a frozenset copy of it.

class tale.base.MudObject(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)
Root class of all objects in the mud world All objects have an identifying short name (will be lowercased), an
optional short title (shown when listed in a room – don’t use ‘a’ or ‘the’ or pronouns), and an optional longer
description (shown when explicitly ‘examined’). The long description is ‘dedented’ first, which means you can
put it between triple-quoted-strings easily. Short_description is also optional, and is used in the text when a
player ‘looks’ around. If it’s not set, a generic ‘look’ message will be shown (something like “XYZ is here”).

Extra descriptions (extra_desc) are used to make stuff more interesting and interactive Extra descriptions are
accessed by players when they type look at <thing> where <thing> is any keyword you choose. For
example, you might write a room description which includes the tantalizing sentence, The wall looks
strange here. Using extra descriptions, players could then see additional detail by typing look at
wall. There can be an unlimited number of Extra Descriptions.

add_extradesc(keywords: Set[str], description: str)→ None
For the set of keywords, add the extra description text

destroy(ctx: Optional[tale.util.Context])→ None
Common cleanup code that needs to be called when the object is destroyed

handle_verb(parsed: tale.base.ParseResult, actor: tale.base.Living)→ bool
Handle a custom verb (specified in the verbs dict). Return True if handled, False if not handled.

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the MudObject super class init().

init_names(name: str, title: str, descr: str, short_descr: str)→ None
(re)set the name and description attributes

notify_action(parsed: tale.base.ParseResult, actor: tale.base.Living)→ None
Notify the object of an action performed by someone. This can be any verb, command, soul emote, custom
verb. Uncompleted actions (error, or ActionRefused) are ignored. Custom verbs are notified however, even
if they were already handled by handle_verb! It’s good practice to first do a check like this:

if actor is self or parsed.verb in self.verbs:
return # avoid reacting to ourselves, or reacting to verbs we already

→˓have a handler for

show_inventory(actor: tale.base.Living, ctx: tale.util.Context)→ None
show the object’s inventory to the actor

wiz_clone(actor: tale.base.Living)→ tale.base.MudObject
clone the thing (performed by a wizard)

8 Chapter 1. What is Tale?

Tale Documentation, Release 4.7

wiz_destroy(actor: tale.base.Living, ctx: tale.util.Context)→ None
destroy the thing (performed by a wizard)

class tale.base.Armour(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)
An item that can be worn by a Living (i.e. present in an armour itemslot)

class tale.base.Container(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)
A bag-type container (i.e. an item that acts as a container) Allows insert and remove, and examine its contents,
as opposed to an Item You can test for containment with ‘in’: item in bag

destroy(ctx: Optional[tale.util.Context])→ None
Common cleanup code that needs to be called when the object is destroyed

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

init_inventory(items: Iterable[tale.base.Item])→ None
Set the container’s initial inventory

class tale.base.Door(directions: Union[str, Sequence[str]], target_location: Union[str,
tale.base.Location], short_descr: str, long_descr: str = ”, *, enter_msg:
str = ”, locked: bool = False, opened: bool = False, key_code: str = ”)

A special exit that connects one location to another but which can be closed or even locked. Because a single
door is still only one-way, you have to create a second -linked- door to go back. This is easily done by the
reverse_door method.

allow_passage(actor: tale.base.Living)→ None
Is the actor allowed to move through this door?

check_key(item: tale.base.Item)→ bool
Check if the item is a proper key for this door (based on key_code)

close(actor: tale.base.Living, item: tale.base.Item = None)→ None
Close the door with optional item. Notifies actor and room of this event.

classmethod connect(from_loc: tale.base.Location, directions: Union[str, Sequence[str]],
short_descr: str, long_descr: str, to_loc: tale.base.Location, re-
turn_directions: Union[str, Sequence[str]], return_short_descr: str, re-
turn_long_descr: str, locked: bool = False, opened: bool = False, key_code:
str = ”)→ Tuple[tale.base.Door, tale.base.Door]

Create a pair of doors that connect two locations. (This requires two door definitions because the directions
and descriptions differ for the to- and return-exists)

insert(item: Union[tale.base.Living, tale.base.Item], actor: Optional[tale.base.Living])→ None
used when the player tries to put a key into the door, for instance.

lock(actor: tale.base.Living, item: tale.base.Item = None)→ None
Lock the door with the proper key (optional).

open(actor: tale.base.Living, item: tale.base.Item = None)→ None
Open the door with optional item. Notifies actor and room of this event.

reverse_door(directions: Union[str, Sequence[str]], returning_location: tale.base.Location,
short_description: str, long_description: str = ”)→ tale.base.Door

Set up a second door in the other location that is paired with this door. Opening this door will also open
the other door etc. Returns the new door object. (we need 2 doors because the name/exit descriptions are
often different from both locations)

search_key(actor: tale.base.Living)→ Optional[tale.base.Item]
Does the actor have a proper key? Return the item if so, otherwise return None.

1.5. API documentation 9

Tale Documentation, Release 4.7

unlock(actor: tale.base.Living, item: tale.base.Item = None)→ None
Unlock the door with the proper key (optional).

class tale.base.Exit(directions: Union[str, Sequence[str]], target_location: Union[str,
tale.base.Location], short_descr: str, long_descr: str = ”, *, enter_msg:
str = ”)

An ‘exit’ that connects one location to another. It is strictly one-way! Directions can be a single string or
a sequence of directions (all meaning the same exit). You can use a Location object as target, or a string
designating the location (for instance “town.square” means the square location object in game.zones.town). If
using a string, it will be retrieved and bound at runtime. Short_description will be shown when the player
looks around the room. Long_description is optional and will be shown instead if the player examines the exit.
Enter_msg is the text shown to the player when they succesfully enter/pass through the exit/door. The exit’s
direction is stored as its name attribute (if more than one, the rest are aliases). Note that the exit’s origin is not
stored in the exit object.

allow_passage(actor: tale.base.Living)→ None
Is the actor allowed to move through the exit? Raise ActionRefused if not

bind(location: tale.base.Location)→ None
Binds the exit to a location.

classmethod connect(from_loc: tale.base.Location, directions: Union[str, Sequence[str]],
short_descr: str, long_descr: str, to_loc: tale.base.Location, re-
turn_directions: Union[str, Sequence[str]], return_short_descr: str, re-
turn_long_descr: str)→ Tuple[tale.base.Exit, tale.base.Exit]

Create a pair of exits that connect two locations. (This requires two exit definitions because the directions
and descriptions differ for the to- and return-exists)

names
a list of all the names of this direction (name followed by aliases)

class tale.base.Item(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)
Root class of all Items in the mud world. Items are physical objects. Items can usually be moved, carried, or put
inside other items. They have a name and optional short and longer descriptions. Regular items cannot contain
other things, so it makes to sense to check containment.

allow_item_move(actor: Optional[Living], verb: str = ’move’)→ None
Does the item allow to be moved (picked up, given away) by someone? (yes; no ActionRefused is raised)

clone()→ tale.base.Item
Create a copy of an existing Item. Only allowed when it has an empty inventory (to avoid problems).
Caller has to make sure the resulting copy is moved to its proper destination location.

combine(other: List[Item], actor: tale.base.Living)→ Optional[tale.base.Item]
Combine the other thing(s) with us. If successful, return the new Item to replace us + all other items with.
(so ‘other’ must NOT contain any item not used in combining the things, or it will be silently lost!) If stuff
cannot be combined, return None (or raise an ActionRefused with a particular message).

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

move(target: Union[Location, Container, Living], actor: Optional[tale.base.Living] = None, *, silent:
bool = False, is_player: bool = False, verb: str = ’move’, direction_names: Sequence[str] =
None)→ None

Leave the container the item is currently in, enter the target container (transactional). Because items can
move on various occasions, there’s no message being printed. The silent and is_player arguments are not
used when moving items – they’re used for the movement of livings.

10 Chapter 1. What is Tale?

Tale Documentation, Release 4.7

notify_moved(source_container: Union[Location, Container, Living], target_container:
Union[Location, Container, Living], actor: Optional[Living])→ None

Called when the item has been moved from one place to another

static search_item(name: str, collection: Iterable[Item])→ Optional[tale.base.Item]
Searches an item (by name) in a collection of Items. Returns the first match (or None if nothing found).
Also considers aliases and titles.

show_inventory(actor: tale.base.Living, ctx: tale.util.Context)→ None
show the object’s contents to the actor

wiz_clone(actor: Living, make_clone: bool = True)→ Item
clone the thing (performed by a wizard)

wiz_destroy(actor: Living, ctx: tale.util.Context)→ None
destroy the thing (performed by a wizard)

class tale.base.Living(name: str, gender: str, *, race: str = ’human’, title: str = ”, descr: str = ”,
short_descr: str = ”)

A living entity in the mud world (also known as an NPC). Livings sometimes have a heart beat ‘tick’ that makes
them interact with the world. They are always inside a Location (Limbo when not specified yet). They also have
an inventory object, and you can test for containment with item in living.

allow_give_item(item: tale.base.Item, actor: Optional[Living])→ None
Do we accept given items? Raise ActionRefused if not.

allow_give_money(amount: float, actor: Optional[Living])→ None
Do we accept money? Raise ActionRefused if not.

destroy(ctx: Optional[tale.util.Context])→ None
Common cleanup code that needs to be called when the object is destroyed

do_command_verb(cmdline: str, ctx: tale.util.Context)→ None
Perform a verb, parsed from a command line. This is an easy way to make a Npc do something, but
it has a pretty large performance overhead. If you can, you should use low level methods instead (such
as tell_others or do_socialize etc) The verb can be a soul verb (such as ‘ponder’) but also a
command verb. Custom dynamic verbs added by the environment are not supported (yet), and neither
are commands that initiate a dialog (generators) This function is not used in the processing of player
commands!

do_forced_cmd(actor: Living, parsed: tale.base.ParseResult, ctx: tale.util.Context)→ None
Perform a (pre-parsed) command because the actor forced us to do it.

This code is fairly similar to the __process_player_command from the driver but it doesn’t deal with as
many error situations, and just bails out if it gets confused. It does try its best to support the following: -
custom location verbs (such as ‘sell’ in a shop) - exit handling - built-in cmds (such as ‘drop’/’take’) Note
that soul emotes are handled by do_socialize_cmd instead.

do_socialize(cmdline: str, external_verbs: Set[str] = {})→ None
Perform a command line with a socialize/soul verb on the living’s behalf. It only performs soul emotes, no
custom command functions!

do_socialize_cmd(parsed: tale.base.ParseResult)→ None
A soul verb such as ‘ponder’ was entered. Socialize with the environment to handle this. Some verbs may
trigger a response or action from something or someone else.

get_wiretap()→ tale.pubsub.Topic
get a wiretap for this living

handle_verb(parsed: tale.base.ParseResult, actor: tale.base.Living)→ bool
Handle a custom verb (specified in the verbs dict). Return True if handled, False if not handled.

