

Welcome to TA-nmon-hec documentation, the technical addon for Nmon Performance monitor Splunk app!

[image: splunk_nmon.png]
[image: Octamis_Logo_v3_no_bg.png]
 [http://www.octamis.com]Nmon Performance is now associated with Octamis to provide professional solutions for your business, and professional support for the Nmon Performance solution.

For more information: : http://nmon-for-splunk.readthedocs.io/en/latest/support.html#octamis-support

Contents:

Overview:

	About the TA-nmon-hec, technical addon for Nmon Performance app for Splunk
	Splunk versions

	Index time operations

	About Nmon Performance Monitor

	Release notes
	Requirements

	What has been fixed by release

	Known Issues

	Support
	Octamis professional support for business

	Community support

	Issues and enhancement requests

	Operating Systems compatibility
	OS compatibility

	OS certification

	Introduction to Nmon processing
	Nmon processing

	Benchmarks & TA-nmon foot print
	What does cost the TA-nmon?

	Scripts and Binaries
	Embedded Scripts in the TA-nmon-hec

	Embedded Binaries in the TA-nmon-hec

	Pre-requisites
	Splunk requirements

	Technical Add-on requirements

	Deployment Matrix
	What goes where ?

Processing:

	Processing workflow in action
	Generating Nmon data

	Consuming Nmon data

	Parsing Nmon data

Deployment and configuration:

	Deployment
	HEC performance considerations

	HEC resiliency and scalability

	Activate the Splunk http input and create a token

	Deploying the TA-nmon-hec

	Upgrade

	Eventgen testing
	Testing Nmon performance with evengen

	Get it working in 30 seconds

	Extend Nmon with external data
	How does it work ?

	Ok got it, how do I add mine ?

	Configure your options with nmon.conf
	Splunk HEC specific options

	interval & snapshot

	NFS Statistics

	End time marging (Nmon parallel run)

	Linux OS specific options

	Solaris OS specific options

	AIX OS specific options

	Global options

Troubleshoot:

	Troubleshoot
	Expected running processes

	Starting processes

	Checking fifo_reader processes

	Testing the Splunk HEC endpoint

	Checking the data parsing

	Splunk Monitoring Console

Various:

	FAQ

About the TA-nmon-hec, technical addon for Nmon Performance app for Splunk

	Author: Guilhem Marchand

	First release published in August 2017

	Purposes:

The TA-nmon-hec for the Nmon Performance application for Splunk implements the excellent and powerful nmon binary known as Nigel’s performance monitor.
Originally developed for IBM AIX performance monitoring and analysis, it is now an Open source project that made it available to many other systems.
It is fully available for any Linux flavor, and thanks to the excellent work of Guy Deffaux, it also available for Solaris 10/11 systems using the sarmon project.

The Nmon Performance monitor application for Splunk will generate performance and inventory data for your servers, and provides a rich number of monitors and tools to manage your AIX / Linux / Solaris systems.

[image: Octamis_Logo_v3_no_bg.png]
 [http://www.octamis.com]Nmon Performance is now associated with Octamis to provide professional solutions for your business, and professional support for the Nmon Performance solution.

For more information:

Splunk versions

The TA-nmon-hec is compatible with any version of Splunk Enterprise 6.x and Splunk Universal Forwarder 6.x.

Index time operations

The application operates index time operation, the PA-nmon_light add-on must be installed in indexers in order for the application to operate normally.

If there are any Heavy forwarders acting as intermediate forwarders between indexers and Universal Forwarders, the TA-nmon add-on must deployed on the intermediate forwarders to achieve successfully index time extractions.

About Nmon Performance Monitor

Nmon Performance Monitor for Splunk is provided in Open Source, you are totally free to use it for personal or professional use without any limitation,
and you are free to modify sources or participate in the development if you wish.

Feedback and rating the application will be greatly appreciated.

	Join the Google group: https://groups.google.com/d/forum/nmon-splunk-app

	App’s Github page: https://github.com/guilhemmarchand/nmon-for-splunk

	Videos: https://www.youtube.com/channel/UCGWHd40x0A7wjk8qskyHQcQ

	Gallery: https://flic.kr/s/aHskFZcQBn

Release notes

Requirements

	Splunk 6.x / Universal Forwarder v6.x and later Only

	Universal Forwarders clients system lacking a Python 2.7.x interpreter requires Perl WITH Time::HiRes module available

What has been fixed by release

V1.3.37:

	fix: nmon_helper.sh is referring to TA-nmon #10

V1.3.36:

	fix: OpenSSL lib issues on full Splunk instances #9

V1.3.35:

	feature: Solaris - SARMON upgrade to v1.12 (Sparc FIFO mode) #6

	fix: Rename eventgen.conf to avoid splunkd WARN messages #7

V1.3.34:

	feature: Solaris - SARMON upgrade to v1.12 (Sparc FIFO mode) #6

V1.3.34:

	fix: reactivating the JFSFILE / JFSINODE collections until new core release is available to prevent missing features

V1.3.33:

	fix: Python parser - header detection correction for nmon external monitoring

	fix: Perl parser issue - UARG parsing issue for AIX #2

	fix: unexpected operator issue during process identification #3

	fix: prevent bundle validation warn messages with spec files in README directory

	feature: Add df information for improved file system monitoring and storage capacity planning

	feature: JFSFILE/JFSINODE are being replaced (and deactivated) by external collection with DF_STORAGE/DF_INODES

V1.3.32:

	fix: Python parser - preserve data ordering when possible during key value transformation

	feature: eventgen implementation (2 AIX and 2 Linux servers with stress load on systems)

V1.3.31:

	fix: Python parser issue - epoch time stamp incorrectly parsed for dynamic data #1

V1.3.30:

	fix: check curl availability in hec_wrapper.sh

	fix: redirect to null any curl stderr/stdout in hec_wrapper.sh

	fix: missing log_date function in hec_wrapper.sh

V1.3.29:

Notes: This is the first version of the TA-nmon-hec, for practical purposes and because it shares most of the components, the TA-nmon-hec follows the TA-nmon version

	First release of the TA-nmon-hec

Known Issues

Major or minor bug, enhancement requests will always be linked to an opened issue on the github project issue page:

https://github.com/guilhemmarchand/nmon-for-splunk/issues

Please note that once issues are considered as solved, by a new release or support exchanges, the issue will be closed. (but closed issues can still be reviewed)

Current referenced issues:

	fifo implementation not ready for Solaris on Sparc architectures:

The sarmon binary for Sparc processor has not been released yet and is under compilation.

Once the binary will have been released, the TA-nmon using fifo will be compatible with Solaris Sparc processors.

Support

Octamis professional support for business

[image: Octamis_Logo_v3_no_bg.png]
 [http://www.octamis.com]Nmon Performance is now available with professional support contract by Octamis limited.

Contact us at: sales@octamis.com

Community support

Nmon Performance Monitor for Splunk is provided in Open Source, you are totally free to use it for personal or professional use without any limitation, and you are free to modify sources or participate in the development if you wish.

This application and all of its components are provided under the Apache 2.0 licence, please remember that it comes with no warranty even if i intend to do my best in helping any people interested in using the App.

DISCLAIMER:

Unlike professional services, community support comes in “best effort” with absolutely no warranties.

Companies using this great piece are kindly invited to subscribe for a professional support contract to help us continuing developing the Nmon Performance solution!

Github

The Nmon Performance application is hosted on Github at the following location:

https://github.com/guilhemmarchand/TA-nmon

Use Github to open an issue for errors and bugs to be reported, or to ask for enhancements requests.

You can even provide your own improvements by submitting a pull request.

Splunk Answers

Splunk has a strong community of active users and Splunk Answers is an important source of information.

Access previous messages of users or open your own discussion:

https://splunkbase.splunk.com/app/3668

http://answers.splunk.com/answers/app/1753

Google Group Support

An App dedicated Google Group has been created:

https://groups.google.com/d/forum/nmon-splunk-app

This is also a great source of support from people using the Application, and you can also (if you subscribe to mailing news) receive important notifications about the App evolution, such as main release announcements.

Issues and enhancement requests

For any bug reporting, or enhancement request about the Nmon Performance application,you can:

	Open a question on Splunk Answers related to the app: https://answers.splunk.com/app/questions/3668.html

	Open an issue on the Git project home page: https://github.com/guilhemmarchand/TA-nmon/issues

	Get in touch by mail: guilhem.marchand@gmail.com

Operating Systems compatibility

OS compatibility

The TA-nmon is compatible with any version of:

	IBM AIX 6.1 (certified starting OSlevel 6.1.9.101, TL09)

	IBM AIX 7.1 (certified starting OSlevel 7.1.4.1, TL04)

	IBM AIX 7.2 (certified starting OSlevel 7.2.0.1, TL00)

	Linux x86 (32 / 64 bits)

	Linux PowerPC (32 / 64 bits in LE and BE)

	Linux on z Systems (s390 / s390x)

	Linux ARM

	Solaris 10, Solaris 11 on Sparc and x86

OS certification

Here is a non exhaustive list of systems and version that the TA-nmon is / has been intensively qualified:

IBM AIX:

	IBM AIX 6.1 (IBM POWER 8)

	IBM AIX 7.1 (IBM POWER 8)

	IBM AIX 7.2 (IBM POWER 8)

Linux on IBM PowerPC:

	SUSE Linux 12.2 LE (IBM POWER 8)

	SUSE Linux 11.4 BE (IBM POWER 8)

	RedHat Linux 7.3 LE (IBM POWER 8)

	RedHat Linux 7.2 LE (IBM POWER 8)

	Red Hat Linux 6.9 BE (IBM POWER 8)

	Red Hat Linux 6.5 BE (IBM POWER 8)

	Ubuntu 17.04 LTS (IBM POWER 8)

	Ubuntu 16.04 LTS (IBM POWER 8)

	Ubuntu 14.04 LTS (IBM POWER 8)

Linux x86, 32 bits and 64 bits:

Ubuntu:

	ubuntu-1704-64, ubuntu-1704-32

	ubuntu-1610-64, ubuntu-1610-32

	ubuntu-1604-64, ubuntu-1604-32

	ubuntu-1404-64, ubuntu-1404-32

	ubuntu-1204-64, ubuntu-1204-32

Oracle Linux (OL):

	oraclelinux-73-64

	oraclelinux-72-64

	oraclelinux-68-64

	oraclelinux-67-64

	oraclelinux-67-32

CentOS:

	centos-73-64

	centos-72-64

	centos-68-64, centos-68-32

	centos-67-64, centos-67-32

Debian:

	debian-8-64, debian-8-32

	debian-7-64, debian-7-32

SUSE Linux Enterprise Server: (SLES)

	sles11sp3

	sles12

	sles12sp1

OpenSuse:

	opensuse-13

Redhat Enterprise (RHEL):

	rhel5

	rhel65

	rhel73

Fedora:

	fedora24

	fedora25

Amazon AMI:

	AMI 2017.03

	AMI 2016.09

SOLARIS:

	solaris-11.3

	solaris-10

Introduction to Nmon processing

Nmon processing

The TA-nmon-hec embeds different scripts to perform various tasks from starting nmon binaries to the creation of the final data to be indexed by Splunk.

The following items expose the main steps of the processing, the technical details of each scripts and options are globally covered by the documentation.

bin/nmon_helper.sh

The “nmon_helper.sh” script is scheduled to be run every 60 seconds by Splunk, it is responsible for various tasks such as:

	identify the system (OS, processor architecture…)

	load default and custom configurations

	identify the best nmon binary candidate

	identify the running nmon process

	identify fifo_reader process running, and start the reader

	start the nmon binary

Simplified representation of the processing tasks:

[image: nmon_helper_processing.png]

bin/fifo_consumer.sh

The “fifo_consumer.sh” script is scheduled to be run every 60 seconds by Splunk, its purpose is consuming the dat files (different part of the nmon file) and stream its content to nmon2csv parsers:

	access the fifo files, wait at least 5 seconds since its last update

	Stream the content of the files to the nmon2kv parser

	empty the nmon_data.dat files for the next cycle

bin/nmon2kv.sh|.py|.pl

These are the nmon2kv parsers:

	the nmon2kv.sh is a simple wrapper which will choose between the Python and Perl parser

	the content is being read in stdin, and piped to the nmon2kv Python or Perl parser

	the Python or Perf parser reads the data, does various processing tasks and stream the data to the Splunk HEC endpoint over http/https

	additionally, the parser can write data to local files on the machine file system, which is disabled by default

Benchmarks & TA-nmon foot print

What does cost the TA-nmon?

Before deploying the TA-nmon on your systems, you will want to know accurately what will be its costs in term of CPU, memory, and disk I/O.

Since the release 1.3.x of the TA-nmon, we have worked real hard to reduce it at the most, and good news, we got it minimal now!

