

 Navigation

 	
 index

 	
 next |

 	Symfony2 Docs 2 documentation

Symfony2 Documentation

Quick Tour

Get started fast with the Symfony2 Quick Tour:

	The Big Picture >

	The View >

	The Controller >

	The Architecture

Book

Dive into Symfony2 with the topical guides:

	Symfony2 and HTTP Fundamentals

	Symfony2 versus Flat PHP

	Installing and Configuring Symfony

	Creating Pages in Symfony2

	Controller

	Routing

	Creating and using Templates

	Databases and Doctrine (“The Model”)

	Testing

	Validation

	Forms

	Security

	HTTP Cache

	Translations

	Service Container

	Performance

	Internals

	The Symfony2 Stable API

Cookbook

Read the Cookbook.

Components

Read the Components documentation.

Reference Documents

Get answers quickly with reference documents:

	Configuration Options:

Ever wondered what configuration options you have available to you in files
such as app/config/config.yml? In this section, all the available configuration
is broken down by the key (e.g. framework) that defines each possible
section of your Symfony2 configuration.

	framework

	doctrine

	security

	assetic

	swiftmailer

	twig

	monolog

	web_profiler

	Forms and Validation

	Form Field Type Reference

	Validation Constraints Reference

	Twig Template Function Reference

	Other Areas

	The Dependency Injection Tags

	Requirements for running Symfony2

Bundles

The Symfony Standard Edition comes with some bundles. Learn more about them:

	SensioFrameworkExtraBundle

	SensioGeneratorBundle

	JMSSecurityExtraBundle

	DoctrineFixturesBundle

	DoctrineMigrationsBundle

	DoctrineMongoDBBundle

Contributing

Contribute to Symfony2:

	Code:
	Bugs |

	Patches |

	Security |

	Tests |

	Coding Standards |

	Code Conventions |

	License

	Documentation:
	Overview |

	Format |

	Translations |

	License

	Community:
	IRC Meetings |

	Other Resources

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

Quick Tour

	The Big Picture

	The View

	The Controller

	The Architecture

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Quick Tour

The Big Picture

Start using Symfony2 in 10 minutes! This chapter will walk you through some
of the most important concepts behind Symfony2 and explain how you can get
started quickly by showing you a simple project in action.

If you’ve used a web framework before, you should feel right at home with
Symfony2. If not, welcome to a whole new way of developing web applications!

Tip

Want to learn why and when you need to use a framework? Read the “Symfony
in 5 minutes [http://symfony.com/symfony-in-five-minutes]” document.

Downloading Symfony2

First, check that you have installed and configured a Web server (such as
Apache) with PHP 5.3.2 or higher.

Ready? Start by downloading the “Symfony2 Standard Edition [http://symfony.com/download]”, a Symfony
distribution that is preconfigured for the most common use cases and
also contains some code that demonstrates how to use Symfony2 (get the archive
with the vendors included to get started even faster).

After unpacking the archive under your web server root directory, you should
have a Symfony/ directory that looks like this:

www/ <- your web root directory
 Symfony/ <- the unpacked archive
 app/
 cache/
 config/
 logs/
 Resources/
 bin/
 src/
 Acme/
 DemoBundle/
 Controller/
 Resources/
 ...
 vendor/
 symfony/
 doctrine/
 ...
 web/
 app.php
 ...

Note

If you downloaded the Standard Edition without vendors, simply run the
following command to download all of the vendor libraries:

php bin/vendors install

Checking the Configuration

Symfony2 comes with a visual server configuration tester to help avoid some
headaches that come from Web server or PHP misconfiguration. Use the following
URL to see the diagnostics for your machine:

http://localhost/Symfony/web/config.php

If there are any outstanding issues listed, correct them. You might also tweak
your configuration by following any given recommendations. When everything is
fine, click on “Bypass configuration and go to the Welcome page” to request
your first “real” Symfony2 webpage:

http://localhost/Symfony/web/app_dev.php/

Symfony2 should welcome and congratulate you for your hard work so far!

[image: ../_images/welcome.jpg]

Understanding the Fundamentals

One of the main goals of a framework is to ensure Separation of Concerns [http://en.wikipedia.org/wiki/Separation_of_concerns].
This keeps your code organized and allows your application to evolve easily
over time by avoiding the mixing of database calls, HTML tags, and business
logic in the same script. To achieve this goal with Symfony, you’ll first
need to learn a few fundamental concepts and terms.

Tip

Want proof that using a framework is better than mixing everything
in the same script? Read the “Symfony2 versus Flat PHP”
chapter of the book.

The distribution comes with some sample code that you can use to learn more
about the main Symfony2 concepts. Go to the following URL to be greeted by
Symfony2 (replace Fabien with your first name):

http://localhost/Symfony/web/app_dev.php/demo/hello/Fabien

[image: ../_images/hello_fabien.png]
What’s going on here? Let’s dissect the URL:

	app_dev.php: This is a front controller. It is the unique entry
point of the application and it responds to all user requests;

	/demo/hello/Fabien: This is the virtual path to the resource the user
wants to access.

Your responsibility as a developer is to write the code that maps the user’s
request (/demo/hello/Fabien) to the resource associated with it
(the Hello Fabien! HTML page).

Routing

Symfony2 routes the request to the code that handles it by trying to match the
requested URL against some configured patterns. By default, these patterns
(called routes) are defined in the app/config/routing.yml configuration
file. When you’re in the dev environment -
indicated by the app_**dev**.php front controller - the app/config/routing_dev.yml
configuration file is also loaded. In the Standard Edition, the routes to
these “demo” pages are placed in that file:

app/config/routing_dev.yml
_welcome:
 pattern: /
 defaults: { _controller: AcmeDemoBundle:Welcome:index }

_demo:
 resource: "@AcmeDemoBundle/Controller/DemoController.php"
 type: annotation
 prefix: /demo

...

The first three lines (after the comment) define the code that is executed
when the user requests the “/” resource (i.e. the welcome page you saw
earlier). When requested, the AcmeDemoBundle:Welcome:index controller
will be executed. In the next section, you’ll learn exactly what that means.

Tip

The Symfony2 Standard Edition uses YAML [http://www.yaml.org/] for its configuration files,
but Symfony2 also supports XML, PHP, and annotations natively. The
different formats are compatible and may be used interchangeably within an
application. Also, the performance of your application does not depend on
the configuration format you choose as everything is cached on the very
first request.

Controllers

A controller is a fancy name for a PHP function or method that handles incoming
requests and returns responses (often HTML code). Instead of using the
PHP global variables and functions (like $_GET or header()) to manage
these HTTP messages, Symfony uses objects: Symfony\Component\HttpFoundation\Request
and Symfony\Component\HttpFoundation\Response. The simplest possible
controller might create the response by hand, based on the request:

use Symfony\Component\HttpFoundation\Response;

$name = $request->query->get('name');

return new Response('Hello '.$name, 200, array('Content-Type' => 'text/plain'));

Note

Symfony2 embraces the HTTP Specification, which are the rules that govern
all communication on the Web. Read the “Symfony2 and HTTP Fundamentals”
chapter of the book to learn more about this and the added power that
this brings.

Symfony2 chooses the controller based on the _controller value from the
routing configuration: AcmeDemoBundle:Welcome:index. This string is the
controller logical name, and it references the indexAction method from
the Acme\DemoBundle\Controller\WelcomeController class:

// src/Acme/DemoBundle/Controller/WelcomeController.php
namespace Acme\DemoBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class WelcomeController extends Controller
{
 public function indexAction()
 {
 return $this->render('AcmeDemoBundle:Welcome:index.html.twig');
 }
}

Tip

You could have used the full class and method name -
Acme\DemoBundle\Controller\WelcomeController::indexAction - for the
_controller value. But if you follow some simple conventions, the
logical name is shorter and allows for more flexibility.

The WelcomeController class extends the built-in Controller class,
which provides useful shortcut methods, like the
:method:`Symfony\\Bundle\\FrameworkBundle\\Controller\\Controller::render`
method that loads and renders a template
(AcmeDemoBundle:Welcome:index.html.twig). The returned value is a Response
object populated with the rendered content. So, if the needs arise, the
Response can be tweaked before it is sent to the browser:

public function indexAction()
{
 $response = $this->render('AcmeDemoBundle:Welcome:index.txt.twig');
 $response->headers->set('Content-Type', 'text/plain');

 return $response;
}

No matter how you do it, the end goal of your controller is always to return
the Response object that should be delivered back to the user. This Response
object can be populated with HTML code, represent a client redirect, or even
return the contents of a JPG image with a Content-Type header of image/jpg.

Tip

Extending the Controller base class is optional. As a matter of fact,
a controller can be a plain PHP function or even a PHP closure.
“The Controller” chapter of the book tells you
everything about Symfony2 controllers.

The template name, AcmeDemoBundle:Welcome:index.html.twig, is the template
logical name and it references the
Resources/views/Welcome/index.html.twig file inside the AcmeDemoBundle
(located at src/Acme/DemoBundle). The bundles section below will explain
why this is useful.

Now, take a look at the routing configuration again and find the _demo
key:

app/config/routing_dev.yml
_demo:
 resource: "@AcmeDemoBundle/Controller/DemoController.php"
 type: annotation
 prefix: /demo

Symfony2 can read/import the routing information from different files written
in YAML, XML, PHP, or even embedded in PHP annotations. Here, the file’s
logical name is @AcmeDemoBundle/Controller/DemoController.php and refers
to the src/Acme/DemoBundle/Controller/DemoController.php file. In this
file, routes are defined as annotations on action methods:

// src/Acme/DemoBundle/Controller/DemoController.php
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;

class DemoController extends Controller
{
 /**
 * @Route("/hello/{name}", name="_demo_hello")
 * @Template()
 */
 public function helloAction($name)
 {
 return array('name' => $name);
 }

 // ...
}

The @Route() annotation defines a new route with a pattern of
/hello/{name} that executes the helloAction method when matched. A
string enclosed in curly brackets like {name} is called a placeholder. As
you can see, its value can be retrieved through the $name method argument.

Note

Even if annotations are not natively supported by PHP, you use them
extensively in Symfony2 as a convenient way to configure the framework
behavior and keep the configuration next to the code.

If you take a closer look at the controller code, you can see that instead of
rendering a template and returning a Response object like before, it
just returns an array of parameters. The @Template() annotation tells
Symfony to render the template for you, passing in each variable of the array
to the template. The name of the template that’s rendered follows the name
of the controller. So, in this example, the AcmeDemoBundle:Demo:hello.html.twig
template is rendered (located at src/Acme/DemoBundle/Resources/views/Demo/hello.html.twig).

Tip

The @Route() and @Template() annotations are more powerful than
the simple examples shown in this tutorial. Learn more about “annotations
in controllers [http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/index.html#annotations-for-controllers]” in the official documentation.

Templates

The controller renders the
src/Acme/DemoBundle/Resources/views/Demo/hello.html.twig template (or
AcmeDemoBundle:Demo:hello.html.twig if you use the logical name):

{# src/Acme/DemoBundle/Resources/views/Demo/hello.html.twig #}
{% extends "AcmeDemoBundle::layout.html.twig" %}

{% block title "Hello " ~ name %}

{% block content %}
 <h1>Hello {{ name }}!</h1>
{% endblock %}

By default, Symfony2 uses Twig [http://twig.sensiolabs.org/] as its template engine but you can also use
traditional PHP templates if you choose. The next chapter will introduce how
templates work in Symfony2.

Bundles

You might have wondered why the bundle word is used in many names we
have seen so far. All the code you write for your application is organized in
bundles. In Symfony2 speak, a bundle is a structured set of files (PHP files,
stylesheets, JavaScripts, images, ...) that implements a single feature (a
blog, a forum, ...) and which can be easily shared with other developers. As
of now, we have manipulated one bundle, AcmeDemoBundle. You will learn
more about bundles in the last chapter of this tutorial.

Working with Environments

Now that you have a better understanding of how Symfony2 works, take a closer
look at the bottom of any Symfony2 rendered page. You should notice a small
bar with the Symfony2 logo. This is called the “Web Debug Toolbar” and it
is the developer’s best friend.

[image: ../_images/web_debug_toolbar.png]
But what you see initially is only the tip of the iceberg; click on the weird
hexadecimal number to reveal yet another very useful Symfony2 debugging tool:
the profiler.

[image: ../_images/profiler.png]
Of course, you won’t want to show these tools when you deploy your application
to production. That’s why you will find another front controller in the
web/ directory (app.php), which is optimized for the production environment:

http://localhost/Symfony/web/app.php/demo/hello/Fabien

And if you use Apache with mod_rewrite enabled, you can even omit the
app.php part of the URL:

http://localhost/Symfony/web/demo/hello/Fabien

Last but not least, on the production servers, you should point your web root
directory to the web/ directory to secure your installation and have an
even better looking URL:

http://localhost/demo/hello/Fabien

Note

Note that the three URLs above are provided here only as examples of
how a URL looks like when the production front controller is used (with or
without mod_rewrite). If you actually try them in an out of the box
installation of Symfony Standard Edition you will get a 404 error as
AcmeDemoBundle is enabled only in dev environment and its routes imported
in app/config/routing_dev.yml.

To make you application respond faster, Symfony2 maintains a cache under the
app/cache/ directory. In the development environment (app_dev.php),
this cache is flushed automatically whenever you make changes to any code or
configuration. But that’s not the case in the production environment
(app.php) where performance is key. That’s why you should always use
the development environment when developing your application.

Different environments of a given application differ
only in their configuration. In fact, a configuration can inherit from another
one:

app/config/config_dev.yml
imports:
 - { resource: config.yml }

web_profiler:
 toolbar: true
 intercept_redirects: false

The dev environment (which loads the config_dev.yml configuration file)
imports the global config.yml file and then modifies it by, in this example,
enabling the web debug toolbar.

Final Thoughts

Congratulations! You’ve had your first taste of Symfony2 code. That wasn’t so
hard, was it? There’s a lot more to explore, but you should already see how
Symfony2 makes it really easy to implement web sites better and faster. If you
are eager to learn more about Symfony2, dive into the next section:
“The View”.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Quick Tour

The View

After reading the first part of this tutorial, you have decided that Symfony2
was worth another 10 minutes. Great choice! In this second part, you will
learn more about the Symfony2 template engine, Twig [http://twig.sensiolabs.org/]. Twig is a flexible,
fast, and secure template engine for PHP. It makes your templates more
readable and concise; it also makes them more friendly for web designers.

Note

Instead of Twig, you can also use PHP
for your templates. Both template engines are supported by Symfony2.

Getting familiar with Twig

Tip

If you want to learn Twig, we highly recommend you to read its official
documentation [http://twig.sensiolabs.org/documentation]. This section is just a quick overview of the main
concepts.

A Twig template is a text file that can generate any type of content (HTML,
XML, CSV, LaTeX, ...). Twig defines two kinds of delimiters:

	{{ ... }}: Prints a variable or the result of an expression;

	{% ... %}: Controls the logic of the template; it is used to execute
for loops and if statements, for example.

Below is a minimal template that illustrates a few basics, using two variables
page_title and navigation, which would be passed into the template:

<!DOCTYPE html>
<html>
 <head>
 <title>My Webpage</title>
 </head>
 <body>
 <h1>{{ page_title }}</h1>

 <ul id="navigation">
 {% for item in navigation %}
 {{ item.caption }}
 {% endfor %}

 </body>
</html>

Tip

Comments can be included inside templates using the {# ... #} delimiter.

To render a template in Symfony, use the render method from within a controller
and pass it any variables needed in the template:

$this->render('AcmeDemoBundle:Demo:hello.html.twig', array(
 'name' => $name,
));

Variables passed to a template can be strings, arrays, or even objects. Twig
abstracts the difference between them and lets you access “attributes” of a
variable with the dot (.) notation:

{# array('name' => 'Fabien') #}
{{ name }}

{# array('user' => array('name' => 'Fabien')) #}
{{ user.name }}

{# force array lookup #}
{{ user['name'] }}

{# array('user' => new User('Fabien')) #}
{{ user.name }}
{{ user.getName }}

{# force method name lookup #}
{{ user.name() }}
{{ user.getName() }}

{# pass arguments to a method #}
{{ user.date('Y-m-d') }}

Note

It’s important to know that the curly braces are not part of the variable
but the print statement. If you access variables inside tags don’t put the
braces around.

Decorating Templates

More often than not, templates in a project share common elements, like the
well-known header and footer. In Symfony2, we like to think about this problem
differently: a template can be decorated by another one. This works exactly
the same as PHP classes: template inheritance allows you to build a base
“layout” template that contains all the common elements of your site and
defines “blocks” that child templates can override.

The hello.html.twig template inherits from layout.html.twig, thanks to
the extends tag:

{# src/Acme/DemoBundle/Resources/views/Demo/hello.html.twig #}
{% extends "AcmeDemoBundle::layout.html.twig" %}

{% block title "Hello " ~ name %}

{% block content %}
 <h1>Hello {{ name }}!</h1>
{% endblock %}

The AcmeDemoBundle::layout.html.twig notation sounds familiar, doesn’t it?
It is the same notation used to reference a regular template. The :: part
simply means that the controller element is empty, so the corresponding file
is directly stored under the Resources/views/ directory.

Now, let’s have a look at a simplified layout.html.twig:

{# src/Acme/DemoBundle/Resources/views/layout.html.twig #}
<div class="symfony-content">
 {% block content %}
 {% endblock %}
</div>

The {% block %} tags define blocks that child templates can fill in. All
the block tag does is to tell the template engine that a child template may
override those portions of the template.

In this example, the hello.html.twig template overrides the content
block, meaning that the “Hello Fabien” text is rendered inside the div.symfony-content
element.

Using Tags, Filters, and Functions

One of the best feature of Twig is its extensibility via tags, filters, and
functions. Symfony2 comes bundled with many of these built-in to ease the
work of the template designer.

Including other Templates

The best way to share a snippet of code between several distinct templates is
to create a new template that can then be included from other templates.

Create an embedded.html.twig template:

{# src/Acme/DemoBundle/Resources/views/Demo/embedded.html.twig #}
Hello {{ name }}

And change the index.html.twig template to include it:

{# src/Acme/DemoBundle/Resources/views/Demo/hello.html.twig #}
{% extends "AcmeDemoBundle::layout.html.twig" %}

{# override the body block from embedded.html.twig #}
{% block content %}
 {% include "AcmeDemoBundle:Demo:embedded.html.twig" %}
{% endblock %}

Embedding other Controllers

And what if you want to embed the result of another controller in a template?
That’s very useful when working with Ajax, or when the embedded template needs
some variable not available in the main template.

Suppose you’ve created a fancy action, and you want to include it inside
the index template. To do this, use the render tag:

{# src/Acme/DemoBundle/Resources/views/Demo/index.html.twig #}
{% render "AcmeDemoBundle:Demo:fancy" with { 'name': name, 'color': 'green' } %}

Here, the AcmeDemoBundle:Demo:fancy string refers to the fancy action
of the Demo controller. The arguments (name and color) act like
simulated request variables (as if the fancyAction were handling a whole
new request) and are made available to the controller:

// src/Acme/DemoBundle/Controller/DemoController.php

class DemoController extends Controller
{
 public function fancyAction($name, $color)
 {
 // create some object, based on the $color variable
 $object = ...;

 return $this->render('AcmeDemoBundle:Demo:fancy.html.twig', array('name' => $name, 'object' => $object));
 }

 // ...
}

Creating Links between Pages

Speaking of web applications, creating links between pages is a must. Instead
of hardcoding URLs in templates, the path function knows how to generate
URLs based on the routing configuration. That way, all your URLs can be easily
updated by just changing the configuration:

Greet Thomas!

The path function takes the route name and an array of parameters as
arguments. The route name is the main key under which routes are referenced
and the parameters are the values of the placeholders defined in the route
pattern:

// src/Acme/DemoBundle/Controller/DemoController.php
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;

/**
 * @Route("/hello/{name}", name="_demo_hello")
 * @Template()
 */
public function helloAction($name)
{
 return array('name' => $name);
}

Tip

The url function generates absolute URLs: {{ url('_demo_hello', {
'name': 'Thomas' }) }}.

Including Assets: images, JavaScripts, and stylesheets

What would the Internet be without images, JavaScripts, and stylesheets?
Symfony2 provides the asset function to deal with them easily:

<link href="{{ asset('css/blog.css') }}" rel="stylesheet" type="text/css" />

The asset function’s main purpose is to make your application more portable.
Thanks to this function, you can move the application root directory anywhere
under your web root directory without changing anything in your template’s
code.

Escaping Variables

Twig is configured to automatically escapes all output by default. Read Twig
documentation [http://twig.sensiolabs.org/documentation] to learn more about output escaping and the Escaper
extension.

Final Thoughts

Twig is simple yet powerful. Thanks to layouts, blocks, templates and action
inclusions, it is very easy to organize your templates in a logical and
extensible way. However, if you’re not comfortable with Twig, you can always
use PHP templates inside Symfony without any issues.

You have only been working with Symfony2 for about 20 minutes, but you can
already do pretty amazing stuff with it. That’s the power of Symfony2. Learning
the basics is easy, and you will soon learn that this simplicity is hidden
under a very flexible architecture.

But I’m getting ahead of myself. First, you need to learn more about the controller
and that’s exactly the topic of the next part of this tutorial.
Ready for another 10 minutes with Symfony2?

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Quick Tour

The Controller

Still with us after the first two parts? You are already becoming a Symfony2
addict! Without further ado, let’s discover what controllers can do for you.

Using Formats

Nowadays, a web application should be able to deliver more than just HTML
pages. From XML for RSS feeds or Web Services, to JSON for Ajax requests,
there are plenty of different formats to choose from. Supporting those formats
in Symfony2 is straightforward. Tweak the route by adding a default value of
xml for the _format variable:

// src/Acme/DemoBundle/Controller/DemoController.php
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;

/**
 * @Route("/hello/{name}", defaults={"_format"="xml"}, name="_demo_hello")
 * @Template()
 */
public function helloAction($name)
{
 return array('name' => $name);
}

By using the request format (as defined by the _format value), Symfony2
automatically selects the right template, here hello.xml.twig:

<!-- src/Acme/DemoBundle/Resources/views/Demo/hello.xml.twig -->
<hello>
 <name>{{ name }}</name>
</hello>

That’s all there is to it. For standard formats, Symfony2 will also
automatically choose the best Content-Type header for the response. If
you want to support different formats for a single action, use the {_format}
placeholder in the route pattern instead:

// src/Acme/DemoBundle/Controller/DemoController.php
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;

/**
 * @Route("/hello/{name}.{_format}", defaults={"_format"="html"}, requirements={"_format"="html|xml|json"}, name="_demo_hello")
 * @Template()
 */
public function helloAction($name)
{
 return array('name' => $name);
}

The controller will now be called for URLs like /demo/hello/Fabien.xml or
/demo/hello/Fabien.json.

The requirements entry defines regular expressions that placeholders must
match. In this example, if you try to request the /demo/hello/Fabien.js
resource, you will get a 404 HTTP error, as it does not match the _format
requirement.

Redirecting and Forwarding

If you want to redirect the user to another page, use the redirect()
method:

return $this->redirect($this->generateUrl('_demo_hello', array('name' => 'Lucas')));

The generateUrl() is the same method as the path() function we used in
templates. It takes the route name and an array of parameters as arguments and
returns the associated friendly URL.

You can also easily forward the action to another one with the forward()
method. Internally, Symfony makes a “sub-request”, and returns the Response
object from that sub-request:

$response = $this->forward('AcmeDemoBundle:Hello:fancy', array('name' => $name, 'color' => 'green'));

// do something with the response or return it directly

Getting information from the Request

Besides the values of the routing placeholders, the controller also has access
to the Request object:

$request = $this->getRequest();

$request->isXmlHttpRequest(); // is it an Ajax request?

$request->getPreferredLanguage(array('en', 'fr'));

$request->query->get('page'); // get a $_GET parameter

$request->request->get('page'); // get a $_POST parameter

In a template, you can also access the Request object via the
app.request variable:

{{ app.request.query.get('page') }}

{{ app.request.parameter('page') }}

Persisting Data in the Session

Even if the HTTP protocol is stateless, Symfony2 provides a nice session object
that represents the client (be it a real person using a browser, a bot, or a
web service). Between two requests, Symfony2 stores the attributes in a cookie
by using native PHP sessions.

Storing and retrieving information from the session can be easily achieved
from any controller:

$session = $this->getRequest()->getSession();

// store an attribute for reuse during a later user request
$session->set('foo', 'bar');

// in another controller for another request
$foo = $session->get('foo');

// use a default value of the key doesn't exist
$filters = $session->set('filters', array());

You can also store small messages that will only be available for the very
next request:

// store a message for the very next request (in a controller)
$session->setFlash('notice', 'Congratulations, your action succeeded!');

// display the message back in the next request (in a template)
{{ app.session.flash('notice') }}

This is useful when you need to set a success message before redirecting
the user to another page (which will then show the message).

Securing Resources

The Symfony Standard Edition comes with a simple security configuration that
fits most common needs:

app/config/security.yml
security:
 encoders:
 Symfony\Component\Security\Core\User\User: plaintext

 role_hierarchy:
 ROLE_ADMIN: ROLE_USER
 ROLE_SUPER_ADMIN: [ROLE_USER, ROLE_ADMIN, ROLE_ALLOWED_TO_SWITCH]

 providers:
 in_memory:
 memory:
 users:
 user: { password: userpass, roles: ['ROLE_USER'] }
 admin: { password: adminpass, roles: ['ROLE_ADMIN'] }

 firewalls:
 dev:
 pattern: ^/(_(profiler|wdt)|css|images|js)/
 security: false

 login:
 pattern: ^/demo/secured/login$
 security: false

 secured_area:
 pattern: ^/demo/secured/
 form_login:
 check_path: /demo/secured/login_check
 login_path: /demo/secured/login
 logout:
 path: /demo/secured/logout
 target: /demo/

This configuration requires users to log in for any URL starting with
/demo/secured/ and defines two valid users: user and admin.
Moreover, the admin user has a ROLE_ADMIN role, which includes the
ROLE_USER role as well (see the role_hierarchy setting).

Tip

For readability, passwords are stored in clear text in this simple
configuration, but you can use any hashing algorithm by tweaking the
encoders section.

Going to the http://localhost/Symfony/web/app_dev.php/demo/secured/hello
URL will automatically redirect you to the login form because this resource is
protected by a firewall.

You can also force the action to require a given role by using the @Secure
annotation on the controller:

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;
use JMS\SecurityExtraBundle\Annotation\Secure;

/**
 * @Route("/hello/admin/{name}", name="_demo_secured_hello_admin")
 * @Secure(roles="ROLE_ADMIN")
 * @Template()
 */
public function helloAdminAction($name)
{
 return array('name' => $name);
}

Now, log in as user (who does not have the ROLE_ADMIN role) and
from the secured hello page, click on the “Hello resource secured” link.
Symfony2 should return a 403 HTTP status code, indicating that the user
is “forbidden” from accessing that resource.

Note

The Symfony2 security layer is very flexible and comes with many different
user providers (like one for the Doctrine ORM) and authentication providers
(like HTTP basic, HTTP digest, or X509 certificates). Read the
“Security” chapter of the book for more information
on how to use and configure them.

Caching Resources

As soon as your website starts to generate more traffic, you will want to
avoid generating the same resource again and again. Symfony2 uses HTTP cache
headers to manage resources cache. For simple caching strategies, use the
convenient @Cache() annotation:

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Cache;

/**
 * @Route("/hello/{name}", name="_demo_hello")
 * @Template()
 * @Cache(maxage="86400")
 */
public function helloAction($name)
{
 return array('name' => $name);
}

In this example, the resource will be cached for a day. But you can also use
validation instead of expiration or a combination of both if that fits your
needs better.

Resource caching is managed by the Symfony2 built-in reverse proxy. But because
caching is managed using regular HTTP cache headers, you can replace the
built-in reverse proxy with Varnish or Squid and easily scale your application.

Note

But what if you cannot cache whole pages? Symfony2 still has the solution
via Edge Side Includes (ESI), which are supported natively. Learn more by
reading the “HTTP Cache” chapter of the book.

Final Thoughts

That’s all there is to it, and I’m not even sure we have spent the full
10 minutes. We briefly introduced bundles in the first part, and all the
features we’ve learned about so far are part of the core framework bundle.
But thanks to bundles, everything in Symfony2 can be extended or replaced.
That’s the topic of the next part of this tutorial.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Quick Tour

The Architecture

You are my hero! Who would have thought that you would still be here after the
first three parts? Your efforts will be well rewarded soon. The first three
parts didn’t look too deeply at the architecture of the framework. Because it
makes Symfony2 stand apart from the framework crowd, let’s dive into the
architecture now.

Understanding the Directory Structure

The directory structure of a Symfony2 application is rather flexible,
but the directory structure of the Standard Edition distribution reflects
the typical and recommended structure of a Symfony2 application:

	app/: The application configuration;

	src/: The project’s PHP code;

	vendor/: The third-party dependencies;

	web/: The web root directory.

The web/ Directory

The web root directory is the home of all public and static files like images,
stylesheets, and JavaScript files. It is also where each front controller
lives:

// web/app.php
require_once __DIR__.'/../app/bootstrap.php.cache';
require_once __DIR__.'/../app/AppKernel.php';

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('prod', false);
$kernel->loadClassCache();
$kernel->handle(Request::createFromGlobals())->send();

The kernel first requires the bootstrap.php.cache file, which bootstraps
the framework and registers the autoloader (see below).

Like any front controller, app.php uses a Kernel Class, AppKernel, to
bootstrap the application.

The app/ Directory

The AppKernel class is the main entry point of the application
configuration and as such, it is stored in the app/ directory.

This class must implement two methods:

	registerBundles() must return an array of all bundles needed to run the
application;

	registerContainerConfiguration() loads the application configuration
(more on this later).

PHP autoloading can be configured via app/autoload.php:

// app/autoload.php
use Symfony\Component\ClassLoader\UniversalClassLoader;

$loader = new UniversalClassLoader();
$loader->registerNamespaces(array(
 'Symfony' => array(__DIR__.'/../vendor/symfony/src', __DIR__.'/../vendor/bundles'),
 'Sensio' => __DIR__.'/../vendor/bundles',
 'JMS' => __DIR__.'/../vendor/bundles',
 'Doctrine\\Common' => __DIR__.'/../vendor/doctrine-common/lib',
 'Doctrine\\DBAL' => __DIR__.'/../vendor/doctrine-dbal/lib',
 'Doctrine' => __DIR__.'/../vendor/doctrine/lib',
 'Monolog' => __DIR__.'/../vendor/monolog/src',
 'Assetic' => __DIR__.'/../vendor/assetic/src',
 'Metadata' => __DIR__.'/../vendor/metadata/src',
));
$loader->registerPrefixes(array(
 'Twig_Extensions_' => __DIR__.'/../vendor/twig-extensions/lib',
 'Twig_' => __DIR__.'/../vendor/twig/lib',
));

// ...

$loader->registerNamespaceFallbacks(array(
 __DIR__.'/../src',
));
$loader->register();

The Symfony\Component\ClassLoader\UniversalClassLoader is used to
autoload files that respect either the technical interoperability standards [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md]
for PHP 5.3 namespaces or the PEAR naming convention [http://pear.php.net/] for classes. As you
can see here, all dependencies are stored under the vendor/ directory, but
this is just a convention. You can store them wherever you want, globally on
your server or locally in your projects.

Note

If you want to learn more about the flexibility of the Symfony2
autoloader, read the “The ClassLoader Component” chapter.

Understanding the Bundle System

This section introduces one of the greatest and most powerful features of
Symfony2, the bundle system.

A bundle is kind of like a plugin in other software. So why is it called a
bundle and not a plugin? This is because everything is a bundle in
Symfony2, from the core framework features to the code you write for your
application. Bundles are first-class citizens in Symfony2. This gives you
the flexibility to use pre-built features packaged in third-party bundles
or to distribute your own bundles. It makes it easy to pick and choose which
features to enable in your application and optimize them the way you want.
And at the end of the day, your application code is just as important as
the core framework itself.

Registering a Bundle

An application is made up of bundles as defined in the registerBundles()
method of the AppKernel class. Each bundle is a directory that contains
a single Bundle class that describes it:

// app/AppKernel.php
public function registerBundles()
{
 $bundles = array(
 new Symfony\Bundle\FrameworkBundle\FrameworkBundle(),
 new Symfony\Bundle\SecurityBundle\SecurityBundle(),
 new Symfony\Bundle\TwigBundle\TwigBundle(),
 new Symfony\Bundle\MonologBundle\MonologBundle(),
 new Symfony\Bundle\SwiftmailerBundle\SwiftmailerBundle(),
 new Symfony\Bundle\DoctrineBundle\DoctrineBundle(),
 new Symfony\Bundle\AsseticBundle\AsseticBundle(),
 new Sensio\Bundle\FrameworkExtraBundle\SensioFrameworkExtraBundle(),
 new JMS\SecurityExtraBundle\JMSSecurityExtraBundle(),
);

 if (in_array($this->getEnvironment(), array('dev', 'test'))) {
 $bundles[] = new Acme\DemoBundle\AcmeDemoBundle();
 $bundles[] = new Symfony\Bundle\WebProfilerBundle\WebProfilerBundle();
 $bundles[] = new Sensio\Bundle\DistributionBundle\SensioDistributionBundle();
 $bundles[] = new Sensio\Bundle\GeneratorBundle\SensioGeneratorBundle();
 }

 return $bundles;
}

In addition to the AcmeDemoBundle that we have already talked about, notice
that the kernel also enables other bundles such as the FrameworkBundle,
DoctrineBundle, SwiftmailerBundle, and AsseticBundle bundle.
They are all part of the core framework.

Configuring a Bundle

Each bundle can be customized via configuration files written in YAML, XML, or
PHP. Have a look at the default configuration:

app/config/config.yml
imports:
 - { resource: parameters.yml }
 - { resource: security.yml }

framework:
 #esi: ~
 #translator: { fallback: %locale% }
 secret: %secret%
 charset: UTF-8
 router: { resource: "%kernel.root_dir%/config/routing.yml" }
 form: true
 csrf_protection: true
 validation: { enable_annotations: true }
 templating: { engines: ['twig'] } #assets_version: SomeVersionScheme
 default_locale: %locale%
 session:
 auto_start: true

Twig Configuration
twig:
 debug: %kernel.debug%
 strict_variables: %kernel.debug%

Assetic Configuration
assetic:
 debug: %kernel.debug%
 use_controller: false
 bundles: []
 # java: /usr/bin/java
 filters:
 cssrewrite: ~
 # closure:
 # jar: %kernel.root_dir%/java/compiler.jar
 # yui_css:
 # jar: %kernel.root_dir%/java/yuicompressor-2.4.2.jar

Doctrine Configuration
doctrine:
 dbal:
 driver: %database_driver%
 host: %database_host%
 port: %database_port%
 dbname: %database_name%
 user: %database_user%
 password: %database_password%
 charset: UTF8

 orm:
 auto_generate_proxy_classes: %kernel.debug%
 auto_mapping: true

Swiftmailer Configuration
swiftmailer:
 transport: %mailer_transport%
 host: %mailer_host%
 username: %mailer_user%
 password: %mailer_password%

jms_security_extra:
 secure_controllers: true
 secure_all_services: false

Each entry like framework defines the configuration for a specific bundle.
For example, framework configures the FrameworkBundle while swiftmailer
configures the SwiftmailerBundle.

Each environment can override the default configuration by providing a
specific configuration file. For example, the dev environment loads the
config_dev.yml file, which loads the main configuration (i.e. config.yml)
and then modifies it to add some debugging tools:

app/config/config_dev.yml
imports:
 - { resource: config.yml }

framework:
 router: { resource: "%kernel.root_dir%/config/routing_dev.yml" }
 profiler: { only_exceptions: false }

web_profiler:
 toolbar: true
 intercept_redirects: false

monolog:
 handlers:
 main:
 type: stream
 path: %kernel.logs_dir%/%kernel.environment%.log
 level: debug
 firephp:
 type: firephp
 level: info

assetic:
 use_controller: true

Extending a Bundle

In addition to being a nice way to organize and configure your code, a bundle
can extend another bundle. Bundle inheritance allows you to override any existing
bundle in order to customize its controllers, templates, or any of its files.
This is where the logical names (e.g. @AcmeDemoBundle/Controller/SecuredController.php)
come in handy: they abstract where the resource is actually stored.

Logical File Names

When you want to reference a file from a bundle, use this notation:
@BUNDLE_NAME/path/to/file; Symfony2 will resolve @BUNDLE_NAME
to the real path to the bundle. For instance, the logical path
@AcmeDemoBundle/Controller/DemoController.php would be converted to
src/Acme/DemoBundle/Controller/DemoController.php, because Symfony knows
the location of the AcmeDemoBundle.

Logical Controller Names

For controllers, you need to reference method names using the format
BUNDLE_NAME:CONTROLLER_NAME:ACTION_NAME. For instance,
AcmeDemoBundle:Welcome:index maps to the indexAction method from the
Acme\DemoBundle\Controller\WelcomeController class.

Logical Template Names

For templates, the logical name AcmeDemoBundle:Welcome:index.html.twig is
converted to the file path src/Acme/DemoBundle/Resources/views/Welcome/index.html.twig.
Templates become even more interesting when you realize they don’t need to be
stored on the filesystem. You can easily store them in a database table for
instance.

Extending Bundles

If you follow these conventions, then you can use bundle inheritance
to “override” files, controllers or templates. For example, you can create
a bundle - AcmeNewBundle - and specify that its parent is AcmeDemoBundle.
When Symfony loads the AcmeDemoBundle:Welcome:index controller, it will
first look for the WelcomeController class in AcmeNewBundle and then
look inside AcmeDemoBundle. This means that one bundle can override almost
any part of another bundle!

Do you understand now why Symfony2 is so flexible? Share your bundles between
applications, store them locally or globally, your choice.

Using Vendors

Odds are that your application will depend on third-party libraries. Those
should be stored in the vendor/ directory. This directory already contains
the Symfony2 libraries, the SwiftMailer library, the Doctrine ORM, the Twig
templating system, and some other third party libraries and bundles.

Understanding the Cache and Logs

Symfony2 is probably one of the fastest full-stack frameworks around. But how
can it be so fast if it parses and interprets tens of YAML and XML files for
each request? The speed is partly due to its cache system. The application
configuration is only parsed for the very first request and then compiled down
to plain PHP code stored in the app/cache/ directory. In the development
environment, Symfony2 is smart enough to flush the cache when you change a
file. But in the production environment, it is your responsibility to clear
the cache when you update your code or change its configuration.

When developing a web application, things can go wrong in many ways. The log
files in the app/logs/ directory tell you everything about the requests
and help you fix the problem quickly.

Using the Command Line Interface

Each application comes with a command line interface tool (app/console)
that helps you maintain your application. It provides commands that boost your
productivity by automating tedious and repetitive tasks.

Run it without any arguments to learn more about its capabilities:

php app/console

The --help option helps you discover the usage of a command:

php app/console router:debug --help

Final Thoughts

Call me crazy, but after reading this part, you should be comfortable with
moving things around and making Symfony2 work for you. Everything in Symfony2
is designed to get out of your way. So, feel free to rename and move directories
around as you see fit.

And that’s all for the quick tour. From testing to sending emails, you still
need to learn a lot to become a Symfony2 master. Ready to dig into these
topics now? Look no further - go to the official Book and pick
any topic you want.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

Book

	Symfony2 and HTTP Fundamentals

	Symfony2 versus Flat PHP

	Installing and Configuring Symfony

	Creating Pages in Symfony2

	Controller

	Routing

	Creating and using Templates

	Databases and Doctrine (“The Model”)

	Testing

	Validation

	Forms

	Security

	HTTP Cache

	Translations

	Service Container

	Performance

	Internals

	The Symfony2 Stable API

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Symfony2 and HTTP Fundamentals

Congratulations! By learning about Symfony2, you’re well on your way towards
being a more productive, well-rounded and popular web developer (actually,
you’re on your own for the last part). Symfony2 is built to get back to
basics: to develop tools that let you develop faster and build more robust
applications, while staying out of your way. Symfony is built on the best
ideas from many technologies: the tools and concepts you’re about to learn
represent the efforts of thousands of people, over many years. In other words,
you’re not just learning “Symfony”, you’re learning the fundamentals of the
web, development best practices, and how to use many amazing new PHP libraries,
inside or independent of Symfony2. So, get ready.

True to the Symfony2 philosophy, this chapter begins by explaining the fundamental
concept common to web development: HTTP. Regardless of your background or
preferred programming language, this chapter is a must-read for everyone.

HTTP is Simple

HTTP (Hypertext Transfer Protocol to the geeks) is a text language that allows
two machines to communicate with each other. That’s it! For example, when
checking for the latest xkcd [http://xkcd.com/] comic, the following (approximate) conversation
takes place:

[image: ../_images/http-xkcd.png]
And while the actual language used is a bit more formal, it’s still dead-simple.
HTTP is the term used to describe this simple text-based language. And no
matter how you develop on the web, the goal of your server is always to
understand simple text requests, and return simple text responses.

Symfony2 is built from the ground-up around that reality. Whether you realize
it or not, HTTP is something you use everyday. With Symfony2, you’ll learn
how to master it.

Step1: The Client sends a Request

Every conversation on the web starts with a request. The request is a text
message created by a client (e.g. a browser, an iPhone app, etc) in a
special format known as HTTP. The client sends that request to a server,
and then waits for the response.

Take a look at the first part of the interaction (the request) between a
browser and the xkcd web server:

[image: ../_images/http-xkcd-request.png]
In HTTP-speak, this HTTP request would actually look something like this:

GET / HTTP/1.1
Host: xkcd.com
Accept: text/html
User-Agent: Mozilla/5.0 (Macintosh)

This simple message communicates everything necessary about exactly which
resource the client is requesting. The first line of an HTTP request is the
most important and contains two things: the URI and the HTTP method.

The URI (e.g. /, /contact, etc) is the unique address or location
that identifies the resource the client wants. The HTTP method (e.g. GET)
defines what you want to do with the resource. The HTTP methods are the
verbs of the request and define the few common ways that you can act upon
the resource:

	GET
	Retrieve the resource from the server

	POST
	Create a resource on the server

	PUT
	Update the resource on the server

	DELETE
	Delete the resource from the server

With this in mind, you can imagine what an HTTP request might look like to
delete a specific blog entry, for example:

DELETE /blog/15 HTTP/1.1

Note

There are actually nine HTTP methods defined by the HTTP specification,
but many of them are not widely used or supported. In reality, many modern
browsers don’t support the PUT and DELETE methods.

In addition to the first line, an HTTP request invariably contains other
lines of information called request headers. The headers can supply a wide
range of information such as the requested Host, the response formats
the client accepts (Accept) and the application the client is using to
make the request (User-Agent). Many other headers exist and can be found
on Wikipedia’s List of HTTP header fields [http://en.wikipedia.org/wiki/List_of_HTTP_header_fields] article.

Step 2: The Server returns a Response

Once a server has received the request, it knows exactly which resource the
client needs (via the URI) and what the client wants to do with that resource
(via the method). For example, in the case of a GET request, the server
prepares the resource and returns it in an HTTP response. Consider the response
from the xkcd web server:

[image: ../_images/http-xkcd.png]
Translated into HTTP, the response sent back to the browser will look something
like this:

HTTP/1.1 200 OK
Date: Sat, 02 Apr 2011 21:05:05 GMT
Server: lighttpd/1.4.19
Content-Type: text/html

<html>
 <!-- HTML for the xkcd comic -->
</html>

The HTTP response contains the requested resource (the HTML content in this
case), as well as other information about the response. The first line is
especially important and contains the HTTP response status code (200 in this
case). The status code communicates the overall outcome of the request back
to the client. Was the request successful? Was there an error? Different
status codes exist that indicate success, an error, or that the client needs
to do something (e.g. redirect to another page). A full list can be found
on Wikipedia’s List of HTTP status codes [http://en.wikipedia.org/wiki/List_of_HTTP_status_codes] article.

Like the request, an HTTP response contains additional pieces of information
known as HTTP headers. For example, one important HTTP response header is
Content-Type. The body of the same resource could be returned in multiple
different formats like HTML, XML, or JSON and the Content-Type header uses
Internet Media Types like text/html to tell the client which format is
being returned. A list of common media types can be found on Wikipedia’s
List of common media types [http://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_types] article.

Many other headers exist, some of which are very powerful. For example, certain
headers can be used to create a powerful caching system.

Requests, Responses and Web Development

This request-response conversation is the fundamental process that drives all
communication on the web. And as important and powerful as this process is,
it’s inescapably simple.

The most important fact is this: regardless of the language you use, the
type of application you build (web, mobile, JSON API), or the development
philosophy you follow, the end goal of an application is always to understand
each request and create and return the appropriate response.

Symfony is architected to match this reality.

Tip

To learn more about the HTTP specification, read the original HTTP 1.1 RFC [http://www.w3.org/Protocols/rfc2616/rfc2616.html]
or the HTTP Bis [http://datatracker.ietf.org/wg/httpbis/], which is an active effort to clarify the original
specification. A great tool to check both the request and response headers
while browsing is the Live HTTP Headers [https://addons.mozilla.org/en-US/firefox/addon/3829/] extension for Firefox.

Requests and Responses in PHP

So how do you interact with the “request” and create a “response” when using
PHP? In reality, PHP abstracts you a bit from the whole process:

<?php
$uri = $_SERVER['REQUEST_URI'];
$foo = $_GET['foo'];

header('Content-type: text/html');
echo 'The URI requested is: '.$uri;
echo 'The value of the "foo" parameter is: '.$foo;

As strange as it sounds, this small application is in fact taking information
from the HTTP request and using it to create an HTTP response. Instead of
parsing the raw HTTP request message, PHP prepares superglobal variables
such as $_SERVER and $_GET that contain all the information from
the request. Similarly, instead of returning the HTTP-formatted text response,
you can use the header() function to create response headers and simply
print out the actual content that will be the content portion of the response
message. PHP will create a true HTTP response and return it to the client:

HTTP/1.1 200 OK
Date: Sat, 03 Apr 2011 02:14:33 GMT
Server: Apache/2.2.17 (Unix)
Content-Type: text/html

The URI requested is: /testing?foo=symfony
The value of the "foo" parameter is: symfony

Requests and Responses in Symfony

Symfony provides an alternative to the raw PHP approach via two classes that
allow you to interact with the HTTP request and response in an easier way.
The Symfony\Component\HttpFoundation\Request class is a simple
object-oriented representation of the HTTP request message. With it, you
have all the request information at your fingertips:

use Symfony\Component\HttpFoundation\Request;

$request = Request::createFromGlobals();

// the URI being requested (e.g. /about) minus any query parameters
$request->getPathInfo();

// retrieve GET and POST variables respectively
$request->query->get('foo');
$request->request->get('bar', 'default value if bar does not exist');

// retrieve SERVER variables
$request->server->get('HTTP_HOST');

// retrieves an instance of UploadedFile identified by foo
$request->files->get('foo');

// retrieve a COOKIE value
$request->cookies->get('PHPSESSID');

// retrieve an HTTP request header, with normalized, lowercase keys
$request->headers->get('host');
$request->headers->get('content_type');

$request->getMethod(); // GET, POST, PUT, DELETE, HEAD
$request->getLanguages(); // an array of languages the client accepts

As a bonus, the Request class does a lot of work in the background that
you’ll never need to worry about. For example, the isSecure() method
checks the three different values in PHP that can indicate whether or not
the user is connecting via a secured connection (i.e. https).

ParameterBags and Request attributes

As seen above, the $_GET and $_POST variables are accessible via
the public query and request properties respectively. Each of
these objects is a Symfony\Component\HttpFoundation\ParameterBag
object, which has methods like
:method:`Symfony\\Component\\HttpFoundation\\ParameterBag::get`,
:method:`Symfony\\Component\\HttpFoundation\\ParameterBag::has`,
:method:`Symfony\\Component\\HttpFoundation\\ParameterBag::all` and more.
In fact, every public property used in the previous example is some instance
of the ParameterBag.

The Request class also has a public attributes property, which holds
special data related to how the application works internally. For the
Symfony2 framework, the attributes holds the values returned by the
matched route, like _controller, id (if you have an {id}
wildcard), and even the name of the matched route (_route). The
attributes property exists entirely to be a place where you can
prepare and store context-specific information about the request.

Symfony also provides a Response class: a simple PHP representation of
an HTTP response message. This allows your application to use an object-oriented
interface to construct the response that needs to be returned to the client:

use Symfony\Component\HttpFoundation\Response;
$response = new Response();

$response->setContent('<html><body><h1>Hello world!</h1></body></html>');
$response->setStatusCode(200);
$response->headers->set('Content-Type', 'text/html');

// prints the HTTP headers followed by the content
$response->send();

If Symfony offered nothing else, you would already have a toolkit for easily
accessing request information and an object-oriented interface for creating
the response. Even as you learn the many powerful features in Symfony, keep
in mind that the goal of your application is always to interpret a request
and create the appropriate response based on your application logic.

Tip

The Request and Response classes are part of a standalone component
included with Symfony called HttpFoundation. This component can be
used entirely independent of Symfony and also provides classes for handling
sessions and file uploads.

The Journey from the Request to the Response

Like HTTP itself, the Request and Response objects are pretty simple.
The hard part of building an application is writing what comes in between.
In other words, the real work comes in writing the code that interprets the
request information and creates the response.

Your application probably does many things, like sending emails, handling
form submissions, saving things to a database, rendering HTML pages and protecting
content with security. How can you manage all of this and still keep your
code organized and maintainable?

Symfony was created to solve these problems so that you don’t have to.

The Front Controller

Traditionally, applications were built so that each “page” of a site was
its own physical file:

index.php
contact.php
blog.php

There are several problems with this approach, including the inflexibility
of the URLs (what if you wanted to change blog.php to news.php without
breaking all of your links?) and the fact that each file must manually
include some set of core files so that security, database connections and
the “look” of the site can remain consistent.

A much better solution is to use a front controller: a single PHP
file that handles every request coming into your application. For example:

	/index.php
	executes index.php

	/index.php/contact
	executes index.php

	/index.php/blog
	executes index.php

Tip

Using Apache’s mod_rewrite (or equivalent with other web servers),
the URLs can easily be cleaned up to be just /, /contact and
/blog.

Now, every request is handled exactly the same. Instead of individual URLs
executing different PHP files, the front controller is always executed,
and the routing of different URLs to different parts of your application
is done internally. This solves both problems with the original approach.
Almost all modern web apps do this - including apps like WordPress.

Stay Organized

But inside your front controller, how do you know which page should
be rendered and how can you render each in a sane way? One way or another, you’ll need to
check the incoming URI and execute different parts of your code depending
on that value. This can get ugly quickly:

// index.php

$request = Request::createFromGlobals();
$path = $request->getPathInfo(); // the URI path being requested

if (in_array($path, array('', '/')) {
 $response = new Response('Welcome to the homepage.');
} elseif ($path == '/contact') {
 $response = new Response('Contact us');
} else {
 $response = new Response('Page not found.', 404);
}
$response->send();

Solving this problem can be difficult. Fortunately it’s exactly what Symfony
is designed to do.

The Symfony Application Flow

When you let Symfony handle each request, life is much easier. Symfony follows
the same simple pattern for every request:

[image: Symfony2 request flow]
Incoming requests are interpreted by the routing and passed to controller
functions that return Response objects.

Each “page” of your site is defined in a routing configuration file that
maps different URLs to different PHP functions. The job of each PHP function,
called a controller, is to use information from the request - along
with many other tools Symfony makes available - to create and return a Response
object. In other words, the controller is where your code goes: it’s where
you interpret the request and create a response.

It’s that easy! Let’s review:

	Each request executes a front controller file;

	The routing system determines which PHP function should be executed based
on information from the request and routing configuration you’ve created;

	The correct PHP function is executed, where your code creates and returns
the appropriate Response object.

A Symfony Request in Action

Without diving into too much detail, let’s see this process in action. Suppose
you want to add a /contact page to your Symfony application. First, start
by adding an entry for /contact to your routing configuration file:

contact:
 pattern: /contact
 defaults: { _controller: AcmeDemoBundle:Main:contact }

Note

This example uses YAML to define the routing
configuration. Routing configuration can also be written in other formats
such as XML or PHP.

When someone visits the /contact page, this route is matched, and the
specified controller is executed. As you’ll learn in the routing chapter,
the AcmeDemoBundle:Main:contact string is a short syntax that points to a
specific PHP method contactAction inside a class called MainController:

class MainController
{
 public function contactAction()
 {
 return new Response('<h1>Contact us!</h1>');
 }
}

In this very simple example, the controller simply creates a Response
object with the HTML “<h1>Contact us!</h1>”. In the controller chapter,
you’ll learn how a controller can render templates, allowing your “presentation”
code (i.e. anything that actually writes out HTML) to live in a separate
template file. This frees up the controller to worry only about the hard
stuff: interacting with the database, handling submitted data, or sending
email messages.

Symfony2: Build your App, not your Tools.

You now know that the goal of any app is to interpret each incoming request
and create an appropriate response. As an application grows, it becomes more
difficult to keep your code organized and maintainable. Invariably, the same
complex tasks keep coming up over and over again: persisting things to the
database, rendering and reusing templates, handling form submissions, sending
emails, validating user input and handling security.

The good news is that none of these problems is unique. Symfony provides
a framework full of tools that allow you to build your application, not your
tools. With Symfony2, nothing is imposed on you: you’re free to use the full
Symfony framework, or just one piece of Symfony all by itself.

Standalone Tools: The Symfony2 Components

So what is Symfony2? First, Symfony2 is a collection of over twenty independent
libraries that can be used inside any PHP project. These libraries, called
the Symfony2 Components, contain something useful for almost any situation,
regardless of how your project is developed. To name a few:

	HttpFoundation [https://github.com/symfony/HttpFoundation] - Contains the Request and Response classes, as
well as other classes for handling sessions and file uploads;

	Routing [https://github.com/symfony/Routing] - Powerful and fast routing system that allows you to map a
specific URI (e.g. /contact) to some information about how that request
should be handled (e.g. execute the contactAction() method);

	Form [https://github.com/symfony/Form] - A full-featured and flexible framework for creating forms and
handing form submissions;

	Validator [https://github.com/symfony/Validator] A system for creating rules about data and then validating
whether or not user-submitted data follows those rules;

	ClassLoader [https://github.com/symfony/ClassLoader] An autoloading library that allows PHP classes to be used
without needing to manually require the files containing those classes;

	Templating [https://github.com/symfony/Templating] A toolkit for rendering templates, handling template inheritance
(i.e. a template is decorated with a layout) and performing other common
template tasks;

	Security [https://github.com/symfony/Security] - A powerful library for handling all types of security inside
an application;

	Translation [https://github.com/symfony/Translation] A framework for translating strings in your application.

Each and every one of these components is decoupled and can be used in any
PHP project, regardless of whether or not you use the Symfony2 framework.
Every part is made to be used if needed and replaced when necessary.

The Full Solution: The Symfony2 Framework

So then, what is the Symfony2 Framework? The Symfony2 Framework is
a PHP library that accomplishes two distinct tasks:

	Provides a selection of components (i.e. the Symfony2 Components) and
third-party libraries (e.g. Swiftmailer for sending emails);

	Provides sensible configuration and a “glue” library that ties all of these
pieces together.

The goal of the framework is to integrate many independent tools in order
to provide a consistent experience for the developer. Even the framework
itself is a Symfony2 bundle (i.e. a plugin) that can be configured or replaced
entirely.

Symfony2 provides a powerful set of tools for rapidly developing web applications
without imposing on your application. Normal users can quickly start development
by using a Symfony2 distribution, which provides a project skeleton with
sensible defaults. For more advanced users, the sky is the limit.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Symfony2 versus Flat PHP

Why is Symfony2 better than just opening up a file and writing flat PHP?

If you’ve never used a PHP framework, aren’t familiar with the MVC philosophy,
or just wonder what all the hype is around Symfony2, this chapter is for
you. Instead of telling you that Symfony2 allows you to develop faster and
better software than with flat PHP, you’ll see for yourself.

In this chapter, you’ll write a simple application in flat PHP, and then
refactor it to be more organized. You’ll travel through time, seeing the
decisions behind why web development has evolved over the past several years
to where it is now.

By the end, you’ll see how Symfony2 can rescue you from mundane tasks and
let you take back control of your code.

A simple Blog in flat PHP

In this chapter, you’ll build the token blog application using only flat PHP.
To begin, create a single page that displays blog entries that have been
persisted to the database. Writing in flat PHP is quick and dirty:

<?php
// index.php

$link = mysql_connect('localhost', 'myuser', 'mypassword');
mysql_select_db('blog_db', $link);

$result = mysql_query('SELECT id, title FROM post', $link);
?>

<html>
 <head>
 <title>List of Posts</title>
 </head>
 <body>
 <h1>List of Posts</h1>

 <?php while ($row = mysql_fetch_assoc($result)): ?>

 <a href="/show.php?id=<?php echo $row['id'] ?>">
 <?php echo $row['title'] ?>

 <?php endwhile; ?>

 </body>
</html>

<?php
mysql_close($link);

That’s quick to write, fast to execute, and, as your app grows, impossible
to maintain. There are several problems that need to be addressed:

	No error-checking: What if the connection to the database fails?

	Poor organization: If the application grows, this single file will become
increasingly unmaintainable. Where should you put code to handle a form
submission? How can you validate data? Where should code go for sending
emails?

	Difficult to reuse code: Since everything is in one file, there’s no
way to reuse any part of the application for other “pages” of the blog.

Note

Another problem not mentioned here is the fact that the database is
tied to MySQL. Though not covered here, Symfony2 fully integrates Doctrine [http://www.doctrine-project.org],
a library dedicated to database abstraction and mapping.

Let’s get to work on solving these problems and more.

Isolating the Presentation

The code can immediately gain from separating the application “logic” from
the code that prepares the HTML “presentation”:

<?php
// index.php

$link = mysql_connect('localhost', 'myuser', 'mypassword');
mysql_select_db('blog_db', $link);

$result = mysql_query('SELECT id, title FROM post', $link);

$posts = array();
while ($row = mysql_fetch_assoc($result)) {
 $posts[] = $row;
}

mysql_close($link);

// include the HTML presentation code
require 'templates/list.php';

The HTML code is now stored in a separate file (templates/list.php), which
is primarily an HTML file that uses a template-like PHP syntax:

<html>
 <head>
 <title>List of Posts</title>
 </head>
 <body>
 <h1>List of Posts</h1>

 <?php foreach ($posts as $post): ?>

 <a href="/read?id=<?php echo $post['id'] ?>">
 <?php echo $post['title'] ?>

 <?php endforeach; ?>

 </body>
</html>

By convention, the file that contains all of the application logic - index.php -
is known as a “controller”. The term controller is a word you’ll hear
a lot, regardless of the language or framework you use. It refers simply
to the area of your code that processes user input and prepares the response.

In this case, our controller prepares data from the database and then includes
a template to present that data. With the controller isolated, you could
easily change just the template file if you needed to render the blog
entries in some other format (e.g. list.json.php for JSON format).

Isolating the Application (Domain) Logic

So far the application contains only one page. But what if a second page
needed to use the same database connection, or even the same array of blog
posts? Refactor the code so that the core behavior and data-access functions
of the application are isolated in a new file called model.php:

<?php
// model.php

function open_database_connection()
{
 $link = mysql_connect('localhost', 'myuser', 'mypassword');
 mysql_select_db('blog_db', $link);

 return $link;
}

function close_database_connection($link)
{
 mysql_close($link);
}

function get_all_posts()
{
 $link = open_database_connection();

 $result = mysql_query('SELECT id, title FROM post', $link);
 $posts = array();
 while ($row = mysql_fetch_assoc($result)) {
 $posts[] = $row;
 }
 close_database_connection($link);

 return $posts;
}

Tip

The filename model.php is used because the logic and data access of
an application is traditionally known as the “model” layer. In a well-organized
application, the majority of the code representing your “business logic”
should live in the model (as opposed to living in a controller). And unlike
in this example, only a portion (or none) of the model is actually concerned
with accessing a database.

The controller (index.php) is now very simple:

<?php
require_once 'model.php';

$posts = get_all_posts();

require 'templates/list.php';

Now, the sole task of the controller is to get data from the model layer of
the application (the model) and to call a template to render that data.
This is a very simple example of the model-view-controller pattern.

Isolating the Layout

At this point, the application has been refactored into three distinct pieces
offering various advantages and the opportunity to reuse almost everything
on different pages.

The only part of the code that can’t be reused is the page layout. Fix
that by creating a new layout.php file:

<!-- templates/layout.php -->
<html>
 <head>
 <title><?php echo $title ?></title>
 </head>
 <body>
 <?php echo $content ?>
 </body>
</html>

The template (templates/list.php) can now be simplified to “extend”
the layout:

<?php $title = 'List of Posts' ?>

<?php ob_start() ?>
 <h1>List of Posts</h1>

 <?php foreach ($posts as $post): ?>

 <a href="/read?id=<?php echo $post['id'] ?>">
 <?php echo $post['title'] ?>

 <?php endforeach; ?>

<?php $content = ob_get_clean() ?>

<?php include 'layout.php' ?>

You’ve now introduced a methodology that allows for the reuse of the
layout. Unfortunately, to accomplish this, you’re forced to use a few ugly
PHP functions (ob_start(), ob_get_clean()) in the template. Symfony2
uses a Templating component that allows this to be accomplished cleanly
and easily. You’ll see it in action shortly.

Adding a Blog “show” Page

The blog “list” page has now been refactored so that the code is better-organized
and reusable. To prove it, add a blog “show” page, which displays an individual
blog post identified by an id query parameter.

To begin, create a new function in the model.php file that retrieves
an individual blog result based on a given id:

// model.php
function get_post_by_id($id)
{
 $link = open_database_connection();

 $id = mysql_real_escape_string($id);
 $query = 'SELECT date, title, body FROM post WHERE id = '.$id;
 $result = mysql_query($query);
 $row = mysql_fetch_assoc($result);

 close_database_connection($link);

 return $row;
}

Next, create a new file called show.php - the controller for this new
page:

<?php
require_once 'model.php';

$post = get_post_by_id($_GET['id']);

require 'templates/show.php';

Finally, create the new template file - templates/show.php - to render
the individual blog post:

<?php $title = $post['title'] ?>

<?php ob_start() ?>
 <h1><?php echo $post['title'] ?></h1>

 <div class="date"><?php echo $post['date'] ?></div>
 <div class="body">
 <?php echo $post['body'] ?>
 </div>
<?php $content = ob_get_clean() ?>

<?php include 'layout.php' ?>

Creating the second page is now very easy and no code is duplicated. Still,
this page introduces even more lingering problems that a framework can solve
for you. For example, a missing or invalid id query parameter will cause
the page to crash. It would be better if this caused a 404 page to be rendered,
but this can’t really be done easily yet. Worse, had you forgotten to clean
the id parameter via the mysql_real_escape_string() function, your
entire database would be at risk for an SQL injection attack.

Another major problem is that each individual controller file must include
the model.php file. What if each controller file suddenly needed to include
an additional file or perform some other global task (e.g. enforce security)?
As it stands now, that code would need to be added to every controller file.
If you forget to include something in one file, hopefully it doesn’t relate
to security...

A “Front Controller” to the Rescue

The solution is to use a front controller: a single PHP file through
which all requests are processed. With a front controller, the URIs for the
application change slightly, but start to become more flexible:

Without a front controller
/index.php => Blog post list page (index.php executed)
/show.php => Blog post show page (show.php executed)

With index.php as the front controller
/index.php => Blog post list page (index.php executed)
/index.php/show => Blog post show page (index.php executed)

Tip

The index.php portion of the URI can be removed if using Apache
rewrite rules (or equivalent). In that case, the resulting URI of the
blog show page would be simply /show.

When using a front controller, a single PHP file (index.php in this case)
renders every request. For the blog post show page, /index.php/show will
actually execute the index.php file, which is now responsible for routing
requests internally based on the full URI. As you’ll see, a front controller
is a very powerful tool.

Creating the Front Controller

You’re about to take a big step with the application. With one file handling
all requests, you can centralize things such as security handling, configuration
loading, and routing. In this application, index.php must now be smart
enough to render the blog post list page or the blog post show page based
on the requested URI:

<?php
// index.php

// load and initialize any global libraries
require_once 'model.php';
require_once 'controllers.php';

// route the request internally
$uri = $_SERVER['REQUEST_URI'];
if ($uri == '/index.php') {
 list_action();
} elseif ($uri == '/index.php/show' && isset($_GET['id'])) {
 show_action($_GET['id']);
} else {
 header('Status: 404 Not Found');
 echo '<html><body><h1>Page Not Found</h1></body></html>';
}

For organization, both controllers (formerly index.php and show.php)
are now PHP functions and each has been moved into a separate file, controllers.php:

function list_action()
{
 $posts = get_all_posts();
 require 'templates/list.php';
}

function show_action($id)
{
 $post = get_post_by_id($id);
 require 'templates/show.php';
}

As a front controller, index.php has taken on an entirely new role, one
that includes loading the core libraries and routing the application so that
one of the two controllers (the list_action() and show_action()
functions) is called. In reality, the front controller is beginning to look and
act a lot like Symfony2’s mechanism for handling and routing requests.

Tip

Another advantage of a front controller is flexible URLs. Notice that
the URL to the blog post show page could be changed from /show to /read
by changing code in only one location. Before, an entire file needed to
be renamed. In Symfony2, URLs are even more flexible.

By now, the application has evolved from a single PHP file into a structure
that is organized and allows for code reuse. You should be happier, but far
from satisfied. For example, the “routing” system is fickle, and wouldn’t
recognize that the list page (/index.php) should be accessible also via /
(if Apache rewrite rules were added). Also, instead of developing the blog,
a lot of time is being spent working on the “architecture” of the code (e.g.
routing, calling controllers, templates, etc.). More time will need to be
spent to handle form submissions, input validation, logging and security.
Why should you have to reinvent solutions to all these routine problems?

Add a Touch of Symfony2

Symfony2 to the rescue. Before actually using Symfony2, you need to make
sure PHP knows how to find the Symfony2 classes. This is accomplished via
an autoloader that Symfony provides. An autoloader is a tool that makes it
possible to start using PHP classes without explicitly including the file
containing the class.

First, download symfony [http://symfony.com/download] and place it into a vendor/symfony/ directory.
Next, create an app/bootstrap.php file. Use it to require the two
files in the application and to configure the autoloader:

<?php
// bootstrap.php
require_once 'model.php';
require_once 'controllers.php';
require_once 'vendor/symfony/src/Symfony/Component/ClassLoader/UniversalClassLoader.php';

$loader = new Symfony\Component\ClassLoader\UniversalClassLoader();
$loader->registerNamespaces(array(
 'Symfony' => __DIR__.'/../vendor/symfony/src',
));

$loader->register();

This tells the autoloader where the Symfony classes are. With this, you
can start using Symfony classes without using the require statement for
the files that contain them.

Core to Symfony’s philosophy is the idea that an application’s main job is
to interpret each request and return a response. To this end, Symfony2 provides
both a Symfony\Component\HttpFoundation\Request and a
Symfony\Component\HttpFoundation\Response class. These classes are
object-oriented representations of the raw HTTP request being processed and
the HTTP response being returned. Use them to improve the blog:

<?php
// index.php
require_once 'app/bootstrap.php';

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

$request = Request::createFromGlobals();

$uri = $request->getPathInfo();
if ($uri == '/') {
 $response = list_action();
} elseif ($uri == '/show' && $request->query->has('id')) {
 $response = show_action($request->query->get('id'));
} else {
 $html = '<html><body><h1>Page Not Found</h1></body></html>';
 $response = new Response($html, 404);
}

// echo the headers and send the response
$response->send();

The controllers are now responsible for returning a Response object.
To make this easier, you can add a new render_template() function, which,
incidentally, acts quite a bit like the Symfony2 templating engine:

// controllers.php
use Symfony\Component\HttpFoundation\Response;

function list_action()
{
 $posts = get_all_posts();
 $html = render_template('templates/list.php', array('posts' => $posts));

 return new Response($html);
}

function show_action($id)
{
 $post = get_post_by_id($id);
 $html = render_template('templates/show.php', array('post' => $post));

 return new Response($html);
}

// helper function to render templates
function render_template($path, array $args)
{
 extract($args);
 ob_start();
 require $path;
 $html = ob_get_clean();

 return $html;
}

By bringing in a small part of Symfony2, the application is more flexible and
reliable. The Request provides a dependable way to access information
about the HTTP request. Specifically, the getPathInfo() method returns
a cleaned URI (always returning /show and never /index.php/show).
So, even if the user goes to /index.php/show, the application is intelligent
enough to route the request through show_action().