1.5. API documentation 11

Tale Documentation, Release 4.7

init_gender(gender: str)→ None
(re)set gender attributes

init_inventory(items: Iterable[tale.base.Item])→ None
Set the living’s initial inventory

insert(item: Union[Living, tale.base.Item], actor: Optional[Living])→ None
Add an item to the inventory.

locate_item(name: str, include_inventory: bool = True, include_location: bool = True,
include_containers_in_inventory: bool = True) → Tuple[Optional[tale.base.Item],
Union[tale.base.Location, tale.base.Container, tale.base.Living, None]]

Searches an item within the ‘visible’ world around the living including his inventory. If there’s more than
one hit, just return the first. Returns (None,None) or (item, containing_object)

look(short: Optional[bool] = None)→ None
look around in your surroundings. Dummy for base livings (they don’t perform ‘look’ nor react to it).

move(target: Union[tale.base.Location, Container, Living], actor: Optional[tale.base.Living] = None, *,
silent: bool = False, is_player: bool = False, verb: str = ’move’, direction_names: Sequence[str]
= None)→ None

Leave the current location, enter the new location (transactional). Moving a living is only supported to a
Location target. Messages are being printed to the locations if the move was successful.

notify_action(parsed: tale.base.ParseResult, actor: tale.base.Living)→ None
Notify the living of an action performed by someone. This can be any verb, command, soul emote, custom
verb. Uncompleted actions (error, or ActionRefused) are ignored. Custom verbs are notified however, even
if they were already handled by handle_verb! It’s good practice to first do a check like this:

if actor is self or parsed.verb in self.verbs:
return # avoid reacting to ourselves, or reacting to verbs we already

→˓have a handler for

parse(commandline: str, external_verbs: Set[str] = {})→ tale.base.ParseResult
Parse the commandline into something that can be processed by the soul (ParseResult)

remember_previous_parse()→ None
remember the previously parsed data, soul uses this to reference back to earlier items/livings

remove(item: Union[Living, tale.base.Item], actor: Optional[Living])→ None
remove an item from the inventory

search_item(name: str, include_inventory: bool = True, include_location: bool = True, in-
clude_containers_in_inventory: bool = True)→ Optional[tale.base.Item]

The same as locate_item except it only returns the item, or None.

select_random_move()→ Optional[tale.base.Exit]
Select a random accessible exit to move to. Avoids exits to a room that have no exits (traps). If no suitable
exit is found in a few random attempts, return None.

show_inventory(actor: tale.base.Living, ctx: tale.util.Context)→ None
show the living’s inventory to the actor

start_attack(victim: tale.base.Living)→ None
Starts attacking the given living until death ensues on either side.

tell(message: str, *, end: bool = False, format: bool = True)→ tale.base.Living
Every living thing in the mud can receive an action message. Message will be converted to str if required.
For players this is usually printed to their screen, but for all other livings the default is to do nothing –
except for making sure that the message is sent to any wiretaps that may be present. The Living could
react on the message, but this is not advisable because you’ll have to parse the string again to figure out

12 Chapter 1. What is Tale?

Tale Documentation, Release 4.7

what happened. . . (there are better ways to react on stuff that happened). The Living itself is returned so
you can easily chain calls. Note: end and format parameters are ignored for Livings but may be useful
when this function is called on a subclass such as Player.

tell_later(message: str)→ None
Tell something to this creature, but do it after all other messages.

tell_others(message: str, target: Optional[Living] = None)→ None
Send a message to the other livings in the location, but not to self. There are a few formatting strings for
easy shorthands: {actor}/{Actor} = the acting living’s title / acting living’s title capitalized (subject in the
sentence) {target}/{Target} = the target’s title / target’s title capitalized (object in the sentence) If you need
even more tweaks with telling stuff, use living.location.tell directly.

validate_socialize_targets(parsed: tale.base.ParseResult)→ None
check if any of the targeted objects is an exit

wiz_clone(actor: Living, make_clone: bool = True)→ Living
clone the thing (performed by a wizard)

wiz_destroy(actor: Living, ctx: tale.util.Context)→ None
destroy the thing (performed by a wizard)

class tale.base.Location(name: str, descr: str = ”)
A location in the mud world. Livings and Items are in it. Has connections (‘exits’) to other Locations. You can
test for containment with ‘in’: item in loc, npc in loc

add_exits(exits: Iterable[Exit])→ None
Adds every exit from the sequence as an exit to this room.

destroy(ctx: Optional[tale.util.Context])→ None
Common cleanup code that needs to be called when the object is destroyed

get_wiretap()→ tale.pubsub.Topic
get a wiretap for this location

handle_verb(parsed: tale.base.ParseResult, actor: tale.base.Living)→ bool
Handle a custom verb (specified in the verbs dict of a living/item/exit in this location). Return True if
handled, False if not handled.

init_inventory(objects: Iterable[Union[tale.base.Item, Living]])→ None
Set the location’s initial item and livings ‘inventory’

insert(obj: Union[Living, tale.base.Item], actor: Optional[Living])→ None
Add item to the contents of the location (either a Living or an Item)

look(exclude_living: Optional[tale.base.Living] = None, short: bool = False)→ Sequence[str]
returns a list of paragraph strings describing the surroundings, possibly excluding one living from the
description list

message_nearby_locations(message: str)→ None
Tells a message to adjacent locations, where adjacent is defined by being connected via an exit. If the
adjacent location has an obvious returning exit to the source location (via one of the most obvious routes
n/e/s/w/up/down/etc.), it hen also get information on what direction the sound originated from. This is
used for loud noises such as yells!

nearby(no_traps: bool = True)→ Iterable[tale.base.Location]
Returns a sequence of all adjacent locations, normally avoiding ‘traps’ (locations without a way back).
(this may be expanded in the future with a way to search further than just 1 step away)

notify_action(parsed: tale.base.ParseResult, actor: tale.base.Living)→ None
Notify the location, the items in it, and the livings in it, of an action performed by someone. This can be
any verb, command, soul emote, custom verb. Uncompleted actions (error, or ActionRefused) are ignored.

1.5. API documentation 13

Tale Documentation, Release 4.7

Custom verbs are notified however, even if they were already handled by handle_verb! It’s good practice
to first do a check like this:

if actor is self or parsed.verb in self.verbs:
return # avoid reacting to ourselves, or reacting to verbs we already

→˓have a handler for

notify_npc_arrived(npc: tale.base.Living, previous_location: tale.base.Location)→ None
A NPC has arrived in this location. When you override this be sure to call base method. This event is not
delegated to all items or creatures in the location! If you need that, you should create a pubsub topic event,
where the correct objects are listening on.

notify_npc_left(npc: tale.base.Living, target_location: tale.base.Location)→ None
A NPC has left the location. When you override this be sure to call base method. This event is not
delegated to all items or creatures in the location! If you need that, you should create a pubsub topic event,
where the correct objects are listening on.

notify_player_arrived(player, previous_location: tale.base.Location)→ None
A player has arrived in this location. When you override this be sure to call base method. This event is not
delegated to all items or creatures in the location! If you need that, you should create a pubsub topic event,
where the correct objects are listening on.

notify_player_left(player, target_location: tale.base.Location)→ None
A player has left this location. When you override this be sure to call base method. This event is not
delegated to all items or creatures in the location! If you need that, you should create a pubsub topic event,
where the correct objects are listening on.

remove(obj: Union[Living, tale.base.Item], actor: Optional[Living])→ None
Remove obj from this location (either a Living or an Item)

search_living(name: str)→ Optional[tale.base.Living]
Search for a living in this location by its name (and title, if no names match). Is alias-aware. If there’s
more than one match, returns the first. None if nothing found.

tell(room_msg: str, exclude_living: Optional[tale.base.Living] = None, specific_targets:
Set[Union[Living, Item, Exit]] = None, specific_target_msg: str = ”)→ None

Tells something to the livings in the room (excluding the living from exclude_living). This is just the
message string! If you want to react on events, consider not doing that based on this message string. That
will make it quite hard because you need to parse the string again to figure out what happened. . . Use
handle_verb / notify_action instead.

class tale.base.Weapon(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)
An item that can be wielded by a Living (i.e. present in a weapon itemslot), and that can be used to attack
another Living.

class tale.base.Key(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)
A key which has a unique code. It can be used to open a matching Door. Set the door or code using the key_for
method.

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

key_for(door: tale.base.Door = None, code: str = ”)→ None
Makes this key a key for the given door. (basically just copies the door’s key_code)

class tale.base.Soul
The ‘soul’ of a Living (most importantly, a Player). Handles the high level verb actions and allows for so-
cial player interaction. Verbs that actually do something in the environment (not purely social messages) are
implemented elsewhere.

14 Chapter 1. What is Tale?

Tale Documentation, Release 4.7

check_name_with_spaces(words: Sequence[str], startindex: int, all_livings: Dict[str,
tale.base.Living], all_items: Dict[str, tale.base.Item], all_exits:
Dict[str, tale.base.Exit]) → Tuple[Union[tale.base.Living,
tale.base.Item, tale.base.Exit, None], str, int]

Searches for a name used in sentence where the name consists of multiple words (separated by space). You
provide the sequence of words that forms the sentence and the startindex of the first word to start searching.
Searching is done in the livings, items, and exits dictionaries, in that order. The name being searched
for is gradually extended with more words until a match is found. The return tuple is (matched_object,
matched_name, number of words used in match). If nothing is found, a tuple (None, None, 0) is returned.

match_previously_parsed(player: tale.base.Living, pronoun: str)→ List[Tuple[Any, str]]
Try to connect the pronoun (it, him, her, them) to a previously parsed item/living. Returns a list of (who,
replacement-name) tuples. The reason we return a replacement-name is that the parser can replace the
pronoun by the proper name that would otherwise have been used in that place.

parse(player: tale.base.Living, cmd: str, external_verbs: Set[str] = {})→ tale.base.ParseResult
Parse a command string, returns a ParseResult object.

static poss_replacement(actor: tale.base.Living, target: Optional[tale.base.MudObject], ob-
server: Optional[tale.base.Living])→ str

determines what word to use for a POSS

process_verb(player: tale.base.Living, commandstring: str, external_verbs: Set[str] = {}) → Tu-
ple[str, Tuple[Set[Union[tale.base.Living, tale.base.Item, tale.base.Exit]], str, str, str]]

Parse a command string and return a tuple containing the main verb (tickle, ponder, . . .) and another tuple
containing the targets of the action (excluding the player) and the various action messages. Any action
qualifier is added to the verb string if it is present (“fail kick”).

process_verb_parsed(player: tale.base.Living, parsed: tale.base.ParseResult) → Tu-
ple[Set[Union[tale.base.Living, tale.base.Item, tale.base.Exit]], str, str,
str]

This function takes a verb and the arguments given by the user, creates various display messages that can
be sent to the players and room, and returns a tuple: (targets-without-player, playermessage, roommessage,
targetmessage) Target can be a Living, an Item or an Exit.

spacify(string: str)→ str
returns string prefixed with a space, if it has contents. If it is empty, prefix nothing

who_replacement(actor: tale.base.Living, target: tale.base.MudObject, observer: Op-
tional[tale.base.Living])→ str

determines what word to use for a WHO

tale.charbuilder — Character builder

Character builder for multi-user mode.

class tale.charbuilder.IFCharacterBuilder(conn: tale.player.PlayerConnection, config:
tale.story.StoryConfig)

Create a new player character interactively.

class tale.charbuilder.MudCharacterBuilder(conn: tale.player.PlayerConnection, name:
str, config: tale.story.StoryConfig)

Create a new player character interactively.

tale.driver — Game driver/server common logic

Mud driver (server).