Splunk Universal Forwarder

The TA-nmon needs off course the Splunk Universal Forwarder (or Splunk Enterprise!) to operate on top of it.

The Splunk Universal Forwarder is highly optimised to have the lowest level of costs in CPU and memory, on its own the Splunk Universal Forwarder has a very negligible foot print.

Please consult the official Splunk Universal Forwarder documentation: http://docs.splunk.com/Documentation/Forwarder/latest/Forwarder/Abouttheuniversalforwarder

nmon binaries

Depending on the operating system, the TA-nmon will start the nmon binary when required. (topas-nmon for AIX, nmon for Linux, sarmon for Solaris)

On its own, the resources foot print of the nmon binary is really very low, almost not detectable, its foot print is negligible.

TA-nmon

The TA-nmon does various processing tasks on the data being generated by nmon, this is where there are some risks of a CPU, memory and I/O foot print.

To avoid these risks, and limit at the maximum the amount of resources to be used, we implement fifo files, which allow controlling a constant volume of data to be proceeded.

Thanks to this implementation, the TA-nmon foot print is now very low and constant, the following analysis will factually demonstrate real costs of the TA-nmon processing:

Analysis scenario:

To analyse the costs, we will use a small Linux server (1 CPU, 2 GB RAM) and compare different situation in details:

	run a Splunk Universal Forwarder instance (with connection to a deployment server) + the TA-nmon

	run a Splunk Universal Forwarder instance (with connection to a deployment server) + an independent nmon process to collect performance statistics

	run a Splunk Universal Forwarder instance (without connection to a deployment server) + an independent nmon process to collect performance statistics

	nothing running else but the independent nmon process to collect performance statistics

Notes:

	analysing the system load with and without connection to a Splunk deployment server (DS) will be useful to isolate the cost of “calling home” from the UF to the DS

Finally, after having a run of 2 hours minimum for each scenario, we ingest the external nmon file (for non TA-nmon scenarios) and perform the analysis and comparison.

CPU usage comparison:

Average CPU % usage over periods for each scenario:

[image: img/compare/cpu_average.png]
[image: img/compare/cpu_overlapped.png]
[image: img/compare/cpu_multi.png]
Observations:

	the average cost of running the Splunk Universal Forwarder (doing nothing) is similar with or without a connection to a deployment server

	the average CPU cost is approximately 0.10 % of global CPU usage on this server (usage-usage without UF)

	the imputable average CPU cost of running UF + TA-nmon is approximately 1.35% (TA-nmon processing costs, Splunk UF ingestion costs)

	the average CPU usage of system + UF + TA-nmon is approximately 1.40%

	We can observe an hourly task consuming CPU and imputable to the Splunk Universal Forwarder only (peaks exist without the TA-nmon, but only when running the UF)

	due to this hourly task of the Splunk Universal Forwarder (quick CPU peaks up to 1.7% without DS, up to 1.6% with DS connection), we can observe quick CPU peaks with UF + TA-nmon up to 2.8% CPU

Average physical memory % usage over periods for each scenario:

[image: img/compare/mem_average.png]
[image: img/compare/mem_overlapped.png]
Observations:

	there is a small memory footprint of running the Splunk Universal Forwarder (approximately 3.20% of physical memory)

	this is not necessary what will proportionally cost on any system running a UF, this statistic has to be considered in the context of this configuration

	as well, we can observe a supplementary approximately 6% of memory costs running the UF + TA-nmon (TA-nmon processing costs, Splunk UF ingestion costs)

	caution: these memory utilisation statistics are what the system really uses, not necessary what the Splunk Universal Forwarder or the TA-nmon will use

Average I/O per second (IOPS) over periods for each scenario:

[image: img/compare/iops_average.png]
[image: img/compare/iops_overlapped.png]
Observations:

	the level of IOPS imputable to the activity of the Universal Forwarder (when doing nothing) is obviously almost null

	when running the UF + TA-nmon, the level of IOPS is approximately 1 I/O per second.

splunkd process (TOP data):

Notes:

For this exercise, we use the nmon binary in unlimited processes capture mode (option -I -1), this mode allows capturing the full processes table even such that capture low consuming processes.

See: Linux OS specific options

splunkd CPU logical core usage:

[image: img/compare/top_splunkd_cpu_overlapped.png]
[image: img/compare/top_splunkd_cpu_multi.png]
splunkd memory usage:

[image: img/compare/top_splunkd_mem.png]
Observations:

	we can clearly observe the hourly peak of CPU due to the Splunk Universal Forwarder

	CPU utilisation with or without deployment server connection is almost identical, the cost of calling home from the UF to the DS is almost null

Conclusions:

	the TA-nmon usage is stable and constant over time

	due to this internal Splunk Universal Forwarder hourly task, we can observe small hourly peaks of CPU usage

	running the Splunk Universal Forwarder + the TA-nmon generates approximately 1.35% of CPU usage on this machine

	the Splunk Universal Forwarder itself but doing nothing has obviously a very limited CPU foot print (but this mysterious hourly task!)

	the fifo implementation introduced in the TA-nmon 1.3.x allows now a very limited and constant system foo print!

The dashboard xml code used for this analysis is available in the Git docs directory, it has hardcoded host and time ranges but can be useful if you want to do your own analysis:

https://github.com/guilhemmarchand/TA-nmon/blob/master/docs/resources/footprint_analysis_and_comparison.xml

Enjoy!

IBM AIX BENCHMARKS:

IBM AIX 6.1 ON POWER8 / Entitled 0.2 / VirtualCPUs 1:

date 27/03/2017, TA-nmon release 1.3.05, Splunk Universal Forwarder 6.5.2, Perl interpreter

lpar usage over 24 hours:

[image: img/bench_AIX/AIX_61/lpar_full.png]
lpar usage_zoom over 24 hours:

[image: img/bench_AIX/AIX_61/lpar_zoom.png]
Average I/O over 24 hours:

[image: img/bench_AIX/AIX_61/iops.png]
TOP processes CPU core usage over 24 hours:

[image: img/bench_AIX/AIX_61/top_cpu.png]
TOP processes memory usage over 24 hours:

[image: img/bench_AIX/AIX_61/top_memory.png]
IBM AIX 7.1 ON POWER8 / Entitled 0.2 / VirtualCPUs 1:

date 27/03/2017, TA-nmon release 1.3.05, Splunk Universal Forwarder 6.5.2, Perl interpreter

lpar usage over 24 hours:

[image: img/bench_AIX/AIX_71/lpar_full.png]
lpar usage_zoom over 24 hours:

[image: img/bench_AIX/AIX_71/lpar_zoom.png]
Average I/O over 24 hours:

[image: img/bench_AIX/AIX_71/iops.png]
TOP processes CPU core usage over 24 hours:

[image: img/bench_AIX/AIX_71/top_cpu.png]
TOP processes memory usage over 24 hours:

[image: img/bench_AIX/AIX_71/top_memory.png]
IBM AIX 7.2 ON POWER8 / Entitled 0.2 / VirtualCPUs 1:

date 27/03/2017, TA-nmon release 1.3.05, Splunk Universal Forwarder 6.5.2

lpar usage over 24 hours:

[image: img/bench_AIX/AIX_72/lpar_full.png]
lpar usage_zoom over 24 hours:

[image: img/bench_AIX/AIX_72/lpar_zoom.png]
Average I/O over 24 hours:

[image: img/bench_AIX/AIX_72/iops.png]
TOP processes CPU core usage over 24 hours:

[image: img/bench_AIX/AIX_72/top_cpu.png]
TOP processes memory usage over 24 hours:

[image: img/bench_AIX/AIX_72/top_memory.png]

LINUX BENCHMARKS:

SUSE Linux 11.4 BE (IBM POWER 8)

date 27/03/2017, TA-nmon release 1.3.05, Splunk Universal Forwarder 6.5.2, Perl interpreter, 1 CPU

CPU percentage usage over 24 hours:

[image: img/bench_LINUX/SUSE_114_BE/cpu_full.png]
[image: img/bench_LINUX/SUSE_114_BE/cpu_pct.png]
Average I/O over 24 hours:

[image: img/bench_LINUX/SUSE_114_BE/iops.png]
TOP processes CPU core usage over 24 hours:

[image: img/bench_LINUX/SUSE_114_BE/top_cpu.png]
TOP processes memory usage over 24 hours:

[image: img/bench_LINUX/SUSE_114_BE/top_memory.png]
SUSE Linux 12.2 LE (IBM POWER 8)

date 27/03/2017, TA-nmon release 1.3.05, Splunk Universal Forwarder 6.5.2, Python interpreter, 1 CPU

CPU percentage usage over 24 hours:

[image: img/bench_LINUX/SUSE_122_LE/cpu_full.png]
[image: img/bench_LINUX/SUSE_122_LE/cpu_pct.png]
Average I/O over 24 hours:

[image: img/bench_LINUX/SUSE_122_LE/iops.png]
TOP processes CPU core usage over 24 hours:

[image: img/bench_LINUX/SUSE_122_LE/top_cpu.png]
TOP processes memory usage over 24 hours:

[image: img/bench_LINUX/SUSE_122_LE/top_memory.png]
Red Hat Linux 6.9 BE (IBM POWER 8)

date 27/03/2017, TA-nmon release 1.3.05, Splunk Universal Forwarder 6.5.2, Perl interpreter, 1 CPU

[image: img/bench_LINUX/RHEL_69_BE/cpu_full.png]
[image: img/bench_LINUX/RHEL_69_BE/cpu_pct.png]
Average I/O over 24 hours:

[image: img/bench_LINUX/RHEL_69_BE/iops.png]
TOP processes CPU core usage over 24 hours:

[image: img/bench_LINUX/RHEL_69_BE/top_cpu.png]
TOP processes memory usage over 24 hours:

[image: img/bench_LINUX/SUSE_122_LE/top_memory.png]
RedHat Linux 7.2 LE (IBM POWER 8)

date 29/04/2013, TA-nmon release 1.3.15, Splunk Universal Forwarder 6.5.3, Python interpreter, 1 CPU

[image: img/bench_LINUX/RHEL_72_LE/cpu_full.png]
[image: img/bench_LINUX/RHEL_72_LE/cpu_pct.png]
Average I/O over 24 hours:

[image: img/bench_LINUX/RHEL_72_LE/iops.png]
TOP processes CPU core usage over 24 hours:

[image: img/bench_LINUX/RHEL_72_LE/top_cpu.png]
TOP processes memory usage over 24 hours:

[image: img/bench_LINUX/RHEL_72_LE/top_memory.png]
RedHat Linux 7.3 LE (IBM POWER 8)

date 27/03/2017, TA-nmon release 1.3.05, Splunk Universal Forwarder 6.5.2, Python interpreter, 1 CPU

[image: img/bench_LINUX/RHEL_73_LE/cpu_full.png]
[image: img/bench_LINUX/RHEL_73_LE/cpu_pct.png]
Average I/O over 24 hours:

[image: img/bench_LINUX/RHEL_73_LE/iops.png]
TOP processes CPU core usage over 24 hours:

[image: img/bench_LINUX/RHEL_73_LE/top_cpu.png]
TOP processes memory usage over 24 hours:

[image: img/bench_LINUX/RHEL_73_LE/top_memory.png]
Ubuntu 16.04 LTS (IBM POWER 8)

date 27/03/2017, TA-nmon release 1.3.05, Splunk Universal Forwarder 6.5.2, Python interpreter, 1 CPU

[image: img/bench_LINUX/UBUNTU_1604_LTS/cpu_full.png]
[image: img/bench_LINUX/UBUNTU_1604_LTS/cpu_pct.png]
Average I/O over 24 hours:

[image: img/bench_LINUX/UBUNTU_1604_LTS/iops.png]
TOP processes CPU core usage over 24 hours:

[image: img/bench_LINUX/UBUNTU_1604_LTS/top_cpu.png]
TOP processes memory usage over 24 hours:

[image: img/bench_LINUX/UBUNTU_1604_LTS/top_memory.png]

Scripts and Binaries

Embedded Scripts in the TA-nmon-hec

nmon_helper:

	bin/nmon_helper.sh:

This shell script is being used by the application to launch Nmon binaries whenever it is detected as required.

It is as well responsible in launching the fifo_reader scripts. (introduced in version 1.3.x)

fifo_reader:

	bin/fifo_reader.pl

	bin/fifo_reader.py

	bin/fifo_reader.sh

These scripts are continuously running as back ground processes on server running the technical addons.
Their purpose is to read the fifo files (named pipe) nmon processes are writing to, and extract the different typologies of data from them nmon data

fifo_consumer:

	bin/fifo_consumer.sh

This script is scheduled by default to run every 60 seconds.
Its purpose to recompose the nmon flaw of data to be parsed by the nmon parser scripts. (see bellow)

nmon_parser:

	bin/nmon2kv.sh | bin/nmon2kv.py | bin/nmon2kv.pl:

Shell / Python / Perl scripts used to manage and process Nmon raw data into key value data streamed to the Splunk HEC endpoint.