The Response object gives flexibility when constructing the HTTP response,
allowing HTTP headers and content to be added via an object-oriented interface.
And while the responses in this application are simple, this flexibility
will pay dividends as your application grows.

The Sample Application in Symfony2

The blog has come a long way, but it still contains a lot of code for such
a simple application. Along the way, we’ve also invented a simple routing
system and a method using ob_start() and ob_get_clean() to render
templates. If, for some reason, you needed to continue building this “framework”
from scratch, you could at least use Symfony’s standalone Routing [https://github.com/symfony/Routing] and
Templating [https://github.com/symfony/Templating] components, which already solve these problems.

Instead of re-solving common problems, you can let Symfony2 take care of
them for you. Here’s the same sample application, now built in Symfony2:

<?php
// src/Acme/BlogBundle/Controller/BlogController.php

namespace Acme\BlogBundle\Controller;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class BlogController extends Controller
{
 public function listAction()
 {
 $posts = $this->get('doctrine')->getEntityManager()
 ->createQuery('SELECT p FROM AcmeBlogBundle:Post p')
 ->execute();

 return $this->render('AcmeBlogBundle:Blog:list.html.php', array('posts' => $posts));
 }

 public function showAction($id)
 {
 $post = $this->get('doctrine')
 ->getEntityManager()
 ->getRepository('AcmeBlogBundle:Post')
 ->find($id);

 if (!$post) {
 // cause the 404 page not found to be displayed
 throw $this->createNotFoundException();
 }

 return $this->render('AcmeBlogBundle:Blog:show.html.php', array('post' => $post));
 }
}

The two controllers are still lightweight. Each uses the Doctrine ORM library
to retrieve objects from the database and the Templating component to
render a template and return a Response object. The list template is
now quite a bit simpler:

<!-- src/Acme/BlogBundle/Resources/views/Blog/list.html.php -->
<?php $view->extend('::layout.html.php') ?>

<?php $view['slots']->set('title', 'List of Posts') ?>

<h1>List of Posts</h1>

 <?php foreach ($posts as $post): ?>

 <a href="<?php echo $view['router']->generate('blog_show', array('id' => $post->getId())) ?>">
 <?php echo $post->getTitle() ?>

 <?php endforeach; ?>

The layout is nearly identical:

<!-- app/Resources/views/layout.html.php -->
<html>
 <head>
 <title><?php echo $view['slots']->output('title', 'Default title') ?></title>
 </head>
 <body>
 <?php echo $view['slots']->output('_content') ?>
 </body>
</html>

Note

We’ll leave the show template as an exercise, as it should be trivial to
create based on the list template.

When Symfony2’s engine (called the Kernel) boots up, it needs a map so
that it knows which controllers to execute based on the request information.
A routing configuration map provides this information in a readable format:

app/config/routing.yml
blog_list:
 pattern: /blog
 defaults: { _controller: AcmeBlogBundle:Blog:list }

blog_show:
 pattern: /blog/show/{id}
 defaults: { _controller: AcmeBlogBundle:Blog:show }

Now that Symfony2 is handling all the mundane tasks, the front controller
is dead simple. And since it does so little, you’ll never have to touch
it once it’s created (and if you use a Symfony2 distribution, you won’t
even need to create it!):

<?php
// web/app.php
require_once __DIR__.'/../app/bootstrap.php';
require_once __DIR__.'/../app/AppKernel.php';

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('prod', false);
$kernel->handle(Request::createFromGlobals())->send();

The front controller’s only job is to initialize Symfony2’s engine (Kernel)
and pass it a Request object to handle. Symfony2’s core then uses the
routing map to determine which controller to call. Just like before, the
controller method is responsible for returning the final Response object.
There’s really not much else to it.

For a visual representation of how Symfony2 handles each request, see the
request flow diagram.

Where Symfony2 Delivers

In the upcoming chapters, you’ll learn more about how each piece of Symfony
works and the recommended organization of a project. For now, let’s see how
migrating the blog from flat PHP to Symfony2 has improved life:

	Your application now has clear and consistently organized code (though
Symfony doesn’t force you into this). This promotes reusability and
allows for new developers to be productive in your project more quickly.

	100% of the code you write is for your application. You don’t need
to develop or maintain low-level utilities such as autoloading,
routing, or rendering controllers.

	Symfony2 gives you access to open source tools such as Doctrine and the
Templating, Security, Form, Validation and Translation components (to name
a few).

	The application now enjoys fully-flexible URLs thanks to the Routing
component.

	Symfony2’s HTTP-centric architecture gives you access to powerful tools
such as HTTP caching powered by Symfony2’s internal HTTP cache or
more powerful tools such as Varnish [http://www.varnish-cache.org]. This is covered in a later chapter
all about caching.

And perhaps best of all, by using Symfony2, you now have access to a whole
set of high-quality open source tools developed by the Symfony2 community!
A good selection of Symfony2 community tools can be found on KnpBundles.com [http://knpbundles.com/].

Better templates

If you choose to use it, Symfony2 comes standard with a templating engine
called Twig [http://twig.sensiolabs.org] that makes templates faster to write and easier to read.
It means that the sample application could contain even less code! Take,
for example, the list template written in Twig:

{# src/Acme/BlogBundle/Resources/views/Blog/list.html.twig #}

{% extends "::layout.html.twig" %}
{% block title %}List of Posts{% endblock %}

{% block body %}
 <h1>List of Posts</h1>

 {% for post in posts %}

 {{ post.title }}

 {% endfor %}

{% endblock %}

The corresponding layout.html.twig template is also easier to write:

{# app/Resources/views/layout.html.twig #}

<html>
 <head>
 <title>{% block title %}Default title{% endblock %}</title>
 </head>
 <body>
 {% block body %}{% endblock %}
 </body>
</html>

Twig is well-supported in Symfony2. And while PHP templates will always
be supported in Symfony2, we’ll continue to discuss the many advantages of
Twig. For more information, see the templating chapter.

Learn more from the Cookbook

	How to use PHP instead of Twig for Templates

	How to define Controllers as Services

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Installing and Configuring Symfony

The goal of this chapter is to get you up and running with a working application
built on top of Symfony. Fortunately, Symfony offers “distributions”, which
are functional Symfony “starter” projects that you can download and begin
developing in immediately.

Tip

If you’re looking for instructions on how best to create a new project
and store it via source control, see Using Source Control.

Downloading a Symfony2 Distribution

Tip

First, check that you have installed and configured a Web server (such
as Apache) with PHP 5.3.2 or higher. For more information on Symfony2
requirements, see the requirements reference.

Symfony2 packages “distributions”, which are fully-functional applications
that include the Symfony2 core libraries, a selection of useful bundles, a
sensible directory structure and some default configuration. When you download
a Symfony2 distribution, you’re downloading a functional application skeleton
that can be used immediately to begin developing your application.

Start by visiting the Symfony2 download page at http://symfony.com/download.
On this page, you’ll see the Symfony Standard Edition, which is the main
Symfony2 distribution. Here, you’ll need to make two choices:

	Download either a .tgz or .zip archive - both are equivalent, download
whatever you’re more comfortable using;

	Download the distribution with or without vendors. If you have Git [http://git-scm.com/] installed
on your computer, you should download Symfony2 “without vendors”, as it
adds a bit more flexibility when including third-party/vendor libraries.

Download one of the archives somewhere under your local web server’s root
directory and unpack it. From a UNIX command line, this can be done with
one of the following commands (replacing ### with your actual filename):

for .tgz file
tar zxvf Symfony_Standard_Vendors_2.0.###.tgz

for a .zip file
unzip Symfony_Standard_Vendors_2.0.###.zip

When you’re finished, you should have a Symfony/ directory that looks
something like this:

www/ <- your web root directory
 Symfony/ <- the unpacked archive
 app/
 cache/
 config/
 logs/
 src/
 ...
 vendor/
 ...
 web/
 app.php
 ...

Updating Vendors

Finally, if you downloaded the archive “without vendors”, install the vendors
by running the following command from the command line:

php bin/vendors install

This command downloads all of the necessary vendor libraries - including
Symfony itself - into the vendor/ directory. For more information on
how third-party vendor libraries are managed inside Symfony2, see
“cookbook-managing-vendor-libraries”.

Configuration and Setup

At this point, all of the needed third-party libraries now live in the vendor/
directory. You also have a default application setup in app/ and some
sample code inside the src/ directory.

Symfony2 comes with a visual server configuration tester to help make sure
your Web server and PHP are configured to use Symfony. Use the following URL
to check your configuration:

http://localhost/Symfony/web/config.php

If there are any issues, correct them now before moving on.

Setting up Permissions

One common issue is that the app/cache and app/logs directories
must be writable both by the web server and the command line user. On
a UNIX system, if your web server user is different from your command
line user, you can run the following commands just once in your project
to ensure that permissions will be setup properly. Change www-data
to your web server user:

1. Using ACL on a system that supports chmod +a

Many systems allow you to use the chmod +a command. Try this first,
and if you get an error - try the next method:

rm -rf app/cache/*
rm -rf app/logs/*

sudo chmod +a "www-data allow delete,write,append,file_inherit,directory_inherit" app/cache app/logs
sudo chmod +a "`whoami` allow delete,write,append,file_inherit,directory_inherit" app/cache app/logs

2. Using Acl on a system that does not support chmod +a

Some systems don’t support chmod +a, but do support another utility
called setfacl. You may need to enable ACL support [https://help.ubuntu.com/community/FilePermissions#ACLs] on your partition
and install setfacl before using it (as is the case with Ubuntu), like
so:

sudo setfacl -R -m u:www-data:rwx -m u:`whoami`:rwx app/cache app/logs
sudo setfacl -dR -m u:www-data:rwx -m u:`whoami`:rwx app/cache app/logs

3. Without using ACL

If you don’t have access to changing the ACL of the directories, you will
need to change the umask so that the cache and log directories will
be group-writable or world-writable (depending if the web server user
and the command line user are in the same group or not). To achieve
this, put the following line at the beginning of the app/console,
web/app.php and web/app_dev.php files:

umask(0002); // This will let the permissions be 0775

// or

umask(0000); // This will let the permissions be 0777

Note that using the ACL is recommended when you have access to them
on your server because changing the umask is not thread-safe.

When everything is fine, click on “Go to the Welcome page” to request your
first “real” Symfony2 webpage:

http://localhost/Symfony/web/app_dev.php/

Symfony2 should welcome and congratulate you for your hard work so far!

[image: ../_images/welcome.jpg]

Beginning Development

Now that you have a fully-functional Symfony2 application, you can begin
development! Your distribution may contain some sample code - check the
README.rst file included with the distribution (open it as a text file)
to learn about what sample code was included with your distribution and how
you can remove it later.

If you’re new to Symfony, join us in the “Creating Pages in Symfony2”, where you’ll
learn how to create pages, change configuration, and do everything else you’ll
need in your new application.

Using Source Control

If you’re using a version control system like Git or Subversion, you
can setup your version control system and begin committing your project to
it as normal. The Symfony Standard edition is the starting point for your
new project.

For specific instructions on how best to setup your project to be stored
in git, see How to Create and store a Symfony2 Project in git.

Ignoring the vendor/ Directory

If you’ve downloaded the archive without vendors, you can safely ignore
the entire vendor/ directory and not commit it to source control. With
Git, this is done by creating and adding the following to a .gitignore
file:

vendor/

Now, the vendor directory won’t be committed to source control. This is fine
(actually, it’s great!) because when someone else clones or checks out the
project, he/she can simply run the php bin/vendors install script to
download all the necessary vendor libraries.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Creating Pages in Symfony2

Creating a new page in Symfony2 is a simple two-step process:

	Create a route: A route defines the URL (e.g. /about) to your page
and specifies a controller (which is a PHP function) that Symfony2 should
execute when the URL of an incoming request matches the route pattern;

	Create a controller: A controller is a PHP function that takes the incoming
request and transforms it into the Symfony2 Response object that’s
returned to the user.

This simple approach is beautiful because it matches the way that the Web works.
Every interaction on the Web is initiated by an HTTP request. The job of
your application is simply to interpret the request and return the appropriate
HTTP response.

Symfony2 follows this philosophy and provides you with tools and conventions
to keep your application organized as it grows in users and complexity.

Sounds simple enough? Let’s dive in!

The “Hello Symfony!” Page

Let’s start with a spin off of the classic “Hello World!” application. When
you’re finished, the user will be able to get a personal greeting (e.g. “Hello Symfony”)
by going to the following URL:

http://localhost/app_dev.php/hello/Symfony

Actually, you’ll be able to replace Symfony with any other name to be
greeted. To create the page, follow the simple two-step process.

Note

The tutorial assumes that you’ve already downloaded Symfony2 and configured
your webserver. The above URL assumes that localhost points to the
web directory of your new Symfony2 project. For detailed information
on this process, see the Installing Symfony2.

Before you begin: Create the Bundle

Before you begin, you’ll need to create a bundle. In Symfony2, a bundle
is like a plugin, except that all of the code in your application will live
inside a bundle.

A bundle is nothing more than a directory that houses everything related
to a specific feature, including PHP classes, configuration, and even stylesheets
and Javascript files (see The Bundle System).

To create a bundle called AcmeHelloBundle (a play bundle that you’ll
build in this chapter), run the following command and follow the on-screen
instructions (use all of the default options):

php app/console generate:bundle --namespace=Acme/HelloBundle --format=yml

Behind the scenes, a directory is created for the bundle at src/Acme/HelloBundle.
A line is also automatically added to the app/AppKernel.php file so that
the bundle is registered with the kernel:

// app/AppKernel.php
public function registerBundles()
{
 $bundles = array(
 // ...
 new Acme\HelloBundle\AcmeHelloBundle(),
);
 // ...

 return $bundles;
}

Now that you have a bundle setup, you can begin building your application
inside the bundle.

Step 1: Create the Route

By default, the routing configuration file in a Symfony2 application is
located at app/config/routing.yml. Like all configuration in Symfony2,
you can also choose to use XML or PHP out of the box to configure routes.

If you look at the main routing file, you’ll see that Symfony already added
an entry when you generated the AcmeHelloBundle:

	YAML# app/config/routing.yml
AcmeHelloBundle:
 resource: "@AcmeHelloBundle/Resources/config/routing.yml"
 prefix: /

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <import resource="@AcmeHelloBundle/Resources/config/routing.xml" prefix="/" />
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->addCollection(
 $loader->import('@AcmeHelloBundle/Resources/config/routing.php'),
 '/',
);

return $collection;

This entry is pretty basic: it tells Symfony to load routing configuration
from the Resources/config/routing.yml file that lives inside the AcmeHelloBundle.
This means that you place routing configuration directly in app/config/routing.yml
or organize your routes throughout your application, and import them from here.

Now that the routing.yml file from the bundle is being imported, add
the new route that defines the URL of the page that you’re about to create:

	YAML# src/Acme/HelloBundle/Resources/config/routing.yml
hello:
 pattern: /hello/{name}
 defaults: { _controller: AcmeHelloBundle:Hello:index }

	XML<!-- src/Acme/HelloBundle/Resources/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="hello" pattern="/hello/{name}">
 <default key="_controller">AcmeHelloBundle:Hello:index</default>
 </route>
</routes>

	PHP// src/Acme/HelloBundle/Resources/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('hello', new Route('/hello/{name}', array(
 '_controller' => 'AcmeHelloBundle:Hello:index',
)));

return $collection;

The routing consists of two basic pieces: the pattern, which is the URL
that this route will match, and a defaults array, which specifies the
controller that should be executed. The placeholder syntax in the pattern
({name}) is a wildcard. It means that /hello/Ryan, /hello/Fabien
or any other similar URL will match this route. The {name} placeholder
parameter will also be passed to the controller so that you can use its value
to personally greet the user.

Note

The routing system has many more great features for creating flexible
and powerful URL structures in your application. For more details, see
the chapter all about Routing.

Step 2: Create the Controller

When a URL such as /hello/Ryan is handled by the application, the hello
route is matched and the AcmeHelloBundle:Hello:index controller is executed
by the framework. The second step of the page-creation process is to create
that controller.

The controller - AcmeHelloBundle:Hello:index is the logical name of
the controller, and it maps to the indexAction method of a PHP class
called Acme\HelloBundle\Controller\Hello. Start by creating this file
inside your AcmeHelloBundle:

// src/Acme/HelloBundle/Controller/HelloController.php
namespace Acme\HelloBundle\Controller;

use Symfony\Component\HttpFoundation\Response;

class HelloController
{
}

In reality, the controller is nothing more than a PHP method that you create
and Symfony executes. This is where your code uses information from the request
to build and prepare the resource being requested. Except in some advanced
cases, the end product of a controller is always the same: a Symfony2 Response
object.

Create the indexAction method that Symfony will execute when the hello
route is matched:

// src/Acme/HelloBundle/Controller/HelloController.php

// ...
class HelloController
{
 public function indexAction($name)
 {
 return new Response('<html><body>Hello '.$name.'!</body></html>');
 }
}

The controller is simple: it creates a new Response object, whose first
argument is the content that should be used in the response (a small HTML
page in this example).

Congratulations! After creating only a route and a controller, you already
have a fully-functional page! If you’ve setup everything correctly, your
application should greet you:

http://localhost/app_dev.php/hello/Ryan

Tip

You can also view your app in the “prod” environment
by visiting:

http://localhost/app.php/hello/Ryan

If you get an error, it’s likely because you need to clear your cache
by running:

php app/console cache:clear --env=prod --no-debug

An optional, but common, third step in the process is to create a template.

Note

Controllers are the main entry point for your code and a key ingredient
when creating pages. Much more information can be found in the
Controller Chapter.

Optional Step 3: Create the Template

Templates allows you to move all of the presentation (e.g. HTML code) into
a separate file and reuse different portions of the page layout. Instead
of writing the HTML inside the controller, render a template instead:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	// src/Acme/HelloBundle/Controller/HelloController.php
namespace Acme\HelloBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class HelloController extends Controller
{
 public function indexAction($name)
 {
 return $this->render('AcmeHelloBundle:Hello:index.html.twig', array('name' => $name));

 // render a PHP template instead
 // return $this->render('AcmeHelloBundle:Hello:index.html.php', array('name' => $name));
 }
}

Note

In order to use the render() method, your controller must extend the
Symfony\Bundle\FrameworkBundle\Controller\Controller class (API
docs: Symfony\Bundle\FrameworkBundle\Controller\Controller),
which adds shortcuts for tasks that are common inside controllers. This
is done in the above example by adding the use statement on line 4
and then extending Controller on line 6.

The render() method creates a Response object filled with the content
of the given, rendered template. Like any other controller, you will ultimately
return that Response object.

Notice that there are two different examples for rendering the template.
By default, Symfony2 supports two different templating languages: classic
PHP templates and the succinct but powerful Twig [http://twig.sensiolabs.org] templates. Don’t be
alarmed - you’re free to choose either or even both in the same project.

The controller renders the AcmeHelloBundle:Hello:index.html.twig template,
which uses the following naming convention:

BundleName:ControllerName:TemplateName

This is the logical name of the template, which is mapped to a physical
location using the following convention.

/path/to/BundleName/Resources/views/ControllerName/TemplateName

In this case, AcmeHelloBundle is the bundle name, Hello is the
controller, and index.html.twig the template:

	Twig	1
2
3
4
5
6

	 {# src/Acme/HelloBundle/Resources/views/Hello/index.html.twig #}
 {% extends '::base.html.twig' %}

 {% block body %}
 Hello {{ name }}!
 {% endblock %}

	PHP<!-- src/Acme/HelloBundle/Resources/views/Hello/index.html.php -->
<?php $view->extend('::base.html.php') ?>

Hello <?php echo $view->escape($name) ?>!

Let’s step through the Twig template line-by-line:

	line 2: The extends token defines a parent template. The template
explicitly defines a layout file inside of which it will be placed.

	line 4: The block token says that everything inside should be placed
inside a block called body. As you’ll see, it’s the responsibility
of the parent template (base.html.twig) to ultimately render the
block called body.

The parent template, ::base.html.twig, is missing both the BundleName
and ControllerName portions of its name (hence the double colon (::)
at the beginning). This means that the template lives outside of the bundles
and in the app directory:

	Twig{# app/Resources/views/base.html.twig #}
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>{% block title %}Welcome!{% endblock %}</title>
 {% block stylesheets %}{% endblock %}
 <link rel="shortcut icon" href="{{ asset('favicon.ico') }}" />
 </head>
 <body>
 {% block body %}{% endblock %}
 {% block javascripts %}{% endblock %}
 </body>
</html>

	PHP<!-- app/Resources/views/base.html.php -->
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title><?php $view['slots']->output('title', 'Welcome!') ?></title>
 <?php $view['slots']->output('stylesheets') ?>
 <link rel="shortcut icon" href="<?php echo $view['assets']->getUrl('favicon.ico') ?>" />
 </head>
 <body>
 <?php $view['slots']->output('_content') ?>
 <?php $view['slots']->output('stylesheets') ?>
 </body>
</html>

The base template file defines the HTML layout and renders the body block
that you defined in the index.html.twig template. It also renders a title
block, which you could choose to define in the index.html.twig template.
Since you did not define the title block in the child template, it defaults
to “Welcome!”.

Templates are a powerful way to render and organize the content for your
page. A template can render anything, from HTML markup, to CSS code, or anything
else that the controller may need to return.

In the lifecycle of handling a request, the templating engine is simply
an optional tool. Recall that the goal of each controller is to return a
Response object. Templates are a powerful, but optional, tool for creating
the content for that Response object.

The Directory Structure

After just a few short sections, you already understand the philosophy behind
creating and rendering pages in Symfony2. You’ve also already begun to see
how Symfony2 projects are structured and organized. By the end of this section,
you’ll know where to find and put different types of files and why.

Though entirely flexible, by default, each Symfony application has
the same basic and recommended directory structure:

	app/: This directory contains the application configuration;

	src/: All the project PHP code is stored under this directory;

	vendor/: Any vendor libraries are placed here by convention;

	web/: This is the web root directory and contains any publicly accessible files;

The Web Directory

The web root directory is the home of all public and static files including
images, stylesheets, and JavaScript files. It is also where each
front controller lives:

// web/app.php
require_once __DIR__.'/../app/bootstrap.php.cache';
require_once __DIR__.'/../app/AppKernel.php';

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('prod', false);
$kernel->loadClassCache();
$kernel->handle(Request::createFromGlobals())->send();

The front controller file (app.php in this example) is the actual PHP
file that’s executed when using a Symfony2 application and its job is to
use a Kernel class, AppKernel, to bootstrap the application.

Tip

Having a front controller means different and more flexible URLs than
are used in a typical flat PHP application. When using a front controller,
URLs are formatted in the following way:

http://localhost/app.php/hello/Ryan

The front controller, app.php, is executed and the “internal:” URL
/hello/Ryan is routed internally using the routing configuration.
By using Apache mod_rewrite rules, you can force the app.php file
to be executed without needing to specify it in the URL:

http://localhost/hello/Ryan

Though front controllers are essential in handling every request, you’ll
rarely need to modify or even think about them. We’ll mention them again
briefly in the Environments section.

The Application (app) Directory

As you saw in the front controller, the AppKernel class is the main entry
point of the application and is responsible for all configuration. As such,
it is stored in the app/ directory.

This class must implement two methods that define everything that Symfony
needs to know about your application. You don’t even need to worry about
these methods when starting - Symfony fills them in for you with sensible
defaults.

	registerBundles(): Returns an array of all bundles needed to run the
application (see The Bundle System);

	registerContainerConfiguration(): Loads the main application configuration
resource file (see the Application Configuration section).

In day-to-day development, you’ll mostly use the app/ directory to modify
configuration and routing files in the app/config/ directory (see
Application Configuration). It also contains the application cache
directory (app/cache), a log directory (app/logs) and a directory
for application-level resource files, such as templates (app/Resources).
You’ll learn more about each of these directories in later chapters.

Autoloading

When Symfony is loading, a special file - app/autoload.php - is included.
This file is responsible for configuring the autoloader, which will autoload
your application files from the src/ directory and third-party libraries
from the vendor/ directory.

Because of the autoloader, you never need to worry about using include
or require statements. Instead, Symfony2 uses the namespace of a class
to determine its location and automatically includes the file on your
behalf the instant you need a class.

The autoloader is already configured to look in the src/ directory
for any of your PHP classes. For autoloading to work, the class name and
path to the file have to follow the same pattern:

Class Name:
 Acme\HelloBundle\Controller\HelloController
Path:
 src/Acme/HelloBundle/Controller/HelloController.php

Typically, the only time you’ll need to worry about the app/autoload.php
file is when you’re including a new third-party library in the vendor/
directory. For more information on autoloading, see
How to autoload Classes.

The Source (src) Directory

Put simply, the src/ directory contains all of the actual code (PHP code,
templates, configuration files, stylesheets, etc) that drives your application.
When developing, the vast majority of your work will be done inside one or
more bundles that you create in this directory.

But what exactly is a bundle?

The Bundle System

A bundle is similar to a plugin in other software, but even better. The key
difference is that everything is a bundle in Symfony2, including both the
core framework functionality and the code written for your application.
Bundles are first-class citizens in Symfony2. This gives you the flexibility
to use pre-built features packaged in third-party bundles [http://symfony2bundles.org/] or to distribute
your own bundles. It makes it easy to pick and choose which features to enable
in your application and to optimize them the way you want.

Note

While you’ll learn the basics here, an entire cookbook entry is devoted
to the organization and best practices of bundles.

A bundle is simply a structured set of files within a directory that implement
a single feature. You might create a BlogBundle, a ForumBundle or
a bundle for user management (many of these exist already as open source
bundles). Each directory contains everything related to that feature, including
PHP files, templates, stylesheets, JavaScripts, tests and anything else.
Every aspect of a feature exists in a bundle and every feature lives in a
bundle.

An application is made up of bundles as defined in the registerBundles()
method of the AppKernel class:

// app/AppKernel.php
public function registerBundles()
{
 $bundles = array(
 new Symfony\Bundle\FrameworkBundle\FrameworkBundle(),
 new Symfony\Bundle\SecurityBundle\SecurityBundle(),
 new Symfony\Bundle\TwigBundle\TwigBundle(),
 new Symfony\Bundle\MonologBundle\MonologBundle(),
 new Symfony\Bundle\SwiftmailerBundle\SwiftmailerBundle(),
 new Symfony\Bundle\DoctrineBundle\DoctrineBundle(),
 new Symfony\Bundle\AsseticBundle\AsseticBundle(),
 new Sensio\Bundle\FrameworkExtraBundle\SensioFrameworkExtraBundle(),
 new JMS\SecurityExtraBundle\JMSSecurityExtraBundle(),
);

 if (in_array($this->getEnvironment(), array('dev', 'test'))) {
 $bundles[] = new Acme\DemoBundle\AcmeDemoBundle();
 $bundles[] = new Symfony\Bundle\WebProfilerBundle\WebProfilerBundle();
 $bundles[] = new Sensio\Bundle\DistributionBundle\SensioDistributionBundle();
 $bundles[] = new Sensio\Bundle\GeneratorBundle\SensioGeneratorBundle();
 }

 return $bundles;
}

With the registerBundles() method, you have total control over which bundles
are used by your application (including the core Symfony bundles).

Tip

A bundle can live anywhere as long as it can be autoloaded (via the
autoloader configured at app/autoload.php).

Creating a Bundle

The Symfony Standard Edition comes with a handy task that creates a fully-functional
bundle for you. Of course, creating a bundle by hand is pretty easy as well.

To show you how simple the bundle system is, create a new bundle called
AcmeTestBundle and enable it.

Tip

The Acme portion is just a dummy name that should be replaced by
some “vendor” name that represents you or your organization (e.g. ABCTestBundle
for some company named ABC).

Start by creating a src/Acme/TestBundle/ directory and adding a new file
called AcmeTestBundle.php:

// src/Acme/TestBundle/AcmeTestBundle.php
namespace Acme\TestBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class AcmeTestBundle extends Bundle
{
}

Tip

The name AcmeTestBundle follows the standard Bundle naming conventions.
You could also choose to shorten the name of the bundle to simply TestBundle
by naming this class TestBundle (and naming the file TestBundle.php).

This empty class is the only piece you need to create the new bundle. Though
commonly empty, this class is powerful and can be used to customize the behavior
of the bundle.

Now that you’ve created the bundle, enable it via the AppKernel class:

// app/AppKernel.php
public function registerBundles()
{
 $bundles = array(
 // ...

 // register your bundles
 new Acme\TestBundle\AcmeTestBundle(),
);
 // ...

 return $bundles;
}

And while it doesn’t do anything yet, AcmeTestBundle is now ready to
be used.

And as easy as this is, Symfony also provides a command-line interface for
generating a basic bundle skeleton:

php app/console generate:bundle --namespace=Acme/TestBundle

The bundle skeleton generates with a basic controller, template and routing
resource that can be customized. You’ll learn more about Symfony2’s command-line
tools later.

Tip

Whenever creating a new bundle or using a third-party bundle, always make
sure the bundle has been enabled in registerBundles(). When using
the generate:bundle command, this is done for you.

Bundle Directory Structure

The directory structure of a bundle is simple and flexible. By default, the
bundle system follows a set of conventions that help to keep code consistent
between all Symfony2 bundles. Take a look at AcmeHelloBundle, as it contains
some of the most common elements of a bundle:

	Controller/ contains the controllers of the bundle (e.g. HelloController.php);

	Resources/config/ houses configuration, including routing configuration
(e.g. routing.yml);

	Resources/views/ holds templates organized by controller name (e.g.
Hello/index.html.twig);

	Resources/public/ contains web assets (images, stylesheets, etc) and is
copied or symbolically linked into the project web/ directory via
the assets:install console command;

	Tests/ holds all tests for the bundle.

A bundle can be as small or large as the feature it implements. It contains
only the files you need and nothing else.

As you move through the book, you’ll learn how to persist objects to a database,
create and validate forms, create translations for your application, write
tests and much more. Each of these has their own place and role within the
bundle.

Application Configuration

An application consists of a collection of bundles representing all of the
features and capabilities of your application. Each bundle can be customized
via configuration files written in YAML, XML or PHP. By default, the main
configuration file lives in the app/config/ directory and is called
either config.yml, config.xml or config.php depending on which
format you prefer:

	YAML# app/config/config.yml
imports:
 - { resource: parameters.yml }
 - { resource: security.yml }

framework:
 secret: %secret%
 charset: UTF-8
 router: { resource: "%kernel.root_dir%/config/routing.yml" }
 # ...

Twig Configuration
twig:
 debug: %kernel.debug%
 strict_variables: %kernel.debug%

...

	XML<!-- app/config/config.xml -->
<imports>
 <import resource="parameters.yml" />
 <import resource="security.yml" />
</imports>

<framework:config charset="UTF-8" secret="%secret%">
 <framework:router resource="%kernel.root_dir%/config/routing.xml" />
 <!-- ... -->
</framework:config>

<!-- Twig Configuration -->
<twig:config debug="%kernel.debug%" strict-variables="%kernel.debug%" />

<!-- ... -->

	PHP$this->import('parameters.yml');
$this->import('security.yml');

$container->loadFromExtension('framework', array(
 'secret' => '%secret%',
 'charset' => 'UTF-8',
 'router' => array('resource' => '%kernel.root_dir%/config/routing.php'),
 // ...
),
));

// Twig Configuration
$container->loadFromExtension('twig', array(
 'debug' => '%kernel.debug%',
 'strict_variables' => '%kernel.debug%',
));

// ...

Note

You’ll learn exactly how to load each file/format in the next section
Environments.

Each top-level entry like framework or twig defines the configuration
for a particular bundle. For example, the framework key defines the configuration
for the core Symfony FrameworkBundle and includes configuration for the
routing, templating, and other core systems.

For now, don’t worry about the specific configuration options in each section.
The configuration file ships with sensible defaults. As you read more and
explore each part of Symfony2, you’ll learn about the specific configuration
options of each feature.

Configuration Formats

Throughout the chapters, all configuration examples will be shown in all
three formats (YAML, XML and PHP). Each has its own advantages and
disadvantages. The choice of which to use is up to you:

	YAML: Simple, clean and readable;

	XML: More powerful than YAML at times and supports IDE autocompletion;

	PHP: Very powerful but less readable than standard configuration formats.

Default Configuration Dump

New in version 2.1: The config:dump-reference command was added in Symfony 2.1

You can dump the default configuration for a bundle in yaml to the console using
the config:dump-reference command. Here is an example of dumping the default
FrameworkBundle configuration:

app/console config:dump-reference FrameworkBundle

Note

See the cookbook article: How to expose a Semantic Configuration for
a Bundle for information on adding
configuration for your own bundle.

Environments

An application can run in various environments. The different environments
share the same PHP code (apart from the front controller), but use different
configuration. For instance, a dev environment will log warnings and
errors, while a prod environment will only log errors. Some files are
rebuilt on each request in the dev environment (for the developer’s convenience),
but cached in the prod environment. All environments live together on
the same machine and execute the same application.

A Symfony2 project generally begins with three environments (dev, test
and prod), though creating new environments is easy. You can view your
application in different environments simply by changing the front controller
in your browser. To see the application in the dev environment, access
the application via the development front controller:

http://localhost/app_dev.php/hello/Ryan

If you’d like to see how your application will behave in the production environment,
call the prod front controller instead:

http://localhost/app.php/hello/Ryan

Since the prod environment is optimized for speed; the configuration,
routing and Twig templates are compiled into flat PHP classes and cached.
When viewing changes in the prod environment, you’ll need to clear these
cached files and allow them to rebuild:

php app/console cache:clear --env=prod --no-debug

Note

If you open the web/app.php file, you’ll find that it’s configured explicitly
to use the prod environment:

$kernel = new AppKernel('prod', false);

You can create a new front controller for a new environment by copying
this file and changing prod to some other value.

Note

The test environment is used when running automated tests and cannot
be accessed directly through the browser. See the testing chapter
for more details.

Environment Configuration

The AppKernel class is responsible for actually loading the configuration
file of your choice:

// app/AppKernel.php
public function registerContainerConfiguration(LoaderInterface $loader)
{
 $loader->load(__DIR__.'/config/config_'.$this->getEnvironment().'.yml');
}

You already know that the .yml extension can be changed to .xml or
.php if you prefer to use either XML or PHP to write your configuration.
Notice also that each environment loads its own configuration file. Consider
the configuration file for the dev environment.

	YAML# app/config/config_dev.yml
imports:
 - { resource: config.yml }

framework:
 router: { resource: "%kernel.root_dir%/config/routing_dev.yml" }
 profiler: { only_exceptions: false }

...

	XML<!-- app/config/config_dev.xml -->
<imports>
 <import resource="config.xml" />
</imports>

<framework:config>
 <framework:router resource="%kernel.root_dir%/config/routing_dev.xml" />
 <framework:profiler only-exceptions="false" />
</framework:config>

<!-- ... -->

	PHP// app/config/config_dev.php
$loader->import('config.php');

$container->loadFromExtension('framework', array(
 'router' => array('resource' => '%kernel.root_dir%/config/routing_dev.php'),
 'profiler' => array('only-exceptions' => false),
));

// ...

The imports key is similar to a PHP include statement and guarantees
that the main configuration file (config.yml) is loaded first. The rest
of the file tweaks the default configuration for increased logging and other
settings conducive to a development environment.

Both the prod and test environments follow the same model: each environment
imports the base configuration file and then modifies its configuration values
to fit the needs of the specific environment. This is just a convention,
but one that allows you to reuse most of your configuration and customize
just pieces of it between environments.

Summary

Congratulations! You’ve now seen every fundamental aspect of Symfony2 and have
hopefully discovered how easy and flexible it can be. And while there are
a lot of features still to come, be sure to keep the following basic points
in mind:

	creating a page is a three-step process involving a route, a controller
and (optionally) a template.

	each project contains just a few main directories: web/ (web assets and
the front controllers), app/ (configuration), src/ (your bundles),
and vendor/ (third-party code) (there’s also a bin/ directory that’s
used to help updated vendor libraries);

	each feature in Symfony2 (including the Symfony2 framework core) is organized
into a bundle, which is a structured set of files for that feature;

	the configuration for each bundle lives in the app/config directory
and can be specified in YAML, XML or PHP;

	each environment is accessible via a different front controller (e.g.
app.php and app_dev.php) and loads a different configuration file.

From here, each chapter will introduce you to more and more powerful tools
and advanced concepts. The more you know about Symfony2, the more you’ll
appreciate the flexibility of its architecture and the power it gives you
to rapidly develop applications.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Controller

A controller is a PHP function you create that takes information from the
HTTP request and constructs and returns an HTTP response (as a Symfony2
Response object). The response could be an HTML page, an XML document,
a serialized JSON array, an image, a redirect, a 404 error or anything else
you can dream up. The controller contains whatever arbitrary logic your
application needs to render the content of a page.

To see how simple this is, let’s look at a Symfony2 controller in action.
The following controller would render a page that simply prints Hello world!:

use Symfony\Component\HttpFoundation\Response;

public function helloAction()
{
 return new Response('Hello world!');
}

The goal of a controller is always the same: create and return a Response
object. Along the way, it might read information from the request, load a
database resource, send an email, or set information on the user’s session.
But in all cases, the controller will eventually return the Response object
that will be delivered back to the client.

There’s no magic and no other requirements to worry about! Here are a few
common examples:

	Controller A prepares a Response object representing the content
for the homepage of the site.

	Controller B reads the slug parameter from the request to load a
blog entry from the database and create a Response object displaying
that blog. If the slug can’t be found in the database, it creates and
returns a Response object with a 404 status code.

	Controller C handles the form submission of a contact form. It reads
the form information from the request, saves the contact information to
the database and emails the contact information to the webmaster. Finally,
it creates a Response object that redirects the client’s browser to
the contact form “thank you” page.

Requests, Controller, Response Lifecycle

Every request handled by a Symfony2 project goes through the same simple lifecycle.
The framework takes care of the repetitive tasks and ultimately executes a
controller, which houses your custom application code:

	Each request is handled by a single front controller file (e.g. app.php
or app_dev.php) that bootstraps the application;

	The Router reads information from the request (e.g. the URI), finds
a route that matches that information, and reads the _controller parameter
from the route;

	The controller from the matched route is executed and the code inside the
controller creates and returns a Response object;

	The HTTP headers and content of the Response object are sent back to
the client.

Creating a page is as easy as creating a controller (#3) and making a route that
maps a URL to that controller (#2).

Note

Though similarly named, a “front controller” is different from the
“controllers” we’ll talk about in this chapter. A front controller
is a short PHP file that lives in your web directory and through which
all requests are directed. A typical application will have a production
front controller (e.g. app.php) and a development front controller
(e.g. app_dev.php). You’ll likely never need to edit, view or worry
about the front controllers in your application.

A Simple Controller

While a controller can be any PHP callable (a function, method on an object,
or a Closure), in Symfony2, a controller is usually a single method inside
a controller object. Controllers are also called actions.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	// src/Acme/HelloBundle/Controller/HelloController.php

namespace Acme\HelloBundle\Controller;
use Symfony\Component\HttpFoundation\Response;

class HelloController
{
 public function indexAction($name)
 {
 return new Response('<html><body>Hello '.$name.'!</body></html>');
 }
}

Tip

Note that the controller is the indexAction method, which lives
inside a controller class (HelloController). Don’t be confused
by the naming: a controller class is simply a convenient way to group
several controllers/actions together. Typically, the controller class
will house several controllers/actions (e.g. updateAction, deleteAction,
etc).

This controller is pretty straightforward, but let’s walk through it:

	line 3: Symfony2 takes advantage of PHP 5.3 namespace functionality to
namespace the entire controller class. The use keyword imports the
Response class, which our controller must return.

	line 6: The class name is the concatenation of a name for the controller
class (i.e. Hello) and the word Controller. This is a convention
that provides consistency to controllers and allows them to be referenced
only by the first part of the name (i.e. Hello) in the routing configuration.

	line 8: Each action in a controller class is suffixed with Action
and is referenced in the routing configuration by the action’s name (index).
In the next section, you’ll create a route that maps a URI to this action.
You’ll learn how the route’s placeholders ({name}) become arguments
to the action method ($name).

	line 10: The controller creates and returns a Response object.

Mapping a URL to a Controller

The new controller returns a simple HTML page. To actually view this page
in your browser, you need to create a route, which maps a specific URL pattern
to the controller:

	YAML# app/config/routing.yml
hello:
 pattern: /hello/{name}
 defaults: { _controller: AcmeHelloBundle:Hello:index }

	XML<!-- app/config/routing.xml -->
<route id="hello" pattern="/hello/{name}">
 <default key="_controller">AcmeHelloBundle:Hello:index</default>
</route>

	PHP// app/config/routing.php
$collection->add('hello', new Route('/hello/{name}', array(
 '_controller' => 'AcmeHelloBundle:Hello:index',
)));

Going to /hello/ryan now executes the HelloController::indexAction()
controller and passes in ryan for the $name variable. Creating a
“page” means simply creating a controller method and associated route.

Notice the syntax used to refer to the controller: AcmeHelloBundle:Hello:index.
Symfony2 uses a flexible string notation to refer to different controllers.
This is the most common syntax and tells Symfony2 to look for a controller
class called HelloController inside a bundle named AcmeHelloBundle. The
method indexAction() is then executed.

For more details on the string format used to reference different controllers,
see Controller Naming Pattern.

Note

This example places the routing configuration directly in the app/config/
directory. A better way to organize your routes is to place each route
in the bundle it belongs to. For more information on this, see
Including External Routing Resources.

Tip

You can learn much more about the routing system in the Routing chapter.

Route Parameters as Controller Arguments

You already know that the _controller parameter AcmeHelloBundle:Hello:index
refers to a HelloController::indexAction() method that lives inside the
AcmeHelloBundle bundle. What’s more interesting is the arguments that are
passed to that method:

<?php
// src/Acme/HelloBundle/Controller/HelloController.php

namespace Acme\HelloBundle\Controller;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class HelloController extends Controller
{
 public function indexAction($name)
 {
 // ...
 }
}

The controller has a single argument, $name, which corresponds to the
{name} parameter from the matched route (ryan in our example). In
fact, when executing your controller, Symfony2 matches each argument of
the controller with a parameter from the matched route. Take the following
example:

	YAML# app/config/routing.yml
hello:
 pattern: /hello/{first_name}/{last_name}
 defaults: { _controller: AcmeHelloBundle:Hello:index, color: green }

	XML<!-- app/config/routing.xml -->
<route id="hello" pattern="/hello/{first_name}/{last_name}">
 <default key="_controller">AcmeHelloBundle:Hello:index</default>
 <default key="color">green</default>
</route>

	PHP// app/config/routing.php
$collection->add('hello', new Route('/hello/{first_name}/{last_name}', array(
 '_controller' => 'AcmeHelloBundle:Hello:index',
 'color' => 'green',
)));

The controller for this can take several arguments:

public function indexAction($first_name, $last_name, $color)
{
 // ...
}

Notice that both placeholder variables ({first_name}, {last_name})
as well as the default color variable are available as arguments in the
controller. When a route is matched, the placeholder variables are merged
with the defaults to make one array that’s available to your controller.

Mapping route parameters to controller arguments is easy and flexible. Keep
the following guidelines in mind while you develop.

	The order of the controller arguments does not matter

Symfony is able to match the parameter names from the route to the variable
names in the controller method’s signature. In other words, it realizes that
the {last_name} parameter matches up with the $last_name argument.
The arguments of the controller could be totally reordered and still work
perfectly:

public function indexAction($last_name, $color, $first_name)
{
 // ..
}

	Each required controller argument must match up with a routing parameter

The following would throw a RuntimeException because there is no foo
parameter defined in the route:

public function indexAction($first_name, $last_name, $color, $foo)
{
 // ..
}

Making the argument optional, however, is perfectly ok. The following
example would not throw an exception:

public function indexAction($first_name, $last_name, $color, $foo = 'bar')
{
 // ..
}

	Not all routing parameters need to be arguments on your controller

If, for example, the last_name weren’t important for your controller,
you could omit it entirely:

public function indexAction($first_name, $color)
{
 // ..
}

Tip

Every route also has a special _route parameter, which is equal to
the name of the route that was matched (e.g. hello). Though not usually
useful, this is equally available as a controller argument.

The Request as a Controller Argument

For convenience, you can also have Symfony pass you the Request object
as an argument to your controller. This is especially convenient when you’re
working with forms, for example:

use Symfony\Component\HttpFoundation\Request;

public function updateAction(Request $request)
{
 $form = $this->createForm(...);

 $form->bindRequest($request);
 // ...
}

The Base Controller Class

For convenience, Symfony2 comes with a base Controller class that assists
with some of the most common controller tasks and gives your controller class
access to any resource it might need. By extending this Controller class,
you can take advantage of several helper methods.

Add the use statement atop the Controller class and then modify the
HelloController to extend it:

// src/Acme/HelloBundle/Controller/HelloController.php

namespace Acme\HelloBundle\Controller;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Response;

class HelloController extends Controller
{
 public function indexAction($name)
 {
 return new Response('<html><body>Hello '.$name.'!</body></html>');
 }
}

This doesn’t actually change anything about how your controller works. In
the next section, you’ll learn about the helper methods that the base controller
class makes available. These methods are just shortcuts to using core Symfony2
functionality that’s available to you with or without the use of the base
Controller class. A great way to see the core functionality in action
is to look in the
Symfony\Bundle\FrameworkBundle\Controller\Controller class
itself.

Tip

Extending the base class is optional in Symfony; it contains useful
shortcuts but nothing mandatory. You can also extend
Symfony\Component\DependencyInjection\ContainerAware. The service
container object will then be accessible via the container property.

Note

You can also define your Controllers as Services.

Common Controller Tasks

Though a controller can do virtually anything, most controllers will perform
the same basic tasks over and over again. These tasks, such as redirecting,
forwarding, rendering templates and accessing core services, are very easy
to manage in Symfony2.

Redirecting

If you want to redirect the user to another page, use the redirect() method:

public function indexAction()
{
 return $this->redirect($this->generateUrl('homepage'));
}

The generateUrl() method is just a helper function that generates the URL
for a given route. For more information, see the Routing
chapter.

By default, the redirect() method performs a 302 (temporary) redirect. To
perform a 301 (permanent) redirect, modify the second argument:

public function indexAction()
{
 return $this->redirect($this->generateUrl('homepage'), 301);
}

Tip

The redirect() method is simply a shortcut that creates a Response
object that specializes in redirecting the user. It’s equivalent to:

use Symfony\Component\HttpFoundation\RedirectResponse;

return new RedirectResponse($this->generateUrl('homepage'));

Forwarding

You can also easily forward to another controller internally with the forward()
method. Instead of redirecting the user’s browser, it makes an internal sub-request,
and calls the specified controller. The forward() method returns the Response
object that’s returned from that controller:

public function indexAction($name)
{
 $response = $this->forward('AcmeHelloBundle:Hello:fancy', array(
 'name' => $name,
 'color' => 'green'
));

 // further modify the response or return it directly

 return $response;
}

Notice that the forward() method uses the same string representation of
the controller used in the routing configuration. In this case, the target
controller class will be HelloController inside some AcmeHelloBundle.
The array passed to the method becomes the arguments on the resulting controller.
This same interface is used when embedding controllers into templates (see
Embedding Controllers). The target controller method should
look something like the following:

public function fancyAction($name, $color)
{
 // ... create and return a Response object
}

And just like when creating a controller for a route, the order of the arguments
to fancyAction doesn’t matter. Symfony2 matches the index key names
(e.g. name) with the method argument names (e.g. $name). If you
change the order of the arguments, Symfony2 will still pass the correct
value to each variable.

Tip

Like other base Controller methods, the forward method is just
a shortcut for core Symfony2 functionality. A forward can be accomplished
directly via the http_kernel service. A forward returns a Response
object:

$httpKernel = $this->container->get('http_kernel');
$response = $httpKernel->forward('AcmeHelloBundle:Hello:fancy', array(
 'name' => $name,
 'color' => 'green',
));

Rendering Templates

Though not a requirement, most controllers will ultimately render a template
that’s responsible for generating the HTML (or other format) for the controller.
The renderView() method renders a template and returns its content. The
content from the template can be used to create a Response object:

$content = $this->renderView('AcmeHelloBundle:Hello:index.html.twig', array('name' => $name));

return new Response($content);

This can even be done in just one step with the render() method, which
returns a Response object containing the content from the template:

return $this->render('AcmeHelloBundle:Hello:index.html.twig', array('name' => $name));

In both cases, the Resources/views/Hello/index.html.twig template inside
the AcmeHelloBundle will be rendered.

The Symfony templating engine is explained in great detail in the
Templating chapter.

Tip

The renderView method is a shortcut to direct use of the templating
service. The templating service can also be used directly:

$templating = $this->get('templating');
$content = $templating->render('AcmeHelloBundle:Hello:index.html.twig', array('name' => $name));

Accessing other Services

When extending the base controller class, you can access any Symfony2 service
via the get() method. Here are several common services you might need:

$request = $this->getRequest();

$templating = $this->get('templating');

$router = $this->get('router');

$mailer = $this->get('mailer');

There are countless other services available and you are encouraged to define
your own. To list all available services, use the container:debug console
command:

php app/console container:debug

For more information, see the Service Container chapter.

Managing Errors and 404 Pages

When things are not found, you should play well with the HTTP protocol and
return a 404 response. To do this, you’ll throw a special type of exception.
If you’re extending the base controller class, do the following:

public function indexAction()
{
 $product = // retrieve the object from database
 if (!$product) {
 throw $this->createNotFoundException('The product does not exist');
 }

 return $this->render(...);
}

The createNotFoundException() method creates a special NotFoundHttpException
object, which ultimately triggers a 404 HTTP response inside Symfony.

Of course, you’re free to throw any Exception class in your controller -
Symfony2 will automatically return a 500 HTTP response code.

throw new \Exception('Something went wrong!');

In every case, a styled error page is shown to the end user and a full debug
error page is shown to the developer (when viewing the page in debug mode).
Both of these error pages can be customized. For details, read the
“How to customize Error Pages” cookbook recipe.

Managing the Session

Symfony2 provides a nice session object that you can use to store information
about the user (be it a real person using a browser, a bot, or a web service)
between requests. By default, Symfony2 stores the attributes in a cookie
by using the native PHP sessions.

Storing and retrieving information from the session can be easily achieved
from any controller:

$session = $this->getRequest()->getSession();

// store an attribute for reuse during a later user request
$session->set('foo', 'bar');

// in another controller for another request
$foo = $session->get('foo');

// use a default value of the key doesn't exist
$filters = $session->set('filters', array());

These attributes will remain on the user for the remainder of that user’s
session.

Flash Messages

You can also store small messages that will be stored on the user’s session
for exactly one additional request. This is useful when processing a form:
you want to redirect and have a special message shown on the next request.
These types of messages are called “flash” messages.

For example, imagine you’re processing a form submit:

public function updateAction()
{
 $form = $this->createForm(...);

 $form->bindRequest($this->getRequest());
 if ($form->isValid()) {
 // do some sort of processing

 $this->get('session')->setFlash('notice', 'Your changes were saved!');

 return $this->redirect($this->generateUrl(...));
 }

 return $this->render(...);
}

After processing the request, the controller sets a notice flash message
and then redirects. The name (notice) isn’t significant - it’s just what
you’re using to identify the type of the message.

In the template of the next action, the following code could be used to render
the notice message:

	Twig{% if app.session.hasFlash('notice') %}
 <div class="flash-notice">
 {{ app.session.flash('notice') }}
 </div>
{% endif %}

	PHP<?php if ($view['session']->hasFlash('notice')): ?>
 <div class="flash-notice">
 <?php echo $view['session']->getFlash('notice') ?>
 </div>
<?php endif; ?>

By design, flash messages are meant to live for exactly one request (they’re
“gone in a flash”). They’re designed to be used across redirects exactly as
you’ve done in this example.

The Response Object

The only requirement for a controller is to return a Response object. The
Symfony\Component\HttpFoundation\Response class is a PHP
abstraction around the HTTP response - the text-based message filled with HTTP
headers and content that’s sent back to the client:

// create a simple Response with a 200 status code (the default)
$response = new Response('Hello '.$name, 200);

// create a JSON-response with a 200 status code
$response = new Response(json_encode(array('name' => $name)));
$response->headers->set('Content-Type', 'application/json');

Tip

The headers property is a
Symfony\Component\HttpFoundation\HeaderBag object with several
useful methods for reading and mutating the Response headers. The
header names are normalized so that using Content-Type is equivalent
to content-type or even content_type.

The Request Object

Besides the values of the routing placeholders, the controller also has access
to the Request object when extending the base Controller class:

$request = $this->getRequest();

$request->isXmlHttpRequest(); // is it an Ajax request?

$request->getPreferredLanguage(array('en', 'fr'));

$request->query->get('page'); // get a $_GET parameter

$request->request->get('page'); // get a $_POST parameter

Like the Response object, the request headers are stored in a HeaderBag
object and are easily accessible.

Final Thoughts

Whenever you create a page, you’ll ultimately need to write some code that
contains the logic for that page. In Symfony, this is called a controller,
and it’s a PHP function that can do anything it needs in order to return
the final Response object that will be returned to the user.

To make life easier, you can choose to extend a base Controller class,
which contains shortcut methods for many common controller tasks. For example,
since you don’t want to put HTML code in your controller, you can use
the render() method to render and return the content from a template.

In other chapters, you’ll see how the controller can be used to persist and
fetch objects from a database, process form submissions, handle caching and
more.

Learn more from the Cookbook

	How to customize Error Pages

	How to define Controllers as Services

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Routing

Beautiful URLs are an absolute must for any serious web application. This
means leaving behind ugly URLs like index.php?article_id=57 in favor
of something like /read/intro-to-symfony.

Having flexibility is even more important. What if you need to change the
URL of a page from /blog to /news? How many links should you need to
hunt down and update to make the change? If you’re using Symfony’s router,
the change is simple.

The Symfony2 router lets you define creative URLs that you map to different
areas of your application. By the end of this chapter, you’ll be able to:

	Create complex routes that map to controllers

	Generate URLs inside templates and controllers

	Load routing resources from bundles (or anywhere else)

	Debug your routes

Routing in Action

A route is a map from a URL pattern to a controller. For example, suppose
you want to match any URL like /blog/my-post or /blog/all-about-symfony
and send it to a controller that can look up and render that blog entry.
The route is simple:

	YAML# app/config/routing.yml
blog_show:
 pattern: /blog/{slug}
 defaults: { _controller: AcmeBlogBundle:Blog:show }

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog_show" pattern="/blog/{slug}">
 <default key="_controller">AcmeBlogBundle:Blog:show</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog_show', new Route('/blog/{slug}', array(
 '_controller' => 'AcmeBlogBundle:Blog:show',
)));

return $collection;

The pattern defined by the blog_show route acts like /blog/* where
the wildcard is given the name slug. For the URL /blog/my-blog-post,
the slug variable gets a value of my-blog-post, which is available
for you to use in your controller (keep reading).

The _controller parameter is a special key that tells Symfony which controller
should be executed when a URL matches this route. The _controller string
is called the logical name. It follows a
pattern that points to a specific PHP class and method:

// src/Acme/BlogBundle/Controller/BlogController.php

namespace Acme\BlogBundle\Controller;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class BlogController extends Controller
{
 public function showAction($slug)
 {
 $blog = // use the $slug varible to query the database

 return $this->render('AcmeBlogBundle:Blog:show.html.twig', array(
 'blog' => $blog,
));
 }
}

Congratulations! You’ve just created your first route and connected it to
a controller. Now, when you visit /blog/my-post, the showAction controller
will be executed and the $slug variable will be equal to my-post.

This is the goal of the Symfony2 router: to map the URL of a request to a
controller. Along the way, you’ll learn all sorts of tricks that make mapping
even the most complex URLs easy.

Routing: Under the Hood

When a request is made to your application, it contains an address to the
exact “resource” that the client is requesting. This address is called the
URL, (or URI), and could be /contact, /blog/read-me, or anything
else. Take the following HTTP request for example:

GET /blog/my-blog-post

The goal of the Symfony2 routing system is to parse this URL and determine
which controller should be executed. The whole process looks like this:

	The request is handled by the Symfony2 front controller (e.g. app.php);

	The Symfony2 core (i.e. Kernel) asks the router to inspect the request;

	The router matches the incoming URL to a specific route and returns information
about the route, including the controller that should be executed;

	The Symfony2 Kernel executes the controller, which ultimately returns
a Response object.

[image: Symfony2 request flow]
The routing layer is a tool that translates the incoming URL into a specific
controller to execute.

Creating Routes

Symfony loads all the routes for your application from a single routing configuration
file. The file is usually app/config/routing.yml, but can be configured
to be anything (including an XML or PHP file) via the application configuration
file:

	YAML# app/config/config.yml
framework:
 # ...
 router: { resource: "%kernel.root_dir%/config/routing.yml" }

	XML<!-- app/config/config.xml -->
<framework:config ...>
 <!-- ... -->
 <framework:router resource="%kernel.root_dir%/config/routing.xml" />
</framework:config>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 // ...
 'router' => array('resource' => '%kernel.root_dir%/config/routing.php'),
));

Tip

Even though all routes are loaded from a single file, it’s common practice
to include additional routing resources from inside the file. See the
Including External Routing Resources section for more information.

Basic Route Configuration

Defining a route is easy, and a typical application will have lots of routes.
A basic route consists of just two parts: the pattern to match and a
defaults array:

	YAML_welcome:
 pattern: /
 defaults: { _controller: AcmeDemoBundle:Main:homepage }

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="_welcome" pattern="/">
 <default key="_controller">AcmeDemoBundle:Main:homepage</default>
 </route>

</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('_welcome', new Route('/', array(
 '_controller' => 'AcmeDemoBundle:Main:homepage',
)));

return $collection;

This route matches the homepage (/) and maps it to the AcmeDemoBundle:Main:homepage
controller. The _controller string is translated by Symfony2 into an
actual PHP function and executed. That process will be explained shortly
in the Controller Naming Pattern section.

Routing with Placeholders

Of course the routing system supports much more interesting routes. Many
routes will contain one or more named “wildcard” placeholders:

	YAMLblog_show:
 pattern: /blog/{slug}
 defaults: { _controller: AcmeBlogBundle:Blog:show }

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog_show" pattern="/blog/{slug}">
 <default key="_controller">AcmeBlogBundle:Blog:show</default>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog_show', new Route('/blog/{slug}', array(
 '_controller' => 'AcmeBlogBundle:Blog:show',
)));

return $collection;

The pattern will match anything that looks like /blog/*. Even better,
the value matching the {slug} placeholder will be available inside your
controller. In other words, if the URL is /blog/hello-world, a $slug
variable, with a value of hello-world, will be available in the controller.
This can be used, for example, to load the blog post matching that string.

The pattern will not, however, match simply /blog. That’s because,
by default, all placeholders are required. This can be changed by adding
a placeholder value to the defaults array.

Required and Optional Placeholders

To make things more exciting, add a new route that displays a list of all
the available blog posts for this imaginary blog application:

	YAMLblog:
 pattern: /blog
 defaults: { _controller: AcmeBlogBundle:Blog:index }

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog" pattern="/blog">
 <default key="_controller">AcmeBlogBundle:Blog:index</default>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog', new Route('/blog', array(
 '_controller' => 'AcmeBlogBundle:Blog:index',
)));

return $collection;

So far, this route is as simple as possible - it contains no placeholders
and will only match the exact URL /blog. But what if you need this route
to support pagination, where /blog/2 displays the second page of blog
entries? Update the route to have a new {page} placeholder:

	YAMLblog:
 pattern: /blog/{page}
 defaults: { _controller: AcmeBlogBundle:Blog:index }

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog" pattern="/blog/{page}">
 <default key="_controller">AcmeBlogBundle:Blog:index</default>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog', new Route('/blog/{page}', array(
 '_controller' => 'AcmeBlogBundle:Blog:index',
)));

return $collection;

Like the {slug} placeholder before, the value matching {page} will
be available inside your controller. Its value can be used to determine which
set of blog posts to display for the given page.

But hold on! Since placeholders are required by default, this route will
no longer match on simply /blog. Instead, to see page 1 of the blog,
you’d need to use the URL /blog/1! Since that’s no way for a rich web
app to behave, modify the route to make the {page} parameter optional.
This is done by including it in the defaults collection:

	YAMLblog:
 pattern: /blog/{page}
 defaults: { _controller: AcmeBlogBundle:Blog:index, page: 1 }

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog" pattern="/blog/{page}">
 <default key="_controller">AcmeBlogBundle:Blog:index</default>
 <default key="page">1</default>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog', new Route('/blog/{page}', array(
 '_controller' => 'AcmeBlogBundle:Blog:index',
 'page' => 1,
)));

return $collection;

By adding page to the defaults key, the {page} placeholder is no
longer required. The URL /blog will match this route and the value of
the page parameter will be set to 1. The URL /blog/2 will also
match, giving the page parameter a value of 2. Perfect.

	/blog
	{page} = 1

	/blog/1
	{page} = 1

	/blog/2
	{page} = 2

Adding Requirements

Take a quick look at the routes that have been created so far:

	YAMLblog:
 pattern: /blog/{page}
 defaults: { _controller: AcmeBlogBundle:Blog:index, page: 1 }

blog_show:
 pattern: /blog/{slug}
 defaults: { _controller: AcmeBlogBundle:Blog:show }

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog" pattern="/blog/{page}">
 <default key="_controller">AcmeBlogBundle:Blog:index</default>
 <default key="page">1</default>
 </route>

 <route id="blog_show" pattern="/blog/{slug}">
 <default key="_controller">AcmeBlogBundle:Blog:show</default>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog', new Route('/blog/{page}', array(
 '_controller' => 'AcmeBlogBundle:Blog:index',
 'page' => 1,
)));

$collection->add('blog_show', new Route('/blog/{show}', array(
 '_controller' => 'AcmeBlogBundle:Blog:show',
)));

return $collection;

Can you spot the problem? Notice that both routes have patterns that match
URL’s that look like /blog/*. The Symfony router will always choose the
first matching route it finds. In other words, the blog_show route
will never be matched. Instead, a URL like /blog/my-blog-post will match
the first route (blog) and return a nonsense value of my-blog-post
to the {page} parameter.

	URL
	route
	parameters

	/blog/2
	blog
	{page} = 2

	/blog/my-blog-post
	blog
	{page} = my-blog-post

The answer to the problem is to add route requirements. The routes in this
example would work perfectly if the /blog/{page} pattern only matched
URLs where the {page} portion is an integer. Fortunately, regular expression
requirements can easily be added for each parameter. For example:

	YAMLblog:
 pattern: /blog/{page}
 defaults: { _controller: AcmeBlogBundle:Blog:index, page: 1 }
 requirements:
 page: \d+

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog" pattern="/blog/{page}">
 <default key="_controller">AcmeBlogBundle:Blog:index</default>
 <default key="page">1</default>
 <requirement key="page">\d+</requirement>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog', new Route('/blog/{page}', array(
 '_controller' => 'AcmeBlogBundle:Blog:index',
 'page' => 1,
), array(
 'page' => '\d+',
)));

return $collection;

The \d+ requirement is a regular expression that says that the value of
the {page} parameter must be a digit (i.e. a number). The blog route
will still match on a URL like /blog/2 (because 2 is a number), but it
will no longer match a URL like /blog/my-blog-post (because my-blog-post
is not a number).

As a result, a URL like /blog/my-blog-post will now properly match the
blog_show route.

	URL
	route
	parameters

	/blog/2
	blog
	{page} = 2

	/blog/my-blog-post
	blog_show
	{slug} = my-blog-post

Earlier Routes always Win

What this all means is that the order of the routes is very important.
If the blog_show route were placed above the blog route, the
URL /blog/2 would match blog_show instead of blog since the
{slug} parameter of blog_show has no requirements. By using proper
ordering and clever requirements, you can accomplish just about anything.

Since the parameter requirements are regular expressions, the complexity
and flexibility of each requirement is entirely up to you. Suppose the homepage
of your application is available in two different languages, based on the
URL:

	YAMLhomepage:
 pattern: /{culture}
 defaults: { _controller: AcmeDemoBundle:Main:homepage, culture: en }
 requirements:
 culture: en|fr

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="homepage" pattern="/{culture}">
 <default key="_controller">AcmeDemoBundle:Main:homepage</default>
 <default key="culture">en</default>
 <requirement key="culture">en|fr</requirement>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('homepage', new Route('/{culture}', array(
 '_controller' => 'AcmeDemoBundle:Main:homepage',
 'culture' => 'en',
), array(
 'culture' => 'en|fr',
)));

return $collection;

For incoming requests, the {culture} portion of the URL is matched against
the regular expression (en|fr).

	/
	{culture} = en

	/en
	{culture} = en

	/fr
	{culture} = fr

	/es
	won’t match this route

Adding HTTP Method Requirements

In addition to the URL, you can also match on the method of the incoming
request (i.e. GET, HEAD, POST, PUT, DELETE). Suppose you have a contact form
with two controllers - one for displaying the form (on a GET request) and one
for processing the form when it’s submitted (on a POST request). This can
be accomplished with the following route configuration:

	YAMLcontact:
 pattern: /contact
 defaults: { _controller: AcmeDemoBundle:Main:contact }
 requirements:
 _method: GET

contact_process:
 pattern: /contact
 defaults: { _controller: AcmeDemoBundle:Main:contactProcess }
 requirements:
 _method: POST

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="contact" pattern="/contact">
 <default key="_controller">AcmeDemoBundle:Main:contact</default>
 <requirement key="_method">GET</requirement>
 </route>

 <route id="contact_process" pattern="/contact">
 <default key="_controller">AcmeDemoBundle:Main:contactProcess</default>
 <requirement key="_method">POST</requirement>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('contact', new Route('/contact', array(
 '_controller' => 'AcmeDemoBundle:Main:contact',
), array(
 '_method' => 'GET',
)));

$collection->add('contact_process', new Route('/contact', array(
 '_controller' => 'AcmeDemoBundle:Main:contactProcess',
), array(
 '_method' => 'POST',
)));

return $collection;

Despite the fact that these two routes have identical patterns (/contact),
the first route will match only GET requests and the second route will match
only POST requests. This means that you can display the form and submit the
form via the same URL, while using distinct controllers for the two actions.

Note

If no _method requirement is specified, the route will match on
all methods.

Like the other requirements, the _method requirement is parsed as a regular
expression. To match GET or POST requests, you can use GET|POST.

Advanced Routing Example

At this point, you have everything you need to create a powerful routing
structure in Symfony. The following is an example of just how flexible the
routing system can be:

	YAMLarticle_show:
 pattern: /articles/{culture}/{year}/{title}.{_format}
 defaults: { _controller: AcmeDemoBundle:Article:show, _format: html }
 requirements:
 culture: en|fr
 _format: html|rss
 year: \d+

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="article_show" pattern="/articles/{culture}/{year}/{title}.{_format}">
 <default key="_controller">AcmeDemoBundle:Article:show</default>
 <default key="_format">html</default>
 <requirement key="culture">en|fr</requirement>
 <requirement key="_format">html|rss</requirement>
 <requirement key="year">\d+</requirement>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('homepage', new Route('/articles/{culture}/{year}/{title}.{_format}', array(
 '_controller' => 'AcmeDemoBundle:Article:show',
 '_format' => 'html',
), array(
 'culture' => 'en|fr',
 '_format' => 'html|rss',
 'year' => '\d+',
)));

return $collection;

As you’ve seen, this route will only match if the {culture} portion of
the URL is either en or fr and if the {year} is a number. This
route also shows how you can use a period between placeholders instead of
a slash. URLs matching this route might look like:

	/articles/en/2010/my-post

	/articles/fr/2010/my-post.rss

The Special _format Routing Parameter

This example also highlights the special _format routing parameter.
When using this parameter, the matched value becomes the “request format”
of the Request object. Ultimately, the request format is used for such
things such as setting the Content-Type of the response (e.g. a json
request format translates into a Content-Type of application/json).
It can also be used in the controller to render a different template for
each value of _format. The _format parameter is a very powerful way
to render the same content in different formats.

Special Routing Parameters

As you’ve seen, each routing parameter or default value is eventually available
as an argument in the controller method. Additionally, there are three parameters
that are special: each adds a unique piece of functionality inside your application:

	_controller: As you’ve seen, this parameter is used to determine which
controller is executed when the route is matched;

	_format: Used to set the request format (read more);

	_locale: Used to set the locale on the request (read more);

Tip

If you use the _locale parameter in a route, that value will also
be stored on the session so that subsequent requests keep this same locale.

