Tablo Documentation
Release 1.0.2

Conservation Biology Institute

Jul 07, 2017

Contents

1 Tablo 3
I[.1 Whatis Tablo? o e e e e e e 3

1.2 Goals . . o o o e e e e e e e 3

1.3 Documentation e e e e e e e e e e e e e e e e e e e 4

2 Installing 5
2.1 Dependencies L e e e e e 5

2.2 SettingupaPostGIS database L o L 5

2.3 Settingup a Django Project 5

2.4 Other Dependencies o v v i i v i i et e e e e e e e e e e e e 6

2.5 Installing Tablo o o L e e e e e e e e e 6

2.6 Modify Django Settings e e e e e 6

27 Modify urls.py e 6

2.8 Add API Key Authentication i e 7

29 CreateatabloUser o o i e e e e e 7
2.10 Runthe Server o v i i e e e e e e e e e e e e e e e e 7
211 Setupthe APIKey e e e e e e 7

3 Tablo Data Model 9
3.1 DataTables e e e 11

4 Data Upload 13
4.1 Upload e e e e e e e e e 13

42 Describe ..o . e e e e e e e e e 14

43 Deploy . . .o e e e e e e e 14
4.4 Create a Feature SErvice o i i i e e e e e e e e e e e e 15

4.5 Finalize the Service e e e e e e e e e e e 16

5 Interfaces 17
5.1 ArcGISInterface o . o e e e e e e e e 17
ST QUELY . o o oo e e e e 17

5.1.2 0 TImeQUETY v o e e e e e e e e e e e e e e e e e e e 18

5.1.3 GenerateRenderer L e e e e e e 19

Python Module Index 21

Tablo Documentation, Release 1.0.2

Tablo is a lightweight Django application that creates a interface layer for interacting with spatial data stored within a
PostGIS database.

Contents 1

Tablo Documentation, Release 1.0.2

2 Contents

CHAPTER 1

Tablo

What is Tablo?

Tablo is a lightweight Django application that creates a interface layer for interacting with spatial data stored within a

PostGIS database.

Goals

The main goal of Tablo is to allow us to store data in a PostGIS database and be able to access it in the same way we
access ArcGIS feature services.

We wanted to be able to query the data in the PostGIS database using a REST endpoint similar to this:

localhost:8383/tablo/arcgis/rest/services/905/FeatureServer/0/query?f=json
&returnGeometry=true&spatialRel=esriSpatialRelIntersects
&geometry={"xmin":-13697515.468700845, "ymin":5662246.477956772,
"xmax":-13619243.951736793, "ymax":5740517.994920822,
"spatialReference": {"wkid":3857}}
&geometryType=esriGeometryEnvelope&inSR=3857&outFields=+x&outSR=3857

This allows us to take a CSV file like this:

Team Name | Name of the Stream | Longitude | Latitude | Temperature Reading
Fun Team Columbia ‘D’ River | -122.2345 | 45.5483 | 60
Fun Team 2 | Columbia River -122.2869 | 45.5429 | 60
Fun Team Columbia River -122.4224 | 45.5655 | 65
Portlandias | Johnson Creek -122.5849 | 45.4606 | 59
Portlandias | Johnson Creek -122.5986 | 45.4551 | 61

And turn it into a map like this:

Tablo Documentation, Release 1.0.2

Documentation

Full documentation available here.

4 Chapter 1. Tablo

http://tablo.readthedocs.io/en/latest/

CHAPTER 2

Installing

To keep things separate, you will most likely want to work within a python virtual environment. This just makes things
easier to manage in general. A good tool for managing virtual environments can be found at https://virtualenvwrapper.
readthedocs.io/en/latest/.

Tablo has been written to support Python 3.5, so you will need to make sure your virtual environment is using Python
3.5.

Dependencies

Tablo is a Django application that relies on a PostGIS database. So, the first two things you’ll need to work with Tablo
are:

1. A PostGIS database (version 9.4 or above)
2. A Django Project

Setting up a PostGIS database

The scope of this document is not large enough to encapsulate all that is required in installing a PostGIS database. See
http://postgis.net/install/ for information on how to install it on your own system (or on a remote server).