The Shell script is a wrapper script to Python / Perl scripts. (decision is made on local interpreter availability with Python as the default choice)

hec_wrapper:

	bin/hec_wrapper.sh

This Shell script is used to read the output of other wrappers scripts and stream it to the Splunk HEC endpoint.

Other wrappers:

	bin/wrapper_nmon_helper.sh

	bin/wrapper_fifo_consumer.sh

	bin/wrapper_nmon_cleaner.sh

These Shell scripts are very simple wrappers that call the main script and output its content to the hec_wrapper.sh for data streaming.
They are being called by the Splunk internal scheduler.

nmon_cleaner:

	bin/nmon_cleaner.sh / bin/nmon_cleaner.py / nmon_cleaner.pl

Shell / Python / Perl scripts used to manage retention and purge of old nmon data.

Alternatively, it will also ensure that no outdated csv data is being left by Splunk in Performance and Configuration repositories

The Shell script is a wrapper script to Python / Perl scripts. (decision is made on local interpreter avaibility with Python as the default choice)

Embedded Binaries in the TA-nmon-hec

The TA-nmon-hec embeds Nmon binaries for Linux vendors and Solaris OS.
AIX embeds by default its own version of Nmon, known as “topas-nmon”.

For Linux OS:

	bin/linux: Main directory for Linux specific Nmon binaries

	bin/linux/amzn: 64 bits binaries for Amazon Linux (AMI)

	bin/linux/centos: 32/64 bits binaries for Centos

	bin/linux/debian: 32/64 bits binaries for Debian GNU/Linux

	bin/linux/fedora: 32/64 bits binaries for Fedora project

	bin/linux/generic: 32/64/ia64/power/mainframe binaries compiled for generic Linux

	bin/linux/mint: 32/64 bits binaries for Linux Mint

	bin/linux/opensuse: 32/64 bits binaries for Linux Opensuse

	bin/linux/ol: 32/64 bits binaries for Oracle Linux

	bin/linux/rhel: 32/64/ia64/mainframe/power binaries for Redhat Entreprise Server

	bin/linux/sles: 32/64/ia64/mainframe/power binaries for Suse Linux Entreprise Server

	bin/linux/ubuntu: 32/64/power/arm binaries for Ubuntu Linux

	bin/linux/arch: 32/64 bits binaries for Archlinux

	bin/raspbian: arms binaries for Raspbian Linux

Most of these binaries comes from the official Nmon Linux project site.
On x86 processor and for Centos / Debian / Ubuntu / Oracle Linux these binaries are being compiled by myself using Vagrant and Ansible automation. (See https://github.com/guilhemmarchand/nmon-binaries)

Associated scripts resource (nmon_helper.sh) will try to use the better version of Nmon available, it will fall back to generic or system embedded if none of specially compiled versions can fit the system.

For Solaris OS:

sarmon binaries for Oracle Solaris x86 and Sparc:

	bin/sarmon_bin_i386: sarmon binaries for Solaris running on x86 arch

	bin/sarmon_bin_sparc: sarmon binaris for Solaris running on sparc arch

sarmon binaries comes from the official sarmon site project.

For AIX:

Nmon is shipped within AIX by default with topas-nmon binary.

Pre-requisites

Splunk requirements

Compatibility matrix:

	Metricator for Nmon stack

	Major version branch

	Splunk Universal Forwarder 6.x, 7.x

	Version 1.x

Technical Add-on requirements

Operating system

The Technical Add-on is compatible with:

	Linux OS X86 in 32/64 bits, PowerPC (PowerLinux), s390x (ZLinux), ARM

	IBM AIX 7.1 and 7.2

	Oracle Solaris 11

Third party software and libraries

To operate as expected, the Technical Add-ons requires a Python OR a Perl environment available on the server:

Python environment: used in priority

	Requirement

	Version

	Python interpreter

	2.7.x

Perl environment: used only in fallback

	Requirement

	Version

	Perl interpreter

	5.x

	Time::HiRes module

	any

In addition, the Technical Addon requires:

	Requirement

	Version

	curl

	Any

Notes:

	IBM AIX does not generally contain Python. Nevertheless, Perl is available as a standard. More, Time::HiRes is part of Perl core modules.

	Modern Linux distribution generally have Python version 2.7.x available and do not require any further action.

	Linux distributions lacking Python will fallback to Perl and must satisfy the Perl modules requirements.

	If running on a full Splunk instance (any Splunk dedicated machine running Splunk Enterprise), the Technical Add-on uses Splunk built-in Python interpreter.

Deployment Matrix

What goes where ?

	The TA-nmon-hec is available for download as an independent application in Splunk base: https://splunkbase.splunk.com/app/

	The TA-nmon-hec is also available for download in its Git repository: https://github.com/guilhemmarchand/TA-nmon-hec

Standalone deployment: A single Splunk instance does all

	Splunk Instance
(role)

	TA-nmon-hec

	Standalone

	X (optional)

The TA-nmon-hec provides nmon performance and configuration collection for the host than runs the add-on, which is optional

Distributed deployment:

	Splunk Instance
(role)

	TA-nmon-hec

	Search head (single instance or clustered)

	X (optional)

	Indexer (single instance or clustered)

	

	Master node

	X (optional)

	Deployment servers

	X (optional)

	Heavy Forwarder

	X

	Universal Forwarder

	X

The TA-nmon-hec provides nmon performance and configuration collection for the host than runs the add-on, which is optional

Processing workflow in action

Generating Nmon data

Generating the Nmon data which basically contains the performance measures and the configuration data is called “nmon_collect”.

The activity of the scripts involves in these operations is being logged by Splunk into:

	sourcetype=nmon_collect: for standard output

	index=_internal sourcetype=splunkd: for stderr (unexpected errors)

Most of these operations are done by the main script: bin/nmon_helper.sh:

nmon_helper.sh tasks part1: initial startup tasks

[image: nmon_helper_part1.png]
Steps are:

	basics startup tasks: load SPLUNK_HOME variable, identify the application directories

	directory structure: load and verify directory structure, create if required in $SPLUNK_HOME/var/log/nmon

	binaries caching: for Linux OS only, verify if cache is existing and up to date, unpack linux.tgz to $SPLUNK_HOME/var/log/nmon if required

	start loading default and custom configurations

nmon_helper.sh tasks part2: load values and options

[image: nmon_helper_part2.png]
Steps are:

	load hard coded values for nmon options, such as interval and snapshot values

	load default/nmon.conf values (source default/nmon.conf)

	check if local/nmon.conf exist, and source file (override any previously defined values)

	check if /etc/nmon.conf exist (provide override mechanism at local server level), and source file (override any previously defined values)

nmon_helper.sh tasks part3: identify instances

[image: nmon_helper_part3.png]
Steps are:

	Identify Operating System

	Verify PID file existence

	Is PID file valid ?

	If PID file exists, is the nmon instance running ?

	If PID not found, is there an nmon instance running ?

	rewrite PID file if nmon is running

	trigger nmon startup in other cases

nmon_helper.sh tasks part4: identify binaries

[image: nmon_helper_part4.png]
Steps are:

	Identify Operating System

	Identify Processor architecture for Linux / Solaris

	Identify local nmon binary for AIX

	For Linux, verify embedded binaries priority

	For Linux, identify best binary candidate and set nmon binary

	For Solaris, set sarmon binary

nmon_helper.sh tasks part5: startup

[image: nmon_helper_part5.png]
Steps are:

	Idenfity fifo_reader running

	set the nmon destination (fifo1 / fifo2)

	start nmon binary

	Identify interpreter to be used

	start the fifo_reader

Consuming Nmon data

Consuming the nmon data generated by the nmon_helper.sh and associated scripts (fifo_reader) is in first step operated by the “bin/fifo_consumer.sh” script.

This is a very simple shell script that will recompose the nmon data in the correct order, and stream its content to nmon parsers. (nmon2kv)

This script does as well the files rotation, such that next cycle starts such that the nmon_data.dat file is empty after consumption, which guarantees a low level of CPU and resources usage over each iteration.

[image: fifo_consumer.png]
Steps are:

	Initialization and configuration loading

	Verify if fifo1 and fifo2 have rotated data to be proceeded

	Verify if fifo1 and fifo2 have non empty nmon_data.dat

	If so, wait at least 5 seconds age file before processing the data

	Stream nmon data to nmon2kv.sh

Parsing Nmon data

This is the final step in the nmon processing tasks, the nmon2kv parsers will consume the data receive in standard input (stdin), and stream to the Splunk HEC endpoint over http/https.

There 3 scripts involved in these tasks:

	bin/nmon2kv.sh: simple shell wrapper that will decide to use Python or Perl parser

	bin/nmon2kv.py: the Python version parser

	bin/nmon2kv.pl: the Perl version parser

[image: nmon2kv.png]
Steps are:

	nmon2kv.sh reads data from standard input

	nmon2kv.sh decides to use Python if version 2.7.x.available, or fall back to Perl

	nmon2kv.py|.pl parse the data, generates configuration and performance data, as well as internal flag files

	If the HEC endpoint has been configured (URL and token defined in local/nmon.conf), stream the data to the HEC endpoint

	If the option “–no_log_local” is used, the parser does not write to local log files on the machine. Otherwise, write the data to local logs in $SPLUNK_HOME/var/log/nmon

Deployment

However, Splunk is an highly distributable solution and some good practices have to be respected, please consult the Nmon Performance core documentation:

	Standalone deployment: http://nmon-for-splunk.readthedocs.io/en/latest/installation_standalone.html

	Distributed deployment: http://nmon-for-splunk.readthedocs.io/en/latest/installation_distributed.html

	Splunk Cloud deployment: http://nmon-for-splunk.readthedocs.io/en/latest/installation_splunkcloud.html

A Splunk HEC has several advantages:

	server easy set up: Splunk http input is easy to configure and implement

	secure: Splunk http traffic can easily be encrypted via SSL and integrated into any DMZ or similar restricted networking layer

	resilient and scalable: using load balancers and multiple nodes provides resiliency and horizontal scalability

	network friendly: as a Web service, it can be easily used across wide networks and over the Internet

	easy management: since the http input is managed on a token basis, you can easily configure different tokens to ingest the data into different indexes without any package modification or complexity

HEC performance considerations

For best HEC performance purposes, the nmon-logger works the following way:

	performance and configuration data are streamed in “batch” mode, which means we only generate one HEC connection for each during an occurrence of the nmon_processing (which occurs every minute)

	collection, processing and other data being generated by the nmon-logger work as well in batch mode, one connection per processing streams the full data

	most of Metadata are part of each event sent to the HEC

See: http://dev.splunk.com/view/event-collector/SP-CAAAE73

HEC resiliency and scalability

The TA-nmon-hec does not implement any kind of resilient mechanism to prevent against data loss during the transport to your HEC endpoint. (if your http endpoint is not available, the data will not be re-sent and will be lost)

Instead of that, we rely on the http/https HEC endpoint high resiliency you should implement when configuring your HEC implementation, which is quite straightforward.

In other words, ensure that you create a load balanced Web service (HA-proxy, nginx, F5 BigIp, etc…) such that you always have multiple http endpoints available, for resiliency and horizontal scalability.

[image: TA-nmon-hec_toplogy.png]

Activate the Splunk http input and create a token

The Splunk configuration is really straightforward, it is all about:

	Activating and the http input: configuring the http port, choosing between http and https

	Creating a token for the nmon data (1 token for all data, but you can create multiple tokens for different servers deployement)

Notes:

	http and https are supported

	indexer acknowledgment is not currently supported (configured per token)

	the nmon-logger will not explicitly specify an index, you choose the index to be used on a per token basis

	Any index name starting by “nmon” is natively taken in charge by the Nmon Performance application

	If you choose a different index name that does not match the rule above, you just need to customize the eventtypes.conf and macros.conf of the Nmon app

	it is not required to define any sourcetype / source by default

In a nutshell:

[image: hec_deployment_screen.png]
[image: hec_deployment_screen1.png]
[image: hec_deployment_screen2.png]
[image: hec_deployment_screen3.png]
Configuration files:

	“$SPLUNK_HOME/etc/apps/splunk_http_input/local/inputs.conf”:

[http]
disabled = 0

	“$SPLUNK_HOME/etc/apps/<appname>/local/inputs.conf”:

Notes: replace <appname> with the application context where you want to store the configuration inputs.conf file

inputs.conf

Enable the HEC
[http]
disabled = 0
enableSSL = 1

HEC endpoint for clients
[http://nmon-hec-input]
disabled = 0
index = nmon_hec
indexes = nmon_hec
token = CEE56643-BA2D-48EE-94EF-AD0909718B2A

Deploying the TA-nmon-hec

When the TA-nmon-hec has been deployed to Splunk, no data will be available in Splunk as long as you don’t configure the HEC parameters.