1.5. API documentation 15

Tale Documentation, Release 4.7

class tale.driver.Commands
Some utility functions to manage the registered commands.

class tale.driver.Deferred(due_gametime: datetime.datetime, action: Callable, vargs: Se-
quence[Any], kwargs: Dict[str, Any], *, periodical: Tuple[float, float]
= None)

Represents a callable action that will be invoked (with the given arguments) sometime in the future. This object
captures the action that must be invoked in a way that is serializable. That means that you can’t pass all types of
callables, there are a few that are not serializable (lambda’s and scoped functions). They will trigger an error if
you use those. If you set a (low_seconds, high_seconds) periodical tuple, the deferred will be called periodically
where the next trigger time is randomized within the given interval. The due time is given in Game Time, not in
real/wall time! Note that the vargs/kwargs should be serializable or savegames are impossible!

when_due(game_clock: tale.util.GameDateTime, realtime: bool = False)→ datetime.timedelta
In what time is this deferred due to occur? (timedelta) Normally it is in terms of game-time, but if you
pass realtime=True, you will get the real-time timedelta.

class tale.driver.Driver
The Mud ‘driver’. Reads story file and config, initializes game state. Handles main game loop, player connec-
tions, and loading/saving of game state.

current_custom_verbs(player: tale.player.Player)→ Dict[str, str]
returns dict of the currently recognised custom verbs (verb->helptext mapping)

current_verbs(player: tale.player.Player)→ Dict[str, str]
return a dict of all currently recognised verbs, and their help text

defer(due: Union[datetime.datetime, float, Tuple[float, float, float]], action: Callable, *vargs,
**kwargs)→ tale.driver.Deferred

Register a deferred callable action (optionally with arguments). The vargs and the kwargs all must be
serializable. Note that the due time can be one of: - datetime.datetime in game time (not real time!)
when the deferred should trigger. - float, meaning the number of real-time seconds after the current time
(minimum: 0.1 sec) - tuple(initial_secs, low_secs, high_secs), meaning it is periodical within the given
time interval. The deferred gets a kwarg ‘ctx’ set to a Context object, if it has a ‘ctx’ argument in its
signature. (If not, that’s okay too) Receiving the context is often useful, for instance you can register a new
deferred on the ctx.driver without having to access a global driver object. Triggering a deferred can not
occur sooner than the server tick period!

pubsub_event()
override this event receive method in a subclass

search_player(name: str)→ Optional[tale.player.Player]
Look through all the logged in players for one with the given name. Returns None if no one is known with
that name.

start(game_file_or_path: str)→ None
Start the driver from a parsed set of arguments

uptime
gives the server uptime in a (hours, minutes, seconds) tuple

tale.driver_if — IF single player Game driver

Single user driver (for interactive fiction).

class tale.driver_if.IFDriver(*, screen_delay: int = 40, gui: bool = False, web: bool = False,
wizard_override: bool = False)

The Single user ‘driver’. Used to control interactive fiction where there’s only one ‘player’.

16 Chapter 1. What is Tale?

Tale Documentation, Release 4.7

main_loop(conn: Optional[tale.player.PlayerConnection])→ None
The game loop, for the single player Interactive Fiction game mode. Until the game is exited, it processes
player input, and prints the resulting output.

tale.driver_mud — MUD multiplayer Game driver/server

Mud driver (multi user server).

class tale.driver_mud.LimboReaper
The Grim Reaper hangs about in Limbo, and makes sure no one stays there for too long.

notify_action(parsed: tale.base.ParseResult, actor: tale.base.Living)→ None
Notify the living of an action performed by someone. This can be any verb, command, soul emote, custom
verb. Uncompleted actions (error, or ActionRefused) are ignored. Custom verbs are notified however, even
if they were already handled by handle_verb! It’s good practice to first do a check like this:

if actor is self or parsed.verb in self.verbs:
return # avoid reacting to ourselves, or reacting to verbs we already

→˓have a handler for

class tale.driver_mud.MudDriver(restricted=False)
The Mud ‘driver’. Multi-user server variant of the single player Driver.

main_loop(conn: Optional[tale.player.PlayerConnection])→ None
The game loop, for the multiplayer MUD mode. Until the server is shut down, it processes player input,
and prints the resulting output.

show_motd(player: tale.player.Player, notify_no_motd: bool = False)→ None
Prints the Message-Of-The-Day file, if present.

tale.errors — Exceptions

Exception classes

exception tale.errors.ActionRefused
The action that was tried was refused by the situation or target object

exception tale.errors.AsyncDialog(dialog: Generator[[Tuple[str, Any], str], None])
Command execution needs to continue with the async dialog generator given as argument.

exception tale.errors.LocationIntegrityError(msg: str, direction: str, exit: Any, location:
Any)

When the driver notices an integrity problem with locations, exits, etc.

exception tale.errors.NonSoulVerb(parseresult)
The soul’s parser encountered a verb that cannot be handled by the soul itself. However the command string has
been parsed and the calling code could try to handle the verb by itself instead.

exception tale.errors.ParseError
Problem with parsing the user input. Should be shown to the user as a nice error message.

exception tale.errors.RetryParse(command: str)
Retry the command as a different one

exception tale.errors.RetrySoulVerb
Retry a command as soul verb instead.

exception tale.errors.SecurityViolation
Some security constraint was violated

1.5. API documentation 17

Tale Documentation, Release 4.7

exception tale.errors.SessionExit
Player session ends.

exception tale.errors.StoryCompleted
This is raised as soon as the (IF) story has been completed by the player! Can be successful, or failed ending.
You’ll have to print the correct message yourself. Do not use this in a Mud story.

exception tale.errors.StoryConfigError
There was a problem with the story configuration

exception tale.errors.TaleError
base class for tale related errors

exception tale.errors.TaleFlowControlException
base class for flow-control exceptions

exception tale.errors.UnknownVerbException(verb: str, words: Sequence[str], qualifier: str)
The soul doesn’t recognise the verb that the user typed. The engine can and should search for other places that
define this verb first. If nothing recognises it, this error should be shown to the user in a nice way.

tale.lang — Language utilities

Language processing related operations.

tale.lang.A(word: str)→ str
prefix an article ‘A’ or ‘An’ capitalized. (if possible)

class tale.lang.OrderedCounter(**kwds)
A counter that remembers the order in which things are being counted.

classmethod fromkeys(S[, v])→ New ordered dictionary with keys from S.
If not specified, the value defaults to None.

tale.lang.a(noun_phrase: str)→ str
prefix an article ‘a’ or ‘an’ (if possible)

tale.lang.adverb_by_prefix(prefix: str, amount: int = 5)→ List[str]
Return a list of adverbs starting with the given prefix, up to the given amount Uses binary search in the sorted
adverbs list, O(log n)

tale.lang.fullstop(sentence: str, punct: str = ’.’) → str
adds a fullstop to the end of a sentence if needed

tale.lang.fullverb(verb: str)→ str
return the full verb: shoot->shooting, poke->poking

tale.lang.join(words: Iterable[str], conj: str = ’and’, group_multi: bool = True)→ str
Join a list of words to ‘a,b,c, and e’ If a word occurs multiple times (and group_multi=True), show ‘thing and
thing’ as ‘two things’ instead.

tale.lang.ordinal(number: int)→ str
return the simple ordinal (1st, 3rd, 8th etc) of a number. Supports positive and negative ints.

tale.lang.spell_number(number: float)→ str
Return a spelling of the number. Supports positive and negative ints, floats, and recognises popular fractions
such as 0.5 and 0.25. Numbers that are very near a whole number are also returned as “about N”. Any fraction
that can not be spelled out (or is larger than +/- 100) will not be spelled out in words, but returned in numerical
form.

tale.lang.spell_ordinal(number: int)→ str
Return a spelling of the ordinal number. Supports positive and negative ints.

18 Chapter 1. What is Tale?

Tale Documentation, Release 4.7

tale.lang.split(string: str)→ List[str]
Split a string on whitespace, but keeps words enclosed in quotes (’ or “) together. The quotes themselves are
stripped out.

tale.main — Command line entrypoint

Main startup class

tale.main.run_from_cmdline(cmdline: Sequence[str])→ None
Run Tale from the commandline.

tale.player — Players

Player code

class tale.player.Player(name: str, gender: str, *, race: str = ’human’, descr: str = ”, short_descr:
str = ”)

Player controlled entity. Has a Soul for social interaction.

allow_give_item(item: tale.base.Item, actor: Optional[tale.base.Living])→ None
Do we accept given items? Raise ActionRefused if not. For Player, the default is that we accept.

allow_give_money(amount: float, actor: Optional[tale.base.Living])→ None
Do we accept money? Raise ActionRefused if not. For Player, the default is that we accept.

destroy(ctx: Optional[tale.util.Context])→ None
Common cleanup code that needs to be called when the object is destroyed

get_pending_input()→ Sequence[str]
return the full set of lines in the input buffer (if any)

init_names(name: str, title: str, descr: str, short_descr: str)→ None
(re)set the name and description attributes

look(short: Optional[bool] = None)→ None
look around in your surroundings (it excludes the player himself from livings)

move(target: Union[Location, Container, Living], actor: tale.base.Living = None, *, silent: bool =
False, is_player: bool = True, verb: str = ’move’, direction_names: Sequence[str] = None) →
None

Delegate to Living but with is_player set to True. Moving the player is only supported to a target Location.

pubsub_event()
override this event receive method in a subclass

search_extradesc(keyword: str, include_inventory: bool = True, include_containers_in_inventory:
bool = False)→ str

Searches the extradesc keywords for an location/living/item within the ‘visible’ world around the player,
including their inventory. If there’s more than one hit, just return the first extradesc description text.

store_input_line(cmd: str)→ None
store a line of entered text in the input command buffer

tell(message: str, *, end: bool = False, format: bool = True)→ tale.base.Living
Sends a message to a player, meant to be printed on the screen. Message will be converted to str if required.
If you want to output a paragraph separator, either set end=True or tell a single newline. If you provide
format=False, this paragraph of text won’t be formatted when it is outputted, and whitespace is untouched.
Empty strings aren’t outputted at all. The player object is returned so you can chain calls.

1.5. API documentation 19

Tale Documentation, Release 4.7

tell_object_location(obj: tale.base.MudObject, known_container: Union[tale.base.Living,
tale.base.Item, tale.base.Location, None], print_parentheses: bool =
True)→ None

Tells the player some details about the location of the given object.

tell_text_file(file_resource: tale.vfs.Resource, reformat=True)→ None
Show the contents of the given text file resource to the player.

test_get_output_paragraphs()→ Sequence[Sequence[str]]
Gets the accumulated output paragraphs in raw form. This is for test purposes. No text styles are included.

test_peek_output_paragraphs()→ Sequence[Sequence[str]]
Returns a copy of the output paragraphs that sit in the buffer so far This is for test purposes. No text styles
are included.

class tale.player.PlayerConnection(player: tale.player.Player = <Player ’dummy-
player-for-initial-connection’ #2 @ 0x7f14af98cd30,
privs:->, io: tale.tio.iobase.IoAdapterBase =
<tale.tio.iobase.IoAdapterBase object>)

Represents a player and the i/o connection that is used for him/her. Provides high level i/o operations to input
commands and write output for the player. Other code should not have to call the i/o adapter directly.

get_output()→ str
Gets the accumulated output lines, formats them nicely, and clears the buffer. If there is nothing to be
outputted, empty string is returned.

input_direct(prompt: str)→ str
Writes any pending output and prompts for input directly. Returns stripped result. The driver does NOT
use this for the regular game loop! This call is blocking and will not work in a multi user situation.

output(*lines)→ None
directly writes the given text to the player’s screen, without buffering and formatting/wrapping

output_no_newline(line: str)→ None
similar to output() but writes a single line, without newline at the end

write_output()→ None
print any buffered output to the player’s screen

class tale.player.TextBuffer
Buffered output for the text that the player will see on the screen. The buffer queues up output text into para-
graphs. Notice that no actual output formatting is done here, that is performed elsewhere.

p()→ None
Paragraph terminator. Start new paragraph on next line.

print(line: str, end: bool = False, format: bool = True)→ None
Write a line of text. A single space is inserted between lines, if format=True. If end=True, the current
paragraph is ended and a new one begins. If format=True, the text will be formatted when output, otherwise
it is outputted as-is.

tale.pubsub — Simple synchronous pubsub/event mechanism

Simple Pubsub signaling. Provides immediate (synchronous) sending, or store-and-forward sending when the sync()
function is called. Uses weakrefs to not needlessly lock subscribers/topics in memory.

‘Tale’ mud driver, mudlib and interactive fiction framework Copyright by Irmen de Jong (irmen@razorvine.net)

Currently defined pubsub topics used by the Tale driver:

20 Chapter 1. What is Tale?

mailto:irmen@razorvine.net

Tale Documentation, Release 4.7

“driver-pending-actions” Events are callables to be executed in the server tick loop. You can subscribe
but only the driver may execute the events.

“driver-pending-tells” Tells (messages) that have to be delivered to actors, after any other messages
have been processed. You can subscribe but only the driver may execute the events.

“driver-async-dialogs” actions that kick off new async dialogs (generators). You can subscribe but only
the driver may execute the events.

