

 Navigation

 	
 index

 	
 next |

 	Tableview 0.1.1 documentation

 [image: _images/header.png]
Tableview is a pythonic library for manipulating tabular data. It is spiritually similar to Kenneth Reitz’s Tablib [http://python-tablib.org], as well as the view [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.view.html] functionality in numpy.

Visit the Quickstart guide if you’d like to get started.

User’s Guide

	Quickstart
	Create a TableView

	Pretty Printing

	Rows and Columns

	Removing Data from a View

	Selecting Rows and Columns

	Stripping Rows and Columns

	Splitting Tables

	Manipulating Data

	Raw Data

	Loading Data from Disk

 Copyright 2013, Ryan Sturmer.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Tableview 0.1.1 documentation

Quickstart

This page gives a good introduction to the basics of Tableview. This assumes that you have tableview installed and up to date.

Create a TableView

The heart of the Tableview library is the TableView object. It represents a shallow view of any tabular data. To create one, pass some tabular data to its constructor:

d = [['Name', 'Age', 'Drink', 'Color'], \
 ['Ryan', 30, 'Tea', 'Purple'], \
 ['Michael', 31, 'Coffee', 'Blue'], \
 ['Keith', 40, 'Tea', 'Maroon'], \
 ['Brent', 26, 'Coffee', 'Blue'], \
 ['Craig', '??', 'Bourbon', 'Turquoise']]

table = tableview.TableView(d)

Example Context

From here on, if you see table, assume that it is a fresh TableView object that represents the data above.

Pretty Printing

The pretty() method returns a pretty string for a TableView:

>>> print table.pretty()
Name Age Drink Color
Ryan 30 Tea Purple
Michael 31 Coffee Blue
Keith 40 Tea Maroon
Brent 26 Coffee Blue
Craig ?? Bourbon Turquoise

Rows and Columns

Views are indexed by by row, just like a 2D list

>>> print table[0].pretty()
Name Age Drink Color

But to make operations symmetrical between rows and columns, the rows and cols properties are provided. They work just like you think:

>>> print table.rows[0].pretty()
Name Age Drink Color
>>> print table.cols[0].pretty()
Name
Ryan
Michael
Keith
Brent
Craig

Row Notation

From here on, the table.rows[] notation will be used, but any such operation can be done using the table[] notation. They are equivalent.

Removing Data from a View

You can delete a row or column from a view using the standard del operator:

del table.rows[0]

The same operation works on columns:

del table.cols[1]

Looking at the data now, we see there are no column headers, and the Age column has been removed:

>>> print table.pretty()
Ryan Tea Purple
Michael Coffee Blue
Keith Tea Maroon
Brent Coffee Blue
Craig Bourbon Turquoise

It is important to remember that we haven’t modified the source data. Row and column operations only affect the view itself. We can create a new view from the data, and take a look at it:

>>> table2 = tableview.TableView(d)
>>> print table2.pretty()
Name Age Drink Color
Ryan 30 Tea Purple
Michael 31 Coffee Blue
Keith 40 Tea Maroon
Brent 26 Coffee Blue
Craig ?? Bourbon Turquoise

Selecting Rows and Columns

Frequently, we want to select data based on some criteria, rather than by index. select_rows and select_cols do just that. Let’s say we are only interested in the coffee drinkers:

selection = table.select_rows(lambda row : row[2] == 'Coffee')

The select methods take a single callable that takes a single argument (a row or column). They return True if the row or column is to be returned in the selection. Let’s inspect our selected data:

>>> print selection.pretty()
Michael 31 Coffee Blue
Brent 26 Coffee Blue

Like all operations, the same can be done with columns. Using a fresh table:

>>> print table.select_cols(lambda col : col[0] in ('Name', 'Drink')).pretty()
Name Drink
Ryan Tea
Michael Coffee
Keith Tea
Brent Coffee
Craig Bourbon

Selection operations return new tableview objects. Our original TableView is untouched by calls to select_rows and select_cols

Stripping Rows and Columns

Stripping works just like selecting, except that the matching rows/columns are removed from the output, rather than included. Back to our coffee drinkers:

>>> print table.strip_rows(lambda row : row[2] == 'Coffee').pretty()
Name Age Drink Color
Ryan 30 Tea Purple
Keith 40 Tea Maroon
Craig ?? Bourbon Turquoise

Tea is better for you, anyway.