Controller Naming Pattern

Every route must have a _controller parameter, which dictates which
controller should be executed when that route is matched. This parameter
uses a simple string pattern called the logical controller name, which
Symfony maps to a specific PHP method and class. The pattern has three parts,
each separated by a colon:

bundle:controller:action

For example, a _controller value of AcmeBlogBundle:Blog:show means:

	Bundle
	Controller Class
	Method Name

	AcmeBlogBundle
	BlogController
	showAction

The controller might look like this:

// src/Acme/BlogBundle/Controller/BlogController.php

namespace Acme\BlogBundle\Controller;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class BlogController extends Controller
{
 public function showAction($slug)
 {
 // ...
 }
}

Notice that Symfony adds the string Controller to the class name (Blog
=> BlogController) and Action to the method name (show => showAction).

You could also refer to this controller using its fully-qualified class name
and method: Acme\BlogBundle\Controller\BlogController::showAction.
But if you follow some simple conventions, the logical name is more concise
and allows more flexibility.

Note

In addition to using the logical name or the fully-qualified class name,
Symfony supports a third way of referring to a controller. This method
uses just one colon separator (e.g. service_name:indexAction) and
refers to the controller as a service (see How to define Controllers as Services).

Route Parameters and Controller Arguments

The route parameters (e.g. {slug}) are especially important because
each is made available as an argument to the controller method:

public function showAction($slug)
{
 // ...
}

In reality, the entire defaults collection is merged with the parameter
values to form a single array. Each key of that array is available as an
argument on the controller.

In other words, for each argument of your controller method, Symfony looks
for a route parameter of that name and assigns its value to that argument.
In the advanced example above, any combination (in any order) of the following
variables could be used as arguments to the showAction() method:

	$culture

	$year

	$title

	$_format

	$_controller

Since the placeholders and defaults collection are merged together, even
the $_controller variable is available. For a more detailed discussion,
see Route Parameters as Controller Arguments.

Tip

You can also use a special $_route variable, which is set to the
name of the route that was matched.

Including External Routing Resources

All routes are loaded via a single configuration file - usually app/config/routing.yml
(see Creating Routes above). Commonly, however, you’ll want to load routes
from other places, like a routing file that lives inside a bundle. This can
be done by “importing” that file:

	YAML# app/config/routing.yml
acme_hello:
 resource: "@AcmeHelloBundle/Resources/config/routing.yml"

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <import resource="@AcmeHelloBundle/Resources/config/routing.xml" />
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;

$collection = new RouteCollection();
$collection->addCollection($loader->import("@AcmeHelloBundle/Resources/config/routing.php"));

return $collection;

Note

When importing resources from YAML, the key (e.g. acme_hello) is meaningless.
Just be sure that it’s unique so no other lines override it.

The resource key loads the given routing resource. In this example the
resource is the full path to a file, where the @AcmeHelloBundle shortcut
syntax resolves to the path of that bundle. The imported file might look
like this:

	YAML # src/Acme/HelloBundle/Resources/config/routing.yml
acme_hello:
 pattern: /hello/{name}
 defaults: { _controller: AcmeHelloBundle:Hello:index }

	XML<!-- src/Acme/HelloBundle/Resources/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="acme_hello" pattern="/hello/{name}">
 <default key="_controller">AcmeHelloBundle:Hello:index</default>
 </route>
</routes>

	PHP// src/Acme/HelloBundle/Resources/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('acme_hello', new Route('/hello/{name}', array(
 '_controller' => 'AcmeHelloBundle:Hello:index',
)));

return $collection;

The routes from this file are parsed and loaded in the same way as the main
routing file.

Prefixing Imported Routes

You can also choose to provide a “prefix” for the imported routes. For example,
suppose you want the acme_hello route to have a final pattern of /admin/hello/{name}
instead of simply /hello/{name}:

	YAML# app/config/routing.yml
acme_hello:
 resource: "@AcmeHelloBundle/Resources/config/routing.yml"
 prefix: /admin

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <import resource="@AcmeHelloBundle/Resources/config/routing.xml" prefix="/admin" />
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;

$collection = new RouteCollection();
$collection->addCollection($loader->import("@AcmeHelloBundle/Resources/config/routing.php"), '/admin');

return $collection;

The string /admin will now be prepended to the pattern of each route
loaded from the new routing resource.

Visualizing & Debugging Routes

While adding and customizing routes, it’s helpful to be able to visualize
and get detailed information about your routes. A great way to see every route
in your application is via the router:debug console command. Execute
the command by running the following from the root of your project.

php app/console router:debug

The command will print a helpful list of all the configured routes in
your application:

homepage ANY /
contact GET /contact
contact_process POST /contact
article_show ANY /articles/{culture}/{year}/{title}.{_format}
blog ANY /blog/{page}
blog_show ANY /blog/{slug}

You can also get very specific information on a single route by including
the route name after the command:

php app/console router:debug article_show

Generating URLs

The routing system should also be used to generate URLs. In reality, routing
is a bi-directional system: mapping the URL to a controller+parameters and
a route+parameters back to a URL. The
:method:`Symfony\\Component\\Routing\\Router::match` and
:method:`Symfony\\Component\\Routing\\Router::generate` methods form this bi-directional
system. Take the blog_show example route from earlier:

$params = $router->match('/blog/my-blog-post');
// array('slug' => 'my-blog-post', '_controller' => 'AcmeBlogBundle:Blog:show')

$uri = $router->generate('blog_show', array('slug' => 'my-blog-post'));
// /blog/my-blog-post

To generate a URL, you need to specify the name of the route (e.g. blog_show)
and any wildcards (e.g. slug = my-blog-post) used in the pattern for
that route. With this information, any URL can easily be generated:

class MainController extends Controller
{
 public function showAction($slug)
 {
 // ...

 $url = $this->get('router')->generate('blog_show', array('slug' => 'my-blog-post'));
 }
}

In an upcoming section, you’ll learn how to generate URLs from inside templates.

Tip

If the frontend of your application uses AJAX requests, you might want
to be able to generate URLs in JavaScript based on your routing configuration.
By using the FOSJsRoutingBundle [https://github.com/FriendsOfSymfony/FOSJsRoutingBundle], you can do exactly that:

var url = Routing.generate('blog_show', { "slug": 'my-blog-post});

For more information, see the documentation for that bundle.

Generating Absolute URLs

By default, the router will generate relative URLs (e.g. /blog). To generate
an absolute URL, simply pass true to the third argument of the generate()
method:

$router->generate('blog_show', array('slug' => 'my-blog-post'), true);
// http://www.example.com/blog/my-blog-post

Note

The host that’s used when generating an absolute URL is the host of
the current Request object. This is detected automatically based
on server information supplied by PHP. When generating absolute URLs for
scripts run from the command line, you’ll need to manually set the desired
host on the Request object:

$request->headers->set('HOST', 'www.example.com');

Generating URLs with Query Strings

The generate method takes an array of wildcard values to generate the URI.
But if you pass extra ones, they will be added to the URI as a query string:

$router->generate('blog', array('page' => 2, 'category' => 'Symfony'));
// /blog/2?category=Symfony

Generating URLs from a template

The most common place to generate a URL is from within a template when linking
between pages in your application. This is done just as before, but using
a template helper function:

	Twig
 Read this blog post.

	PHP<a href="<?php echo $view['router']->generate('blog_show', array('slug' => 'my-blog-post')) ?>">
 Read this blog post.

Absolute URLs can also be generated.

	Twig
 Read this blog post.

	PHP<a href="<?php echo $view['router']->generate('blog_show', array('slug' => 'my-blog-post'), true) ?>">
 Read this blog post.

Summary

Routing is a system for mapping the URL of incoming requests to the controller
function that should be called to process the request. It both allows you
to specify beautiful URLs and keeps the functionality of your application
decoupled from those URLs. Routing is a two-way mechanism, meaning that it
should also be used to generate URLs.

Learn more from the Cookbook

	How to force routes to always use HTTPS or HTTP

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Creating and using Templates

As you know, the controller is responsible for
handling each request that comes into a Symfony2 application. In reality,
the controller delegates the most of the heavy work to other places so that
code can be tested and reused. When a controller needs to generate HTML,
CSS or any other content, it hands the work off to the templating engine.
In this chapter, you’ll learn how to write powerful templates that can be
used to return content to the user, populate email bodies, and more. You’ll
learn shortcuts, clever ways to extend templates and how to reuse template
code.

Templates

A template is simply a text file that can generate any text-based format
(HTML, XML, CSV, LaTeX ...). The most familiar type of template is a PHP
template - a text file parsed by PHP that contains a mix of text and PHP code:

<!DOCTYPE html>
<html>
 <head>
 <title>Welcome to Symfony!</title>
 </head>
 <body>
 <h1><?php echo $page_title ?></h1>

 <ul id="navigation">
 <?php foreach ($navigation as $item): ?>

 <a href="<?php echo $item->getHref() ?>">
 <?php echo $item->getCaption() ?>

 <?php endforeach; ?>

 </body>
</html>

But Symfony2 packages an even more powerful templating language called Twig [http://twig.sensiolabs.org].
Twig allows you to write concise, readable templates that are more friendly
to web designers and, in several ways, more powerful than PHP templates:

<!DOCTYPE html>
<html>
 <head>
 <title>Welcome to Symfony!</title>
 </head>
 <body>
 <h1>{{ page_title }}</h1>

 <ul id="navigation">
 {% for item in navigation %}
 {{ item.caption }}
 {% endfor %}

 </body>
</html>

Twig defines two types of special syntax:

	{{ ... }}: “Says something”: prints a variable or the result of an
expression to the template;

	{% ... %}: “Does something”: a tag that controls the logic of the
template; it is used to execute statements such as for-loops for example.

Note

There is a third syntax used for creating comments: {# this is a comment #}.
This syntax can be used across multiple lines like the PHP-equivalent
/* comment */ syntax.

Twig also contains filters, which modify content before being rendered.
The following makes the title variable all uppercase before rendering
it:

{{ title|upper }}

Twig comes with a long list of tags [http://twig.sensiolabs.org/doc/tags/index.html] and filters [http://twig.sensiolabs.org/doc/filters/index.html] that are available
by default. You can even add your own extensions [http://twig.sensiolabs.org/doc/extensions.html] to Twig as needed.

Tip

Registering a Twig extension is as easy as creating a new service and tagging
it with twig.extension tag.

As you’ll see throughout the documentation, Twig also supports functions
and new functions can be easily added. For example, the following uses a
standard for tag and the cycle function to print ten div tags, with
alternating odd, even classes:

{% for i in 0..10 %}
 <div class="{{ cycle(['odd', 'even'], i) }}">
 <!-- some HTML here -->
 </div>
{% endfor %}

Throughout this chapter, template examples will be shown in both Twig and PHP.

Why Twig?

Twig templates are meant to be simple and won’t process PHP tags. This
is by design: the Twig template system is meant to express presentation,
not program logic. The more you use Twig, the more you’ll appreciate
and benefit from this distinction. And of course, you’ll be loved by
web designers everywhere.

Twig can also do things that PHP can’t, such as true template inheritance
(Twig templates compile down to PHP classes that inherit from each other),
whitespace control, sandboxing, and the inclusion of custom functions
and filters that only affect templates. Twig contains little features
that make writing templates easier and more concise. Take the following
example, which combines a loop with a logical if statement:

 {% for user in users %}
 {{ user.username }}
 {% else %}
 No users found
 {% endfor %}

Twig Template Caching

Twig is fast. Each Twig template is compiled down to a native PHP class
that is rendered at runtime. The compiled classes are located in the
app/cache/{environment}/twig directory (where {environment} is the
environment, such as dev or prod) and in some cases can be useful
while debugging. See Environments for more information on
environments.

When debug mode is enabled (common in the dev environment), a Twig
template will be automatically recompiled when changes are made to it. This
means that during development you can happily make changes to a Twig template
and instantly see the changes without needing to worry about clearing any
cache.

When debug mode is disabled (common in the prod environment), however,
you must clear the Twig cache directory so that the Twig templates will
regenerate. Remember to do this when deploying your application.

Template Inheritance and Layouts

More often than not, templates in a project share common elements, like the
header, footer, sidebar or more. In Symfony2, we like to think about this
problem differently: a template can be decorated by another one. This works
exactly the same as PHP classes: template inheritance allows you to build
a base “layout” template that contains all the common elements of your site
defined as blocks (think “PHP class with base methods”). A child template
can extend the base layout and override any of its blocks (think “PHP subclass
that overrides certain methods of its parent class”).

First, build a base layout file:

	Twig{# app/Resources/views/base.html.twig #}
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>{% block title %}Test Application{% endblock %}</title>
 </head>
 <body>
 <div id="sidebar">
 {% block sidebar %}

 Home
 Blog

 {% endblock %}
 </div>

 <div id="content">
 {% block body %}{% endblock %}
 </div>
 </body>
</html>

	PHP<!-- app/Resources/views/base.html.php -->
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title><?php $view['slots']->output('title', 'Test Application') ?></title>
 </head>
 <body>
 <div id="sidebar">
 <?php if ($view['slots']->has('sidebar'): ?>
 <?php $view['slots']->output('sidebar') ?>
 <?php else: ?>

 Home
 Blog

 <?php endif; ?>
 </div>

 <div id="content">
 <?php $view['slots']->output('body') ?>
 </div>
 </body>
</html>

Note

Though the discussion about template inheritance will be in terms of Twig,
the philosophy is the same between Twig and PHP templates.

This template defines the base HTML skeleton document of a simple two-column
page. In this example, three {% block %} areas are defined (title,
sidebar and body). Each block may be overridden by a child template
or left with its default implementation. This template could also be rendered
directly. In that case the title, sidebar and body blocks would
simply retain the default values used in this template.

A child template might look like this:

	Twig{# src/Acme/BlogBundle/Resources/views/Blog/index.html.twig #}
{% extends '::base.html.twig' %}

{% block title %}My cool blog posts{% endblock %}

{% block body %}
 {% for entry in blog_entries %}
 <h2>{{ entry.title }}</h2>
 <p>{{ entry.body }}</p>
 {% endfor %}
{% endblock %}

	PHP<!-- src/Acme/BlogBundle/Resources/views/Blog/index.html.php -->
<?php $view->extend('::base.html.php') ?>

<?php $view['slots']->set('title', 'My cool blog posts') ?>

<?php $view['slots']->start('body') ?>
 <?php foreach ($blog_entries as $entry): ?>
 <h2><?php echo $entry->getTitle() ?></h2>
 <p><?php echo $entry->getBody() ?></p>
 <?php endforeach; ?>
<?php $view['slots']->stop() ?>

Note

The parent template is identified by a special string syntax
(::base.html.twig) that indicates that the template lives in the
app/Resources/views directory of the project. This naming convention is
explained fully in Template Naming and Locations.

The key to template inheritance is the {% extends %} tag. This tells
the templating engine to first evaluate the base template, which sets up
the layout and defines several blocks. The child template is then rendered,
at which point the title and body blocks of the parent are replaced
by those from the child. Depending on the value of blog_entries, the
output might look like this:

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>My cool blog posts</title>
 </head>
 <body>
 <div id="sidebar">

 Home
 Blog

 </div>

 <div id="content">
 <h2>My first post</h2>
 <p>The body of the first post.</p>

 <h2>Another post</h2>
 <p>The body of the second post.</p>
 </div>
 </body>
</html>

Notice that since the child template didn’t define a sidebar block, the
value from the parent template is used instead. Content within a {% block %}
tag in a parent template is always used by default.

You can use as many levels of inheritance as you want. In the next section,
a common three-level inheritance model will be explained along with how templates
are organized inside a Symfony2 project.

When working with template inheritance, here are some tips to keep in mind:

	If you use {% extends %} in a template, it must be the first tag in
that template.

	The more {% block %} tags you have in your base templates, the better.
Remember, child templates don’t have to define all parent blocks, so create
as many blocks in your base templates as you want and give each a sensible
default. The more blocks your base templates have, the more flexible your
layout will be.

	If you find yourself duplicating content in a number of templates, it probably
means you should move that content to a {% block %} in a parent template.
In some cases, a better solution may be to move the content to a new template
and include it (see Including other Templates).

	If you need to get the content of a block from the parent template, you
can use the {{ parent() }} function. This is useful if you want to add
to the contents of a parent block instead of completely overriding it:

{% block sidebar %}
 <h3>Table of Contents</h3>
 ...
 {{ parent() }}
{% endblock %}

Template Naming and Locations

By default, templates can live in two different locations:

	app/Resources/views/: The applications views directory can contain
application-wide base templates (i.e. your application’s layouts) as well as
templates that override bundle templates (see
Overriding Bundle Templates);

	path/to/bundle/Resources/views/: Each bundle houses its templates in its
Resources/views directory (and subdirectories). The majority of templates
will live inside a bundle.

Symfony2 uses a bundle:controller:template string syntax for
templates. This allows for several different types of templates, each which
lives in a specific location:

	AcmeBlogBundle:Blog:index.html.twig: This syntax is used to specify a
template for a specific page. The three parts of the string, each separated
by a colon (:), mean the following:

	AcmeBlogBundle: (bundle) the template lives inside the
AcmeBlogBundle (e.g. src/Acme/BlogBundle);

	Blog: (controller) indicates that the template lives inside the
Blog subdirectory of Resources/views;

	index.html.twig: (template) the actual name of the file is
index.html.twig.

Assuming that the AcmeBlogBundle lives at src/Acme/BlogBundle, the
final path to the layout would be src/Acme/BlogBundle/Resources/views/Blog/index.html.twig.

	AcmeBlogBundle::layout.html.twig: This syntax refers to a base template
that’s specific to the AcmeBlogBundle. Since the middle, “controller”,
portion is missing (e.g. Blog), the template lives at
Resources/views/layout.html.twig inside AcmeBlogBundle.

	::base.html.twig: This syntax refers to an application-wide base template
or layout. Notice that the string begins with two colons (::), meaning
that both the bundle and controller portions are missing. This means
that the template is not located in any bundle, but instead in the root
app/Resources/views/ directory.

In the Overriding Bundle Templates section, you’ll find out how each
template living inside the AcmeBlogBundle, for example, can be overridden
by placing a template of the same name in the app/Resources/AcmeBlogBundle/views/
directory. This gives the power to override templates from any vendor bundle.

Tip

Hopefully the template naming syntax looks familiar - it’s the same naming
convention used to refer to Controller Naming Pattern.

Template Suffix

The bundle:controller:template format of each template specifies
where the template file is located. Every template name also has two extensions
that specify the format and engine for that template.

	AcmeBlogBundle:Blog:index.html.twig - HTML format, Twig engine

	AcmeBlogBundle:Blog:index.html.php - HTML format, PHP engine

	AcmeBlogBundle:Blog:index.css.twig - CSS format, Twig engine

By default, any Symfony2 template can be written in either Twig or PHP, and
the last part of the extension (e.g. .twig or .php) specifies which
of these two engines should be used. The first part of the extension,
(e.g. .html, .css, etc) is the final format that the template will
generate. Unlike the engine, which determines how Symfony2 parses the template,
this is simply an organizational tactic used in case the same resource needs
to be rendered as HTML (index.html.twig), XML (index.xml.twig),
or any other format. For more information, read the Debugging
section.

Note

The available “engines” can be configured and even new engines added.
See Templating Configuration for more details.

Tags and Helpers

You already understand the basics of templates, how they’re named and how
to use template inheritance. The hardest parts are already behind you. In
this section, you’ll learn about a large group of tools available to help
perform the most common template tasks such as including other templates,
linking to pages and including images.

Symfony2 comes bundled with several specialized Twig tags and functions that
ease the work of the template designer. In PHP, the templating system provides
an extensible helper system that provides useful features in a template
context.

We’ve already seen a few built-in Twig tags ({% block %} & {% extends %})
as well as an example of a PHP helper ($view['slots']). Let’s learn a
few more.

Including other Templates

You’ll often want to include the same template or code fragment on several
different pages. For example, in an application with “news articles”, the
template code displaying an article might be used on the article detail page,
on a page displaying the most popular articles, or in a list of the latest
articles.

When you need to reuse a chunk of PHP code, you typically move the code to
a new PHP class or function. The same is true for templates. By moving the
reused template code into its own template, it can be included from any other
template. First, create the template that you’ll need to reuse.

	Twig{# src/Acme/ArticleBundle/Resources/views/Article/articleDetails.html.twig #}
<h2>{{ article.title }}</h2>
<h3 class="byline">by {{ article.authorName }}</h3>

<p>
 {{ article.body }}
</p>

	PHP<!-- src/Acme/ArticleBundle/Resources/views/Article/articleDetails.html.php -->
<h2><?php echo $article->getTitle() ?></h2>
<h3 class="byline">by <?php echo $article->getAuthorName() ?></h3>

<p>
 <?php echo $article->getBody() ?>
</p>

Including this template from any other template is simple:

	Twig{# src/Acme/ArticleBundle/Resources/Article/list.html.twig #}
{% extends 'AcmeArticleBundle::layout.html.twig' %}

{% block body %}
 <h1>Recent Articles<h1>

 {% for article in articles %}
 {% include 'AcmeArticleBundle:Article:articleDetails.html.twig' with {'article': article} %}
 {% endfor %}
{% endblock %}

	PHP<!-- src/Acme/ArticleBundle/Resources/Article/list.html.php -->
<?php $view->extend('AcmeArticleBundle::layout.html.php') ?>

<?php $view['slots']->start('body') ?>
 <h1>Recent Articles</h1>

 <?php foreach ($articles as $article): ?>
 <?php echo $view->render('AcmeArticleBundle:Article:articleDetails.html.php', array('article' => $article)) ?>
 <?php endforeach; ?>
<?php $view['slots']->stop() ?>

The template is included using the {% include %} tag. Notice that the
template name follows the same typical convention. The articleDetails.html.twig
template uses an article variable. This is passed in by the list.html.twig
template using the with command.

Tip

The {'article': article} syntax is the standard Twig syntax for hash
maps (i.e. an array with named keys). If we needed to pass in multiple
elements, it would look like this: {'foo': foo, 'bar': bar}.

Embedding Controllers

In some cases, you need to do more than include a simple template. Suppose
you have a sidebar in your layout that contains the three most recent articles.
Retrieving the three articles may include querying the database or performing
other heavy logic that can’t be done from within a template.

The solution is to simply embed the result of an entire controller from your
template. First, create a controller that renders a certain number of recent
articles:

// src/Acme/ArticleBundle/Controller/ArticleController.php

class ArticleController extends Controller
{
 public function recentArticlesAction($max = 3)
 {
 // make a database call or other logic to get the "$max" most recent articles
 $articles = ...;

 return $this->render('AcmeArticleBundle:Article:recentList.html.twig', array('articles' => $articles));
 }
}

The recentList template is perfectly straightforward:

	Twig{# src/Acme/ArticleBundle/Resources/views/Article/recentList.html.twig #}
{% for article in articles %}

 {{ article.title }}

{% endfor %}

	PHP<!-- src/Acme/ArticleBundle/Resources/views/Article/recentList.html.php -->
<?php foreach ($articles as $article): ?>
 <a href="/article/<?php echo $article->getSlug() ?>">
 <?php echo $article->getTitle() ?>

<?php endforeach; ?>

Note

Notice that we’ve cheated and hardcoded the article URL in this example
(e.g. /article/*slug*). This is a bad practice. In the next section,
you’ll learn how to do this correctly.

To include the controller, you’ll need to refer to it using the standard string
syntax for controllers (i.e. bundle:controller:action):

	Twig{# app/Resources/views/base.html.twig #}
...

<div id="sidebar">
 {% render "AcmeArticleBundle:Article:recentArticles" with {'max': 3} %}
</div>

	PHP<!-- app/Resources/views/base.html.php -->
...

<div id="sidebar">
 <?php echo $view['actions']->render('AcmeArticleBundle:Article:recentArticles', array('max' => 3)) ?>
</div>

Whenever you find that you need a variable or a piece of information that
you don’t have access to in a template, consider rendering a controller.
Controllers are fast to execute and promote good code organization and reuse.

Linking to Pages

Creating links to other pages in your application is one of the most common
jobs for a template. Instead of hardcoding URLs in templates, use the path
Twig function (or the router helper in PHP) to generate URLs based on
the routing configuration. Later, if you want to modify the URL of a particular
page, all you’ll need to do is change the routing configuration; the templates
will automatically generate the new URL.

First, link to the “_welcome” page, which is accessible via the following routing
configuration:

	YAML_welcome:
 pattern: /
 defaults: { _controller: AcmeDemoBundle:Welcome:index }

	XML<route id="_welcome" pattern="/">
 <default key="_controller">AcmeDemoBundle:Welcome:index</default>
</route>

	PHP$collection = new RouteCollection();
$collection->add('_welcome', new Route('/', array(
 '_controller' => 'AcmeDemoBundle:Welcome:index',
)));

return $collection;

To link to the page, just use the path Twig function and refer to the route:

	TwigHome

	PHP<a href="<?php echo $view['router']->generate('_welcome') ?>">Home

As expected, this will generate the URL /. Let’s see how this works with
a more complicated route:

	YAMLarticle_show:
 pattern: /article/{slug}
 defaults: { _controller: AcmeArticleBundle:Article:show }

	XML<route id="article_show" pattern="/article/{slug}">
 <default key="_controller">AcmeArticleBundle:Article:show</default>
</route>

	PHP$collection = new RouteCollection();
$collection->add('article_show', new Route('/article/{slug}', array(
 '_controller' => 'AcmeArticleBundle:Article:show',
)));

return $collection;

In this case, you need to specify both the route name (article_show) and
a value for the {slug} parameter. Using this route, let’s revisit the
recentList template from the previous section and link to the articles
correctly:

	Twig{# src/Acme/ArticleBundle/Resources/views/Article/recentList.html.twig #}
{% for article in articles %}

 {{ article.title }}

{% endfor %}

	PHP<!-- src/Acme/ArticleBundle/Resources/views/Article/recentList.html.php -->
<?php foreach ($articles in $article): ?>
 <a href="<?php echo $view['router']->generate('article_show', array('slug' => $article->getSlug()) ?>">
 <?php echo $article->getTitle() ?>

<?php endforeach; ?>

Tip

You can also generate an absolute URL by using the url Twig function:

Home

The same can be done in PHP templates by passing a third argument to
the generate() method:

<a href="<?php echo $view['router']->generate('_welcome', array(), true) ?>">Home

Linking to Assets

Templates also commonly refer to images, Javascript, stylesheets and other
assets. Of course you could hard-code the path to these assets (e.g. /images/logo.png),
but Symfony2 provides a more dynamic option via the assets Twig function:

	Twig

<link href="{{ asset('css/blog.css') }}" rel="stylesheet" type="text/css" />

	PHP<img src="<?php echo $view['assets']->getUrl('images/logo.png') ?>" alt="Symfony!" />

<link href="<?php echo $view['assets']->getUrl('css/blog.css') ?>" rel="stylesheet" type="text/css" />

The asset function’s main purpose is to make your application more portable.
If your application lives at the root of your host (e.g. http://example.com),
then the rendered paths should be /images/logo.png. But if your application
lives in a subdirectory (e.g. http://example.com/my_app), each asset path
should render with the subdirectory (e.g. /my_app/images/logo.png). The
asset function takes care of this by determining how your application is
being used and generating the correct paths accordingly.

Additionally, if you use the asset function, Symfony can automatically
append a query string to your asset, in order to guarantee that updated static
assets won’t be cached when deployed. For example, /images/logo.png might
look like /images/logo.png?v2. For more information, see the assets_version
configuration option.

Including Stylesheets and Javascripts in Twig

No site would be complete without including Javascript files and stylesheets.
In Symfony, the inclusion of these assets is handled elegantly by taking
advantage of Symfony’s template inheritance.

Tip

This section will teach you the philosophy behind including stylesheet
and Javascript assets in Symfony. Symfony also packages another library,
called Assetic, which follows this philosophy but allows you to do much
more interesting things with those assets. For more information on
using Assetic see How to Use Assetic for Asset Management.

Start by adding two blocks to your base template that will hold your assets:
one called stylesheets inside the head tag and another called javascripts
just above the closing body tag. These blocks will contain all of the
stylesheets and Javascripts that you’ll need throughout your site:

{# 'app/Resources/views/base.html.twig' #}
<html>
 <head>
 {# ... #}

 {% block stylesheets %}
 <link href="{{ asset('/css/main.css') }}" type="text/css" rel="stylesheet" />
 {% endblock %}
 </head>
 <body>
 {# ... #}

 {% block javascripts %}
 <script src="{{ asset('/js/main.js') }}" type="text/javascript"></script>
 {% endblock %}
 </body>
</html>

That’s easy enough! But what if you need to include an extra stylesheet or
Javascript from a child template? For example, suppose you have a contact
page and you need to include a contact.css stylesheet just on that
page. From inside that contact page’s template, do the following:

{# src/Acme/DemoBundle/Resources/views/Contact/contact.html.twig #}
{% extends '::base.html.twig' %}

{% block stylesheets %}
 {{ parent() }}

 <link href="{{ asset('/css/contact.css') }}" type="text/css" rel="stylesheet" />
{% endblock %}

{# ... #}

In the child template, you simply override the stylesheets block and
put your new stylesheet tag inside of that block. Of course, since you want
to add to the parent block’s content (and not actually replace it), you
should use the parent() Twig function to include everything from the stylesheets
block of the base template.

You can also include assets located in your bundles’ Resources/public folder.
You will need to run the php app/console assets:install target [--symlink]
command, which moves (or symlinks) files into the correct location. (target
is by default “web”).

<link href="{{ asset('bundles/acmedemo/css/contact.css') }}" type="text/css" rel="stylesheet" />

The end result is a page that includes both the main.css and contact.css
stylesheets.

Global Template Variables

During each request, Symfony2 will set a global template variable app
in both Twig and PHP template engines by default. The app variable
is a Symfony\Bundle\FrameworkBundle\Templating\GlobalVariables
instance which will give you access to some application specific variables
automatically:

	app.security - The security context.

	app.user - The current user object.

	app.request - The request object.

	app.session - The session object.

	app.environment - The current environment (dev, prod, etc).

	app.debug - True if in debug mode. False otherwise.

	Twig<p>Username: {{ app.user.username }}</p>
{% if app.debug %}
 <p>Request method: {{ app.request.method }}</p>
 <p>Application Environment: {{ app.environment }}</p>
{% endif %}

	PHP<p>Username: <?php echo $app->getUser()->getUsername() ?></p>
<?php if ($app->getDebug()): ?>
 <p>Request method: <?php echo $app->getRequest()->getMethod() ?></p>
 <p>Application Environment: <?php echo $app->getEnvironment() ?></p>
<?php endif; ?>

Tip

You can add your own global template variables. See the cookbook example
on Global Variables.

Configuring and using the templating Service

The heart of the template system in Symfony2 is the templating Engine.
This special object is responsible for rendering templates and returning
their content. When you render a template in a controller, for example,
you’re actually using the templating engine service. For example:

return $this->render('AcmeArticleBundle:Article:index.html.twig');

is equivalent to

$engine = $this->container->get('templating');
$content = $engine->render('AcmeArticleBundle:Article:index.html.twig');

return $response = new Response($content);

The templating engine (or “service”) is preconfigured to work automatically
inside Symfony2. It can, of course, be configured further in the application
configuration file:

	YAML# app/config/config.yml
framework:
 # ...
 templating: { engines: ['twig'] }

	XML<!-- app/config/config.xml -->
<framework:templating>
 <framework:engine id="twig" />
</framework:templating>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 // ...
 'templating' => array(
 'engines' => array('twig'),
),
));

Several configuration options are available and are covered in the
Configuration Appendix.

Note

The twig engine is mandatory to use the webprofiler (as well as many
third-party bundles).

Overriding Bundle Templates

The Symfony2 community prides itself on creating and maintaining high quality
bundles (see KnpBundles.com [http://knpbundles.com]) for a large number of different features.
Once you use a third-party bundle, you’ll likely need to override and customize
one or more of its templates.

Suppose you’ve included the imaginary open-source AcmeBlogBundle in your
project (e.g. in the src/Acme/BlogBundle directory). And while you’re
really happy with everything, you want to override the blog “list” page to
customize the markup specifically for your application. By digging into the
Blog controller of the AcmeBlogBundle, you find the following:

public function indexAction()
{
 $blogs = // some logic to retrieve the blogs

 $this->render('AcmeBlogBundle:Blog:index.html.twig', array('blogs' => $blogs));
}

When the AcmeBlogBundle:Blog:index.html.twig is rendered, Symfony2 actually
looks in two different locations for the template:

	app/Resources/AcmeBlogBundle/views/Blog/index.html.twig

	src/Acme/BlogBundle/Resources/views/Blog/index.html.twig

To override the bundle template, just copy the index.html.twig template
from the bundle to app/Resources/AcmeBlogBundle/views/Blog/index.html.twig
(the app/Resources/AcmeBlogBundle directory won’t exist, so you’ll need
to create it). You’re now free to customize the template.

This logic also applies to base bundle templates. Suppose also that each
template in AcmeBlogBundle inherits from a base template called
AcmeBlogBundle::layout.html.twig. Just as before, Symfony2 will look in
the following two places for the template:

	app/Resources/AcmeBlogBundle/views/layout.html.twig

	src/Acme/BlogBundle/Resources/views/layout.html.twig

Once again, to override the template, just copy it from the bundle to
app/Resources/AcmeBlogBundle/views/layout.html.twig. You’re now free to
customize this copy as you see fit.

If you take a step back, you’ll see that Symfony2 always starts by looking in
the app/Resources/{BUNDLE_NAME}/views/ directory for a template. If the
template doesn’t exist there, it continues by checking inside the
Resources/views directory of the bundle itself. This means that all bundle
templates can be overridden by placing them in the correct app/Resources
subdirectory.

Overriding Core Templates

Since the Symfony2 framework itself is just a bundle, core templates can be
overridden in the same way. For example, the core TwigBundle contains
a number of different “exception” and “error” templates that can be overridden
by copying each from the Resources/views/Exception directory of the
TwigBundle to, you guessed it, the
app/Resources/TwigBundle/views/Exception directory.

Three-level Inheritance

One common way to use inheritance is to use a three-level approach. This
method works perfectly with the three different types of templates we’ve just
covered:

	Create a app/Resources/views/base.html.twig file that contains the main
layout for your application (like in the previous example). Internally, this
template is called ::base.html.twig;

	Create a template for each “section” of your site. For example, an AcmeBlogBundle,
would have a template called AcmeBlogBundle::layout.html.twig that contains
only blog section-specific elements;

{# src/Acme/BlogBundle/Resources/views/layout.html.twig #}
{% extends '::base.html.twig' %}

{% block body %}
 <h1>Blog Application</h1>

 {% block content %}{% endblock %}
{% endblock %}

	Create individual templates for each page and make each extend the appropriate
section template. For example, the “index” page would be called something
close to AcmeBlogBundle:Blog:index.html.twig and list the actual blog posts.

{# src/Acme/BlogBundle/Resources/views/Blog/index.html.twig #}
{% extends 'AcmeBlogBundle::layout.html.twig' %}

{% block content %}
 {% for entry in blog_entries %}
 <h2>{{ entry.title }}</h2>
 <p>{{ entry.body }}</p>
 {% endfor %}
{% endblock %}

Notice that this template extends the section template -(AcmeBlogBundle::layout.html.twig)
which in-turn extends the base application layout (::base.html.twig).
This is the common three-level inheritance model.

When building your application, you may choose to follow this method or simply
make each page template extend the base application template directly
(e.g. {% extends '::base.html.twig' %}). The three-template model is
a best-practice method used by vendor bundles so that the base template for
a bundle can be easily overridden to properly extend your application’s base
layout.

Output Escaping

When generating HTML from a template, there is always a risk that a template
variable may output unintended HTML or dangerous client-side code. The result
is that dynamic content could break the HTML of the resulting page or allow
a malicious user to perform a Cross Site Scripting [http://en.wikipedia.org/wiki/Cross-site_scripting] (XSS) attack. Consider
this classic example:

	TwigHello {{ name }}

	PHPHello <?php echo $name ?>

Imagine that the user enters the following code as his/her name:

<script>alert('hello!')</script>

Without any output escaping, the resulting template will cause a JavaScript
alert box to pop up:

Hello <script>alert('hello!')</script>

And while this seems harmless, if a user can get this far, that same user
should also be able to write JavaScript that performs malicious actions
inside the secure area of an unknowing, legitimate user.

The answer to the problem is output escaping. With output escaping on, the
same template will render harmlessly, and literally print the script
tag to the screen:

Hello <script>alert('helloe')</script>

The Twig and PHP templating systems approach the problem in different ways.
If you’re using Twig, output escaping is on by default and you’re protected.
In PHP, output escaping is not automatic, meaning you’ll need to manually
escape where necessary.

Output Escaping in Twig

If you’re using Twig templates, then output escaping is on by default. This
means that you’re protected out-of-the-box from the unintentional consequences
of user-submitted code. By default, the output escaping assumes that content
is being escaped for HTML output.

In some cases, you’ll need to disable output escaping when you’re rendering
a variable that is trusted and contains markup that should not be escaped.
Suppose that administrative users are able to write articles that contain
HTML code. By default, Twig will escape the article body. To render it normally,
add the raw filter: {{ article.body|raw }}.

You can also disable output escaping inside a {% block %} area or
for an entire template. For more information, see Output Escaping [http://twig.sensiolabs.org/doc/api.html#escaper-extension] in
the Twig documentation.

Output Escaping in PHP

Output escaping is not automatic when using PHP templates. This means that
unless you explicitly choose to escape a variable, you’re not protected. To
use output escaping, use the special escape() view method:

Hello <?php echo $view->escape($name) ?>

By default, the escape() method assumes that the variable is being rendered
within an HTML context (and thus the variable is escaped to be safe for HTML).
The second argument lets you change the context. For example, to output something
in a JavaScript string, use the js context:

var myMsg = 'Hello <?php echo $view->escape($name, 'js') ?>';

Debugging

New in version 2.0.9: This feature is available as of Twig 1.5.x, which was first shipped
with Symfony 2.0.9.

When using PHP, you can use var_dump() if you need to quickly find the
value of a variable passed. This is useful, for example, inside your controller.
The same can be achieved when using Twig by using the debug extension. This
needs to be enabled in the config:

	YAML# app/config/config.yml
services:
 acme_hello.twig.extension.debug:
 class: Twig_Extension_Debug
 tags:
 - { name: 'twig.extension' }

	XML<!-- app/config/config.xml -->
<services>
 <service id="acme_hello.twig.extension.debug" class="Twig_Extension_Debug">
 <tag name="twig.extension" />
 </service>
</services>

	PHP// app/config/config.php
use Symfony\Component\DependencyInjection\Definition;

$definition = new Definition('Twig_Extension_Debug');
$definition->addTag('twig.extension');
$container->setDefinition('acme_hello.twig.extension.debug', $definition);

Template parameters can then be dumped using the dump function:

{# src/Acme/ArticleBundle/Resources/views/Article/recentList.html.twig #}

{{ dump(articles) }}

{% for article in articles %}

 {{ article.title }}

{% endfor %}

The variables will only be dumped if Twig’s debug setting (in config.yml)
is true. By default this means that the variables will be dumped in the
dev environment but not the prod environment.

Template Formats

Templates are a generic way to render content in any format. And while in
most cases you’ll use templates to render HTML content, a template can just
as easily generate JavaScript, CSS, XML or any other format you can dream of.

For example, the same “resource” is often rendered in several different formats.
To render an article index page in XML, simply include the format in the
template name:

	XML template name: AcmeArticleBundle:Article:index.xml.twig

	XML template filename: index.xml.twig

In reality, this is nothing more than a naming convention and the template
isn’t actually rendered differently based on its format.

In many cases, you may want to allow a single controller to render multiple
different formats based on the “request format”. For that reason, a common
pattern is to do the following:

public function indexAction()
{
 $format = $this->getRequest()->getRequestFormat();

 return $this->render('AcmeBlogBundle:Blog:index.'.$format.'.twig');
}

The getRequestFormat on the Request object defaults to html,
but can return any other format based on the format requested by the user.
The request format is most often managed by the routing, where a route can
be configured so that /contact sets the request format to html while
/contact.xml sets the format to xml. For more information, see the
Advanced Example in the Routing chapter.

To create links that include the format parameter, include a _format
key in the parameter hash:

	Twig
 PDF Version

	PHP<a href="<?php echo $view['router']->generate('article_show', array('id' => 123, '_format' => 'pdf')) ?>">
 PDF Version

Final Thoughts

The templating engine in Symfony is a powerful tool that can be used each time
you need to generate presentational content in HTML, XML or any other format.
And though templates are a common way to generate content in a controller,
their use is not mandatory. The Response object returned by a controller
can be created with our without the use of a template:

// creates a Response object whose content is the rendered template
$response = $this->render('AcmeArticleBundle:Article:index.html.twig');

// creates a Response object whose content is simple text
$response = new Response('response content');

Symfony’s templating engine is very flexible and two different template
renderers are available by default: the traditional PHP templates and the
sleek and powerful Twig templates. Both support a template hierarchy and
come packaged with a rich set of helper functions capable of performing
the most common tasks.

Overall, the topic of templating should be thought of as a powerful tool
that’s at your disposal. In some cases, you may not need to render a template,
and in Symfony2, that’s absolutely fine.

Learn more from the Cookbook

	How to use PHP instead of Twig for Templates

	How to customize Error Pages

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Databases and Doctrine (“The Model”)

Let’s face it, one of the most common and challenging tasks for any application
involves persisting and reading information to and from a database. Fortunately,
Symfony comes integrated with Doctrine [http://www.doctrine-project.org/], a library whose sole goal is to
give you powerful tools to make this easy. In this chapter, you’ll learn the
basic philosophy behind Doctrine and see how easy working with a database can
be.

Note

Doctrine is totally decoupled from Symfony and using it is optional.
This chapter is all about the Doctrine ORM, which aims to let you map
objects to a relational database (such as MySQL, PostgreSQL or Microsoft SQL).
If you prefer to use raw database queries, this is easy, and explained
in the “How to use Doctrine’s DBAL Layer” cookbook entry.

You can also persist data to MongoDB [http://www.mongodb.org/] using Doctrine ODM library. For
more information, read the “/bundles/DoctrineMongoDBBundle/index”
documentation.

A Simple Example: A Product

The easiest way to understand how Doctrine works is to see it in action.
In this section, you’ll configure your database, create a Product object,
persist it to the database and fetch it back out.

Code along with the example

If you want to follow along with the example in this chapter, create
an AcmeStoreBundle via:

php app/console generate:bundle --namespace=Acme/StoreBundle

Configuring the Database

Before you really begin, you’ll need to configure your database connection
information. By convention, this information is usually configured in an
app/config/parameters.yml file:

app/config/parameters.yml
parameters:
 database_driver: pdo_mysql
 database_host: localhost
 database_name: test_project
 database_user: root
 database_password: password

Note

Defining the configuration via parameters.yml is just a convention.
The parameters defined in that file are referenced by the main configuration
file when setting up Doctrine:

doctrine:
 dbal:
 driver: %database_driver%
 host: %database_host%
 dbname: %database_name%
 user: %database_user%
 password: %database_password%

By separating the database information into a separate file, you can
easily keep different versions of the file on each server. You can also
easily store database configuration (or any sensitive information) outside
of your project, like inside your Apache configuration, for example. For
more information, see How to Set External Parameters in the Service Container.

Now that Doctrine knows about your database, you can have it create the database
for you:

php app/console doctrine:database:create

Creating an Entity Class

Suppose you’re building an application where products need to be displayed.
Without even thinking about Doctrine or databases, you already know that
you need a Product object to represent those products. Create this class
inside the Entity directory of your AcmeStoreBundle:

// src/Acme/StoreBundle/Entity/Product.php
namespace Acme\StoreBundle\Entity;

class Product
{
 protected $name;

 protected $price;

 protected $description;
}

The class - often called an “entity”, meaning a basic class that holds data -
is simple and helps fulfill the business requirement of needing products
in your application. This class can’t be persisted to a database yet - it’s
just a simple PHP class.

Tip

Once you learn the concepts behind Doctrine, you can have Doctrine create
this entity class for you:

php app/console doctrine:generate:entity --entity="AcmeStoreBundle:Product" --fields="name:string(255) price:float description:text"

Add Mapping Information

Doctrine allows you to work with databases in a much more interesting way
than just fetching rows of a column-based table into an array. Instead, Doctrine
allows you to persist entire objects to the database and fetch entire objects
out of the database. This works by mapping a PHP class to a database table,
and the properties of that PHP class to columns on the table:

[image: ../_images/doctrine_image_1.png]
For Doctrine to be able to do this, you just have to create “metadata”, or
configuration that tells Doctrine exactly how the Product class and its
properties should be mapped to the database. This metadata can be specified
in a number of different formats including YAML, XML or directly inside the
Product class via annotations:

Note

A bundle can accept only one metadata definition format. For example, it’s
not possible to mix YAML metadata definitions with annotated PHP entity
class definitions.

	Annotations// src/Acme/StoreBundle/Entity/Product.php
namespace Acme\StoreBundle\Entity;

use Doctrine\ORM\Mapping as ORM;

/**
 * @ORM\Entity
 * @ORM\Table(name="product")
 */
class Product
{
 /**
 * @ORM\Id
 * @ORM\Column(type="integer")
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 protected $id;

 /**
 * @ORM\Column(type="string", length=100)
 */
 protected $name;

 /**
 * @ORM\Column(type="decimal", scale=2)
 */
 protected $price;

 /**
 * @ORM\Column(type="text")
 */
 protected $description;
}

	YAML# src/Acme/StoreBundle/Resources/config/doctrine/Product.orm.yml
Acme\StoreBundle\Entity\Product:
 type: entity
 table: product
 id:
 id:
 type: integer
 generator: { strategy: AUTO }
 fields:
 name:
 type: string
 length: 100
 price:
 type: decimal
 scale: 2
 description:
 type: text

	XML<!-- src/Acme/StoreBundle/Resources/config/doctrine/Product.orm.xml -->
<doctrine-mapping xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping
 http://doctrine-project.org/schemas/orm/doctrine-mapping.xsd">

 <entity name="Acme\StoreBundle\Entity\Product" table="product">
 <id name="id" type="integer" column="id">
 <generator strategy="AUTO" />
 </id>
 <field name="name" column="name" type="string" length="100" />
 <field name="price" column="price" type="decimal" scale="2" />
 <field name="description" column="description" type="text" />
 </entity>
</doctrine-mapping>

Tip

The table name is optional and if omitted, will be determined automatically
based on the name of the entity class.

Doctrine allows you to choose from a wide variety of different field types,
each with their own options. For information on the available field types,
see the Doctrine Field Types Reference section.

See also

You can also check out Doctrine’s Basic Mapping Documentation [http://www.doctrine-project.org/docs/orm/2.0/en/reference/basic-mapping.html] for
all details about mapping information. If you use annotations, you’ll
need to prepend all annotations with ORM\ (e.g. ORM\Column(..)),
which is not shown in Doctrine’s documentation. You’ll also need to include
the use Doctrine\ORM\Mapping as ORM; statement, which imports the
ORM annotations prefix.

Caution

Be careful that your class name and properties aren’t mapped to a protected
SQL keyword (such as group or user). For example, if your entity
class name is Group, then, by default, your table name will be group,
which will cause an SQL error in some engines. See Doctrine’s
Reserved SQL keywords documentation [http://www.doctrine-project.org/docs/orm/2.0/en/reference/basic-mapping.html#quoting-reserved-words] on how to properly escape these
names.

Note

When using another library or program (ie. Doxygen) that uses annotations,
you should place the @IgnoreAnnotation annotation on the class to
indicate which annotations Symfony should ignore.

For example, to prevent the @fn annotation from throwing an exception,
add the following:

/**
 * @IgnoreAnnotation("fn")
 */
class Product

Generating Getters and Setters

Even though Doctrine now knows how to persist a Product object to the
database, the class itself isn’t really useful yet. Since Product is just
a regular PHP class, you need to create getter and setter methods (e.g. getName(),
setName()) in order to access its properties (since the properties are
protected). Fortunately, Doctrine can do this for you by running:

php app/console doctrine:generate:entities Acme/StoreBundle/Entity/Product

This command makes sure that all of the getters and setters are generated
for the Product class. This is a safe command - you can run it over and
over again: it only generates getters and setters that don’t exist (i.e. it
doesn’t replace your existing methods).

More about doctrine:generate:entities

With the doctrine:generate:entities command you can:

	generate getters and setters,

	
	generate repository classes configured with the

	@ORM\Entity(repositoryClass="...") annotation,

	generate the appropriate constructor for 1:n and n:m relations.

The doctrine:generate:entities command saves a backup of the original
Product.php named Product.php~. In some cases, the presence of
this file can cause a “Cannot redeclare class” error. It can be safely
removed.

Note that you don’t need to use this command. Doctrine doesn’t rely
on code generation. Like with normal PHP classes, you just need to make
sure that your protected/private properties have getter and setter methods.
Since this is a common thing to do when using Doctrine, this command
was created.

You can also generate all known entities (i.e. any PHP class with Doctrine
mapping information) of a bundle or an entire namespace:

php app/console doctrine:generate:entities AcmeStoreBundle
php app/console doctrine:generate:entities Acme

Note

Doctrine doesn’t care whether your properties are protected or private,
or whether or not you have a getter or setter function for a property.
The getters and setters are generated here only because you’ll need them
to interact with your PHP object.

Creating the Database Tables/Schema

You now have a usable Product class with mapping information so that
Doctrine knows exactly how to persist it. Of course, you don’t yet have the
corresponding product table in your database. Fortunately, Doctrine can
automatically create all the database tables needed for every known entity
in your application. To do this, run:

php app/console doctrine:schema:update --force

Tip

Actually, this command is incredibly powerful. It compares what
your database should look like (based on the mapping information of
your entities) with how it actually looks, and generates the SQL statements
needed to update the database to where it should be. In other words, if you add
a new property with mapping metadata to Product and run this task
again, it will generate the “alter table” statement needed to add that
new column to the existing product table.

An even better way to take advantage of this functionality is via
migrations, which allow you to
generate these SQL statements and store them in migration classes that
can be run systematically on your production server in order to track
and migrate your database schema safely and reliably.

Your database now has a fully-functional product table with columns that
match the metadata you’ve specified.

Persisting Objects to the Database

Now that you have a mapped Product entity and corresponding product
table, you’re ready to persist data to the database. From inside a controller,
this is pretty easy. Add the following method to the DefaultController
of the bundle:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	// src/Acme/StoreBundle/Controller/DefaultController.php
use Acme\StoreBundle\Entity\Product;
use Symfony\Component\HttpFoundation\Response;
// ...

public function createAction()
{
 $product = new Product();
 $product->setName('A Foo Bar');
 $product->setPrice('19.99');
 $product->setDescription('Lorem ipsum dolor');

 $em = $this->getDoctrine()->getEntityManager();
 $em->persist($product);
 $em->flush();

 return new Response('Created product id '.$product->getId());
}

Note

If you’re following along with this example, you’ll need to create a
route that points to this action to see it work.

Let’s walk through this example:

	lines 8-11 In this section, you instantiate and work with the $product
object like any other, normal PHP object;

	line 13 This line fetches Doctrine’s entity manager object, which is
responsible for handling the process of persisting and fetching objects
to and from the database;

	line 14 The persist() method tells Doctrine to “manage” the $product
object. This does not actually cause a query to be made to the database (yet).

	line 15 When the flush() method is called, Doctrine looks through
all of the objects that it’s managing to see if they need to be persisted
to the database. In this example, the $product object has not been
persisted yet, so the entity manager executes an INSERT query and a
row is created in the product table.

Note

In fact, since Doctrine is aware of all your managed entities, when you
call the flush() method, it calculates an overall changeset and executes
the most efficient query/queries possible. For example, if you persist a
total of 100 Product objects and then subsequently call flush(),
Doctrine will create a single prepared statement and re-use it for each
insert. This pattern is called Unit of Work, and it’s used because it’s
fast and efficient.

When creating or updating objects, the workflow is always the same. In the
next section, you’ll see how Doctrine is smart enough to automatically issue
an UPDATE query if the record already exists in the database.

Tip

Doctrine provides a library that allows you to programmatically load testing
data into your project (i.e. “fixture data”). For information, see
/bundles/DoctrineFixturesBundle/index.

Fetching Objects from the Database

Fetching an object back out of the database is even easier. For example,
suppose you’ve configured a route to display a specific Product based
on its id value:

public function showAction($id)
{
 $product = $this->getDoctrine()
 ->getRepository('AcmeStoreBundle:Product')
 ->find($id);

 if (!$product) {
 throw $this->createNotFoundException('No product found for id '.$id);
 }

 // do something, like pass the $product object into a template
}

When you query for a particular type of object, you always use what’s known
as its “repository”. You can think of a repository as a PHP class whose only
job is to help you fetch entities of a certain class. You can access the
repository object for an entity class via:

$repository = $this->getDoctrine()
 ->getRepository('AcmeStoreBundle:Product');

Note

The AcmeStoreBundle:Product string is a shortcut you can use anywhere
in Doctrine instead of the full class name of the entity (i.e. Acme\StoreBundle\Entity\Product).
As long as your entity lives under the Entity namespace of your bundle,
this will work.

Once you have your repository, you have access to all sorts of helpful methods:

// query by the primary key (usually "id")
$product = $repository->find($id);

// dynamic method names to find based on a column value
$product = $repository->findOneById($id);
$product = $repository->findOneByName('foo');

// find *all* products
$products = $repository->findAll();

// find a group of products based on an arbitrary column value
$products = $repository->findByPrice(19.99);

Note

Of course, you can also issue complex queries, which you’ll learn more
about in the Querying for Objects section.

You can also take advantage of the useful findBy and findOneBy methods
to easily fetch objects based on multiple conditions:

// query for one product matching be name and price
$product = $repository->findOneBy(array('name' => 'foo', 'price' => 19.99));

// query for all products matching the name, ordered by price
$product = $repository->findBy(
 array('name' => 'foo'),
 array('price' => 'ASC')
);

Tip

When you render any page, you can see how many queries were made in the
bottom right corner of the web debug toolbar.

[image: ../_images/doctrine_web_debug_toolbar.png]
If you click the icon, the profiler will open, showing you the exact
queries that were made.

Updating an Object

Once you’ve fetched an object from Doctrine, updating it is easy. Suppose
you have a route that maps a product id to an update action in a controller:

public function updateAction($id)
{
 $em = $this->getDoctrine()->getEntityManager();
 $product = $em->getRepository('AcmeStoreBundle:Product')->find($id);

 if (!$product) {
 throw $this->createNotFoundException('No product found for id '.$id);
 }

 $product->setName('New product name!');
 $em->flush();

 return $this->redirect($this->generateUrl('homepage'));
}

Updating an object involves just three steps:

	fetching the object from Doctrine;

	modifying the object;

	calling flush() on the entity manager

Notice that calling $em->persist($product) isn’t necessary. Recall that
this method simply tells Doctrine to manage or “watch” the $product object.
In this case, since you fetched the $product object from Doctrine, it’s
already managed.

Deleting an Object

Deleting an object is very similar, but requires a call to the remove()
method of the entity manager:

$em->remove($product);
$em->flush();

As you might expect, the remove() method notifies Doctrine that you’d
like to remove the given entity from the database. The actual DELETE query,
however, isn’t actually executed until the flush() method is called.

Querying for Objects

You’ve already seen how the repository object allows you to run basic queries
without any work:

$repository->find($id);

$repository->findOneByName('Foo');

Of course, Doctrine also allows you to write more complex queries using the
Doctrine Query Language (DQL). DQL is similar to SQL except that you should
imagine that you’re querying for one or more objects of an entity class (e.g. Product)
instead of querying for rows on a table (e.g. product).

When querying in Doctrine, you have two options: writing pure Doctrine queries
or using Doctrine’s Query Builder.

Querying for Objects with DQL

Imagine that you want to query for products, but only return products that
cost more than 19.99, ordered from cheapest to most expensive. From inside
a controller, do the following:

$em = $this->getDoctrine()->getEntityManager();
$query = $em->createQuery(
 'SELECT p FROM AcmeStoreBundle:Product p WHERE p.price > :price ORDER BY p.price ASC'
)->setParameter('price', '19.99');

$products = $query->getResult();

If you’re comfortable with SQL, then DQL should feel very natural. The biggest
difference is that you need to think in terms of “objects” instead of rows
in a database. For this reason, you select from AcmeStoreBundle:Product
and then alias it as p.

The getResult() method returns an array of results. If you’re querying
for just one object, you can use the getSingleResult() method instead:

$product = $query->getSingleResult();

Caution

The getSingleResult() method throws a Doctrine\ORM\NoResultException
exception if no results are returned and a Doctrine\ORM\NonUniqueResultException
if more than one result is returned. If you use this method, you may
need to wrap it in a try-catch block and ensure that only one result is
returned (if you’re querying on something that could feasibly return
more than one result):

$query = $em->createQuery('SELECT')
 ->setMaxResults(1);

try {
 $product = $query->getSingleResult();
} catch (\Doctrine\Orm\NoResultException $e) {
 $product = null;
}
// ...

The DQL syntax is incredibly powerful, allowing you to easily join between
entities (the topic of relations will be
covered later), group, etc. For more information, see the official Doctrine
Doctrine Query Language [http://www.doctrine-project.org/docs/orm/2.0/en/reference/dql-doctrine-query-language.html] documentation.

Setting Parameters

Take note of the setParameter() method. When working with Doctrine,
it’s always a good idea to set any external values as “placeholders”,
which was done in the above query:

... WHERE p.price > :price ...

You can then set the value of the price placeholder by calling the
setParameter() method:

->setParameter('price', '19.99')

Using parameters instead of placing values directly in the query string
is done to prevent SQL injection attacks and should always be done.
If you’re using multiple parameters, you can set their values at once
using the setParameters() method:

->setParameters(array(
 'price' => '19.99',
 'name' => 'Foo',
))

Using Doctrine’s Query Builder

Instead of writing the queries directly, you can alternatively use Doctrine’s
QueryBuilder to do the same job using a nice, object-oriented interface.
If you use an IDE, you can also take advantage of auto-completion as you
type the method names. From inside a controller:

$repository = $this->getDoctrine()
 ->getRepository('AcmeStoreBundle:Product');

$query = $repository->createQueryBuilder('p')
 ->where('p.price > :price')
 ->setParameter('price', '19.99')
 ->orderBy('p.price', 'ASC')
 ->getQuery();

$products = $query->getResult();

The QueryBuilder object contains every method necessary to build your
query. By calling the getQuery() method, the query builder returns a
normal Query object, which is the same object you built directly in the
previous section.

For more information on Doctrine’s Query Builder, consult Doctrine’s
Query Builder [http://www.doctrine-project.org/docs/orm/2.0/en/reference/query-builder.html] documentation.

Custom Repository Classes

In the previous sections, you began constructing and using more complex queries
from inside a controller. In order to isolate, test and reuse these queries,
it’s a good idea to create a custom repository class for your entity and
add methods with your query logic there.

To do this, add the name of the repository class to your mapping definition.

	Annotations// src/Acme/StoreBundle/Entity/Product.php
namespace Acme\StoreBundle\Entity;

use Doctrine\ORM\Mapping as ORM;

/**
 * @ORM\Entity(repositoryClass="Acme\StoreBundle\Repository\ProductRepository")
 */
class Product
{
 //...
}

	YAML# src/Acme/StoreBundle/Resources/config/doctrine/Product.orm.yml
Acme\StoreBundle\Entity\Product:
 type: entity
 repositoryClass: Acme\StoreBundle\Repository\ProductRepository
 # ...

	XML<!-- src/Acme/StoreBundle/Resources/config/doctrine/Product.orm.xml -->
<!-- ... -->
<doctrine-mapping>

 <entity name="Acme\StoreBundle\Entity\Product"
 repository-class="Acme\StoreBundle\Repository\ProductRepository">
 <!-- ... -->
 </entity>
</doctrine-mapping>

Doctrine can generate the repository class for you by running the same command
used earlier to generate the missing getter and setter methods:

php app/console doctrine:generate:entities Acme

Next, add a new method - findAllOrderedByName() - to the newly generated
repository class. This method will query for all of the Product entities,
ordered alphabetically.

// src/Acme/StoreBundle/Repository/ProductRepository.php
namespace Acme\StoreBundle\Repository;

use Doctrine\ORM\EntityRepository;

class ProductRepository extends EntityRepository
{
 public function findAllOrderedByName()
 {
 return $this->getEntityManager()
 ->createQuery('SELECT p FROM AcmeStoreBundle:Product p ORDER BY p.name ASC')
 ->getResult();
 }
}

Tip

The entity manager can be accessed via $this->getEntityManager()
from inside the repository.

You can use this new method just like the default finder methods of the repository:

$em = $this->getDoctrine()->getEntityManager();
$products = $em->getRepository('AcmeStoreBundle:Product')
 ->findAllOrderedByName();

Note

When using a custom repository class, you still have access to the default
finder methods such as find() and findAll().

Entity Relationships/Associations

Suppose that the products in your application all belong to exactly one “category”.
In this case, you’ll need a Category object and a way to relate a Product
object to a Category object. Start by creating the Category entity.
Since you know that you’ll eventually need to persist the class through Doctrine,
you can let Doctrine create the class for you.

php app/console doctrine:generate:entity --entity="AcmeStoreBundle:Category" --fields="name:string(255)"

This task generates the Category entity for you, with an id field,
a name field and the associated getter and setter functions.

Relationship Mapping Metadata

To relate the Category and Product entities, start by creating a
products property on the Category class:

	Annotations// src/Acme/StoreBundle/Entity/Category.php
// ...
use Doctrine\Common\Collections\ArrayCollection;

class Category
{
 // ...

 /**
 * @ORM\OneToMany(targetEntity="Product", mappedBy="category")
 */
 protected $products;

 public function __construct()
 {
 $this->products = new ArrayCollection();
 }
}

	YAML# src/Acme/StoreBundle/Resources/config/doctrine/Category.orm.yml
Acme\StoreBundle\Entity\Category:
 type: entity
 # ...
 oneToMany:
 products:
 targetEntity: Product
 mappedBy: category
 # don't forget to init the collection in entity __construct() method

First, since a Category object will relate to many Product objects,
a products array property is added to hold those Product objects.
Again, this isn’t done because Doctrine needs it, but instead because it
makes sense in the application for each Category to hold an array of
Product objects.

Note

The code in the __construct() method is important because Doctrine
requires the $products property to be an ArrayCollection object.
This object looks and acts almost exactly like an array, but has some
added flexibility. If this makes you uncomfortable, don’t worry. Just
imagine that it’s an array and you’ll be in good shape.

Tip

The targetEntity value in the decorator used above can reference any entity
with a valid namespace, not just entities defined in the same class. To
relate to an entity defined in a different class or bundle, enter a full
namespace as the targetEntity.

Next, since each Product class can relate to exactly one Category
object, you’ll want to add a $category property to the Product class:

	Annotations// src/Acme/StoreBundle/Entity/Product.php
// ...

class Product
{
 // ...

 /**
 * @ORM\ManyToOne(targetEntity="Category", inversedBy="products")
 * @ORM\JoinColumn(name="category_id", referencedColumnName="id")
 */
 protected $category;
}

	YAML# src/Acme/StoreBundle/Resources/config/doctrine/Product.orm.yml
Acme\StoreBundle\Entity\Product:
 type: entity
 # ...
 manyToOne:
 category:
 targetEntity: Category
 inversedBy: products
 joinColumn:
 name: category_id
 referencedColumnName: id

Finally, now that you’ve added a new property to both the Category and
Product classes, tell Doctrine to generate the missing getter and setter
methods for you:

php app/console doctrine:generate:entities Acme

Ignore the Doctrine metadata for a moment. You now have two classes - Category
and Product with a natural one-to-many relationship. The Category
class holds an array of Product objects and the Product object can
hold one Category object. In other words - you’ve built your classes
in a way that makes sense for your needs. The fact that the data needs to
be persisted to a database is always secondary.

Now, look at the metadata above the $category property on the Product
class. The information here tells doctrine that the related class is Category
and that it should store the id of the category record on a category_id
field that lives on the product table. In other words, the related Category
object will be stored on the $category property, but behind the scenes,
Doctrine will persist this relationship by storing the category’s id value
on a category_id column of the product table.

[image: ../_images/doctrine_image_2.png]
The metadata above the $products property of the Category object
is less important, and simply tells Doctrine to look at the Product.category
property to figure out how the relationship is mapped.

Before you continue, be sure to tell Doctrine to add the new category
table, and product.category_id column, and new foreign key:

php app/console doctrine:schema:update --force

Note

This task should only be really used during development. For a more robust
method of systematically updating your production database, read about
Doctrine migrations.

Saving Related Entities

Now, let’s see the code in action. Imagine you’re inside a controller:

// ...
use Acme\StoreBundle\Entity\Category;
use Acme\StoreBundle\Entity\Product;
use Symfony\Component\HttpFoundation\Response;
// ...

class DefaultController extends Controller
{
 public function createProductAction()
 {
 $category = new Category();
 $category->setName('Main Products');

 $product = new Product();
 $product->setName('Foo');
 $product->setPrice(19.99);
 // relate this product to the category
 $product->setCategory($category);

 $em = $this->getDoctrine()->getEntityManager();
 $em->persist($category);
 $em->persist($product);
 $em->flush();

 return new Response(
 'Created product id: '.$product->getId().' and category id: '.$category->getId()
);
 }
}

Now, a single row is added to both the category and product tables.
The product.category_id column for the new product is set to whatever
the id is of the new category. Doctrine manages the persistence of this
relationship for you.

Fetching Related Objects

When you need to fetch associated objects, your workflow looks just like it
did before. First, fetch a $product object and then access its related
Category:

public function showAction($id)
{
 $product = $this->getDoctrine()
 ->getRepository('AcmeStoreBundle:Product')
 ->find($id);

 $categoryName = $product->getCategory()->getName();

 // ...
}

In this example, you first query for a Product object based on the product’s
id. This issues a query for just the product data and hydrates the
$product object with that data. Later, when you call $product->getCategory()->getName(),
Doctrine silently makes a second query to find the Category that’s related
to this Product. It prepares the $category object and returns it to
you.

[image: ../_images/doctrine_image_3.png]
What’s important is the fact that you have easy access to the product’s related
category, but the category data isn’t actually retrieved until you ask for
the category (i.e. it’s “lazily loaded”).

You can also query in the other direction:

public function showProductAction($id)
{
 $category = $this->getDoctrine()
 ->getRepository('AcmeStoreBundle:Category')
 ->find($id);

 $products = $category->getProducts();

 // ...
}

In this case, the same things occurs: you first query out for a single Category
object, and then Doctrine makes a second query to retrieve the related Product
objects, but only once/if you ask for them (i.e. when you call ->getProducts()).
The $products variable is an array of all Product objects that relate
to the given Category object via their category_id value.

Relationships and Proxy Classes

This “lazy loading” is possible because, when necessary, Doctrine returns
a “proxy” object in place of the true object. Look again at the above
example:

$product = $this->getDoctrine()
 ->getRepository('AcmeStoreBundle:Product')
 ->find($id);

$category = $product->getCategory();

// prints "Proxies\AcmeStoreBundleEntityCategoryProxy"
echo get_class($category);

This proxy object extends the true Category object, and looks and
acts exactly like it. The difference is that, by using a proxy object,
Doctrine can delay querying for the real Category data until you
actually need that data (e.g. until you call $category->getName()).

The proxy classes are generated by Doctrine and stored in the cache directory.
And though you’ll probably never even notice that your $category
object is actually a proxy object, it’s important to keep in mind.

In the next section, when you retrieve the product and category data
all at once (via a join), Doctrine will return the true Category
object, since nothing needs to be lazily loaded.

Joining to Related Records

In the above examples, two queries were made - one for the original object
(e.g. a Category) and one for the related object(s) (e.g. the Product
objects).

Tip

Remember that you can see all of the queries made during a request via
the web debug toolbar.