(“wiretap-location”, <location name>) Used by the wiretapper on a location

tale.pubsub.topic()
Create a topic object (singleton). Name can be a string or a tuple.

tale.pubsub.unsubscribe_all(subscriber: tale.pubsub.Listener)→ None
unsubscribe the given subscriber object from all topics that it may have been subscribed to.

class tale.pubsub.Listener
Base class for all pubsub listeners (subscribers)

exception NotYet
raise this from pubsub_event to signal that you don’t want to consume the event just yet

pubsub_event()
override this event receive method in a subclass

tale.races — Races and creature attributes

Race definitions. Races adapted from Dead Souls 2 mudlib (a superset of the races from Nightmare mudlib).

class tale.races.BodySize(text, order)
An enumeration.

class tale.races.BodyType
An enumeration.

class tale.races.Flags(flying, limbless, nonbiting, swimming, nonmeat, playable)

flying
Alias for field number 0

limbless
Alias for field number 1

nonbiting
Alias for field number 2

nonmeat
Alias for field number 4

playable
Alias for field number 5

swimming
Alias for field number 3

class tale.races.Race(name, body, language, mass, size, flags)

body
Alias for field number 1

1.5. API documentation 21

Tale Documentation, Release 4.7

flags
Alias for field number 5

language
Alias for field number 2

mass
Alias for field number 3

name
Alias for field number 0

size
Alias for field number 4

tale.savegames — Save/Load game logic

tale.savegames.mudobj_ref(mudobj: tale.base.MudObject)→ Optional[Tuple[int, str, str, str]]
generate a serializable reference (vnum, name, classname, baseclassname) for a MudObject

tale.shop — Shops

Shopping and shopkeepers.

‘Tale’ mud driver, mudlib and interactive fiction framework Copyright by Irmen de Jong (irmen@razorvine.net)

Shopping related commands will be roughly:

SHOP/LIST [item type]
list what the shop has for sale

INFO/INQUIRE/ASK about [item/number]
same as "ask [shopkeeper] about [item/number]"
It will display info about the item on sale, as if you examined it.

BUY
> buy sword (buy the first sword on the list)
> buy #3 (buy the third item on the list)

SELL
> sell sword (sell the first sword in your inventory)

VALUE/APPRAISE

class tale.shop.ShopBehavior
the data describing the behavior of a particular shop

class tale.shop.Shopkeeper(name: str, gender: str, *, race: str = ’human’, title: str = ”, descr: str
= ”, short_descr: str = ”)

allow_give_item(item: tale.base.Item, actor: Optional[Living])→ None
Do we accept given items? Raise ActionRefused if not. Shopkeeper can only be sold items to!

handle_verb(parsed: tale.base.ParseResult, actor: tale.base.Living)→ bool
Handle a custom verb (specified in the verbs dict). Return True if handled, False if not handled.

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the MudObject super class init().

notify_action(parsed: tale.base.ParseResult, actor: tale.base.Living)→ None
Notify the living of an action performed by someone. This can be any verb, command, soul emote, custom

22 Chapter 1. What is Tale?

mailto:irmen@razorvine.net

Tale Documentation, Release 4.7

verb. Uncompleted actions (error, or ActionRefused) are ignored. Custom verbs are notified however, even
if they were already handled by handle_verb! It’s good practice to first do a check like this:

if actor is self or parsed.verb in self.verbs:
return # avoid reacting to ourselves, or reacting to verbs we already

→˓have a handler for

tale.story — Story configuration

Story configuration and base classes to create your own story with.

class tale.story.TickMethod
An enumeration.

class tale.story.GameMode
An enumeration.

class tale.story.MoneyType
An enumeration.

class tale.story.StoryBase
base class for tale story classes.

create_account_dialog(playerconnection, playernaming)→ Generator
Override to add extra dialog options to the character creation process. Because there’s no actual player
yet, you receive PlayerConnection and PlayerNaming arguments. Write stuff to the user via playerconnec-
tion.output(. . .) Ask questions using the yield “input”, “question?” mechanism. Return True to declare all
is well, and False to abort the player creation process.

goodbye(player)→ None
goodbye text when player quits the game

init(driver)→ None
Called by the game driver when it is done with its initial initialization.

init_player(player)→ None
Called by the game driver when it has created the player object (after successful login). You can set the
hint texts on the player object, or change the state object, etc. For an IF game there is only one player. For
a MUD game there will be many players, and every player that logs in can be further initialized here.

welcome(player)→ str
Welcome text when player enters a new game If you return a non-empty string, it is used as an input prompt
before continuing (a pause).

welcome_savegame(player)→ str
Welcome text when player enters the game after loading a saved game If you return a non-empty string, it
is used as an input prompt before continuing (a pause).

class tale.story.StoryConfig
Story configuration settings. The reason this is in a separate class, is that these settings are all simple values and
are serializable, so they can be saved to disk as part of a save game file.

tale.util — Generic utilities

Utility stuff

1.5. API documentation 23

Tale Documentation, Release 4.7

class tale.util.Context(driver: Any, clock: tale.util.GameDateTime, config: Any,
player_connection: Any)

A new instance of this context is passed to every command function and obj.destroy. Note that the player object
isn’t in here because it is already explicitly passed to these functions.

classmethod from_global(player_connection=None)→ tale.util.Context
Create a Context based on the current global mud_context Should only be used to (re)create a ctx where
one is required, and you don’t have a ctx argument provided already.

class tale.util.GameDateTime(date_time: datetime.datetime, times_realtime: float = 1)
The datetime class that tracks game time. times_realtime means how much faster the game time is running than
real time. The internal ‘clock’ tracks the time in game-time (not real-time).

add_gametime(timedelta: datetime.timedelta)→ None
advance the game clock by a time delta expressed in game time

add_realtime(timedelta: datetime.timedelta)→ None
advance the game clock by a time delta expressed in real time

minus_realtime(timedelta: datetime.timedelta)→ datetime.datetime
return the game clock minus a time delta expressed in real time

plus_realtime(timedelta: datetime.timedelta)→ datetime.datetime
return the game clock plus a time delta expressed in real time

sub_gametime(timedelta: datetime.timedelta)→ None
rewind the game clock by a time delta expressed in game time

sub_realtime(timedelta: datetime.timedelta)→ None
rewind the game clock by a time delta expressed in real time

class tale.util.MoneyFormatter
Display and parsing of money. Supports ‘fantasy’ and ‘modern’ style money.

parse(words: Sequence[str])→ float
Convert a parsed sequence of words to the amount of money it represents (float)

class tale.util.MoneyFormatterFantasy

display(amount: float, short: bool = False, zero_msg: str = ’nothing’)→ str
Display amount of money in gold/silver/copper units, base unit=1 gold, 10 silver=1 gold, 10 copper=1
silver

to_float(coins: Union[str, Dict[str, float]])→ float
Either a dictionary containing the values per coin type, or a string ‘11g/22s/33c’ is converted to float.

class tale.util.MoneyFormatterModern

display(amount: float, short: bool = False, zero_msg: str = ’nothing’)→ str
Display amount of money in modern currency (dollars/cents).

to_float(coins: Union[str, Dict[str, float]])→ float
Either a dictionary containing the values per coin type, or a string ‘$1234.55’ is converted to float.

tale.util.authorized(*privileges)→ Callable
Decorator for callables that need a privilege check. The callable should have an ‘actor’ argument that is passed
an appropriate actor object with .privileges to check against. If they don’t match with the privileges given in this
decorator, an ActionRefused error is raised.

tale.util.call_periodically(period: float, max_period: float = None)
Decorator to mark a method of a MudObject class to be invoked periodically by the driver. You can set a fixed

24 Chapter 1. What is Tale?

Tale Documentation, Release 4.7

period (in real-time seconds) or a period interval in which a random next occurrence is then chosen for every
call. Setting the period to 0 or None will stop the periodical calls. The method is called with a ‘ctx’ keyword
argument set to a Context object.

tale.util.excepthook(ex_type, ex_value, ex_tb)
An exception hook you can use for sys.excepthook, to automatically print detailed tracebacks

tale.util.format_docstring(docstring: str)→ str
Format a docstring according to the algorithm in PEP-257

tale.util.format_traceback(ex_type: Type = None, ex_value: Any = None, ex_tb: Any = None,
detailed: bool = True, with_self: bool = False)→ List[str]

Formats an exception traceback. If you ask for detailed formatting, the result will contain info on the variables
in each stack frame. You don’t have to provide the exception info objects, if you omit them, this function will
obtain them itself using sys.exc_info().

tale.util.get_periodicals(obj: Any)→ Dict[Callable, Tuple[float, float, float]]
Get the (bound) member functions that are declared periodical via the @call_periodically decorator

tale.util.parse_duration(args: Sequence[str])→ datetime.timedelta
parses a duration from args like: 1 hour 20 minutes 15 seconds (hour/h, minutes/min/m, seconds/sec/s)

tale.util.parse_time(args: Sequence[str])→ datetime.time
parses a time from args like: 13:44:59, or like a duration such as 1h 30m 15s

tale.util.roll_dice(number: int = 1, sides: int = 6)→ Tuple[int, List[int]]
rolls a number (max 300) of dice with configurable number of sides

tale.util.sorted_by_name(stuff: Iterable[Any])→ Iterable[Any]
Returns the objects sorted by their name attribute (case insensitive)

tale.util.sorted_by_title(stuff: Iterable[Any])→ Iterable[Any]
Returns the objects sorted by their title attribute (case insensitive)

tale.util.storyname_to_filename(name: str)→ str
converts the story name to a suitable name for a file on disk

tale.verbdefs — Soul command verbs definitions

A player’s ‘soul’, which provides a lot of possible emotes (verbs).

Written by Irmen de Jong (irmen@razorvine.net) Based on ancient soul.c v1.2 written in LPC by profez-
zorn@nannymud (Fredrik Hübinette) Only the verb table is more or less intact (with some additions and fixes). The
verb parsing and message generation have been rewritten.

The soul parsing has been moved to the Soul class in the base module.

tale.verbdefs.adjust_available_verbs()
Adjust the available verbs

tale.vfs — Virtual File System to load Resources

Virtual file system.

exception tale.vfs.VfsError
Something went wrong while using the virtual file system

class tale.vfs.VirtualFileSystem(root_package: str = ”, root_path: Union[str, pathlib.Path] =
None, readonly: bool = True, everythingtext: bool = False)

Simple filesystem abstraction. Loads resource files embedded inside a package directory. If not readonly, you

1.5. API documentation 25

mailto:irmen@razorvine.net
mailto:profezzorn@nannymud
mailto:profezzorn@nannymud

Tale Documentation, Release 4.7

can write data as well. The API is loosely based on a dict. Can be based off an already imported module, or from
a file system path somewhere else. If dealing with text files, the encoding is always UTF-8. It supports automatic
decompression of .gz, .xz and .bz2 compressed files (as long as they have that extension). It automatically returns
the contents of a compressed version of a requested file if the file itself doesn’t exist but there is a compressed
version of it available.

contents(path: str = ’.’) → Iterable[str]
Returns the files in the given path. Only works on path based vfs, not for package based vfs.

open_write(name: str, mimetype: str = ”, append: bool = False)→ IO[Any]
returns a writable file io stream

validate_path(path: str)→ str
Validates the given relative path. If the vfs is loading from a package, the path is returned unmodified if it
is valid. If the vfs is loading from a file system location, the absolute path is returned if it is valid.

tale.cmds — In-game commands

Package for all mud commands (non-soul)

tale.cmds.cmd(command: str, *aliases)→ Callable
Decorator to define a parser command function and its verb(s).

tale.cmds.wizcmd(command: str, *aliases)→ Callable
Decorator to define a ‘wizard’ command function and verb. It will add a privilege check wrapper. Note that the
wizard command (and the aliases) are prefixed by a ‘!’ to make them stand out from normal commands.

tale.cmds.disable_notify_action(func: Callable)→ Callable
decorator to prevent the command being passed to notify_action events

tale.cmds.disabled_in_gamemode(mode: tale.story.GameMode)→ Callable
decorator to disable a command in the given game mode

tale.cmds.overrides_soul(func: Callable)→ Callable
decorator to let the command override (hide) the corresponding soul command

tale.cmds.no_soul_parse(func: Callable)→ Callable
decorator to tell the command processor to skip the soul parse step and just treat the whole input as plain string

tale.cmds.normal — Normal player commands

Normal player commands.

tale.cmds.normal.do_account(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Displays your player account data.

tale.cmds.normal.do_activate(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Activate something, turn it on, or switch it on.

tale.cmds.normal.do_brief(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Configure the verbosity of location descriptions. ‘brief’ mode means: show short description for locations that
you’ve already visited at least once. ‘brief all’ means: show short descriptions for all locations even if you’ve
not been there before. ‘brief off’: disable brief mode, always show long descriptions. ‘brief reset’: disable brief
mode and forget about the known locations as well. Note that when you explicitly use the ‘look’ or ‘examine’
commands, the brief setting is ignored.