Splitting Tables

TableViews can be split into smaller views by rows or by columns. This is handy when you have a table that is composed of multiple subtables, separated by empty rows or a divider:

separated_data = [[1,2,3], \
 [], \
 [4,5,6], \
 [7,8,9], \
 ['','','']
 [10,11,12], \
 [13,14,15], \
 [16,17,18]]
 table = tableview.TableView(separated_data)

 one,two,three = table.split_rows()

 >>> print one.pretty()
 1 2 3

 >>> print two.pretty()
 4 5 6
 7 8 9

 >>> print three.pretty()
 10 11 12
 13 14 15
 16 17 18

The default behavior of split_rows and split_cols is to split on empty rows/columns. The example above splits the table view into 3 parts, using the empty rows as delimiters. An ‘empty’ row is one whose elements all evaluate to False This is why the row of empty strings worked as a delimiter in the example above. This also means that a row of zeroes is a valid delimiter, so care must be taken when working with tables of numeric data.

The default delimiter behavior can be modified with an optional criteria argument to split_rows and split_cols It is a function that accepts a row or column as an argument, and should return True if that row or column is a delimiter:

mixed_data = [['Letters:'], \
 ['a','b','c'], \
 ['d','e','f'], \
 ['Numbers:'], \
 [1,2,3], \
 [4,5,6], \
 [7,8,9]], \
 ['Symbols:'], \
 ['*','%','!'], \
 ['$','#','@']]
table = tableview.TableView(mixed_data)
letters,numbers,symbols = table.split_rows(lambda row : row[0].endswith(':'))

>>> print letters.pretty()
a b c
d e f

>>> print numbers.pretty()
1 2 3
4 5 6

>>> print symbols.pretty()
* % !
$ # @

The example above performs a similar split, but instead of looking for empty rows, it uses rows whose first cells end with a colon (:), assuming these rows to be section headings.

Manipulating Data

While row and column operations don’t affect a TableView's source data, assignments to its members do. Once you have the view configured to show the data you want, it can be modified. This is the real power of Tableview:

selection = table.select_rows(lambda row : row[2] == 'Coffee')
for row in selection:
 row[-1] = 'Yellow'

We’ve singled out all the coffee drinkers, and changed their favorite color to yellow. Remember that when we select rows, we’re getting a new view of the table. Our original table object is still a view of all the source data. Let’s inspect:

>>> print table.pretty()
Name Age Drink Color
Ryan 30 Tea Purple
Michael 31 Coffee Yellow
Keith 40 Tea Maroon
Brent 26 Coffee Yellow
Craig ?? Bourbon Turquoise

Raw Data

A copy of the contents of a view can be retrieved using its raw property. This returns a copy of the view’s data as a list of lists:

>>> table.raw
[['Ryan', 30, 'Tea', 'Purple'], ['Michael', 31, 'Coffee', 'Blue'], ['Keith', 40, 'Diet Coke', 'Maroon'], ['Brent', 26, 'Coffee', 'Blue'], ['Craig', '??', 'Turquoise', 'Red']]

Loading Data from Disk

If you are working with CSV or text files, data can be easily loaded from disk:

table = tableview.load('data.csv')

In this case, the TableView object wasn’t invoked directly. Like any TableView, we can access its source data using the data property:

>>> print table.data
[['Name', 'Age', 'Drink', 'Color'], ['Ryan', 30, 'Tea', 'Purple'], ['Michael', 31, 'Coffee', 'Blue'], ['Keith', 40, 'Tea', 'Maroon'], ['Brent', 26, 'Coffee', 'Blue'], ['Craig', ??, 'Bourbon', 'Turquoise']]

The tableview.load function uses the file extension to determine how to parse the file. A .csv extension indicates comma-separated-values, and any other extension is assumed to be tab-separated text.

 Copyright 2013, Ryan Sturmer.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Tableview 0.1.1 documentation

Index

 Copyright 2013, Ryan Sturmer.
 Created using Sphinx 1.2.2.

 search.html

 Navigation

 		
 index

 		Tableview 0.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Ryan Sturmer.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/header.png
Tableview

Flip your data... Into submission.

_static/ajax-loader.gif

_static/comment.png

_images/header.png
Tableview

Flip your data... Into submission.

_static/down.png

_static/comment-close.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/flip.png

_static/minus.png