The TA-nmon-hec expects your configuration in:

$SPLUNK_HOME/etc/apps/TA-nmon-hec/local/nmon.conf

Create a local/nmon.conf and insert your URL / Token:

Example:

HEC server configuration

nmon2csv_options="--mode fifo --silent --no_local_log --splunk_http_url https://192.168.33.100:8088/services/collector/event --splunk_http_token CEE56643-BA2D-48EE-94EF-AD0909718B2A"

To deploy the TA-nmon-hec using the Splunk deployment server, you will:

	extract the TA-nmon-hec archive in $SPLUNK_HOME/etc/deployment-apps/ of your deployment server

	create the $SPLUNK_HOME/etc/deployment-apps/TA-nmon-hec/local/nmon.conf and insert your HEC parameters

	associate the TA-nmon-hec with the relevant service class and deploy the TA to your servers (Ensure to set “restart splunkd” !)

Once Splunk is restarted, the collection starts and if you have properly configured your HEC endpoint, the data starts to be available in Splunk.

Et voila!

Upgrade

Upgrading the TA-nmon-hec is nothing more than reproducing the initial installation steps, basically uncompressing the content of the TA-nmon tgz archive.

Please refer to the installation documentations:

	Standalone deployment: http://nmon-for-splunk.readthedocs.io/en/latest/installation_standalone.html

	Distributed deployment: http://nmon-for-splunk.readthedocs.io/en/latest/installation_distributed.html

	Splunk Cloud deployment: http://nmon-for-splunk.readthedocs.io/en/latest/installation_splunkcloud.html

Additional information:

The TA-nmon-hec has an internal procedure that will cache the “/bin” directory from:

$SPLUNK_HOME/etc/apps/TA-nmon-hec/bin

To:

$SPLUNK_HOME/var/log/nmon/bin

This procedure is useful because:

	The Splunk deployment server starts by first completely removing the entire TA-nmon removing, this would let running nmon processes orphan (for Linux and Solaris)

	In Search Head Cluster, a constantly running nmon process with the application directory would generate an error during the bundle publication

The cache directory will be updated every time the “app.conf” files in the application directory differs from the version in cache, and is operated by the “bin/nmon_helper.sh” script.

Eventgen testing

Testing Nmon performance with evengen

Splunk Evengen is a pretty good and straightforward way to test the application.

Starting the TA-nmon version 1.3.28 and TA-nmon-hec version 1.3.32, we provide sample data for 2 AIX and 2 Linux servers.
The data has been generated on IBM Power Development Cloud servers.

Finally, we use to run a system stress tool on 1 server of each category, such that you will have quickly active alerts and system statistic anomalies.

Eventgen will generate data for:

	performance metrics (sourcetype=nmon_data / eventtype=nmon:performance)

	configuration data (sourcetype=nmon_config / eventtype-nmon:config)

Additional data normally available within the application is related to the nmon data collection and will not be generated by Eventgen.

Get it working in 30 seconds

	Have a Splunk instance up and running

	Download the current eventgen version from https://github.com/splunk/eventgen

	Install the eventgen application, you should name the application directory as:

$SPLUNK_HOME/etc/apps/SA-Eventgen

	If not done already, install the Nmon Performance application (obvious!)

	Install either the TA-nmon or the TA-nmon-hec on this instance

	Create an index called “nmon”

	Restart Splunk

Immediately after Splunk restart, eventgen starts to generate nmon data, as visible from the application home page:

[image: eventgen_testing.png]
Example of a server running with abnormal load:

[image: eventgen_testing2.png]

Extend Nmon with external data

You can extend very easily the context of the nmon data using the nmon external scripts.

Integrating external data is an integrated feature in nmon binaries (for AIX, Linux and Solaris), and it has been integrated within the TA-nmon such that it is
even much easier to integrate anything that matters for you.

The data can be retrieved from:

	Any command available to the operating system

	Script of any kind that can be called within a shell script: other shell script, Python, Perl…

Basically anything you can retrieve from your systems!

How does it work ?

Very simple, we start with 2 simple shell scripts involved:

	bin/nmon_external_cmd/nmon_external_start.sh

	bin/nmon_external_cmd/nmon_external_snap.sh

Both scripts are being called automatically by nmon binaries, using the global environment variables (set by bin/nmon_helper.sh):

	NMON_START which equals to the full path of the nmon_external_start.sh script

	NMON_SNAP which equals to the full path of the nmon_external_snap.sh script

An additional variable set by bin/nmon_helper.sh defines the fifo file path were to write the data (used by bin/nmon_external_cmd/.sh script)*

[image: img/nmon_external_workflow1.png]
Then, nmon parsers will automatically load the list of nmon sections to be parsed (the “type” field in Splunk) defined in:

	default/nmonparser_config.json (for the default configuration)

	local/nmonparser_config.json (for upgrade resilient customization)

[image: img/nmon_external_workflow2.png]

Ok got it, how do I add mine ?

Right, very simple, let’s take the example of the uptime command output:

Running the “uptime” command outputs various interesting information: server uptime, number of Unix users connected, system load for last minute, 5 minutes, 15 minutes:

19:08:45 up 11:00, 1 user, load average: 0.13, 0.22, 0.19

STEP 1: header definition

Within the “bin/nmon_external_start.sh” script, we add:

uptime information
echo "UPTIME,Server Uptime and load,uptime_stdout" >>$NMON_EXTERNAL_DIR/nmon.fifo

Explanations:

	The first field , in our “UPTIME”, with the nmon section name, indexed in the “type” field in Splunk, and to be added in the nmonparser_config.json

	The second field is a descriptive field

	All the other fields are the data fields

	All fields must be comma separated

STEP 2: data generation

In the step 2, we modify the “bin/nmon_external_snap.sh” script to add:

Uptime information (uptime command output)
echo "UPTIME,$1,\"`uptime | sed 's/^\s//g' | sed 's/,/;/g'`\"" >>$NMON_EXTERNAL_DIR/nmon.fifo

Explanations:

	The first field refers to the nmon section we previously defined in “bin/nmon_external_snap.sh”

	The second field “$1” refers to the value of the nmon time stamp (Txxxx), and will be defined automatically by nmon

	The first field defines here our data field (we could have more than one!)

	In the uptime example, our command produces commas, to avoid any trouble we replace any comma by colons, and we protect the field by double quotes

STEP 3: add the monitor in nmonparser_config.json

The uptime example is integrated in the TA-nmon, its definition can be found in “default/nmonparser_config.json”.

However, if you add your own monitors, please create a “local/nmonparser_config.json” and add your monitors declaration.

There is 2 types of declaration to be used:

	“nmon_external:” This is a simple literal parsing of the data, the output will be indexed the same way it has been produced

	“nmon_external_transposed”: This is a different case where data will be transposed, it has to be used when you have a notion of “device/value”

Example:

In our example, we just need to have:

"nmon_external":["UPTIME"],

More explanations about the “nmon_external_transposed”:

Here is an example of nmon data that the parser automatically transpose:

DISKXFER,Disk transfers per second sys-86400,sr0,sda,sda1,sda2,sdb
DISKXFER,T0001,0.5,0.7,0.2,0.5,0.0
DISKXFER,T0002,0.0,3.1,0.0,3.1,0.0
DISKXFER,T0003,0.0,2.1,0.0,2.1,0.0
DISKXFER,T0004,0.0,1.1,0.0,1.1,0.0

Using the “nmon_external_transposed” will produce the following type of data in Splunk:

DISKXFER,sys-86391,sys-86391,Linux,60,1440,28-03-2017 14:36:14,sda,2.0
DISKXFER,sys-86391,sys-86391,Linux,60,1440,28-03-2017 14:36:14,sda1,0.0
DISKXFER,sys-86391,sys-86391,Linux,60,1440,28-03-2017 14:36:14,sda2,2.0
DISKXFER,sys-86391,sys-86391,Linux,60,1440,28-03-2017 14:36:14,sdb,0.0
DISKXFER,sys-86391,sys-86391,Linux,60,1440,28-03-2017 14:36:14,sr0,0.0

With the following major fields:

	type=DISKXFER

	host=xxxxxxx

	device=xxxxxxx (sda, sda1…)

	value=xxxxxxx (with the relevant value for that device, at that time stamp)

Which will be much more easy to analyse in Splunk, and allow the management of very large volume of data.

Et voila !

FINAL:

Finally deploy you new configuration to your servers, kill the running nmon processes or wait for their current cycle to end.

[image: img/nmon_external_workflow3.png]

Configure your options with nmon.conf

The TA-nmon implements a main configuration file “nmon.conf” to be used for your customizations.

The configuration file uses the Splunk configuration philosophy (default versus local, etc…) such that you set your own options, and retain them over updates.

[image: nmon_helper_part2.png]

Splunk HEC specific options

The TA-nmon-hec implements specific options:

Splunk HEC endpoint URL:

--splunk_http_url https://splunk.mydomain.com:8088/services/collector/event

Replace:

	“splunk.mydomain.com” by the fully qualified domain name or IP of your Load balanced VIP / Splunk HEC endpoint

	“https” by “http” if you don’t need to use SSL

Splunk HEC token:

--splunk_http_token insert_your_splunk_http_token

Replace:

	“insert_your_splunk_http_token” by the value of your token

local logging:

This option is active by default:

--no_local_log

When set, this will disable local logging on the machine running the TA-nmon-hec.

If you remove this option, the TA-nmon-hec will log every piece of data on the local machine:

$SPLUNK_HOME/var/log/nmon/nmon_perfdata.log
$SPLUNK_HOME/var/log/nmon/nmon_configdata.log
$SPLUNK_HOME/var/log/nmon/nmon_processing.log
$SPLUNK_HOME/var/log/nmon/nmon_collect.log
$SPLUNK_HOME/var/log/nmon/nmon_cleaner.log

interval & snapshot

The “interval” and “snapshot” variables are the 2 nmon options that will define respectively the time in seconds between 2 measures of performance, and the number of measures to be achieved.

These 2 factors will define the time to live in seconds of a given nmon process, since the branch 1.3 of the TA-nmon, it is by default a cycle of 24 hours.

Legacy options for the TA-nmon for non fifo

The previous branch of the TA-nmon (not using fifo files) was having short cycle of nmon processes life time, to prevent from generating CPU load due to the processing of the nmon data:

###
Legacy options for nmon writing to regular files (these values are used by the TA-nmon not using fifo files)
###

The "longperiod_high" mode is a good compromise between accuracy, CPU / licensing cost and operational intelligence, and can be used in most case
Reducing CPU foot print can be achieved using one of the following modes, increasing the interval value and limiting the snapshot value are the factors that will impact the TA footprint
If you observe a too large CPU foot print on your servers, please choose a different mode, or a custom mode

Available modes for proposal below:

shortperiod_low)
interval="60"
snapshot="10"

shortperiod_middle)
interval="30"
snapshot="20"

shortperiod_high)
interval="20"
snapshot="30"

longperiod_low)
interval="240"
snapshot="120"

longperiod_middle)
interval="120"
snapshot="120"

longperiod_high)
interval="60"
snapshot="120"

custom --> Set a custom interval and snapshot value, if unset short default values will be used (see custom_interval and custom_snapshot)

Default is longperiod_high
mode="longperiod_high"

Refresh interval in seconds, Nmon will use this value to refresh data each X seconds
UNUSED IF NOT SET TO custom MODE
custom_interval="60"

Number of Data refresh occurrences, Nmon will refresh data X times
UNUSED IF NOT SET TO custom MODE
custom_snapshot="120"

These options are not used anymore by the TA-nmon and will be removed in the future

New options for the fifo implementation

The new branch of the TA-nmon use the following parameters to define the interval & snapshot values:

###
FIFO options: used since release 1.3.0
###

Using FIFO files (named pipe) are now used to minimize the CPU footprint of the technical addons
As such, it is not required anymore to use short cycle of Nmon run to reduce the CPU usage

You can still want to manage the volume of data to be generated by managing the interval and snapshot values
as a best practice recommendation, the time to live of nmon processes writing to FIFO should be 24 hours

value for interval: time in seconds between 2 performance measures
fifo_interval="60"

value for snapshot: number of measure to perform
fifo_snapshot="1440"

The minimal value for the “fifo_interval” should not be less than 10 seconds to let enough time for the “bin/fifo_consume.sh” script to be able to manage the nmon_data.

The recommended cycle for the time to live of an nmon process is 24 hours.

NFS Statistics

NFS options for AIX and Linux: Activate NFS statistics:

Out of the box, NFS statistics generation is disabled. You may enable this feature but note it is only applicable to Linux and AIX - not Solaris.

