racomalDocumentation
Release 0.0.27

Benjamin F. Maier

Sep 14, 2018

Contents

1 About this project 3
2 Temporal network classes 5
3 Relevant C++-core classes 7
4 API module 9
5 Analysis module 11
6 Tool module 13
7 Drawing module 15
8 Models conversion module 17
9 Flockwork module 19

10 Loading model parameters module 21

racomaDocumentation, Release0.0.27

Contents 1

racomaDocumentation, Release0.0.27

2 Contents

CHAPTER 1

About this project

Tacoma is an acronym for (T)empor(A)l (CO)ntact (M)odeling and (A)nalysis. It is a joint C++/Python-package for the
modeling and analysis of undirected and unweighted temporal networks, with a focus on (but not limited to) human
face-to-face contact networks.

1.1 Quick example

In order to download the SocioPatterns ‘Hypertext 2009°-dataset and visualize it interactively, do the following.

>>> import tacoma as tc

>>> from tacoma.interactive import visualize

>>> temporal_network = tc.download_and_convert_sociopatterns_hypertext_2009 ()
0 [] 67463 / 67463
>>> visualize (temporal_network, frame_dt = 20)

This is the result:

1.2 Why should | use tacoma?

1.2.1 Pros

 networks are natively described in continuous time

e two main native formats to describe temporal networks (_tacoma.edge_lists and _tacoma.
edge_changes), a third way, a sorted list of on-intervals for each edge called tc.edge_trajectories
is available, but algorithms work on the two native formats only

* the simple portable file-format . taco as a standardized way to share temporal network data (which is just the
data dumped to a . json-file, a simple file format readable from a variety of languages)

http://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-network/

racomaDocumentation, Release0.0.27

* easy functions to produce surrogate temporal networks from four different models

* easy way to simulate Gillespie (here, epidemic spreading) processes on temporal networks

* easy framework to develop new Gillespie-simulations algorithms on temporal networks

» multiple and simple ways to interactively visualize temporal networks

* simple functions to manipulate temporal networks (slice, concatenate, rescale time, sample, bin, convert)

* simple functions to analyze structural and statistical properties of temporal networks (mean degree, degree
distribution, group size distribution, group life time distributions, etc.)

* fast algorithms due to C++-core (fast as in faster than pure Python)

* relatively fast and easy to compile since it only depends on the C++11-stdlib and pybindl 1 without the large
overhead of Boost

1.2.2 Cons

* no support for directed temporal networks yet

* no support for weighted temporal networks yet

1.3 Install

If you get compiling errors, make sure that pybind11 is installed.

$ git clone https://github.com/benmaier/tacoma
$ pip install ./tacoma

Note that a C++11-compiler has to be installed on the system before installing tacoma.

4 Chapter 1. About this project

https://github.com/pybind/pybind11
https://github.com/pybind/pybind11

CHAPTER 2

Temporal network classes

Undirected and unweighted temporal networks are composed of N nodes and up to mmax = N(INV + 1)/2 edges,
where each edge (4, j) can be described as a series of events where the edge is either switched on or switched off. One
way of expressing that is to define the temporal adjacency matrix

A(t) = 1, (i,7) connected at time ¢
Y0, else.

In tacoma, we will interpret temporal networks as if they were recorded in an experiment. We expect that over the
course of time g < t < tpax in which we record activity, we will encounter N nodes from the node set V =
0,1,..., N — 1 (nodes posses an integer label).

The experiment begins at time ¢y, where the network consists of an edge set Ey C {i,7 : V x V,i < j}. Then, each
time the network changes, we denote that time by an entry in a time vector ¢. Each entry in the time vector corresponds
to a network change event and thus to a change in the edge set. We call the total number of change events N, such
that the vector ¢ has N, entries. In between consecutive times, the network is constant. After the last recorded event,
we kept the experiment running until the maximum time ¢,,,x Without observing any change and stopped recording at

tmax M

There’s three data structures implemented in this package, all of which capture the situation described above in differ-
ent ways and are useful in different situations.

2.1 Edge lists

The class _tacoma.edge_1l1ists consists of a collection of complete edge lists, each time the network changes, a
complete edge list of the network after the change is saved. It has the following attributes.

e N : The total number of nodes
e t: A vector of length N, + 1. The O-th entry contains the time of the beginning of the experiment ¢,

e edges : A vector of length N, + 1 where each entry contains an edge list, describing the network after the
change which occured at the corresponding time in £. The O-th entry contains the edge list of the beginning of
the experiment ¢

racomaDocumentation, Release0.0.27

* tmax : The time at which the experiment ended.

Additionally,

2.2 Edge changes

The class _tacoma.edge_changes consists of a collection of both edges being created and edges being deleted.
It has the following attributes.

e N : The total number of nodes.

* tp : The time of the beginning of the experimen.

e edges_initial : The edge list of the beginning of the experiment at £.

e t: A vector of length N, each time corresponding to a change in the network.
* tmax : The time at which the experiment ended.

Additionally,

2.3 Edge trajectories

6 Chapter 2. Temporal network classes

CHAPTER 3

Relevant C++-core classes

racomaDocumentation, Release0.0.27

8 Chapter 3. Relevant C++-core classes

CHAPTER 4

API module

racomaDocumentation, Release0.0.27

10 Chapter 4. APl module

CHAPTER B

Analysis module

A reference to tacoma.analysis.

11

racomaDocumentation, Release0.0.27

12 Chapter 5. Analysis module

CHAPTER O

Tool module

13

racomaDocumentation, Release0.0.27

14 Chapter 6. Tool module

CHAPTER /

Drawing module

15

racomaDocumentation, Release0.0.27

16 Chapter 7. Drawing module

CHAPTER 8

Models conversion module

17

racomaDocumentation, Release0.0.27

18 Chapter 8. Models conversion module

CHAPTER 9

Flockwork module

19

racomaDocumentation, Release0.0.27

20 Chapter 9. Flockwork module

cHAaPTER 10

Loading model parameters module

21

	About this project
	Temporal network classes
	Relevant C++-core classes
	API module
	Analysis module
	Tool module
	Drawing module
	Models conversion module
	Flockwork module
	Loading model parameters module