26 Chapter 1. What is Tale?

Tale Documentation, Release 4.7

tale.cmds.normal.do_change_email(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ Generator

Lets you change the email address on file for your account.

tale.cmds.normal.do_change_pw(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ Generator

Lets you change your account password.

tale.cmds.normal.do_cls(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Clears the screen (if the output device supports it).

tale.cmds.normal.do_coin(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Toss a coin.

tale.cmds.normal.do_combine_many(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Combine two or more items you are carrying. If successful, this can perhaps result in a new item!

tale.cmds.normal.do_combine_two(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Combine two items you are carrying by attaching them, applying them or installing them together. If successful,
this can perhaps result in a new item!

tale.cmds.normal.do_config(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Show or change player configuration parameters.

tale.cmds.normal.do_deactivate(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Deactivate something, turn it of, or switch it off.

tale.cmds.normal.do_dice(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Roll a 6-sided die. Use the familiar ‘3d6’ argument style if you want to roll multiple dice.

tale.cmds.normal.do_drop(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ Generator

Drop an item (or all items) you are carrying.

tale.cmds.normal.do_emote(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Emit a custom ‘emote’ message literally, such as: ‘emote looks stupid.’ -> ‘<player> looks stupid.

tale.cmds.normal.do_empty(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Remove the contents from an object.

tale.cmds.normal.do_examine(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Examine something or someone thoroughly.

tale.cmds.normal.do_exits(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Provides a tiny clue about possible exits from your current location.

tale.cmds.normal.do_flee(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Flee/run in a random or given direction, possibly escaping a combat situation, or shaking off pursuers.

tale.cmds.normal.do_give(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ Generator

Give something (or all things) you are carrying to someone else.

1.5. API documentation 27

Tale Documentation, Release 4.7

tale.cmds.normal.do_help(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Provides some helpful information about different aspects of the game. Also try ‘hint’ or ‘recap’.

tale.cmds.normal.do_inventory(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Show the items you are carrying.

tale.cmds.normal.do_license(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Show information about the game and about Tale, and show the software license.

tale.cmds.normal.do_load(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Load a previously saved game.

tale.cmds.normal.do_locate(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Try to locate a specific item, creature or player.

tale.cmds.normal.do_look(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Look around to see where you are and what’s around you.

tale.cmds.normal.do_loot(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Take all things from something or someone else. Keep in mind that stealing and robbing is frowned upon, to say
the least.

tale.cmds.normal.do_manipulate(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Manipulate something.

tale.cmds.normal.do_motd(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Show the message-of-the-day again.

tale.cmds.normal.do_open(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Do something with a door, exit or item, possibly by using something. Example: open door, unlock chest with
key

tale.cmds.normal.do_put(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ Generator

Put an item (or all items) into something else. If you’re not carrying the item, you will first pick it up.

tale.cmds.normal.do_quit(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ Generator

Quit the game.

tale.cmds.normal.do_read(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Read something.

tale.cmds.normal.do_save(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ Generator

Save your game.

tale.cmds.normal.do_say(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Say something to people near you.

tale.cmds.normal.do_show(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Shows something to someone else.

28 Chapter 1. What is Tale?

Tale Documentation, Release 4.7

tale.cmds.normal.do_stats(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Prints the gender, race and stats information of yourself, or another creature or player.

tale.cmds.normal.do_switch(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Switch something on or off.

tale.cmds.normal.do_take(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Take something (or all things) from the room, or something or someone else. Keep in mind that stealing and
robbing is frowned upon, to say the least.

tale.cmds.normal.do_tell(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Pass a message to another player or creature that nobody else can hear. The other player doesn’t have to be in
the same location as you.

tale.cmds.normal.do_teststyles(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Test the text output styling.

tale.cmds.normal.do_throw(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Throw something you are carrying at someone or something. If you don’t have it yet, you will first pick it up.

tale.cmds.normal.do_time(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Query the current date and/or time of day.

tale.cmds.normal.do_transcript(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Makes a transcript of your game session to the specified file, or switches transcript off again.

tale.cmds.normal.do_turn(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Turn something (rotate it), or turn something on or off.

tale.cmds.normal.do_use(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

General object use. Most of the time, you’ll need to be more specific to say exactly what you want to do with it.

tale.cmds.normal.do_wait(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Let someone know you are waiting for them. Alternatively, you can simply Let time pass. For the latter use,
you can optionally specify how long you want to wait (in hours, minutes, seconds).

tale.cmds.normal.do_what(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Tries to answer your question about what something is. The topics range from game commands to location exits
to creature and items. For more general help, try the ‘help’ command first.

tale.cmds.normal.do_where(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Gives some information on your current whereabouts, or that of something else perhaps. Similar to ‘locate’.

tale.cmds.normal.do_who(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Search for all players, a specific player or creature, and shows some information about them.

tale.cmds.normal.do_yell(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Yell something. People in nearby locations will also be able to hear you.

1.5. API documentation 29

Tale Documentation, Release 4.7

tale.cmds.normal.take_stuff(player: tale.player.Player, items: Iterable[tale.base.Item], container:
tale.base.MudObject, where_str: str = ”)→ int

Takes stuff and returns the number of items taken

tale.cmds.wizard — Wizard commands

Wizard commands.

tale.cmds.wizard.do_accounts(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Show all registered player accounts

tale.cmds.wizard.do_add_priv(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Usage: add_priv <account> <privilege>. Adds a privilege to a user account. It will become active on next login.

tale.cmds.wizard.do_ban_unban_player(player: tale.player.Player, parsed:
tale.base.ParseResult, ctx: tale.util.Context) →
None

Bans/unbans a player from logging into the game.

tale.cmds.wizard.do_clean(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ Generator

Destroys all objects contained in something or someones inventory, or the current location (.)

tale.cmds.wizard.do_clone(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ Generator

Clone an item or living directly from the room or inventory, or from an object in the module path

tale.cmds.wizard.do_clone_vnum(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Clone an existing item or monster with the given vnum.

tale.cmds.wizard.do_debug(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Dumps the internal attribute values of a location (.), item or creature.

tale.cmds.wizard.do_destroy(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ Generator

Destroys an object or creature.

tale.cmds.wizard.do_events(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Dump pending actions.

tale.cmds.wizard.do_force(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Force another living being into performing a given command.

tale.cmds.wizard.do_go_vnum(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Teleport to a specific location or creature, given by its vnum.

tale.cmds.wizard.do_ls(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

List the contents of a module path under the library tree (try !ls .items.basic) or in the story’s zone module (try
!ls zones)

tale.cmds.wizard.do_move(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Move something or someone to another location (.), item or creature. This may work around possible restrictions
that could prevent stuff to be moved around normally. For instance you could use it to pick up items that are
normally fixed in place (move item to playername).

30 Chapter 1. What is Tale?

Tale Documentation, Release 4.7

tale.cmds.wizard.do_pdb(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Starts a Python debugging session. (Only available in IF mode)

tale.cmds.wizard.do_pubsub(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Give an overview of the pubsub topics.

tale.cmds.wizard.do_reload(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Reload the given python module under the library tree (try !reload .items.basic) or one of the story’s zone
module (try !reload zones.town). This is not always reliable and may produce weird results just like when
reloading modules that are still used in python!

tale.cmds.wizard.do_remove_priv(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Usage: remove_priv <account> <privilege>. Remove a privilege from a user account. If the account is currently
logged in, it will be forced to log off.

tale.cmds.wizard.do_return(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Return a player to the location where they were before a teleport.

tale.cmds.wizard.do_server(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Dump some server information.

tale.cmds.wizard.do_set(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Set an internal attribute of a location (.), object or creature to a new value. Usage is: set xxx.fieldname=value
(you can use Python literals only)

tale.cmds.wizard.do_show_vnum(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Show the vnum of a location (.) or an object/living, or when you provide a vnum as arg, show the object(s) with
that vnum. Special arguments: items/livings/locations/exits to show the known vnums of that class of objects.

tale.cmds.wizard.do_teleport(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Teleport to a location or creature, or teleport a creature to you. ‘!teleport .module.path.to.creature’ teleports
that creature to your location. ‘!teleport_to .module.path.to.object’ teleports you to that location or creature’s
location. ‘!teleport_to zones.zonename.locationname’ teleports you to the given location in a zone from the
story. ‘!teleport playername’ teleports that player to your location. ‘!teleport_to playername’ teleports you to
the location of that player. ‘!teleport_to @start’ teleports you to the starting location for wizards.

tale.cmds.wizard.do_wiretap(player: tale.player.Player, parsed: tale.base.ParseResult, ctx:
tale.util.Context)→ None

Adds a wiretap to something to overhear the messages they receive. ‘wiretap .’ taps the room, ‘wiretap name’
taps a creature with that name, ‘wiretap -clear’ gets rid of all taps.

tale.cmds.wizard.lookup_module_path(path: str)→ module
Gives the module loaded at the given path such as ‘.items.basic’ or ‘zones.town.houses’

tale.cmds.wizard.teleport_someone_to_player(who: tale.base.Living, player:
tale.player.Player)→ None

helper function for teleport command, to teleport someone to the player

tale.cmds.wizard.teleport_to(player: tale.player.Player, location: tale.base.Location)→ None
helper function for teleport command, to teleport the player somewhere

1.5. API documentation 31

Tale Documentation, Release 4.7

tale.tio.iobase — Base classes for I/O

Basic Input/Output stuff not tied to a specific I/O implementation.

class tale.tio.iobase.IoAdapterBase(player_connection)
I/O adapter base class

abort_all_input(player)→ None
abort any blocking input, if at all possible

break_pressed()→ None
do something when the player types ctrl-C (break)

clear_screen()→ None
Clear the screen

critical_error(message: str = ’A critical error occurred! See below and/or in the error log.’) →
None

called when the driver encountered a critical error and the session needs to shut down

destroy()→ None
Called when the I/O adapter is shut down

output(*lines)→ None
Write some text to the screen. Needs to take care of style tags that are embedded. Implement specific
behavior in subclass (but don’t forget to call base method)

output_no_newline(text: str)→ None
Like output, but just writes a single line, without end-of-line. Implement specific behavior in subclass (but
don’t forget to call base method)

pause(unpause: bool = False)→ None
pause/ unpause the input loop

render_output(paragraphs: Sequence[Tuple[str, bool]], **params)→ str
Render (format) the given paragraphs to a text representation. It doesn’t output anything to the screen yet;
it just returns the text string. Any style-tags are still embedded in the text. This console-implementation
expects 2 extra parameters: “indent” and “width”.

singleplayer_mainloop(player_connection)→ None
Main event loop for this I/O adapter for single player mode

smartquotes(text: str)→ str
If enabled, apply ‘smart quotes’ to the text; replaces quotes and dashes by nicer looking symbols

write_input_prompt()→ None
write the input prompt ‘>>’

tale.tio.iobase.strip_text_styles(text: Union[str, Sequence[str]]) → Union[str, Se-
quence[str]]

remove any special text styling tags from the text (you can pass a single string, and also a list of strings)

tale.tio.console_io — Text-console I/O

Console-based input/output.