To activate NFS statistics generation, you must activate this in a local/nmon.conf, as shown bellow:

NFS OPTIONS

Change to "1" to activate NFS V2 / V3 (option -N) for AIX hosts
AIX_NFS23="0"

Change to "1" to activate NFS V4 (option -NN) for AIX hosts
AIX_NFS4="0"

Change to "1" to activate NFS V2 / V3 / V4 (option -N) for Linux hosts
Note: Some versions of Nmon introduced a bug that makes Nmon to core when activating NFS, ensure your version is not outdated
Linux_NFS="0"

End time marging (Nmon parallel run)

Nmon processes generated by technical add-ons have specific time of live which is the computation of INTERVAL * SNAPSHOT.

Between two run of nmon collections, there can be several minutes required by nmon to collect configuration items before starting collecting performance metrics, moreover on very large systems.

For this reason, a parallel run of two nmon concurrent processes will occur a few minutes before the current process ends, which prevents from having gaps in charts and data.

This feature can be controlled by changing the value of the endtime_margin, and can also be totally deactivated if you like:

VARIOUS COMMON OPTIONS

Time in seconds of margin before running a new iteration of Nmon process to prevent data gaps between 2 iterations of Nmon
the nmon_helper.sh script will spawn a new Nmon process when the age in seconds of the current process gets higher than this value

The endtime is evaluated the following way:
endtime=$((${interval} * ${snapshot} - ${endtime_margin}))

When the endtime gets higher than the endtime_margin, a new Nmon process will be spawned
default value to 240 seconds which will start a new process 4 minutes before the current process ends

Setting this value to "0" will totally disable this feature

endtime_margin="240"

Linux OS specific options

Embedded nmon binaries versus locally available nmon binaries

In default configuration, the “nmon_helper.sh” script will always give the priority to embedded nmon binary.

The Application has embedded binaries specifically compiled for almost every Linux OS and versions, such that you can manage from a center place nmon versions for all your Linux hosts!

The nmon_helper.sh script will proceed as above:

	Search for an embedded binary that suits processor architecture, Linux OS version (example: RHEL), that suite vendor version (example: RHEL 7) and vendor subversion (RHEL 7.1)
Best result will be achieved using /etc/os-release file, if not available specific information file will be searched (example: /etc/issue, /etc/redhat-release, etc…)

	In the worst case (no binary found for vendor OS (example: Linux RHEL), the nmon_helper.sh search for generic binary that fits the local processor architecture

	If none of these options are possible, the script will search for nmon binary in PATH

	If this fails, the script exists in error, this information will stored in Splunk and shown in home page “Notable events reported”.

LINUX OPTIONS

Change the priority applied while looking at nmon binary
by default, the nmon_helper.sh script will use any nmon binary found in PATH
Set to "1" to give the priority to embedded nmon binaries
Note: Since release 1.6.07, priority is given by default to embedded binaries
Linux_embedded_nmon_priority="1"

Change the limit for processes and disks capture of nmon for Linux
In default configuration, nmon will capture most of the process table by capturing main consuming processes
This function is percentage limit of CPU time, with a default limit of 0.01
Changing this value can influence the volume of data to be generated, and the associated CPU overhead for that data to be parsed

Possible values are:
Linux_unlimited_capture="0" --> Default nmon behavior, capture main processes (no -I option)
Linux_unlimited_capture="-1" --> Set the capture mode to unlimited (-I -1)
Linux_unlimited_capture="x.xx" --> Set the percentage limit to a custom value, ex: "0.01" will set "-I 0.01"
Linux_unlimited_capture="0"

Set the maximum number of devices collected by Nmon, default is set to 1500 devices
This option will be ignored if you set the Linux_unlimited_capturation below.
Increase this value if you have systems with more devices
Up to 3000 devices will be taken in charge by the Application (hard limit in nmon2csv.py / nmon2csv.pl)
Linux_devices="1500"

Enable disks extended statistics (DG*)
Default is true, which activates and generates DG statistics
Linux_disk_dg_enable="1"

Name of the User Defined Disk Groups file, "auto" generates this for you
Linux_disk_dg_group="auto"

Unlimited capture

Recently introduced, you can set nmon linux to run its mode of capture in unlimited mode, specially for the TOP section (processes) and block devices.

CAUTION: This option is experimental and can cause increasing volume of data to be generated

Change the limit for processes and disks capture of nmon for Linux
In default configuration, nmon will capture most of the process table by capturing main consuming processes
You can set nmon to an unlimited number of processes to be captured, and the entire process table will be captured.
Note this will affect the number of disk devices captured by setting it to an unlimited number.
This will also increase the volume of data to be generated and may require more cpu overhead to process nmon data
The default configuration uses the default mode (limited capture), you can set bellow the limit number of capture to unlimited mode
Change to "1" to set capture of processes and disks to no limit mode
Linux_unlimited_capture="0"

Maximum number of disk devices

The maximum number of disk devices to be taken in charge by nmon for Linux has to be set at starting time.

Note that currently, nmon2csv parsers have a hard limit at 3000 devices

Set the maximum number of devices collected by Nmon, default is set to 1500 devices
Increase this value if you have systems with more devices
Up to 3000 devices will be taken in charge by the Application (hard limit in nmon2csv.py / nmon2csv.pl)
Linux_devices="1500"

disk extended statistics:

Enable disks extended statistics (DG*)
Default is true, which activates and generates DG statistics
Linux_disk_dg_enable="1"

Name of the User Defined Disk Groups file, "auto" generates this for you
Linux_disk_dg_group="auto"

Solaris OS specific options

Using a local/nmon.conf file, you can activate the generation of statistics for VxVM volumes:

SOLARIS OPTIONS

CHange to "1" to activate VxVM volumes IO statistics
Solaris_VxVM="0"

You can manage the activation / deactivation of UARG generation: (full commands arguments)

UARG collection (new in Version 1.11), Change to "0" to deactivate, "1" to activate (default is activate)
Solaris_UARG="1"

AIX OS specific options

For AIX hosts, you can customize the full command line sent to nmon at launch time, at the exception of NFS options. (see previous section)

AIX COMMON OPTIONS

CAUTION: Since release 1.3.0, we use fifo files, which requires the option "-yoverwrite=1"

Change this line if you add or remove common options for AIX, do not change NFS options here (see NFS options)
the -p option is mandatory as it is used at launch time to save instance pid
AIX_options="-T -A -d -K -L -M -P -^ -p -yoverwrite=1"

enable this line if you want to get only active disks
AIX_options=""-T -A -d -K -L -M -P -^ -p -k `lspv|grep active|awk '{print $1","}'|tr -d '\040\011\012\015'` -yoverwrite=1"

Global options

These options are not related to nmon binary options but to the TA-nmon global configuration:

This option can be used to force the technical add-on to use the Splunk configured value of the server hostname
If for some reason, you need to use the Splunk host value instead of the system real hostname value, set this value to "1"

We will search for the value of host=<value> in $SPLUNK_HOME/etc/system/local/inputs.conf
If no value can be found, or if the file does not exist, we will fallback to the normal behavior

Default is use system hostname

FQDN management in nmon2csv.pl/nmon2csv.py: The --fqdn option is not compatible with the host name override, if the override_sys_hostname
is activated, the --fqdn argument will have no effect

override_sys_hostname="0"

nmon external generation management

This option will manage the activation or deactivation of the nmon external data generation at the lower level, before it comes to parsers
default is activated (value=1), set to "0" to deactivate

nmon_external_generation="1"

Fifo options

This option will deactivate the auto switch to fifo mode, in other words the TA-nmon will use the file mode and the old mechanism
unless you encounter unexpected issues, you should not switch to the old mechanism as the foot print is much higher

Default is "1" which means write to fifo

mode_fifo="1"

Since the release 1.3.0, AIX and Linux OS use the fifo_consumer.sh script to consume data produced by the fifo readers
the following option allows specifying the options sent to the nmon2csv parsers

consult the documentation to get the full list of available options

--mode realtime|colddata|fifo --> explicitly manage realtime data
--use_fqdn --> use the host fully qualified domain name
--json_output --> generate the performance data in json format instead of regular csv data

In fifo mode, options are sent by the fifo_consumer.sh
In file mode, options are sent by Splunk via the nmon_processing stanza in props.conf

nmon2csv_options="--mode fifo"

Troubleshoot

There is a nice and complete troubleshoot guide in the Nmon Core application:

http://nmon-for-splunk.readthedocs.io/en/latest/Userguide.html#troubleshooting-guide-from-a-to-z

In a nutshell:

Expected running processes

Since the 1.3.x branch, you should find various processes running:

	1 x nmon process (or 2 x nmon processes during the parallel interval)

	1 x main Perl or Python fifo_reader process (or 2 x processes during the parallel interval)

	1 x subshell fifo_reader process (or 2 x processes during the parallel interval)

On a Linux box:

[image: troubleshoot1.png]
On AIX, the nmon process will be called “topas-nmon”

On Solaris, the sarmon process will be called “sadc”

Starting processes

If you run in trouble and want to troubleshoot the situation, the easiest approach is stopping Splunk, kill existing nmon process and run the tasks manually:

	Stop Splunk and kill the nmon process:

./splunk stop

[image: troubleshoot2.png]
You will observe that killing the nmon process will automatically terminate the fifo_reader.pl|.py and the subshell fifo_reader.sh.
This the expected behavior, and mandatory.

If the processes do not stop, then your problem became mine and please open an issue !

	Now we can manually starting the processes, example:

/opt/splunkforwarder/bin/splunk cmd /opt/splunkforwarder/etc/apps/TA-nmon/bin/nmon_helper.sh

Please adapt the paths to your context

[image: troubleshoot3.png]
Let’s summarize what happened here:

	nmon_helper.sh starts the fifo reader, if there is no fifo_reader running, the “fifo1” process will be started

	the fifo_reader.pl|.py starts a fifo_reader.sh process in the background

	nmon_helper.sh starts the nmon process which will write its data to the relevant fifo file

	the nmon process cannot start if the fifo_reader has not started

If something unexpected happens and that the fifo_reader and nmon process do not start normally, you may want to trouble shoot the nmon_helper.sh script.

You can do very easily by commenting out “# set -x”, re-run the script and analyse the output. (you might need to add the set-x within the functions as well)

Checking fifo_reader processes

The fifo_reader processes will continuously read the fifo file writen by the nmon process, and generate various dat files that represent the different typologies of nmon data:

[image: troubleshoot4.png]
How this it work?

	The fifo_reader.sh reads every new line of data writen to the fifo file (named pipe) and sends the data to the fifo_reader.pl|.py

	The fifo_reader.pl|.py parses the lines and applies various regular expressions to decide where to write the data, depending on its content

	If there were existing .dat files at the startup of the fifo_reader processes, those dat files are rotated and renamed to “.rotated”

	The nmon.fifo is not regular file but a named pipe (observe the “prw——-“), its size will always be equal to 0

Testing the Splunk HEC endpoint

Splunk HEC specificity:

By default, the TA-nmon-hec does not generate any data locally on the machine, the data is generated and streamed directly over http/https.

As well, there won’t be any output of the streaming operation, if there are any failures like networking failure or invalid parameters (invalid URL or token), this will be silently removed.

Sending a testing data:

curl -k -H "Authorization: Splunk 12345678-1234-1234-1234-1234567890AB" https://mysplunkserver.example.com:8088/services/collector/event -d '{"sourcetype": "mysourcetype", "event": "This is a test!"}'

[image: troubleshoot1_hec.png]
This must result in an event indexed in Splunk: (check the default index you have set in your token)

[image: troubleshoot2_hec.png]
If this test works from the machine, this validates:

	The network path to your HEC endpoint from the server (routing, firewall, etc…)

	your Splunk HEC configuration

Checking the data parsing

The parsing of those dat files is being achieved in 2 main steps:

	The “bin/fifo_consumer.sh” script is started every 60 seconds by Splunk

	This script will check if an nmon_data.dat file exists and that its size is greater than 0

	If the size of the nmon_dat.data file equals to 0, then the fifo_consumer.sh has nothing to do and will exit this fifo file

	If the size is greater than 0 but its modification time (mtime) is less than 5 seconds, the script will loop until the condition is true

	The fifo_consumer.sh reads the dat file, recompose the nmon file and stream its content to the “bin/nmon2csh.sh” shell wrapper

	After this operation, the nmon_data.dat file will be empty for the next cycle

	The shell wrapper reads in stdin the data, and send it to the nmon2kv parser (bin/nmon2kv.pl|.py)

	The parser reads the nmon data, parses it and produces the final data and stream to the Splunk HEC endpoint

Since the TA-nmon-hec does write any local data by default, for testing purposes you can remove the “–no_local_log” from:

$SPLUNK_HOME/etc/apps/TA-nmon-hec/local/nmon.conf

Within a minute, the log file will be created and will contain the data to be streamed to the HEC endpoint:

[image: troubleshoot3_hec.png]
This validates:

	that the collection works as expected

	that the performance data is properly read and generated

Splunk Monitoring Console

The Splunk Monitoring Console (ex DMC!) provides a view to analyse the Splunk HEC activity:

Indexing / Inputs / HTTP Event Collector: Instance

This view provides information about your HEC instance(s) that will demonstrate if you are receiving bad requests and any error like an invalid or deactivated token:

[image: troubleshoot4_hec.png]

FAQ

Can I have my own nmon collection while running the TA-nmon-hec ?