Setting up a Django Project

See https://docs.djangoproject.com/en/1.8/intro/tutorial01/#creating-a-project for instructions on how to set up a
Django project. Tablo was tested using Django version 1.8.6.

For example, you could create a project called tablo_project by issuing the command: $ django-admin startpro-
ject tablo_project

Anywhere in this documentation where it refers to the Django project, it will be referenced as tablo_project.

https://virtualenvwrapper.readthedocs.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/
http://postgis.net/install/
https://docs.djangoproject.com/en/1.8/intro/tutorial01/#creating-a-project

Tablo Documentation, Release 1.0.2

Other Dependencies

Tablo relies on a few libraries that can often be more difficult to install. These include:
* pyproj (https://github.com/jswhit/pyproj)
e Ixml (via messytables) (http://Ixml.de/)
* GDAL (https://pypi.python.org/pypi/GDAL/)

See these websites to install these libraries first, as they may depend on other executables existing in your environment.

Installing Tablo

There are two main ways to install tablo; directly, or indirectly from a cloned repository.
To install directly, use the standard pip installation:
$ pip install git+https://github.com/consbio/tablo.git*
To install indirectly from a cloned repository:
1. Clone this repository

2. Install the app using pip and pointing to your local repository, but use the —editable flag, as in: $ pip in-
stall —editable c:tablo*

Modify Django Settings

In your tablo_project/tablo_project settings file, make the following modifications:

INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.auth',

'tastypie',
'tablo'
)

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresgl_psycopg2',
'NAME': '{ database name }',

'"HOST': '{ database host }',

'USER': '{ database user }',

'"PASSWORD': '{ database password}'

Modify urls.py

In tablo_project/tablo_project/urls.py, make sure that the tablo.urls are included:

6 Chapter 2. Installing

https://github.com/jswhit/pyproj
http://lxml.de/
https://pypi.python.org/pypi/GDAL/

Tablo Documentation, Release 1.0.2

urlpatterns = [
url (r'"', include('tablo.urls'")),
url (r'”admin/', include (admin.site.urls)),

Add API Key Authentication

To allow other applications to use Tablo using an API key rather than a full user login, add middleware.py file that
looks like this:

from tastypie.authentication import ApiKeyAuthentication
class TastypieApiKeyMiddleware (object) :
""ryMiddleware to authenticate users using API keys for regular Django views"""

def process_request (self, request):
ApiKeyAuthentication () .is_authenticated (request)

Then add an additional INSTALLEDAPP referencing tablo_project.middleware.TastypieApiKeyMiddleware.

Create a tablo user

$ python manage.py createsuperuser —username=tablo —email=your.email @ somewhere.com

Supply a password for the tablo user.

Run the server

Make sure that your path to osgeo is in your PATH variable.

Run the server by issuing the manage.py runserver command.

Setup the API Key

Go to http://localhost/admin and login as tablo, using the password you supplied above.

Add an API key for the tablo user. This is the API key you will want to set for any applications that communicate with
the tablo server.

2.8. Add API Key Authentication 7

mailto:--email=your.email@somewhere.com
http://localhost/admin

Tablo Documentation, Release 1.0.2

8 Chapter 2. Installing

CHAPTER 3

Tablo Data Model

The Tablo data model is structured around three tables, shown in the diagram below:

Tablo Documentation, Release 1.0.2

FeatureServiceLaverRelations

id AutoField

laver ForeignkKey {id)
related _index FositivelntegerFisld
related title CharField
source_colurmn CharField

target colurmn CharField

aver (b'festureservicelayerrelations"

FeatureServiceLayer

id AutoField
service ForeignKey (id}
_extent TextField
_time_extent TextField
description TextField
display field CharField
drawing_info TextField
geometry type CharField
global_id_field CharField
layer_order IntegerField
narme CharField
ahject id field CharField
start_tirme _field CharField
supports time BooleanField
table CharField
time_interval TextField
time_interval units CharField

ervice (h'festurezervicelayer")

id AutoField
_full_extent TextField
initial _extent TextField
10 allow_geometry updates EooleanFizld Chapter 3. Tablo Data Model
copyright_test TextField

description TextField

Tablo Documentation, Release 1.0.2

The main table, FeatureService, contains the information about the feature service itself, its capabilities, extents, etc.
The ID for the FeatureService will be used in any URLs used to reference the data.