class tale.tio.console_io.ConsoleIo(player_connection: tale.player.PlayerConnection)
I/O adapter for the text-console (standard input/standard output).

abort_all_input(player: tale.player.Player)→ None
abort any blocking input, if at all possible

32 Chapter 1. What is Tale?

Tale Documentation, Release 4.7

break_pressed()→ None
do something when the player types ctrl-C (break)

clear_screen()→ None
Clear the screen

install_tab_completion(driver: tale.driver.Driver)→ None
Install tab completion using readline, or prompt_toolkit, if available

output(*lines)→ None
Write some text to the screen. Takes care of style tags that are embedded.

output_no_newline(text: str)→ None
Like output, but just writes a single line, without end-of-line.

pause(unpause: bool = False)→ None
pause/ unpause the input loop

render_output(paragraphs: Sequence[Tuple[str, bool]], **params)→ str
Render (format) the given paragraphs to a text representation. It doesn’t output anything to the screen yet;
it just returns the text string. Any style-tags are still embedded in the text. This console-implementation
expects 2 extra parameters: “indent” and “width”.

singleplayer_mainloop(player_connection: tale.player.PlayerConnection)→ None
Main event loop for the console I/O adapter for single player mode

write_input_prompt()→ None
write the input prompt ‘>>’

tale.tio.tkinter_io — Tkinter GUI I/O

GUI input/output using Tkinter.

class tale.tio.tkinter_io.TkinterIo(config, player_connection)
Tkinter-GUI based Input/Output adapter.

abort_all_input(player)→ None
abort any blocking input, if at all possible

clear_screen()→ None
Clear the screen

critical_error(message: str = ’A critical error occurred! See below and/or in the error log.’) →
None

called when the driver encountered a critical error and the session needs to shut down

destroy()→ None
Called when the I/O adapter is shut down

output(*lines)→ None
Write some text to the screen. Needs to take care of style tags that are embedded.

output_no_newline(text: str)→ None
Like output, but just writes a single line, without end-of-line.

pause(unpause: bool = False)→ None
pause/ unpause the input loop

render_output(paragraphs: Sequence[Tuple[str, bool]], **params)→ str
Render (format) the given paragraphs to a text representation. It doesn’t output anything to the screen yet;
it just returns the text string. Any style-tags are still embedded in the text. This tkinter-implementation
expects no extra parameters.

1.5. API documentation 33

Tale Documentation, Release 4.7

singleplayer_mainloop(player_connection)→ None
Main event loop for this I/O adapter for single player mode

tale.tio.if_browser_io — Web browser GUI I/O (single-player)

Webbrowser based I/O for a single player (‘if’) story.

class tale.tio.if_browser_io.HttpIo(player_connection: tale.player.PlayerConnection,
wsgi_server: wsgiref.simple_server.WSGIServer)

I/O adapter for a http/browser based interface. This doubles as a wsgi app and runs as a web server using
wsgiref. This way it is a simple call for the driver, it starts everything that is needed.

clear_screen()→ None
Clear the screen

convert_to_html(line: str)→ str
Convert style tags to html

destroy()→ None
Called when the I/O adapter is shut down

output(*lines)→ None
Write some text to the screen. Needs to take care of style tags that are embedded. Implement specific
behavior in subclass (but don’t forget to call base method)

output_no_newline(text: str)→ None
Like output, but just writes a single line, without end-of-line. Implement specific behavior in subclass (but
don’t forget to call base method)

pause(unpause: bool = False)→ None
pause/ unpause the input loop

render_output(paragraphs: Sequence[Tuple[str, bool]], **params)→ str
Render (format) the given paragraphs to a text representation. It doesn’t output anything to the screen yet;
it just returns the text string. Any style-tags are still embedded in the text. This console-implementation
expects 2 extra parameters: “indent” and “width”.

singleplayer_mainloop(player_connection: tale.player.PlayerConnection)→ None
mainloop for the web browser interface for single player mode

class tale.tio.if_browser_io.TaleWsgiApp(driver: tale.driver.Driver, player_connection:
tale.player.PlayerConnection, use_ssl: bool,
ssl_certs: Tuple[str, str, str])

The actual wsgi app that the player’s browser connects to. Note that it is deliberatly simplistic and ony able to
handle a single player connection; it only works for ‘if’ single-player game mode.

class tale.tio.if_browser_io.TaleWsgiAppBase(driver: tale.driver.Driver)
Generic wsgi functionality that is not tied to a particular single or multiplayer web server.

wsgi_internal_server_error(start_response: Callable, message: str = ”)→ Iterable[bytes]
Called when an internal server error occurred

wsgi_internal_server_error_json(start_response: Callable, message: str = ”) → Iter-
able[bytes]

Called when an internal server error occurred, returns json response rather than html

wsgi_invalid_request(start_response: Callable[..., None])→ Iterable[bytes]
Called if invalid http method.

wsgi_not_found(start_response: Callable[..., None])→ Iterable[bytes]
Called if Url not found.

34 Chapter 1. What is Tale?

Tale Documentation, Release 4.7

wsgi_not_modified(start_response: Callable[..., None])→ Iterable[bytes]
Called to signal that a resource wasn’t modified

wsgi_redirect(start_response: Callable, target: str)→ Iterable[bytes]
Called to do a redirect

wsgi_redirect_other(start_response: Callable, target: str)→ Iterable[bytes]
Called to do a redirect see-other

tale.tio.if_browser_io.WsgiStartResponseType
alias of typing.Callable

tale.tio.mud_browser_io — Web browser GUI I/O (MUD, multi-user)

Webbrowser based I/O for a multi player (‘mud’) server.

class tale.tio.mud_browser_io.MudHttpIo(player_connection: tale.player.PlayerConnection)
I/O adapter for a http/browser based interface.

pause(unpause: bool = False)→ None
pause/ unpause the input loop

singleplayer_mainloop(player_connection: tale.player.PlayerConnection)→ None
mainloop for the web browser interface for single player mode

class tale.tio.mud_browser_io.TaleMudWsgiApp(driver: tale.driver.Driver, use_ssl: bool,
ssl_certs: Tuple[str, str, str])

The actual wsgi app that the player’s browser connects to. This one is capable of dealing with multiple connected
clients (multi-player).

tale.tio.styleaware_wrapper — Text wrapping

Textwrapper that doesn’t count the length of the embedded formatting tags.

class tale.tio.styleaware_wrapper.StyleTagsAwareTextWrapper(width=70, ini-
tial_indent=”,
subse-
quent_indent=”, ex-
pand_tabs=True, re-
place_whitespace=True,
fix_sentence_endings=False,
break_long_words=True,
drop_whitespace=True,
break_on_hyphens=True,
tabsize=8, *,
max_lines=None,
placeholder=’ [...]’)

A TextWrapper subclass that doesn’t count the length of Tale’s style tags when filling up the lines (the style tags
don’t have visible width). Unfortunately the line filling loop is embedded in a larger method, that we need to
override fully (_wrap_chunks). . .

tale.items.bank — Bank definitions (ATM, credit card)

Banks.

class tale.items.bank.Bank(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)

1.5. API documentation 35

Tale Documentation, Release 4.7

allow_item_move(actor: Optional[tale.base.Living], verb: str = ’move’)→ None
Does the item allow to be moved (picked up, given away) by someone? (yes; no ActionRefused is raised)

handle_verb(parsed: tale.base.ParseResult, actor: tale.base.Living)→ bool
Handle a custom verb (specified in the verbs dict). Return True if handled, False if not handled.

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

load()→ None
Load persisted bank account data from the datafile.

max_num_transactions = 1000
An item (such as ATM or cash card) that you can deposit and withdraw money from. The money is then
safe when you log out.

save()→ None
Save the bank account data to the data file.

tale.items.basic — Item definitions

A couple of basic items that go beyond the few base types.

class tale.items.basic.Boxlike(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)
Container base class/prototype. The container can be opened/closed. Only if it is open you can put stuff in it or
take stuff out of it. You can set a couple of txt attributes that change the visual aspect of this object.

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

class tale.items.basic.Drink(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)

class drinkeffects(drunkness, fullness, thirst)

drunkness
Alias for field number 0

fullness
Alias for field number 1

thirst
Alias for field number 2

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

class tale.items.basic.Food(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

class tale.items.basic.GameClock(name: str, title: str = ”, *, descr: str = ”, short_descr: str =
”)

A clock that is able to tell you the in-game time.

36 Chapter 1. What is Tale?

Tale Documentation, Release 4.7

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

class tale.items.basic.Light(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

class tale.items.basic.MagicItem(name: str, title: str = ”, *, descr: str = ”, short_descr: str =
”)

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

class tale.items.basic.Money(name: str, value: float, *, title: str = ”, short_descr: str = ”)
Some money that is lying around. When picked up, it’s added to the money the creature is carrying.

notify_moved(source_container: Union[Location, Container, Living], target_container:
Union[Location, Container, Living], actor: Optional[tale.base.Living])→ None

Called when the item has been moved from one place to another

class tale.items.basic.Note(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)
A (paper) note with or without something written on it. You can read it.

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

class tale.items.basic.Potion(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

class tale.items.basic.Scroll(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

class tale.items.basic.Trash(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)
Trash – junked by cleaners, not bought by any shopkeeper.

class tale.items.basic.Boat(name: str, title: str = ”, *, descr: str = ”, short_descr: str = ”)

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

class tale.items.basic.Wearable(name: str, title: str = ”, *, descr: str = ”, short_descr: str =
”)

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

1.5. API documentation 37

Tale Documentation, Release 4.7

class tale.items.basic.Fountain(name: str, title: str = ”, *, descr: str = ”, short_descr: str =
”)

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

tale.items.board — Bulletin board

Bulletin boards.

class tale.items.board.BulletinBoard(name: str, title: str = ”, *, descr: str = ”, short_descr:
str = ”)

A bulletin board that stores messages. You can read, post, and remove messages, and reply to them.

handle_verb(parsed: tale.base.ParseResult, actor: tale.base.Living)→ bool
Handle a custom verb (specified in the verbs dict). Return True if handled, False if not handled.

init()→ None
Secondary initialization/customization. Invoked after all required initialization has been done. You can
easily override this in a subclass. It is not needed to call the Item super class init().

load()→ None
Load persisted messages from the datafile. Note: only the posts are loaded from the datafile, not the
descriptive texts

save()→ None
save the messages to persistent data file

38 Chapter 1. What is Tale?

Python Module Index

t
tale.accounts, 7
tale.author, 7
tale.base, 7
tale.charbuilder, 15
tale.cmds, 26
tale.cmds.normal, 26
tale.cmds.wizard, 30
tale.driver, 15
tale.driver_if, 16
tale.driver_mud, 17
tale.errors, 17
tale.items.bank, 35
tale.items.basic, 36
tale.items.board, 38
tale.lang, 18
tale.main, 19
tale.player, 19
tale.pubsub, 20
tale.races, 21
tale.savegames, 22
tale.shop, 22
tale.story, 23
tale.tio.console_io, 32
tale.tio.if_browser_io, 34
tale.tio.iobase, 32
tale.tio.mud_browser_io, 35
tale.tio.styleaware_wrapper, 35
tale.tio.tkinter_io, 33
tale.util, 23
tale.verbdefs, 25
tale.vfs, 25

39

Tale Documentation, Release 4.7

40 Python Module Index

Index

A
A() (in module tale.lang), 18
a() (in module tale.lang), 18
abort_all_input() (tale.tio.console_io.ConsoleIo

method), 32
abort_all_input() (tale.tio.iobase.IoAdapterBase

method), 32
abort_all_input() (tale.tio.tkinter_io.TkinterIo

method), 33
ActionRefused, 17
add_exits() (tale.base.Location method), 13
add_extradesc() (tale.base.MudObject method), 8
add_gametime() (tale.util.GameDateTime method),