Of course, if you know up front that you’ll need to access both objects, you
can avoid the second query by issuing a join in the original query. Add the
following method to the ProductRepository class:

// src/Acme/StoreBundle/Repository/ProductRepository.php

public function findOneByIdJoinedToCategory($id)
{
 $query = $this->getEntityManager()
 ->createQuery('
 SELECT p, c FROM AcmeStoreBundle:Product p
 JOIN p.category c
 WHERE p.id = :id'
)->setParameter('id', $id);

 try {
 return $query->getSingleResult();
 } catch (\Doctrine\ORM\NoResultException $e) {
 return null;
 }
}

Now, you can use this method in your controller to query for a Product
object and its related Category with just one query:

public function showAction($id)
{
 $product = $this->getDoctrine()
 ->getRepository('AcmeStoreBundle:Product')
 ->findOneByIdJoinedToCategory($id);

 $category = $product->getCategory();

 // ...
}

More Information on Associations

This section has been an introduction to one common type of entity relationship,
the one-to-many relationship. For more advanced details and examples of how
to use other types of relations (e.g. one-to-one, many-to-many), see
Doctrine’s Association Mapping Documentation [http://www.doctrine-project.org/docs/orm/2.0/en/reference/association-mapping.html].

Note

If you’re using annotations, you’ll need to prepend all annotations with
ORM\ (e.g. ORM\OneToMany), which is not reflected in Doctrine’s
documentation. You’ll also need to include the use Doctrine\ORM\Mapping as ORM;
statement, which imports the ORM annotations prefix.

Configuration

Doctrine is highly configurable, though you probably won’t ever need to worry
about most of its options. To find out more about configuring Doctrine, see
the Doctrine section of the reference manual.

Lifecycle Callbacks

Sometimes, you need to perform an action right before or after an entity
is inserted, updated, or deleted. These types of actions are known as “lifecycle”
callbacks, as they’re callback methods that you need to execute during different
stages of the lifecycle of an entity (e.g. the entity is inserted, updated,
deleted, etc).

If you’re using annotations for your metadata, start by enabling the lifecycle
callbacks. This is not necessary if you’re using YAML or XML for your mapping:

/**
 * @ORM\Entity()
 * @ORM\HasLifecycleCallbacks()
 */
class Product
{
 // ...
}

Now, you can tell Doctrine to execute a method on any of the available lifecycle
events. For example, suppose you want to set a created date column to
the current date, only when the entity is first persisted (i.e. inserted):

	Annotations/**
 * @ORM\prePersist
 */
public function setCreatedValue()
{
 $this->created = new \DateTime();
}

	YAML# src/Acme/StoreBundle/Resources/config/doctrine/Product.orm.yml
Acme\StoreBundle\Entity\Product:
 type: entity
 # ...
 lifecycleCallbacks:
 prePersist: [setCreatedValue]

	XML<!-- src/Acme/StoreBundle/Resources/config/doctrine/Product.orm.xml -->
<!-- ... -->
<doctrine-mapping>

 <entity name="Acme\StoreBundle\Entity\Product">
 <!-- ... -->
 <lifecycle-callbacks>
 <lifecycle-callback type="prePersist" method="setCreatedValue" />
 </lifecycle-callbacks>
 </entity>
</doctrine-mapping>

Note

The above example assumes that you’ve created and mapped a created
property (not shown here).

Now, right before the entity is first persisted, Doctrine will automatically
call this method and the created field will be set to the current date.

This can be repeated for any of the other lifecycle events, which include:

	preRemove

	postRemove

	prePersist

	postPersist

	preUpdate

	postUpdate

	postLoad

	loadClassMetadata

For more information on what these lifecycle events mean and lifecycle callbacks
in general, see Doctrine’s Lifecycle Events documentation [http://www.doctrine-project.org/docs/orm/2.0/en/reference/events.html#lifecycle-events]

Lifecycle Callbacks and Event Listeners

Notice that the setCreatedValue() method receives no arguments. This
is always the case for lifecylce callbacks and is intentional: lifecycle
callbacks should be simple methods that are concerned with internally
transforming data in the entity (e.g. setting a created/updated field,
generating a slug value).

If you need to do some heavier lifting - like perform logging or send
an email - you should register an external class as an event listener
or subscriber and give it access to whatever resources you need. For
more information, see Registering Event Listeners and Subscribers.

Doctrine Extensions: Timestampable, Sluggable, etc.

Doctrine is quite flexible, and a number of third-party extensions are available
that allow you to easily perform repeated and common tasks on your entities.
These include thing such as Sluggable, Timestampable, Loggable, Translatable,
and Tree.

For more information on how to find and use these extensions, see the cookbook
article about using common Doctrine extensions.

Doctrine Field Types Reference

Doctrine comes with a large number of field types available. Each of these
maps a PHP data type to a specific column type in whatever database you’re
using. The following types are supported in Doctrine:

	Strings
	string (used for shorter strings)

	text (used for larger strings)

	Numbers
	integer

	smallint

	bigint

	decimal

	float

	Dates and Times (use a DateTime [http://php.net/manual/en/class.datetime.php] object for these fields in PHP)
	date

	time

	datetime

	Other Types
	boolean

	object (serialized and stored in a CLOB field)

	array (serialized and stored in a CLOB field)

For more information, see Doctrine’s Mapping Types documentation [http://www.doctrine-project.org/docs/orm/2.0/en/reference/basic-mapping.html#doctrine-mapping-types].

Field Options

Each field can have a set of options applied to it. The available options
include type (defaults to string), name, length, unique
and nullable. Take a few examples:

	Annotations/**
 * A string field with length 255 that cannot be null
 * (reflecting the default values for the "type", "length" and *nullable* options)
 *
 * @ORM\Column()
 */
protected $name;

/**
 * A string field of length 150 that persists to an "email_address" column
 * and has a unique index.
 *
 * @ORM\Column(name="email_address", unique="true", length="150")
 */
protected $email;

	YAMLfields:
 # A string field length 255 that cannot be null
 # (reflecting the default values for the "length" and *nullable* options)
 # type attribute is necessary in yaml definitions
 name:
 type: string

 # A string field of length 150 that persists to an "email_address" column
 # and has a unique index.
 email:
 type: string
 column: email_address
 length: 150
 unique: true

Note

There are a few more options not listed here. For more details, see
Doctrine’s Property Mapping documentation [http://www.doctrine-project.org/docs/orm/2.0/en/reference/basic-mapping.html#property-mapping]

Console Commands

The Doctrine2 ORM integration offers several console commands under the
doctrine namespace. To view the command list you can run the console
without any arguments:

php app/console

A list of available command will print out, many of which start with the
doctrine: prefix. You can find out more information about any of these
commands (or any Symfony command) by running the help command. For example,
to get details about the doctrine:database:create task, run:

php app/console help doctrine:database:create

Some notable or interesting tasks include:

	doctrine:ensure-production-settings - checks to see if the current
environment is configured efficiently for production. This should always
be run in the prod environment:

php app/console doctrine:ensure-production-settings --env=prod

	doctrine:mapping:import - allows Doctrine to introspect an existing
database and create mapping information. For more information, see
How to generate Entities from an Existing Database.

	doctrine:mapping:info - tells you all of the entities that Doctrine
is aware of and whether or not there are any basic errors with the mapping.

	doctrine:query:dql and doctrine:query:sql - allow you to execute
DQL or SQL queries directly from the command line.

Note

To be able to load data fixtures to your database, you will need to have
the DoctrineFixturesBundle bundle installed. To learn how to do it,
read the “/bundles/DoctrineFixturesBundle/index” entry of the
documentation.

Summary

With Doctrine, you can focus on your objects and how they’re useful in your
application and worry about database persistence second. This is because
Doctrine allows you to use any PHP object to hold your data and relies on
mapping metadata information to map an object’s data to a particular database
table.

And even though Doctrine revolves around a simple concept, it’s incredibly
powerful, allowing you to create complex queries and subscribe to events
that allow you to take different actions as objects go through their persistence
lifecycle.

For more information about Doctrine, see the Doctrine section of the
cookbook, which includes the following articles:

	/bundles/DoctrineFixturesBundle/index

	Doctrine Extensions: Timestampable: Sluggable, Translatable, etc.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Testing

Whenever you write a new line of code, you also potentially add new bugs.
To build better and more reliable applications, you should test your code
using both functional and unit tests.

The PHPUnit Testing Framework

Symfony2 integrates with an independent library - called PHPUnit - to give
you a rich testing framework. This chapter won’t cover PHPUnit itself, but
it has its own excellent documentation [http://www.phpunit.de/manual/3.5/en/].

Note

Symfony2 works with PHPUnit 3.5.11 or later, though version 3.6.4 is
needed to test the Symfony core code itself.

Each test - whether it’s a unit test or a functional test - is a PHP class
that should live in the Tests/ subdirectory of your bundles. If you follow
this rule, then you can run all of your application’s tests with the following
command:

specify the configuration directory on the command line
$ phpunit -c app/

The -c option tells PHPUnit to look in the app/ directory for a configuration
file. If you’re curious about the PHPUnit options, check out the app/phpunit.xml.dist
file.

Tip

Code coverage can be generated with the --coverage-html option.

Unit Tests

A unit test is usually a test against a specific PHP class. If you want to
test the overall behavior of your application, see the section about Functional Tests.

Writing Symfony2 unit tests is no different than writing standard PHPUnit
unit tests. Suppose, for example, that you have an incredibly simple class
called Calculator in the Utility/ directory of your bundle:

// src/Acme/DemoBundle/Utility/Calculator.php
namespace Acme\DemoBundle\Utility;

class Calculator
{
 public function add($a, $b)
 {
 return $a + $b;
 }
}

To test this, create a CalculatorTest file in the Tests/Utility directory
of your bundle:

// src/Acme/DemoBundle/Tests/Utility/CalculatorTest.php
namespace Acme\DemoBundle\Tests\Utility;

use Acme\DemoBundle\Utility\Calculator;

class CalculatorTest extends \PHPUnit_Framework_TestCase
{
 public function testAdd()
 {
 $calc = new Calculator();
 $result = $calc->add(30, 12);

 // assert that our calculator added the numbers correctly!
 $this->assertEquals(42, $result);
 }
}

Note

By convention, the Tests/ sub-directory should replicate the directory
of your bundle. So, if you’re testing a class in your bundle’s Utility/
directory, put the test in the Tests/Utility/ directory.

Just like in your real application - autoloading is automatically enabled
via the bootstrap.php.cache file (as configured by default in the phpunit.xml.dist
file).

Running tests for a given file or directory is also very easy:

run all tests in the Utility directory
$ phpunit -c app src/Acme/DemoBundle/Tests/Utility/

run tests for the Calculator class
$ phpunit -c app src/Acme/DemoBundle/Tests/Utility/CalculatorTest.php

run all tests for the entire Bundle
$ phpunit -c app src/Acme/DemoBundle/

Functional Tests

Functional tests check the integration of the different layers of an
application (from the routing to the views). They are no different from unit
tests as far as PHPUnit is concerned, but they have a very specific workflow:

	Make a request;

	Test the response;

	Click on a link or submit a form;

	Test the response;

	Rinse and repeat.

Your First Functional Test

Functional tests are simple PHP files that typically live in the Tests/Controller
directory of your bundle. If you want to test the pages handled by your
DemoController class, start by creating a new DemoControllerTest.php
file that extends a special WebTestCase class.

For example, the Symfony2 Standard Edition provides a simple functional test
for its DemoController (DemoControllerTest [https://github.com/symfony/symfony-standard/blob/master/src/Acme/DemoBundle/Tests/Controller/DemoControllerTest.php]) that reads as follows:

// src/Acme/DemoBundle/Tests/Controller/DemoControllerTest.php
namespace Acme\DemoBundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class DemoControllerTest extends WebTestCase
{
 public function testIndex()
 {
 $client = static::createClient();

 $crawler = $client->request('GET', '/demo/hello/Fabien');

 $this->assertTrue($crawler->filter('html:contains("Hello Fabien")')->count() > 0);
 }
}

Tip

To run your functional tests, the WebTestCase class bootstraps the
kernel of your application. In most cases, this happens automatically.
However, if your kernel is in a non-standard directory, you’ll need
to modify your phpunit.xml.dist file to set the KERNEL_DIR environment
variable to the directory of your kernel:

<phpunit
 <!-- ... -->
 <php>
 <server name="KERNEL_DIR" value="/path/to/your/app/" />
 </php>
 <!-- ... -->
</phpunit>

The createClient() method returns a client, which is like a browser that
you’ll use to crawl your site:

$crawler = $client->request('GET', '/demo/hello/Fabien');

The request() method (see more about the request method)
returns a Symfony\Component\DomCrawler\Crawler object which can
be used to select elements in the Response, click on links, and submit forms.

Tip

The Crawler only works when the response is an XML or an HTML document.
To get the raw content response, call $client->getResponse()->getContent().

Click on a link by first selecting it with the Crawler using either an XPath
expression or a CSS selector, then use the Client to click on it. For example,
the following code finds all links with the text Greet, then selects
the second one, and ultimately clicks on it:

$link = $crawler->filter('a:contains("Greet")')->eq(1)->link();

$crawler = $client->click($link);

Submitting a form is very similar; select a form button, optionally override
some form values, and submit the corresponding form:

$form = $crawler->selectButton('submit')->form();

// set some values
$form['name'] = 'Lucas';
$form['form_name[subject]'] = 'Hey there!';

// submit the form
$crawler = $client->submit($form);

Tip

The form can also handle uploads and contains methods to fill in different types
of form fields (e.g. select() and tick()). For details, see the
Forms section below.

Now that you can easily navigate through an application, use assertions to test
that it actually does what you expect it to. Use the Crawler to make assertions
on the DOM:

// Assert that the response matches a given CSS selector.
$this->assertTrue($crawler->filter('h1')->count() > 0);

Or, test against the Response content directly if you just want to assert that
the content contains some text, or if the Response is not an XML/HTML
document:

$this->assertRegExp('/Hello Fabien/', $client->getResponse()->getContent());

More about the request() method:

The full signature of the request() method is:

request(
 $method,
 $uri,
 array $parameters = array(),
 array $files = array(),
 array $server = array(),
 $content = null,
 $changeHistory = true
)

The server array is the raw values that you’d expect to normally
find in the PHP $_SERVER [http://php.net/manual/en/reserved.variables.server.php] superglobal. For example, to set the Content-Type
and Referer HTTP headers, you’d pass the following:

$client->request(
 'GET',
 '/demo/hello/Fabien',
 array(),
 array(),
 array(
 'CONTENT_TYPE' => 'application/json',
 'HTTP_REFERER' => '/foo/bar',
)
);

Working with the Test Client

The Test Client simulates an HTTP client like a browser and makes requests
into your Symfony2 application:

$crawler = $client->request('GET', '/hello/Fabien');

The request() method takes the HTTP method and a URL as arguments and
returns a Crawler instance.

Use the Crawler to find DOM elements in the Response. These elements can then
be used to click on links and submit forms:

$link = $crawler->selectLink('Go elsewhere...')->link();
$crawler = $client->click($link);

$form = $crawler->selectButton('validate')->form();
$crawler = $client->submit($form, array('name' => 'Fabien'));

The click() and submit() methods both return a Crawler object.
These methods are the best way to browse your application as it takes care
of a lot of things for you, like detecting the HTTP method from a form and
giving you a nice API for uploading files.

Tip

You will learn more about the Link and Form objects in the
Crawler section below.

The request method can also be used to simulate form submissions directly
or perform more complex requests:

// Directly submit a form (but using the Crawler is easier!)
$client->request('POST', '/submit', array('name' => 'Fabien'));

// Form submission with a file upload
use Symfony\Component\HttpFoundation\File\UploadedFile;

$photo = new UploadedFile(
 '/path/to/photo.jpg',
 'photo.jpg',
 'image/jpeg',
 123
);
// or
$photo = array(
 'tmp_name' => '/path/to/photo.jpg',
 'name' => 'photo.jpg',
 'type' => 'image/jpeg',
 'size' => 123,
 'error' => UPLOAD_ERR_OK
);
$client->request(
 'POST',
 '/submit',
 array('name' => 'Fabien'),
 array('photo' => $photo)
);

// Perform a DELETE requests, and pass HTTP headers
$client->request(
 'DELETE',
 '/post/12',
 array(),
 array(),
 array('PHP_AUTH_USER' => 'username', 'PHP_AUTH_PW' => 'pa$$word')
);

Last but not least, you can force each request to be executed in its own PHP
process to avoid any side-effects when working with several clients in the same
script:

$client->insulate();

Browsing

The Client supports many operations that can be done in a real browser:

$client->back();
$client->forward();
$client->reload();

// Clears all cookies and the history
$client->restart();

Accessing Internal Objects

If you use the client to test your application, you might want to access the
client’s internal objects:

$history = $client->getHistory();
$cookieJar = $client->getCookieJar();

You can also get the objects related to the latest request:

$request = $client->getRequest();
$response = $client->getResponse();
$crawler = $client->getCrawler();

If your requests are not insulated, you can also access the Container and
the Kernel:

$container = $client->getContainer();
$kernel = $client->getKernel();

Accessing the Container

It’s highly recommended that a functional test only tests the Response. But
under certain very rare circumstances, you might want to access some internal
objects to write assertions. In such cases, you can access the dependency
injection container:

$container = $client->getContainer();

Be warned that this does not work if you insulate the client or if you use an
HTTP layer. For a list of services available in your application, use the
container:debug console task.

Tip

If the information you need to check is available from the profiler, use
it instead.

Accessing the Profiler Data

On each request, the Symfony profiler collects and stores a lot of data about
the internal handling of that request. For example, the profiler could be
used to verify that a given page executes less than a certain number of database
queries when loading.

To get the Profiler for the last request, do the following:

$profile = $client->getProfile();

For specific details on using the profiler inside a test, see the
How to use the Profiler in a Functional Test cookbook entry.

Redirecting

When a request returns a redirect response, the client automatically follows
it. If you want to examine the Response before redirecting, you can force
the client to not follow redirects with the followRedirects() method:

$client->followRedirects(false);

When the client does not follow redirects, you can force the redirection with
the followRedirect() method:

$crawler = $client->followRedirect();

The Crawler

A Crawler instance is returned each time you make a request with the Client.
It allows you to traverse HTML documents, select nodes, find links and forms.

Traversing

Like jQuery, the Crawler has methods to traverse the DOM of an HTML/XML
document. For example, the following finds all input[type=submit] elements,
selects the last one on the page, and then selects its immediate parent element:

$newCrawler = $crawler->filter('input[type=submit]')
 ->last()
 ->parents()
 ->first()
;

Many other methods are also available:

	Method
	Description

	filter('h1.title')
	Nodes that match the CSS selector

	filterXpath('h1')
	Nodes that match the XPath expression

	eq(1)
	Node for the specified index

	first()
	First node

	last()
	Last node

	siblings()
	Siblings

	nextAll()
	All following siblings

	previousAll()
	All preceding siblings

	parents()
	Returns the parent nodes

	children()
	Returns children nodes

	reduce($lambda)
	Nodes for which the callable does not return false

Since each of these methods returns a new Crawler instance, you can
narrow down your node selection by chaining the method calls:

$crawler
 ->filter('h1')
 ->reduce(function ($node, $i)
 {
 if (!$node->getAttribute('class')) {
 return false;
 }
 })
 ->first();

Tip

Use the count() function to get the number of nodes stored in a Crawler:
count($crawler)

Extracting Information

The Crawler can extract information from the nodes:

// Returns the attribute value for the first node
$crawler->attr('class');

// Returns the node value for the first node
$crawler->text();

// Extracts an array of attributes for all nodes (_text returns the node value)
// returns an array for each element in crawler, each with the value and href
$info = $crawler->extract(array('_text', 'href'));

// Executes a lambda for each node and return an array of results
$data = $crawler->each(function ($node, $i)
{
 return $node->attr('href');
});

Links

To select links, you can use the traversing methods above or the convenient
selectLink() shortcut:

$crawler->selectLink('Click here');

This selects all links that contain the given text, or clickable images for
which the alt attribute contains the given text. Like the other filtering
methods, this returns another Crawler object.

Once you’ve selected a link, you have access to a special Link object,
which has helpful methods specific to links (such as getMethod() and
getUri()). To click on the link, use the Client’s click() method
and pass it a Link object:

$link = $crawler->selectLink('Click here')->link();

$client->click($link);

Forms

Just like links, you select forms with the selectButton() method:

$buttonCrawlerNode = $crawler->selectButton('submit');

Note

Notice that we select form buttons and not forms as a form can have several
buttons; if you use the traversing API, keep in mind that you must look for a
button.

The selectButton() method can select button tags and submit input
tags. It uses several different parts of the buttons to find them:

	The value attribute value;

	The id or alt attribute value for images;

	The id or name attribute value for button tags.

Once you have a Crawler representing a button, call the form() method
to get a Form instance for the form wrapping the button node:

$form = $buttonCrawlerNode->form();

When calling the form() method, you can also pass an array of field values
that overrides the default ones:

$form = $buttonCrawlerNode->form(array(
 'name' => 'Fabien',
 'my_form[subject]' => 'Symfony rocks!',
));

And if you want to simulate a specific HTTP method for the form, pass it as a
second argument:

$form = $buttonCrawlerNode->form(array(), 'DELETE');

The Client can submit Form instances:

$client->submit($form);

The field values can also be passed as a second argument of the submit()
method:

$client->submit($form, array(
 'name' => 'Fabien',
 'my_form[subject]' => 'Symfony rocks!',
));

For more complex situations, use the Form instance as an array to set the
value of each field individually:

// Change the value of a field
$form['name'] = 'Fabien';
$form['my_form[subject]'] = 'Symfony rocks!';

There is also a nice API to manipulate the values of the fields according to
their type:

// Select an option or a radio
$form['country']->select('France');

// Tick a checkbox
$form['like_symfony']->tick();

// Upload a file
$form['photo']->upload('/path/to/lucas.jpg');

Tip

You can get the values that will be submitted by calling the getValues()
method on the Form object. The uploaded files are available in a
separate array returned by getFiles(). The getPhpValues() and
getPhpFiles() methods also return the submitted values, but in the
PHP format (it converts the keys with square brackets notation - e.g.
my_form[subject] - to PHP arrays).

Testing Configuration

The Client used by functional tests creates a Kernel that runs in a special
test environment. Since Symfony loads the app/config/config_test.yml
in the test environment, you can tweak any of your application’s settings
specifically for testing.

For example, by default, the swiftmailer is configured to not actually
deliver emails in the test environment. You can see this under the swiftmailer
configuration option:

	YAML# app/config/config_test.yml
...

swiftmailer:
 disable_delivery: true

	XML<!-- app/config/config_test.xml -->
<container>
 <!-- ... -->

 <swiftmailer:config disable-delivery="true" />
</container>

	PHP// app/config/config_test.php
// ...

$container->loadFromExtension('swiftmailer', array(
 'disable_delivery' => true
));

You can also use a different environment entirely, or override the default
debug mode (true) by passing each as options to the createClient()
method:

$client = static::createClient(array(
 'environment' => 'my_test_env',
 'debug' => false,
));

If your application behaves according to some HTTP headers, pass them as the
second argument of createClient():

$client = static::createClient(array(), array(
 'HTTP_HOST' => 'en.example.com',
 'HTTP_USER_AGENT' => 'MySuperBrowser/1.0',
));

You can also override HTTP headers on a per request basis:

$client->request('GET', '/', array(), array(), array(
 'HTTP_HOST' => 'en.example.com',
 'HTTP_USER_AGENT' => 'MySuperBrowser/1.0',
));

Tip

The test client is available as a service in the container in the test
environment (or wherever the framework.test
option is enabled). This means you can override the service entirely
if you need to.

PHPUnit Configuration

Each application has its own PHPUnit configuration, stored in the
phpunit.xml.dist file. You can edit this file to change the defaults or
create a phpunit.xml file to tweak the configuration for your local machine.

Tip

Store the phpunit.xml.dist file in your code repository, and ignore the
phpunit.xml file.

By default, only the tests stored in “standard” bundles are run by the
phpunit command (standard being tests in the src/*/Bundle/Tests or
src/*/Bundle/*Bundle/Tests directories) But you can easily add more
directories. For instance, the following configuration adds the tests from
the installed third-party bundles:

<!-- hello/phpunit.xml.dist -->
<testsuites>
 <testsuite name="Project Test Suite">
 <directory>../src/*/*Bundle/Tests</directory>
 <directory>../src/Acme/Bundle/*Bundle/Tests</directory>
 </testsuite>
</testsuites>

To include other directories in the code coverage, also edit the <filter>
section:

<filter>
 <whitelist>
 <directory>../src</directory>
 <exclude>
 <directory>../src/*/*Bundle/Resources</directory>
 <directory>../src/*/*Bundle/Tests</directory>
 <directory>../src/Acme/Bundle/*Bundle/Resources</directory>
 <directory>../src/Acme/Bundle/*Bundle/Tests</directory>
 </exclude>
 </whitelist>
</filter>

Learn more from the Cookbook

	How to simulate HTTP Authentication in a Functional Test

	How to test the Interaction of several Clients

	How to use the Profiler in a Functional Test

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Validation

Validation is a very common task in web applications. Data entered in forms
needs to be validated. Data also needs to be validated before it is written
into a database or passed to a web service.

Symfony2 ships with a Validator [https://github.com/symfony/Validator] component that makes this task easy and transparent.
This component is based on the JSR303 Bean Validation specification [http://jcp.org/en/jsr/detail?id=303]. What?
A Java specification in PHP? You heard right, but it’s not as bad as it sounds.
Let’s look at how it can be used in PHP.

The Basics of Validation

The best way to understand validation is to see it in action. To start, suppose
you’ve created a plain-old-PHP object that you need to use somewhere in
your application:

// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

class Author
{
 public $name;
}

So far, this is just an ordinary class that serves some purpose inside your
application. The goal of validation is to tell you whether or not the data
of an object is valid. For this to work, you’ll configure a list of rules
(called constraints) that the object must
follow in order to be valid. These rules can be specified via a number of
different formats (YAML, XML, annotations, or PHP).

For example, to guarantee that the $name property is not empty, add the
following:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 name:
 - NotBlank: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\NotBlank()
 */
 public $name;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="name">
 <constraint name="NotBlank" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\NotBlank;

class Author
{
 public $name;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('name', new NotBlank());
 }
}

Tip

Protected and private properties can also be validated, as well as “getter”
methods (see validator-constraint-targets).

Using the validator Service

Next, to actually validate an Author object, use the validate method
on the validator service (class Symfony\Component\Validator\Validator).
The job of the validator is easy: to read the constraints (i.e. rules)
of a class and verify whether or not the data on the object satisfies those
constraints. If validation fails, an array of errors is returned. Take this
simple example from inside a controller:

use Symfony\Component\HttpFoundation\Response;
use Acme\BlogBundle\Entity\Author;
// ...

public function indexAction()
{
 $author = new Author();
 // ... do something to the $author object

 $validator = $this->get('validator');
 $errors = $validator->validate($author);

 if (count($errors) > 0) {
 return new Response(print_r($errors, true));
 } else {
 return new Response('The author is valid! Yes!');
 }
}

If the $name property is empty, you will see the following error
message:

Acme\BlogBundle\Author.name:
 This value should not be blank

If you insert a value into the name property, the happy success message
will appear.

Tip

Most of the time, you won’t interact directly with the validator
service or need to worry about printing out the errors. Most of the time,
you’ll use validation indirectly when handling submitted form data. For
more information, see the Validation and Forms.

You could also pass the collection of errors into a template.

if (count($errors) > 0) {
 return $this->render('AcmeBlogBundle:Author:validate.html.twig', array(
 'errors' => $errors,
));
} else {
 // ...
}

Inside the template, you can output the list of errors exactly as needed:

	Twig{# src/Acme/BlogBundle/Resources/views/Author/validate.html.twig #}

<h3>The author has the following errors</h3>

{% for error in errors %}
 {{ error.message }}
{% endfor %}

	PHP<!-- src/Acme/BlogBundle/Resources/views/Author/validate.html.php -->

<h3>The author has the following errors</h3>

<?php foreach ($errors as $error): ?>
 <?php echo $error->getMessage() ?>
<?php endforeach; ?>

Note

Each validation error (called a “constraint violation”), is represented by
a Symfony\Component\Validator\ConstraintViolation object.

Validation and Forms

The validator service can be used at any time to validate any object.
In reality, however, you’ll usually work with the validator indirectly
when working with forms. Symfony’s form library uses the validator service
internally to validate the underlying object after values have been submitted
and bound. The constraint violations on the object are converted into FieldError
objects that can easily be displayed with your form. The typical form submission
workflow looks like the following from inside a controller:

use Acme\BlogBundle\Entity\Author;
use Acme\BlogBundle\Form\AuthorType;
use Symfony\Component\HttpFoundation\Request;
// ...

public function updateAction(Request $request)
{
 $author = new Acme\BlogBundle\Entity\Author();
 $form = $this->createForm(new AuthorType(), $author);

 if ($request->getMethod() == 'POST') {
 $form->bindRequest($request);

 if ($form->isValid()) {
 // the validation passed, do something with the $author object

 return $this->redirect($this->generateUrl('...'));
 }
 }

 return $this->render('BlogBundle:Author:form.html.twig', array(
 'form' => $form->createView(),
));
}

Note

This example uses an AuthorType form class, which is not shown here.

For more information, see the Forms chapter.

Configuration

The Symfony2 validator is enabled by default, but you must explicitly enable
annotations if you’re using the annotation method to specify your constraints:

	YAML# app/config/config.yml
framework:
 validation: { enable_annotations: true }

	XML<!-- app/config/config.xml -->
<framework:config>
 <framework:validation enable_annotations="true" />
</framework:config>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array('validation' => array(
 'enable_annotations' => true,
)));

Constraints

The validator is designed to validate objects against constraints (i.e.
rules). In order to validate an object, simply map one or more constraints
to its class and then pass it to the validator service.

Behind the scenes, a constraint is simply a PHP object that makes an assertive
statement. In real life, a constraint could be: “The cake must not be burned”.
In Symfony2, constraints are similar: they are assertions that a condition
is true. Given a value, a constraint will tell you whether or not that value
adheres to the rules of the constraint.

Supported Constraints

Symfony2 packages a large number of the most commonly-needed constraints:

Basic Constraints

These are the basic constraints: use them to assert very basic things about
the value of properties or the return value of methods on your object.

	NotBlank

	Blank

	NotNull

	Null

	True

	False

	Type

String Constraints

	Email

	MinLength

	MaxLength

	Url

	Regex

	Ip

Number Constraints

	Max

	Min

Date Constraints

	Date

	DateTime

	Time

Collection Constraints

	Choice

	Collection

	UniqueEntity

	Language

	Locale

	Country

File Constraints

	File

	Image

Other Constraints

	Callback

	All

	UserPassword

	Valid

You can also create your own custom constraints. This topic is covered in
the “How to create a Custom Validation Constraint” article of the cookbook.

Constraint Configuration

Some constraints, like NotBlank,
are simple whereas others, like the Choice
constraint, have several configuration options available. Suppose that the
Author class has another property, gender that can be set to either
“male” or “female”:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 gender:
 - Choice: { choices: [male, female], message: Choose a valid gender. }

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Choice(
 * choices = { "male", "female" },
 * message = "Choose a valid gender."
 *)
 */
 public $gender;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="gender">
 <constraint name="Choice">
 <option name="choices">
 <value>male</value>
 <value>female</value>
 </option>
 <option name="message">Choose a valid gender.</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\NotBlank;

class Author
{
 public $gender;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('gender', new Choice(array(
 'choices' => array('male', 'female'),
 'message' => 'Choose a valid gender.',
)));
 }
}

The options of a constraint can always be passed in as an array. Some constraints,
however, also allow you to pass the value of one, “default”, option in place
of the array. In the case of the Choice constraint, the choices
options can be specified in this way.

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 gender:
 - Choice: [male, female]

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Choice({"male", "female"})
 */
 protected $gender;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="gender">
 <constraint name="Choice">
 <value>male</value>
 <value>female</value>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\Choice;

class Author
{
 protected $gender;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('gender', new Choice(array('male', 'female')));
 }
}

This is purely meant to make the configuration of the most common option of
a constraint shorter and quicker.

If you’re ever unsure of how to specify an option, either check the API documentation
for the constraint or play it safe by always passing in an array of options
(the first method shown above).

Constraint Targets

Constraints can be applied to a class property (e.g. name) or a public
getter method (e.g. getFullName). The first is the most common and easy
to use, but the second allows you to specify more complex validation rules.

Properties

Validating class properties is the most basic validation technique. Symfony2
allows you to validate private, protected or public properties. The next
listing shows you how to configure the $firstName property of an Author
class to have at least 3 characters.

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 firstName:
 - NotBlank: ~
 - MinLength: 3

	Annotations// Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\NotBlank()
 * @Assert\MinLength(3)
 */
 private $firstName;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<class name="Acme\BlogBundle\Entity\Author">
 <property name="firstName">
 <constraint name="NotBlank" />
 <constraint name="MinLength">3</constraint>
 </property>
</class>

	PHP// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\NotBlank;
use Symfony\Component\Validator\Constraints\MinLength;

class Author
{
 private $firstName;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('firstName', new NotBlank());
 $metadata->addPropertyConstraint('firstName', new MinLength(3));
 }
}

Getters

Constraints can also be applied to the return value of a method. Symfony2
allows you to add a constraint to any public method whose name starts with
“get” or “is”. In this guide, both of these types of methods are referred
to as “getters”.

The benefit of this technique is that it allows you to validate your object
dynamically. For example, suppose you want to make sure that a password field
doesn’t match the first name of the user (for security reasons). You can
do this by creating an isPasswordLegal method, and then asserting that
this method must return true:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 getters:
 passwordLegal:
 - "True": { message: "The password cannot match your first name" }

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\True(message = "The password cannot match your first name")
 */
 public function isPasswordLegal()
 {
 // return true or false
 }
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<class name="Acme\BlogBundle\Entity\Author">
 <getter property="passwordLegal">
 <constraint name="True">
 <option name="message">The password cannot match your first name</option>
 </constraint>
 </getter>
</class>

	PHP// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\True;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addGetterConstraint('passwordLegal', new True(array(
 'message' => 'The password cannot match your first name',
)));
 }
}

Now, create the isPasswordLegal() method, and include the logic you need:

public function isPasswordLegal()
{
 return ($this->firstName != $this->password);
}

Note

The keen-eyed among you will have noticed that the prefix of the getter
(“get” or “is”) is omitted in the mapping. This allows you to move the
constraint to a property with the same name later (or vice versa) without
changing your validation logic.

Classes

Some constraints apply to the entire class being validated. For example,
the Callback constraint is a generic
constraint that’s applied to the class itself. When that class is validated,
methods specified by that constraint are simply executed so that each can
provide more custom validation.

Validation Groups

So far, you’ve been able to add constraints to a class and ask whether or
not that class passes all of the defined constraints. In some cases, however,
you’ll need to validate an object against only some of the constraints
on that class. To do this, you can organize each constraint into one or more
“validation groups”, and then apply validation against just one group of
constraints.

For example, suppose you have a User class, which is used both when a
user registers and when a user updates his/her contact information later:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\User:
 properties:
 email:
 - Email: { groups: [registration] }
 password:
 - NotBlank: { groups: [registration] }
 - MinLength: { limit: 7, groups: [registration] }
 city:
 - MinLength: 2

	Annotations// src/Acme/BlogBundle/Entity/User.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Validator\Constraints as Assert;

class User implements UserInterface
{
 /**
 * @Assert\Email(groups={"registration"})
 */
 private $email;

 /**
 * @Assert\NotBlank(groups={"registration"})
 * @Assert\MinLength(limit=7, groups={"registration"})
 */
 private $password;

 /**
 * @Assert\MinLength(2)
 */
 private $city;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<class name="Acme\BlogBundle\Entity\User">
 <property name="email">
 <constraint name="Email">
 <option name="groups">
 <value>registration</value>
 </option>
 </constraint>
 </property>
 <property name="password">
 <constraint name="NotBlank">
 <option name="groups">
 <value>registration</value>
 </option>
 </constraint>
 <constraint name="MinLength">
 <option name="limit">7</option>
 <option name="groups">
 <value>registration</value>
 </option>
 </constraint>
 </property>
 <property name="city">
 <constraint name="MinLength">7</constraint>
 </property>
</class>

	PHP// src/Acme/BlogBundle/Entity/User.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\Email;
use Symfony\Component\Validator\Constraints\NotBlank;
use Symfony\Component\Validator\Constraints\MinLength;

class User
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('email', new Email(array(
 'groups' => array('registration')
)));

 $metadata->addPropertyConstraint('password', new NotBlank(array(
 'groups' => array('registration')
)));
 $metadata->addPropertyConstraint('password', new MinLength(array(
 'limit' => 7,
 'groups' => array('registration')
)));

 $metadata->addPropertyConstraint('city', new MinLength(3));
 }
}

With this configuration, there are two validation groups:

	Default - contains the constraints not assigned to any other group;

	registration - contains the constraints on the email and password
fields only.

To tell the validator to use a specific group, pass one or more group names
as the second argument to the validate() method:

$errors = $validator->validate($author, array('registration'));

Of course, you’ll usually work with validation indirectly through the form
library. For information on how to use validation groups inside forms, see
Validation Groups.

Validating Values and Arrays

So far, you’ve seen how you can validate entire objects. But sometimes, you
just want to validate a simple value - like to verify that a string is a valid
email address. This is actually pretty easy to do. From inside a controller,
it looks like this:

// add this to the top of your class
use Symfony\Component\Validator\Constraints\Email;

public function addEmailAction($email)
{
 $emailConstraint = new Email();
 // all constraint "options" can be set this way
 $emailConstraint->message = 'Invalid email address';

 // use the validator to validate the value
 $errorList = $this->get('validator')->validateValue($email, $emailConstraint);

 if (count($errorList) == 0) {
 // this IS a valid email address, do something
 } else {
 // this is *not* a valid email address
 $errorMessage = $errorList[0]->getMessage()

 // do something with the error
 }

 // ...
}

By calling validateValue on the validator, you can pass in a raw value and
the constraint object that you want to validate that value against. A full
list of the available constraints - as well as the full class name for each
constraint - is available in the constraints reference
section .

The validateValue method returns a Symfony\Component\Validator\ConstraintViolationList
object, which acts just like an array of errors. Each error in the collection
is a Symfony\Component\Validator\ConstraintViolation object,
which holds the error message on its getMessage method.

Final Thoughts

The Symfony2 validator is a powerful tool that can be leveraged to
guarantee that the data of any object is “valid”. The power behind validation
lies in “constraints”, which are rules that you can apply to properties or
getter methods of your object. And while you’ll most commonly use the validation
framework indirectly when using forms, remember that it can be used anywhere
to validate any object.

Learn more from the Cookbook

	How to create a Custom Validation Constraint

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Forms

Dealing with HTML forms is one of the most common - and challenging - tasks for
a web developer. Symfony2 integrates a Form component that makes dealing with
forms easy. In this chapter, you’ll build a complex form from the ground-up,
learning the most important features of the form library along the way.

Note

The Symfony form component is a standalone library that can be used outside
of Symfony2 projects. For more information, see the Symfony2 Form Component [https://github.com/symfony/Form]
on Github.

Creating a Simple Form

Suppose you’re building a simple todo list application that will need to
display “tasks”. Because your users will need to edit and create tasks, you’re
going to need to build a form. But before you begin, first focus on the generic
Task class that represents and stores the data for a single task:

// src/Acme/TaskBundle/Entity/Task.php
namespace Acme\TaskBundle\Entity;

class Task
{
 protected $task;

 protected $dueDate;

 public function getTask()
 {
 return $this->task;
 }
 public function setTask($task)
 {
 $this->task = $task;
 }

 public function getDueDate()
 {
 return $this->dueDate;
 }
 public function setDueDate(\DateTime $dueDate = null)
 {
 $this->dueDate = $dueDate;
 }
}

Note

If you’re coding along with this example, create the AcmeTaskBundle
first by running the following command (and accepting all of the default
options):

php app/console generate:bundle --namespace=Acme/TaskBundle

This class is a “plain-old-PHP-object” because, so far, it has nothing
to do with Symfony or any other library. It’s quite simply a normal PHP object
that directly solves a problem inside your application (i.e. the need to
represent a task in your application). Of course, by the end of this chapter,
you’ll be able to submit data to a Task instance (via an HTML form), validate
its data, and persist it to the database.

Building the Form

Now that you’ve created a Task class, the next step is to create and
render the actual HTML form. In Symfony2, this is done by building a form
object and then rendering it in a template. For now, this can all be done
from inside a controller:

// src/Acme/TaskBundle/Controller/DefaultController.php
namespace Acme\TaskBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Acme\TaskBundle\Entity\Task;
use Symfony\Component\HttpFoundation\Request;

class DefaultController extends Controller
{
 public function newAction(Request $request)
 {
 // create a task and give it some dummy data for this example
 $task = new Task();
 $task->setTask('Write a blog post');
 $task->setDueDate(new \DateTime('tomorrow'));

 $form = $this->createFormBuilder($task)
 ->add('task', 'text')
 ->add('dueDate', 'date')
 ->getForm();

 return $this->render('AcmeTaskBundle:Default:new.html.twig', array(
 'form' => $form->createView(),
));
 }
}

Tip

This example shows you how to build your form directly in the controller.
Later, in the “Creating Form Classes” section, you’ll learn
how to build your form in a standalone class, which is recommended as
your form becomes reusable.

Creating a form requires relatively little code because Symfony2 form objects
are built with a “form builder”. The form builder’s purpose is to allow you
to write simple form “recipes”, and have it do all the heavy-lifting of actually
building the form.

In this example, you’ve added two fields to your form - task and dueDate -
corresponding to the task and dueDate properties of the Task class.
You’ve also assigned each a “type” (e.g. text, date), which, among
other things, determines which HTML form tag(s) is rendered for that field.

Symfony2 comes with many built-in types that will be discussed shortly
(see Built-in Field Types).

Rendering the Form

Now that the form has been created, the next step is to render it. This is
done by passing a special form “view” object to your template (notice the
$form->createView() in the controller above) and using a set of form
helper functions:

	Twig{# src/Acme/TaskBundle/Resources/views/Default/new.html.twig #}

<form action="{{ path('task_new') }}" method="post" {{ form_enctype(form) }}>
 {{ form_widget(form) }}

 <input type="submit" />
</form>

	PHP<!-- src/Acme/TaskBundle/Resources/views/Default/new.html.php -->

<form action="<?php echo $view['router']->generate('task_new') ?>" method="post" <?php echo $view['form']->enctype($form) ?> >
 <?php echo $view['form']->widget($form) ?>

 <input type="submit" />
</form>

[image: ../_images/form-simple.png]

Note

This example assumes that you’ve created a route called task_new
that points to the AcmeTaskBundle:Default:new controller that
was created earlier.

That’s it! By printing form_widget(form), each field in the form is
rendered, along with a label and error message (if there is one). As easy
as this is, it’s not very flexible (yet). Usually, you’ll want to render each
form field individually so you can control how the form looks. You’ll learn how
to do that in the “Rendering a Form in a Template” section.

Before moving on, notice how the rendered task input field has the value
of the task property from the $task object (i.e. “Write a blog post”).
This is the first job of a form: to take data from an object and translate
it into a format that’s suitable for being rendered in an HTML form.

Tip

The form system is smart enough to access the value of the protected
task property via the getTask() and setTask() methods on the
Task class. Unless a property is public, it must have a “getter” and
“setter” method so that the form component can get and put data onto the
property. For a Boolean property, you can use an “isser” method (e.g.
isPublished()) instead of a getter (e.g. getPublished()).

Handling Form Submissions

The second job of a form is to translate user-submitted data back to the
properties of an object. To make this happen, the submitted data from the
user must be bound to the form. Add the following functionality to your
controller:

// ...

public function newAction(Request $request)
{
 // just setup a fresh $task object (remove the dummy data)
 $task = new Task();

 $form = $this->createFormBuilder($task)
 ->add('task', 'text')
 ->add('dueDate', 'date')
 ->getForm();

 if ($request->getMethod() == 'POST') {
 $form->bindRequest($request);

 if ($form->isValid()) {
 // perform some action, such as saving the task to the database

 return $this->redirect($this->generateUrl('task_success'));
 }
 }

 // ...
}

Now, when submitting the form, the controller binds the submitted data to the
form, which translates that data back to the task and dueDate properties
of the $task object. This all happens via the bindRequest() method.

Note

As soon as bindRequest() is called, the submitted data is transferred
to the underlying object immediately. This happens regardless of whether
or not the underlying data is actually valid.

This controller follows a common pattern for handling forms, and has three
possible paths:

	When initially loading the page in a browser, the request method is GET
and the form is simply created and rendered;

	When the user submits the form (i.e. the method is POST) with invalid
data (validation is covered in the next section), the form is bound and
then rendered, this time displaying all validation errors;

	When the user submits the form with valid data, the form is bound and
you have the opportunity to perform some actions using the $task
object (e.g. persisting it to the database) before redirecting the user
to some other page (e.g. a “thank you” or “success” page).

Note

Redirecting a user after a successful form submission prevents the user
from being able to hit “refresh” and re-post the data.

Form Validation

In the previous section, you learned how a form can be submitted with valid
or invalid data. In Symfony2, validation is applied to the underlying object
(e.g. Task). In other words, the question isn’t whether the “form” is
valid, but whether or not the $task object is valid after the form has
applied the submitted data to it. Calling $form->isValid() is a shortcut
that asks the $task object whether or not it has valid data.

Validation is done by adding a set of rules (called constraints) to a class. To
see this in action, add validation constraints so that the task field cannot
be empty and the dueDate field cannot be empty and must be a valid DateTime
object.

	YAML# Acme/TaskBundle/Resources/config/validation.yml
Acme\TaskBundle\Entity\Task:
 properties:
 task:
 - NotBlank: ~
 dueDate:
 - NotBlank: ~
 - Type: \DateTime

	Annotations// Acme/TaskBundle/Entity/Task.php
use Symfony\Component\Validator\Constraints as Assert;

class Task
{
 /**
 * @Assert\NotBlank()
 */
 public $task;

 /**
 * @Assert\NotBlank()
 * @Assert\Type("\DateTime")
 */
 protected $dueDate;
}

	XML<!-- Acme/TaskBundle/Resources/config/validation.xml -->
<class name="Acme\TaskBundle\Entity\Task">
 <property name="task">
 <constraint name="NotBlank" />
 </property>
 <property name="dueDate">
 <constraint name="NotBlank" />
 <constraint name="Type">
 <value>\DateTime</value>
 </constraint>
 </property>
</class>

	PHP// Acme/TaskBundle/Entity/Task.php
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\NotBlank;
use Symfony\Component\Validator\Constraints\Type;

class Task
{
 // ...

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('task', new NotBlank());

 $metadata->addPropertyConstraint('dueDate', new NotBlank());
 $metadata->addPropertyConstraint('dueDate', new Type('\DateTime'));
 }
}

That’s it! If you re-submit the form with invalid data, you’ll see the
corresponding errors printed out with the form.

HTML5 Validation

As of HTML5, many browsers can natively enforce certain validation constraints
on the client side. The most common validation is activated by rendering
a required attribute on fields that are required. For browsers that
support HTML5, this will result in a native browser message being displayed
if the user tries to submit the form with that field blank.

Generated forms take full advantage of this new feature by adding sensible
HTML attributes that trigger the validation. The client-side validation,
however, can be disabled by adding the novalidate attribute to the
form tag or formnovalidate to the submit tag. This is especially
useful when you want to test your server-side validation constraints,
but are being prevented by your browser from, for example, submitting
blank fields.

Validation is a very powerful feature of Symfony2 and has its own
dedicated chapter.

Validation Groups

Tip

If you’re not using validation groups,
then you can skip this section.

If your object takes advantage of validation groups,
you’ll need to specify which validation group(s) your form should use:

$form = $this->createFormBuilder($users, array(
 'validation_groups' => array('registration'),
))->add(...)
;

If you’re creating form classes (a
good practice), then you’ll need to add the following to the getDefaultOptions()
method:

public function getDefaultOptions(array $options)
{
 return array(
 'validation_groups' => array('registration')
);
}

In both of these cases, only the registration validation group will
be used to validate the underlying object.

Groups based on Submitted Data

New in version 2.1: The ability to specify a callback or Closure in validation_groups
is new to version 2.1

If you need some advanced logic to determine the validation groups (e.g.
based on submitted data), you can set the validation_groups option
to an array callback, or a Closure:

public function getDefaultOptions(array $options)
{
 return array(
 'validation_groups' => array('Acme\\AcmeBundle\\Entity\\Client', 'determineValidationGroups'),
);
}

This will call the static method determineValidationGroups() on the
Client class after the form is bound, but before validation is executed.
The Form object is passed as an argument to that method (see next example).
You can also define whole logic inline by using a Closure:

public function getDefaultOptions(array $options)
{
 return array(
 'validation_groups' => function(FormInterface $form) {
 $data = $form->getData();
 if (Entity\Client::TYPE_PERSON == $data->getType()) {
 return array('person')
 } else {
 return array('company');
 }
 },
);
}

Built-in Field Types

Symfony comes standard with a large group of field types that cover all of
the common form fields and data types you’ll encounter:

Text Fields

	text

	textarea

	email

	integer

	money

	number

	password

	percent

	search

	url

Choice Fields

	choice

	entity

	country

	language

	locale

	timezone

Date and Time Fields

	date

	datetime

	time

	birthday

Other Fields

	checkbox

	file

	radio

Field Groups

	collection

	repeated

Hidden Fields

	hidden

	csrf

Base Fields

	field

	form

You can also create your own custom field types. This topic is covered in
the “How to Create a Custom Form Field Type” article of the cookbook.

Field Type Options

Each field type has a number of options that can be used to configure it.
For example, the dueDate field is currently being rendered as 3 select
boxes. However, the date field can be
configured to be rendered as a single text box (where the user would enter
the date as a string in the box):

->add('dueDate', 'date', array('widget' => 'single_text'))

[image: ../_images/form-simple2.png]
Each field type has a number of different options that can be passed to it.
Many of these are specific to the field type and details can be found in
the documentation for each type.

The required option

The most common option is the required option, which can be applied to
any field. By default, the required option is set to true, meaning
that HTML5-ready browsers will apply client-side validation if the field
is left blank. If you don’t want this behavior, either set the required
option on your field to false or disable HTML5 validation.

Also note that setting the required option to true will not
result in server-side validation to be applied. In other words, if a
user submits a blank value for the field (either with an old browser
or web service, for example), it will be accepted as a valid value unless
you use Symfony’s NotBlank or NotNull validation constraint.

In other words, the required option is “nice”, but true server-side
validation should always be used.

The label option

The label for the form field can be set using the label option,
which can be applied to any field:

->add('dueDate', 'date', array(
 'widget' => 'single_text',
 'label' => 'Due Date',
))

The label for a field can also be set in the template rendering the
form, see below.

Field Type Guessing

Now that you’ve added validation metadata to the Task class, Symfony
already knows a bit about your fields. If you allow it, Symfony can “guess”
the type of your field and set it up for you. In this example, Symfony can
guess from the validation rules that both the task field is a normal
text field and the dueDate field is a date field:

public function newAction()
{
 $task = new Task();

 $form = $this->createFormBuilder($task)
 ->add('task')
 ->add('dueDate', null, array('widget' => 'single_text'))
 ->getForm();
}

The “guessing” is activated when you omit the second argument to the add()
method (or if you pass null to it). If you pass an options array as the
third argument (done for dueDate above), these options are applied to
the guessed field.

Caution

If your form uses a specific validation group, the field type guesser
will still consider all validation constraints when guessing your
field types (including constraints that are not part of the validation
group(s) being used).

Field Type Options Guessing

In addition to guessing the “type” for a field, Symfony can also try to guess
the correct values of a number of field options.

Tip

When these options are set, the field will be rendered with special HTML
attributes that provide for HTML5 client-side validation. However, it
doesn’t generate the equivalent server-side constraints (e.g. Assert\MaxLength).
And though you’ll need to manually add your server-side validation, these
field type options can then be guessed from that information.

	required: The required option can be guessed based off of the validation
rules (i.e. is the field NotBlank or NotNull) or the Doctrine metadata
(i.e. is the field nullable). This is very useful, as your client-side
validation will automatically match your validation rules.

	min_length: If the field is some sort of text field, then the min_length
option can be guessed from the validation constrains (if MinLength
or Min is used) or from the Doctrine metadata (via the field’s length).

	max_length: Similar to min_length, the maximum length can also
be guessed.

Note

These field options are only guessed if you’re using Symfony to guess
the field type (i.e. omit or pass null as the second argument to add()).

If you’d like to change one of the guessed values, you can override it by
passing the option in the options field array:

->add('task', null, array('min_length' => 4))

Rendering a Form in a Template

So far, you’ve seen how an entire form can be rendered with just one line
of code. Of course, you’ll usually need much more flexibility when rendering:

	Twig{# src/Acme/TaskBundle/Resources/views/Default/new.html.twig #}

<form action="{{ path('task_new') }}" method="post" {{ form_enctype(form) }}>
 {{ form_errors(form) }}

 {{ form_row(form.task) }}
 {{ form_row(form.dueDate) }}

 {{ form_rest(form) }}

 <input type="submit" />
</form>

	PHP<!-- // src/Acme/TaskBundle/Resources/views/Default/newAction.html.php -->

<form action="<?php echo $view['router']->generate('task_new') ?>" method="post" <?php echo $view['form']->enctype($form) ?>>
 <?php echo $view['form']->errors($form) ?>

 <?php echo $view['form']->row($form['task']) ?>
 <?php echo $view['form']->row($form['dueDate']) ?>

 <?php echo $view['form']->rest($form) ?>

 <input type="submit" />
</form>

Let’s take a look at each part:

	form_enctype(form) - If at least one field is a file upload field, this
renders the obligatory enctype="multipart/form-data";

	form_errors(form) - Renders any errors global to the whole form
(field-specific errors are displayed next to each field);

	form_row(form.dueDate) - Renders the label, any errors, and the HTML
form widget for the given field (e.g. dueDate) inside, by default, a
div element;

	form_rest(form) - Renders any fields that have not yet been rendered.
It’s usually a good idea to place a call to this helper at the bottom of
each form (in case you forgot to output a field or don’t want to bother
manually rendering hidden fields). This helper is also useful for taking
advantage of the automatic CSRF Protection.

The majority of the work is done by the form_row helper, which renders
the label, errors and HTML form widget of each field inside a div tag
by default. In the Form Theming section, you’ll learn how the form_row
output can be customized on many different levels.

Tip

You can access the current data of your form via form.vars.value:

	Twig{{ form.vars.value.task }}

	PHP<?php echo $view['form']->get('value')->getTask() ?>

Rendering each Field by Hand

The form_row helper is great because you can very quickly render each
field of your form (and the markup used for the “row” can be customized as
well). But since life isn’t always so simple, you can also render each field
entirely by hand. The end-product of the following is the same as when you
used the form_row helper:

	Twig{{ form_errors(form) }}

<div>
 {{ form_label(form.task) }}
 {{ form_errors(form.task) }}
 {{ form_widget(form.task) }}
</div>

<div>
 {{ form_label(form.dueDate) }}
 {{ form_errors(form.dueDate) }}
 {{ form_widget(form.dueDate) }}
</div>

{{ form_rest(form) }}

	PHP<?php echo $view['form']->errors($form) ?>

<div>
 <?php echo $view['form']->label($form['task']) ?>
 <?php echo $view['form']->errors($form['task']) ?>
 <?php echo $view['form']->widget($form['task']) ?>
</div>

<div>
 <?php echo $view['form']->label($form['dueDate']) ?>
 <?php echo $view['form']->errors($form['dueDate']) ?>
 <?php echo $view['form']->widget($form['dueDate']) ?>
</div>

<?php echo $view['form']->rest($form) ?>

If the auto-generated label for a field isn’t quite right, you can explicitly
specify it:

	Twig{{ form_label(form.task, 'Task Description') }}

	PHP<?php echo $view['form']->label($form['task'], 'Task Description') ?>

Some field types have additional rendering options that can be passed
to the widget. These options are documented with each type, but one common
options is attr, which allows you to modify attributes on the form element.
The following would add the task_field class to the rendered input text
field:

	Twig{{ form_widget(form.task, { 'attr': {'class': 'task_field'} }) }}

	PHP<?php echo $view['form']->widget($form['task'], array(
 'attr' => array('class' => 'task_field'),
)) ?>

If you need to render form fields “by hand” then you can access individual
values for fields such as the id, name and label. For example
to get the id:

	Twig{{ form.task.vars.id }}

	PHP<?php echo $form['task']->get('id') ?>

To get the value used for the form field’s name attribute you need to use
the full_name value:

	Twig{{ form.task.vars.full_name }}

	PHP<?php echo $form['task']->get('full_name') ?>

Twig Template Function Reference

If you’re using Twig, a full reference of the form rendering functions is
available in the reference manual.
Read this to know everything about the helpers available and the options
that can be used with each.

Creating Form Classes

As you’ve seen, a form can be created and used directly in a controller.
However, a better practice is to build the form in a separate, standalone PHP
class, which can then be reused anywhere in your application. Create a new class
that will house the logic for building the task form:

// src/Acme/TaskBundle/Form/Type/TaskType.php

namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilder;

class TaskType extends AbstractType
{
 public function buildForm(FormBuilder $builder, array $options)
 {
 $builder->add('task');
 $builder->add('dueDate', null, array('widget' => 'single_text'));
 }

 public function getName()
 {
 return 'task';
 }
}

This new class contains all the directions needed to create the task form
(note that the getName() method should return a unique identifier for this
form “type”). It can be used to quickly build a form object in the controller:

// src/Acme/TaskBundle/Controller/DefaultController.php

// add this new use statement at the top of the class
use Acme\TaskBundle\Form\Type\TaskType;

public function newAction()
{
 $task = // ...
 $form = $this->createForm(new TaskType(), $task);

 // ...
}

Placing the form logic into its own class means that the form can be easily
reused elsewhere in your project. This is the best way to create forms, but
the choice is ultimately up to you.

Setting the data_class

Every form needs to know the name of the class that holds the underlying
data (e.g. Acme\TaskBundle\Entity\Task). Usually, this is just guessed
based off of the object passed to the second argument to createForm
(i.e. $task). Later, when you begin embedding forms, this will no
longer be sufficient. So, while not always necessary, it’s generally a
good idea to explicitly specify the data_class option by adding the
following to your form type class:

public function getDefaultOptions(array $options)
{
 return array(
 'data_class' => 'Acme\TaskBundle\Entity\Task',
);
}

Tip

When mapping forms to objects, all fields are mapped. Any fields on the
form that do not exist on the mapped object will cause an exception to
be thrown.

In cases where you need extra fields in the form (for example: a “do you
agree with these terms” checkbox) that will not be mapped to the underlying
object, you need to set the property_path option to false:

public function buildForm(FormBuilder $builder, array $options)
{
 $builder->add('task');
 $builder->add('dueDate', null, array('property_path' => false));
}

Additionally, if there are any fields on the form that aren’t included in
the submitted data, those fields will be explicitly set to null.

Forms and Doctrine

The goal of a form is to translate data from an object (e.g. Task) to an
HTML form and then translate user-submitted data back to the original object. As
such, the topic of persisting the Task object to the database is entirely
unrelated to the topic of forms. But, if you’ve configured the Task class
to be persisted via Doctrine (i.e. you’ve added
mapping metadata for it), then persisting
it after a form submission can be done when the form is valid:

if ($form->isValid()) {
 $em = $this->getDoctrine()->getEntityManager();
 $em->persist($task);
 $em->flush();

 return $this->redirect($this->generateUrl('task_success'));
}

If, for some reason, you don’t have access to your original $task object,
you can fetch it from the form:

$task = $form->getData();

For more information, see the Doctrine ORM chapter.

The key thing to understand is that when the form is bound, the submitted
data is transferred to the underlying object immediately. If you want to
persist that data, you simply need to persist the object itself (which already
contains the submitted data).

Embedded Forms

Often, you’ll want to build a form that will include fields from many different
objects. For example, a registration form may contain data belonging to
a User object as well as many Address objects. Fortunately, this
is easy and natural with the form component.

Embedding a Single Object

Suppose that each Task belongs to a simple Category object. Start,
of course, by creating the Category object:

// src/Acme/TaskBundle/Entity/Category.php
namespace Acme\TaskBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Category
{
 /**
 * @Assert\NotBlank()
 */
 public $name;
}

Next, add a new category property to the Task class:

// ...

class Task
{
 // ...

 /**
 * @Assert\Type(type="Acme\TaskBundle\Entity\Category")
 */
 protected $category;

 // ...

 public function getCategory()
 {
 return $this->category;
 }

 public function setCategory(Category $category = null)
 {
 $this->category = $category;
 }
}

Now that your application has been updated to reflect the new requirements,
create a form class so that a Category object can be modified by the user:

// src/Acme/TaskBundle/Form/Type/CategoryType.php
namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilder;

class CategoryType extends AbstractType
{
 public function buildForm(FormBuilder $builder, array $options)
 {
 $builder->add('name');
 }

 public function getDefaultOptions(array $options)
 {
 return array(
 'data_class' => 'Acme\TaskBundle\Entity\Category',
);
 }

 public function getName()
 {
 return 'category';
 }
}

The end goal is to allow the Category of a Task to be modified right
inside the task form itself. To accomplish this, add a category field
to the TaskType object whose type is an instance of the new CategoryType
class:

public function buildForm(FormBuilder $builder, array $options)
{
 // ...

 $builder->add('category', new CategoryType());
}

The fields from CategoryType can now be rendered alongside those from
the TaskType class. Render the Category fields in the same way
as the original Task fields:

	Twig{# ... #}

<h3>Category</h3>
<div class="category">
 {{ form_row(form.category.name) }}
</div>

{{ form_rest(form) }}
{# ... #}

	PHP<!-- ... -->

<h3>Category</h3>
<div class="category">
 <?php echo $view['form']->row($form['category']['name']) ?>
</div>

<?php echo $view['form']->rest($form) ?>
<!-- ... -->

When the user submits the form, the submitted data for the Category fields
are used to construct an instance of Category, which is then set on the
category field of the Task instance.

The Category instance is accessible naturally via $task->getCategory()
and can be persisted to the database or used however you need.

Embedding a Collection of Forms

You can also embed a collection of forms into one form (imagine a Category
form with many Product sub-forms). This is done by using the collection
field type.

For more information see the “How to Embed a Collection of Forms” cookbook
entry and the collection field type reference.

Form Theming

Every part of how a form is rendered can be customized. You’re free to change
how each form “row” renders, change the markup used to render errors, or
even customize how a textarea tag should be rendered. Nothing is off-limits,
and different customizations can be used in different places.

Symfony uses templates to render each and every part of a form, such as
label tags, input tags, error messages and everything else.

In Twig, each form “fragment” is represented by a Twig block. To customize
any part of how a form renders, you just need to override the appropriate block.

In PHP, each form “fragment” is rendered via an individual template file.
To customize any part of how a form renders, you just need to override the
existing template by creating a new one.

To understand how this works, let’s customize the form_row fragment and
add a class attribute to the div element that surrounds each row. To
do this, create a new template file that will store the new markup:

	Twig{# src/Acme/TaskBundle/Resources/views/Form/fields.html.twig #}

{% block field_row %}
{% spaceless %}
 <div class="form_row">
 {{ form_label(form) }}
 {{ form_errors(form) }}
 {{ form_widget(form) }}
 </div>
{% endspaceless %}
{% endblock field_row %}

	PHP<!-- src/Acme/TaskBundle/Resources/views/Form/field_row.html.php -->

<div class="form_row">
 <?php echo $view['form']->label($form, $label) ?>
 <?php echo $view['form']->errors($form) ?>
 <?php echo $view['form']->widget($form, $parameters) ?>
</div>

The field_row form fragment is used when rendering most fields via the
form_row function. To tell the form component to use your new field_row
fragment defined above, add the following to the top of the template that
renders the form:

	Twig{# src/Acme/TaskBundle/Resources/views/Default/new.html.twig #}

{% form_theme form 'AcmeTaskBundle:Form:fields.html.twig' %}

<form ...>

	PHP<!-- src/Acme/TaskBundle/Resources/views/Default/new.html.php -->

<?php $view['form']->setTheme($form, array('AcmeTaskBundle:Form')) ?>

<form ...>

The form_theme tag (in Twig) “imports” the fragments defined in the given
template and uses them when rendering the form. In other words, when the
form_row function is called later in this template, it will use the field_row
block from your custom theme (instead of the default field_row block
that ships with Symfony).

To customize any portion of a form, you just need to override the appropriate
fragment. Knowing exactly which block or file to override is the subject of
the next section.

For a more extensive discussion, see How to customize Form Rendering.

Form Fragment Naming

In Symfony, every part of a form that is rendered - HTML form elements, errors,
labels, etc - is defined in a base theme, which is a collection of blocks
in Twig and a collection of template files in PHP.

In Twig, every block needed is defined in a single template file (form_div_layout.html.twig [https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig])
that lives inside the Twig Bridge [https://github.com/symfony/symfony/tree/master/src/Symfony/Bridge/Twig]. Inside this file, you can see every block
needed to render a form and every default field type.

In PHP, the fragments are individual template files. By default they are located in
the Resources/views/Form directory of the framework bundle (view on GitHub [https://github.com/symfony/symfony/tree/master/src/Symfony/Bundle/FrameworkBundle/Resources/views/Form]).

Each fragment name follows the same basic pattern and is broken up into two pieces,
separated by a single underscore character (_). A few examples are:

	field_row - used by form_row to render most fields;

	textarea_widget - used by form_widget to render a textarea field
type;

	field_errors - used by form_errors to render errors for a field;

Each fragment follows the same basic pattern: type_part. The type portion
corresponds to the field type being rendered (e.g. textarea, checkbox,
date, etc) whereas the part portion corresponds to what is being
rendered (e.g. label, widget, errors, etc). By default, there
are 4 possible parts of a form that can be rendered:

	label
	(e.g. field_label)
	renders the field’s label

	widget
	(e.g. field_widget)
	renders the field’s HTML representation

	errors
	(e.g. field_errors)
	renders the field’s errors

	row
	(e.g. field_row)
	renders the field’s entire row (label, widget & errors)

Note

There are actually 3 other parts - rows, rest, and enctype -
but you should rarely if ever need to worry about overriding them.

By knowing the field type (e.g. textarea) and which part you want to
customize (e.g. widget), you can construct the fragment name that needs
to be overridden (e.g. textarea_widget).

Template Fragment Inheritance

In some cases, the fragment you want to customize will appear to be missing.
For example, there is no textarea_errors fragment in the default themes
provided with Symfony. So how are the errors for a textarea field rendered?

The answer is: via the field_errors fragment. When Symfony renders the errors
for a textarea type, it looks first for a textarea_errors fragment before
falling back to the field_errors fragment. Each field type has a parent
type (the parent type of textarea is field), and Symfony uses the
fragment for the parent type if the base fragment doesn’t exist.

So, to override the errors for only textarea fields, copy the
field_errors fragment, rename it to textarea_errors and customize it. To
override the default error rendering for all fields, copy and customize the
field_errors fragment directly.

Tip

The “parent” type of each field type is available in the
form type reference for each field type.

Global Form Theming

In the above example, you used the form_theme helper (in Twig) to “import”
the custom form fragments into just that form. You can also tell Symfony
to import form customizations across your entire project.

Twig

To automatically include the customized blocks from the fields.html.twig
template created earlier in all templates, modify your application configuration
file:

	YAML# app/config/config.yml

twig:
 form:
 resources:
 - 'AcmeTaskBundle:Form:fields.html.twig'
 # ...

	XML<!-- app/config/config.xml -->

<twig:config ...>
 <twig:form>
 <resource>AcmeTaskBundle:Form:fields.html.twig</resource>
 </twig:form>
 <!-- ... -->
</twig:config>

	PHP// app/config/config.php

$container->loadFromExtension('twig', array(
 'form' => array('resources' => array(
 'AcmeTaskBundle:Form:fields.html.twig',
))
 // ...
));

Any blocks inside the fields.html.twig template are now used globally
to define form output.

Customizing Form Output all in a Single File with Twig

In Twig, you can also customize a form block right inside the template
where that customization is needed:

{% extends '::base.html.twig' %}

{# import "_self" as the form theme #}
{% form_theme form _self %}

{# make the form fragment customization #}
{% block field_row %}
 {# custom field row output #}
{% endblock field_row %}

{% block content %}
 {# ... #}

 {{ form_row(form.task) }}
{% endblock %}

The {% form_theme form _self %} tag allows form blocks to be customized
directly inside the template that will use those customizations. Use
this method to quickly make form output customizations that will only
ever be needed in a single template.