The FeatureServiceLayer table associates an individual layer with a FeatureService. Currently, this is a one to one
relationship, but could be one to many in the future. The table property within the FeatureServiceLayer identifies the
table where this FeatureServiceLayer will retrieve it’s data from.

The FeatureServiceLayerRelations table allows the association of related tables to the main layer table. Associated
data will be pulled from a table named with the same name as the FeatureServiceLayer’s table, but with a suffix of
_{related_index}. So, if the original layer pulled data from a table called db_12345, the first related table would be
called db_12345_0.

Data Tables

Tables containing data can have any structure, but must contain the following a db_id field that is the primary key
for the table, and a dbasin_geom field that contains the geometry for the given row.

Related tables do not need these fields, but must have foreign keys that match the source_column and
target_column in the FeatureServiceLayerRelations table.

3.1. Data Tables 11

Tablo Documentation, Release 1.0.2

12 Chapter 3. Tablo Data Model

CHAPTER 4

Data Upload

Tablo is built around the idea of being able to upload a CSV file and then consuming that data through one or more
generic interfaces that abstract out the data storage layer. Before you can consume the data, you must upload it into
Tablo. This document details the steps involved in the upload process.

There are multiple steps to the process, allowing for minor changes in data along the way. The minimum set of steps
is as follows:

1. Upload CSV File

2. Describe the CSV File

3. Deploy the CSV File

4. Create the Feature Service

5. Finalize the Feature Service

Upload

TemporaryFileUploadUrlView.dispatch (request, *args, **kwargs)
Uploads a CSV file, based on URL and stores it under a UUID, allowing it to be referenced later. Send a
POST message to {tablo-server}/tablo/admin/upload-by-url, with a parameter of url specify-
ing where your file resides.

Keyword Arguments
url The URL of the file you wish to upload-by-url
Returns

A JSON object in the following format:

{

"auid": "uniqueldentifierForTheFile"

}

13

Tablo Documentation, Release 1.0.2

Describe

TemporaryFileResource.describe (request, **kwargs)

Describe, located at the {tablo-server}/api/vl/temporary-files/{uuid}/describe end-
point, will describe the uploaded CSV file. This allows you to know the column names and data types that

were found within the file.
Returns

A JSON object in the following format:

{

"latitude", "longitude"],
"Double"],

"fieldNames": ["field one", "field two",
"dataTypes": ["String", "Integer",
"optionalFields": ["field one"],
"xColumn": "longitude",

"yColumn": "latitude",

"filename": "uploaded.csv"

fieldNames A list of field (column) names within the CSV

dataTypes A list of data types for each of the columns. The index of this list will match the

index of the fieldNames list.

optionalFields A list of fields that had empty values, and are taken to be optional.

xColumn The best guess at which column contains X spatial coordinates.

yColumn The best guess at which column contains Y spatial coordinates.

filename The name of the file being described

Deploy

TemporaryFileResource.deploy (request, **kwargs)

The deploy endpoint, at {tablo_server}/api/vl/temporary-files/{uuid}/{dataset_id}/
deploy/ deploys the file specified by {uuid} into a database table named after the {dataset_id}. The

{dataset_id} must be unique for the instance of Tablo.

With the deploy endpoint, this is the start of what Tablo considers an import. The data will be temporarily stored

in an import table until the finalize endpoint for the dataset_id is called.

POST messages to the deploy endpoint should include the following data:

csv_info Information about the CSV file. This is generally that information obtained through the describe

endpoint, but can be modified to send additional information or modify it.

fields A list of field JSON objects in the following format:

{

"name": "field_name",
"type" . "text u’
"value": "optional value",

"required": true

14

Chapter 4. Data Upload

Tablo Documentation, Release 1.0.2

The value can be specified if the field is a constant value throughout the table. This can be use for adding
audit information.

Returns An empty HTTP 200 response if the deploy was successful. An error response if otherwise.

Create a Feature Service

class tablo.api.FeatureServiceResource (api_name=None)
The FeatureService resource, located at {tablo_server}/api/vl/featureservice, allows you to
create, edit and delete feature services within Tablo.