The answer is no, and this won’t be supported.

For foot print optimization purposes, the TA-nmon-hec has his own workflow which implements the so called “fifo mode”.

Can I have the TA-nmon-hec and the TA-Unix in the same time ?

You might need the TA-unix for specific tasks that are out of the scope of the Nmon application, such as ingesting security related data.

Running both addons in same servers is not a problem at all.

The TA-nmon-hec is CIM compatible, for most performance related metrics, the TA-nmon-hec can be transparently used in replacement of the TA-Unix.

Can I have the TA-nmon-hec and the TA-nmon in the same time ?

The answer is no.

You must run either the TA-nmon, or the TA-nmon-hec. Both TAs share the same parsing configuration.

Is the TA-nmon-hec CIM compatible ?

Yes it is. The TA-nmon-hec is CIM compatible, it will specially deal with the following CIM data models:

	Application State

	Inventory

	Network Traffic

	Performance

If you are an Enterprise Security customer for instance, all you need is having the TA-nmon deployed in search heads as well.

Index

 _images/troubleshoot1_hec.png
vagrant@hec-clienti:~$ curl -k -H "Authorization: Splunk 1A498F57-C224-4C11-ABGB-0998905E3947" https://192.168.33.100:8088/services/collector/event
-d '{"sourcetype": "mysourcetype”, "event": "This is a test!"}
{"text":"Success", "code" :0}vagrant@hec-client1:~$ |

_images/troubleshoot2.png
©® O root@centos-73-64:~

[root@centos-73-64 ~]# ps -ef | egrep nmon

root 5710 1 0 20:34 2 ©0:00:00 python /opt/splunkforwarder/etc/apps/TA-nnon/bin/fifo_reader.py --fif
o fifol

root 5712 5710 © 20:34 ? ©0:00:00 /bin/sh /opt/splunkforwarder/etc/apps/TA-nrnon/bin/fifo_reader.sh /opt
/splunkforwarder/var /log/nron/var [nmon_repository/fifol/nnon. fifo

root 1 0 20:34 2 00:00:00 /opt/splunkforwarder/var/log/nron/bin/linux/centos/nnon_x86_64_centos
7 -F Jopt/splunkforwarder/var/log/nnon/var [anon_repository/fifo1/anon.fifo -T -s 60 -c 1440 -d 1500 -g auto -D -p
root 11634 6156 0 21:42 pts/@ 00:00:00 grep -E --color=auto nnon

[root@centos-73-64 ~]# /opt/splunkforwarder/bin/splunk stop

Stopping splunkd. ..

Shutting down. Please wait, as this may take a few minutes.

5000 [ok 1

Stopping splunk helpers...
[ok 1

Done.

[root@centos-73-64 ~]# kill 5733

[root@centos-73-64 ~]# ps -ef | egrep nmon

root 12314 6150 © 21:54 pts/0 00:00:00 grep -E --color=auto nmon

[root@centos-73-64 ~]#

_images/top_splunkd_mem.png
splunkd processes (TOP) memory (MB) usage analysis (overlapped)

100

w8

— splunkd: UF o DS

— splunkd: UF with DS

— splunkd: UF+TA-nmon

0200
SatApr29
2017

0230

0300

0330

_images/troubleshoot1.png
root@centos-73-64:~
[root@centos-73-64 ~]# ps -ef | egrep nmon

root 5710 1 0 20:34 2 ©0:00:00 python /opt/splunkforwarder/etc/apps/TA-nnon/bin/fifo_reader.py --fif
o fifol

root 5712 5710 © 20:34 ? ©0:00:00 /bin/sh /opt/splunkforwarder/etc/apps/TA-nrnon/bin/fifo_reader.sh /opt
/splunkforwarder/var /log/nron/var [nmon_repository/fifol/nnon. fifo

root 5733 1 0 20:34 2

00:00:00 /opt/splunkforwarder/var/log/nron/bin/linux/centos/nnon_x86_64_centos
7 -F Jopt/splunkforwarder/var/log/nnon/var [onon_repository/fifo1/anon.fifo -T -s 60 -c 1440 -d 1500 -g auto -D -p
root 11634 6156 0 21:42 pts/@ 00:00:00 grep -E --color=auto nnon

[root@centos-73-64 ~]# [

_images/troubleshoot2_hec.png
Q New Search SaveAsv Close

main") test Almev | Q

(inde>

1 event (before 06/08/2017 15:48:11.000) No Event Sampling v Jbv 1 W 5 & L ¢ SmatModev
Events() | Pattems | Staisics | Visualization
Format Timeline v —Zoom Out -+ Zoom to Selection x Deselect 1 millisecond per column

Listv sFomat 20PerPagev

< Hide Fields s ET
> 06/08/2017 This is a test!
Selected Fields 154738000 o - 192.168.33.100:8088 | source = hitpitest | sourcetype = mysourcetype
ahost 1
a source 1

a sourcetype 1

Interesting Fields
a index 1

linecount 1

a punct 1

a splunk_server 1

+Extract New Fields

_images/troubleshoot3.png
©®© root@centos-73-64:~

[root@centos-73-64 ~]# ps -ef | egrep nmon

root 5710 1 0 20:34 2 ©0:00:00 python /opt/splunkforwarder/etc/apps/TA-nnon/bin/fifo_reader.py --fif
o fifol

root 5712 5710 © 20:34 ? ©0:00:00 /bin/sh /opt/splunkforwarder/etc/apps/TA-nrnon/bin/fifo_reader.sh /opt
/splunkforwarder/var /log/nron/var [nmon_repository/fifol/nnon. fifo

root 5733 1 0 20:34 2 00:00:00 /opt/splunkforwarder/var/log/nron/bin/linux/centos/nnon_x86_64_centos
7 -F Jopt/splunkforwarder/var/log/nnon/var [onon_repository/fifo1/anon.fifo -T -s 60 -c 1440 -d 1500 -g auto -D -p
root 11634 6156 0 21:42 pts/@ 00:00:00 grep -E --color=auto nnon

[root@centos-73-64 ~]# /opt/splunkforwarder/bin/splunk stop

Stopping splunkd. ..

Shutting down. Please wait, as this may take a few minutes.

5000 [ok 1

Stopping splunk helpers...
[ok 1

Done.

[root@centos-73-64 ~]# kill 5733

[root@centos-73-64 ~]# ps -ef | egrep nmon

root 12314 6150 © 21:54 pts/0 00:00:00 grep -E --color=auto nmon

[root@centos-73-64 ~]# /opt/splunkforwarder/bin/splunk cmd /opt/splunkforwarder/etc/apps/TA-nmon/bin/nmon_helper.sh

Fri Mar 31 21:59:50 BST 2017, centos-73-64 INFO: Removing stale pid file

Fri Mar 31 21:59:50 BST 2017, centos-73-64 INFO: starting the fifo_reader fifol

Fri Mar 31 21:59:51 BST 2017, centos-73-64 INFO: starting nmon : /opt/splunkforwarder/var/log/nmon/bin/linux/centos/n

mon_x86_64_centos7 -F /opt/splunkforwarder/var/log/nmon/var/nmon_repository/fifo1/nmon.fifo -T -s 60 -c 1440 -d 1500

-g auto -D -p in /opt/splunkforwarder/var/log/nmon/var /nmon_repository/fifol

[root@centos-73-64 ~]#

_images/top_splunkd_cpu_multi.png
splunkd processes (TOP) cpu logical core usage analysis (multiseries)

— Splunké: UFno DS — splunkd: UF with DS — splunkd: UF+TA-nmon
0025

002
0015

001

epulogical core

0005

0025

002

0015

001

cpulogical core.

0005

0025

002

0015

001

epulogical core

0005

0200 0230 0300 0330
SatApr29
2017

_images/top_splunkd_cpu_overlapped.png
splunkd processes (TOP) cpu logical core usage analysis (overlapped)

00225

002

00175

0015

H

001

cpulogical core.

00075

0005

0.0025

0200
SatApr29
2017

0230

— splunka: UF o DS

— splunkd: UF with DS

— splunkd: UF+TA-nmon

0300

_images/top_memory6.png
i
§

Time

I sys-86390:splunkd

_images/top_memory7.png
i
i

nav.xhtml

 Table of Contents

 		
 Welcome to TA-nmon-hec documentation, the technical addon for Nmon Performance monitor Splunk app!

 		
 About the TA-nmon-hec, technical addon for Nmon Performance app for Splunk

 		
 Splunk versions

 		
 Index time operations

 		
 About Nmon Performance Monitor

 		
 Release notes

 		
 Requirements

 		
 What has been fixed by release

 		
 V1.3.37:

 		
 V1.3.36:

 		
 V1.3.35:

 		
 V1.3.34:

 		
 V1.3.34:

 		
 V1.3.33:

 		
 V1.3.32:

 		
 V1.3.31:

 		
 V1.3.30:

 		
 V1.3.29:

 		
 Known Issues

 		
 Support

 		
 Octamis professional support for business

 		
 Community support

 		
 Github

 		
 Splunk Answers

 		
 Google Group Support

 		
 Issues and enhancement requests

 		
 Operating Systems compatibility

 		
 OS compatibility

 		
 OS certification

 		
 Introduction to Nmon processing

 		
 Nmon processing

 		
 bin/nmon_helper.sh

 		
 bin/fifo_consumer.sh

 		
 bin/nmon2kv.sh|.py|.pl

 		
 Benchmarks & TA-nmon foot print

 		
 What does cost the TA-nmon?

 		
 Splunk Universal Forwarder

 		
 nmon binaries

 		
 TA-nmon

 		
 Scripts and Binaries

 		
 Embedded Scripts in the TA-nmon-hec

 		
 Embedded Binaries in the TA-nmon-hec

 		
 Pre-requisites

 		
 Splunk requirements

 		
 Technical Add-on requirements

 		
 Operating system

 		
 Third party software and libraries

 		
 Deployment Matrix

 		
 What goes where ?

 		
 Processing workflow in action

 		
 Generating Nmon data

 		
 nmon_helper.sh tasks part1: initial startup tasks

 		
 nmon_helper.sh tasks part2: load values and options

 		
 nmon_helper.sh tasks part3: identify instances

 		
 nmon_helper.sh tasks part4: identify binaries

 		
 nmon_helper.sh tasks part5: startup

 		
 Consuming Nmon data

 		
 Parsing Nmon data

 		
 Deployment

 		
 HEC performance considerations

 		
 HEC resiliency and scalability

 		
 Activate the Splunk http input and create a token

 		
 Deploying the TA-nmon-hec

 		
 Upgrade

 		
 Eventgen testing

 		
 Testing Nmon performance with evengen

 		
 Get it working in 30 seconds

 		
 Extend Nmon with external data

 		
 How does it work ?

 		
 Ok got it, how do I add mine ?