PHP

To automatically include the customized templates from the Acme/TaskBundle/Resources/views/Form
directory created earlier in all templates, modify your application configuration
file:

	YAML# app/config/config.yml

framework:
 templating:
 form:
 resources:
 - 'AcmeTaskBundle:Form'
...

	XML<!-- app/config/config.xml -->

<framework:config ...>
 <framework:templating>
 <framework:form>
 <resource>AcmeTaskBundle:Form</resource>
 </framework:form>
 </framework:templating>
 <!-- ... -->
</framework:config>

	PHP// app/config/config.php

$container->loadFromExtension('framework', array(
 'templating' => array('form' =>
 array('resources' => array(
 'AcmeTaskBundle:Form',
)))
 // ...
));

Any fragments inside the Acme/TaskBundle/Resources/views/Form directory
are now used globally to define form output.

CSRF Protection

CSRF - or Cross-site request forgery [http://en.wikipedia.org/wiki/Cross-site_request_forgery] - is a method by which a malicious
user attempts to make your legitimate users unknowingly submit data that
they don’t intend to submit. Fortunately, CSRF attacks can be prevented by
using a CSRF token inside your forms.

The good news is that, by default, Symfony embeds and validates CSRF tokens
automatically for you. This means that you can take advantage of the CSRF
protection without doing anything. In fact, every form in this chapter has
taken advantage of the CSRF protection!

CSRF protection works by adding a hidden field to your form - called _token
by default - that contains a value that only you and your user knows. This
ensures that the user - not some other entity - is submitting the given data.
Symfony automatically validates the presence and accuracy of this token.

The _token field is a hidden field and will be automatically rendered
if you include the form_rest() function in your template, which ensures
that all un-rendered fields are output.

The CSRF token can be customized on a form-by-form basis. For example:

class TaskType extends AbstractType
{
 // ...

 public function getDefaultOptions(array $options)
 {
 return array(
 'data_class' => 'Acme\TaskBundle\Entity\Task',
 'csrf_protection' => true,
 'csrf_field_name' => '_token',
 // a unique key to help generate the secret token
 'intention' => 'task_item',
);
 }

 // ...
}

To disable CSRF protection, set the csrf_protection option to false.
Customizations can also be made globally in your project. For more information,
see the form configuration reference
section.

Note

The intention option is optional but greatly enhances the security of
the generated token by making it different for each form.

Using a Form without a Class

In most cases, a form is tied to an object, and the fields of the form get
and store their data on the properties of that object. This is exactly what
you’ve seen so far in this chapter with the Task class.

But sometimes, you may just want to use a form without a class, and get back
an array of the submitted data. This is actually really easy:

// make sure you've imported the Request namespace above the class
use Symfony\Component\HttpFoundation\Request
// ...

public function contactAction(Request $request)
{
 $defaultData = array('message' => 'Type your message here');
 $form = $this->createFormBuilder($defaultData)
 ->add('name', 'text')
 ->add('email', 'email')
 ->add('message', 'textarea')
 ->getForm();

 if ($request->getMethod() == 'POST') {
 $form->bindRequest($request);

 // data is an array with "name", "email", and "message" keys
 $data = $form->getData();
 }

 // ... render the form
}

By default, a form actually assumes that you want to work with arrays of
data, instead of an object. There are exactly two ways that you can change
this behavior and tie the form to an object instead:

	Pass an object when creating the form (as the first argument to createFormBuilder
or the second argument to createForm);

	Declare the data_class option on your form.

If you don’t do either of these, then the form will return the data as
an array. In this example, since $defaultData is not an object (and
no data_class option is set), $form->getData() ultimately returns
an array.

Tip

You can also access POST values (in this case “name”) directly through
the request object, like so:

$this->get('request')->request->get('name');

Be advised, however, that in most cases using the getData() method is
a better choice, since it returns the data (usually an object) after
it’s been transformed by the form framework.

Adding Validation

The only missing piece is validation. Usually, when you call $form->isValid(),
the object is validated by reading the constraints that you applied to that
class. But without a class, how can you add constraints to the data of your
form?

The answer is to setup the constraints yourself, and pass them into your
form. The overall approach is covered a bit more in the validation chapter,
but here’s a short example:

// import the namespaces above your controller class
use Symfony\Component\Validator\Constraints\Email;
use Symfony\Component\Validator\Constraints\MinLength;
use Symfony\Component\Validator\Constraints\Collection;

$collectionConstraint = new Collection(array(
 'name' => new MinLength(5),
 'email' => new Email(array('message' => 'Invalid email address')),
));

// create a form, no default values, pass in the constraint option
$form = $this->createFormBuilder(null, array(
 'validation_constraint' => $collectionConstraint,
))->add('email', 'email')
 // ...
;

Now, when you call $form->isValid(), the constraints setup here are run
against your form’s data. If you’re using a form class, override the getDefaultOptions
method to specify the option:

namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilder;
use Symfony\Component\Validator\Constraints\Email;
use Symfony\Component\Validator\Constraints\MinLength;
use Symfony\Component\Validator\Constraints\Collection;

class ContactType extends AbstractType
{
 // ...

 public function getDefaultOptions(array $options)
 {
 $collectionConstraint = new Collection(array(
 'name' => new MinLength(5),
 'email' => new Email(array('message' => 'Invalid email address')),
));

 return array('validation_constraint' => $collectionConstraint);
 }
}

Now, you have the flexibility to create forms - with validation - that return
an array of data, instead of an object. In most cases, it’s better - and
certainly more robust - to bind your form to an object. But for simple forms,
this is a great approach.

Final Thoughts

You now know all of the building blocks necessary to build complex and
functional forms for your application. When building forms, keep in mind that
the first goal of a form is to translate data from an object (Task) to an
HTML form so that the user can modify that data. The second goal of a form is to
take the data submitted by the user and to re-apply it to the object.

There’s still much more to learn about the powerful world of forms, such as
how to handle file uploads with Doctrine or how to create a form where a dynamic
number of sub-forms can be added (e.g. a todo list where you can keep adding
more fields via Javascript before submitting). See the cookbook for these
topics. Also, be sure to lean on the
field type reference documentation, which
includes examples of how to use each field type and its options.

Learn more from the Cookbook

	How to handle File Uploads with Doctrine

	File Field Reference

	Creating Custom Field Types

	How to customize Form Rendering

	How to Dynamically Generate Forms Using Form Events

	Using Data Transformers

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Security

Security is a two-step process whose goal is to prevent a user from accessing
a resource that he/she should not have access to.

In the first step of the process, the security system identifies who the user
is by requiring the user to submit some sort of identification. This is called
authentication, and it means that the system is trying to find out who
you are.

Once the system knows who you are, the next step is to determine if you should
have access to a given resource. This part of the process is called authorization,
and it means that the system is checking to see if you have privileges to
perform a certain action.

[image: ../_images/security_authentication_authorization.png]
Since the best way to learn is to see an example, let’s dive right in.

Note

Symfony’s security component [https://github.com/symfony/Security] is available as a standalone PHP library
for use inside any PHP project.

Basic Example: HTTP Authentication

The security component can be configured via your application configuration.
In fact, most standard security setups are just a matter of using the right
configuration. The following configuration tells Symfony to secure any URL
matching /admin/* and to ask the user for credentials using basic HTTP
authentication (i.e. the old-school username/password box):

	YAML# app/config/security.yml
security:
 firewalls:
 secured_area:
 pattern: ^/
 anonymous: ~
 http_basic:
 realm: "Secured Demo Area"

 access_control:
 - { path: ^/admin, roles: ROLE_ADMIN }

 providers:
 in_memory:
 memory:
 users:
 ryan: { password: ryanpass, roles: 'ROLE_USER' }
 admin: { password: kitten, roles: 'ROLE_ADMIN' }

 encoders:
 Symfony\Component\Security\Core\User\User: plaintext

	XML<!-- app/config/security.xml -->
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <firewall name="secured_area" pattern="^/">
 <anonymous />
 <http-basic realm="Secured Demo Area" />
 </firewall>

 <access-control>
 <rule path="^/admin" role="ROLE_ADMIN" />
 </access-control>

 <provider name="in_memory">
 <memory>
 <user name="ryan" password="ryanpass" roles="ROLE_USER" />
 <user name="admin" password="kitten" roles="ROLE_ADMIN" />
 </memory>
 </provider>

 <encoder class="Symfony\Component\Security\Core\User\User" algorithm="plaintext" />
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'secured_area' => array(
 'pattern' => '^/',
 'anonymous' => array(),
 'http_basic' => array(
 'realm' => 'Secured Demo Area',
),
),
),
 'access_control' => array(
 array('path' => '^/admin', 'role' => 'ROLE_ADMIN'),
),
 'providers' => array(
 'in_memory' => array(
 'memory' => array(
 'users' => array(
 'ryan' => array('password' => 'ryanpass', 'roles' => 'ROLE_USER'),
 'admin' => array('password' => 'kitten', 'roles' => 'ROLE_ADMIN'),
),
),
),
),
 'encoders' => array(
 'Symfony\Component\Security\Core\User\User' => 'plaintext',
),
));

Tip

A standard Symfony distribution separates the security configuration
into a separate file (e.g. app/config/security.yml). If you don’t
have a separate security file, you can put the configuration directly
into your main config file (e.g. app/config/config.yml).

The end result of this configuration is a fully-functional security system
that looks like the following:

	There are two users in the system (ryan and admin);

	Users authenticate themselves via the basic HTTP authentication prompt;

	Any URL matching /admin/* is secured, and only the admin user
can access it;

	All URLs not matching /admin/* are accessible by all users (and the
user is never prompted to login).

Let’s look briefly at how security works and how each part of the configuration
comes into play.

How Security Works: Authentication and Authorization

Symfony’s security system works by determining who a user is (i.e. authentication)
and then checking to see if that user should have access to a specific resource
or URL.

Firewalls (Authentication)

When a user makes a request to a URL that’s protected by a firewall, the
security system is activated. The job of the firewall is to determine whether
or not the user needs to be authenticated, and if he does, to send a response
back to the user initiating the authentication process.

A firewall is activated when the URL of an incoming request matches the configured
firewall’s regular expression pattern config value. In this example, the
pattern (^/) will match every incoming request. The fact that the
firewall is activated does not mean, however, that the HTTP authentication
username and password box is displayed for every URL. For example, any user
can access /foo without being prompted to authenticate.

[image: ../_images/security_anonymous_user_access.png]
This works first because the firewall allows anonymous users via the anonymous
configuration parameter. In other words, the firewall doesn’t require the
user to fully authenticate immediately. And because no special role is
needed to access /foo (under the access_control section), the request
can be fulfilled without ever asking the user to authenticate.

If you remove the anonymous key, the firewall will always make a user
fully authenticate immediately.

Access Controls (Authorization)

If a user requests /admin/foo, however, the process behaves differently.
This is because of the access_control configuration section that says
that any URL matching the regular expression pattern ^/admin (i.e. /admin
or anything matching /admin/*) requires the ROLE_ADMIN role. Roles
are the basis for most authorization: a user can access /admin/foo only
if it has the ROLE_ADMIN role.

[image: ../_images/security_anonymous_user_denied_authorization.png]
Like before, when the user originally makes the request, the firewall doesn’t
ask for any identification. However, as soon as the access control layer
denies the user access (because the anonymous user doesn’t have the ROLE_ADMIN
role), the firewall jumps into action and initiates the authentication process.
The authentication process depends on the authentication mechanism you’re
using. For example, if you’re using the form login authentication method,
the user will be redirected to the login page. If you’re using HTTP authentication,
the user will be sent an HTTP 401 response so that the user sees the username
and password box.

The user now has the opportunity to submit its credentials back to the application.
If the credentials are valid, the original request can be re-tried.

[image: ../_images/security_ryan_no_role_admin_access.png]
In this example, the user ryan successfully authenticates with the firewall.
But since ryan doesn’t have the ROLE_ADMIN role, he’s still denied
access to /admin/foo. Ultimately, this means that the user will see some
sort of message indicating that access has been denied.

Tip

When Symfony denies the user access, the user sees an error screen and
receives a 403 HTTP status code (Forbidden). You can customize the
access denied error screen by following the directions in the
Error Pages cookbook entry
to customize the 403 error page.

Finally, if the admin user requests /admin/foo, a similar process
takes place, except now, after being authenticated, the access control layer
will let the request pass through:

[image: ../_images/security_admin_role_access.png]
The request flow when a user requests a protected resource is straightforward,
but incredibly flexible. As you’ll see later, authentication can be handled
in any number of ways, including via a form login, X.509 certificate, or by
authenticating the user via Twitter. Regardless of the authentication method,
the request flow is always the same:

	A user accesses a protected resource;

	The application redirects the user to the login form;

	The user submits its credentials (e.g. username/password);

	The firewall authenticates the user;

	The authenticated user re-tries the original request.

Note

The exact process actually depends a little bit on which authentication
mechanism you’re using. For example, when using form login, the user
submits its credentials to one URL that processes the form (e.g. /login_check)
and then is redirected back to the originally requested URL (e.g. /admin/foo).
But with HTTP authentication, the user submits its credentials directly
to the original URL (e.g. /admin/foo) and then the page is returned
to the user in that same request (i.e. no redirect).

These types of idiosyncrasies shouldn’t cause you any problems, but they’re
good to keep in mind.

Tip

You’ll also learn later how anything can be secured in Symfony2, including
specific controllers, objects, or even PHP methods.

Using a Traditional Login Form

So far, you’ve seen how to blanket your application beneath a firewall and
then protect access to certain areas with roles. By using HTTP Authentication,
you can effortlessly tap into the native username/password box offered by
all browsers. However, Symfony supports many authentication mechanisms out
of the box. For details on all of them, see the
Security Configuration Reference.

In this section, you’ll enhance this process by allowing the user to authenticate
via a traditional HTML login form.

First, enable form login under your firewall:

	YAML# app/config/security.yml
security:
 firewalls:
 secured_area:
 pattern: ^/
 anonymous: ~
 form_login:
 login_path: /login
 check_path: /login_check

	XML<!-- app/config/security.xml -->
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <firewall name="secured_area" pattern="^/">
 <anonymous />
 <form-login login_path="/login" check_path="/login_check" />
 </firewall>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'secured_area' => array(
 'pattern' => '^/',
 'anonymous' => array(),
 'form_login' => array(
 'login_path' => '/login',
 'check_path' => '/login_check',
),
),
),
));

Tip

If you don’t need to customize your login_path or check_path
values (the values used here are the default values), you can shorten
your configuration:

	YAMLform_login: ~

	XML<form-login />

	PHP'form_login' => array(),

Now, when the security system initiates the authentication process, it will
redirect the user to the login form (/login by default). Implementing
this login form visually is your job. First, create two routes: one that
will display the login form (i.e. /login) and one that will handle the
login form submission (i.e. /login_check):

	YAML# app/config/routing.yml
login:
 pattern: /login
 defaults: { _controller: AcmeSecurityBundle:Security:login }
login_check:
 pattern: /login_check

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="login" pattern="/login">
 <default key="_controller">AcmeSecurityBundle:Security:login</default>
 </route>
 <route id="login_check" pattern="/login_check" />

</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('login', new Route('/login', array(
 '_controller' => 'AcmeDemoBundle:Security:login',
)));
$collection->add('login_check', new Route('/login_check', array()));

return $collection;

Note

You will not need to implement a controller for the /login_check
URL as the firewall will automatically catch and process any form submitted
to this URL.

New in version 2.1: As of Symfony 2.1, you must have routes configured for your login_path
(e.g. /login) and check_path (e.g. /login_check) URLs.

Notice that the name of the login route isn’t important. What’s important
is that the URL of the route (/login) matches the login_path config
value, as that’s where the security system will redirect users that need
to login.

Next, create the controller that will display the login form:

// src/Acme/SecurityBundle/Controller/Main;
namespace Acme\SecurityBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\Security\Core\SecurityContext;

class SecurityController extends Controller
{
 public function loginAction()
 {
 $request = $this->getRequest();
 $session = $request->getSession();

 // get the login error if there is one
 if ($request->attributes->has(SecurityContext::AUTHENTICATION_ERROR)) {
 $error = $request->attributes->get(SecurityContext::AUTHENTICATION_ERROR);
 } else {
 $error = $session->get(SecurityContext::AUTHENTICATION_ERROR);
 }

 return $this->render('AcmeSecurityBundle:Security:login.html.twig', array(
 // last username entered by the user
 'last_username' => $session->get(SecurityContext::LAST_USERNAME),
 'error' => $error,
));
 }
}

Don’t let this controller confuse you. As you’ll see in a moment, when the
user submits the form, the security system automatically handles the form
submission for you. If the user had submitted an invalid username or password,
this controller reads the form submission error from the security system so
that it can be displayed back to the user.

In other words, your job is to display the login form and any login errors
that may have occurred, but the security system itself takes care of checking
the submitted username and password and authenticating the user.

Finally, create the corresponding template:

	Twig{# src/Acme/SecurityBundle/Resources/views/Security/login.html.twig #}
{% if error %}
 <div>{{ error.message }}</div>
{% endif %}

<form action="{{ path('login_check') }}" method="post">
 <label for="username">Username:</label>
 <input type="text" id="username" name="_username" value="{{ last_username }}" />

 <label for="password">Password:</label>
 <input type="password" id="password" name="_password" />

 {#
 If you want to control the URL the user is redirected to on success (more details below)
 <input type="hidden" name="_target_path" value="/account" />
 #}

 <input type="submit" name="login" />
</form>

	PHP<?php // src/Acme/SecurityBundle/Resources/views/Security/login.html.php ?>
<?php if ($error): ?>
 <div><?php echo $error->getMessage() ?></div>
<?php endif; ?>

<form action="<?php echo $view['router']->generate('login_check') ?>" method="post">
 <label for="username">Username:</label>
 <input type="text" id="username" name="_username" value="<?php echo $last_username ?>" />

 <label for="password">Password:</label>
 <input type="password" id="password" name="_password" />

 <!--
 If you want to control the URL the user is redirected to on success (more details below)
 <input type="hidden" name="_target_path" value="/account" />
 -->

 <input type="submit" name="login" />
</form>

Tip

The error variable passed into the template is an instance of
Symfony\Component\Security\Core\Exception\AuthenticationException.
It may contain more information - or even sensitive information - about
the authentication failure, so use it wisely!

The form has very few requirements. First, by submitting the form to /login_check
(via the login_check route), the security system will intercept the form
submission and process the form for you automatically. Second, the security
system expects the submitted fields to be called _username and _password
(these field names can be configured).

And that’s it! When you submit the form, the security system will automatically
check the user’s credentials and either authenticate the user or send the
user back to the login form where the error can be displayed.

Let’s review the whole process:

	The user tries to access a resource that is protected;

	The firewall initiates the authentication process by redirecting the
user to the login form (/login);

	The /login page renders login form via the route and controller created
in this example;

	The user submits the login form to /login_check;

	The security system intercepts the request, checks the user’s submitted
credentials, authenticates the user if they are correct, and sends the
user back to the login form if they are not.

By default, if the submitted credentials are correct, the user will be redirected
to the original page that was requested (e.g. /admin/foo). If the user
originally went straight to the login page, he’ll be redirected to the homepage.
This can be highly customized, allowing you to, for example, redirect the
user to a specific URL.

For more details on this and how to customize the form login process in general,
see How to customize your Form Login.

Avoid Common Pitfalls

When setting up your login form, watch out for a few common pitfalls.

1. Create the correct routes

First, be sure that you’ve defined the /login and /login_check
routes correctly and that they correspond to the login_path and
check_path config values. A misconfiguration here can mean that you’re
redirected to a 404 page instead of the login page, or that submitting
the login form does nothing (you just see the login form over and over
again).

2. Be sure the login page isn’t secure

Also, be sure that the login page does not require any roles to be
viewed. For example, the following configuration - which requires the
ROLE_ADMIN role for all URLs (including the /login URL), will
cause a redirect loop:

	YAMLaccess_control:
 - { path: ^/, roles: ROLE_ADMIN }

	XML<access-control>
 <rule path="^/" role="ROLE_ADMIN" />
</access-control>

	PHP'access_control' => array(
 array('path' => '^/', 'role' => 'ROLE_ADMIN'),
),

Removing the access control on the /login URL fixes the problem:

	YAMLaccess_control:
 - { path: ^/login, roles: IS_AUTHENTICATED_ANONYMOUSLY }
 - { path: ^/, roles: ROLE_ADMIN }

	XML<access-control>
 <rule path="^/login" role="IS_AUTHENTICATED_ANONYMOUSLY" />
 <rule path="^/" role="ROLE_ADMIN" />
</access-control>

	PHP'access_control' => array(
 array('path' => '^/login', 'role' => 'IS_AUTHENTICATED_ANONYMOUSLY'),
 array('path' => '^/', 'role' => 'ROLE_ADMIN'),
),

Also, if your firewall does not allow for anonymous users, you’ll need
to create a special firewall that allows anonymous users for the login
page:

	YAMLfirewalls:
 login_firewall:
 pattern: ^/login$
 anonymous: ~
 secured_area:
 pattern: ^/
 form_login: ~

	XML<firewall name="login_firewall" pattern="^/login$">
 <anonymous />
</firewall>
<firewall name="secured_area" pattern="^/">
 <form_login />
</firewall>

	PHP'firewalls' => array(
 'login_firewall' => array(
 'pattern' => '^/login$',
 'anonymous' => array(),
),
 'secured_area' => array(
 'pattern' => '^/',
 'form_login' => array(),
),
),

3. Be sure ``/login_check`` is behind a firewall

Next, make sure that your check_path URL (e.g. /login_check)
is behind the firewall you’re using for your form login (in this example,
the single firewall matches all URLs, including /login_check). If
/login_check doesn’t match any firewall, you’ll receive a Unable
to find the controller for path "/login_check" exception.

4. Multiple firewalls don’t share security context

If you’re using multiple firewalls and you authenticate against one firewall,
you will not be authenticated against any other firewalls automatically.
Different firewalls are like different security systems. That’s why,
for most applications, having one main firewall is enough.

Authorization

The first step in security is always authentication: the process of verifying
who the user is. With Symfony, authentication can be done in any way - via
a form login, basic HTTP Authentication, or even via Facebook.

Once the user has been authenticated, authorization begins. Authorization
provides a standard and powerful way to decide if a user can access any resource
(a URL, a model object, a method call, ...). This works by assigning specific
roles to each user, and then requiring different roles for different resources.

The process of authorization has two different sides:

	The user has a specific set of roles;

	A resource requires a specific role in order to be accessed.

In this section, you’ll focus on how to secure different resources (e.g. URLs,
method calls, etc) with different roles. Later, you’ll learn more about how
roles are created and assigned to users.

Securing Specific URL Patterns

The most basic way to secure part of your application is to secure an entire
URL pattern. You’ve seen this already in the first example of this chapter,
where anything matching the regular expression pattern ^/admin requires
the ROLE_ADMIN role.

You can define as many URL patterns as you need - each is a regular expression.

	YAML# app/config/security.yml
security:
 # ...
 access_control:
 - { path: ^/admin/users, roles: ROLE_SUPER_ADMIN }
 - { path: ^/admin, roles: ROLE_ADMIN }

	XML<!-- app/config/security.xml -->
<config>
 <!-- ... -->
 <rule path="^/admin/users" role="ROLE_SUPER_ADMIN" />
 <rule path="^/admin" role="ROLE_ADMIN" />
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 // ...
 'access_control' => array(
 array('path' => '^/admin/users', 'role' => 'ROLE_SUPER_ADMIN'),
 array('path' => '^/admin', 'role' => 'ROLE_ADMIN'),
),
));

Tip

Prepending the path with ^ ensures that only URLs beginning with
the pattern are matched. For example, a path of simply /admin (without
the ^) would correctly match /admin/foo but would also match URLs
like /foo/admin.

For each incoming request, Symfony2 tries to find a matching access control
rule (the first one wins). If the user isn’t authenticated yet, the authentication
process is initiated (i.e. the user is given a chance to login). However,
if the user is authenticated but doesn’t have the required role, an
Symfony\Component\Security\Core\Exception\AccessDeniedException
exception is thrown, which you can handle and turn into a nice “access denied”
error page for the user. See How to customize Error Pages for
more information.

Since Symfony uses the first access control rule it matches, a URL like /admin/users/new
will match the first rule and require only the ROLE_SUPER_ADMIN role.
Any URL like /admin/blog will match the second rule and require ROLE_ADMIN.

Securing by IP

Certain situations may arise when you may need to restrict access to a given
route based on IP. This is particularly relevant in the case of Edge Side Includes
(ESI), for example, which utilize a route named “_internal”. When
ESI is used, the _internal route is required by the gateway cache to enable
different caching options for subsections within a given page. This route
comes with the ^/_internal prefix by default in the standard edition (assuming
you’ve uncommented those lines from the routing file).

Here is an example of how you might secure this route from outside access:

	YAML# app/config/security.yml
security:
 # ...
 access_control:
 - { path: ^/_internal, roles: IS_AUTHENTICATED_ANONYMOUSLY, ip: 127.0.0.1 }

	XML<access-control>
 <rule path="^/_internal" role="IS_AUTHENTICATED_ANONYMOUSLY" ip="127.0.0.1" />
</access-control>

	PHP'access_control' => array(
 array('path' => '^/_internal', 'role' => 'IS_AUTHENTICATED_ANONYMOUSLY', 'ip' => '127.0.0.1'),
),

Securing by Channel

Much like securing based on IP, requiring the use of SSL is as simple as
adding a new access_control entry:

	YAML# app/config/security.yml
security:
 # ...
 access_control:
 - { path: ^/cart/checkout, roles: IS_AUTHENTICATED_ANONYMOUSLY, requires_channel: https }

	XML<access-control>
 <rule path="^/cart/checkout" role="IS_AUTHENTICATED_ANONYMOUSLY" requires_channel="https" />
</access-control>

	PHP'access_control' => array(
 array('path' => '^/cart/checkout', 'role' => 'IS_AUTHENTICATED_ANONYMOUSLY', 'requires_channel' => 'https'),
),

Securing a Controller

Protecting your application based on URL patterns is easy, but may not be
fine-grained enough in certain cases. When necessary, you can easily force
authorization from inside a controller:

use Symfony\Component\Security\Core\Exception\AccessDeniedException;
// ...

public function helloAction($name)
{
 if (false === $this->get('security.context')->isGranted('ROLE_ADMIN')) {
 throw new AccessDeniedException();
 }

 // ...
}

You can also choose to install and use the optional JMSSecurityExtraBundle,
which can secure your controller using annotations:

use JMS\SecurityExtraBundle\Annotation\Secure;

/**
 * @Secure(roles="ROLE_ADMIN")
 */
public function helloAction($name)
{
 // ...
}

For more information, see the JMSSecurityExtraBundle [https://github.com/schmittjoh/JMSSecurityExtraBundle] documentation. If you’re
using Symfony’s Standard Distribution, this bundle is available by default.
If not, you can easily download and install it.

Securing other Services

In fact, anything in Symfony can be protected using a strategy similar to
the one seen in the previous section. For example, suppose you have a service
(i.e. a PHP class) whose job is to send emails from one user to another.
You can restrict use of this class - no matter where it’s being used from -
to users that have a specific role.

For more information on how you can use the security component to secure
different services and methods in your application, see How to secure any Service or Method in your Application.

Access Control Lists (ACLs): Securing Individual Database Objects

Imagine you are designing a blog system where your users can comment on your
posts. Now, you want a user to be able to edit his own comments, but not
those of other users. Also, as the admin user, you yourself want to be able
to edit all comments.

The security component comes with an optional access control list (ACL) system
that you can use when you need to control access to individual instances
of an object in your system. Without ACL, you can secure your system so that
only certain users can edit blog comments in general. But with ACL, you
can restrict or allow access on a comment-by-comment basis.

For more information, see the cookbook article: Access Control Lists (ACLs).

Users

In the previous sections, you learned how you can protect different resources
by requiring a set of roles for a resource. In this section we’ll explore
the other side of authorization: users.

Where do Users come from? (User Providers)

During authentication, the user submits a set of credentials (usually a username
and password). The job of the authentication system is to match those credentials
against some pool of users. So where does this list of users come from?

In Symfony2, users can come from anywhere - a configuration file, a database
table, a web service, or anything else you can dream up. Anything that provides
one or more users to the authentication system is known as a “user provider”.
Symfony2 comes standard with the two most common user providers: one that
loads users from a configuration file and one that loads users from a database
table.

Specifying Users in a Configuration File

The easiest way to specify your users is directly in a configuration file.
In fact, you’ve seen this already in the example in this chapter.

	YAML# app/config/security.yml
security:
 # ...
 providers:
 default_provider:
 memory:
 users:
 ryan: { password: ryanpass, roles: 'ROLE_USER' }
 admin: { password: kitten, roles: 'ROLE_ADMIN' }

	XML<!-- app/config/security.xml -->
<config>
 <!-- ... -->
 <provider name="default_provider">
 <memory>
 <user name="ryan" password="ryanpass" roles="ROLE_USER" />
 <user name="admin" password="kitten" roles="ROLE_ADMIN" />
 </memory>
 </provider>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 // ...
 'providers' => array(
 'default_provider' => array(
 'memory' => array(
 'users' => array(
 'ryan' => array('password' => 'ryanpass', 'roles' => 'ROLE_USER'),
 'admin' => array('password' => 'kitten', 'roles' => 'ROLE_ADMIN'),
),
),
),
),
));

This user provider is called the “in-memory” user provider, since the users
aren’t stored anywhere in a database. The actual user object is provided
by Symfony (Symfony\Component\Security\Core\User\User).

Tip

Any user provider can load users directly from configuration by specifying
the users configuration parameter and listing the users beneath it.

Caution

If your username is completely numeric (e.g. 77) or contains a dash
(e.g. user-name), you should use that alternative syntax when specifying
users in YAML:

users:
 - { name: 77, password: pass, roles: 'ROLE_USER' }
 - { name: user-name, password: pass, roles: 'ROLE_USER' }

For smaller sites, this method is quick and easy to setup. For more complex
systems, you’ll want to load your users from the database.

Loading Users from the Database

If you’d like to load your users via the Doctrine ORM, you can easily do
this by creating a User class and configuring the entity provider.

With this approach, you’ll first create your own User class, which will
be stored in the database.

// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Security\Core\User\UserInterface;
use Doctrine\ORM\Mapping as ORM;

/**
 * @ORM\Entity
 */
class User implements UserInterface
{
 /**
 * @ORM\Column(type="string", length="255")
 */
 protected $username;

 // ...
}

As far as the security system is concerned, the only requirement for your
custom user class is that it implements the Symfony\Component\Security\Core\User\UserInterface
interface. This means that your concept of a “user” can be anything, as long
as it implements this interface.

New in version 2.1: In Symfony 2.1, the equals method was removed from UserInterface.
If you need to override the default implementation of comparison logic,
implement the new Symfony\Component\Security\Core\User\EquatableInterface
interface.

Note

The user object will be serialized and saved in the session during requests,
therefore it is recommended that you implement the Serializable interface [http://php.net/manual/en/class.serializable.php]
in your user object. This is especially important if your User class
has a parent class with private properties.

Next, configure an entity user provider, and point it to your User
class:

	YAML# app/config/security.yml
security:
 providers:
 main:
 entity: { class: Acme\UserBundle\Entity\User, property: username }

	XML<!-- app/config/security.xml -->
<config>
 <provider name="main">
 <entity class="Acme\UserBundle\Entity\User" property="username" />
 </provider>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'providers' => array(
 'main' => array(
 'entity' => array('class' => 'Acme\UserBundle\Entity\User', 'property' => 'username'),
),
),
));

With the introduction of this new provider, the authentication system will
attempt to load a User object from the database by using the username
field of that class.

Note

This example is just meant to show you the basic idea behind the entity
provider. For a full working example, see How to load Security Users from the Database (the Entity Provider).

For more information on creating your own custom provider (e.g. if you needed
to load users via a web service), see How to create a custom User Provider.

Encoding the User’s Password

So far, for simplicity, all the examples have stored the users’ passwords
in plain text (whether those users are stored in a configuration file or in
a database somewhere). Of course, in a real application, you’ll want to encode
your users’ passwords for security reasons. This is easily accomplished by
mapping your User class to one of several built-in “encoders”. For example,
to store your users in memory, but obscure their passwords via sha1,
do the following:

	YAML# app/config/security.yml
security:
 # ...
 providers:
 in_memory:
 memory:
 users:
 ryan: { password: bb87a29949f3a1ee0559f8a57357487151281386, roles: 'ROLE_USER' }
 admin: { password: 74913f5cd5f61ec0bcfdb775414c2fb3d161b620, roles: 'ROLE_ADMIN' }

 encoders:
 Symfony\Component\Security\Core\User\User:
 algorithm: sha1
 iterations: 1
 encode_as_base64: false

	XML<!-- app/config/security.xml -->
<config>
 <!-- ... -->
 <provider name="in_memory">
 <memory>
 <user name="ryan" password="bb87a29949f3a1ee0559f8a57357487151281386" roles="ROLE_USER" />
 <user name="admin" password="74913f5cd5f61ec0bcfdb775414c2fb3d161b620" roles="ROLE_ADMIN" />
 </memory>
 </provider>

 <encoder class="Symfony\Component\Security\Core\User\User" algorithm="sha1" iterations="1" encode_as_base64="false" />
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 // ...
 'providers' => array(
 'in_memory' => array(
 'memory' => array(
 'users' => array(
 'ryan' => array('password' => 'bb87a29949f3a1ee0559f8a57357487151281386', 'roles' => 'ROLE_USER'),
 'admin' => array('password' => '74913f5cd5f61ec0bcfdb775414c2fb3d161b620', 'roles' => 'ROLE_ADMIN'),
),
),
),
),
 'encoders' => array(
 'Symfony\Component\Security\Core\User\User' => array(
 'algorithm' => 'sha1',
 'iterations' => 1,
 'encode_as_base64' => false,
),
),
));

By setting the iterations to 1 and the encode_as_base64 to false,
the password is simply run through the sha1 algorithm one time and without
any extra encoding. You can now calculate the hashed password either programmatically
(e.g. hash('sha1', 'ryanpass')) or via some online tool like functions-online.com [http://www.functions-online.com/sha1.html]

If you’re creating your users dynamically (and storing them in a database),
you can use even tougher hashing algorithms and then rely on an actual password
encoder object to help you encode passwords. For example, suppose your User
object is Acme\UserBundle\Entity\User (like in the above example). First,
configure the encoder for that user:

	YAML# app/config/security.yml
security:
 # ...

 encoders:
 Acme\UserBundle\Entity\User: sha512

	XML<!-- app/config/security.xml -->
<config>
 <!-- ... -->

 <encoder class="Acme\UserBundle\Entity\User" algorithm="sha512" />
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 // ...

 'encoders' => array(
 'Acme\UserBundle\Entity\User' => 'sha512',
),
));

In this case, you’re using the stronger sha512 algorithm. Also, since
you’ve simply specified the algorithm (sha512) as a string, the system
will default to hashing your password 5000 times in a row and then encoding
it as base64. In other words, the password has been greatly obfuscated so
that the hashed password can’t be decoded (i.e. you can’t determine the password
from the hashed password).

If you have some sort of registration form for users, you’ll need to be able
to determine the hashed password so that you can set it on your user. No
matter what algorithm you configure for your user object, the hashed password
can always be determined in the following way from a controller:

$factory = $this->get('security.encoder_factory');
$user = new Acme\UserBundle\Entity\User();

$encoder = $factory->getEncoder($user);
$password = $encoder->encodePassword('ryanpass', $user->getSalt());
$user->setPassword($password);

Retrieving the User Object

After authentication, the User object of the current user can be accessed
via the security.context service. From inside a controller, this will
look like:

public function indexAction()
{
 $user = $this->get('security.context')->getToken()->getUser();
}

In a controller this can be shortcut to:

public function indexAction()
{
 $user = $this->getUser();
}

Note

Anonymous users are technically authenticated, meaning that the isAuthenticated()
method of an anonymous user object will return true. To check if your
user is actually authenticated, check for the IS_AUTHENTICATED_FULLY
role.

In a Twig Template this object can be accessed via the app.user key,
which calls the :method:`GlobalVariables::getUser()<Symfony\\Bundle\\FrameworkBundle\\Templating\\GlobalVariables::getUser>`
method:

	Twig<p>Username: {{ app.user.username }}</p>

Using Multiple User Providers

Each authentication mechanism (e.g. HTTP Authentication, form login, etc)
uses exactly one user provider, and will use the first declared user provider
by default. But what if you want to specify a few users via configuration
and the rest of your users in the database? This is possible by creating
a new provider that chains the two together:

	YAML# app/config/security.yml
security:
 providers:
 chain_provider:
 chain:
 providers: [in_memory, user_db]
 in_memory:
 users:
 foo: { password: test }
 user_db:
 entity: { class: Acme\UserBundle\Entity\User, property: username }

	XML<!-- app/config/security.xml -->
<config>
 <provider name="chain_provider">
 <chain>
 <provider>in_memory</provider>
 <provider>user_db</provider>
 </chain>
 </provider>
 <provider name="in_memory">
 <user name="foo" password="test" />
 </provider>
 <provider name="user_db">
 <entity class="Acme\UserBundle\Entity\User" property="username" />
 </provider>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'providers' => array(
 'chain_provider' => array(
 'chain' => array(
 'providers' => array('in_memory', 'user_db'),
),
),
 'in_memory' => array(
 'users' => array(
 'foo' => array('password' => 'test'),
),
),
 'user_db' => array(
 'entity' => array('class' => 'Acme\UserBundle\Entity\User', 'property' => 'username'),
),
),
));

Now, all authentication mechanisms will use the chain_provider, since
it’s the first specified. The chain_provider will, in turn, try to load
the user from both the in_memory and user_db providers.

Tip

If you have no reasons to separate your in_memory users from your
user_db users, you can accomplish this even more easily by combining
the two sources into a single provider:

	YAML# app/config/security.yml
security:
 providers:
 main_provider:
 memory:
 users:
 foo: { password: test }
 entity:
 class: Acme\UserBundle\Entity\User,
 property: username

	XML<!-- app/config/security.xml -->
<config>
 <provider name=="main_provider">
 <memory>
 <user name="foo" password="test" />
 </memory>
 <entity class="Acme\UserBundle\Entity\User" property="username" />
 </provider>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'providers' => array(
 'main_provider' => array(
 'memory' => array(
 'users' => array(
 'foo' => array('password' => 'test'),
),
),
 'entity' => array('class' => 'Acme\UserBundle\Entity\User', 'property' => 'username'),
),
),
));

You can also configure the firewall or individual authentication mechanisms
to use a specific provider. Again, unless a provider is specified explicitly,
the first provider is always used:

	YAML# app/config/security.yml
security:
 firewalls:
 secured_area:
 # ...
 provider: user_db
 http_basic:
 realm: "Secured Demo Area"
 provider: in_memory
 form_login: ~

	XML<!-- app/config/security.xml -->
<config>
 <firewall name="secured_area" pattern="^/" provider="user_db">
 <!-- ... -->
 <http-basic realm="Secured Demo Area" provider="in_memory" />
 <form-login />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'secured_area' => array(
 // ...
 'provider' => 'user_db',
 'http_basic' => array(
 // ...
 'provider' => 'in_memory',
),
 'form_login' => array(),
),
),
));

In this example, if a user tries to login via HTTP authentication, the authentication
system will use the in_memory user provider. But if the user tries to
login via the form login, the user_db provider will be used (since it’s
the default for the firewall as a whole).

For more information about user provider and firewall configuration, see
the Security Configuration Reference.

Roles

The idea of a “role” is key to the authorization process. Each user is assigned
a set of roles and then each resource requires one or more roles. If the user
has the required roles, access is granted. Otherwise access is denied.

Roles are pretty simple, and are basically strings that you can invent and
use as needed (though roles are objects internally). For example, if you
need to start limiting access to the blog admin section of your website,
you could protect that section using a ROLE_BLOG_ADMIN role. This role
doesn’t need to be defined anywhere - you can just start using it.

Note

All roles must begin with the ROLE_ prefix to be managed by
Symfony2. If you define your own roles with a dedicated Role class
(more advanced), don’t use the ROLE_ prefix.

Hierarchical Roles

Instead of associating many roles to users, you can define role inheritance
rules by creating a role hierarchy:

	YAML# app/config/security.yml
security:
 role_hierarchy:
 ROLE_ADMIN: ROLE_USER
 ROLE_SUPER_ADMIN: [ROLE_ADMIN, ROLE_ALLOWED_TO_SWITCH]

	XML<!-- app/config/security.xml -->
<config>
 <role id="ROLE_ADMIN">ROLE_USER</role>
 <role id="ROLE_SUPER_ADMIN">ROLE_ADMIN, ROLE_ALLOWED_TO_SWITCH</role>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'role_hierarchy' => array(
 'ROLE_ADMIN' => 'ROLE_USER',
 'ROLE_SUPER_ADMIN' => array('ROLE_ADMIN', 'ROLE_ALLOWED_TO_SWITCH'),
),
));

In the above configuration, users with ROLE_ADMIN role will also have the
ROLE_USER role. The ROLE_SUPER_ADMIN role has ROLE_ADMIN, ROLE_ALLOWED_TO_SWITCH
and ROLE_USER (inherited from ROLE_ADMIN).

Logging Out

Usually, you’ll also want your users to be able to log out. Fortunately,
the firewall can handle this automatically for you when you activate the
logout config parameter:

	YAML# app/config/security.yml
security:
 firewalls:
 secured_area:
 # ...
 logout:
 path: /logout
 target: /
 # ...

	XML<!-- app/config/security.xml -->
<config>
 <firewall name="secured_area" pattern="^/">
 <!-- ... -->
 <logout path="/logout" target="/" />
 </firewall>
 <!-- ... -->
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'secured_area' => array(
 // ...
 'logout' => array('path' => 'logout', 'target' => '/'),
),
),
 // ...
));

Once this is configured under your firewall, sending a user to /logout
(or whatever you configure the path to be), will un-authenticate the
current user. The user will then be sent to the homepage (the value defined
by the target parameter). Both the path and target config parameters
default to what’s specified here. In other words, unless you need to customize
them, you can omit them entirely and shorten your configuration:

	YAMLlogout: ~

	XML<logout />

	PHP'logout' => array(),

Note that you will not need to implement a controller for the /logout
URL as the firewall takes care of everything. You may, however, want to create
a route so that you can use it to generate the URL:

	YAML# app/config/routing.yml
logout:
 pattern: /logout

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="logout" pattern="/logout" />

</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('logout', new Route('/logout', array()));

return $collection;

Once the user has been logged out, he will be redirected to whatever path
is defined by the target parameter above (e.g. the homepage). For
more information on configuring the logout, see the
Security Configuration Reference.

Access Control in Templates

If you want to check if the current user has a role inside a template, use
the built-in helper function:

	Twig{% if is_granted('ROLE_ADMIN') %}
 Delete
{% endif %}

	PHP<?php if ($view['security']->isGranted('ROLE_ADMIN')): ?>
 Delete
<?php endif; ?>

Note

If you use this function and are not at a URL where there is a firewall
active, an exception will be thrown. Again, it’s almost always a good
idea to have a main firewall that covers all URLs (as has been shown
in this chapter).

Access Control in Controllers

If you want to check if the current user has a role in your controller, use
the isGranted method of the security context:

public function indexAction()
{
 // show different content to admin users
 if ($this->get('security.context')->isGranted('ROLE_ADMIN')) {
 // Load admin content here
 }
 // load other regular content here
}

Note

A firewall must be active or an exception will be thrown when the isGranted
method is called. See the note above about templates for more details.

Impersonating a User

Sometimes, it’s useful to be able to switch from one user to another without
having to logout and login again (for instance when you are debugging or trying
to understand a bug a user sees that you can’t reproduce). This can be easily
done by activating the switch_user firewall listener:

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 # ...
 switch_user: true

	XML<!-- app/config/security.xml -->
<config>
 <firewall>
 <!-- ... -->
 <switch-user />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main'=> array(
 // ...
 'switch_user' => true
),
),
));

To switch to another user, just add a query string with the _switch_user
parameter and the username as the value to the current URL:

http://example.com/somewhere?_switch_user=thomas

To switch back to the original user, use the special _exit username:

http://example.com/somewhere?_switch_user=_exit

Of course, this feature needs to be made available to a small group of users.
By default, access is restricted to users having the ROLE_ALLOWED_TO_SWITCH
role. The name of this role can be modified via the role setting. For
extra security, you can also change the query parameter name via the parameter
setting:

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 // ...
 switch_user: { role: ROLE_ADMIN, parameter: _want_to_be_this_user }

	XML<!-- app/config/security.xml -->
<config>
 <firewall>
 <!-- ... -->
 <switch-user role="ROLE_ADMIN" parameter="_want_to_be_this_user" />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main'=> array(
 // ...
 'switch_user' => array('role' => 'ROLE_ADMIN', 'parameter' => '_want_to_be_this_user'),
),
),
));

Stateless Authentication

By default, Symfony2 relies on a cookie (the Session) to persist the security
context of the user. But if you use certificates or HTTP authentication for
instance, persistence is not needed as credentials are available for each
request. In that case, and if you don’t need to store anything else between
requests, you can activate the stateless authentication (which means that no
cookie will be ever created by Symfony2):

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 http_basic: ~
 stateless: true

	XML<!-- app/config/security.xml -->
<config>
 <firewall stateless="true">
 <http-basic />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array('http_basic' => array(), 'stateless' => true),
),
));

Note

If you use a form login, Symfony2 will create a cookie even if you set
stateless to true.

Final Words

Security can be a deep and complex issue to solve correctly in your application.
Fortunately, Symfony’s security component follows a well-proven security
model based around authentication and authorization. Authentication,
which always happens first, is handled by a firewall whose job is to determine
the identity of the user through several different methods (e.g. HTTP authentication,
login form, etc). In the cookbook, you’ll find examples of other methods
for handling authentication, including how to implement a “remember me” cookie
functionality.

Once a user is authenticated, the authorization layer can determine whether
or not the user should have access to a specific resource. Most commonly,
roles are applied to URLs, classes or methods and if the current user
doesn’t have that role, access is denied. The authorization layer, however,
is much deeper, and follows a system of “voting” so that multiple parties
can determine if the current user should have access to a given resource.
Find out more about this and other topics in the cookbook.

Learn more from the Cookbook

	Forcing HTTP/HTTPS

	Blacklist users by IP address with a custom voter

	Access Control Lists (ACLs)

	How to add “Remember Me” Login Functionality

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

HTTP Cache

The nature of rich web applications means that they’re dynamic. No matter
how efficient your application, each request will always contain more overhead
than serving a static file.

And for most Web applications, that’s fine. Symfony2 is lightning fast, and
unless you’re doing some serious heavy-lifting, each request will come back
quickly without putting too much stress on your server.

But as your site grows, that overhead can become a problem. The processing
that’s normally performed on every request should be done only once. This
is exactly what caching aims to accomplish.

Caching on the Shoulders of Giants

The most effective way to improve performance of an application is to cache
the full output of a page and then bypass the application entirely on each
subsequent request. Of course, this isn’t always possible for highly dynamic
websites, or is it? In this chapter, we’ll show you how the Symfony2 cache
system works and why we think this is the best possible approach.

The Symfony2 cache system is different because it relies on the simplicity
and power of the HTTP cache as defined in the HTTP specification.
Instead of reinventing a caching methodology, Symfony2 embraces the standard
that defines basic communication on the Web. Once you understand the fundamental
HTTP validation and expiration caching models, you’ll be ready to master
the Symfony2 cache system.

For the purposes of learning how to cache with Symfony2, we’ll cover the
subject in four steps:

	Step 1: A gateway cache, or reverse proxy, is
an independent layer that sits in front of your application. The reverse
proxy caches responses as they’re returned from your application and answers
requests with cached responses before they hit your application. Symfony2
provides its own reverse proxy, but any reverse proxy can be used.

	Step 2: HTTP cache headers are used
to communicate with the gateway cache and any other caches between your
application and the client. Symfony2 provides sensible defaults and a
powerful interface for interacting with the cache headers.

	Step 3: HTTP expiration and validation
are the two models used for determining whether cached content is fresh
(can be reused from the cache) or stale (should be regenerated by the
application).

	Step 4: Edge Side Includes (ESI) allow HTTP
cache to be used to cache page fragments (even nested fragments) independently.
With ESI, you can even cache an entire page for 60 minutes, but an embedded
sidebar for only 5 minutes.

Since caching with HTTP isn’t unique to Symfony, many articles already exist
on the topic. If you’re new to HTTP caching, we highly recommend Ryan
Tomayko’s article Things Caches Do [http://tomayko.com/writings/things-caches-do]. Another in-depth resource is Mark
Nottingham’s Cache Tutorial [http://www.mnot.net/cache_docs/].

Caching with a Gateway Cache

When caching with HTTP, the cache is separated from your application entirely
and sits between your application and the client making the request.

The job of the cache is to accept requests from the client and pass them
back to your application. The cache will also receive responses back from
your application and forward them on to the client. The cache is the “middle-man”
of the request-response communication between the client and your application.

Along the way, the cache will store each response that is deemed “cacheable”
(See Introduction to HTTP Caching). If the same resource is requested again,
the cache sends the cached response to the client, ignoring your application
entirely.

This type of cache is known as a HTTP gateway cache and many exist such
as Varnish [http://www.varnish-cache.org/], Squid in reverse proxy mode [http://wiki.squid-cache.org/SquidFaq/ReverseProxy], and the Symfony2 reverse proxy.

Types of Caches

But a gateway cache isn’t the only type of cache. In fact, the HTTP cache
headers sent by your application are consumed and interpreted by up to three
different types of caches:

	Browser caches: Every browser comes with its own local cache that is
mainly useful for when you hit “back” or for images and other assets.
The browser cache is a private cache as cached resources aren’t shared
with anyone else.

	Proxy caches: A proxy is a shared cache as many people can be behind a
single one. It’s usually installed by large corporations and ISPs to reduce
latency and network traffic.

	Gateway caches: Like a proxy, it’s also a shared cache but on the server
side. Installed by network administrators, it makes websites more scalable,
reliable and performant.

Tip

Gateway caches are sometimes referred to as reverse proxy caches,
surrogate caches, or even HTTP accelerators.

Note

The significance of private versus shared caches will become more
obvious as we talk about caching responses containing content that is
specific to exactly one user (e.g. account information).

Each response from your application will likely go through one or both of
the first two cache types. These caches are outside of your control but follow
the HTTP cache directions set in the response.

Symfony2 Reverse Proxy

Symfony2 comes with a reverse proxy (also called a gateway cache) written
in PHP. Enable it and cacheable responses from your application will start
to be cached right away. Installing it is just as easy. Each new Symfony2
application comes with a pre-configured caching kernel (AppCache) that
wraps the default one (AppKernel). The caching Kernel is the reverse
proxy.

To enable caching, modify the code of a front controller to use the caching
kernel:

// web/app.php

require_once __DIR__.'/../app/bootstrap.php.cache';
require_once __DIR__.'/../app/AppKernel.php';
require_once __DIR__.'/../app/AppCache.php';

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('prod', false);
$kernel->loadClassCache();
// wrap the default AppKernel with the AppCache one
$kernel = new AppCache($kernel);
$kernel->handle(Request::createFromGlobals())->send();

The caching kernel will immediately act as a reverse proxy - caching responses
from your application and returning them to the client.

Tip

The cache kernel has a special getLog() method that returns a string
representation of what happened in the cache layer. In the development
environment, use it to debug and validate your cache strategy:

error_log($kernel->getLog());

The AppCache object has a sensible default configuration, but it can be
finely tuned via a set of options you can set by overriding the getOptions()
method:

// app/AppCache.php

use Symfony\Bundle\FrameworkBundle\HttpCache\HttpCache;

class AppCache extends HttpCache
{
 protected function getOptions()
 {
 return array(
 'debug' => false,
 'default_ttl' => 0,
 'private_headers' => array('Authorization', 'Cookie'),
 'allow_reload' => false,
 'allow_revalidate' => false,
 'stale_while_revalidate' => 2,
 'stale_if_error' => 60,
);
 }
}

Tip

Unless overridden in getOptions(), the debug option will be set
to automatically be the debug value of the wrapped AppKernel.

Here is a list of the main options:

	default_ttl: The number of seconds that a cache entry should be
considered fresh when no explicit freshness information is provided in a
response. Explicit Cache-Control or Expires headers override this
value (default: 0);

	private_headers: Set of request headers that trigger “private”
Cache-Control behavior on responses that don’t explicitly state whether
the response is public or private via a Cache-Control directive.
(default: Authorization and Cookie);

	allow_reload: Specifies whether the client can force a cache reload by
including a Cache-Control “no-cache” directive in the request. Set it to
true for compliance with RFC 2616 (default: false);

	allow_revalidate: Specifies whether the client can force a cache
revalidate by including a Cache-Control “max-age=0” directive in the
request. Set it to true for compliance with RFC 2616 (default: false);

	stale_while_revalidate: Specifies the default number of seconds (the
granularity is the second as the Response TTL precision is a second) during
which the cache can immediately return a stale response while it revalidates
it in the background (default: 2); this setting is overridden by the
stale-while-revalidate HTTP Cache-Control extension (see RFC 5861);

	stale_if_error: Specifies the default number of seconds (the granularity
is the second) during which the cache can serve a stale response when an
error is encountered (default: 60). This setting is overridden by the
stale-if-error HTTP Cache-Control extension (see RFC 5861).

If debug is true, Symfony2 automatically adds a X-Symfony-Cache
header to the response containing useful information about cache hits and
misses.

Changing from one Reverse Proxy to Another

The Symfony2 reverse proxy is a great tool to use when developing your
website or when you deploy your website to a shared host where you cannot
install anything beyond PHP code. But being written in PHP, it cannot
be as fast as a proxy written in C. That’s why we highly recommend you
to use Varnish or Squid on your production servers if possible. The good
news is that the switch from one proxy server to another is easy and
transparent as no code modification is needed in your application. Start
easy with the Symfony2 reverse proxy and upgrade later to Varnish when
your traffic increases.

For more information on using Varnish with Symfony2, see the
How to use Varnish cookbook chapter.

Note

The performance of the Symfony2 reverse proxy is independent of the
complexity of the application. That’s because the application kernel is
only booted when the request needs to be forwarded to it.

Introduction to HTTP Caching

To take advantage of the available cache layers, your application must be
able to communicate which responses are cacheable and the rules that govern
when/how that cache should become stale. This is done by setting HTTP cache
headers on the response.

Tip

Keep in mind that “HTTP” is nothing more than the language (a simple text
language) that web clients (e.g. browsers) and web servers use to communicate
with each other. When we talk about HTTP caching, we’re talking about the
part of that language that allows clients and servers to exchange information
related to caching.

HTTP specifies four response cache headers that we’re concerned with:

	Cache-Control

	Expires

	ETag

	Last-Modified

The most important and versatile header is the Cache-Control header,
which is actually a collection of various cache information.

Note

Each of the headers will be explained in full detail in the
HTTP Expiration and Validation section.

The Cache-Control Header

The Cache-Control header is unique in that it contains not one, but various
pieces of information about the cacheability of a response. Each piece of
information is separated by a comma:

Cache-Control: private, max-age=0, must-revalidate

Cache-Control: max-age=3600, must-revalidate

Symfony provides an abstraction around the Cache-Control header to make
its creation more manageable:

$response = new Response();

// mark the response as either public or private
$response->setPublic();
$response->setPrivate();

// set the private or shared max age
$response->setMaxAge(600);
$response->setSharedMaxAge(600);

// set a custom Cache-Control directive
$response->headers->addCacheControlDirective('must-revalidate', true);

Public vs Private Responses

Both gateway and proxy caches are considered “shared” caches as the cached
content is shared by more than one user. If a user-specific response were
ever mistakenly stored by a shared cache, it might be returned later to any
number of different users. Imagine if your account information were cached
and then returned to every subsequent user who asked for their account page!

To handle this situation, every response may be set to be public or private:

	public: Indicates that the response may be cached by both private and
shared caches;

	private: Indicates that all or part of the response message is intended
for a single user and must not be cached by a shared cache.

Symfony conservatively defaults each response to be private. To take advantage
of shared caches (like the Symfony2 reverse proxy), the response will need
to be explicitly set as public.

Safe Methods

HTTP caching only works for “safe” HTTP methods (like GET and HEAD). Being
safe means that you never change the application’s state on the server when
serving the request (you can of course log information, cache data, etc).
This has two very reasonable consequences:

	You should never change the state of your application when responding
to a GET or HEAD request. Even if you don’t use a gateway cache, the presence
of proxy caches mean that any GET or HEAD request may or may not actually
hit your server.

	Don’t expect PUT, POST or DELETE methods to cache. These methods are meant
to be used when mutating the state of your application (e.g. deleting a
blog post). Caching them would prevent certain requests from hitting and
mutating your application.

Caching Rules and Defaults

HTTP 1.1 allows caching anything by default unless there is an explicit
Cache-Control header. In practice, most caches do nothing when requests
have a cookie, an authorization header, use a non-safe method (i.e. PUT, POST,
DELETE), or when responses have a redirect status code.

Symfony2 automatically sets a sensible and conservative Cache-Control
header when none is set by the developer by following these rules:

	If no cache header is defined (Cache-Control, Expires, ETag
or Last-Modified), Cache-Control is set to no-cache, meaning
that the response will not be cached;

	If Cache-Control is empty (but one of the other cache headers is present),
its value is set to private, must-revalidate;

	But if at least one Cache-Control directive is set, and no ‘public’ or
private directives have been explicitly added, Symfony2 adds the
private directive automatically (except when s-maxage is set).

HTTP Expiration and Validation

The HTTP specification defines two caching models:

	With the expiration model [http://tools.ietf.org/html/rfc2616#section-13.2], you simply specify how long a response should
be considered “fresh” by including a Cache-Control and/or an Expires
header. Caches that understand expiration will not make the same request
until the cached version reaches its expiration time and becomes “stale”.

	When pages are really dynamic (i.e. their representation changes often),
the validation model [http://tools.ietf.org/html/rfc2616#section-13.3] is often necessary. With this model, the
cache stores the response, but asks the server on each request whether
or not the cached response is still valid. The application uses a unique
response identifier (the Etag header) and/or a timestamp (the Last-Modified
header) to check if the page has changed since being cached.

The goal of both models is to never generate the same response twice by relying
on a cache to store and return “fresh” responses.

Reading the HTTP Specification

The HTTP specification defines a simple but powerful language in which
clients and servers can communicate. As a web developer, the request-response
model of the specification dominates our work. Unfortunately, the actual
specification document - RFC 2616 [http://tools.ietf.org/html/rfc2616] - can be difficult to read.

There is an on-going effort (HTTP Bis [http://tools.ietf.org/wg/httpbis/]) to rewrite the RFC 2616. It does
not describe a new version of HTTP, but mostly clarifies the original HTTP
specification. The organization is also improved as the specification
is split into seven parts; everything related to HTTP caching can be
found in two dedicated parts (P4 - Conditional Requests [http://tools.ietf.org/html/draft-ietf-httpbis-p4-conditional-12] and P6 -
Caching: Browser and intermediary caches [http://tools.ietf.org/html/draft-ietf-httpbis-p6-cache-12]).

As a web developer, we strongly urge you to read the specification. Its
clarity and power - even more than ten years after its creation - is
invaluable. Don’t be put-off by the appearance of the spec - its contents
are much more beautiful than its cover.

Expiration

The expiration model is the more efficient and straightforward of the two
caching models and should be used whenever possible. When a response is cached
with an expiration, the cache will store the response and return it directly
without hitting the application until it expires.

The expiration model can be accomplished using one of two, nearly identical,
HTTP headers: Expires or Cache-Control.

Expiration with the Expires Header

According to the HTTP specification, “the Expires header field gives
the date/time after which the response is considered stale.” The Expires
header can be set with the setExpires() Response method. It takes a
DateTime instance as an argument:

$date = new DateTime();
$date->modify('+600 seconds');

$response->setExpires($date);

The resulting HTTP header will look like this:

Expires: Thu, 01 Mar 2011 16:00:00 GMT

Note

The setExpires() method automatically converts the date to the GMT
timezone as required by the specification.

Note that in HTTP versions before 1.1 the origin server wasn’t required to
send the Date header. Consequently the cache (e.g. the browser) might
need to rely onto his local clock to evaluate the Expires header making
the lifetime calculation vulnerable to clock skew. Another limitation
of the Expires header is that the specification states that “HTTP/1.1
servers should not send Expires dates more than one year in the future.”

Expiration with the Cache-Control Header

Because of the Expires header limitations, most of the time, you should
use the Cache-Control header instead. Recall that the Cache-Control
header is used to specify many different cache directives. For expiration,
there are two directives, max-age and s-maxage. The first one is
used by all caches, whereas the second one is only taken into account by
shared caches:

// Sets the number of seconds after which the response
// should no longer be considered fresh
$response->setMaxAge(600);

// Same as above but only for shared caches
$response->setSharedMaxAge(600);

The Cache-Control header would take on the following format (it may have
additional directives):

Cache-Control: max-age=600, s-maxage=600

Validation

When a resource needs to be updated as soon as a change is made to the underlying
data, the expiration model falls short. With the expiration model, the application
won’t be asked to return the updated response until the cache finally becomes
stale.

The validation model addresses this issue. Under this model, the cache continues
to store responses. The difference is that, for each request, the cache asks
the application whether or not the cached response is still valid. If the
cache is still valid, your application should return a 304 status code
and no content. This tells the cache that it’s ok to return the cached response.

Under this model, you mainly save bandwidth as the representation is not
sent twice to the same client (a 304 response is sent instead). But if you
design your application carefully, you might be able to get the bare minimum
data needed to send a 304 response and save CPU also (see below for an implementation
example).

Tip

The 304 status code means “Not Modified”. It’s important because with
this status code do not contain the actual content being requested.
Instead, the response is simply a light-weight set of directions that
tell cache that it should use its stored version.

Like with expiration, there are two different HTTP headers that can be used
to implement the validation model: ETag and Last-Modified.

Validation with the ETag Header

The ETag header is a string header (called the “entity-tag”) that uniquely
identifies one representation of the target resource. It’s entirely generated
and set by your application so that you can tell, for example, if the /about
resource that’s stored by the cache is up-to-date with what your application
would return. An ETag is like a fingerprint and is used to quickly compare
if two different versions of a resource are equivalent. Like fingerprints,
each ETag must be unique across all representations of the same resource.

Let’s walk through a simple implementation that generates the ETag as the
md5 of the content:

public function indexAction()
{
 $response = $this->render('MyBundle:Main:index.html.twig');
 $response->setETag(md5($response->getContent()));
 $response->isNotModified($this->getRequest());

 return $response;
}

The Response::isNotModified() method compares the ETag sent with
the Request with the one set on the Response. If the two match, the
method automatically sets the Response status code to 304.

This algorithm is simple enough and very generic, but you need to create the
whole Response before being able to compute the ETag, which is sub-optimal.
In other words, it saves on bandwidth, but not CPU cycles.

In the Optimizing your Code with Validation section, we’ll show how validation
can be used more intelligently to determine the validity of a cache without
doing so much work.

Tip

Symfony2 also supports weak ETags by passing true as the second
argument to the
:method:`Symfony\\Component\\HttpFoundation\\Response::setETag` method.

Validation with the Last-Modified Header

The Last-Modified header is the second form of validation. According
to the HTTP specification, “The Last-Modified header field indicates
the date and time at which the origin server believes the representation
was last modified.” In other words, the application decides whether or not
the cached content has been updated based on whether or not it’s been updated
since the response was cached.

For instance, you can use the latest update date for all the objects needed to
compute the resource representation as the value for the Last-Modified
header value:

public function showAction($articleSlug)
{
 // ...

 $articleDate = new \DateTime($article->getUpdatedAt());
 $authorDate = new \DateTime($author->getUpdatedAt());

 $date = $authorDate > $articleDate ? $authorDate : $articleDate;

 $response->setLastModified($date);
 $response->isNotModified($this->getRequest());

 return $response;
}

The Response::isNotModified() method compares the If-Modified-Since
header sent by the request with the Last-Modified header set on the
response. If they are equivalent, the Response will be set to a 304 status
code.

Note

The If-Modified-Since request header equals the Last-Modified
header of the last response sent to the client for the particular resource.
This is how the client and server communicate with each other and decide
whether or not the resource has been updated since it was cached.

Optimizing your Code with Validation

The main goal of any caching strategy is to lighten the load on the application.
Put another way, the less you do in your application to return a 304 response,
the better. The Response::isNotModified() method does exactly that by
exposing a simple and efficient pattern:

public function showAction($articleSlug)
{
 // Get the minimum information to compute
 // the ETag or the Last-Modified value
 // (based on the Request, data is retrieved from
 // a database or a key-value store for instance)
 $article = // ...

 // create a Response with a ETag and/or a Last-Modified header
 $response = new Response();
 $response->setETag($article->computeETag());
 $response->setLastModified($article->getPublishedAt());

 // Check that the Response is not modified for the given Request
 if ($response->isNotModified($this->getRequest())) {
 // return the 304 Response immediately
 return $response;
 } else {
 // do more work here - like retrieving more data
 $comments = // ...

 // or render a template with the $response you've already started
 return $this->render(
 'MyBundle:MyController:article.html.twig',
 array('article' => $article, 'comments' => $comments),
 $response
);
 }
}

When the Response is not modified, the isNotModified() automatically sets
the response status code to 304, removes the content, and removes some
headers that must not be present for 304 responses (see
:method:`Symfony\\Component\\HttpFoundation\\Response::setNotModified`).

Varying the Response

So far, we’ve assumed that each URI has exactly one representation of the
target resource. By default, HTTP caching is done by using the URI of the
resource as the cache key. If two people request the same URI of a cacheable
resource, the second person will receive the cached version.

Sometimes this isn’t enough and different versions of the same URI need to
be cached based on one or more request header values. For instance, if you
compress pages when the client supports it, any given URI has two representations:
one when the client supports compression, and one when it does not. This
determination is done by the value of the Accept-Encoding request header.

In this case, we need the cache to store both a compressed and uncompressed
version of the response for the particular URI and return them based on the
request’s Accept-Encoding value. This is done by using the Vary response
header, which is a comma-separated list of different headers whose values
trigger a different representation of the requested resource:

Vary: Accept-Encoding, User-Agent

Tip

This particular Vary header would cache different versions of each
resource based on the URI and the value of the Accept-Encoding and
User-Agent request header.

The Response object offers a clean interface for managing the Vary
header:

// set one vary header
$response->setVary('Accept-Encoding');

// set multiple vary headers
$response->setVary(array('Accept-Encoding', 'User-Agent'));

The setVary() method takes a header name or an array of header names for
which the response varies.

Expiration and Validation

You can of course use both validation and expiration within the same Response.
As expiration wins over validation, you can easily benefit from the best of
both worlds. In other words, by using both expiration and validation, you
can instruct the cache to serve the cached content, while checking back
at some interval (the expiration) to verify that the content is still valid.

More Response Methods

The Response class provides many more methods related to the cache. Here are
the most useful ones:

// Marks the Response stale
$response->expire();

// Force the response to return a proper 304 response with no content
$response->setNotModified();

Additionally, most cache-related HTTP headers can be set via the single
setCache() method:

// Set cache settings in one call
$response->setCache(array(
 'etag' => $etag,
 'last_modified' => $date,
 'max_age' => 10,
 's_maxage' => 10,
 'public' => true,
 // 'private' => true,
));

Using Edge Side Includes

Gateway caches are a great way to make your website perform better. But they
have one limitation: they can only cache whole pages. If you can’t cache
whole pages or if parts of a page has “more” dynamic parts, you are out of
luck. Fortunately, Symfony2 provides a solution for these cases, based on a
technology called ESI [http://www.w3.org/TR/esi-lang], or Edge Side Includes. Akamaï wrote this specification
almost 10 years ago, and it allows specific parts of a page to have a different
caching strategy than the main page.

The ESI specification describes tags you can embed in your pages to communicate
with the gateway cache. Only one tag is implemented in Symfony2, include,
as this is the only useful one outside of Akamaï context:

<html>
 <body>
 Some content

 <!-- Embed the content of another page here -->
 <esi:include src="http://..." />

 More content
 </body>
</html>

Note

Notice from the example that each ESI tag has a fully-qualified URL.
An ESI tag represents a page fragment that can be fetched via the given
URL.

When a request is handled, the gateway cache fetches the entire page from
its cache or requests it from the backend application. If the response contains
one or more ESI tags, these are processed in the same way. In other words,
the gateway cache either retrieves the included page fragment from its cache
or requests the page fragment from the backend application again. When all
the ESI tags have been resolved, the gateway cache merges each into the main
page and sends the final content to the client.

