
𝑡𝑎𝑐𝑜𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release 0.0.27

Benjamin F. Maier

Sep 14, 2018

Contents

1 About this project 3

2 Temporal network classes 5

3 Relevant C++-core classes 7

4 API module 9

5 Analysis module 11

6 Tool module 13

7 Drawing module 15

8 Models conversion module 17

9 Flockwork module 19

10 Loading model parameters module 21

i

ii

𝑡𝑎𝑐𝑜𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.27

Contents 1

𝑡𝑎𝑐𝑜𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.27

2 Contents

CHAPTER 1

About this project

Tacoma is an acronym for (T)empor(A)l (CO)ntact (M)odeling and (A)nalysis. It is a joint C++/Python-package for the
modeling and analysis of undirected and unweighted temporal networks, with a focus on (but not limited to) human
face-to-face contact networks.

1.1 Quick example

In order to download the SocioPatterns ‘Hypertext 2009’-dataset and visualize it interactively, do the following.

>>> import tacoma as tc
>>> from tacoma.interactive import visualize
>>> temporal_network = tc.download_and_convert_sociopatterns_hypertext_2009()
100% [..] 67463 / 67463
>>> visualize(temporal_network, frame_dt = 20)

This is the result:

1.2 Why should I use tacoma?

1.2.1 Pros

• networks are natively described in continuous time

• two main native formats to describe temporal networks (_tacoma.edge_lists and _tacoma.
edge_changes), a third way, a sorted list of on-intervals for each edge called tc.edge_trajectories
is available, but algorithms work on the two native formats only

• the simple portable file-format .taco as a standardized way to share temporal network data (which is just the
data dumped to a .json-file, a simple file format readable from a variety of languages)

3

http://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-network/

𝑡𝑎𝑐𝑜𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.27

• easy functions to produce surrogate temporal networks from four different models

• easy way to simulate Gillespie (here, epidemic spreading) processes on temporal networks

• easy framework to develop new Gillespie-simulations algorithms on temporal networks

• multiple and simple ways to interactively visualize temporal networks

• simple functions to manipulate temporal networks (slice, concatenate, rescale time, sample, bin, convert)

• simple functions to analyze structural and statistical properties of temporal networks (mean degree, degree
distribution, group size distribution, group life time distributions, etc.)

• fast algorithms due to C++-core (fast as in faster than pure Python)

• relatively fast and easy to compile since it only depends on the C++11-stdlib and pybind11 without the large
overhead of Boost

1.2.2 Cons

• no support for directed temporal networks yet

• no support for weighted temporal networks yet

1.3 Install

If you get compiling errors, make sure that pybind11 is installed.

$ git clone https://github.com/benmaier/tacoma
$ pip install ./tacoma

Note that a C++11-compiler has to be installed on the system before installing tacoma.

4 Chapter 1. About this project

https://github.com/pybind/pybind11
https://github.com/pybind/pybind11

CHAPTER 2

Temporal network classes

Undirected and unweighted temporal networks are composed of 𝑁 nodes and up to 𝑚max = 𝑁(𝑁 + 1)/2 edges,
where each edge (𝑖, 𝑗) can be described as a series of events where the edge is either switched on or switched off. One
way of expressing that is to define the temporal adjacency matrix

𝐴𝑖𝑗(𝑡) =

{︃
1, (𝑖, 𝑗) connected at time 𝑡

0, else.

In tacoma, we will interpret temporal networks as if they were recorded in an experiment. We expect that over the
course of time 𝑡0 ≤ 𝑡 < 𝑡max in which we record activity, we will encounter 𝑁 nodes from the node set 𝑉 =
0, 1, . . . , 𝑁 − 1 (nodes posses an integer label).

The experiment begins at time 𝑡0, where the network consists of an edge set 𝐸0 ⊆ {𝑖, 𝑗 : 𝑉 × 𝑉, 𝑖 < 𝑗}. Then, each
time the network changes, we denote that time by an entry in a time vector 𝑡. Each entry in the time vector corresponds
to a network change event and thus to a change in the edge set. We call the total number of change events 𝑁𝑒, such
that the vector 𝑡 has 𝑁𝑒 entries. In between consecutive times, the network is constant. After the last recorded event,
we kept the experiment running until the maximum time 𝑡max without observing any change and stopped recording at
𝑡max.

There’s three data structures implemented in this package, all of which capture the situation described above in differ-
ent ways and are useful in different situations.

2.1 Edge lists

The class _tacoma.edge_lists consists of a collection of complete edge lists, each time the network changes, a
complete edge list of the network after the change is saved. It has the following attributes.

• 𝑁 : The total number of nodes

• 𝑡 : A vector of length 𝑁𝑒 + 1. The 0-th entry contains the time of the beginning of the experiment 𝑡0

• edges : A vector of length 𝑁𝑒 + 1 where each entry contains an edge list, describing the network after the
change which occured at the corresponding time in 𝑡. The 0-th entry contains the edge list of the beginning of
the experiment 𝑡0

5

𝑡𝑎𝑐𝑜𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.27

• 𝑡max : The time at which the experiment ended.

Additionally,

2.2 Edge changes

The class _tacoma.edge_changes consists of a collection of both edges being created and edges being deleted.
It has the following attributes.

• 𝑁 : The total number of nodes.

• 𝑡0 : The time of the beginning of the experimen.

• edges_initial : The edge list of the beginning of the experiment at 𝑡0.

• 𝑡 : A vector of length 𝑁𝑒, each time corresponding to a change in the network.

• 𝑡max : The time at which the experiment ended.

Additionally,

2.3 Edge trajectories

6 Chapter 2. Temporal network classes

CHAPTER 3

Relevant C++-core classes

7

𝑡𝑎𝑐𝑜𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.27

8 Chapter 3. Relevant C++-core classes

CHAPTER 4

API module

9

𝑡𝑎𝑐𝑜𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.27

10 Chapter 4. API module

CHAPTER 5

Analysis module

A reference to tacoma.analysis.

11

𝑡𝑎𝑐𝑜𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.27

12 Chapter 5. Analysis module

CHAPTER 6

Tool module

13

𝑡𝑎𝑐𝑜𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.27

14 Chapter 6. Tool module

CHAPTER 7

Drawing module

15

𝑡𝑎𝑐𝑜𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.27

16 Chapter 7. Drawing module

CHAPTER 8

Models conversion module

17

𝑡𝑎𝑐𝑜𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.27

18 Chapter 8. Models conversion module

CHAPTER 9

Flockwork module

19

𝑡𝑎𝑐𝑜𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.27

20 Chapter 9. Flockwork module

CHAPTER 10

Loading model parameters module

21

	About this project
	Temporal network classes
	Relevant C++-core classes
	API module
	Analysis module
	Tool module
	Drawing module
	Models conversion module
	Flockwork module
	Loading model parameters module