 		
 Configure your options with nmon.conf

 		
 Splunk HEC specific options

 		
 interval & snapshot

 		
 Legacy options for the TA-nmon for non fifo

 		
 New options for the fifo implementation

 		
 NFS Statistics

 		
 End time marging (Nmon parallel run)

 		
 Linux OS specific options

 		
 Solaris OS specific options

 		
 AIX OS specific options

 		
 Global options

 		
 Troubleshoot

 		
 Expected running processes

 		
 Starting processes

 		
 Checking fifo_reader processes

 		
 Testing the Splunk HEC endpoint

 		
 Checking the data parsing

 		
 Splunk Monitoring Console

 		
 FAQ

_images/cpu_average.png
CPU analysis - average over period

1.40 % 0.13% 0.12% 0.05%

Splunk UF connect to DS + TAnmon Splunk UF connected to DS Splunk UF not connected to DS

_images/cpu_full.png
B8 8 8& 8 &8 888

— cpu_PCT:sys-86401

— 100% cPU

1800
Mon Mar 27
2017

2000

0000
Tue Mar 28

_tme

0400

0800

1200

_images/Octamis_Logo_v3_no_bg.png

_images/TA-nmon-hec_toplogy.png
Topology example (simplified):
Splunk HEC deployment with TA-nmon-hec

Indexers
(clustered or standalone)

Search Heads
(SHC or standalone)

- TA-nmon /TA-nmon-hec (optional)
- PA-nmon_light
- HTTP/HTTPS input

- Nmon for Splunk core app

- TA-nmon / TA-nmon-hec
Heavy forwarders

Load balancer

>
TA-nmon / TA-nmon-hec or PA-nmon_light

- HTTP/HTTPS input

v

To indexers OR
intermediate forwarder:

OPTIONAL

Linux / AIX / Solaris
gi » Splunk traffic

- TA-nmon-hec
§’: e Splunk indexing flaw
E e HTTP/HTTPS forwarding

_images/cpu_full3.png
Bh88s8688828

— cpu_PCT: sys-86927

— 100% cPU

16:00
Thu Apr27
2017

2000

0000
FriApr 28

_time

0400

0800

1200

_images/cpu_full4.png
B8 8 8& 8 &8 888

— cpu_PCT:sys:86390 — 100% CPU

—_— e~

16:00 2000 o000 0400 0500 1200
Mon Mar 27 Tue Mar 28
2017

_tme

_images/cpu_full1.png
B8 8 8& 8 &8 888

— CPu_PCT: sys-86391

— 100% CPU

1800
Mon Mar 27
2017

2000

0000
Tue Mar 28

_tme

0400

0800

1200

_images/cpu_full2.png
B8 8 8& 8 &8 888

— cpu_PCT: sys-86406

— 100% cPU

16:00
Mon Mar 27
2017

o000
Tue Mar 28

_tme

0400

0800

1200

_images/cpu_full5.png
B8 8 8& 8 &8 888

— cpu_PCT: sys-86400

— 100% cPU

1800
Mon Mar 27
2017

2000

0000
Tue Mar 28

_tme

0800

1200

_images/cpu_multi.png
CPU analysis (multiseries)

percent CPU percent CPU percent CPU

percent CPU

275
25

175
15

o075
05

275
25
225

175
15
125

o075
05
025

275
25
225

175
15
125

075

05
025

275

— opu %: UF+TA-amon

— cpu %: UF with DS

— cpu%: UFno DS

— cpu %: none

A\

0200
SatApr29
2017

0230

0300

0330

_images/cpu_overlapped.png
CPU analysis (overlapped)

— cpu%: UF+TA-imon — cpu %: UF with DS
3

— cpu%:UFnoDS — cpu %: none

percent CPU

_images/cpu_pct2.png
% cPus

35

25

15

05

16:00
Mon Mar 27
2017

Tue Mar 28

— cpu_PCT: sys-86406

08:00

1200

_images/cpu_pct3.png
35

15

— cpu_PCT: sys-86927

1800 2000 0000 0400 0800 1200
Thu Apr27. FriApr2s
2017

_images/cpu_pct.png
% cPus

35

25

15

05

16:00
Mon Mar 27
2017

08:00

1200

_images/cpu_pct1.png
% CPUs

35

25

15

05

1800
Mon Mar 27
2017

0000
Tue Mar 28

— cpu_PCT:sys-86391

0400

0800

1200

_images/eventgen_testing.png
NMON Performance Monitor
'NMON Performance Monitor for Unix and Linux Systems - Version 1.9.10

NMON MONITORING NMON ANALYSER NMON BASELINE

@ APPLICATION INFORMATION:

Data Categories: Explore Al / Event Types: nmon:performance (Performance data), nmon:config (Configuration data), nmor:collect (Nmon raw data generation), nmonprocessing (Nmon raw data processing) - About Nimon Performance Monitor

4 Host(s) with activity 6 5 = 73 MB Indexed 0 notable events reported

INTHE LAST 7 DAYS ‘TODAY / EVOLUTION VS VESTERDAY

15 Aug 17, 20h34 - 15 Aug 17, 21h29

'DATE OF FIRST AND LAST PERF EVENT PROCESSING/COLLECT LAST 24 HOURS

0 SAFE CENTER: Active Triggered Alerts

Enter Splunk Triggered Alertsfor Nimon App - Enter Nmon SAFE CENTER dashboard - Or click o drlldown on active alerts

2 cpu active alerts 0 real memory active alerts 0 virtual memory active alerts 2 file systems active alerts

5m CPU % saturation over 90% 5m Real Memory % saturation over 90% 5m Virtual Memory % saturation over 40% 5m FS % usage saturation over 90%

INTERFACES PER CATEGORY:

Disks and Filesystems Statistics.

CPU Usage Statistics Process, Kernel, 1/0 Statistics E Memory Statistics

AL o5 Peceage o cu lzsion AL 05 i rcess ystem nesouross Ussge i Pecntag of ey Alocaton [p—

_images/eventgen_testing2.png
1 00 00 0.00%

Hide Filters

19.14 s

8.1 3 Oi)ll 0.00 0.00%

U MEMORY % SMNLOAD AVG warro
CPU usage EECEm—— Load average
™ s
B A 2 o
g L)
= s
30 20 210) 20 2140 30 20 210) 20 2140
Tuehug 15 Tuehug 15
07 07
— v pot — load_sverage_min — load_average_Smin — Ioad_average_i5min
Running processes Processes CPU usage
™ s
.
fo 3
5 805
S %
H
a0) 210 210) 240
Tue g 15
007
2050 2100 2110 2120 21:30 2140 accounts-daemon W dbus-daemon Il fifo_reader.pl MMl fifo_reader.sh iscsid WM jod2isda1-8 MM ksoftiradi0 kworker/0:1
Tue Aug 15 kworker/0:1H Wl kworkeriu2:0 MMl kworkeriu2:2 [nmon_power_64_u Il ntpd pokitd Ml rou_sched MM snapd splunkd
i Bissna svess I sysomaresoe
Memory usage Network traffic

100

75

_images/cpu_pct4.png
% cPus

35

25

15

05

1800
Mon Mar 27
2017

0000
Tue Mar 28

— cpu_PCT: sys-86390

0400

0800

1200

_images/cpu_pct5.png
% CPUs

15

10

1800
Mon Mar 27
2017

0000
Tue Mar 28

— cpu_PCT: sys-86400

0400

08:00

1200

_images/hec_deployment_screen.png
Edit Global Settings

Al Tokens
Default Source Type
Defautt Index

Defautt Output Group
Use Deployment Server
Enable SSL

HTTP Port Number

Enabled Disabled
Select Source Type v
Default v

None v

8088

cancel | (1SS

_images/hec_deployment_screen1.png
Add Data —®@ <

Select Source

Flles & Directories ‘Configure a new token for receiving data over HTTP. Learn More (2

HTTP Event Collector Name | nmon-hec-input

‘Source name override”

TCP / UDP
Description”

Scripts Output Group (optional) None v
Enable indexer
acknowledgement

FAQ

> Whatis the HTTP Event Collector?
> How do I et up the HTTP Event Collector?

> How do I view and configure the tokens that | can use to send data to the HTTP Event Collector?

> What clients can send data to the HTTP Event Collector?

> What port and protocol does the HTTP Event Collector receive data on and how can | change that?

> Whatis an output group?

_images/fifo_consumer.png
load hard codef default values

load defaulfinmon.conf

o

localinmn.conf

load locallmon.conf

load fetcinmon.conf

<

Jeteinmon.conf ?

v

start pracessing

v

@

T
rotated data to
proceeded ?

T
nmon_data.dat
mtime less than 5 sec ?

binfmonzcsvsh

bin/nmon2csv.sh

_images/iops.png
10 per sec.

2

10

— 1430vp055_pub

1200
Mon Mar 27
2017

1800

_tme

o000
Tue Mar 28

_images/iops1.png
10

1O per sec

— 1490vpo26_pud

12:00 18:00 T -
e e
e

2017

_images/hec_deployment_screen2.png
Add Data ——@

Input Settings

Input Settings

‘Optionally set addtional input parameters for this data input as follows:

Source type

‘The source type is one of e defauttfelds that Splunk assigns to all
incoming data. It tells Splunk what kind of data you've got, 5o that Splunk
can format the data intelligently during indexing. And it a way to
categorize your data, so that you can search it easily.

Index

‘Splunk stores incoming data as events inthe selected index. Consider
using a“sandbox’ index as a destination if you have problems determining
2 source type for your data. A sandbox index lets you troubleshoot your
configuration without impacting production indexes. You can always
change this setting later. Learn More (2

FAQ

> How do indexes work?

> How do I know when to create or use multiple indexes?

Select Allowed
Indexes.

Default Index

Automatic

Availableitem(s)
main
nmon

nmon_json
pas

nmon_hec v

Select

addall»

New

Selected item(s) «remove al
nmon_hec:

Create anew index

_images/hec_deployment_screen3.png
AddData ——@ K

Input Settings Review

Review
Input Type Token
Name nmon-hec-input
‘Source name override N/A
Descripon N/A
Enable indexer acknowledgements. No

OutputGroup N/A

Allowed indexes nmon_hec

Defaultindex nmon_hec

SourceType Automatic

_images/iops4.png
35

25

VO per sec

15

05

— sys-86391

1800
Mon Mar 27
2017

0000
Tue Mar 28

0600

1200

_images/iops2.png
10 per sec.

10

— 1430vp052_pub

.
3
2
1
1200 1800 o000 0600
Mon Mar 27 Tue Mar 28
2017

_tme

_images/iops3.png
10 per sec.

¥
|

25

ors

— sys-86401

05
025
1200 1800 00:00 06:00 1200
Mon Mar 27 Tue Mar 28
2017

_images/iops7.png
35

25

10 per sec.

15

05

— sys863%0

1800
Mon Mar 27
2017

Tue Mar 28

0600

1200

_images/iops8.png
275

25

225

175

10 per sec.

ors

05

025

— sys86400

18:00
Mon Mar 27
2017

Tue Mar 28

1200

_images/iops5.png
25

225

175

10 per sec.
&

ors

05

025

— sys-86408

1800
Mon Mar 27
2017

0000
Tue Mar 28

1200

_images/iops6.png
35

1ops
5

15

1800
Thu Apr27.
2017

0000
FriApr28

— disk_total_iops.

1200

_images/lpar_full.png
* Micro-Partitions Virtual CPUs statistics

11

08

08

07

08

Virtual CPUS

05

04

03

02

.

1200 1800 2000 o000 0400 0800
Mon Mar 27 Tue Mar 28
2017

Time

— entitied: 1490vp055_pub — usage: HO0VPOSS_pub — VirtualCPUs: 1480vp0S5_pub

_images/lpar_full1.png
* Micro-Partitions Virtual CPUs statistics

11

08

08

07

08

Virtual CPUS

05

04

03

02

01
1200 16:00 2000 0000 0400 0800
Mon Mar 27 Tue Mar 28

2017
Time

— entitied: 1490vp026_pub — usage: HO0VPOZ6_pub — VirtualCPUs: 1480vp026_pub

_images/iops_average.png
1/0 per sec analysis - average over period

0.94 iops 0.12iops 0.06 iops 0.03 iops

Splunk UF connect to DS + TAnmon Splunk UF connected to DS Splunk UF not connected to DS

_images/iops_overlapped.png
1/0 per sec analysis (overlapped)

1oPs

5

14

[E)

12

11

08

08

07

08

05

04

03

02

01

— I0PS: UF+TA-nmon

— I0PS: UF with DS

— I0PS: UF no DS

— 10PS: none.

0200
SatApr29
2017

0230

0300

0330

_images/lpar_full2.png
* Micro-Partitions Virtual CPUs statistics

11

08

08

07

08

05

Virtual CPUS

04

03

02

01

A 7 WY WY SYUSE NN | A Ak BT SUUUSINSU U WU WS WUV |V WS W WA UUNY WIS USDUU U SEPUIY U

1800 2000 o000 0400 0800
Mon Mar 27 Tue Mar 28
2017

Time

— entitied: 1490vp052_pub — usage: HO0VPOS2_pub — VirtualCPUs: 1480vp052_pub

_images/lpar_zoom.png
* Micro-Partitions Virtual CPUs statistics

0z
on

01
008
008
007

006

Virtual CPUS

005

004

003

002

001

1200 1600 2000 0000 0400 0800
Mon Mar 27 Tue Mar 28
2017

_static/minus.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_images/mem_overlapped.png
Physical memory analysis (overlapped)

— mem %: UF+TAnmon — mem %: UFwith DS — mem %: UF no DS — mem %: none.
2

percent CPU

-— O O O O O O O O
15

10

0200 0230 0300 0330
SatApr29
2017

_images/nmon2kv.png
binffifo_copsumer.sh

binfmd2kesh

v

@

Python 2.7 x available 7

™
& ®

bininmon2kepy bininmon2kv.pl

T T
configuration datd performance data, various flag files
nmon_config nmon_data
<

@

HEC endpoint configured 7 Write local log

ves) (o ves) (o

hitp / ttps.

stop L0G stop
Splunk HEC local log files.