24
add_realtime() (tale.util.GameDateTime method),

24
adjust_available_verbs() (in module

tale.verbdefs), 25
adverb_by_prefix() (in module tale.lang), 18
allow_give_item() (tale.base.Living method), 11
allow_give_item() (tale.player.Player method), 19
allow_give_item() (tale.shop.Shopkeeper

method), 22
allow_give_money() (tale.base.Living method), 11
allow_give_money() (tale.player.Player method),

19
allow_item_move() (tale.base.Item method), 10
allow_item_move() (tale.items.bank.Bank method),

35
allow_passage() (tale.base.Door method), 9
allow_passage() (tale.base.Exit method), 10
Armour (class in tale.base), 9
AsyncDialog, 17
authorized() (in module tale.util), 24

B
Bank (class in tale.items.bank), 35
bind() (tale.base.Exit method), 10
Boat (class in tale.items.basic), 37

body (tale.races.Race attribute), 21
BodySize (class in tale.races), 21
BodyType (class in tale.races), 21
Boxlike (class in tale.items.basic), 36
break_pressed() (tale.tio.console_io.ConsoleIo

method), 32
break_pressed() (tale.tio.iobase.IoAdapterBase

method), 32
BulletinBoard (class in tale.items.board), 38

C
call_periodically() (in module tale.util), 24
check_key() (tale.base.Door method), 9
check_name_with_spaces() (tale.base.Soul

method), 14
clear_screen() (tale.tio.console_io.ConsoleIo

method), 33
clear_screen() (tale.tio.if_browser_io.HttpIo

method), 34
clear_screen() (tale.tio.iobase.IoAdapterBase

method), 32
clear_screen() (tale.tio.tkinter_io.TkinterIo

method), 33
clone() (tale.base.Item method), 10
close() (tale.base.Door method), 9
cmd() (in module tale.cmds), 26
combine() (tale.base.Item method), 10
Commands (class in tale.driver), 15
connect() (tale.base.Door class method), 9
connect() (tale.base.Exit class method), 10
ConsoleIo (class in tale.tio.console_io), 32
Container (class in tale.base), 9
contents() (tale.vfs.VirtualFileSystem method), 26
Context (class in tale.util), 23
convert_to_html() (tale.tio.if_browser_io.HttpIo

method), 34
create_account_dialog() (tale.story.StoryBase

method), 23
critical_error() (tale.tio.iobase.IoAdapterBase

method), 32

41

Tale Documentation, Release 4.7

critical_error() (tale.tio.tkinter_io.TkinterIo
method), 33

current_custom_verbs() (tale.driver.Driver
method), 16

current_verbs() (tale.driver.Driver method), 16

D
defer() (tale.driver.Driver method), 16
Deferred (class in tale.driver), 16
destroy() (tale.base.Container method), 9
destroy() (tale.base.Living method), 11
destroy() (tale.base.Location method), 13
destroy() (tale.base.MudObject method), 8
destroy() (tale.player.Player method), 19
destroy() (tale.tio.if_browser_io.HttpIo method), 34
destroy() (tale.tio.iobase.IoAdapterBase method), 32
destroy() (tale.tio.tkinter_io.TkinterIo method), 33
disable_notify_action() (in module tale.cmds),

26
disabled_in_gamemode() (in module tale.cmds),

26
display() (tale.util.MoneyFormatterFantasy method),

24
display() (tale.util.MoneyFormatterModern method),

24
do_account() (in module tale.cmds.normal), 26
do_accounts() (in module tale.cmds.wizard), 30
do_activate() (in module tale.cmds.normal), 26
do_add_priv() (in module tale.cmds.wizard), 30
do_ban_unban_player() (in module

tale.cmds.wizard), 30
do_brief() (in module tale.cmds.normal), 26
do_change_email() (in module tale.cmds.normal),

26
do_change_pw() (in module tale.cmds.normal), 27
do_clean() (in module tale.cmds.wizard), 30
do_clone() (in module tale.cmds.wizard), 30
do_clone_vnum() (in module tale.cmds.wizard), 30
do_cls() (in module tale.cmds.normal), 27
do_coin() (in module tale.cmds.normal), 27
do_combine_many() (in module tale.cmds.normal),

27
do_combine_two() (in module tale.cmds.normal), 27
do_command_verb() (tale.base.Living method), 11
do_config() (in module tale.cmds.normal), 27
do_deactivate() (in module tale.cmds.normal), 27
do_debug() (in module tale.cmds.wizard), 30
do_destroy() (in module tale.cmds.wizard), 30
do_dice() (in module tale.cmds.normal), 27
do_drop() (in module tale.cmds.normal), 27
do_emote() (in module tale.cmds.normal), 27
do_empty() (in module tale.cmds.normal), 27
do_events() (in module tale.cmds.wizard), 30
do_examine() (in module tale.cmds.normal), 27

do_exits() (in module tale.cmds.normal), 27
do_flee() (in module tale.cmds.normal), 27
do_force() (in module tale.cmds.wizard), 30
do_forced_cmd() (tale.base.Living method), 11
do_give() (in module tale.cmds.normal), 27
do_go_vnum() (in module tale.cmds.wizard), 30
do_help() (in module tale.cmds.normal), 27
do_inventory() (in module tale.cmds.normal), 28
do_license() (in module tale.cmds.normal), 28
do_load() (in module tale.cmds.normal), 28
do_locate() (in module tale.cmds.normal), 28
do_look() (in module tale.cmds.normal), 28
do_loot() (in module tale.cmds.normal), 28
do_ls() (in module tale.cmds.wizard), 30
do_manipulate() (in module tale.cmds.normal), 28
do_motd() (in module tale.cmds.normal), 28
do_move() (in module tale.cmds.wizard), 30
do_open() (in module tale.cmds.normal), 28
do_pdb() (in module tale.cmds.wizard), 30
do_pubsub() (in module tale.cmds.wizard), 31
do_put() (in module tale.cmds.normal), 28
do_quit() (in module tale.cmds.normal), 28
do_read() (in module tale.cmds.normal), 28
do_reload() (in module tale.cmds.wizard), 31
do_remove_priv() (in module tale.cmds.wizard), 31
do_return() (in module tale.cmds.wizard), 31
do_save() (in module tale.cmds.normal), 28
do_say() (in module tale.cmds.normal), 28
do_server() (in module tale.cmds.wizard), 31
do_set() (in module tale.cmds.wizard), 31
do_show() (in module tale.cmds.normal), 28
do_show_vnum() (in module tale.cmds.wizard), 31
do_socialize() (tale.base.Living method), 11
do_socialize_cmd() (tale.base.Living method), 11
do_stats() (in module tale.cmds.normal), 28
do_switch() (in module tale.cmds.normal), 29
do_take() (in module tale.cmds.normal), 29
do_teleport() (in module tale.cmds.wizard), 31
do_tell() (in module tale.cmds.normal), 29
do_teststyles() (in module tale.cmds.normal), 29
do_throw() (in module tale.cmds.normal), 29
do_time() (in module tale.cmds.normal), 29
do_transcript() (in module tale.cmds.normal), 29
do_turn() (in module tale.cmds.normal), 29
do_use() (in module tale.cmds.normal), 29
do_wait() (in module tale.cmds.normal), 29
do_what() (in module tale.cmds.normal), 29
do_where() (in module tale.cmds.normal), 29
do_who() (in module tale.cmds.normal), 29
do_wiretap() (in module tale.cmds.wizard), 31
do_yell() (in module tale.cmds.normal), 29
do_zip() (in module tale.author), 7
Door (class in tale.base), 9
Drink (class in tale.items.basic), 36

42 Index

Tale Documentation, Release 4.7

Drink.drinkeffects (class in tale.items.basic), 36
Driver (class in tale.driver), 16
drunkness (tale.items.basic.Drink.drinkeffects at-

tribute), 36

E
excepthook() (in module tale.util), 25
Exit (class in tale.base), 10

F
Flags (class in tale.races), 21
flags (tale.races.Race attribute), 21
flying (tale.races.Flags attribute), 21
Food (class in tale.items.basic), 36
format_docstring() (in module tale.util), 25
format_traceback() (in module tale.util), 25
Fountain (class in tale.items.basic), 37
from_global() (tale.util.Context class method), 24
fromkeys() (tale.lang.OrderedCounter class method),

18
fullness (tale.items.basic.Drink.drinkeffects at-

tribute), 36
fullstop() (in module tale.lang), 18
fullverb() (in module tale.lang), 18

G
GameClock (class in tale.items.basic), 36
GameDateTime (class in tale.util), 24
GameMode (class in tale.story), 23
get_output() (tale.player.PlayerConnection

method), 20
get_pending_input() (tale.player.Player method),

19
get_periodicals() (in module tale.util), 25
get_wiretap() (tale.base.Living method), 11
get_wiretap() (tale.base.Location method), 13
goodbye() (tale.story.StoryBase method), 23

H
handle_verb() (tale.base.Living method), 11
handle_verb() (tale.base.Location method), 13
handle_verb() (tale.base.MudObject method), 8
handle_verb() (tale.items.bank.Bank method), 36
handle_verb() (tale.items.board.BulletinBoard

method), 38
handle_verb() (tale.shop.Shopkeeper method), 22
HttpIo (class in tale.tio.if_browser_io), 34

I
IFCharacterBuilder (class in tale.charbuilder), 15
IFDriver (class in tale.driver_if), 16
init() (tale.base.Container method), 9
init() (tale.base.Item method), 10

init() (tale.base.Key method), 14
init() (tale.base.MudObject method), 8
init() (tale.items.bank.Bank method), 36
init() (tale.items.basic.Boat method), 37
init() (tale.items.basic.Boxlike method), 36
init() (tale.items.basic.Drink method), 36
init() (tale.items.basic.Food method), 36
init() (tale.items.basic.Fountain method), 38
init() (tale.items.basic.GameClock method), 36
init() (tale.items.basic.Light method), 37
init() (tale.items.basic.MagicItem method), 37
init() (tale.items.basic.Note method), 37
init() (tale.items.basic.Potion method), 37
init() (tale.items.basic.Scroll method), 37
init() (tale.items.basic.Wearable method), 37
init() (tale.items.board.BulletinBoard method), 38
init() (tale.shop.Shopkeeper method), 22
init() (tale.story.StoryBase method), 23
init_gender() (tale.base.Living method), 11
init_inventory() (tale.base.Container method), 9
init_inventory() (tale.base.Living method), 12
init_inventory() (tale.base.Location method), 13
init_names() (tale.base.MudObject method), 8
init_names() (tale.player.Player method), 19
init_player() (tale.story.StoryBase method), 23
input_direct() (tale.player.PlayerConnection

method), 20
insert() (tale.base.Door method), 9
insert() (tale.base.Living method), 12
insert() (tale.base.Location method), 13
install_tab_completion()

(tale.tio.console_io.ConsoleIo method), 33
IoAdapterBase (class in tale.tio.iobase), 32
Item (class in tale.base), 10

J
join() (in module tale.lang), 18

K
Key (class in tale.base), 14
key_for() (tale.base.Key method), 14

L
language (tale.races.Race attribute), 22
Light (class in tale.items.basic), 37
limbless (tale.races.Flags attribute), 21
LimboReaper (class in tale.driver_mud), 17
Listener (class in tale.pubsub), 21
Listener.NotYet, 21
Living (class in tale.base), 11
load() (tale.items.bank.Bank method), 36
load() (tale.items.board.BulletinBoard method), 38
locate_item() (tale.base.Living method), 12
Location (class in tale.base), 13

Index 43

Tale Documentation, Release 4.7

LocationIntegrityError, 17
lock() (tale.base.Door method), 9
look() (tale.base.Living method), 12
look() (tale.base.Location method), 13
look() (tale.player.Player method), 19
lookup_module_path() (in module

tale.cmds.wizard), 31

M
MagicItem (class in tale.items.basic), 37
main_loop() (tale.driver_if.IFDriver method), 16
main_loop() (tale.driver_mud.MudDriver method),