All of this happens transparently at the gateway cache level (i.e. outside
of your application). As you’ll see, if you choose to take advantage of ESI
tags, Symfony2 makes the process of including them almost effortless.

Using ESI in Symfony2

First, to use ESI, be sure to enable it in your application configuration:

	YAML# app/config/config.yml
framework:
 # ...
 esi: { enabled: true }

	XML<!-- app/config/config.xml -->
<framework:config ...>
 <!-- ... -->
 <framework:esi enabled="true" />
</framework:config>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 // ...
 'esi' => array('enabled' => true),
));

Now, suppose we have a page that is relatively static, except for a news
ticker at the bottom of the content. With ESI, we can cache the news ticker
independent of the rest of the page.

public function indexAction()
{
 $response = $this->render('MyBundle:MyController:index.html.twig');
 $response->setSharedMaxAge(600);

 return $response;
}

In this example, we’ve given the full-page cache a lifetime of ten minutes.
Next, let’s include the news ticker in the template by embedding an action.
This is done via the render helper (See Embedding Controllers
for more details).

As the embedded content comes from another page (or controller for that
matter), Symfony2 uses the standard render helper to configure ESI tags:

	Twig{% render '...:news' with {}, {'standalone': true} %}

	PHP<?php echo $view['actions']->render('...:news', array(), array('standalone' => true)) ?>

By setting standalone to true, you tell Symfony2 that the action
should be rendered as an ESI tag. You might be wondering why you would want to
use a helper instead of just writing the ESI tag yourself. That’s because
using a helper makes your application work even if there is no gateway cache
installed. Let’s see how it works.

When standalone is false (the default), Symfony2 merges the included page
content within the main one before sending the response to the client. But
when standalone is true, and if Symfony2 detects that it’s talking
to a gateway cache that supports ESI, it generates an ESI include tag. But
if there is no gateway cache or if it does not support ESI, Symfony2 will
just merge the included page content within the main one as it would have
done were standalone set to false.

Note

Symfony2 detects if a gateway cache supports ESI via another Akamaï
specification that is supported out of the box by the Symfony2 reverse
proxy.

The embedded action can now specify its own caching rules, entirely independent
of the master page.

public function newsAction()
{
 // ...

 $response->setSharedMaxAge(60);
}

With ESI, the full page cache will be valid for 600 seconds, but the news
component cache will only last for 60 seconds.

A requirement of ESI, however, is that the embedded action be accessible
via a URL so the gateway cache can fetch it independently of the rest of
the page. Of course, an action can’t be accessed via a URL unless it has
a route that points to it. Symfony2 takes care of this via a generic route
and controller. For the ESI include tag to work properly, you must define
the _internal route:

	YAML# app/config/routing.yml
_internal:
 resource: "@FrameworkBundle/Resources/config/routing/internal.xml"
 prefix: /_internal

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <import resource="@FrameworkBundle/Resources/config/routing/internal.xml" prefix="/_internal" />
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection->addCollection($loader->import('@FrameworkBundle/Resources/config/routing/internal.xml', '/_internal'));

return $collection;

Tip

Since this route allows all actions to be accessed via a URL, you might
want to protect it by using the Symfony2 firewall feature (by allowing
access to your reverse proxy’s IP range). See the Securing by IP
section of the Security Chapter for more information
on how to do this.

One great advantage of this caching strategy is that you can make your
application as dynamic as needed and at the same time, hit the application as
little as possible.

Note

Once you start using ESI, remember to always use the s-maxage
directive instead of max-age. As the browser only ever receives the
aggregated resource, it is not aware of the sub-components, and so it will
obey the max-age directive and cache the entire page. And you don’t
want that.

The render helper supports two other useful options:

	alt: used as the alt attribute on the ESI tag, which allows you
to specify an alternative URL to be used if the src cannot be found;

	ignore_errors: if set to true, an onerror attribute will be added
to the ESI with a value of continue indicating that, in the event of
a failure, the gateway cache will simply remove the ESI tag silently.

Cache Invalidation

“There are only two hard things in Computer Science: cache invalidation
and naming things.” –Phil Karlton

You should never need to invalidate cached data because invalidation is already
taken into account natively in the HTTP cache models. If you use validation,
you never need to invalidate anything by definition; and if you use expiration
and need to invalidate a resource, it means that you set the expires date
too far away in the future.

Note

Since invalidation is a topic specific to each type of reverse proxy,
if you don’t worry about invalidation, you can switch between reverse
proxies without changing anything in your application code.

Actually, all reverse proxies provide ways to purge cached data, but you
should avoid them as much as possible. The most standard way is to purge the
cache for a given URL by requesting it with the special PURGE HTTP method.

Here is how you can configure the Symfony2 reverse proxy to support the
PURGE HTTP method:

// app/AppCache.php
class AppCache extends Cache
{
 protected function invalidate(Request $request)
 {
 if ('PURGE' !== $request->getMethod()) {
 return parent::invalidate($request);
 }

 $response = new Response();
 if (!$this->getStore()->purge($request->getUri())) {
 $response->setStatusCode(404, 'Not purged');
 } else {
 $response->setStatusCode(200, 'Purged');
 }

 return $response;
 }
}

Caution

You must protect the PURGE HTTP method somehow to avoid random people
purging your cached data.

Summary

Symfony2 was designed to follow the proven rules of the road: HTTP. Caching
is no exception. Mastering the Symfony2 cache system means becoming familiar
with the HTTP cache models and using them effectively. This means that, instead
of relying only on Symfony2 documentation and code examples, you have access
to a world of knowledge related to HTTP caching and gateway caches such as
Varnish.

Learn more from the Cookbook

	How to use Varnish to speed up my Website

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Translations

The term “internationalization” (often abbreviated i18n [http://en.wikipedia.org/wiki/Internationalization_and_localization]) refers to the process
of abstracting strings and other locale-specific pieces out of your application
and into a layer where they can be translated and converted based on the user’s
locale (i.e. language and country). For text, this means wrapping each with a
function capable of translating the text (or “message”) into the language of
the user:

// text will *always* print out in English
echo 'Hello World';

// text can be translated into the end-user's language or default to English
echo $translator->trans('Hello World');

Note

The term locale refers roughly to the user’s language and country. It
can be any string that your application then uses to manage translations
and other format differences (e.g. currency format). We recommended the
ISO639-1 language code, an underscore (_), then the ISO3166 country
code (e.g. fr_FR for French/France).

In this chapter, we’ll learn how to prepare an application to support multiple
locales and then how to create translations for multiple locales. Overall,
the process has several common steps:

	Enable and configure Symfony’s Translation component;

	Abstract strings (i.e. “messages”) by wrapping them in calls to the Translator;

	Create translation resources for each supported locale that translate
each message in the application;

	Determine, set and manage the user’s locale for the request and optionally
on the user’s entire session.

Configuration

Translations are handled by a Translator service that uses the
user’s locale to lookup and return translated messages. Before using it,
enable the Translator in your configuration:

	YAML# app/config/config.yml
framework:
 translator: { fallback: en }

	XML<!-- app/config/config.xml -->
<framework:config>
 <framework:translator fallback="en" />
</framework:config>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'translator' => array('fallback' => 'en'),
));

The fallback option defines the fallback locale when a translation does
not exist in the user’s locale.

Tip

When a translation does not exist for a locale, the translator first tries
to find the translation for the language (fr if the locale is
fr_FR for instance). If this also fails, it looks for a translation
using the fallback locale.

The locale used in translations is the one stored on the request. This is
typically set via a _locale attribute on your routes (see The Locale and the URL).

Basic Translation

Translation of text is done through the translator service
(Symfony\Component\Translation\Translator). To translate a block
of text (called a message), use the
:method:`Symfony\\Component\\Translation\\Translator::trans` method. Suppose,
for example, that we’re translating a simple message from inside a controller:

public function indexAction()
{
 $t = $this->get('translator')->trans('Symfony2 is great');

 return new Response($t);
}

When this code is executed, Symfony2 will attempt to translate the message
“Symfony2 is great” based on the locale of the user. For this to work,
we need to tell Symfony2 how to translate the message via a “translation
resource”, which is a collection of message translations for a given locale.
This “dictionary” of translations can be created in several different formats,
XLIFF being the recommended format:

	XML<!-- messages.fr.xliff -->
<?xml version="1.0"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
 <file source-language="en" datatype="plaintext" original="file.ext">
 <body>
 <trans-unit id="1">
 <source>Symfony2 is great</source>
 <target>J'aime Symfony2</target>
 </trans-unit>
 </body>
 </file>
</xliff>

	PHP// messages.fr.php
return array(
 'Symfony2 is great' => 'J\'aime Symfony2',
);

	YAML# messages.fr.yml
Symfony2 is great: J'aime Symfony2

Now, if the language of the user’s locale is French (e.g. fr_FR or fr_BE),
the message will be translated into J'aime Symfony2.

The Translation Process

To actually translate the message, Symfony2 uses a simple process:

	The locale of the current user, which is stored on the request (or
stored as _locale on the session), is determined;

	A catalog of translated messages is loaded from translation resources defined
for the locale (e.g. fr_FR). Messages from the fallback locale are
also loaded and added to the catalog if they don’t already exist. The end
result is a large “dictionary” of translations. See Message Catalogues
for more details;

	If the message is located in the catalog, the translation is returned. If
not, the translator returns the original message.

When using the trans() method, Symfony2 looks for the exact string inside
the appropriate message catalog and returns it (if it exists).

Message Placeholders

Sometimes, a message containing a variable needs to be translated:

public function indexAction($name)
{
 $t = $this->get('translator')->trans('Hello '.$name);

 return new Response($t);
}

However, creating a translation for this string is impossible since the translator
will try to look up the exact message, including the variable portions
(e.g. “Hello Ryan” or “Hello Fabien”). Instead of writing a translation
for every possible iteration of the $name variable, we can replace the
variable with a “placeholder”:

public function indexAction($name)
{
 $t = $this->get('translator')->trans('Hello %name%', array('%name%' => $name));

 new Response($t);
}

Symfony2 will now look for a translation of the raw message (Hello %name%)
and then replace the placeholders with their values. Creating a translation
is done just as before:

	XML<!-- messages.fr.xliff -->
<?xml version="1.0"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
 <file source-language="en" datatype="plaintext" original="file.ext">
 <body>
 <trans-unit id="1">
 <source>Hello %name%</source>
 <target>Bonjour %name%</target>
 </trans-unit>
 </body>
 </file>
</xliff>

	PHP// messages.fr.php
return array(
 'Hello %name%' => 'Bonjour %name%',
);

	YAML# messages.fr.yml
'Hello %name%': Hello %name%

Note

The placeholders can take on any form as the full message is reconstructed
using the PHP strtr function [http://www.php.net/manual/en/function.strtr.php]. However, the %var% notation is
required when translating in Twig templates, and is overall a sensible
convention to follow.

As we’ve seen, creating a translation is a two-step process:

	Abstract the message that needs to be translated by processing it through
the Translator.

	Create a translation for the message in each locale that you choose to
support.

The second step is done by creating message catalogues that define the translations
for any number of different locales.

Message Catalogues

When a message is translated, Symfony2 compiles a message catalogue for the
user’s locale and looks in it for a translation of the message. A message
catalogue is like a dictionary of translations for a specific locale. For
example, the catalogue for the fr_FR locale might contain the following
translation:

Symfony2 is Great => J’aime Symfony2

It’s the responsibility of the developer (or translator) of an internationalized
application to create these translations. Translations are stored on the
filesystem and discovered by Symfony, thanks to some conventions.

Tip

Each time you create a new translation resource (or install a bundle
that includes a translation resource), be sure to clear your cache so
that Symfony can discover the new translation resource:

php app/console cache:clear

Translation Locations and Naming Conventions

Symfony2 looks for message files (i.e. translations) in two locations:

	For messages found in a bundle, the corresponding message files should
live in the Resources/translations/ directory of the bundle;

	To override any bundle translations, place message files in the
app/Resources/translations directory.

The filename of the translations is also important as Symfony2 uses a convention
to determine details about the translations. Each message file must be named
according to the following pattern: domain.locale.loader:

	domain: An optional way to organize messages into groups (e.g. admin,
navigation or the default messages) - see Using Message Domains;

	locale: The locale that the translations are for (e.g. en_GB, en, etc);

	loader: How Symfony2 should load and parse the file (e.g. xliff,
php or yml).

The loader can be the name of any registered loader. By default, Symfony
provides the following loaders:

	xliff: XLIFF file;

	php: PHP file;

	yml: YAML file.

The choice of which loader to use is entirely up to you and is a matter of
taste.

Note

You can also store translations in a database, or any other storage by
providing a custom class implementing the
Symfony\Component\Translation\Loader\LoaderInterface interface.
See Custom Translation Loaders
below to learn how to register custom loaders.

Creating Translations

The act of creating translation files is an important part of “localization”
(often abbreviated L10n [http://en.wikipedia.org/wiki/Internationalization_and_localization]). Translation files consist of a series of
id-translation pairs for the given domain and locale. The id is the identifier
for the individual translation, and can be the message in the main locale (e.g.
“Symfony is great”) of your application or a unique identifier (e.g.
“symfony2.great” - see the sidebar below):

	XML<!-- src/Acme/DemoBundle/Resources/translations/messages.fr.xliff -->
<?xml version="1.0"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
 <file source-language="en" datatype="plaintext" original="file.ext">
 <body>
 <trans-unit id="1">
 <source>Symfony2 is great</source>
 <target>J'aime Symfony2</target>
 </trans-unit>
 <trans-unit id="2">
 <source>symfony2.great</source>
 <target>J'aime Symfony2</target>
 </trans-unit>
 </body>
 </file>
</xliff>

	PHP// src/Acme/DemoBundle/Resources/translations/messages.fr.php
return array(
 'Symfony2 is great' => 'J\'aime Symfony2',
 'symfony2.great' => 'J\'aime Symfony2',
);

	YAML# src/Acme/DemoBundle/Resources/translations/messages.fr.yml
Symfony2 is great: J'aime Symfony2
symfony2.great: J'aime Symfony2

Symfony2 will discover these files and use them when translating either
“Symfony2 is great” or “symfony2.great” into a French language locale (e.g.
fr_FR or fr_BE).

Using Real or Keyword Messages

This example illustrates the two different philosophies when creating
messages to be translated:

$t = $translator->trans('Symfony2 is great');

$t = $translator->trans('symfony2.great');

In the first method, messages are written in the language of the default
locale (English in this case). That message is then used as the “id”
when creating translations.

In the second method, messages are actually “keywords” that convey the
idea of the message. The keyword message is then used as the “id” for
any translations. In this case, translations must be made for the default
locale (i.e. to translate symfony2.great to Symfony2 is great).

The second method is handy because the message key won’t need to be changed
in every translation file if we decide that the message should actually
read “Symfony2 is really great” in the default locale.

The choice of which method to use is entirely up to you, but the “keyword”
format is often recommended.

Additionally, the php and yaml file formats support nested ids to
avoid repeating yourself if you use keywords instead of real text for your
ids:

	YAMLsymfony2:
 is:
 great: Symfony2 is great
 amazing: Symfony2 is amazing
 has:
 bundles: Symfony2 has bundles
user:
 login: Login

	PHPreturn array(
 'symfony2' => array(
 'is' => array(
 'great' => 'Symfony2 is great',
 'amazing' => 'Symfony2 is amazing',
),
 'has' => array(
 'bundles' => 'Symfony2 has bundles',
),
),
 'user' => array(
 'login' => 'Login',
),
);

The multiple levels are flattened into single id/translation pairs by
adding a dot (.) between every level, therefore the above examples are
equivalent to the following:

	YAMLsymfony2.is.great: Symfony2 is great
symfony2.is.amazing: Symfony2 is amazing
symfony2.has.bundles: Symfony2 has bundles
user.login: Login

	PHPreturn array(
 'symfony2.is.great' => 'Symfony2 is great',
 'symfony2.is.amazing' => 'Symfony2 is amazing',
 'symfony2.has.bundles' => 'Symfony2 has bundles',
 'user.login' => 'Login',
);

Using Message Domains

As we’ve seen, message files are organized into the different locales that
they translate. The message files can also be organized further into “domains”.
When creating message files, the domain is the first portion of the filename.
The default domain is messages. For example, suppose that, for organization,
translations were split into three different domains: messages, admin
and navigation. The French translation would have the following message
files:

	messages.fr.xliff

	admin.fr.xliff

	navigation.fr.xliff

When translating strings that are not in the default domain (messages),
you must specify the domain as the third argument of trans():

$this->get('translator')->trans('Symfony2 is great', array(), 'admin');

Symfony2 will now look for the message in the admin domain of the user’s
locale.

Handling the User’s Locale

The locale of the current user is stored in the request and is accessible
via the request object:

// access the reqest object in a standard controller
$request = $this->getRequest();

$locale = $request->getLocale();

$request->setLocale('en_US');

It is also possible to store the locale in the session instead of on a per
request basis. If you do this, each subsequent request will have this locale.

$this->get('session')->set('_locale', 'en_US');

See the .. _book-translation-locale-url: section below about setting
the locale via routing.

Fallback and Default Locale

If the locale hasn’t been set explicitly in the session, the fallback_locale
configuration parameter will be used by the Translator. The parameter
defaults to en (see Configuration).

Alternatively, you can guarantee that a locale is set on each user’s request
by defining a default_locale for the framework:

	YAML# app/config/config.yml
framework:
 default_locale: en

	XML<!-- app/config/config.xml -->
<framework:config>
 <framework:default-locale>en</framework:default-locale>
</framework:config>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'default_locale' => 'en',
));

New in version 2.1: The default_locale parameter was defined under the session key
originally, however, as of 2.1 this has been moved. This is because the
locale is now set on the request instead of the session.

The Locale and the URL

Since you can store the locale of the user is in the session, it may be tempting
to use the same URL to display a resource in many different languages based
on the user’s locale. For example, http://www.example.com/contact could
show content in English for one user and French for another user. Unfortunately,
this violates a fundamental rule of the Web: that a particular URL returns
the same resource regardless of the user. To further muddy the problem, which
version of the content would be indexed by search engines?

A better policy is to include the locale in the URL. This is fully-supported
by the routing system using the special _locale parameter:

	YAMLcontact:
 pattern: /{_locale}/contact
 defaults: { _controller: AcmeDemoBundle:Contact:index, _locale: en }
 requirements:
 _locale: en|fr|de

	XML<route id="contact" pattern="/{_locale}/contact">
 <default key="_controller">AcmeDemoBundle:Contact:index</default>
 <default key="_locale">en</default>
 <requirement key="_locale">en|fr|de</requirement>
</route>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('contact', new Route('/{_locale}/contact', array(
 '_controller' => 'AcmeDemoBundle:Contact:index',
 '_locale' => 'en',
), array(
 '_locale' => 'en|fr|de'
)));

return $collection;

When using the special _locale parameter in a route, the matched locale
will automatically be set on the user’s session. In other words, if a user
visits the URI /fr/contact, the locale fr will automatically be set
as the locale for the user’s session.

You can now use the user’s locale to create routes to other translated pages
in your application.

Pluralization

Message pluralization is a tough topic as the rules can be quite complex. For
instance, here is the mathematic representation of the Russian pluralization
rules:

(($number % 10 == 1) && ($number % 100 != 11)) ? 0 : ((($number % 10 >= 2) && ($number % 10 <= 4) && (($number % 100 < 10) || ($number % 100 >= 20))) ? 1 : 2);

As you can see, in Russian, you can have three different plural forms, each
given an index of 0, 1 or 2. For each form, the plural is different, and
so the translation is also different.

When a translation has different forms due to pluralization, you can provide
all the forms as a string separated by a pipe (|):

'There is one apple|There are %count% apples'

To translate pluralized messages, use the
:method:`Symfony\\Component\\Translation\\Translator::transChoice` method:

$t = $this->get('translator')->transChoice(
 'There is one apple|There are %count% apples',
 10,
 array('%count%' => 10)
);

The second argument (10 in this example), is the number of objects being
described and is used to determine which translation to use and also to populate
the %count% placeholder.

Based on the given number, the translator chooses the right plural form.
In English, most words have a singular form when there is exactly one object
and a plural form for all other numbers (0, 2, 3...). So, if count is
1, the translator will use the first string (There is one apple)
as the translation. Otherwise it will use There are %count% apples.

Here is the French translation:

'Il y a %count% pomme|Il y a %count% pommes'

Even if the string looks similar (it is made of two sub-strings separated by a
pipe), the French rules are different: the first form (no plural) is used when
count is 0 or 1. So, the translator will automatically use the
first string (Il y a %count% pomme) when count is 0 or 1.

Each locale has its own set of rules, with some having as many as six different
plural forms with complex rules behind which numbers map to which plural form.
The rules are quite simple for English and French, but for Russian, you’d
may want a hint to know which rule matches which string. To help translators,
you can optionally “tag” each string:

'one: There is one apple|some: There are %count% apples'

'none_or_one: Il y a %count% pomme|some: Il y a %count% pommes'

The tags are really only hints for translators and don’t affect the logic
used to determine which plural form to use. The tags can be any descriptive
string that ends with a colon (:). The tags also do not need to be the
same in the original message as in the translated one.

Explicit Interval Pluralization

The easiest way to pluralize a message is to let Symfony2 use internal logic
to choose which string to use based on a given number. Sometimes, you’ll
need more control or want a different translation for specific cases (for
0, or when the count is negative, for example). For such cases, you can
use explicit math intervals:

'{0} There are no apples|{1} There is one apple|]1,19] There are %count% apples|[20,Inf] There are many apples'

The intervals follow the ISO 31-11 [http://en.wikipedia.org/wiki/Interval_%28mathematics%29#The_ISO_notation] notation. The above string specifies
four different intervals: exactly 0, exactly 1, 2-19, and 20
and higher.

You can also mix explicit math rules and standard rules. In this case, if
the count is not matched by a specific interval, the standard rules take
effect after removing the explicit rules:

'{0} There are no apples|[20,Inf] There are many apples|There is one apple|a_few: There are %count% apples'

For example, for 1 apple, the standard rule There is one apple will
be used. For 2-19 apples, the second standard rule There are %count%
apples will be selected.

An Symfony\Component\Translation\Interval can represent a finite set
of numbers:

{1,2,3,4}

Or numbers between two other numbers:

[1, +Inf[
]-1,2[

The left delimiter can be [(inclusive) or] (exclusive). The right
delimiter can be [(exclusive) or] (inclusive). Beside numbers, you
can use -Inf and +Inf for the infinite.

Translations in Templates

Most of the time, translation occurs in templates. Symfony2 provides native
support for both Twig and PHP templates.

Twig Templates

Symfony2 provides specialized Twig tags (trans and transchoice) to
help with message translation of static blocks of text:

{% trans %}Hello %name%{% endtrans %}

{% transchoice count %}
 {0} There are no apples|{1} There is one apple|]1,Inf] There are %count% apples
{% endtranschoice %}

The transchoice tag automatically gets the %count% variable from
the current context and passes it to the translator. This mechanism only
works when you use a placeholder following the %var% pattern.

Tip

If you need to use the percent character (%) in a string, escape it by
doubling it: {% trans %}Percent: %percent%%%{% endtrans %}

You can also specify the message domain and pass some additional variables:

{% trans with {'%name%': 'Fabien'} from "app" %}Hello %name%{% endtrans %}

{% trans with {'%name%': 'Fabien'} from "app" into "fr" %}Hello %name%{% endtrans %}

{% transchoice count with {'%name%': 'Fabien'} from "app" %}
 {0} There is no apples|{1} There is one apple|]1,Inf] There are %count% apples
{% endtranschoice %}

The trans and transchoice filters can be used to translate variable
texts and complex expressions:

{{ message|trans }}

{{ message|transchoice(5) }}

{{ message|trans({'%name%': 'Fabien'}, "app") }}

{{ message|transchoice(5, {'%name%': 'Fabien'}, 'app') }}

Tip

Using the translation tags or filters have the same effect, but with
one subtle difference: automatic output escaping is only applied to
variables translated using a filter. In other words, if you need to
be sure that your translated variable is not output escaped, you must
apply the raw filter after the translation filter:

{# text translated between tags is never escaped #}
{% trans %}
 <h3>foo</h3>
{% endtrans %}

{% set message = '<h3>foo</h3>' %}

{# a variable translated via a filter is escaped by default #}
{{ message|trans|raw }}

{# but static strings are never escaped #}
{{ '<h3>foo</h3>'|trans }}

PHP Templates

The translator service is accessible in PHP templates through the
translator helper:

<?php echo $view['translator']->trans('Symfony2 is great') ?>

<?php echo $view['translator']->transChoice(
 '{0} There is no apples|{1} There is one apple|]1,Inf[There are %count% apples',
 10,
 array('%count%' => 10)
) ?>

Forcing the Translator Locale

When translating a message, Symfony2 uses the locale from the current request
or the fallback locale if necessary. You can also manually specify the
locale to use for translation:

$this->get('translator')->trans(
 'Symfony2 is great',
 array(),
 'messages',
 'fr_FR',
);

$this->get('translator')->trans(
 '{0} There are no apples|{1} There is one apple|]1,Inf[There are %count% apples',
 10,
 array('%count%' => 10),
 'messages',
 'fr_FR',
);

Translating Database Content

The translation of database content should be handled by Doctrine through
the Translatable Extension [https://github.com/l3pp4rd/DoctrineExtensions]. For more information, see the documentation
for that library.

Summary

With the Symfony2 Translation component, creating an internationalized application
no longer needs to be a painful process and boils down to just a few basic
steps:

	Abstract messages in your application by wrapping each in either the
:method:`Symfony\\Component\\Translation\\Translator::trans` or
:method:`Symfony\\Component\\Translation\\Translator::transChoice` methods;

	Translate each message into multiple locales by creating translation message
files. Symfony2 discovers and processes each file because its name follows
a specific convention;

	Manage the user’s locale, which is stored on the request, but can also
be set once the user’s session.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Service Container

A modern PHP application is full of objects. One object may facilitate the
delivery of email messages while another may allow you to persist information
into a database. In your application, you may create an object that manages
your product inventory, or another object that processes data from a third-party
API. The point is that a modern application does many things and is organized
into many objects that handle each task.

In this chapter, we’ll talk about a special PHP object in Symfony2 that helps
you instantiate, organize and retrieve the many objects of your application.
This object, called a service container, will allow you to standardize and
centralize the way objects are constructed in your application. The container
makes your life easier, is super fast, and emphasizes an architecture that
promotes reusable and decoupled code. And since all core Symfony2 classes
use the container, you’ll learn how to extend, configure and use any object
in Symfony2. In large part, the service container is the biggest contributor
to the speed and extensibility of Symfony2.

Finally, configuring and using the service container is easy. By the end
of this chapter, you’ll be comfortable creating your own objects via the
container and customizing objects from any third-party bundle. You’ll begin
writing code that is more reusable, testable and decoupled, simply because
the service container makes writing good code so easy.

What is a Service?

Put simply, a Service is any PHP object that performs some sort of
“global” task. It’s a purposefully-generic name used in computer science
to describe an object that’s created for a specific purpose (e.g. delivering
emails). Each service is used throughout your application whenever you need
the specific functionality it provides. You don’t have to do anything special
to make a service: simply write a PHP class with some code that accomplishes
a specific task. Congratulations, you’ve just created a service!

Note

As a rule, a PHP object is a service if it is used globally in your
application. A single Mailer service is used globally to send
email messages whereas the many Message objects that it delivers
are not services. Similarly, a Product object is not a service,
but an object that persists Product objects to a database is a service.

So what’s the big deal then? The advantage of thinking about “services” is
that you begin to think about separating each piece of functionality in your
application into a series of services. Since each service does just one job,
you can easily access each service and use its functionality wherever you
need it. Each service can also be more easily tested and configured since
it’s separated from the other functionality in your application. This idea
is called service-oriented architecture [http://wikipedia.org/wiki/Service-oriented_architecture] and is not unique to Symfony2
or even PHP. Structuring your application around a set of independent service
classes is a well-known and trusted object-oriented best-practice. These skills
are key to being a good developer in almost any language.

What is a Service Container?

A Service Container (or dependency injection container) is simply
a PHP object that manages the instantiation of services (i.e. objects).
For example, suppose we have a simple PHP class that delivers email messages.
Without a service container, we must manually create the object whenever
we need it:

use Acme\HelloBundle\Mailer;

$mailer = new Mailer('sendmail');
$mailer->send('ryan@foobar.net', ...);

This is easy enough. The imaginary Mailer class allows us to configure
the method used to deliver the email messages (e.g. sendmail, smtp, etc).
But what if we wanted to use the mailer service somewhere else? We certainly
don’t want to repeat the mailer configuration every time we need to use
the Mailer object. What if we needed to change the transport from
sendmail to smtp everywhere in the application? We’d need to hunt
down every place we create a Mailer service and change it.

Creating/Configuring Services in the Container

A better answer is to let the service container create the Mailer object
for you. In order for this to work, we must teach the container how to
create the Mailer service. This is done via configuration, which can
be specified in YAML, XML or PHP:

	YAML# app/config/config.yml
services:
 my_mailer:
 class: Acme\HelloBundle\Mailer
 arguments: [sendmail]

	XML<!-- app/config/config.xml -->
<services>
 <service id="my_mailer" class="Acme\HelloBundle\Mailer">
 <argument>sendmail</argument>
 </service>
</services>

	PHP// app/config/config.php
use Symfony\Component\DependencyInjection\Definition;

$container->setDefinition('my_mailer', new Definition(
 'Acme\HelloBundle\Mailer',
 array('sendmail')
));

Note

When Symfony2 initializes, it builds the service container using the
application configuration (app/config/config.yml by default). The
exact file that’s loaded is dictated by the AppKernel::registerContainerConfiguration()
method, which loads an environment-specific configuration file (e.g.
config_dev.yml for the dev environment or config_prod.yml
for prod).

An instance of the Acme\HelloBundle\Mailer object is now available via
the service container. The container is available in any traditional Symfony2
controller where you can access the services of the container via the get()
shortcut method:

class HelloController extends Controller
{
 // ...

 public function sendEmailAction()
 {
 // ...
 $mailer = $this->get('my_mailer');
 $mailer->send('ryan@foobar.net', ...);
 }
}

When we ask for the my_mailer service from the container, the container
constructs the object and returns it. This is another major advantage of
using the service container. Namely, a service is never constructed until
it’s needed. If you define a service and never use it on a request, the service
is never created. This saves memory and increases the speed of your application.
This also means that there’s very little or no performance hit for defining
lots of services. Services that are never used are never constructed.

As an added bonus, the Mailer service is only created once and the same
instance is returned each time you ask for the service. This is almost always
the behavior you’ll need (it’s more flexible and powerful), but we’ll learn
later how you can configure a service that has multiple instances.

Service Parameters

The creation of new services (i.e. objects) via the container is pretty
straightforward. Parameters make defining services more organized and flexible:

	YAML# app/config/config.yml
parameters:
 my_mailer.class: Acme\HelloBundle\Mailer
 my_mailer.transport: sendmail

services:
 my_mailer:
 class: %my_mailer.class%
 arguments: [%my_mailer.transport%]

	XML<!-- app/config/config.xml -->
<parameters>
 <parameter key="my_mailer.class">Acme\HelloBundle\Mailer</parameter>
 <parameter key="my_mailer.transport">sendmail</parameter>
</parameters>

<services>
 <service id="my_mailer" class="%my_mailer.class%">
 <argument>%my_mailer.transport%</argument>
 </service>
</services>

	PHP// app/config/config.php
use Symfony\Component\DependencyInjection\Definition;

$container->setParameter('my_mailer.class', 'Acme\HelloBundle\Mailer');
$container->setParameter('my_mailer.transport', 'sendmail');

$container->setDefinition('my_mailer', new Definition(
 '%my_mailer.class%',
 array('%my_mailer.transport%')
));

The end result is exactly the same as before - the difference is only in
how we defined the service. By surrounding the my_mailer.class and
my_mailer.transport strings in percent (%) signs, the container knows
to look for parameters with those names. When the container is built, it
looks up the value of each parameter and uses it in the service definition.

The purpose of parameters is to feed information into services. Of course
there was nothing wrong with defining the service without using any parameters.
Parameters, however, have several advantages:

	separation and organization of all service “options” under a single
parameters key;

	parameter values can be used in multiple service definitions;

	when creating a service in a bundle (we’ll show this shortly), using parameters
allows the service to be easily customized in your application.

The choice of using or not using parameters is up to you. High-quality
third-party bundles will always use parameters as they make the service
stored in the container more configurable. For the services in your application,
however, you may not need the flexibility of parameters.

Array Parameters

Parameters do not need to be flat strings, they can also be arrays. For the XML
format, you need to use the type=”collection” attribute for all parameters that are
arrays.

	YAML# app/config/config.yml
parameters:
 my_mailer.gateways:
 - mail1
 - mail2
 - mail3
 my_multilang.language_fallback:
 en:
 - en
 - fr
 fr:
 - fr
 - en

	XML<!-- app/config/config.xml -->
<parameters>
 <parameter key="my_mailer.gateways" type="collection">
 <parameter>mail1</parameter>
 <parameter>mail2</parameter>
 <parameter>mail3</parameter>
 </parameter>
 <parameter key="my_multilang.language_fallback" type="collection">
 <parameter key="en" type="collection">
 <parameter>en</parameter>
 <parameter>fr</parameter>
 </parameter>
 <parameter key="fr" type="collection">
 <parameter>fr</parameter>
 <parameter>en</parameter>
 </parameter>
 </parameter>
</parameters>

	PHP// app/config/config.php
use Symfony\Component\DependencyInjection\Definition;

$container->setParameter('my_mailer.gateways', array('mail1', 'mail2', 'mail3'));
$container->setParameter('my_multilang.language_fallback',
 array('en' => array('en', 'fr'),
 'fr' => array('fr', 'en'),
));

Importing other Container Configuration Resources

Tip

In this section, we’ll refer to service configuration files as resources.
This is to highlight that fact that, while most configuration resources
will be files (e.g. YAML, XML, PHP), Symfony2 is so flexible that configuration
could be loaded from anywhere (e.g. a database or even via an external
web service).

The service container is built using a single configuration resource
(app/config/config.yml by default). All other service configuration
(including the core Symfony2 and third-party bundle configuration) must
be imported from inside this file in one way or another. This gives you absolute
flexibility over the services in your application.

External service configuration can be imported in two different ways. First,
we’ll talk about the method that you’ll use most commonly in your application:
the imports directive. In the following section, we’ll introduce the
second method, which is the flexible and preferred method for importing service
configuration from third-party bundles.

Importing Configuration with imports

So far, we’ve placed our my_mailer service container definition directly
in the application configuration file (e.g. app/config/config.yml). Of
course, since the Mailer class itself lives inside the AcmeHelloBundle,
it makes more sense to put the my_mailer container definition inside the
bundle as well.

First, move the my_mailer container definition into a new container resource
file inside AcmeHelloBundle. If the Resources or Resources/config
directories don’t exist, create them.

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
parameters:
 my_mailer.class: Acme\HelloBundle\Mailer
 my_mailer.transport: sendmail

services:
 my_mailer:
 class: %my_mailer.class%
 arguments: [%my_mailer.transport%]

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<parameters>
 <parameter key="my_mailer.class">Acme\HelloBundle\Mailer</parameter>
 <parameter key="my_mailer.transport">sendmail</parameter>
</parameters>

<services>
 <service id="my_mailer" class="%my_mailer.class%">
 <argument>%my_mailer.transport%</argument>
 </service>
</services>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;

$container->setParameter('my_mailer.class', 'Acme\HelloBundle\Mailer');
$container->setParameter('my_mailer.transport', 'sendmail');

$container->setDefinition('my_mailer', new Definition(
 '%my_mailer.class%',
 array('%my_mailer.transport%')
));

The definition itself hasn’t changed, only its location. Of course the service
container doesn’t know about the new resource file. Fortunately, we can
easily import the resource file using the imports key in the application
configuration.

	YAML# app/config/config.yml
imports:
 - { resource: @AcmeHelloBundle/Resources/config/services.yml }

	XML<!-- app/config/config.xml -->
<imports>
 <import resource="@AcmeHelloBundle/Resources/config/services.xml"/>
</imports>

	PHP// app/config/config.php
$this->import('@AcmeHelloBundle/Resources/config/services.php');

The imports directive allows your application to include service container
configuration resources from any other location (most commonly from bundles).
The resource location, for files, is the absolute path to the resource
file. The special @AcmeHello syntax resolves the directory path of
the AcmeHelloBundle bundle. This helps you specify the path to the resource
without worrying later if you move the AcmeHelloBundle to a different
directory.

Importing Configuration via Container Extensions

When developing in Symfony2, you’ll most commonly use the imports directive
to import container configuration from the bundles you’ve created specifically
for your application. Third-party bundle container configuration, including
Symfony2 core services, are usually loaded using another method that’s more
flexible and easy to configure in your application.

Here’s how it works. Internally, each bundle defines its services very much
like we’ve seen so far. Namely, a bundle uses one or more configuration
resource files (usually XML) to specify the parameters and services for that
bundle. However, instead of importing each of these resources directly from
your application configuration using the imports directive, you can simply
invoke a service container extension inside the bundle that does the work for
you. A service container extension is a PHP class created by the bundle author
to accomplish two things:

	import all service container resources needed to configure the services for
the bundle;

	provide semantic, straightforward configuration so that the bundle can
be configured without interacting with the flat parameters of the bundle’s
service container configuration.

In other words, a service container extension configures the services for
a bundle on your behalf. And as we’ll see in a moment, the extension provides
a sensible, high-level interface for configuring the bundle.

Take the FrameworkBundle - the core Symfony2 framework bundle - as an
example. The presence of the following code in your application configuration
invokes the service container extension inside the FrameworkBundle:

	YAML# app/config/config.yml
framework:
 secret: xxxxxxxxxx
 charset: UTF-8
 form: true
 csrf_protection: true
 router: { resource: "%kernel.root_dir%/config/routing.yml" }
 # ...

	XML<!-- app/config/config.xml -->
<framework:config charset="UTF-8" secret="xxxxxxxxxx">
 <framework:form />
 <framework:csrf-protection />
 <framework:router resource="%kernel.root_dir%/config/routing.xml" />
 <!-- ... -->
</framework>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'secret' => 'xxxxxxxxxx',
 'charset' => 'UTF-8',
 'form' => array(),
 'csrf-protection' => array(),
 'router' => array('resource' => '%kernel.root_dir%/config/routing.php'),
 // ...
));

When the configuration is parsed, the container looks for an extension that
can handle the framework configuration directive. The extension in question,
which lives in the FrameworkBundle, is invoked and the service configuration
for the FrameworkBundle is loaded. If you remove the framework key
from your application configuration file entirely, the core Symfony2 services
won’t be loaded. The point is that you’re in control: the Symfony2 framework
doesn’t contain any magic or perform any actions that you don’t have control
over.

Of course you can do much more than simply “activate” the service container
extension of the FrameworkBundle. Each extension allows you to easily
customize the bundle, without worrying about how the internal services are
defined.

In this case, the extension allows you to customize the charset, error_handler,
csrf_protection, router configuration and much more. Internally,
the FrameworkBundle uses the options specified here to define and configure
the services specific to it. The bundle takes care of creating all the necessary
parameters and services for the service container, while still allowing
much of the configuration to be easily customized. As an added bonus, most
service container extensions are also smart enough to perform validation -
notifying you of options that are missing or the wrong data type.

When installing or configuring a bundle, see the bundle’s documentation for
how the services for the bundle should be installed and configured. The options
available for the core bundles can be found inside the Reference Guide.

Note

Natively, the service container only recognizes the parameters,
services, and imports directives. Any other directives
are handled by a service container extension.

Referencing (Injecting) Services

So far, our original my_mailer service is simple: it takes just one argument
in its constructor, which is easily configurable. As you’ll see, the real
power of the container is realized when you need to create a service that
depends on one or more other services in the container.

Let’s start with an example. Suppose we have a new service, NewsletterManager,
that helps to manage the preparation and delivery of an email message to
a collection of addresses. Of course the my_mailer service is already
really good at delivering email messages, so we’ll use it inside NewsletterManager
to handle the actual delivery of the messages. This pretend class might look
something like this:

namespace Acme\HelloBundle\Newsletter;

use Acme\HelloBundle\Mailer;

class NewsletterManager
{
 protected $mailer;

 public function __construct(Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 // ...
}

Without using the service container, we can create a new NewsletterManager
fairly easily from inside a controller:

public function sendNewsletterAction()
{
 $mailer = $this->get('my_mailer');
 $newsletter = new Acme\HelloBundle\Newsletter\NewsletterManager($mailer);
 // ...
}

This approach is fine, but what if we decide later that the NewsletterManager
class needs a second or third constructor argument? What if we decide to
refactor our code and rename the class? In both cases, you’d need to find every
place where the NewsletterManager is instantiated and modify it. Of course,
the service container gives us a much more appealing option:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
parameters:
 # ...
 newsletter_manager.class: Acme\HelloBundle\Newsletter\NewsletterManager

services:
 my_mailer:
 # ...
 newsletter_manager:
 class: %newsletter_manager.class%
 arguments: [@my_mailer]

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<parameters>
 <!-- ... -->
 <parameter key="newsletter_manager.class">Acme\HelloBundle\Newsletter\NewsletterManager</parameter>
</parameters>

<services>
 <service id="my_mailer" ... >
 <!-- ... -->
 </service>
 <service id="newsletter_manager" class="%newsletter_manager.class%">
 <argument type="service" id="my_mailer"/>
 </service>
</services>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

// ...
$container->setParameter('newsletter_manager.class', 'Acme\HelloBundle\Newsletter\NewsletterManager');

$container->setDefinition('my_mailer', ...);
$container->setDefinition('newsletter_manager', new Definition(
 '%newsletter_manager.class%',
 array(new Reference('my_mailer'))
));

In YAML, the special @my_mailer syntax tells the container to look for
a service named my_mailer and to pass that object into the constructor
of NewsletterManager. In this case, however, the specified service my_mailer
must exist. If it does not, an exception will be thrown. You can mark your
dependencies as optional - this will be discussed in the next section.

Using references is a very powerful tool that allows you to create independent service
classes with well-defined dependencies. In this example, the newsletter_manager
service needs the my_mailer service in order to function. When you define
this dependency in the service container, the container takes care of all
the work of instantiating the objects.

Optional Dependencies: Setter Injection

Injecting dependencies into the constructor in this manner is an excellent
way of ensuring that the dependency is available to use. If you have optional
dependencies for a class, then “setter injection” may be a better option. This
means injecting the dependency using a method call rather than through the
constructor. The class would look like this:

namespace Acme\HelloBundle\Newsletter;

use Acme\HelloBundle\Mailer;

class NewsletterManager
{
 protected $mailer;

 public function setMailer(Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 // ...
}

Injecting the dependency by the setter method just needs a change of syntax:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
parameters:
 # ...
 newsletter_manager.class: Acme\HelloBundle\Newsletter\NewsletterManager

services:
 my_mailer:
 # ...
 newsletter_manager:
 class: %newsletter_manager.class%
 calls:
 - [setMailer, [@my_mailer]]

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<parameters>
 <!-- ... -->
 <parameter key="newsletter_manager.class">Acme\HelloBundle\Newsletter\NewsletterManager</parameter>
</parameters>

<services>
 <service id="my_mailer" ... >
 <!-- ... -->
 </service>
 <service id="newsletter_manager" class="%newsletter_manager.class%">
 <call method="setMailer">
 <argument type="service" id="my_mailer" />
 </call>
 </service>
</services>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

// ...
$container->setParameter('newsletter_manager.class', 'Acme\HelloBundle\Newsletter\NewsletterManager');

$container->setDefinition('my_mailer', ...);
$container->setDefinition('newsletter_manager', new Definition(
 '%newsletter_manager.class%'
))->addMethodCall('setMailer', array(
 new Reference('my_mailer')
));

Note

The approaches presented in this section are called “constructor injection”
and “setter injection”. The Symfony2 service container also supports
“property injection”.

Making References Optional

Sometimes, one of your services may have an optional dependency, meaning
that the dependency is not required for your service to work properly. In
the example above, the my_mailer service must exist, otherwise an exception
will be thrown. By modifying the newsletter_manager service definition,
you can make this reference optional. The container will then inject it if
it exists and do nothing if it doesn’t:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
parameters:
 # ...

services:
 newsletter_manager:
 class: %newsletter_manager.class%
 arguments: [@?my_mailer]

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->

<services>
 <service id="my_mailer" ... >
 <!-- ... -->
 </service>
 <service id="newsletter_manager" class="%newsletter_manager.class%">
 <argument type="service" id="my_mailer" on-invalid="ignore" />
 </service>
</services>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;
use Symfony\Component\DependencyInjection\ContainerInterface;

// ...
$container->setParameter('newsletter_manager.class', 'Acme\HelloBundle\Newsletter\NewsletterManager');

$container->setDefinition('my_mailer', ...);
$container->setDefinition('newsletter_manager', new Definition(
 '%newsletter_manager.class%',
 array(new Reference('my_mailer', ContainerInterface::IGNORE_ON_INVALID_REFERENCE))
));

In YAML, the special @? syntax tells the service container that the dependency
is optional. Of course, the NewsletterManager must also be written to
allow for an optional dependency:

public function __construct(Mailer $mailer = null)
{
 // ...
}

Core Symfony and Third-Party Bundle Services

Since Symfony2 and all third-party bundles configure and retrieve their services
via the container, you can easily access them or even use them in your own
services. To keep things simple, Symfony2 by default does not require that
controllers be defined as services. Furthermore Symfony2 injects the entire
service container into your controller. For example, to handle the storage of
information on a user’s session, Symfony2 provides a session service,
which you can access inside a standard controller as follows:

public function indexAction($bar)
{
 $session = $this->get('session');
 $session->set('foo', $bar);

 // ...
}

In Symfony2, you’ll constantly use services provided by the Symfony core or
other third-party bundles to perform tasks such as rendering templates (templating),
sending emails (mailer), or accessing information on the request (request).

We can take this a step further by using these services inside services that
you’ve created for your application. Let’s modify the NewsletterManager
to use the real Symfony2 mailer service (instead of the pretend my_mailer).
Let’s also pass the templating engine service to the NewsletterManager
so that it can generate the email content via a template:

namespace Acme\HelloBundle\Newsletter;

use Symfony\Component\Templating\EngineInterface;

class NewsletterManager
{
 protected $mailer;

 protected $templating;

 public function __construct(\Swift_Mailer $mailer, EngineInterface $templating)
 {
 $this->mailer = $mailer;
 $this->templating = $templating;
 }

 // ...
}

Configuring the service container is easy:

	YAMLservices:
 newsletter_manager:
 class: %newsletter_manager.class%
 arguments: [@mailer, @templating]

	XML<service id="newsletter_manager" class="%newsletter_manager.class%">
 <argument type="service" id="mailer"/>
 <argument type="service" id="templating"/>
</service>

	PHP$container->setDefinition('newsletter_manager', new Definition(
 '%newsletter_manager.class%',
 array(
 new Reference('mailer'),
 new Reference('templating')
)
));

The newsletter_manager service now has access to the core mailer
and templating services. This is a common way to create services specific
to your application that leverage the power of different services within
the framework.

Tip

Be sure that swiftmailer entry appears in your application
configuration. As we mentioned in Importing Configuration via Container Extensions,
the swiftmailer key invokes the service extension from the
SwiftmailerBundle, which registers the mailer service.

Advanced Container Configuration

As we’ve seen, defining services inside the container is easy, generally
involving a service configuration key and a few parameters. However,
the container has several other tools available that help to tag services
for special functionality, create more complex services, and perform operations
after the container is built.

Marking Services as public / private

When defining services, you’ll usually want to be able to access these definitions
within your application code. These services are called public. For example,
the doctrine service registered with the container when using the DoctrineBundle
is a public service as you can access it via:

$doctrine = $container->get('doctrine');

However, there are use-cases when you don’t want a service to be public. This
is common when a service is only defined because it could be used as an
argument for another service.

Note

If you use a private service as an argument to more than one other service,
this will result in two different instances being used as the instantiation
of the private service is done inline (e.g. new PrivateFooBar()).

Simply said: A service will be private when you do not want to access it
directly from your code.

Here is an example:

	YAMLservices:
 foo:
 class: Acme\HelloBundle\Foo
 public: false

	XML<service id="foo" class="Acme\HelloBundle\Foo" public="false" />

	PHP$definition = new Definition('Acme\HelloBundle\Foo');
$definition->setPublic(false);
$container->setDefinition('foo', $definition);

Now that the service is private, you cannot call:

$container->get('foo');

However, if a service has been marked as private, you can still alias it (see
below) to access this service (via the alias).

Note

Services are by default public.

Aliasing

When using core or third party bundles within your application, you may want
to use shortcuts to access some services. You can do so by aliasing them and,
furthermore, you can even alias non-public services.

	YAMLservices:
 foo:
 class: Acme\HelloBundle\Foo
 bar:
 alias: foo

	XML<service id="foo" class="Acme\HelloBundle\Foo"/>

<service id="bar" alias="foo" />

	PHP$definition = new Definition('Acme\HelloBundle\Foo');
$container->setDefinition('foo', $definition);

$containerBuilder->setAlias('bar', 'foo');

This means that when using the container directly, you can access the foo
service by asking for the bar service like this:

$container->get('bar'); // Would return the foo service

Requiring files

There might be use cases when you need to include another file just before
the service itself gets loaded. To do so, you can use the file directive.

	YAMLservices:
 foo:
 class: Acme\HelloBundle\Foo\Bar
 file: %kernel.root_dir%/src/path/to/file/foo.php

	XML<service id="foo" class="Acme\HelloBundle\Foo\Bar">
 <file>%kernel.root_dir%/src/path/to/file/foo.php</file>
</service>

	PHP$definition = new Definition('Acme\HelloBundle\Foo\Bar');
$definition->setFile('%kernel.root_dir%/src/path/to/file/foo.php');
$container->setDefinition('foo', $definition);

Notice that symfony will internally call the PHP function require_once
which means that your file will be included only once per request.

Tags (tags)

In the same way that a blog post on the Web might be tagged with things such
as “Symfony” or “PHP”, services configured in your container can also be
tagged. In the service container, a tag implies that the service is meant
to be used for a specific purpose. Take the following example:

	YAMLservices:
 foo.twig.extension:
 class: Acme\HelloBundle\Extension\FooExtension
 tags:
 - { name: twig.extension }

	XML<service id="foo.twig.extension" class="Acme\HelloBundle\Extension\FooExtension">
 <tag name="twig.extension" />
</service>

	PHP$definition = new Definition('Acme\HelloBundle\Extension\FooExtension');
$definition->addTag('twig.extension');
$container->setDefinition('foo.twig.extension', $definition);

The twig.extension tag is a special tag that the TwigBundle uses
during configuration. By giving the service this twig.extension tag,
the bundle knows that the foo.twig.extension service should be registered
as a Twig extension with Twig. In other words, Twig finds all services tagged
with twig.extension and automatically registers them as extensions.

Tags, then, are a way to tell Symfony2 or other third-party bundles that
your service should be registered or used in some special way by the bundle.

The following is a list of tags available with the core Symfony2 bundles.
Each of these has a different effect on your service and many tags require
additional arguments (beyond just the name parameter).

	assetic.filter

	assetic.templating.php

	data_collector

	form.field_factory.guesser

	kernel.cache_warmer

	kernel.event_listener

	monolog.logger

	routing.loader

	security.listener.factory

	security.voter

	templating.helper

	twig.extension

	translation.loader

	validator.constraint_validator

Learn more from the Cookbook

	How to Use a Factory to Create Services

	How to Manage Common Dependencies with Parent Services

	How to define Controllers as Services

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Performance

Symfony2 is fast, right out of the box. Of course, if you really need speed,
there are many ways that you can make Symfony even faster. In this chapter,
you’ll explore many of the most common and powerful ways to make your Symfony
application even faster.

Use a Byte Code Cache (e.g. APC)

One the best (and easiest) things that you should do to improve your performance
is to use a “byte code cache”. The idea of a byte code cache is to remove
the need to constantly recompile the PHP source code. There are a number of
byte code caches [http://en.wikipedia.org/wiki/List_of_PHP_accelerators] available, some of which are open source. The most widely
used byte code cache is probably APC [http://php.net/manual/en/book.apc.php]

Using a byte code cache really has no downside, and Symfony2 has been architected
to perform really well in this type of environment.

Further Optimizations

Byte code caches usually monitor the source files for changes. This ensures
that if the source of a file changes, the byte code is recompiled automatically.
This is really convenient, but obviously adds overhead.

For this reason, some byte code caches offer an option to disable these checks.
Obviously, when disabling these checks, it will be up to the server admin
to ensure that the cache is cleared whenever any source files change. Otherwise,
the updates you’ve made won’t be seen.

For example, to disable these checks in APC, simply add apc.stat=0 to
your php.ini configuration.

Use an Autoloader that caches (e.g. ApcUniversalClassLoader)

By default, the Symfony2 standard edition uses the UniversalClassLoader
in the autoloader.php [https://github.com/symfony/symfony-standard/blob/master/app/autoload.php] file. This autoloader is easy to use, as it will
automatically find any new classes that you’ve placed in the registered
directories.

Unfortunately, this comes at a cost, as the loader iterates over all configured
namespaces to find a particular file, making file_exists calls until it
finally finds the file it’s looking for.

The simplest solution is to cache the location of each class after it’s located
the first time. Symfony comes with a class - ApcUniversalClassLoader -
loader that extends the UniversalClassLoader and stores the class locations
in APC.

To use this class loader, simply adapt your autoloader.php as follows:

// app/autoload.php
require __DIR__.'/../vendor/symfony/src/Symfony/Component/ClassLoader/ApcUniversalClassLoader.php';

use Symfony\Component\ClassLoader\ApcUniversalClassLoader;

$loader = new ApcUniversalClassLoader('some caching unique prefix');
// ...

Note

When using the APC autoloader, if you add new classes, they will be found
automatically and everything will work the same as before (i.e. no
reason to “clear” the cache). However, if you change the location of a
particular namespace or prefix, you’ll need to flush your APC cache. Otherwise,
the autoloader will still be looking at the old location for all classes
inside that namespace.

Use Bootstrap Files

To ensure optimal flexibility and code reuse, Symfony2 applications leverage
a variety of classes and 3rd party components. But loading all of these classes
from separate files on each request can result in some overhead. To reduce
this overhead, the Symfony2 Standard Edition provides a script to generate
a so-called bootstrap file [https://github.com/sensio/SensioDistributionBundle/blob/master/Resources/bin/build_bootstrap.php], consisting of multiple classes definitions
in a single file. By including this file (which contains a copy of many of
the core classes), Symfony no longer needs to include any of the source files
containing those classes. This will reduce disc IO quite a bit.

If you’re using the Symfony2 Standard Edition, then you’re probably already
using the bootstrap file. To be sure, open your front controller (usually
app.php) and check to make sure that the following line exists:

require_once __DIR__.'/../app/bootstrap.php.cache';

Note that there are two disadvantages when using a bootstrap file:

	the file needs to be regenerated whenever any of the original sources change
(i.e. when you update the Symfony2 source or vendor libraries);

	when debugging, one will need to place break points inside the bootstrap file.

If you’re using Symfony2 Standard Edition, the bootstrap file is automatically
rebuilt after updating the vendor libraries via the php bin/vendors install
command.

Bootstrap Files and Byte Code Caches

Even when using a byte code cache, performance will improve when using a bootstrap
file since there will be less files to monitor for changes. Of course if this
feature is disabled in the byte code cache (e.g. apc.stat=0 in APC), there
is no longer a reason to use a bootstrap file.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

Internals

Looks like you want to understand how Symfony2 works and how to extend it.
That makes me very happy! This section is an in-depth explanation of the
Symfony2 internals.

Note

You need to read this section only if you want to understand how Symfony2
works behind the scene, or if you want to extend Symfony2.

Overview

The Symfony2 code is made of several independent layers. Each layer is built
on top of the previous one.

Tip

Autoloading is not managed by the framework directly; it’s done
independently with the help of the
Symfony\Component\ClassLoader\UniversalClassLoader class
and the src/autoload.php file. Read the dedicated chapter for more information.

HttpFoundation Component

The deepest level is the :namespace:`Symfony\\Component\\HttpFoundation`
component. HttpFoundation provides the main objects needed to deal with HTTP.
It is an Object-Oriented abstraction of some native PHP functions and
variables:

	The Symfony\Component\HttpFoundation\Request class abstracts
the main PHP global variables like $_GET, $_POST, $_COOKIE,
$_FILES, and $_SERVER;

	The Symfony\Component\HttpFoundation\Response class abstracts
some PHP functions like header(), setcookie(), and echo;

	The Symfony\Component\HttpFoundation\Session class and
Symfony\Component\HttpFoundation\SessionStorage\SessionStorageInterface
interface abstract session management session_*() functions.

HttpKernel Component

On top of HttpFoundation is the :namespace:`Symfony\\Component\\HttpKernel`
component. HttpKernel handles the dynamic part of HTTP; it is a thin wrapper
on top of the Request and Response classes to standardize the way requests are
handled. It also provides extension points and tools that makes it the ideal
starting point to create a Web framework without too much overhead.

It also optionally adds configurability and extensibility, thanks to the
Dependency Injection component and a powerful plugin system (bundles).

See also

Read more about the HttpKernel component. Read more about
Dependency Injection and Bundles.

FrameworkBundle Bundle

The :namespace:`Symfony\\Bundle\\FrameworkBundle` bundle is the bundle that
ties the main components and libraries together to make a lightweight and fast
MVC framework. It comes with a sensible default configuration and conventions
to ease the learning curve.

Kernel

The Symfony\Component\HttpKernel\HttpKernel class is the central
class of Symfony2 and is responsible for handling client requests. Its main
goal is to “convert” a Symfony\Component\HttpFoundation\Request
object to a Symfony\Component\HttpFoundation\Response object.

Every Symfony2 Kernel implements
Symfony\Component\HttpKernel\HttpKernelInterface:

function handle(Request $request, $type = self::MASTER_REQUEST, $catch = true)

Controllers

To convert a Request to a Response, the Kernel relies on a “Controller”. A
Controller can be any valid PHP callable.

The Kernel delegates the selection of what Controller should be executed
to an implementation of
Symfony\Component\HttpKernel\Controller\ControllerResolverInterface:

public function getController(Request $request);

public function getArguments(Request $request, $controller);

The
:method:`Symfony\\Component\\HttpKernel\\Controller\\ControllerResolverInterface::getController`
method returns the Controller (a PHP callable) associated with the given
Request. The default implementation
(Symfony\Component\HttpKernel\Controller\ControllerResolver)
looks for a _controller request attribute that represents the controller
name (a “class::method” string, like
Bundle\BlogBundle\PostController:indexAction).

Tip

The default implementation uses the
Symfony\Bundle\FrameworkBundle\EventListener\RouterListener
to define the _controller Request attribute (see kernel.request Event).

The
:method:`Symfony\\Component\\HttpKernel\\Controller\\ControllerResolverInterface::getArguments`
method returns an array of arguments to pass to the Controller callable. The
default implementation automatically resolves the method arguments, based on
the Request attributes.

Matching Controller method arguments from Request attributes

For each method argument, Symfony2 tries to get the value of a Request
attribute with the same name. If it is not defined, the argument default
value is used if defined:

// Symfony2 will look for an 'id' attribute (mandatory)
// and an 'admin' one (optional)
public function showAction($id, $admin = true)
{
 // ...
}

Handling Requests

The handle() method takes a Request and always returns a Response.
To convert the Request, handle() relies on the Resolver and an ordered
chain of Event notifications (see the next section for more information about
each Event):

	Before doing anything else, the kernel.request event is notified – if
one of the listeners returns a Response, it jumps to step 8 directly;

	The Resolver is called to determine the Controller to execute;

	Listeners of the kernel.controller event can now manipulate the
Controller callable the way they want (change it, wrap it, ...);

	The Kernel checks that the Controller is actually a valid PHP callable;

	The Resolver is called to determine the arguments to pass to the Controller;

	The Kernel calls the Controller;

	If the Controller does not return a Response, listeners of the
kernel.view event can convert the Controller return value to a Response;

	Listeners of the kernel.response event can manipulate the Response
(content and headers);

	The Response is returned.

If an Exception is thrown during processing, the kernel.exception is
notified and listeners are given a chance to convert the Exception to a
Response. If that works, the kernel.response event is notified; if not, the
Exception is re-thrown.

If you don’t want Exceptions to be caught (for embedded requests for
instance), disable the kernel.exception event by passing false as the
third argument to the handle() method.

Internal Requests

At any time during the handling of a request (the ‘master’ one), a sub-request
can be handled. You can pass the request type to the handle() method (its
second argument):

	HttpKernelInterface::MASTER_REQUEST;

	HttpKernelInterface::SUB_REQUEST.

The type is passed to all events and listeners can act accordingly (some
processing must only occur on the master request).

Events

Each event thrown by the Kernel is a subclass of
Symfony\Component\HttpKernel\Event\KernelEvent. This means that
each event has access to the same basic information:

	getRequestType() - returns the type of the request
(HttpKernelInterface::MASTER_REQUEST or HttpKernelInterface::SUB_REQUEST);

	getKernel() - returns the Kernel handling the request;

	getRequest() - returns the current Request being handled.

getRequestType()

The getRequestType() method allows listeners to know the type of the
request. For instance, if a listener must only be active for master requests,
add the following code at the beginning of your listener method:

use Symfony\Component\HttpKernel\HttpKernelInterface;

if (HttpKernelInterface::MASTER_REQUEST !== $event->getRequestType()) {
 // return immediately
 return;
}

Tip

If you are not yet familiar with the Symfony2 Event Dispatcher, read the
Events section first.

kernel.request Event

Event Class: Symfony\Component\HttpKernel\Event\GetResponseEvent

The goal of this event is to either return a Response object immediately
or setup variables so that a Controller can be called after the event. Any
listener can return a Response object via the setResponse() method on
the event. In this case, all other listeners won’t be called.

This event is used by FrameworkBundle to populate the _controller
Request attribute, via the
Symfony\Bundle\FrameworkBundle\EventListener\RouterListener. RequestListener
uses a Symfony\Component\Routing\RouterInterface object to match
the Request and determine the Controller name (stored in the
_controller Request attribute).

kernel.controller Event

Event Class: Symfony\Component\HttpKernel\Event\FilterControllerEvent

This event is not used by FrameworkBundle, but can be an entry point used
to modify the controller that should be executed:

use Symfony\Component\HttpKernel\Event\FilterControllerEvent;

public function onKernelController(FilterControllerEvent $event)
{
 $controller = $event->getController();
 // ...

 // the controller can be changed to any PHP callable
 $event->setController($controller);
}

kernel.view Event

Event Class: Symfony\Component\HttpKernel\Event\GetResponseForControllerResultEvent

This event is not used by FrameworkBundle, but it can be used to implement
a view sub-system. This event is called only if the Controller does not
return a Response object. The purpose of the event is to allow some other
return value to be converted into a Response.

The value returned by the Controller is accessible via the
getControllerResult method:

use Symfony\Component\HttpKernel\Event\GetResponseForControllerResultEvent;
use Symfony\Component\HttpFoundation\Response;

public function onKernelView(GetResponseForControllerResultEvent $event)
{
 $val = $event->getReturnValue();
 $response = new Response();
 // some how customize the Response from the return value

 $event->setResponse($response);
}

kernel.response Event

Event Class: Symfony\Component\HttpKernel\Event\FilterResponseEvent

The purpose of this event is to allow other systems to modify or replace the
Response object after its creation:

public function onKernelResponse(FilterResponseEvent $event)
{
 $response = $event->getResponse();
 // .. modify the response object
}

The FrameworkBundle registers several listeners:

	Symfony\Component\HttpKernel\EventListener\ProfilerListener:
collects data for the current request;

	Symfony\Bundle\WebProfilerBundle\EventListener\WebDebugToolbarListener:
injects the Web Debug Toolbar;

	Symfony\Component\HttpKernel\EventListener\ResponseListener: fixes the
Response Content-Type based on the request format;

	Symfony\Component\HttpKernel\EventListener\EsiListener: adds a
Surrogate-Control HTTP header when the Response needs to be parsed for
ESI tags.

kernel.exception Event

Event Class: Symfony\Component\HttpKernel\Event\GetResponseForExceptionEvent

FrameworkBundle registers an
Symfony\Component\HttpKernel\EventListener\ExceptionListener that
forwards the Request to a given Controller (the value of the
exception_listener.controller parameter – must be in the
class::method notation).

A listener on this event can create and set a Response object, create
and set a new Exception object, or do nothing:

use Symfony\Component\HttpKernel\Event\GetResponseForExceptionEvent;
use Symfony\Component\HttpFoundation\Response;

public function onKernelException(GetResponseForExceptionEvent $event)
{
 $exception = $event->getException();
 $response = new Response();
 // setup the Response object based on the caught exception
 $event->setResponse($response);

 // you can alternatively set a new Exception
 // $exception = new \Exception('Some special exception');
 // $event->setException($exception);
}

The Event Dispatcher

Objected Oriented code has gone a long way to ensuring code extensibility. By
creating classes that have well defined responsibilities, your code becomes
more flexible and a developer can extend them with subclasses to modify their
behaviors. But if he wants to share his changes with other developers who have
also made their own subclasses, code inheritance is moot.

Consider the real-world example where you want to provide a plugin system for
your project. A plugin should be able to add methods, or do something before
or after a method is executed, without interfering with other plugins. This is
not an easy problem to solve with single inheritance, and multiple inheritance
(were it possible with PHP) has its own drawbacks.

The Symfony2 Event Dispatcher implements the Observer [http://en.wikipedia.org/wiki/Observer_pattern] pattern in a simple
and effective way to make all these things possible and to make your projects
truly extensible.

Take a simple example from the Symfony2 HttpKernel component [https://github.com/symfony/HttpKernel]. Once a
Response object has been created, it may be useful to allow other elements
in the system to modify it (e.g. add some cache headers) before it’s actually
used. To make this possible, the Symfony2 kernel throws an event -
kernel.response. Here’s how it works:

	A listener (PHP object) tells a central dispatcher object that it wants
to listen to the kernel.response event;

	At some point, the Symfony2 kernel tells the dispatcher object to dispatch
the kernel.response event, passing with it an Event object that has
access to the Response object;

	The dispatcher notifies (i.e. calls a method on) all listeners of the
kernel.response event, allowing each of them to make modifications to
the Response object.

Events

When an event is dispatched, it’s identified by a unique name (e.g.
kernel.response), which any number of listeners might be listening to. An
Symfony\Component\EventDispatcher\Event instance is also created
and passed to all of the listeners. As you’ll see later, the Event object
itself often contains data about the event being dispatched.

Naming Conventions

The unique event name can be any string, but optionally follows a few simple
naming conventions:

	use only lowercase letters, numbers, dots (.), and underscores (_);

	prefix names with a namespace followed by a dot (e.g. kernel.);

	end names with a verb that indicates what action is being taken (e.g.
request).

Here are some examples of good event names:

	kernel.response

	form.pre_set_data

Event Names and Event Objects

When the dispatcher notifies listeners, it passes an actual Event object
to those listeners. The base Event class is very simple: it contains a
method for stopping event
propagation, but not much else.

Often times, data about a specific event needs to be passed along with the
Event object so that the listeners have needed information. In the case of
the kernel.response event, the Event object that’s created and passed to
each listener is actually of type
Symfony\Component\HttpKernel\Event\FilterResponseEvent, a
subclass of the base Event object. This class contains methods such as
getResponse and setResponse, allowing listeners to get or even replace
the Response object.

The moral of the story is this: when creating a listener to an event, the
Event object that’s passed to the listener may be a special subclass that
has additional methods for retrieving information from and responding to the
event.

The Dispatcher

The dispatcher is the central object of the event dispatcher system. In
general, a single dispatcher is created, which maintains a registry of
listeners. When an event is dispatched via the dispatcher, it notifies all
listeners registered with that event.

use Symfony\Component\EventDispatcher\EventDispatcher;

$dispatcher = new EventDispatcher();

Connecting Listeners

To take advantage of an existing event, you need to connect a listener to the
dispatcher so that it can be notified when the event is dispatched. A call to
the dispatcher addListener() method associates any valid PHP callable to
an event:

$listener = new AcmeListener();
$dispatcher->addListener('foo.action', array($listener, 'onFooAction'));

The addListener() method takes up to three arguments:

	The event name (string) that this listener wants to listen to;

	A PHP callable that will be notified when an event is thrown that it listens
to;

	An optional priority integer (higher equals more important) that determines
when a listener is triggered versus other listeners (defaults to 0). If
two listeners have the same priority, they are executed in the order that
they were added to the dispatcher.