_images/lpar_zoom2.png
* Micro-Partitions

008
008
007
008

005

Virtual CPUS

003

002

001

16:00 2000 0000
Mon Mar 27 Tue Mar 28
2017

Time

— 1430vp052_pub

_images/mem_average.png
Physical memory analysis - average over period

22.18% 15.71 % 15.83 % 12.79%

Splunk UF connect to DS + TAnmon Splunk UF connected to DS Splunk UF not connected to DS

_images/nmon_external_workflow3.png
LINUX

Q New Search SaveAsv NewTable Close
eventtype=nmon: per formance type=UPTINE| Last 15 minutes v | Q ‘

169 events (28/03/2017 19:25:54.000 to 28/03/2017 19:40:54.000) No Event Sampling v Jobv 1 m s & L ® Smart Mode v/

Events (169) Pattems. Statistics Visualization

Format Timeline v —Zoom Out 1 minte per column

Lstv sFormatv 20PerPagev Pev 1 2 3 4 5 6 7 8 9 Nex>
< Hide Fields AlFieds | 1 | Time L
> | 28/03/2017 UPTIME,sys-86391,5ys-86391, Linux,1,1,28-03-2017 14:40:14,60,1440,"14:40pm_up_3_days_19:59; 0_users; load_average: 0.00; 0.00; 0.00"

Selected Fieds 194014000 100~ oy 36391 | hostname = sys86391 | source = perfdsta | sourcetype <nmon.data type - UPTIME
ahost 12 > | 28/03/2017 UPTINE,sys-86390,5ys-86390, Linux,1,1,28-03-2017 14:39:58,60,1440,"14:39:58_up_3_days; 20:05; 0_users; load_average: 0.00; 0.04; 0.06
a hostname 12 193958000 host - sys-86390 | hostname = sys-86390 | source = perfdata | sourcetype = nmon_data | type = UPTIME
@ source 1 > 28/03/2017 "UPTIME","Sys-86400","sys-86400", "Linux","1","1","2017-03-28 14:39:42","60","1440","14:39:42 up 3 days; 4:44; 0 users; load average: 0.00; 0.00; 0.00"
a sourcetype 1 193942000 |,

05t =sys86400 | hostname = sys86400 | source = perfdata | sourcetype = nmon_data | type = UPTIME
atype

> 28/03/2017 UPTIME,ip-10-0-0-19,ip-10-0-0-19,Linux,2,2,28-03-2017 18:39:35,60,1440,"18:39:35_up_4_days; 6:56; 0_users; load average: 0.23; 0.26; 0.23"

Interesting Fields 193935000 o5t =jp-10.0.019 | hostname =ip-100-019 | source = perfdata | sourcetype = nmon_data | type = UPTIME

_images/nmon_helper_part1.png
binimon helper.sh

v

create directbry structure
$SPLUNK_HONE/varfioginmon

running Linux 7

D O

cache Linux binaries out of app: cache binaries 7

$SPLUNK_HOMENvar/iog/nmon/bin

Load configuration startup

_images/nmon_external_workflow1.png
start once:

bininmon_exteral_start sh

——

bivmon_hePersh pmon pracess

N

SNHON EXTERNAL DIR.

B

start at each interval
bin/nmon,_extemal,_snap.sh

—8

ffot/nmon.fifo

L g

ffo2inmon.fifo

_images/nmon_external_workflow2.png
S

ffot/nmon.fio .
B binfffo_consumersh binnmof2csy.sh

ffo2/nmon.fifo

| 1
bininmon2csvpy bininmon2csv.pl

load defaultinmpon_parserjson

Joad localinmon parser.json

_images/nmon_helper_part2.png
binimon helper.sh

load hard coded default values

load defaulfinmon.conf

®

load locallmon.conf localinmn.conf

®

load Jetc/nmon.conf. Jeteinmon.conf 7

_images/troubleshoot4.png
©®© root@centos-73-64:~

[root@centos-73-64 ~J# ls -ltr /opt/splunkforwarder/var/log/nmon/var/
total 8

drux . 4 root root 44 Mar 31 20:34 nron_repository

drux . 2 root root 6 Mar 31 20:35 config_repository

drux . 2 root root 4096 Mar 31 20:36 centos-73-64_centos-73-64
drux . 2 root root 6 Mar 31 21:51 csv_workingdir

drux . 2 root root 6 Mar 31 21:51 csv_repository

- 1 root root 6 Mar 31 21:59 fifo_reader_fifo1.pid

[root@centos-73-64 ~J# ls -ltr /opt/splunkforwarder/var/log/nmon/var /nmon_repository/fifo1/
total 8@

-rw- . 1 root root 24488 Mar 31 20:34 nmon_config.dat.rotated
-ru- . 1 root root 2635 Mar 31 nmon_header .dat . rotated
-ru- . 1 root root 2560 Mar 31 nmon_timestamp.dat.rotated
-ru- . 1 root root 3660 Mar 31 nmon_data.dat.rotated

-ru- . 1 root root 2599 Mar 31 nmon_header . dat

-ru- . 1 root root 24562 Mar 31 21:59 nmon_config.dat

-ru- . 1 root root 256 Mar 31 22:06 nmon_timestamp.dat

pru- . 1 root root 0 Mar 31 22:06 nmon.fifo

-ru- 1 root root 9404 Mar 31 22:06 nmon_data.dat

[root@centos-73-64 ~]#

_images/troubleshoot3_hec.png
©® O root@hec-client1: ~

rootghec-client1:~# cat /opt/splunkforwarder/etc/apps/TA-nmon-hec/local/nmon.conf
HEC server configuration

nmon2csv_options=
-94EF-ADO909718B2A"
rootghec-client1:~# s -ltr /opt/splunkforwarder/var/log/nmon/*.1log

node fifo --silent --splunk_http_url https://192.168.33.100:8088/services/collector/event --splunk_http_token CEE56643-BA2D-48EE

rw--- 1 root root 524 Aug 6 15:54 /opt/splunkforwarder/var/log/nmon/nmon_clean.log

-ru- 1 root root 58462 Aug 6 15:57 /opt/splunkforwarder/var/log/nmon/nmon_perfdata.log
-ru- 1 root root 3484 Aug 6 15:57 /opt/splunkforwarder/var/log/nmon/nmon_processing.log
- 1 root root 1056 Aug 6 15:57 /opt/splunkforwarder/var/log/nmon/nmon_collect.log

rootghec-client1

opt/splunkforwarder /var /log/nmon/nmon_perfdata. Log

value="0.8" interval="60" timestamp="1502031551" hostname="hec-client1"” 7ZzZ="06-08-2017 15:59:11" snapshots="1440" sda” serialnun="hec-clie
nt1" OStype="Linux" type="DGXFER"
timestamp="1502031551" hostname="hec-client1" 7ZzZ="06-08-2017 15:59:11" snapshots="1440" sda” serialnun="hec-clie
DGREADS
timestamp="1502031551" hec-client1” 77zZ="06-08-2017 15:59:11" snapshots="1440" sda” hec-clie
DGREADMERGE
timestamp="1502031551" hec-client1” 77zZ="06-08-2017 15:59:11" snapshots="1440" sda” hec-clie
DGREADSERV'
timestamp="1502031551" hec-client1” 77zZ="06-08-2017 15:59:11" snapshots="1440" sda” hec-clie
DGWRITES"
timestamp="1502031551" hec-client1” 77zZ="06-08-2017 15:59:11" snapshots="1440" sda” hec-clie
DGHRITEMERG!
timestamp="1502031551" hec-client1” 77zZ="06-08-2017 15:59:11" snapshots="1440" sda” hec-clie
DGHRITESERV'
timestamp="1502031551" hec-client1” 77zZ="06-08-2017 15:59:11" snapshots="1440" sda” hec-clie
DGINFLIGHT
timestamp="1502031551" hec-client1” 77zZ="06-08-2017 15:59:11" snapshots="1440" sda” hec-clie
DGIOTIME"
timestamp="1502031551" hostname="hec-client1" 15:59:11" snapshots="1440" device="sda" ="hec-clie
nt1" 0Styps DGBACKLOG!

rootghec-clientl:~#

_static/ajax-loader.gif

_images/troubleshoot4_hec.png

_images/lpar_zoom1.png
* Micro-Partitions Virtual CPUs statistics

Virtual CPUS

on

01

oo

008

007

006

005

004

003

002

001

1800
Mon Mar 27
2017

0000
Tue Mar 28

— 1430vp026_pub

0400

0800

_images/splunk_nmon.png
o
nk> ®
splu

_images/top_cpu.png
Logical Core.

0055

005

0045
004
0035
003
0025
002
0015
001
0005
1200 1600 2000 0000 0400 0800
Mon Mar 27 Tue Mar 28
2017

Time

=umwpnss)mgeny 1B 1490vp055_pubrgil = TCPP Il 1490vp055_pubihwsdagent Il 1490vposS_pubjava Il 1490vp055_pubksn I 1490vp055_pubrmed Il 1490vp055_pubirpclockd M 1480vp055_pubispiunka I 1490vp055_pubisync Il 1490vp055_pubitopas_nmon
1490p055_pubtopasrec.

_images/nmon_helper_part5.png
stop

ffo1 running 2
bin/mon helper.sh

fal back to Pert

nmon running ?

- @ &

binffifo_teaderpy binfffo_teaderpl

&

binffifo_readersh

start nmon binary

fifol/nmon.fifo fifo2/nmon.fifo

_images/nmon_helper_processing.png
stop

binimon| helper.sh
strtod ovlry 60 ecs

fal back to Pert

nmon running ?

binffifo_teaderpy binfffo_teaderpl

&

binffifo_readersh

start nmon binary

fifol/nmon.fifo fifo2/nmon.fifo

_images/top_cpu3.png
001

0008

0008

0007

H

Logical Core
g

0004

16:00 2000 0000 0400 0800 1200
Mon Mar 27 Tue Mar 28
2017

Time

I sys-86401:splunkd

_images/top_cpu4.png
Logical Core.

002

00175

0015

00125

001

00075

0.005

0.0025

1600
Mon Mar 27
2017

Tue Mar 28

I sys-86391:splunkd

0400

1200

_images/top_cpu1.png
Logical Core

0035

003

0025

002

0015

001

0005

16:00
Mon Mar 27
2017

2000

I 1490vp026_pubijava

0000
Tue Mar 28

Time

1 1490vp026_pub:splunkd

0400

_images/top_cpu2.png
Logical Core.

00275

0025

16:00
Mon Mar 27
2017

2000

o000
Tue Mar 28

Time

I 1490vp052_pub:splunkd

0400

o800

_images/nmon_helper_part3.png
binimon [helper.sh

Identiy Operhting System

Configure nmr startup options.
v

T
existing PID fle 7

O F—m®

lu 2 ety unning nmon instance
f@ &
E Verify running $mon instances

Instanch age ? rigger nmon startup

v
Parallel ruf required 7 @

l e (>
®

re-wrie|PID fle. trigger nmon startup

(0]

stop.

_images/nmon_helper_part4.png
binimon| helper.sh

dentiy Of

v v
[Cmax | [iwx | [somme |
v

T
topas-nmon? embedded binaries priority ? identity

®

?
°© o

nmon in PATH 2

v

@ x

dentiy best Linux
binary candidate

an:m‘r:\me

o

set sarmon binary

X

_images/top_memory1.png
Megabytes (MB)

B

20

25

20

15

150

125

100

7

50

2

Ll

16:00
Mon Mar 27
2017

2000

I 1490vp026_pubijava

00:00
Tue Mar 28

Time

1490vp026_pub:splunkd

0400

0800

_images/top_memory2.png
!
H

Time
I 1490vp052_pub:splunkd

_images/top_cpu8.png
Logical Core.

0018

0016

0014

0012

001

1600
Mon Mar 27
2017

2000

0000
Tue Mar 28

Time
I sy5-86400:splunkd

0400

0500

1200

_images/top_memory.png
Megabytes (MB)

£

300
20
200 N N l N N l A
150
100
50
|
La A " n A A " " A
1200 16:00 2000 0000 0420 0800
Mon Mar 27 Tue Mar 28
2017
Time

Il 1490vp055_pubigetty
Il 1490vp055_pubstopasrec

I 1490vp055_pub:gil = TCP/IP

Il 1490vp055_pub:hwsdagent

Il 1490vp055_pubijava

I 1490vp055_pubiksh

B 1490vp055_pub:rmed Il 1490vp055_pubirpe lockd

1480vp055_pubsplunkd

I 1490vp055_pub:syncd Il 1490vp055_pub:topas_nmon

_images/top_memory5.png
2

8
<
£
g
H

&

1800
Thu Apr27.
2017

Time.

I splunkd

_images/top_memory3.png
i
i

_images/top_memory4.png
i
§

Time

I sys-86391:splunkd

_static/up.png

_static/up-pressed.png

_images/top_cpu6.png
o018

o00t6

o014

ooz

o

Logical Core.
e
H

1600
Thu Apr27.
2017

Fridpr2s

M splunkd

0400

1200

_images/top_cpu7.png
Logical Core.

002

00175

0015

00125

001

_images/top_cpu5.png
Logical Core.

0016

0014

0012

001

16:00
Mon Mar 27
2017

2000

0000
Tue Mar 28

Time

I sys-86406:splunkd

0400

0800

1200