Once your data has been deployed through the deploy endpoint, you can create a feature service by sending a
POST message to the above endpoint with data structured as:

{
"description": "",
"copyright_text": "",
"spatial_ reference": "{'wkid': 3857}",
"units": "esriMeters",
"allow_geometry updates": false,
"layers": [
{
"layer_order": 0O,
"table": "db_dataset_id_import",
"name": "layername",
"description": null,
"geometry type": "esriGeometryPoint",
"supports_time": false,
"start_time_field": null,
"time_interval": O,
"time_interval_units": null,
"drawing info": {
"renderer": |
"description":
"label": "",
"symbol": {
"angle": O,
"color": [255, O, 0O, 2557,
"size": 5,
"style": "esriSMSCircle",
"type": "esrisMms",
"xoffset": 0,
"yoffset": O

nn
I4

by
"type": "simple"

drawing_info contains ESRI styling for the FeatureService geometry type. The creation will return a URL that
will contain the Service ID of your newly created feature service.

4.4. Create a Feature Service 15

Tablo Documentation, Release 1.0.2

Finalize the Service

FeatureServiceResource. finalize (request, **kwargs)
The finalize endpoint, located at {tablo_host}/api/vl/featureservice/{service_id}/
finalize allows you to finalize the feature service and mark it as available for use. This endpoint moves
the data from the temporary database table and into its permanent one. This endpoint whould be accessed with
a service_id parameter specifying the Service ID of the service you want to finalize.

16 Chapter 4. Data Upload

CHAPTER B

Interfaces

Tablo provides a partial implementation of the ArcGIS Feature Service API (http://resources.arcgis.com/en/help/rest/
apiref/featureserver.html).

ArcGIS Interface

This interface layer provides a lightweight interface to the underlying PostGIS data stored in Tablo similar to
that provided by an ArcGIS feature service. The services stored in Tablo can be accessed using endpoints such
as {tablo_server}/rest/services/{service_id}/FeatureServer, where tablo_server is the host
name of the server and service_id is the ID of the service within Tablo.

Accessing the FeatureServer endpoint will provide data about the Feature Service itself, such as version and layer
information. Since these represent feature services, they are limited to a single layer, so the {tablo_server}/
rest/services/{service_id}/FeatureServer/0 endpoint will give more information about the specific
layer properties, such as attributes, extent and related tables (if they exist).

This is the main interface layer that most external applications will use to access and query the spatial data stored
within Tablo. The access points here are open and not restricted by any authentication layers, so authentication would
need to happen outside of Tablo.

The Feature Server Layer will have more information provided by the layer specific endpoints.

Query

class tablo.interfaces.arcgis.views.QueryView (*args, **kwargs)
Query is the main way data is retrieved from a feature service. This implements an api similar to ArcGIS
http://resources.arcgis.com/en/help/rest/apiref/fsquery.html, but limited to the following parameters listed be-
low. It can be accessed using the endpoint at {tablo_server}/rest/services/{service_id}/
FeatureServer/0/query.

Keyword arguments can be passed as query arguments such as {tablo_server}/rest/services/
{service_id}/FeatureServer/0/query?f=json&offset=2&returnIdsOnly=true

17

http://resources.arcgis.com/en/help/rest/apiref/featureserver.html
http://resources.arcgis.com/en/help/rest/apiref/featureserver.html
http://resources.arcgis.com/en/help/rest/apiref/featureserver.html
http://resources.arcgis.com/en/help/rest/apiref/fsquery.html

Tablo Documentation, Release 1.0.2

Keyword Arguments

geometryType (string) The type of geometry sent in the geometry argument. Valid values
are esriGeometryEnvelope and esriGeometryPolygon

limit (inf) The maximum number of features returned by the query

objectlds (comma-separated list) A comma-separated list of ObjectIDs for the features in
the table that you want to query

offset (int) The starting record number for the query, often used in concert with the limit to
paginate groups of responses

orderByFields (string List) The names of the attributes to order the response by. Optional
ASC and DESC flags can be used here to specify ascending or descending order. The
default order is ASC.

outFields (string List) The names of the attributes to include in the response
outSR (spatial reference) The spatial reference for the returned geometry.
returnCountOnly (boolean) Returns only the count of the matching features

returnGeometry (boolean) Whether or not to return the geometry of the feature in the
query response.