Note

A PHP callable [http://www.php.net/manual/en/language.pseudo-types.php#language.types.callback] is a PHP variable that can be used by the
call_user_func() function and returns true when passed to the
is_callable() function. It can be a \Closure instance, a string
representing a function, or an array representing an object method or a
class method.

So far, you’ve seen how PHP objects can be registered as listeners. You
can also register PHP Closures [http://php.net/manual/en/functions.anonymous.php] as event listeners:

use Symfony\Component\EventDispatcher\Event;

$dispatcher->addListener('foo.action', function (Event $event) {
 // will be executed when the foo.action event is dispatched
});

Once a listener is registered with the dispatcher, it waits until the event is
notified. In the above example, when the foo.action event is dispatched,
the dispatcher calls the AcmeListener::onFooAction method and passes the
Event object as the single argument:

use Symfony\Component\EventDispatcher\Event;

class AcmeListener
{
 // ...

 public function onFooAction(Event $event)
 {
 // do something
 }
}

Tip

If you use the Symfony2 MVC framework, listeners can be registered via
your configuration. As an added
bonus, the listener objects are instantiated only when needed.

In many cases, a special Event subclass that’s specific to the given event
is passed to the listener. This gives the listener access to special
information about the event. Check the documentation or implementation of each
event to determine the exact Symfony\Component\EventDispatcher\Event
instance that’s being passed. For example, the kernel.event event passes an
instance of Symfony\Component\HttpKernel\Event\FilterResponseEvent:

use Symfony\Component\HttpKernel\Event\FilterResponseEvent

public function onKernelResponse(FilterResponseEvent $event)
{
 $response = $event->getResponse();
 $request = $event->getRequest();

 // ...
}

Creating and Dispatching an Event

In addition to registering listeners with existing events, you can create and
throw your own events. This is useful when creating third-party libraries and
also when you want to keep different components of your own system flexible
and decoupled.

The Static Events Class

Suppose you want to create a new Event - store.order - that is dispatched
each time an order is created inside your application. To keep things
organized, start by creating a StoreEvents class inside your application
that serves to define and document your event:

namespace Acme\StoreBundle;

final class StoreEvents
{
 /**
 * The store.order event is thrown each time an order is created
 * in the system.
 *
 * The event listener receives an Acme\StoreBundle\Event\FilterOrderEvent
 * instance.
 *
 * @var string
 */
 const onStoreOrder = 'store.order';
}

Notice that this class doesn’t actually do anything. The purpose of the
StoreEvents class is just to be a location where information about common
events can be centralized. Notice also that a special FilterOrderEvent
class will be passed to each listener of this event.

Creating an Event object

Later, when you dispatch this new event, you’ll create an Event instance
and pass it to the dispatcher. The dispatcher then passes this same instance
to each of the listeners of the event. If you don’t need to pass any
information to your listeners, you can use the default
Symfony\Component\EventDispatcher\Event class. Most of the time, however,
you will need to pass information about the event to each listener. To
accomplish this, you’ll create a new class that extends
Symfony\Component\EventDispatcher\Event.

In this example, each listener will need access to some pretend Order
object. Create an Event class that makes this possible:

namespace Acme\StoreBundle\Event;

use Symfony\Component\EventDispatcher\Event;
use Acme\StoreBundle\Order;

class FilterOrderEvent extends Event
{
 protected $order;

 public function __construct(Order $order)
 {
 $this->order = $order;
 }

 public function getOrder()
 {
 return $this->order;
 }
}

Each listener now has access to the Order object via the getOrder
method.

Dispatch the Event

The :method:`Symfony\\Component\\EventDispatcher\\EventDispatcher::dispatch`
method notifies all listeners of the given event. It takes two arguments: the
name of the event to dispatch and the Event instance to pass to each
listener of that event:

use Acme\StoreBundle\StoreEvents;
use Acme\StoreBundle\Order;
use Acme\StoreBundle\Event\FilterOrderEvent;

// the order is somehow created or retrieved
$order = new Order();
// ...

// create the FilterOrderEvent and dispatch it
$event = new FilterOrderEvent($order);
$dispatcher->dispatch(StoreEvents::onStoreOrder, $event);

Notice that the special FilterOrderEvent object is created and passed to
the dispatch method. Now, any listener to the store.order event will
receive the FilterOrderEvent and have access to the Order object via
the getOrder method:

// some listener class that's been registered for onStoreOrder
use Acme\StoreBundle\Event\FilterOrderEvent;

public function onStoreOrder(FilterOrderEvent $event)
{
 $order = $event->getOrder();
 // do something to or with the order
}

Passing along the Event Dispatcher Object

If you have a look at the EventDispatcher class, you will notice that the
class does not act as a Singleton (there is no getInstance() static method).
That is intentional, as you might want to have several concurrent event
dispatchers in a single PHP request. But it also means that you need a way to
pass the dispatcher to the objects that need to connect or notify events.

The best practice is to inject the event dispatcher object into your objects,
aka dependency injection.

You can use constructor injection:

class Foo
{
 protected $dispatcher = null;

 public function __construct(EventDispatcher $dispatcher)
 {
 $this->dispatcher = $dispatcher;
 }
}

Or setter injection:

class Foo
{
 protected $dispatcher = null;

 public function setEventDispatcher(EventDispatcher $dispatcher)
 {
 $this->dispatcher = $dispatcher;
 }
}

Choosing between the two is really a matter of taste. Many tend to prefer the
constructor injection as the objects are fully initialized at construction
time. But when you have a long list of dependencies, using setter injection
can be the way to go, especially for optional dependencies.

Tip

If you use dependency injection like we did in the two examples above, you
can then use the Symfony2 Dependency Injection component [https://github.com/symfony/DependencyInjection] to elegantly
manage the injection of the event_dispatcher service for these objects.

src/Acme/HelloBundle/Resources/config/services.yml
services:
 foo_service:
 class: Acme/HelloBundle/Foo/FooService
 arguments: [@event_dispatcher]

Using Event Subscribers

The most common way to listen to an event is to register an event listener
with the dispatcher. This listener can listen to one or more events and is
notified each time those events are dispatched.

Another way to listen to events is via an event subscriber. An event
subscriber is a PHP class that’s able to tell the dispatcher exactly which
events it should subscribe to. It implements the
Symfony\Component\EventDispatcher\EventSubscriberInterface
interface, which requires a single static method called
getSubscribedEvents. Take the following example of a subscriber that
subscribes to the kernel.response and store.order events:

namespace Acme\StoreBundle\Event;

use Symfony\Component\EventDispatcher\EventSubscriberInterface;
use Symfony\Component\HttpKernel\Event\FilterResponseEvent;

class StoreSubscriber implements EventSubscriberInterface
{
 static public function getSubscribedEvents()
 {
 return array(
 'kernel.response' => 'onKernelResponse',
 'store.order' => 'onStoreOrder',
);
 }

 public function onKernelResponse(FilterResponseEvent $event)
 {
 // ...
 }

 public function onStoreOrder(FilterOrderEvent $event)
 {
 // ...
 }
}

This is very similar to a listener class, except that the class itself can
tell the dispatcher which events it should listen to. To register a subscriber
with the dispatcher, use the
:method:`Symfony\\Component\\EventDispatcher\\EventDispatcher::addSubscriber`
method:

use Acme\StoreBundle\Event\StoreSubscriber;

$subscriber = new StoreSubscriber();
$dispatcher->addSubscriber($subscriber);

The dispatcher will automatically register the subscriber for each event
returned by the getSubscribedEvents method. This method returns an array
indexed by event names and whose values are either the method name to call or
an array composed of the method name to call and a priority.

Tip

If you use the Symfony2 MVC framework, subscribers can be registered via
your configuration. As an added
bonus, the subscriber objects are instantiated only when needed.

Stopping Event Flow/Propagation

In some cases, it may make sense for a listener to prevent any other listeners
from being called. In other words, the listener needs to be able to tell the
dispatcher to stop all propagation of the event to future listeners (i.e. to
not notify any more listeners). This can be accomplished from inside a
listener via the
:method:`Symfony\\Component\\EventDispatcher\\Event::stopPropagation` method:

use Acme\StoreBundle\Event\FilterOrderEvent;

public function onStoreOrder(FilterOrderEvent $event)
{
 // ...

 $event->stopPropagation();
}

Now, any listeners to store.order that have not yet been called will not
be called.

Profiler

When enabled, the Symfony2 profiler collects useful information about each
request made to your application and store them for later analysis. Use the
profiler in the development environment to help you to debug your code and
enhance performance; use it in the production environment to explore problems
after the fact.

You rarely have to deal with the profiler directly as Symfony2 provides
visualizer tools like the Web Debug Toolbar and the Web Profiler. If you use
the Symfony2 Standard Edition, the profiler, the web debug toolbar, and the
web profiler are all already configured with sensible settings.

Note

The profiler collects information for all requests (simple requests,
redirects, exceptions, Ajax requests, ESI requests; and for all HTTP
methods and all formats). It means that for a single URL, you can have
several associated profiling data (one per external request/response
pair).

Visualizing Profiling Data

Using the Web Debug Toolbar

In the development environment, the web debug toolbar is available at the
bottom of all pages. It displays a good summary of the profiling data that
gives you instant access to a lot of useful information when something does
not work as expected.

If the summary provided by the Web Debug Toolbar is not enough, click on the
token link (a string made of 13 random characters) to access the Web Profiler.

Note

If the token is not clickable, it means that the profiler routes are not
registered (see below for configuration information).

Analyzing Profiling data with the Web Profiler

The Web Profiler is a visualization tool for profiling data that you can use
in development to debug your code and enhance performance; but it can also be
used to explore problems that occur in production. It exposes all information
collected by the profiler in a web interface.

Accessing the Profiling information

You don’t need to use the default visualizer to access the profiling
information. But how can you retrieve profiling information for a specific
request after the fact? When the profiler stores data about a Request, it also
associates a token with it; this token is available in the X-Debug-Token
HTTP header of the Response:

$profile = $container->get('profiler')->loadProfileFromResponse($response);

$profile = $container->get('profiler')->loadProfile($token);

Tip

When the profiler is enabled but not the web debug toolbar, or when you
want to get the token for an Ajax request, use a tool like Firebug to get
the value of the X-Debug-Token HTTP header.

Use the find() method to access tokens based on some criteria:

// get the latest 10 tokens
$tokens = $container->get('profiler')->find('', '', 10);

// get the latest 10 tokens for all URL containing /admin/
$tokens = $container->get('profiler')->find('', '/admin/', 10);

// get the latest 10 tokens for local requests
$tokens = $container->get('profiler')->find('127.0.0.1', '', 10);

If you want to manipulate profiling data on a different machine than the one
where the information were generated, use the export() and import()
methods:

// on the production machine
$profile = $container->get('profiler')->loadProfile($token);
$data = $profiler->export($profile);

// on the development machine
$profiler->import($data);

Configuration

The default Symfony2 configuration comes with sensible settings for the
profiler, the web debug toolbar, and the web profiler. Here is for instance
the configuration for the development environment:

	YAML# load the profiler
framework:
 profiler: { only_exceptions: false }

enable the web profiler
web_profiler:
 toolbar: true
 intercept_redirects: true
 verbose: true

	XML<!-- xmlns:webprofiler="http://symfony.com/schema/dic/webprofiler" -->
<!-- xsi:schemaLocation="http://symfony.com/schema/dic/webprofiler http://symfony.com/schema/dic/webprofiler/webprofiler-1.0.xsd"> -->

<!-- load the profiler -->
<framework:config>
 <framework:profiler only-exceptions="false" />
</framework:config>

<!-- enable the web profiler -->
<webprofiler:config
 toolbar="true"
 intercept-redirects="true"
 verbose="true"
/>

	PHP// load the profiler
$container->loadFromExtension('framework', array(
 'profiler' => array('only-exceptions' => false),
));

// enable the web profiler
$container->loadFromExtension('web_profiler', array(
 'toolbar' => true,
 'intercept-redirects' => true,
 'verbose' => true,
));

When only-exceptions is set to true, the profiler only collects data
when an exception is thrown by the application.

When intercept-redirects is set to true, the web profiler intercepts
the redirects and gives you the opportunity to look at the collected data
before following the redirect.

When verbose is set to true, the Web Debug Toolbar displays a lot of
information. Setting verbose to false hides some secondary information
to make the toolbar shorter.

If you enable the web profiler, you also need to mount the profiler routes:

	YAML_profiler:
 resource: @WebProfilerBundle/Resources/config/routing/profiler.xml
 prefix: /_profiler

	XML<import resource="@WebProfilerBundle/Resources/config/routing/profiler.xml" prefix="/_profiler" />

	PHP$collection->addCollection($loader->import("@WebProfilerBundle/Resources/config/routing/profiler.xml"), '/_profiler');

As the profiler adds some overhead, you might want to enable it only under
certain circumstances in the production environment. The only-exceptions
settings limits profiling to 500 pages, but what if you want to get
information when the client IP comes from a specific address, or for a limited
portion of the website? You can use a request matcher:

	YAML# enables the profiler only for request coming for the 192.168.0.0 network
framework:
 profiler:
 matcher: { ip: 192.168.0.0/24 }

enables the profiler only for the /admin URLs
framework:
 profiler:
 matcher: { path: "^/admin/" }

combine rules
framework:
 profiler:
 matcher: { ip: 192.168.0.0/24, path: "^/admin/" }

use a custom matcher instance defined in the "custom_matcher" service
framework:
 profiler:
 matcher: { service: custom_matcher }

	XML<!-- enables the profiler only for request coming for the 192.168.0.0 network -->
<framework:config>
 <framework:profiler>
 <framework:matcher ip="192.168.0.0/24" />
 </framework:profiler>
</framework:config>

<!-- enables the profiler only for the /admin URLs -->
<framework:config>
 <framework:profiler>
 <framework:matcher path="^/admin/" />
 </framework:profiler>
</framework:config>

<!-- combine rules -->
<framework:config>
 <framework:profiler>
 <framework:matcher ip="192.168.0.0/24" path="^/admin/" />
 </framework:profiler>
</framework:config>

<!-- use a custom matcher instance defined in the "custom_matcher" service -->
<framework:config>
 <framework:profiler>
 <framework:matcher service="custom_matcher" />
 </framework:profiler>
</framework:config>

	PHP// enables the profiler only for request coming for the 192.168.0.0 network
$container->loadFromExtension('framework', array(
 'profiler' => array(
 'matcher' => array('ip' => '192.168.0.0/24'),
),
));

// enables the profiler only for the /admin URLs
$container->loadFromExtension('framework', array(
 'profiler' => array(
 'matcher' => array('path' => '^/admin/'),
),
));

// combine rules
$container->loadFromExtension('framework', array(
 'profiler' => array(
 'matcher' => array('ip' => '192.168.0.0/24', 'path' => '^/admin/'),
),
));

use a custom matcher instance defined in the "custom_matcher" service
$container->loadFromExtension('framework', array(
 'profiler' => array(
 'matcher' => array('service' => 'custom_matcher'),
),
));

Learn more from the Cookbook

	How to use the Profiler in a Functional Test

	How to create a custom Data Collector

	How to extend a Class without using Inheritance

	How to customize a Method Behavior without using Inheritance

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Book

The Symfony2 Stable API

The Symfony2 stable API is a subset of all Symfony2 published public methods
(components and core bundles) that share the following properties:

	The namespace and class name won’t change;

	The method name won’t change;

	The method signature (arguments and return value type) won’t change;

	The semantic of what the method does won’t change.

The implementation itself can change though. The only valid case for a change
in the stable API is in order to fix a security issue.

The stable API is based on a whitelist, tagged with @api. Therefore,
everything not tagged explicitly is not part of the stable API.

Tip

Any third party bundle should also publish its own stable API.

As of Symfony 2.0, the following components have a public tagged API:

	BrowserKit

	ClassLoader

	Console

	CssSelector

	DependencyInjection

	DomCrawler

	EventDispatcher

	Finder

	HttpFoundation

	HttpKernel

	Locale

	Process

	Routing

	Templating

	Translation

	Validator

	Yaml

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

Cookbook

	Workflow
	How to Create and store a Symfony2 Project in git

	How to Create and store a Symfony2 Project in Subversion

	Controllers
	How to customize Error Pages

	How to define Controllers as Services

	Routing
	How to force routes to always use HTTPS or HTTP

	How to allow a “/” character in a route parameter

	Handling JavaScript and CSS Assets
	How to Use Assetic for Asset Management

	How to Minify JavaScripts and Stylesheets with YUI Compressor

	How to Use Assetic For Image Optimization with Twig Functions

	How to Apply an Assetic Filter to a Specific File Extension

	Database Interaction (Doctrine)
	How to handle File Uploads with Doctrine

	Doctrine Extensions: Timestampable: Sluggable, Translatable, etc.

	Registering Event Listeners and Subscribers

	How to use Doctrine’s DBAL Layer

	How to generate Entities from an Existing Database

	How to work with Multiple Entity Managers

	Registering Custom DQL Functions

	Forms and Validation
	How to customize Form Rendering

	Using Data Transformers

	How to Dynamically Generate Forms Using Form Events

	How to Embed a Collection of Forms

	How to Create a Custom Form Field Type

	How to create a Custom Validation Constraint

	(doctrine) How to handle File Uploads with Doctrine

	Configuration and the Service Container
	How to Master and Create new Environments

	How to Set External Parameters in the Service Container

	How to Use a Factory to Create Services

	How to Manage Common Dependencies with Parent Services

	How to work with Scopes

	How to make your Services use Tags

	How to use PdoSessionStorage to store Sessions in the Database

	Bundles
	Bundle Structure and Best Practices

	How to use Bundle Inheritance to Override parts of a Bundle

	How to Override any Part of a Bundle

	How to expose a Semantic Configuration for a Bundle

	Emailing
	How to send an Email

	How to use Gmail to send Emails

	How to Work with Emails During Development

	How to Spool Email

	Testing
	How to simulate HTTP Authentication in a Functional Test

	How to test the Interaction of several Clients

	How to use the Profiler in a Functional Test

	How to test Doctrine Repositories

	Security
	How to load Security Users from the Database (the Entity Provider)

	How to add “Remember Me” Login Functionality

	How to implement your own Voter to blacklist IP Addresses

	Access Control Lists (ACLs)

	Advanced ACL Concepts

	How to force HTTPS or HTTP for Different URLs

	How to customize your Form Login

	How to secure any Service or Method in your Application

	How to create a custom User Provider

	How to create a custom Authentication Provider

	How to change the Default Target Path Behavior

	Caching
	How to use Varnish to speed up my Website

	Templating
	Injecting variables into all templates (i.e. Global Variables)

	How to use PHP instead of Twig for Templates

	Logging
	How to use Monolog to write Logs

	How to Configure Monolog to Email Errors

	Tools and Internals
	How to optimize your development Environment for debugging

	Web Services
	How to Create a SOAP Web Service in a Symfony2 Controller

	Extending Symfony
	How to extend a Class without using Inheritance

	How to customize a Method Behavior without using Inheritance

	How to register a new Request Format and Mime Type

	How to create a custom Data Collector

	Symfony2 for symfony1 Users
	How Symfony2 differs from symfony1

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Create and store a Symfony2 Project in git

Tip

Though this entry is specifically about git, the same generic principles
will apply if you’re storing your project in Subversion.

Once you’ve read through Creating Pages in Symfony2 and become familiar with
using Symfony, you’ll no-doubt be ready to start your own project. In this
cookbook article, you’ll learn the best way to start a new Symfony2 project
that’s stored using the git [http://git-scm.com/] source control management system.

Initial Project Setup

To get started, you’ll need to download Symfony and initialize your local
git repository:

	Download the Symfony2 Standard Edition [http://symfony.com/download] without vendors.

	Unzip/untar the distribution. It will create a folder called Symfony with
your new project structure, config files, etc. Rename it to whatever you like.

	Create a new file called .gitignore at the root of your new project
(e.g. next to the deps file) and paste the following into it. Files
matching these patterns will be ignored by git:

/web/bundles/
/app/bootstrap*
/app/cache/*
/app/logs/*
/vendor/
/app/config/parameters.yml

	Copy app/config/parameters.yml to app/config/parameters.yml.dist.
The parameters.yml file is ignored by git (see above) so that machine-specific
settings like database passwords aren’t committed. By creating the parameters.yml.dist
file, new developers can quickly clone the project, copy this file to
parameters.yml, customize it, and start developing.

	Initialize your git repository:

$ git init

	Add all of the initial files to git:

$ git add .

	Create an initial commit with your started project:

$ git commit -m "Initial commit"

	Finally, download all of the third-party vendor libraries:

$ php bin/vendors install

At this point, you have a fully-functional Symfony2 project that’s correctly
committed to git. You can immediately begin development, committing the new
changes to your git repository.

Tip

After execution of the command:

$ php bin/vendors install

your project will contain complete the git history of all the bundles
and libraries defined in the deps file. It can be as much as 100 MB!
You can remove the git history directories with the following command:

$ find vendor -name .git -type d | xargs rm -rf

The command removes all .git directories contained inside the
vendor directory.

If you want to update bundles defined in deps file after this, you
will have to reinstall them:

$ php bin/vendors install --reinstall

You can continue to follow along with the Creating Pages in Symfony2 chapter
to learn more about how to configure and develop inside your application.

Tip

The Symfony2 Standard Edition comes with some example functionality. To
remove the sample code, follow the instructions on the Standard Edition Readme [https://github.com/symfony/symfony-standard/blob/master/README.md].

Vendors and Submodules

Instead of using the deps, bin/vendors system for managing your vendor
libraries, you may instead choose to use native git submodules [http://book.git-scm.com/5_submodules.html]. There
is nothing wrong with this approach, though the deps system is the official
way to solve this problem and git submodules can be difficult to work with
at times.

Storing your Project on a Remote Server

You now have a fully-functional Symfony2 project stored in git. However,
in most cases, you’ll also want to store your project on a remote server
both for backup purposes, and so that other developers can collaborate on
the project.

The easiest way to store your project on a remote server is via GitHub [https://github.com/].
Public repositories are free, however you will need to pay a monthly fee
to host private repositories.

Alternatively, you can store your git repository on any server by creating
a barebones repository [http://progit.org/book/ch4-4.html] and then pushing to it. One library that helps
manage this is Gitolite [https://github.com/sitaramc/gitolite].

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Create and store a Symfony2 Project in Subversion

Tip

This entry is specifically about Subversion, and based on principles found
in How to Create and store a Symfony2 Project in git.

Once you’ve read through Creating Pages in Symfony2 and become familiar with
using Symfony, you’ll no-doubt be ready to start your own project. The
preferred method to manage Symfony2 projects is using git [http://git-scm.com/] but some prefer
to use Subversion [http://subversion.apache.org/] which is totally fine!. In this cookbook article, you’ll
learn how to manage your project using svn [http://subversion.apache.org/] in a similar manner you
would do with git [http://git-scm.com/].

Tip

This is a method to tracking your Symfony2 project in a Subversion
repository. There are several ways to do and this one is simply one that
works.

The Subversion Repository

For this article we will suppose that your repository layout follows the
widespread standard structure:

myproject/
 branches/
 tags/
 trunk/

Tip

Most subversion hosting should follow this standard practice. This
is the recommended layout in Version Control with Subversion [http://svnbook.red-bean.com/] and the
layout used by most free hosting (see Subversion hosting solutions).

Initial Project Setup

To get started, you’ll need to download Symfony2 and get the basic Subversion setup:

	Download the Symfony2 Standard Edition [http://symfony.com/download] without or without vendors.

	Unzip/untar the distribution. It will create a folder called Symfony with
your new project structure, config files, etc. Rename it to whatever you
like.

	Checkout the Subversion repository that will host this project. Let’s say it
is hosted on Google code [http://code.google.com/hosting/] and called myproject:

$ svn checkout http://myproject.googlecode.com/svn/trunk myproject

	Copy the Symfony2 project files in the subversion folder:

$ mv Symfony/* myproject/

	Let’s now set the ignore rules. Not everything should be stored in your
subversion repository. Some files (like the cache) are generated and
others (like the database configuration) are meant to be customized
on each machine. This makes use of the svn:ignore property, so that
we can ignore specific files.

$ cd myproject/
$ svn add --depth=empty app app/cache app/logs app/config web

$ svn propset svn:ignore "vendor" .
$ svn propset svn:ignore "bootstrap*" app/
$ svn propset svn:ignore "parameters.ini" app/config/
$ svn propset svn:ignore "*" app/cache/
$ svn propset svn:ignore "*" app/logs/

$ svn propset svn:ignore "bundles" web

$ svn ci -m "commit basic symfony ignore list (vendor, app/bootstrap*, app/config/parameters.ini, app/cache/*, app/logs/*, web/bundles)"

	The rest of the files can now be added and committed to the project:

$ svn add --force .
$ svn ci -m "add basic Symfony Standard 2.X.Y"

	Copy app/config/parameters.ini to app/config/parameters.ini.dist.
The parameters.ini file is ignored by svn (see above) so that
machine-specific settings like database passwords aren’t committed. By
creating the parameters.ini.dist file, new developers can quickly clone
the project, copy this file to parameters.ini, customize it, and start
developing.

	Finally, download all of the third-party vendor libraries:

$ php bin/vendors install

Tip

git [http://git-scm.com/] has to be installed to run bin/vendors, this is the protocol
used to fetch vendor libraries. This only means that git is used as
a tool to basically help download the libraries in the vendor/ directory.

At this point, you have a fully-functional Symfony2 project stored in your
Subversion repository. The development can start with commits in the Subversion
repository.

You can continue to follow along with the Creating Pages in Symfony2 chapter
to learn more about how to configure and develop inside your application.

Tip

The Symfony2 Standard Edition comes with some example functionality. To
remove the sample code, follow the instructions on the Standard Edition Readme [https://github.com/symfony/symfony-standard/blob/master/README.md].

Managing Vendor Libraries with bin/vendors and deps

Every Symfony project uses a group of third-party “vendor” libraries. One
way or another the goal is to download these files into your vendor/
directory and, ideally, to give you some sane way to manage the exact version
you need for each.

By default, these libraries are downloaded by running a php bin/vendors install
“downloader” script. This script reads from the deps file at the root
of your project. This is an ini-formatted script, which holds a list of each
of the external libraries you need, the directory each should be downloaded to,
and (optionally) the version to be downloaded. The bin/vendors script
uses git to downloaded these, solely because these external libraries
themselves tend to be stored via git. The bin/vendors script also reads
the deps.lock file, which allows you to pin each library to an exact
git commit hash.

It’s important to realize that these vendor libraries are not actually part
of your repository. Instead, they’re simply un-tracked files that are downloaded
into the vendor/ directory by the bin/vendors script. But since all
the information needed to download these files is saved in deps and deps.lock
(which are stored) in our repository), any other developer can use our
project, run php bin/vendors install, and download the exact same set
of vendor libraries. This means that you’re controlling exactly what each
vendor library looks like, without needing to actually commit them to your
repository.

So, whenever a developer uses your project, he/she should run the php bin/vendors install
script to ensure that all of the needed vendor libraries are downloaded.

Upgrading Symfony

Since Symfony is just a group of third-party libraries and third-party
libraries are entirely controlled through deps and deps.lock,
upgrading Symfony means simply upgrading each of these files to match
their state in the latest Symfony Standard Edition.

Of course, if you’ve added new entries to deps or deps.lock, be sure
to replace only the original parts (i.e. be sure not to also delete any of
your custom entries).

Caution

There is also a php bin/vendors update command, but this has nothing
to do with upgrading your project and you will normally not need to use
it. This command is used to freeze the versions of all of your vendor libraries
by updating them to the version specified in deps and recording it
into the deps.lock file.

Subversion hosting solutions

The biggest difference between git [http://git-scm.com/] and svn [http://subversion.apache.org/] is that Subversion needs a
central repository to work. You then have several solutions:

	Self hosting: create your own repository and access it either through the
filesystem or the network. To help in this task you can read Version Control
with Subversion [http://svnbook.red-bean.com/].

	Third party hosting: there are a lot of serious free hosting solutions
available like GitHub [http://github.com/], Google code [http://code.google.com/hosting/], SourceForge [http://sourceforge.net/] or Gna [http://gna.org/]. Some of them offer
git hosting as well.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to customize Error Pages

When any exception is thrown in Symfony2, the exception is caught inside the
Kernel class and eventually forwarded to a special controller,
TwigBundle:Exception:show for handling. This controller, which lives
inside the core TwigBundle, determines which error template to display and
the status code that should be set for the given exception.

Error pages can be customized in two different ways, depending on how much
control you need:

	Customize the error templates of the different error pages (explained below);

	Replace the default exception controller TwigBundle::Exception:show
with your own controller and handle it however you want (see
exception_controller in the Twig reference);

Tip

The customization of exception handling is actually much more powerful
than what’s written here. An internal event, kernel.exception, is thrown
which allows complete control over exception handling. For more
information, see kernel.exception Event.

All of the error templates live inside TwigBundle. To override the
templates, we simply rely on the standard method for overriding templates that
live inside a bundle. For more information, see
Overriding Bundle Templates.

For example, to override the default error template that’s shown to the
end-user, create a new template located at
app/Resources/TwigBundle/views/Exception/error.html.twig:

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>An Error Occurred: {{ status_text }}</title>
</head>
<body>
 <h1>Oops! An Error Occurred</h1>
 <h2>The server returned a "{{ status_code }} {{ status_text }}".</h2>
</body>
</html>

Tip

If you’re not familiar with Twig, don’t worry. Twig is a simple, powerful
and optional templating engine that integrates with Symfony2. For more
information about Twig see Creating and using Templates.

In addition to the standard HTML error page, Symfony provides a default error
page for many of the most common response formats, including JSON
(error.json.twig), XML, (error.xml.twig), and even Javascript
(error.js.twig), to name a few. To override any of these templates, just
create a new file with the same name in the
app/Resources/TwigBundle/views/Exception directory. This is the standard
way of overriding any template that lives inside a bundle.

Customizing the 404 Page and other Error Pages

You can also customize specific error templates according to the HTTP status
code. For instance, create a
app/Resources/TwigBundle/views/Exception/error404.html.twig template to
display a special page for 404 (page not found) errors.

Symfony uses the following algorithm to determine which template to use:

	First, it looks for a template for the given format and status code (like
error404.json.twig);

	If it does not exist, it looks for a template for the given format (like
error.json.twig);

	If it does not exist, it falls back to the HTML template (like
error.html.twig).

Tip

To see the full list of default error templates, see the
Resources/views/Exception directory of the TwigBundle. In a
standard Symfony2 installation, the TwigBundle can be found at
vendor/symfony/src/Symfony/Bundle/TwigBundle. Often, the easiest way
to customize an error page is to copy it from the TwigBundle into
app/Resources/TwigBundle/views/Exception and then modify it.

Note

The debug-friendly exception pages shown to the developer can even be
customized in the same way by creating templates such as
exception.html.twig for the standard HTML exception page or
exception.json.twig for the JSON exception page.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to define Controllers as Services

In the book, you’ve learned how easily a controller can be used when it
extends the base
Symfony\Bundle\FrameworkBundle\Controller\Controller class. While
this works fine, controllers can also be specified as services.

To refer to a controller that’s defined as a service, use the single colon (:)
notation. For example, suppose we’ve defined a service called
my_controller and we want to forward to a method called indexAction()
inside the service:

$this->forward('my_controller:indexAction', array('foo' => $bar));

You need to use the same notation when defining the route _controller
value:

my_controller:
 pattern: /
 defaults: { _controller: my_controller:indexAction }

To use a controller in this way, it must be defined in the service container
configuration. For more information, see the Service Container chapter.

When using a controller defined as a service, it will most likely not extend
the base Controller class. Instead of relying on its shortcut methods,
you’ll interact directly with the services that you need. Fortunately, this is
usually pretty easy and the base Controller class itself is a great source
on how to perform many common tasks.

Note

Specifying a controller as a service takes a little bit more work. The
primary advantage is that the entire controller or any services passed to
the controller can be modified via the service container configuration.
This is especially useful when developing an open-source bundle or any
bundle that will be used in many different projects. So, even if you don’t
specify your controllers as services, you’ll likely see this done in some
open-source Symfony2 bundles.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to force routes to always use HTTPS or HTTP

Sometimes, you want to secure some routes and be sure that they are always
accessed via the HTTPS protocol. The Routing component allows you to enforce
the URI scheme via the _scheme requirement:

	YAMLsecure:
 pattern: /secure
 defaults: { _controller: AcmeDemoBundle:Main:secure }
 requirements:
 _scheme: https

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="secure" pattern="/secure">
 <default key="_controller">AcmeDemoBundle:Main:secure</default>
 <requirement key="_scheme">https</requirement>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('secure', new Route('/secure', array(
 '_controller' => 'AcmeDemoBundle:Main:secure',
), array(
 '_scheme' => 'https',
)));

return $collection;

The above configuration forces the secure route to always use HTTPS.

When generating the secure URL, and if the current scheme is HTTP, Symfony
will automatically generate an absolute URL with HTTPS as the scheme:

If the current scheme is HTTPS
{{ path('secure') }}
generates /secure

If the current scheme is HTTP
{{ path('secure') }}
generates https://example.com/secure

The requirement is also enforced for incoming requests. If you try to access
the /secure path with HTTP, you will automatically be redirected to the
same URL, but with the HTTPS scheme.

The above example uses https for the _scheme, but you can also force a
URL to always use http.

Note

The Security component provides another way to enforce HTTP or HTTPs via
the requires_channel setting. This alternative method is better suited
to secure an “area” of your website (all URLs under /admin) or when
you want to secure URLs defined in a third party bundle.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to allow a “/” character in a route parameter

Sometimes, you need to compose URLs with parameters that can contain a slash
/. For example, take the classic /hello/{name} route. By default,
/hello/Fabien will match this route but not /hello/Fabien/Kris. This
is because Symfony uses this character as separator between route parts.

This guide covers how you can modify a route so that /hello/Fabien/Kris
matches the /hello/{name} route, where {name} equals Fabien/Kris.

Configure the Route

By default, the symfony routing components requires that the parameters
match the following regex pattern: [^/]+. This means that all characters
are allowed except /.

You must explicitly allow / to be part of your parameter by specifying
a more permissive regex pattern.

	YAML_hello:
 pattern: /hello/{name}
 defaults: { _controller: AcmeDemoBundle:Demo:hello }
 requirements:
 name: ".+"

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="_hello" pattern="/hello/{name}">
 <default key="_controller">AcmeDemoBundle:Demo:hello</default>
 <requirement key="name">.+</requirement>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('_hello', new Route('/hello/{name}', array(
 '_controller' => 'AcmeDemoBundle:Demo:hello',
), array(
 'name' => '.+',
)));

return $collection;

	Annotationsuse Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class DemoController
{
 /**
 * @Route("/hello/{name}", name="_hello", requirements={"name" = ".+"})
 */
 public function helloAction($name)
 {
 // ...
 }
}

That’s it! Now, the {name} parameter can contain the / character.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Use Assetic for Asset Management

Assetic combines two major ideas: assets and filters. The assets are files
such as CSS, JavaScript and image files. The filters are things that can
be applied to these files before they are served to the browser. This allows
a separation between the asset files stored in the application and the files
actually presented to the user.

Without Assetic, you just serve the files that are stored in the application
directly:

	Twig<script src="{{ asset('js/script.js') }}" type="text/javascript" />

	PHP<script src="<?php echo $view['assets']->getUrl('js/script.js') ?>"
 type="text/javascript" />

But with Assetic, you can manipulate these assets however you want (or
load them from anywhere) before serving them. These means you can:

	Minify and combine all of your CSS and JS files

	Run all (or just some) of your CSS or JS files through some sort of compiler,
such as LESS, SASS or CoffeeScript

	Run image optimizations on your images

Assets

Using Assetic provides many advantages over directly serving the files.
The files do not need to be stored where they are served from and can be
drawn from various sources such as from within a bundle:

	Twig{% javascripts
 '@AcmeFooBundle/Resources/public/js/*'
%}
<script type="text/javascript" src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AcmeFooBundle/Resources/public/js/*')) as $url): ?>
<script type="text/javascript" src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach; ?>

Tip

To bring in CSS stylesheets, you can use the same methodologies seen
in this entry, except with the stylesheets tag:

	Twig{% stylesheets
 '@AcmeFooBundle/Resources/public/css/*'
%}
<link rel="stylesheet" href="{{ asset_url }}" />
{% endstylesheets %}

	PHP<?php foreach ($view['assetic']->stylesheets(
 array('@AcmeFooBundle/Resources/public/css/*')) as $url): ?>
<link rel="stylesheet" href="<?php echo $view->escape($url) ?>" />
<?php endforeach; ?>

In this example, all of the files in the Resources/public/js/ directory
of the AcmeFooBundle will be loaded and served from a different location.
The actual rendered tag might simply look like:

<script src="/app_dev.php/js/abcd123.js"></script>

Note

This is a key point: once you let Assetic handle your assets, the files are
served from a different location. This can cause problems with CSS files
that reference images by their relative path. However, this can be fixed
by using the cssrewrite filter, which updates paths in CSS files
to reflect their new location.

Combining Assets

You can also combine several files into one. This helps to reduce the number
of HTTP requests, which is great for front end performance. It also allows
you to maintain the files more easily by splitting them into manageable parts.
This can help with re-usability as you can easily split project-specific
files from those which can be used in other applications, but still serve
them as a single file:

	Twig{% javascripts
 '@AcmeFooBundle/Resources/public/js/*'
 '@AcmeBarBundle/Resources/public/js/form.js'
 '@AcmeBarBundle/Resources/public/js/calendar.js'
%}
<script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AcmeFooBundle/Resources/public/js/*',
 '@AcmeBarBundle/Resources/public/js/form.js',
 '@AcmeBarBundle/Resources/public/js/calendar.js')) as $url): ?>
<script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach; ?>

In the dev environment, each file is still served individually, so that
you can debug problems more easily. However, in the prod environment, this
will be rendered as a single script tag.

Tip

If you’re new to Assetic and try to use your application in the prod
environment (by using the app.php controller), you’ll likely see
that all of your CSS and JS breaks. Don’t worry! This is on purpose.
For details on using Assetic in the prod environment, see Dumping Asset Files.

And combining files doesn’t only apply to your files. You can also use Assetic to
combine third party assets, such as jQuery, with your own into a single file:

	Twig{% javascripts
 '@AcmeFooBundle/Resources/public/js/thirdparty/jquery.js'
 '@AcmeFooBundle/Resources/public/js/*'
%}
<script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AcmeFooBundle/Resources/public/js/thirdparty/jquery.js',
 '@AcmeFooBundle/Resources/public/js/*')) as $url): ?>
<script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach; ?>

Filters

Once they’re managed by Assetic, you can apply filters to your assets before
they are served. This includes filters that compress the output of your assets
for smaller file sizes (and better front-end optimization). Other filters
can compile JavaScript file from CoffeeScript files and process SASS into CSS.
In fact, Assetic has a long list of available filters.

Many of the filters do not do the work directly, but use existing third-party
libraries to do the heavy-lifting. This means that you’ll often need to install
a third-party library to use a filter. The great advantage of using Assetic
to invoke these libraries (as opposed to using them directly) is that instead
of having to run them manually after you work on the files, Assetic will
take care of this for you and remove this step altogether from your development
and deployment processes.

To use a filter, you first need to specify it in the Assetic configuration.
Adding a filter here doesn’t mean it’s being used - it just means that it’s
available to use (we’ll use the filter below).

For example to use the JavaScript YUI Compressor the following config should
be added:

	YAML# app/config/config.yml
assetic:
 filters:
 yui_js:
 jar: "%kernel.root_dir%/Resources/java/yuicompressor.jar"

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="yui_js"
 jar="%kernel.root_dir%/Resources/java/yuicompressor.jar" />
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'yui_js' => array(
 'jar' => '%kernel.root_dir%/Resources/java/yuicompressor.jar',
),
),
));

Now, to actually use the filter on a group of JavaScript files, add it
into your template:

	Twig{% javascripts
 '@AcmeFooBundle/Resources/public/js/*'
 filter='yui_js'
%}
<script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AcmeFooBundle/Resources/public/js/*'),
 array('yui_js')) as $url): ?>
<script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach; ?>

A more detailed guide about configuring and using Assetic filters as well as
details of Assetic’s debug mode can be found in How to Minify JavaScripts and Stylesheets with YUI Compressor.

Controlling the URL used

If you wish to, you can control the URLs that Assetic produces. This is
done from the template and is relative to the public document root:

	Twig{% javascripts
 '@AcmeFooBundle/Resources/public/js/*'
 output='js/compiled/main.js'
%}
<script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AcmeFooBundle/Resources/public/js/*'),
 array(),
 array('output' => 'js/compiled/main.js')
) as $url): ?>
<script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach; ?>

Note

Symfony also contains a method for cache busting, where the final URL
generated by Assetic contains a query parameter that can be incremented
via configuration on each deployment. For more information, see the
assets_version configuration option.

Dumping Asset Files

In the dev environment, Assetic generates paths to CSS and JavaScript
files that don’t physically exist on your computer. But they render nonetheless
because an internal Symfony controller opens the files and serves back the
content (after running any filters).

This kind of dynamic serving of processed assets is great because it means
that you can immediately see the new state of any asset files you change.
It’s also bad, because it can be quite slow. If you’re using a lot of filters,
it might be downright frustrating.

Fortunately, Assetic provides a way to dump your assets to real files, instead
of being generated dynamically.

Dumping Asset Files in the prod environment

In the prod environment, your JS and CSS files are represented by a single
tag each. In other words, instead of seeing each JavaScript file you’re including
in your source, you’ll likely just see something like this:

<script src="/app_dev.php/js/abcd123.js"></script>

Moreover, that file does not actually exist, nor is it dynamically rendered
by Symfony (as the asset files are in the dev environment). This is on
purpose - letting Symfony generate these files dynamically in a production
environment is just too slow.

Instead, each time you use your app in the prod environment (and therefore,
each time you deploy), you should run the following task:

php app/console assetic:dump --env=prod --no-debug

This will physically generate and write each file that you need (e.g. /js/abcd123.js).
If you update any of your assets, you’ll need to run this again to regenerate
the file.

Dumping Asset Files in the dev environment

By default, each asset path generated in the dev environment is handled
dynamically by Symfony. This has no disadvantage (you can see your changes
immediately), except that assets can load noticeably slow. If you feel like
your assets are loading too slowly, follow this guide.

First, tell Symfony to stop trying to process these files dynamically. Make
the following change in your config_dev.yml file:

	YAML# app/config/config_dev.yml
assetic:
 use_controller: false

	XML<!-- app/config/config_dev.xml -->
<assetic:config use-controller="false" />

	PHP// app/config/config_dev.php
$container->loadFromExtension('assetic', array(
 'use_controller' => false,
));

Next, since Symfony is no longer generating these assets for you, you’ll
need to dump them manually. To do so, run the following:

php app/console assetic:dump

This physically writes all of the asset files you need for your dev
environment. The big disadvantage is that you need to run this each time
you update an asset. Fortunately, by passing the --watch option, the
command will automatically regenerate assets as they change:

php app/console assetic:dump --watch

Since running this command in the dev environment may generate a bunch
of files, it’s usually a good idea to point your generated assets files to
some isolated directory (e.g. /js/compiled), to keep things organized:

	Twig{% javascripts
 '@AcmeFooBundle/Resources/public/js/*'
 output='js/compiled/main.js'
%}
<script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AcmeFooBundle/Resources/public/js/*'),
 array(),
 array('output' => 'js/compiled/main.js')
) as $url): ?>
<script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach; ?>

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Minify JavaScripts and Stylesheets with YUI Compressor

Yahoo! provides an excellent utility for minifying JavaScripts and stylesheets
so they travel over the wire faster, the YUI Compressor [http://developer.yahoo.com/yui/compressor/]. Thanks to Assetic,
you can take advantage of this tool very easily.

Download the YUI Compressor JAR

The YUI Compressor is written in Java and distributed as a JAR. Download the JAR [http://yuilibrary.com/downloads/#yuicompressor]
from the Yahoo! site and save it to app/Resources/java/yuicompressor.jar.

Configure the YUI Filters

Now you need to configure two Assetic filters in your application, one for
minifying JavaScripts with the YUI Compressor and one for minifying
stylesheets:

	YAML# app/config/config.yml
assetic:
 filters:
 yui_css:
 jar: "%kernel.root_dir%/Resources/java/yuicompressor.jar"
 yui_js:
 jar: "%kernel.root_dir%/Resources/java/yuicompressor.jar"

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="yui_css"
 jar="%kernel.root_dir%/Resources/java/yuicompressor.jar" />
 <assetic:filter
 name="yui_js"
 jar="%kernel.root_dir%/Resources/java/yuicompressor.jar" />
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'yui_css' => array(
 'jar' => '%kernel.root_dir%/Resources/java/yuicompressor.jar',
),
 'yui_js' => array(
 'jar' => '%kernel.root_dir%/Resources/java/yuicompressor.jar',
),
),
));

You now have access to two new Assetic filters in your application:
yui_css and yui_js. These will use the YUI Compressor to minify
stylesheets and JavaScripts, respectively.

Minify your Assets

You have YUI Compressor configured now, but nothing is going to happen until
you apply one of these filters to an asset. Since your assets are a part of
the view layer, this work is done in your templates:

	Twig{% javascripts '@AcmeFooBundle/Resources/public/js/*' filter='yui_js' %}
<script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AcmeFooBundle/Resources/public/js/*'),
 array('yui_js')) as $url): ?>
<script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach; ?>

Note

The above example assumes that you have a bundle called AcmeFooBundle
and your JavaScript files are in the Resources/public/js directory under
your bundle. This isn’t important however - you can include your Javascript
files no matter where they are.

With the addition of the yui_js filter to the asset tags above, you should
now see minified JavaScripts coming over the wire much faster. The same process
can be repeated to minify your stylesheets.

	Twig{% stylesheets '@AcmeFooBundle/Resources/public/css/*' filter='yui_css' %}
<link rel="stylesheet" type="text/css" media="screen" href="{{ asset_url }}" />
{% endstylesheets %}

	PHP<?php foreach ($view['assetic']->stylesheets(
 array('@AcmeFooBundle/Resources/public/css/*'),
 array('yui_css')) as $url): ?>
<link rel="stylesheet" type="text/css" media="screen" href="<?php echo $view->escape($url) ?>" />
<?php endforeach; ?>

Disable Minification in Debug Mode

Minified JavaScripts and Stylesheets are very difficult to read, let alone
debug. Because of this, Assetic lets you disable a certain filter when your
application is in debug mode. You can do this be prefixing the filter name
in your template with a question mark: ?. This tells Assetic to only
apply this filter when debug mode is off.

	Twig{% javascripts '@AcmeFooBundle/Resources/public/js/*' filter='?yui_js' %}
<script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AcmeFooBundle/Resources/public/js/*'),
 array('?yui_js')) as $url): ?>
<script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach; ?>

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Use Assetic For Image Optimization with Twig Functions

Amongst its many filters, Assetic has four filters which can be used for on-the-fly
image optimization. This allows you to get the benefits of smaller file sizes
without having to use an image editor to process each image. The results
are cached and can be dumped for production so there is no performance hit
for your end users.

Using Jpegoptim

Jpegoptim [http://www.kokkonen.net/tjko/projects.html] is a utility for optimizing JPEG files. To use it with Assetic,
add the following to the Assetic config:

	YAML# app/config/config.yml
assetic:
 filters:
 jpegoptim:
 bin: path/to/jpegoptim

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="jpegoptim"
 bin="path/to/jpegoptim" />
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'jpegoptim' => array(
 'bin' => 'path/to/jpegoptim',
),
),
));

Note

Notice that to use jpegoptim, you must have it already installed on your
system. The bin option points to the location of the compiled binary.

It can now be used from a template:

	Twig{% image '@AcmeFooBundle/Resources/public/images/example.jpg'
 filter='jpegoptim' output='/images/example.jpg'
%}

{% endimage %}

	PHP<?php foreach ($view['assetic']->images(
 array('@AcmeFooBundle/Resources/public/images/example.jpg'),
 array('jpegoptim')) as $url): ?>
<img src="<?php echo $view->escape($url) ?>" alt="Example"/>
<?php endforeach; ?>

Removing all EXIF Data

By default, running this filter only removes some of the meta information
stored in the file. Any EXIF data and comments are not removed, but you can
remove these by using the strip_all option:

	YAML# app/config/config.yml
assetic:
 filters:
 jpegoptim:
 bin: path/to/jpegoptim
 strip_all: true

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="jpegoptim"
 bin="path/to/jpegoptim"
 strip_all="true" />
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'jpegoptim' => array(
 'bin' => 'path/to/jpegoptim',
 'strip_all' => 'true',
),
),
));

Lowering Maximum Quality

The quality level of the JPEG is not affected by default. You can gain
further file size reductions by setting the max quality setting lower than
the current level of the images. This will of course be at the expense of
image quality:

	YAML# app/config/config.yml
assetic:
 filters:
 jpegoptim:
 bin: path/to/jpegoptim
 max: 70

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="jpegoptim"
 bin="path/to/jpegoptim"
 max="70" />
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'jpegoptim' => array(
 'bin' => 'path/to/jpegoptim',
 'max' => '70',
),
),
));

Shorter syntax: Twig Function

If you’re using Twig, it’s possible to achieve all of this with a shorter
syntax by enabling and using a special Twig function. Start by adding the
following config:

	YAML# app/config/config.yml
assetic:
 filters:
 jpegoptim:
 bin: path/to/jpegoptim
 twig:
 functions:
 jpegoptim: ~

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="jpegoptim"
 bin="path/to/jpegoptim" />
 <assetic:twig>
 <assetic:twig_function
 name="jpegoptim" />
 </assetic:twig>
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'jpegoptim' => array(
 'bin' => 'path/to/jpegoptim',
),
),
 'twig' => array(
 'functions' => array('jpegoptim'),
),
),
));

The Twig template can now be changed to the following:

<img src="{{ jpegoptim('@AcmeFooBundle/Resources/public/images/example.jpg') }}"
 alt="Example"/>

You can specify the output directory in the config in the following way:

	YAML# app/config/config.yml
assetic:
 filters:
 jpegoptim:
 bin: path/to/jpegoptim
 twig:
 functions:
 jpegoptim: { output: images/*.jpg }

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="jpegoptim"
 bin="path/to/jpegoptim" />
 <assetic:twig>
 <assetic:twig_function
 name="jpegoptim"
 output="images/*.jpg" />
 </assetic:twig>
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'jpegoptim' => array(
 'bin' => 'path/to/jpegoptim',
),
),
 'twig' => array(
 'functions' => array(
 'jpegoptim' => array(
 output => 'images/*.jpg'
),
),
),
));

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Apply an Assetic Filter to a Specific File Extension

Assetic filters can be applied to individual files, groups of files or even,
as you’ll see here, files that have a specific extension. To show you how
to handle each option, let’s suppose that you want to use Assetic’s CoffeeScript
filter, which compiles CoffeeScript files into Javascript.

The main configuration is just the paths to coffee and node. These default
respectively to /usr/bin/coffee and /usr/bin/node:

	YAML# app/config/config.yml
assetic:
 filters:
 coffee:
 bin: /usr/bin/coffee
 node: /usr/bin/node

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="coffee"
 bin="/usr/bin/coffee"
 node="/usr/bin/node" />
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'coffee' => array(
 'bin' => '/usr/bin/coffee',
 'node' => '/usr/bin/node',
),
),
));

Filter a Single File

You can now serve up a single CoffeeScript file as JavaScript from within your
templates:

	Twig{% javascripts '@AcmeFooBundle/Resources/public/js/example.coffee'
 filter='coffee'
%}
<script src="{{ asset_url }}" type="text/javascript"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AcmeFooBundle/Resources/public/js/example.coffee'),
 array('coffee')) as $url): ?>
<script src="<?php echo $view->escape($url) ?>" type="text/javascript"></script>
<?php endforeach; ?>

This is all that’s needed to compile this CoffeeScript file and server it
as the compiled JavaScript.

Filter Multiple Files

You can also combine multiple CoffeeScript files into a single output file:

	Twig{% javascripts '@AcmeFooBundle/Resources/public/js/example.coffee'
 '@AcmeFooBundle/Resources/public/js/another.coffee'
 filter='coffee'
%}
<script src="{{ asset_url }}" type="text/javascript"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AcmeFooBundle/Resources/public/js/example.coffee',
 '@AcmeFooBundle/Resources/public/js/another.coffee'),
 array('coffee')) as $url): ?>
<script src="<?php echo $view->escape($url) ?>" type="text/javascript"></script>
<?php endforeach; ?>

Both the files will now be served up as a single file compiled into regular
JavaScript.

Filtering based on a File Extension

One of the great advantages of using Assetic is reducing the number of asset
files to lower HTTP requests. In order to make full use of this, it would
be good to combine all your JavaScript and CoffeeScript files together
since they will ultimately all be served as JavaScript. Unfortunately just
adding the JavaScript files to the files to be combined as above will not
work as the regular JavaScript files will not survive the CoffeeScript compilation.

This problem can be avoided by using the apply_to option in the config,
which allows you to specify that a filter should always be applied to particular
file extensions. In this case you can specify that the Coffee filter is
applied to all .coffee files:

	YAML# app/config/config.yml
assetic:
 filters:
 coffee:
 bin: /usr/bin/coffee
 node: /usr/bin/node
 apply_to: "\.coffee$"

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="coffee"
 bin="/usr/bin/coffee"
 node="/usr/bin/node"
 apply_to="\.coffee$" />
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'coffee' => array(
 'bin' => '/usr/bin/coffee',
 'node' => '/usr/bin/node',
 'apply_to' => '\.coffee$',
),
),
));

With this, you no longer need to specify the coffee filter in the template.
You can also list regular JavaScript files, all of which will be combined
and rendered as a single JavaScript file (with only the .coffee files
being run through the CoffeeScript filter):

	Twig{% javascripts '@AcmeFooBundle/Resources/public/js/example.coffee'
 '@AcmeFooBundle/Resources/public/js/another.coffee'
 '@AcmeFooBundle/Resources/public/js/regular.js'
%}
<script src="{{ asset_url }}" type="text/javascript"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AcmeFooBundle/Resources/public/js/example.coffee',
 '@AcmeFooBundle/Resources/public/js/another.coffee',
 '@AcmeFooBundle/Resources/public/js/regular.js'),
 as $url): ?>
<script src="<?php echo $view->escape($url) ?>" type="text/javascript"></script>
<?php endforeach; ?>

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to handle File Uploads with Doctrine

Handling file uploads with Doctrine entities is no different than handling
any other file upload. In other words, you’re free to move the file in your
controller after handling a form submission. For examples of how to do this,
see the file type reference page.

If you choose to, you can also integrate the file upload into your entity
lifecycle (i.e. creation, update and removal). In this case, as your entity
is created, updated, and removed from Doctrine, the file uploading and removal
processing will take place automatically (without needing to do anything in
your controller);

To make this work, you’ll need to take care of a number of details, which
will be covered in this cookbook entry.

Basic Setup

First, create a simple Doctrine Entity class to work with:

// src/Acme/DemoBundle/Entity/Document.php
namespace Acme\DemoBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Symfony\Component\Validator\Constraints as Assert;

/**
 * @ORM\Entity
 */
class Document
{
 /**
 * @ORM\Id
 * @ORM\Column(type="integer")
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 public $id;

 /**
 * @ORM\Column(type="string", length=255)
 * @Assert\NotBlank
 */
 public $name;

 /**
 * @ORM\Column(type="string", length=255, nullable=true)
 */
 public $path;

 public function getAbsolutePath()
 {
 return null === $this->path ? null : $this->getUploadRootDir().'/'.$this->path;
 }

 public function getWebPath()
 {
 return null === $this->path ? null : $this->getUploadDir().'/'.$this->path;
 }

 protected function getUploadRootDir()
 {
 // the absolute directory path where uploaded documents should be saved
 return __DIR__.'/../../../../web/'.$this->getUploadDir();
 }

 protected function getUploadDir()
 {
 // get rid of the __DIR__ so it doesn't screw when displaying uploaded doc/image in the view.
 return 'uploads/documents';
 }
}

The Document entity has a name and it is associated with a file. The path
property stores the relative path to the file and is persisted to the database.
The getAbsolutePath() is a convenience method that returns the absolute
path to the file while the getWebPath() is a convenience method that
returns the web path, which can be used in a template to link to the uploaded
file.

Tip

If you have not done so already, you should probably read the
file type documentation first to
understand how the basic upload process works.

Note

If you’re using annotations to specify your validation rules (as shown
in this example), be sure that you’ve enabled validation by annotation
(see validation configuration).

To handle the actual file upload in the form, use a “virtual” file field.
For example, if you’re building your form directly in a controller, it might
look like this:

public function uploadAction()
{
 // ...

 $form = $this->createFormBuilder($document)
 ->add('name')
 ->add('file')
 ->getForm()
 ;

 // ...
}

Next, create this property on your Document class and add some validation
rules:

// src/Acme/DemoBundle/Entity/Document.php

// ...
class Document
{
 /**
 * @Assert\File(maxSize="6000000")
 */
 public $file;

 // ...
}

Note

As you are using the File constraint, Symfony2 will automatically guess
that the form field is a file upload input. That’s why you did not have
to set it explicitly when creating the form above (->add('file')).

The following controller shows you how to handle the entire process:

use Acme\DemoBundle\Entity\Document;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;
// ...

/**
 * @Template()
 */
public function uploadAction()
{
 $document = new Document();
 $form = $this->createFormBuilder($document)
 ->add('name')
 ->add('file')
 ->getForm()
 ;

 if ($this->getRequest()->getMethod() === 'POST') {
 $form->bindRequest($this->getRequest());
 if ($form->isValid()) {
 $em = $this->getDoctrine()->getEntityManager();

 $em->persist($document);
 $em->flush();

 $this->redirect($this->generateUrl('...'));
 }
 }

 return array('form' => $form->createView());
}

Note

When writing the template, don’t forget to set the enctype attribute:

<h1>Upload File</h1>

<form action="#" method="post" {{ form_enctype(form) }}>
 {{ form_widget(form) }}

 <input type="submit" value="Upload Document" />
</form>

The previous controller will automatically persist the Document entity
with the submitted name, but it will do nothing about the file and the path
property will be blank.

An easy way to handle the file upload is to move it just before the entity is
persisted and then set the path property accordingly. Start by calling
a new upload() method on the Document class, which you’ll create
in a moment to handle the file upload:

if ($form->isValid()) {
 $em = $this->getDoctrine()->getEntityManager();

 $document->upload();

 $em->persist($document);
 $em->flush();

 $this->redirect('...');
}

The upload() method will take advantage of the Symfony\Component\HttpFoundation\File\UploadedFile
object, which is what’s returned after a file field is submitted:

public function upload()
{
 // the file property can be empty if the field is not required
 if (null === $this->file) {
 return;
 }

 // we use the original file name here but you should
 // sanitize it at least to avoid any security issues

 // move takes the target directory and then the target filename to move to
 $this->file->move($this->getUploadRootDir(), $this->file->getClientOriginalName());

 // set the path property to the filename where you'ved saved the file
 $this->path = $this->file->getClientOriginalName();

 // clean up the file property as you won't need it anymore
 $this->file = null;
}

Using Lifecycle Callbacks

Even if this implementation works, it suffers from a major flaw: What if there
is a problem when the entity is persisted? The file would have already moved
to its final location even though the entity’s path property didn’t
persist correctly.

To avoid these issues, you should change the implementation so that the database
operation and the moving of the file become atomic: if there is a problem
persisting the entity or if the file cannot be moved, then nothing should
happen.

To do this, you need to move the file right as Doctrine persists the entity
to the database. This can be accomplished by hooking into an entity lifecycle
callback:

/**
 * @ORM\Entity
 * @ORM\HasLifecycleCallbacks
 */
class Document
{
}

Next, refactor the Document class to take advantage of these callbacks:

use Symfony\Component\HttpFoundation\File\UploadedFile;

/**
 * @ORM\Entity
 * @ORM\HasLifecycleCallbacks
 */
class Document
{
 /**
 * @ORM\PrePersist()
 * @ORM\PreUpdate()
 */
 public function preUpload()
 {
 if (null !== $this->file) {
 // do whatever you want to generate a unique name
 $this->path = uniqid().'.'.$this->file->guessExtension();
 }
 }

 /**
 * @ORM\PostPersist()
 * @ORM\PostUpdate()
 */
 public function upload()
 {
 if (null === $this->file) {
 return;
 }

 // if there is an error when moving the file, an exception will
 // be automatically thrown by move(). This will properly prevent
 // the entity from being persisted to the database on error
 $this->file->move($this->getUploadRootDir(), $this->path);

 unset($this->file);
 }

 /**
 * @ORM\PostRemove()
 */
 public function removeUpload()
 {
 if ($file = $this->getAbsolutePath()) {
 unlink($file);
 }
 }
}

The class now does everything you need: it generates a unique filename before
persisting, moves the file after persisting, and removes the file if the
entity is ever deleted.

Note

The @ORM\PrePersist() and @ORM\PostPersist() event callbacks are
triggered before and after the entity is persisted to the database. On the
other hand, the @ORM\PreUpdate() and @ORM\PostUpdate() event
callbacks are called when the entity is updated.

Caution

The PreUpdate and PostUpdate callbacks are only triggered if there
is a change in one of the entity’s field that are persisted. This means
that, by default, if you modify only the $file property, these events
will not be triggered, as the property itself is not directly persisted
via Doctrine. One solution would be to use an updated field that’s
persisted to Doctrine, and to modify it manually when changing the file.

Using the id as the filename

If you want to use the id as the name of the file, the implementation is
slightly different as you need to save the extension under the path
property, instead of the actual filename:

use Symfony\Component\HttpFoundation\File\UploadedFile;

/**
 * @ORM\Entity
 * @ORM\HasLifecycleCallbacks
 */
class Document
{
 /**
 * @ORM\PrePersist()
 * @ORM\PreUpdate()
 */
 public function preUpload()
 {
 if (null !== $this->file) {
 $this->path = $this->file->guessExtension();
 }
 }

 /**
 * @ORM\PostPersist()
 * @ORM\PostUpdate()
 */
 public function upload()
 {
 if (null === $this->file) {
 return;
 }

 // you must throw an exception here if the file cannot be moved
 // so that the entity is not persisted to the database
 // which the UploadedFile move() method does
 $this->file->move($this->getUploadRootDir(), $this->id.'.'.$this->file->guessExtension());

 unset($this->file);
 }

 /**
 * @ORM\PostRemove()
 */
 public function removeUpload()
 {
 if ($file = $this->getAbsolutePath()) {
 unlink($file);
 }
 }

 public function getAbsolutePath()
 {
 return null === $this->path ? null : $this->getUploadRootDir().'/'.$this->id.'.'.$this->path;
 }
}

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

Doctrine Extensions: Timestampable: Sluggable, Translatable, etc.

Doctrine2 is very flexible, and the community has already created a series
of useful Doctrine extensions to help you with tasks common entity-related
tasks.

One bundle in particular - the DoctrineExtensionsBundle [https://github.com/stof/StofDoctrineExtensionsBundle] - provides integration
with an extensions library that offers Sluggable [https://github.com/l3pp4rd/DoctrineExtensions/blob/master/doc/sluggable.md], Translatable [https://github.com/l3pp4rd/DoctrineExtensions/blob/master/doc/translatable.md], Timestampable [https://github.com/l3pp4rd/DoctrineExtensions/blob/master/doc/timestampable.md],
Loggable [https://github.com/l3pp4rd/DoctrineExtensions/blob/master/doc/loggable.md], and Tree [https://github.com/l3pp4rd/DoctrineExtensions/blob/master/doc/tree.md] behaviors.

See the bundle for more details.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

Registering Event Listeners and Subscribers

Doctrine packages a rich event system that fires events when almost anything
happens inside the system. For you, this means that you can create arbitrary
services and tell Doctrine to notify those
objects whenever a certain action (e.g. prePersist) happens within Doctrine.
This could be useful, for example, to create an independent search index
whenever an object in your database is saved.

Doctrine defines two types of objects that can listen to Doctrine events:
listeners and subscribers. Both are very similar, but listeners are a bit
more straightforward. For more, see The Event System [http://www.doctrine-project.org/docs/orm/2.0/en/reference/events.html] on Doctrine’s website.

Configuring the Listener/Subscriber

To register a service to act as an event listener or subscriber you just have
to tag it with the appropriate name. Depending
on your use-case, you can hook a listener into every DBAL connection and ORM
entity manager or just into one specific DBAL connection and all the entity
managers that use this connection.

	YAMLdoctrine:
 dbal:
 default_connection: default
 connections:
 default:
 driver: pdo_sqlite
 memory: true

services:
 my.listener:
 class: Acme\SearchBundle\Listener\SearchIndexer
 tags:
 - { name: doctrine.event_listener, event: postPersist }
 my.listener2:
 class: Acme\SearchBundle\Listener\SearchIndexer2
 tags:
 - { name: doctrine.event_listener, event: postPersist, connection: default }
 my.subscriber:
 class: Acme\SearchBundle\Listener\SearchIndexerSubscriber
 tags:
 - { name: doctrine.event_subscriber, connection: default }

	XML<?xml version="1.0" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:doctrine="http://symfony.com/schema/dic/doctrine">

 <doctrine:config>
 <doctrine:dbal default-connection="default">
 <doctrine:connection driver="pdo_sqlite" memory="true" />
 </doctrine:dbal>
 </doctrine:config>

 <services>
 <service id="my.listener" class="Acme\SearchBundle\Listener\SearchIndexer">
 <tag name="doctrine.event_listener" event="postPersist" />
 </service>
 <service id="my.listener2" class="Acme\SearchBundle\Listener\SearchIndexer2">
 <tag name="doctrine.event_listener" event="postPersist" connection="default" />
 </service>
 <service id="my.subscriber" class="Acme\SearchBundle\Listener\SearchIndexerSubscriber">
 <tag name="doctrine.event_subscriber" connection="default" />
 </service>
 </services>
</container>

Creating the Listener Class

In the previous example, a service my.listener was configured as a Doctrine
listener on the event postPersist. That class behind that service must have
a postPersist method, which will be called when the event is thrown:

// src/Acme/SearchBundle/Listener/SearchIndexer.php
namespace Acme\SearchBundle\Listener;

use Doctrine\ORM\Event\LifecycleEventArgs;
use Acme\StoreBundle\Entity\Product;

class SearchIndexer
{
 public function postPersist(LifecycleEventArgs $args)
 {
 $entity = $args->getEntity();
 $entityManager = $args->getEntityManager();

 // perhaps you only want to act on some "Product" entity
 if ($entity instanceof Product) {
 // do something with the Product
 }
 }
}

In each event, you have access to a LifecycleEventArgs object, which
gives you access to both the entity object of the event and the entity manager
itself.

One important thing to notice is that a listener will be listening for all
entities in your application. So, if you’re interested in only handling a
specific type of entity (e.g. a Product entity but not a BlogPost
entity), you should check for the class name of the entity in your method
(as shown above).

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to generate Entities from an Existing Database

When starting work on a brand new project that uses a database, two different
situations comes naturally. In most cases, the database model is designed
and built from scratch. Sometimes, however, you’ll start with an existing and
probably unchangeable database model. Fortunately, Doctrine comes with a bunch
of tools to help generate model classes from your existing database.

Note

As the Doctrine tools documentation [http://www.doctrine-project.org/docs/orm/2.0/en/reference/tools.html#reverse-engineering] says, reverse engineering is a
one-time process to get started on a project. Doctrine is able to convert
approximately 70-80% of the necessary mapping information based on fields,
indexes and foreign key constraints. Doctrine can’t discover inverse
associations, inheritance types, entities with foreign keys as primary keys
or semantical operations on associations such as cascade or lifecycle
events. Some additional work on the generated entities will be necessary
afterwards to design each to fit your domain model specificities.

This tutorial assumes you’re using a simple blog application with the following
two tables: blog_post and blog_comment. A comment record is linked
to a post record thanks to a foreign key constraint.