17
mass (tale.races.Race attribute), 22
match_previously_parsed() (tale.base.Soul

method), 15
max_num_transactions (tale.items.bank.Bank at-

tribute), 36
message_nearby_locations()

(tale.base.Location method), 13
minus_realtime() (tale.util.GameDateTime

method), 24
Money (class in tale.items.basic), 37
MoneyFormatter (class in tale.util), 24
MoneyFormatterFantasy (class in tale.util), 24
MoneyFormatterModern (class in tale.util), 24
MoneyType (class in tale.story), 23
move() (tale.base.Item method), 10
move() (tale.base.Living method), 12
move() (tale.player.Player method), 19
MudAccounts (class in tale.accounts), 7
MudCharacterBuilder (class in tale.charbuilder),

15
MudDriver (class in tale.driver_mud), 17
MudHttpIo (class in tale.tio.mud_browser_io), 35
mudobj_ref() (in module tale.savegames), 22
MudObject (class in tale.base), 8

N
name (tale.races.Race attribute), 22
names (tale.base.Exit attribute), 10
nearby() (tale.base.Location method), 13
no_soul_parse() (in module tale.cmds), 26
nonbiting (tale.races.Flags attribute), 21
nonmeat (tale.races.Flags attribute), 21
NonSoulVerb, 17
Note (class in tale.items.basic), 37
notify_action() (tale.base.Living method), 12
notify_action() (tale.base.Location method), 13
notify_action() (tale.base.MudObject method), 8
notify_action() (tale.driver_mud.LimboReaper

method), 17
notify_action() (tale.shop.Shopkeeper method),

22

notify_moved() (tale.base.Item method), 10
notify_moved() (tale.items.basic.Money method),

37
notify_npc_arrived() (tale.base.Location

method), 14
notify_npc_left() (tale.base.Location method),

14
notify_player_arrived() (tale.base.Location

method), 14
notify_player_left() (tale.base.Location

method), 14

O
open() (tale.base.Door method), 9
open_write() (tale.vfs.VirtualFileSystem method), 26
OrderedCounter (class in tale.lang), 18
ordinal() (in module tale.lang), 18
output() (tale.player.PlayerConnection method), 20
output() (tale.tio.console_io.ConsoleIo method), 33
output() (tale.tio.if_browser_io.HttpIo method), 34
output() (tale.tio.iobase.IoAdapterBase method), 32
output() (tale.tio.tkinter_io.TkinterIo method), 33
output_no_newline()

(tale.player.PlayerConnection method), 20
output_no_newline()

(tale.tio.console_io.ConsoleIo method), 33
output_no_newline()

(tale.tio.if_browser_io.HttpIo method), 34
output_no_newline()

(tale.tio.iobase.IoAdapterBase method),
32

output_no_newline() (tale.tio.tkinter_io.TkinterIo
method), 33

overrides_soul() (in module tale.cmds), 26

P
p() (tale.player.TextBuffer method), 20
parse() (tale.base.Living method), 12
parse() (tale.base.Soul method), 15
parse() (tale.util.MoneyFormatter method), 24
parse_duration() (in module tale.util), 25
parse_time() (in module tale.util), 25
ParseError, 17
pause() (tale.tio.console_io.ConsoleIo method), 33
pause() (tale.tio.if_browser_io.HttpIo method), 34
pause() (tale.tio.iobase.IoAdapterBase method), 32
pause() (tale.tio.mud_browser_io.MudHttpIo method),

35
pause() (tale.tio.tkinter_io.TkinterIo method), 33
playable (tale.races.Flags attribute), 21
Player (class in tale.player), 19
PlayerConnection (class in tale.player), 20
plus_realtime() (tale.util.GameDateTime method),

24

44 Index

Tale Documentation, Release 4.7

poss_replacement() (tale.base.Soul static
method), 15

Potion (class in tale.items.basic), 37
print() (tale.player.TextBuffer method), 20
process_verb() (tale.base.Soul method), 15
process_verb_parsed() (tale.base.Soul method),

15
pubsub_event() (tale.driver.Driver method), 16
pubsub_event() (tale.player.Player method), 19
pubsub_event() (tale.pubsub.Listener method), 21

R
Race (class in tale.races), 21
remember_previous_parse() (tale.base.Living

method), 12
remove() (tale.base.Living method), 12
remove() (tale.base.Location method), 14
render_output() (tale.tio.console_io.ConsoleIo

method), 33
render_output() (tale.tio.if_browser_io.HttpIo

method), 34
render_output() (tale.tio.iobase.IoAdapterBase

method), 32
render_output() (tale.tio.tkinter_io.TkinterIo

method), 33
RetryParse, 17
RetrySoulVerb, 17
reverse_door() (tale.base.Door method), 9
roll_dice() (in module tale.util), 25
run_from_cmdline() (in module tale.author), 7
run_from_cmdline() (in module tale.main), 19

S
save() (tale.items.bank.Bank method), 36
save() (tale.items.board.BulletinBoard method), 38
Scroll (class in tale.items.basic), 37
search_extradesc() (tale.player.Player method),

19
search_item() (tale.base.Item static method), 11
search_item() (tale.base.Living method), 12
search_key() (tale.base.Door method), 9
search_living() (tale.base.Location method), 14
search_player() (tale.driver.Driver method), 16
SecurityViolation, 17
select_random_move() (tale.base.Living method),

12
SessionExit, 17
ShopBehavior (class in tale.shop), 22
Shopkeeper (class in tale.shop), 22
show_inventory() (tale.base.Item method), 11
show_inventory() (tale.base.Living method), 12
show_inventory() (tale.base.MudObject method), 8
show_motd() (tale.driver_mud.MudDriver method),

17

singleplayer_mainloop()
(tale.tio.console_io.ConsoleIo method), 33

singleplayer_mainloop()
(tale.tio.if_browser_io.HttpIo method), 34

singleplayer_mainloop()
(tale.tio.iobase.IoAdapterBase method),
32

singleplayer_mainloop()
(tale.tio.mud_browser_io.MudHttpIo method),
35

singleplayer_mainloop()
(tale.tio.tkinter_io.TkinterIo method), 33

size (tale.races.Race attribute), 22
smartquotes() (tale.tio.iobase.IoAdapterBase

method), 32
sorted_by_name() (in module tale.util), 25
sorted_by_title() (in module tale.util), 25
Soul (class in tale.base), 14
spacify() (tale.base.Soul method), 15
spell_number() (in module tale.lang), 18
spell_ordinal() (in module tale.lang), 18
split() (in module tale.lang), 18
start() (tale.driver.Driver method), 16
start_attack() (tale.base.Living method), 12
store_input_line() (tale.player.Player method),

19
StoryBase (class in tale.story), 23
StoryCompleted, 18
StoryConfig (class in tale.story), 23
StoryConfigError, 18
storyname_to_filename() (in module tale.util),

25
strip_text_styles() (in module tale.tio.iobase),

32
StyleTagsAwareTextWrapper (class in

tale.tio.styleaware_wrapper), 35
sub_gametime() (tale.util.GameDateTime method),

24
sub_realtime() (tale.util.GameDateTime method),

24
swimming (tale.races.Flags attribute), 21

T
take_stuff() (in module tale.cmds.normal), 29
tale.accounts (module), 7
tale.author (module), 7
tale.base (module), 7
tale.charbuilder (module), 15
tale.cmds (module), 26
tale.cmds.normal (module), 26
tale.cmds.wizard (module), 30
tale.driver (module), 15
tale.driver_if (module), 16
tale.driver_mud (module), 17

Index 45

Tale Documentation, Release 4.7

tale.errors (module), 17
tale.items.bank (module), 35
tale.items.basic (module), 36
tale.items.board (module), 38
tale.lang (module), 18
tale.main (module), 19
tale.player (module), 19
tale.pubsub (module), 20
tale.races (module), 21
tale.savegames (module), 22
tale.shop (module), 22
tale.story (module), 23
tale.tio.console_io (module), 32
tale.tio.if_browser_io (module), 34
tale.tio.iobase (module), 32
tale.tio.mud_browser_io (module), 35
tale.tio.styleaware_wrapper (module), 35
tale.tio.tkinter_io (module), 33
tale.util (module), 23
tale.verbdefs (module), 25
tale.vfs (module), 25
TaleError, 18
TaleFlowControlException, 18
TaleMudWsgiApp (class in tale.tio.mud_browser_io),

35
TaleWsgiApp (class in tale.tio.if_browser_io), 34
TaleWsgiAppBase (class in tale.tio.if_browser_io),

34
teleport_someone_to_player() (in module

tale.cmds.wizard), 31
teleport_to() (in module tale.cmds.wizard), 31
tell() (tale.base.Living method), 12
tell() (tale.base.Location method), 14
tell() (tale.player.Player method), 19
tell_later() (tale.base.Living method), 13
tell_object_location() (tale.player.Player

method), 19
tell_others() (tale.base.Living method), 13
tell_text_file() (tale.player.Player method), 20
test_get_output_paragraphs()

(tale.player.Player method), 20
test_peek_output_paragraphs()

(tale.player.Player method), 20
TextBuffer (class in tale.player), 20
thirst (tale.items.basic.Drink.drinkeffects attribute),

36
TickMethod (class in tale.story), 23
TkinterIo (class in tale.tio.tkinter_io), 33
to_float() (tale.util.MoneyFormatterFantasy

method), 24
to_float() (tale.util.MoneyFormatterModern

method), 24
topic() (in module tale.pubsub), 21
Trash (class in tale.items.basic), 37

U
UnknownVerbException, 18
unlock() (tale.base.Door method), 9
unsubscribe_all() (in module tale.pubsub), 21
uptime (tale.driver.Driver attribute), 16

V
validate_path() (tale.vfs.VirtualFileSystem

method), 26
validate_socialize_targets()

(tale.base.Living method), 13
VfsError, 25
VirtualFileSystem (class in tale.vfs), 25

W
Weapon (class in tale.base), 14
Wearable (class in tale.items.basic), 37
welcome() (tale.story.StoryBase method), 23
welcome_savegame() (tale.story.StoryBase

method), 23
when_due() (tale.driver.Deferred method), 16
who_replacement() (tale.base.Soul method), 15
wiz_clone() (tale.base.Item method), 11
wiz_clone() (tale.base.Living method), 13
wiz_clone() (tale.base.MudObject method), 8
wiz_destroy() (tale.base.Item method), 11
wiz_destroy() (tale.base.Living method), 13
wiz_destroy() (tale.base.MudObject method), 8
wizcmd() (in module tale.cmds), 26
write_input_prompt()

(tale.tio.console_io.ConsoleIo method), 33
write_input_prompt()

(tale.tio.iobase.IoAdapterBase method),
32

write_output() (tale.player.PlayerConnection
method), 20

wsgi_internal_server_error()
(tale.tio.if_browser_io.TaleWsgiAppBase
method), 34

wsgi_internal_server_error_json()
(tale.tio.if_browser_io.TaleWsgiAppBase
method), 34

wsgi_invalid_request()
(tale.tio.if_browser_io.TaleWsgiAppBase
method), 34

wsgi_not_found() (tale.tio.if_browser_io.TaleWsgiAppBase
method), 34

wsgi_not_modified()
(tale.tio.if_browser_io.TaleWsgiAppBase
method), 34

wsgi_redirect() (tale.tio.if_browser_io.TaleWsgiAppBase
method), 35

46 Index

Tale Documentation, Release 4.7

wsgi_redirect_other()
(tale.tio.if_browser_io.TaleWsgiAppBase
method), 35

WsgiStartResponseType (in module
tale.tio.if_browser_io), 35

Index 47

	What is Tale?
	Getting started
	Features
	MUD mode versus Interactive Fiction mode
	Copyright
	API documentation

	Python Module Index
	Index