returnldsOnly (boolean) Returns only the ObjectIDs of the matching features
time ([float, float]) The start_time and end_time for the query (in seconds since the epoch)

where (string) A where clause for the query

Returns A JSON response, with slightly different syntax depending on the information requested
with the keyword arguments. Example responses can be seen at http://resources.arcgis.com/en/
help/rest/apiref/fsquery.html

TimeQuery

class tablo.interfaces.arcgis.views.TimeQueryView (*args, **kwargs)

TimeQuery is a way to get back consolidated time data about a time-enabled feature service in Tablo. It is an
extension to the base ArcGIS interface, but is built on top of it. It can be accessed at the {tablo_server}/
rest/services/{service_id}/FeatureServer/0/query endpoint. It does not take any keyword
arguments but returns a list of features that specify the location and count of feature occurrences over the full

time of the feature service’s time extent.

Response A JSON object similar to the following:

{

"fields": [

{
"type":"esriFieldTypelInteger",
"name" : "count",
"alias":"count"

}

J 14
"geometryType":"esriGeometryPoint",
"count":3,
"features": [
{
"attributes": {
"count":90

18

Chapter 5. Interfaces

http://resources.arcgis.com/en/help/rest/apiref/fsquery.html
http://resources.arcgis.com/en/help/rest/apiref/fsquery.html

Tablo Documentation, Release 1.0.2

s

"geometry": {
"y":4020267.35731412,
"x":-12974132.1182389

"attributes": {
"count":173

}I

"geometry": {
"y":4021352.9816459,
"x":-12978661.118326

"attributes": {
"count":1572

}I

"geometry": {
"y":4020153.56924836,
"x":-12978123.2336784

GenerateRenderer

class tablo.interfaces.arcgis.views.GenerateRendererView (*args, **kwargs)
GenerateRenderer operation groups data using the supplied classificationDef to create a renderer ob-
ject. This renderer object can then be used as a style or to create a legend. It can be accessed
using the endpoint at {tablo_server}/rest/services/{service_id}/FeatureServer/0/

generateRenderer.

Keyword Arguments

* classificationDef A classificationDef object with a JSON syntax like:

{

"type": "classBreaksDef",

"classificationField": "POP2010",
"classificationMethod": "esriClassifyNaturalBreaks",
"breakCount": 5,

"normalizationType": "esriNormalizeByField",
"normalizationField": "Area"

Returns

An ArcGIS renderer JSON object, like this:

{
"type" . "Sj_mple",
"symbol":
{

"type": "esriSMsS",

5.1. ArcGiIS Interface

19

Tablo Documentation, Release 1.0.2

"style":
"color":

"angle":

{
"color":
"width":

}

}I
"label": "",

"description":

"esriSMSCircle",
[255,0,0,255],

"size": 5,
OI
"xoffset":
"yoffset":
"outline":

wn

20

Chapter 5. Interfaces

Python Module Index

t

tablo.interfaces.arcgis.views, 17

21

Tablo Documentation, Release 1.0.2

22 Python Module Index

Index

D

deploy() (tablo.api.TemporaryFileResource method), 14

describe() (tablo.api.TemporaryFileResource method), 14

dispatch() (tablo.views.TemporaryFileUploadUrlView
method), 13

F

FeatureServiceResource (class in tablo.api), 15
finalize() (tablo.api.FeatureServiceResource method), 16

G

GenerateRendererView (class in
tablo.interfaces.arcgis.views), 19

Q

QueryView (class in tablo.interfaces.arcgis.views), 17

T

tablo.interfaces.arcgis.views (module), 17
TimeQueryView (class in tablo.interfaces.arcgis.views),
18

23

	Tablo
	What is Tablo?
	Goals
	Documentation

	Installing
	Dependencies
	Setting up a PostGIS database
	Setting up a Django Project
	Other Dependencies
	Installing Tablo
	Modify Django Settings
	Modify urls.py
	Add API Key Authentication
	Create a tablo user
	Run the server
	Setup the API Key

	Tablo Data Model
	Data Tables

	Data Upload
	Upload
	Describe
	Deploy
	Create a Feature Service
	Finalize the Service

	Interfaces
	ArcGIS Interface
	Query
	TimeQuery
	GenerateRenderer

	Python Module Index