CREATE TABLE `blog_post` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT,
 `title` varchar(100) COLLATE utf8_unicode_ci NOT NULL,
 `content` longtext COLLATE utf8_unicode_ci NOT NULL,
 `created_at` datetime NOT NULL,
 PRIMARY KEY (`id`),
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

CREATE TABLE `blog_comment` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT,
 `post_id` bigint(20) NOT NULL,
 `author` varchar(20) COLLATE utf8_unicode_ci NOT NULL,
 `content` longtext COLLATE utf8_unicode_ci NOT NULL,
 `created_at` datetime NOT NULL,
 PRIMARY KEY (`id`),
 KEY `blog_comment_post_id_idx` (`post_id`),
 CONSTRAINT `blog_post_id` FOREIGN KEY (`post_id`) REFERENCES `blog_post` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

Before diving into the recipe, be sure your database connection parameters are
correctly setup in the app/config/parameters.yml file (or wherever your
database configuration is kept) and that you have initialized a bundle that
will host your future entity class. In this tutorial, we will assume that
an AcmeBlogBundle exists and is located under the src/Acme/BlogBundle
folder.

The first step towards building entity classes from an existing database
is to ask Doctrine to introspect the database and generate the corresponding
metadata files. Metadata files describe the entity class to generate based on
tables fields.

php app/console doctrine:mapping:convert xml ./src/Acme/BlogBundle/Resources/config/doctrine/metadata/orm --from-database --force

This command line tool asks Doctrine to introspect the database and generate
the XML metadata files under the src/Acme/BlogBundle/Resources/config/doctrine/metadata/orm
folder of your bundle.

Tip

It’s also possible to generate metadata class in YAML format by changing the
first argument to yml.

The generated BlogPost.dcm.xml metadata file looks as follows:

<?xml version="1.0" encoding="utf-8"?>
<doctrine-mapping>
 <entity name="BlogPost" table="blog_post">
 <change-tracking-policy>DEFERRED_IMPLICIT</change-tracking-policy>
 <id name="id" type="bigint" column="id">
 <generator strategy="IDENTITY"/>
 </id>
 <field name="title" type="string" column="title" length="100"/>
 <field name="content" type="text" column="content"/>
 <field name="isPublished" type="boolean" column="is_published"/>
 <field name="createdAt" type="datetime" column="created_at"/>
 <field name="updatedAt" type="datetime" column="updated_at"/>
 <field name="slug" type="string" column="slug" length="255"/>
 <lifecycle-callbacks/>
 </entity>
</doctrine-mapping>

Once the metadata files are generated, you can ask Doctrine to import the
schema and build related entity classes by executing the following two commands.

php app/console doctrine:mapping:import AcmeBlogBundle annotation
php app/console doctrine:generate:entities AcmeBlogBundle

The first command generates entity classes with an annotations mapping, but
you can of course change the annotation argument to xml or yml.
The newly created BlogComment entity class looks as follow:

<?php

// src/Acme/BlogBundle/Entity/BlogComment.php
namespace Acme\BlogBundle\Entity;

use Doctrine\ORM\Mapping as ORM;

/**
 * Acme\BlogBundle\Entity\BlogComment
 *
 * @ORM\Table(name="blog_comment")
 * @ORM\Entity
 */
class BlogComment
{
 /**
 * @var bigint $id
 *
 * @ORM\Column(name="id", type="bigint", nullable=false)
 * @ORM\Id
 * @ORM\GeneratedValue(strategy="IDENTITY")
 */
 private $id;

 /**
 * @var string $author
 *
 * @ORM\Column(name="author", type="string", length=100, nullable=false)
 */
 private $author;

 /**
 * @var text $content
 *
 * @ORM\Column(name="content", type="text", nullable=false)
 */
 private $content;

 /**
 * @var datetime $createdAt
 *
 * @ORM\Column(name="created_at", type="datetime", nullable=false)
 */
 private $createdAt;

 /**
 * @var BlogPost
 *
 * @ORM\ManyToOne(targetEntity="BlogPost")
 * @ORM\JoinColumn(name="post_id", referencedColumnName="id")
 */
 private $post;
}

As you can see, Doctrine converts all table fields to pure private and annotated
class properties. The most impressive thing is that it also discovered the
relationship with the BlogPost entity class based on the foreign key constraint.
Consequently, you can find a private $post property mapped with a BlogPost
entity in the BlogComment entity class.

The last command generated all getters and setters for your two BlogPost and
BlogComment entity class properties. The generated entities are now ready to be
used. Have fun!

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to use Doctrine’s DBAL Layer

Note

This article is about Doctrine DBAL’s layer. Typically, you’ll work with
the higher level Doctrine ORM layer, which simply uses the DBAL behind
the scenes to actually communicate with the database. To read more about
the Doctrine ORM, see “Databases and Doctrine (“The Model”)”.

The Doctrine [http://www.doctrine-project.org/projects/dbal/2.0/docs/en] Database Abstraction Layer (DBAL) is an abstraction layer that
sits on top of PDO [http://www.php.net/pdo] and offers an intuitive and flexible API for communicating
with the most popular relational databases. In other words, the DBAL library
makes it easy to execute queries and perform other database actions.

Tip

Read the official Doctrine DBAL Documentation [http://www.doctrine-project.org/projects/dbal/2.0/docs/en] to learn all the details
and capabilities of Doctrine’s DBAL library.

To get started, configure the database connection parameters:

	YAML# app/config/config.yml
doctrine:
 dbal:
 driver: pdo_mysql
 dbname: Symfony2
 user: root
 password: null
 charset: UTF8

	XML// app/config/config.xml
<doctrine:config>
 <doctrine:dbal
 name="default"
 dbname="Symfony2"
 user="root"
 password="null"
 driver="pdo_mysql"
 />
</doctrine:config>

	PHP// app/config/config.php
$container->loadFromExtension('doctrine', array(
 'dbal' => array(
 'driver' => 'pdo_mysql',
 'dbname' => 'Symfony2',
 'user' => 'root',
 'password' => null,
),
));

For full DBAL configuration options, see Doctrine DBAL Configuration.

You can then access the Doctrine DBAL connection by accessing the
database_connection service:

class UserController extends Controller
{
 public function indexAction()
 {
 $conn = $this->get('database_connection');
 $users = $conn->fetchAll('SELECT * FROM users');

 // ...
 }
}

Registering Custom Mapping Types

You can register custom mapping types through Symfony’s configuration. They
will be added to all configured connections. For more information on custom
mapping types, read Doctrine’s Custom Mapping Types [http://www.doctrine-project.org/docs/dbal/2.0/en/reference/types.html#custom-mapping-types] section of their documentation.

	YAML# app/config/config.yml
doctrine:
 dbal:
 types:
 custom_first: Acme\HelloBundle\Type\CustomFirst
 custom_second: Acme\HelloBundle\Type\CustomSecond

	XML<!-- app/config/config.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:doctrine="http://symfony.com/schema/dic/doctrine"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/doctrine http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd">

 <doctrine:config>
 <doctrine:dbal>
 <doctrine:dbal default-connection="default">
 <doctrine:connection>
 <doctrine:mapping-type name="enum">string</doctrine:mapping-type>
 </doctrine:connection>
 </doctrine:dbal>
 </doctrine:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('doctrine', array(
 'dbal' => array(
 'connections' => array(
 'default' => array(
 'mapping_types' => array(
 'enum' => 'string',
),
),
),
),
));

Registering Custom Mapping Types in the SchemaTool

The SchemaTool is used to inspect the database to compare the schema. To
achieve this task, it needs to know which mapping type needs to be used
for each database types. Registering new ones can be done through the configuration.

Let’s map the ENUM type (not suppoorted by DBAL by default) to a the string
mapping type:

	YAML# app/config/config.yml
doctrine:
 dbal:
 connections:
 default:
 // Other connections parameters
 mapping_types:
 enum: string

	XML<!-- app/config/config.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:doctrine="http://symfony.com/schema/dic/doctrine"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/doctrine http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd">

 <doctrine:config>
 <doctrine:dbal>
 <doctrine:type name="custom_first" class="Acme\HelloBundle\Type\CustomFirst" />
 <doctrine:type name="custom_second" class="Acme\HelloBundle\Type\CustomSecond" />
 </doctrine:dbal>
 </doctrine:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('doctrine', array(
 'dbal' => array(
 'types' => array(
 'custom_first' => 'Acme\HelloBundle\Type\CustomFirst',
 'custom_second' => 'Acme\HelloBundle\Type\CustomSecond',
),
),
));

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to work with Multiple Entity Managers

You can use multiple entity managers in a Symfony2 application. This is
necessary if you are using different databases or even vendors with entirely
different sets of entities. In other words, one entity manager that connects
to one database will handle some entities while another entity manager that
connects to another database might handle the rest.

Note

Using multiple entity managers is pretty easy, but more advanced and not
usually required. Be sure you actually need multiple entity managers before
adding in this layer of complexity.

The following configuration code shows how you can configure two entity managers:

	YAMLdoctrine:
 orm:
 default_entity_manager: default
 entity_managers:
 default:
 connection: default
 mappings:
 AcmeDemoBundle: ~
 AcmeStoreBundle: ~
 customer:
 connection: customer
 mappings:
 AcmeCustomerBundle: ~

In this case, you’ve defined two entity managers and called them default
and customer. The default entity manager manages entities in the
AcmeDemoBundle and AcmeStoreBundle, while the customer entity
manager manages entities in the AcmeCustomerBundle.

When working with multiple entity managers, you should be explicit about which
entity manager you want. If you do omit the entity manager’s name when
asking for it, the default entity manager (i.e. default) is returned:

class UserController extends Controller
{
 public function indexAction()
 {
 // both return the "default" em
 $em = $this->get('doctrine')->getEntityManager();
 $em = $this->get('doctrine')->getEntityManager('default');

 $customerEm = $this->get('doctrine')->getEntityManager('customer');
 }
}

You can now use Doctrine just as you did before - using the default entity
manager to persist and fetch entities that it manages and the customer
entity manager to persist and fetch its entities.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

Registering Custom DQL Functions

Doctrine allows you to specify custom DQL functions. For more information
on this topic, read Doctrine’s cookbook article “DQL User Defined Functions [http://www.doctrine-project.org/docs/orm/2.0/en/cookbook/dql-user-defined-functions.html]”.

In Symfony, you can register your custom DQL functions as follows:

	YAML# app/config/config.yml
doctrine:
 orm:
 # ...
 entity_managers:
 default:
 # ...
 dql:
 string_functions:
 test_string: Acme\HelloBundle\DQL\StringFunction
 second_string: Acme\HelloBundle\DQL\SecondStringFunction
 numeric_functions:
 test_numeric: Acme\HelloBundle\DQL\NumericFunction
 datetime_functions:
 test_datetime: Acme\HelloBundle\DQL\DatetimeFunction

	XML<!-- app/config/config.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:doctrine="http://symfony.com/schema/dic/doctrine"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/doctrine http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd">

 <doctrine:config>
 <doctrine:orm>
 <!-- ... -->
 <doctrine:entity-manager name="default">
 <!-- ... -->
 <doctrine:dql>
 <doctrine:string-function name="test_string>Acme\HelloBundle\DQL\StringFunction</doctrine:string-function>
 <doctrine:string-function name="second_string>Acme\HelloBundle\DQL\SecondStringFunction</doctrine:string-function>
 <doctrine:numeric-function name="test_numeric>Acme\HelloBundle\DQL\NumericFunction</doctrine:numeric-function>
 <doctrine:datetime-function name="test_datetime>Acme\HelloBundle\DQL\DatetimeFunction</doctrine:datetime-function>
 </doctrine:dql>
 </doctrine:entity-manager>
 </doctrine:orm>
 </doctrine:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('doctrine', array(
 'orm' => array(
 // ...
 'entity_managers' => array(
 'default' => array(
 // ...
 'dql' => array(
 'string_functions' => array(
 'test_string' => 'Acme\HelloBundle\DQL\StringFunction',
 'second_string' => 'Acme\HelloBundle\DQL\SecondStringFunction',
),
 'numeric_functions' => array(
 'test_numeric' => 'Acme\HelloBundle\DQL\NumericFunction',
),
 'datetime_functions' => array(
 'test_datetime' => 'Acme\HelloBundle\DQL\DatetimeFunction',
),
),
),
),
),
));

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to customize Form Rendering

Symfony gives you a wide variety of ways to customize how a form is rendered.
In this guide, you’ll learn how to customize every possible part of your
form with as little effort as possible whether you use Twig or PHP as your
templating engine.

Form Rendering Basics

Recall that the label, error and HTML widget of a form field can easily
be rendered by using the form_row Twig function or the row PHP helper
method:

	Twig{{ form_row(form.age) }}

	PHP<?php echo $view['form']->row($form['age']) }} ?>

You can also render each of the three parts of the field individually:

	Twig<div>
 {{ form_label(form.age) }}
 {{ form_errors(form.age) }}
 {{ form_widget(form.age) }}
</div>

	PHP<div>
 <?php echo $view['form']->label($form['age']) }} ?>
 <?php echo $view['form']->errors($form['age']) }} ?>
 <?php echo $view['form']->widget($form['age']) }} ?>
</div>

In both cases, the form label, errors and HTML widget are rendered by using
a set of markup that ships standard with Symfony. For example, both of the
above templates would render:

<div>
 <label for="form_age">Age</label>

 This field is required

 <input type="number" id="form_age" name="form[age]" />
</div>

To quickly prototype and test a form, you can render the entire form with
just one line:

	Twig{{ form_widget(form) }}

	PHP<?php echo $view['form']->widget($form) }} ?>

The remainder of this recipe will explain how every part of the form’s markup
can be modified at several different levels. For more information about form
rendering in general, see Rendering a Form in a Template.

What are Form Themes?

Symfony uses form fragments - a small piece of a template that renders just
one part of a form - to render every part of a form - - field labels, errors,
input text fields, select tags, etc

The fragments are defined as blocks in Twig and as template files in PHP.

A theme is nothing more than a set of fragments that you want to use when
rendering a form. In other words, if you want to customize one portion of
how a form is rendered, you’ll import a theme which contains a customization
of the appropriate form fragments.

Symfony comes with a default theme (form_div_layout.html.twig [https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig] in Twig and
FrameworkBundle:Form in PHP) that defines each and every fragment needed
to render every part of a form.

In the next section you will learn how to customize a theme by overriding
some or all of its fragments.

For example, when the widget of a integer type field is rendered, an input
number field is generated

	Twig{{ form_widget(form.age) }}

	PHP<?php echo $view['form']->widget($form['age']) ?>

renders:

<input type="number" id="form_age" name="form[age]" required="required" value="33" />

Internally, Symfony uses the integer_widget fragment to render the field.
This is because the field type is integer and you’re rendering its widget
(as opposed to its label or errors).

In Twig that would default to the block integer_widget from the form_div_layout.html.twig [https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig]
template.

In PHP it would rather be the integer_widget.html.php file located in FrameworkBundle/Resources/views/Form
folder.

The default implementation of the integer_widget fragment looks like this:

	Twig{% block integer_widget %}
 {% set type = type|default('number') %}
 {{ block('field_widget') }}
{% endblock integer_widget %}

	PHP<!-- integer_widget.html.php -->

<?php echo $view['form']->renderBlock('field_widget', array('type' => isset($type) ? $type : "number")) ?>

As you can see, this fragment itself renders another fragment - field_widget:

	Twig{% block field_widget %}
 {% set type = type|default('text') %}
 <input type="{{ type }}" {{ block('widget_attributes') }} value="{{ value }}" />
{% endblock field_widget %}

	PHP<!-- FrameworkBundle/Resources/views/Form/field_widget.html.php -->

<input
 type="<?php echo isset($type) ? $view->escape($type) : "text" ?>"
 value="<?php echo $view->escape($value) ?>"
 <?php echo $view['form']->renderBlock('attributes') ?>
/>

The point is, the fragments dictate the HTML output of each part of a form. To
customize the form output, you just need to identify and override the correct
fragment. A set of these form fragment customizations is known as a form “theme”.
When rendering a form, you can choose which form theme(s) you want to apply.

In Twig a theme is a single template file and the fragments are the blocks defined
in this file.

In PHP a theme is a folder and the the fragments are individual template files in
this folder.

Knowing which block to customize

In this example, the customized fragment name is integer_widget because
you want to override the HTML widget for all integer field types. If
you need to customize textarea fields, you would customize textarea_widget.

As you can see, the fragment name is a combination of the field type and
which part of the field is being rendered (e.g. widget, label,
errors, row). As such, to customize how errors are rendered for
just input text fields, you should customize the text_errors fragment.

More commonly, however, you’ll want to customize how errors are displayed
across all fields. You can do this by customizing the field_errors
fragment. This takes advantage of field type inheritance. Specifically,
since the text type extends from the field type, the form component
will first look for the type-specific fragment (e.g. text_errors) before
falling back to its parent fragment name if it doesn’t exist (e.g. field_errors).

For more information on this topic, see Form Fragment Naming.

Form Theming

To see the power of form theming, suppose you want to wrap every input number
field with a div tag. The key to doing this is to customize the
integer_widget fragment.

Form Theming in Twig

When customizing the form field block in Twig, you have two options on where
the customized form block can live:

	Method
	Pros
	Cons

	Inside the same template as the form
	Quick and easy
	Can’t be reused in other templates

	Inside a separate template
	Can be reused by many templates
	Requires an extra template to be created

Both methods have the same effect but are better in different situations.

Method 1: Inside the same Template as the Form

The easiest way to customize the integer_widget block is to customize it
directly in the template that’s actually rendering the form.

{% extends '::base.html.twig' %}

{% form_theme form _self %}

{% block integer_widget %}
 <div class="integer_widget">
 {% set type = type|default('number') %}
 {{ block('field_widget') }}
 </div>
{% endblock %}

{% block content %}
 {# render the form #}

 {{ form_row(form.age) }}
{% endblock %}

By using the special {% form_theme form _self %} tag, Twig looks inside
the same template for any overridden form blocks. Assuming the form.age
field is an integer type field, when its widget is rendered, the customized
integer_widget block will be used.

The disadvantage of this method is that the customized form block can’t be
reused when rendering other forms in other templates. In other words, this method
is most useful when making form customizations that are specific to a single
form in your application. If you want to reuse a form customization across
several (or all) forms in your application, read on to the next section.

Method 2: Inside a Separate Template

You can also choose to put the customized integer_widget form block in a
separate template entirely. The code and end-result are the same, but you
can now re-use the form customization across many templates:

{# src/Acme/DemoBundle/Resources/views/Form/fields.html.twig #}

{% block integer_widget %}
 <div class="integer_widget">
 {% set type = type|default('number') %}
 {{ block('field_widget') }}
 </div>
{% endblock %}

Now that you’ve created the customized form block, you need to tell Symfony
to use it. Inside the template where you’re actually rendering your form,
tell Symfony to use the template via the form_theme tag:

{% form_theme form 'AcmeDemoBundle:Form:fields.html.twig' %}

{{ form_widget(form.age) }}

When the form.age widget is rendered, Symfony will use the integer_widget
block from the new template and the input tag will be wrapped in the
div element specified in the customized block.

Form Theming in PHP

When using PHP as a templating engine, the only method to customize a fragment
is to create a new template file - this is similar to the second method used by
Twig.

The template file must be named after the fragment. You must create a integer_widget.html.php
file in order to customize the integer_widget fragment.

<!-- src/Acme/DemoBundle/Resources/views/Form/integer_widget.html.php -->

<div class="integer_widget">
 <?php echo $view['form']->renderBlock('field_widget', array('type' => isset($type) ? $type : "number")) ?>
</div>

Now that you’ve created the customized form template, you need to tell Symfony
to use it. Inside the template where you’re actually rendering your form,
tell Symfony to use the theme via the setTheme helper method:

<?php $view['form']->setTheme($form, array('AcmeDemoBundle:Form')) ;?>

<?php $view['form']->widget($form['age']) ?>

When the form.age widget is rendered, Symfony will use the customized
integer_widget.html.php template and the input tag will be wrapped in
the div element.

Referencing Base Form Blocks (Twig specific)

So far, to override a particular form block, the best method is to copy
the default block from form_div_layout.html.twig [https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig], paste it into a different template,
and the customize it. In many cases, you can avoid doing this by referencing
the base block when customizing it.

This is easy to do, but varies slightly depending on if your form block customizations
are in the same template as the form or a separate template.

Referencing Blocks from inside the same Template as the Form

Import the blocks by adding a use tag in the template where you’re rendering
the form:

{% use 'form_div_layout.html.twig' with integer_widget as base_integer_widget %}

Now, when the blocks from form_div_layout.html.twig [https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig] are imported, the
integer_widget block is called base_integer_widget. This means that when
you redefine the integer_widget block, you can reference the default markup
via base_integer_widget:

{% block integer_widget %}
 <div class="integer_widget">
 {{ block('base_integer_widget') }}
 </div>
{% endblock %}

Referencing Base Blocks from an External Template

If your form customizations live inside an external template, you can reference
the base block by using the parent() Twig function:

{# src/Acme/DemoBundle/Resources/views/Form/fields.html.twig #}

{% extends 'form_div_layout.html.twig' %}

{% block integer_widget %}
 <div class="integer_widget">
 {{ parent() }}
 </div>
{% endblock %}

Note

It is not possible to reference the base block when using PHP as the
templating engine. You have to manually copy the content from the base block
to your new template file.

Making Application-wide Customizations

If you’d like a certain form customization to be global to your application,
you can accomplish this by making the form customizations in an external
template and then importing it inside your application configuration:

Twig

By using the following configuration, any customized form blocks inside the
AcmeDemoBundle:Form:fields.html.twig template will be used globally when a
form is rendered.

	YAML# app/config/config.yml

twig:
 form:
 resources:
 - 'AcmeDemoBundle:Form:fields.html.twig'
 # ...

	XML<!-- app/config/config.xml -->

<twig:config ...>
 <twig:form>
 <resource>AcmeDemoBundle:Form:fields.html.twig</resource>
 </twig:form>
 <!-- ... -->
</twig:config>

	PHP// app/config/config.php

$container->loadFromExtension('twig', array(
 'form' => array('resources' => array(
 'AcmeDemoBundle:Form:fields.html.twig',
))
 // ...
));

By default, Twig uses a div layout when rendering forms. Some people, however,
may prefer to render forms in a table layout. Use the form_table_layout.html.twig
resource to use such a layout:

	YAML# app/config/config.yml

twig:
 form:
 resources: ['form_table_layout.html.twig']
 # ...

	XML<!-- app/config/config.xml -->

<twig:config ...>
 <twig:form>
 <resource>form_table_layout.html.twig</resource>
 </twig:form>
 <!-- ... -->
</twig:config>

	PHP// app/config/config.php

$container->loadFromExtension('twig', array(
 'form' => array('resources' => array(
 'form_table_layout.html.twig',
))
 // ...
));

If you only want to make the change in one template, add the following line to
your template file rather than adding the template as a resource:

{% form_theme form 'form_table_layout.html.twig' %}

Note that the form variable in the above code is the form view variable
that you passed to your template.

PHP

By using the following configuration, any customized form fragments inside the
src/Acme/DemoBundle/Resources/views/Form folder will be used globally when a
form is rendered.

	YAML# app/config/config.yml

framework:
 templating:
 form:
 resources:
 - 'AcmeDemoBundle:Form'
 # ...

	XML<!-- app/config/config.xml -->

<framework:config ...>
 <framework:templating>
 <framework:form>
 <resource>AcmeDemoBundle:Form</resource>
 </framework:form>
 </framework:templating>
 <!-- ... -->
</framework:config>

	PHP// app/config/config.php

// PHP
$container->loadFromExtension('framework', array(
 'templating' => array('form' =>
 array('resources' => array(
 'AcmeDemoBundle:Form',
)))
 // ...
));

By default, the PHP engine uses a div layout when rendering forms. Some people,
however, may prefer to render forms in a table layout. Use the FrameworkBundle:FormTable
resource to use such a layout:

	YAML# app/config/config.yml

framework:
 templating:
 form:
 resources:
 - 'FrameworkBundle:FormTable'

	XML<!-- app/config/config.xml -->

<framework:config ...>
 <framework:templating>
 <framework:form>
 <resource>FrameworkBundle:FormTable</resource>
 </framework:form>
 </framework:templating>
 <!-- ... -->
</framework:config>

	PHP// app/config/config.php

$container->loadFromExtension('framework', array(
 'templating' => array('form' =>
 array('resources' => array(
 'FrameworkBundle:FormTable',
)))
 // ...
));

If you only want to make the change in one template, add the following line to
your template file rather than adding the template as a resource:

<?php $view['form']->setTheme($form, array('FrameworkBundle:FormTable')); ?>

Note that the $form variable in the above code is the form view variable
that you passed to your template.

How to customize an Individual field

So far, you’ve seen the different ways you can customize the widget output
of all text field types. You can also customize individual fields. For example,
suppose you have two text fields - first_name and last_name - but
you only want to customize one of the fields. This can be accomplished by
customizing a fragment whose name is a combination of the field id attribute and
which part of the field is being customized. For example:

	Twig{% form_theme form _self %}

{% block _product_name_widget %}
 <div class="text_widget">
 {{ block('field_widget') }}
 </div>
{% endblock %}

{{ form_widget(form.name) }}

	PHP<!-- Main template -->

<?php echo $view['form']->setTheme($form, array('AcmeDemoBundle:Form')); ?>

<?php echo $view['form']->widget($form['name']); ?>

<!-- src/Acme/DemoBundle/Resources/views/Form/_product_name_widget.html.php -->

<div class="text_widget">
 echo $view['form']->renderBlock('field_widget') ?>
</div>

Here, the _product_name_widget fragment defines the template to use for the
field whose id is product_name (and name is product[name]).

Tip

The product portion of the field is the form name, which may be set
manually or generated automatically based on your form type name (e.g.
ProductType equates to product). If you’re not sure what your
form name is, just view the source of your generated form.

You can also override the markup for an entire field row using the same method:

	Twig{% form_theme form _self %}

{% block _product_name_row %}
 <div class="name_row">
 {{ form_label(form) }}
 {{ form_errors(form) }}
 {{ form_widget(form) }}
 </div>
{% endblock %}

	PHP<!-- _product_name_row.html.php -->

<div class="name_row">
 <?php echo $view['form']->label($form) ?>
 <?php echo $view['form']->errors($form) ?>
 <?php echo $view['form']->widget($form) ?>
</div>

Other Common Customizations

So far, this recipe has shown you several different ways to customize a single
piece of how a form is rendered. The key is to customize a specific fragment that
corresponds to the portion of the form you want to control (see
naming form blocks).

In the next sections, you’ll see how you can make several common form customizations.
To apply these customizations, use one of the methods described in the
Form Theming section.

Customizing Error Output

Note

The form component only handles how the validation errors are rendered,
and not the actual validation error messages. The error messages themselves
are determined by the validation constraints you apply to your objects.
For more information, see the chapter on validation.

There are many different ways to customize how errors are rendered when a
form is submitted with errors. The error messages for a field are rendered
when you use the form_errors helper:

	Twig{{ form_errors(form.age) }}

	PHP<?php echo $view['form']->errors($form['age']); ?>

By default, the errors are rendered inside an unordered list:

 This field is required

To override how errors are rendered for all fields, simply copy, paste
and customize the field_errors fragment.

	Twig{% block field_errors %}
{% spaceless %}
 {% if errors|length > 0 %}
 <ul class="error_list">
 {% for error in errors %}
 {{ error.messageTemplate|trans(error.messageParameters, 'validators') }}
 {% endfor %}

 {% endif %}
{% endspaceless %}
{% endblock field_errors %}

	PHP<!-- fields_errors.html.php -->

<?php if ($errors): ?>
 <ul class="error_list">
 <?php foreach ($errors as $error): ?>
 <?php echo $view['translator']->trans(
 $error->getMessageTemplate(),
 $error->getMessageParameters(),
 'validators'
) ?>
 <?php endforeach; ?>

<?php endif ?>

Tip

See Form Theming for how to apply this customization.

You can also customize the error output for just one specific field type.
For example, certain errors that are more global to your form (i.e. not specific
to just one field) are rendered separately, usually at the top of your form:

	Twig{{ form_errors(form) }}

	PHP<?php echo $view['form']->render($form); ?>

To customize only the markup used for these errors, follow the same directions
as above, but now call the block form_errors (Twig) / the file form_errors.html.php
(PHP). Now, when errors for the form type are rendered, your customized
fragment will be used instead of the default field_errors.

Customizing the “Form Row”

When you can manage it, the easiest way to render a form field is via the
form_row function, which renders the label, errors and HTML widget of
a field. To customize the markup used for rendering all form field rows,
override the field_row fragment. For example, suppose you want to add a
class to the div element around each row:

	Twig{% block field_row %}
 <div class="form_row">
 {{ form_label(form) }}
 {{ form_errors(form) }}
 {{ form_widget(form) }}
 </div>
{% endblock field_row %}

	PHP<!-- field_row.html.php -->

<div class="form_row">
 <?php echo $view['form']->label($form) ?>
 <?php echo $view['form']->errors($form) ?>
 <?php echo $view['form']->widget($form) ?>
</div>

Tip

See Form Theming for how to apply this customization.

Adding a “Required” Asterisk to Field Labels

If you want to denote all of your required fields with a required asterisk (*),
you can do this by customizing the field_label fragment.

In Twig, if you’re making the form customization inside the same template as your
form, modify the use tag and add the following:

{% use 'form_div_layout.html.twig' with field_label as base_field_label %}

{% block field_label %}
 {{ block('base_field_label') }}

 {% if required %}
 *
 {% endif %}
{% endblock %}

In Twig, if you’re making the form customization inside a separate template, use
the following:

{% extends 'form_div_layout.html.twig' %}

{% block field_label %}
 {{ parent() }}

 {% if required %}
 *
 {% endif %}
{% endblock %}

When using PHP as a templating engine you have to copy the content from the
original template:

<!-- field_label.html.php -->

<!-- original content -->
<label for="<?php echo $view->escape($id) ?>" <?php foreach($attr as $k => $v) { printf('%s="%s" ', $view->escape($k), $view->escape($v)); } ?>><?php echo $view->escape($view['translator']->trans($label)) ?></label>

<!-- customization -->
<?php if ($required) : ?>
 *
<?php endif ?>

Tip

See Form Theming for how to apply this customization.

Adding “help” messages

You can also customize your form widgets to have an optional “help” message.

In Twig, If you’re making the form customization inside the same template as your
form, modify the use tag and add the following:

{% use 'form_div_layout.html.twig' with field_widget as base_field_widget %}

{% block field_widget %}
 {{ block('base_field_widget') }}

 {% if help is defined %}
 {{ help }}
 {% endif %}
{% endblock %}

In twig, If you’re making the form customization inside a separate template, use
the following:

{% extends 'form_div_layout.html.twig' %}

{% block field_widget %}
 {{ parent() }}

 {% if help is defined %}
 {{ help }}
 {% endif %}
{% endblock %}

When using PHP as a templating engine you have to copy the content from the
original template:

<!-- field_widget.html.php -->

<!-- Original content -->
<input
 type="<?php echo isset($type) ? $view->escape($type) : "text" ?>"
 value="<?php echo $view->escape($value) ?>"
 <?php echo $view['form']->renderBlock('attributes') ?>
/>

<!-- Customization -->
<?php if (isset($help)) : ?>
 <?php echo $view->escape($help) ?>
<?php endif ?>

To render a help message below a field, pass in a help variable:

	Twig{{ form_widget(form.title, { 'help': 'foobar' }) }}

	PHP<?php echo $view['form']->widget($form['title'], array('help' => 'foobar')) ?>

Tip

See Form Theming for how to apply this customization.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

Using Data Transformers

You’ll often find the need to transform the data the user entered in a form into
something else for use in your program. You could easily do this manually in your
controller, but what if you want to use this specific form in different places?

Say you have a one-to-one relation of Task to Issue, e.g. a Task optionally has an
issue linked to it. Adding a listbox with all possible issues can eventually lead to
a really long listbox in which it is impossible to find something. You’ll rather want
to add a textbox, in which the user can simply enter the number of the issue. In the
controller you can convert this issue number to an actual task, and eventually add
errors to the form if it was not found, but of course this is not really clean.

It would be better if this issue was automatically looked up and converted to an
Issue object, for use in your action. This is where Data Transformers come into play.

First, create a custom form type which has a Data Transformer attached to it, which
returns the Issue by number: the issue selector type. Eventually this will simply be
a text field, as we configure the fields’ parent to be a “text” field, in which you
will enter the issue number. The field will display an error if a non existing number
was entered:

// src/Acme/TaskBundle/Form/IssueSelectorType.php
namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilder;
use Acme\TaskBundle\Form\DataTransformer\IssueToNumberTransformer;
use Doctrine\Common\Persistence\ObjectManager;

class IssueSelectorType extends AbstractType
{
 private $om;

 public function __construct(ObjectManager $om)
 {
 $this->om = $om;
 }

 public function buildForm(FormBuilder $builder, array $options)
 {
 $transformer = new IssueToNumberTransformer($this->om);
 $builder->appendClientTransformer($transformer);
 }

 public function getDefaultOptions(array $options)
 {
 return array(
 'invalid_message'=>'The selected issue does not exist'
);
 }

 public function getParent(array $options)
 {
 return 'text';
 }

 public function getName()
 {
 return 'issue_selector';
 }
}

Tip

You can also use transformers without creating a new custom form type
by calling appendClientTransformer on any field builder:

use Acme\TaskBundle\Form\DataTransformer\IssueToNumberTransformer;

class TaskType extends AbstractType
{
 public function buildForm(FormBuilder $builder, array $options)
 {
 // ...

 // this assumes that the entity manager was passed in as an option
 $entityManager = $options['em'];
 $transformer = new IssueToNumberTransformer($entityManager);

 // use a normal text field, but transform the text into an issue object
 $builder
 ->add('issue', 'text')
 ->appendClientTransformer($transformer)
 ;
 }

 // ...
}

Next, we create the data transformer, which does the actual conversion:

// src/Acme/TaskBundle/Form/DataTransformer/IssueToNumberTransformer.php
namespace Acme\TaskBundle\Form\DataTransformer;

use Symfony\Component\Form\Exception\TransformationFailedException;
use Symfony\Component\Form\DataTransformerInterface;
use Doctrine\Common\Persistence\ObjectManager;

class IssueToNumberTransformer implements DataTransformerInterface
{
 private $om;

 public function __construct(ObjectManager $om)
 {
 $this->om = $om;
 }

 // transforms the Issue object to a string
 public function transform($val)
 {
 if (null === $val) {
 return '';
 }

 return $val->getNumber();
 }

 // transforms the issue number into an Issue object
 public function reverseTransform($val)
 {
 if (!$val) {
 return null;
 }

 $issue = $this->om->getRepository('AcmeTaskBundle:Issue')->findOneBy(array('number' => $val));

 if (null === $issue) {
 throw new TransformationFailedException(sprintf('An issue with number %s does not exist!', $val));
 }

 return $issue;
 }
}

Finally, since we’ve decided to create a custom form type that uses the data
transformer, register the Type in the service container, so that the entity
manager can be automatically injected:

	YAMLservices:
 acme_demo.type.issue_selector:
 class: Acme\TaskBundle\Form\IssueSelectorType
 arguments: ["@doctrine.orm.entity_manager"]
 tags:
 - { name: form.type, alias: issue_selector }

	XML<service id="acme_demo.type.issue_selector" class="Acme\TaskBundle\Form\IssueSelectorType">
 <argument type="service" id="doctrine.orm.entity_manager"/>
 <tag name="form.type" alias="issue_selector" />
</service>

You can now add the type to your form by its alias as follows:

// src/Acme/TaskBundle/Form/Type/TaskType.php

namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilder;

class TaskType extends AbstractType
{
 public function buildForm(FormBuilder $builder, array $options)
 {
 $builder->add('task');
 $builder->add('dueDate', null, array('widget' => 'single_text'));
 $builder->add('issue', 'issue_selector');
 }

 public function getName()
 {
 return 'task';
 }
}

Now it will be very easy at any random place in your application to use this
selector type to select an issue by number. No logic has to be added to your
Controller at all.

If you want a new issue to be created when an unknown number is entered, you
can instantiate it rather than throwing the TransformationFailedException, and
even persist it to your entity manager if the task has no cascading options
for the issue.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Dynamically Generate Forms Using Form Events

Before jumping right into dynamic form generation, let’s have a quick review
of what a bare form class looks like:

//src/Acme/DemoBundle/Form/ProductType.php
namespace Acme\DemoBundle\Form

use Symfony\Component\Form\AbstractType
use Symfony\Component\Form\FormBuilder;

class ProductType extends AbstractType
{
 public function buildForm(FormBuilder $builder, array $options)
 {
 $builder->add('name');
 $builder->add('price');
 }

 public function getName()
 {
 return 'product';
 }
}

Note

If this particular section of code isn’t already familiar to you, you
probably need to take a step back and first review the Forms chapter
before proceeding.

Let’s assume for a moment that this form utilizes an imaginary “Product” class
that has only two relevant properties (“name” and “price”). The form generated
from this class will look the exact same regardless of a new Product is being created
or if an existing product is being edited (e.g. a product fetched from the database).

Suppose now, that you don’t want the user to be able to change the name value
once the object has been created. To do this, you can rely on Symfony’s Event Dispatcher
system to analyze the data on the object and modify the form based on the
Product object’s data. In this entry, you’ll learn how to add this level of
flexibility to your forms.

Adding An Event Subscriber To A Form Class

So, instead of directly adding that “name” widget via our ProductType form
class, let’s delegate the responsibility of creating that particular field
to an Event Subscriber:

//src/Acme/DemoBundle/Form/ProductType.php
namespace Acme\DemoBundle\Form

use Symfony\Component\Form\AbstractType
use Symfony\Component\Form\FormBuilder;
use Acme\DemoBundle\Form\EventListener\AddNameFieldSubscriber;

class ProductType extends AbstractType
{
 public function buildForm(FormBuilder $builder, array $options)
 {
 $subscriber = new AddNameFieldSubscriber($builder->getFormFactory());
 $builder->addEventSubscriber($subscriber);
 $builder->add('price');
 }

 public function getName()
 {
 return 'product';
 }
}

The event subscriber is passed the FormFactory object in its constructor so
that our new subscriber is capable of creating the form widget once it is
notified of the dispatched event during form creation.

Inside the Event Subscriber Class

The goal is to create a “name” field only if the underlying Product object
is new (e.g. hasn’t been persisted to the database). Based on that, the subscriber
might look like the following:

// src/Acme/DemoBundle/Form/EventListener/AddNameFieldSubscriber.php
namespace Acme\DemoBundle\Form\EventListener;

use Symfony\Component\Form\Event\DataEvent;
use Symfony\Component\Form\FormFactoryInterface;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;
use Symfony\Component\Form\FormEvents;

class AddNameFieldSubscriber implements EventSubscriberInterface
{
 private $factory;

 public function __construct(FormFactoryInterface $factory)
 {
 $this->factory = $factory;
 }

 public static function getSubscribedEvents()
 {
 // Tells the dispatcher that we want to listen on the form.pre_set_data
 // event and that the preSetData method should be called.
 return array(FormEvents::PRE_SET_DATA => 'preSetData');
 }

 public function preSetData(DataEvent $event)
 {
 $data = $event->getData();
 $form = $event->getForm();

 // During form creation setData() is called with null as an argument
 // by the FormBuilder constructor. We're only concerned with when
 // setData is called with an actual Entity object in it (whether new,
 // or fetched with Doctrine). This if statement let's us skip right
 // over the null condition.
 if (null === $data) {
 return;
 }

 // check if the product object is "new"
 if (!$data->getId()) {
 $form->add($this->factory->createNamed('text', 'name'));
 }
 }
}

Caution

It is easy to misunderstand the purpose of the if (null === $data) segment
of this event subscriber. To fully understand its role, you might consider
also taking a look at the Form class [https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Form/Form.php] and paying special attention to
where setData() is called at the end of the constructor, as well as the
setData() method itself.

The FormEvents::PRE_SET_DATA line actually resolves to the string form.pre_set_data.
The FormEvents class [https://github.com/symfony/Form/blob/master/FormEvents.php] serves an organizational purpose. It is a centralized location
in which you can find all of the various form events available.

While this example could have used the form.set_data event or even the form.post_set_data
events just as effectively, by using form.pre_set_data we guarantee that
the data being retrieved from the Event object has in no way been modified
by any other subscribers or listeners. This is because form.pre_set_data
passes a DataEvent [https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Form/Event/DataEvent.php] object instead of the FilterDataEvent [https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Form/Event/FilterDataEvent.php] object passed
by the form.set_data event. DataEvent [https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Form/Event/DataEvent.php], unlike its child FilterDataEvent [https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Form/Event/FilterDataEvent.php],
lacks a setData() method.

Note

You may view the full list of form events via the FormEvents class [https://github.com/symfony/Form/blob/master/FormEvents.php],
found in the form bundle.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Embed a Collection of Forms

In this entry, you’ll learn how to create a form that embeds a collection
of many other forms. This could be useful, for example, if you had a Task
class and you wanted to edit/create/remove many Tag objects related to
that Task, right inside the same form.

Note

In this entry, we’ll loosely assume that you’re using Doctrine as your
database store. But if you’re not using Doctrine (e.g. Propel or just
a database connection), it’s all pretty much the same.

If you are using Doctrine, you’ll need to add the Doctrine metadata,
including the ManyToMany on the Task’s tags property.

Let’s start there: suppose that each Task belongs to multiple Tags
objects. Start by creating a simple Task class:

// src/Acme/TaskBundle/Entity/Task.php
namespace Acme\TaskBundle\Entity;

use Doctrine\Common\Collections\ArrayCollection;

class Task
{
 protected $description;

 protected $tags;

 public function __construct()
 {
 $this->tags = new ArrayCollection();
 }

 public function getDescription()
 {
 return $this->description;
 }

 public function setDescription($description)
 {
 $this->description = $description;
 }

 public function getTags()
 {
 return $this->tags;
 }

 public function setTags(ArrayCollection $tags)
 {
 $this->tags = $tags;
 }
}

Note

The ArrayCollection is specific to Doctrine and is basically the
same as using an array (but it must be an ArrayCollection) if
you’re using Doctrine.

Now, create a Tag class. As you saw above, a Task can have many Tag
objects:

// src/Acme/TaskBundle/Entity/Tag.php
namespace Acme\TaskBundle\Entity;

class Tag
{
 public $name;
}

Tip

The name property is public here, but it can just as easily be protected
or private (but then it would need getName and setName methods).

Now let’s get to the forms. Create a form class so that a Tag object
can be modified by the user:

// src/Acme/TaskBundle/Form/Type/TagType.php
namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilder;

class TagType extends AbstractType
{
 public function buildForm(FormBuilder $builder, array $options)
 {
 $builder->add('name');
 }

 public function getDefaultOptions(array $options)
 {
 return array(
 'data_class' => 'Acme\TaskBundle\Entity\Tag',
);
 }

 public function getName()
 {
 return 'tag';
 }
}

With this, we have enough to render a tag form by itself. But since the end
goal is to allow the tags of a Task to be modified right inside the task
form itself, create a form for the Task class.

Notice that we embed a collection of TagType forms using the
collection field type:

// src/Acme/TaskBundle/Form/Type/TaskType.php
namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilder;

class TaskType extends AbstractType
{
 public function buildForm(FormBuilder $builder, array $options)
 {
 $builder->add('description');

 $builder->add('tags', 'collection', array('type' => new TagType()));
 }

 public function getDefaultOptions(array $options)
 {
 return array(
 'data_class' => 'Acme\TaskBundle\Entity\Task',
);
 }

 public function getName()
 {
 return 'task';
 }
}

In your controller, you’ll now initialize a new instance of TaskType:

// src/Acme/TaskBundle/Controller/TaskController.php
namespace Acme\TaskBundle\Controller;

use Acme\TaskBundle\Entity\Task;
use Acme\TaskBundle\Entity\Tag;
use Acme\TaskBundle\Form\TaskType;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class TaskController extends Controller
{
 public function newAction(Request $request)
 {
 $task = new Task();

 // dummy code - this is here just so that the Task has some tags
 // otherwise, this isn't an interesting example
 $tag1 = new Tag()
 $tag1->name = 'tag1';
 $task->getTags()->add($tag1);
 $tag2 = new Tag()
 $tag2->name = 'tag2';
 $task->getTags()->add($tag2);
 // end dummy code

 $form = $this->createForm(new TaskType(), $task);

 // maybe do some form process here in a POST request

 return $this->render('AcmeTaskBundle:Task:new.html.twig', array(
 'form' => $form->createView(),
));
 }
}

The corresponding template is now able to render both the description
field for the task form as well as all the TagType forms for any tags
that are already related to this Task. In the above controller, I added
some dummy code so that you can see this in action (since a Task has
zero tags when first created).

	Twig{# src/Acme/TaskBundle/Resources/views/Task/new.html.twig #}
{# ... #}

{# render the task's only field: description #}
{{ form_row(form.description) }}

<h3>Tags</h3>
<ul class="tags">
 {# iterate over each existing tag and render its only field: name #}
 {% for tag in form.tags %}
 {{ form_row(tag.name) }}
 {% endfor %}

{{ form_rest(form) }}
{# ... #}

	PHP<!-- src/Acme/TaskBundle/Resources/views/Task/new.html.php -->
<!-- ... -->

<h3>Tags</h3>
<ul class="tags">
 <?php foreach($form['tags'] as $tag): ?>
 <?php echo $view['form']->row($tag['name']) ?>
 <?php endforeach; ?>

<?php echo $view['form']->rest($form) ?>
<!-- ... -->

When the user submits the form, the submitted data for the Tags fields
are used to construct an ArrayCollection of Tag objects, which is then
set on the tag field of the Task instance.

The Tags collection is accessible naturally via $task->getTags()
and can be persisted to the database or used however you need.

So far, this works great, but this doesn’t allow you to dynamically add new
todos or delete existing todos. So, while editing existing todos will work
great, your user can’t actually add any new todos yet.

Allowing “new” todos with the “prototype”

Allowing the user to dynamically add new todos means that we’ll need to
use some JavaScript. Previously we added two tags to our form in the controller.
Now we need to let the user add as many tag forms as he needs directly in the browser.
This will be done through a bit of JavaScript.

The first thing we need to do is to tell the form collection know that it will
receive an unknown number of tags. So far we’ve added two tags and the form
type expects to receive exactly two, otherwise an error will be thrown:
This form should not contain extra fields. To make this flexible, we
add the allow_add option to our collection field:

// ...

public function buildForm(FormBuilder $builder, array $options)
{
 $builder->add('description');

 $builder->add('tags', 'collection', array(
 'type' => new TagType(),
 'allow_add' => true,
 'by_reference' => false,
));
}

Note that we also added 'by_reference' => false. This is because
we are not sending a reference to an existing tag but rather creating
a new tag at the time we save the todo and its tags together.

The allow_add option also does one more thing. It will add a data-prototype
property to the div containing the tag collection. This property
contains html to add a Tag form element to our page like this:

<div data-prototype="<div><label class=" required">$$name$$</label><div id="khepin_productbundle_producttype_tags_$$name$$"><div><label for="khepin_productbundle_producttype_tags_$$name$$_name" class=" required">Name</label><input type="text" id="khepin_productbundle_producttype_tags_$$name$$_name" name="khepin_productbundle_producttype[tags][$$name$$][name]" required="required" maxlength="255" /></div></div></div>" id="khepin_productbundle_producttype_tags">
</div>

We will get this property from our javascript and use it to display
new Tag forms. To make things simple, we will embed jQuery in our page
as it allows for easy cross-browser manipulation of the page.

First let’s add a link on the new form with a class add_tag_link.
Each time this is clicked by the user, we will add an empty tag for him:

$('.record_action').append('Add a tag');

We also include a template containing the javascript needed to add the form
elements when the link is clicked.

Our script can be as simple as this:

function addTagForm() {
 // Get the div that holds the collection of tags
 var collectionHolder = $('#task_tags');
 // Get the data-prototype we explained earlier
 var prototype = collectionHolder.attr('data-prototype');
 // Replace '$$name$$' in the prototype's HTML to
 // instead be a number based on the current collection's length.
 form = prototype.replace(/\$\$name\$\$/g, collectionHolder.children().length);
 // Display the form in the page
 collectionHolder.append(form);
}
// Add the link to add tags
$('.record_action').append('Add a tag');
// When the link is clicked we add the field to input another tag
$('a.jslink').click(function(event){
 addTagForm();
});

Now, each time a user clicks the Add a tag link, a new sub form will
appear on the page. The server side form component is aware it should not
expect any specific size for the Tag collection. And all the tags we
add while creating the new Todo will be saved together with it.

For more details, see the collection form type reference.

Allowing todos to be removed

This section has not been written yet, but will soon. If you’re interested
in writing this entry, see Contributing to the Documentation.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Create a Custom Form Field Type

Symfony comes with a bunch of core field types available for building forms.
However there are situations where we want to create a custom form field
type for a specific purpose. This recipe assumes we need a field definition
that holds a person’s gender, based on the existing choice field. This section
explains how the field is defined, how we can customize its layout and finally,
how we can register it for use in our application.

Defining the Field Type

In order to create the custom field type, first we have to create the class
representing the field. In our situation the class holding the field type
will be called GenderType and the file will be stored in the default location
for form fields, which is <BundleName>\Form\Type. Make sure the field extends
Symfony\Component\Form\AbstractType:

src/Acme/DemoBundle/Form/Type/GenderType.php
namespace Acme\DemoBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilder;

class GenderType extends AbstractType
{
 public function getDefaultOptions(array $options)
 {
 return array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female',
)
);
 }

 public function getParent(array $options)
 {
 return 'choice';
 }

 public function getName()
 {
 return 'gender';
 }
}

Tip

The location of this file is not important - the Form\Type directory
is just a convention.

Here, the return value of the getParent function indicates that we’re
extending the choice field type. This means that, by default, we inherit
all of the logic and rendering of that field type. To see some of the logic,
check out the ChoiceType [https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Form/Extension/Core/Type/ChoiceType.php] class. There are three methods that are particularly
important:

	buildForm() - Each field type has a buildForm method, which is where
you configure and build any field(s). Notice that this is the same method
you use to setup your forms, and it works the same here.

	buildView() - This method is used to set any extra variables you’ll
need when rendering your field in a template. For example, in ChoiceType [https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Form/Extension/Core/Type/ChoiceType.php],
a multiple variable is set and used in the template to set (or not
set) the multiple attribute on the select field. See Creating a Template for the Field
for more details.

	getDefaultOptions() - This defines options for your form type that
can be used in buildForm() and buildView(). There are a lot of
options common to all fields (see FieldType [https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Form/Extension/Core/Type/FieldType.php]), but you can create any
others that you need here.

Tip

If you’re creating a field that consists of many fields, then be sure
to set your “parent” type as form or something that extends form.
Also, if you need to modify the “view” of any of your child types from
your parent type, use the buildViewBottomUp() method.

The getName() method returns an identifier which should be unique in
your application. This is used in various places, such as when customizing
how your form type will be rendered.

The goal of our field was to extend the choice type to enable selection of
a gender. This is achieved by fixing the choices to a list of possible
genders.

Creating a Template for the Field

Each field type is rendered by a template fragment, which is determined in
part by the value of your getName() method. For more information, see
What are Form Themes?.

In this case, since our parent field is choice, we don’t need to do
any work as our custom field type will automatically be rendered like a choice
type. But for the sake of this example, let’s suppose that when our field
is “expanded” (i.e. radio buttons or checkboxes, instead of a select field),
we want to always render it in a ul element. In your form theme template
(see above link for details), create a gender_widget block to handle this:

{# src/Acme/DemoBundle/Resources/views/Form/fields.html.twig #}

{% block gender_widget %}
{% spaceless %}
 {% if expanded %}
 <ul {{ block('widget_container_attributes') }}>
 {% for child in form %}

 {{ form_widget(child) }}
 {{ form_label(child) }}

 {% endfor %}

 {% else %}
 {# just let the choice widget render the select tag #}
 {{ block('choice_widget') }}
 {% endif %}
{% endspaceless %}
{% endblock %}

Note

Make sure the correct widget prefix is used. In this example the name should
be gender_widget, according to the value returned by getName.
Further, the main config file should point to the custom form template
so that it’s used when rendering all forms.

app/config/config.yml

twig:
 form:
 resources:
 - 'AcmeDemoBundle:Form:fields.html.twig'

Using the Field Type

You can now use your custom field type immediately, simply by creating a
new instance of the type in one of your forms:

// src/Acme/DemoBundle/Form/Type/AuthorType.php
namespace Acme\DemoBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilder;

class AuthorType extends AbstractType
{
 public function buildForm(FormBuilder $builder, array $options)
 {
 $builder->add('gender_code', new GenderType(), array(
 'empty_value' => 'Choose a gender',
));
 }
}

But this only works because the GenderType() is very simple. What if
the gender codes were stored in configuration or in a database? The next
section explains how more complex field types solve this problem.

Creating your Field Type as a Service

So far, this entry has assumed that you have a very simple custom field type.
But if you need access to configuration, a database connection, or some other
service, then you’ll want to register your custom type as a service. For
example, suppose that we’re storing the gender parameters in configuration:

	YAML# app/config/config.yml
parameters:
 genders:
 m: Male
 f: Female

	XML<!-- app/config/config.xml -->
<parameters>
 <parameter key="genders" type="collection">
 <parameter key="m">Male</parameter>
 <parameter key="f">Female</parameter>
 </parameter>
</parameters>

To use the parameter, we’ll define our custom field type as a service, injecting
the genders parameter value as the first argument to its to-be-created
__construct function:

	YAML# src/Acme/DemoBundle/Resources/config/services.yml
services:
 form.type.gender:
 class: Acme\DemoBundle\Form\Type\GenderType
 arguments:
 - "%genders%"
 tags:
 - { name: form.type, alias: gender }

	XML<!-- src/Acme/DemoBundle/Resources/config/services.xml -->
<service id="form.type.gender" class="Acme\DemoBundle\Form\Type\GenderType">
 <argument>%genders%</argument>
 <tag name="form.type" alias="gender" />
</service>

Tip

Make sure the services file is being imported. See Importing Configuration with imports
for details.

Be sure that the alias attribute of the tag corresponds with the value
returned by the getName method defined earlier. We’ll see the importance
of this in a moment when we use the custom field type. But first, add a __construct
argument to GenderType, which receives the gender configuration:

src/Acme/DemoBundle/Form/Type/GenderType.php
namespace Acme\DemoBundle\Form\Type;
// ...

class GenderType extends AbstractType
{
 private $genderChoices;

 public function __construct(array $genderChoices)
 {
 $this->genderChoices = $genderChoices;
 }

 public function getDefaultOptions(array $options)
 {
 return array(
 'choices' => $this->genderChoices,
);
 }

 // ...
}

Great! The GenderType is now fueled by the configuration parameters and
registered as a service. And because we used the form.type alias in its
configuration, using the field is now much easier:

// src/Acme/DemoBundle/Form/Type/AuthorType.php
namespace Acme\DemoBundle\Form\Type;
// ...

class AuthorType extends AbstractType
{
 public function buildForm(FormBuilder $builder, array $options)
 {
 $builder->add('gender_code', 'gender', array(
 'empty_value' => 'Choose a gender',
));
 }
}

Notice that instead of instantiating a new instance, we can just refer to
it by the alias used in our service configuration, gender. Have fun!

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to create a Custom Validation Constraint

You can create a custom constraint by extending the base constraint class,
Symfony\Component\Validator\Constraint. Options for your
constraint are represented as public properties on the constraint class. For
example, the Url constraint includes
the message and protocols properties:

namespace Symfony\Component\Validator\Constraints;

use Symfony\Component\Validator\Constraint;

/**
 * @Annotation
 */
class Url extends Constraint
{
 public $message = 'This value is not a valid URL';
 public $protocols = array('http', 'https', 'ftp', 'ftps');
}

Note

The @Annotation annotation is necessary for this new constraint in
order to make it available for use in classes via annotations.

As you can see, a constraint class is fairly minimal. The actual validation is
performed by a another “constraint validator” class. The constraint validator
class is specified by the constraint’s validatedBy() method, which
includes some simple default logic:

// in the base Symfony\Component\Validator\Constraint class
public function validatedBy()
{
 return get_class($this).'Validator';
}

In other words, if you create a custom Constraint (e.g. MyConstraint),
Symfony2 will automatically look for another class, MyConstraintValidator
when actually performing the validation.

The validator class is also simple, and only has one required method: isValid.
Take the NotBlankValidator as an example:

class NotBlankValidator extends ConstraintValidator
{
 public function isValid($value, Constraint $constraint)
 {
 if (null === $value || '' === $value) {
 $this->setMessage($constraint->message);

 return false;
 }

 return true;
 }
}

Constraint Validators with Dependencies

If your constraint validator has dependencies, such as a database connection,
it will need to be configured as a service in the dependency injection
container. This service must include the validator.constraint_validator
tag and an alias attribute:

	YAMLservices:
 validator.unique.your_validator_name:
 class: Fully\Qualified\Validator\Class\Name
 tags:
 - { name: validator.constraint_validator, alias: alias_name }

	XML<service id="validator.unique.your_validator_name" class="Fully\Qualified\Validator\Class\Name">
 <argument type="service" id="doctrine.orm.default_entity_manager" />
 <tag name="validator.constraint_validator" alias="alias_name" />
</service>

	PHP$container
 ->register('validator.unique.your_validator_name', 'Fully\Qualified\Validator\Class\Name')
 ->addTag('validator.constraint_validator', array('alias' => 'alias_name'))
;

Your constraint class should now use this alias to reference the appropriate
validator:

public function validatedBy()
{
 return 'alias_name';
}

As mentioned above, Symfony2 will automatically look for a class named after
the constraint, with Validator appended. If your constraint validator
is defined as a service, it’s important that you override the
validatedBy() method to return the alias used when defining your service,
otherwise Symfony2 won’t use the constraint validator service, and will
instantiate the class instead, without any dependencies injected.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Master and Create new Environments

Every application is the combination of code and a set of configuration that
dictates how that code should function. The configuration may define the
database being used, whether or not something should be cached, or how verbose
logging should be. In Symfony2, the idea of “environments” is the idea that
the same codebase can be run using multiple different configurations. For
example, the dev environment should use configuration that makes development
easy and friendly, while the prod environment should use a set of configuration
optimized for speed.

Different Environments, Different Configuration Files

A typical Symfony2 application begins with three environments: dev,
prod, and test. As discussed, each “environment” simply represents
a way to execute the same codebase with different configuration. It should
be no surprise then that each environment loads its own individual configuration
file. If you’re using the YAML configuration format, the following files
are used:

	for the dev environment: app/config/config_dev.yml

	for the prod environment: app/config/config_prod.yml

	for the test environment: app/config/config_test.yml

This works via a simple standard that’s used by default inside the AppKernel
class:

// app/AppKernel.php
// ...

class AppKernel extends Kernel
{
 // ...

 public function registerContainerConfiguration(LoaderInterface $loader)
 {
 $loader->load(__DIR__.'/config/config_'.$this->getEnvironment().'.yml');
 }
}

As you can see, when Symfony2 is loaded, it uses the given environment to
determine which configuration file to load. This accomplishes the goal of
multiple environments in an elegant, powerful and transparent way.

Of course, in reality, each environment differs only somewhat from others.
Generally, all environments will share a large base of common configuration.
Opening the “dev” configuration file, you can see how this is accomplished
easily and transparently:

	YAMLimports:
 - { resource: config.yml }

...

	XML<imports>
 <import resource="config.xml" />
</imports>

<!-- ... -->

	PHP$loader->import('config.php');

// ...

To share common configuration, each environment’s configuration file
simply first imports from a central configuration file (config.yml).
The remainder of the file can then deviate from the default configuration
by overriding individual parameters. For example, by default, the web_profiler
toolbar is disabled. However, in the dev environment, the toolbar is
activated by modifying the default value in the dev configuration file:

	YAML# app/config/config_dev.yml
imports:
 - { resource: config.yml }

web_profiler:
 toolbar: true
 # ...

	XML<!-- app/config/config_dev.xml -->
<imports>
 <import resource="config.xml" />
</imports>

<webprofiler:config
 toolbar="true"
 # ...
/>

	PHP// app/config/config_dev.php
$loader->import('config.php');

$container->loadFromExtension('web_profiler', array(
 'toolbar' => true,
 // ..
));

Executing an Application in Different Environments

To execute the application in each environment, load up the application using
either the app.php (for the prod environment) or the app_dev.php
(for the dev environment) front controller:

http://localhost/app.php -> *prod* environment
http://localhost/app_dev.php -> *dev* environment

Note

The given URLs assume that your web server is configured to use the web/
directory of the application as its root. Read more in
Installing Symfony2.

If you open up one of these files, you’ll quickly see that the environment
used by each is explicitly set:

	1
2
3
4
5
6
7
8
9

	 <?php

 require_once __DIR__.'/../app/bootstrap_cache.php';
 require_once __DIR__.'/../app/AppCache.php';

 use Symfony\Component\HttpFoundation\Request;

 $kernel = new AppCache(new AppKernel('prod', false));
 $kernel->handle(Request::createFromGlobals())->send();

As you can see, the prod key specifies that this environment will run
in the prod environment. A Symfony2 application can be executed in any
environment by using this code and changing the environment string.

Note

The test environment is used when writing functional tests and is
not accessible in the browser directly via a front controller. In other
words, unlike the other environments, there is no app_test.php front
controller file.

Debug Mode

Important, but unrelated to the topic of environments is the false
key on line 8 of the front controller above. This specifies whether or
not the application should run in “debug mode”. Regardless of the environment,
a Symfony2 application can be run with debug mode set to true or
false. This affects many things in the application, such as whether
or not errors should be displayed or if cache files are dynamically rebuilt
on each request. Though not a requirement, debug mode is generally set
to true for the dev and test environments and false for
the prod environment.

Internally, the value of the debug mode becomes the kernel.debug
parameter used inside the service container.
If you look inside the application configuration file, you’ll see the
parameter used, for example, to turn logging on or off when using the
Doctrine DBAL:

	YAMLdoctrine:
 dbal:
 logging: %kernel.debug%
 # ...

	XML<doctrine:dbal logging="%kernel.debug%" ... />

	PHP$container->loadFromExtension('doctrine', array(
 'dbal' => array(
 'logging' => '%kernel.debug%',
 // ...
),
 // ...
));

Creating a New Environment

By default, a Symfony2 application has three environments that handle most
cases. Of course, since an environment is nothing more than a string that
corresponds to a set of configuration, creating a new environment is quite
easy.

Suppose, for example, that before deployment, you need to benchmark your
application. One way to benchmark the application is to use near-production
settings, but with Symfony2’s web_profiler enabled. This allows Symfony2
to record information about your application while benchmarking.

The best way to accomplish this is via a new environment called, for example,
benchmark. Start by creating a new configuration file:

	YAML# app/config/config_benchmark.yml

imports:
 - { resource: config_prod.yml }

framework:
 profiler: { only_exceptions: false }

	XML<!-- app/config/config_benchmark.xml -->

<imports>
 <import resource="config_prod.xml" />
</imports>

<framework:config>
 <framework:profiler only-exceptions="false" />
</framework:config>

	PHP// app/config/config_benchmark.php

$loader->import('config_prod.php')

$container->loadFromExtension('framework', array(
 'profiler' => array('only-exceptions' => false),
));

And with this simple addition, the application now supports a new environment
called benchmark.

This new configuration file imports the configuration from the prod environment
and modifies it. This guarantees that the new environment is identical to
the prod environment, except for any changes explicitly made here.

Because you’ll want this environment to be accessible via a browser, you
should also create a front controller for it. Copy the web/app.php file
to web/app_benchmark.php and edit the environment to be benchmark:

<?php

require_once __DIR__.'/../app/bootstrap.php';
require_once __DIR__.'/../app/AppKernel.php';

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('benchmark', false);
$kernel->handle(Request::createFromGlobals())->send();

The new environment is now accessible via:

http://localhost/app_benchmark.php

Note

Some environments, like the dev environment, are never meant to be
accessed on any deployed server by the general public. This is because
certain environments, for debugging purposes, may give too much information
about the application or underlying infrastructure. To be sure these environments
aren’t accessible, the front controller is usually protected from external
IP addresses via the following code at the top of the controller:

if (!in_array(@$_SERVER['REMOTE_ADDR'], array('127.0.0.1', '::1'))) {
 die('You are not allowed to access this file. Check '.basename(__FILE__).' for more information.');
}

Environments and the Cache Directory

Symfony2 takes advantage of caching in many ways: the application configuration,
routing configuration, Twig templates and more are cached to PHP objects
stored in files on the filesystem.

By default, these cached files are largely stored in the app/cache directory.
However, each environment caches its own set of files:

app/cache/dev - cache directory for the *dev* environment
app/cache/prod - cache directory for the *prod* environment

Sometimes, when debugging, it may be helpful to inspect a cached file to
understand how something is working. When doing so, remember to look in
the directory of the environment you’re using (most commonly dev while
developing and debugging). While it can vary, the app/cache/dev directory
includes the following:

	appDevDebugProjectContainer.php - the cached “service container” that
represents the cached application configuration;

	appdevUrlGenerator.php - the PHP class generated from the routing
configuration and used when generating URLs;

	appdevUrlMatcher.php - the PHP class used for route matching - look
here to see the compiled regular expression logic used to match incoming
URLs to different routes;

	twig/ - this directory contains all the cached Twig templates.

Going Further

Read the article on How to Set External Parameters in the Service Container.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Set External Parameters in the Service Container

In the chapter How to Master and Create new Environments, you learned how
to manage your application configuration. At times, it may benefit your application
to store certain credentials outside of your project code. Database configuration
is one such example. The flexibility of the symfony service container allows
you to easily do this.

Environment Variables

Symfony will grab any environment variable prefixed with SYMFONY__ and
set it as a parameter in the service container. Double underscores are replaced
with a period, as a period is not a valid character in an environment variable
name.

For example, if you’re using Apache, environment variables can be set using
the following VirtualHost configuration:

<VirtualHost *:80>
 ServerName Symfony2
 DocumentRoot "/path/to/symfony_2_app/web"
 DirectoryIndex index.php index.html
 SetEnv SYMFONY__DATABASE__USER user
 SetEnv SYMFONY__DATABASE__PASSWORD secret

 <Directory "/path/to/symfony_2_app/web">
 AllowOverride All
 Allow from All
 </Directory>
</VirtualHost>

Note

The example above is for an Apache configuration, using the SetEnv [http://httpd.apache.org/docs/current/env.html]
directive. However, this will work for any web server which supports
the setting of environment variables.

Also, in order for your console to work (which does not use Apache),
you must export these as shell variables. On a Unix system, you can run
the following:

export SYMFONY__DATABASE__USER=user
export SYMFONY__DATABASE__PASSWORD=secret

Now that you have declared an environment variable, it will be present
in the PHP $_SERVER global variable. Symfony then automatically sets all
$_SERVER variables prefixed with SYMFONY__ as parameters in the service
container.

You can now reference these parameters wherever you need them.

	YAMLdoctrine:
 dbal:
 driver pdo_mysql
 dbname: symfony2_project
 user: %database.user%
 password: %database.password%

	XML<!-- xmlns:doctrine="http://symfony.com/schema/dic/doctrine" -->
<!-- xsi:schemaLocation="http://symfony.com/schema/dic/doctrine http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd"> -->

<doctrine:config>
 <doctrine:dbal
 driver="pdo_mysql"
 dbname="symfony2_project"
 user="%database.user%"
 password="%database.password%"
 />
</doctrine:config>

	PHP$container->loadFromExtension('doctrine', array('dbal' => array(
 'driver' => 'pdo_mysql',
 'dbname' => 'symfony2_project',
 'user' => '%database.user%',
 'password' => '%database.password%',
));

Constants

The container also has support for setting PHP constants as parameters. To
take advantage of this feature, map the name of your constant to a parameter
key, and define the type as constant.

<?xml version="1.0" encoding="UTF-8"?>

<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
>

 <parameters>
 <parameter key="global.constant.value" type="constant">GLOBAL_CONSTANT</parameter>
 <parameter key="my_class.constant.value" type="constant">My_Class::CONSTANT_NAME</parameter>
 </parameters>
</container>

Note

This only works for XML configuration. If you’re not using XML, simply
import an XML file to take advantage of this functionality:

// app/config/config.yml
imports:
 - { resource: parameters.xml }

Miscellaneous Configuration

The imports directive can be used to pull in parameters stored elsewhere.
Importing a PHP file gives you the flexibility to add whatever is needed
in the container. The following imports a file named parameters.php.

	YAML# app/config/config.yml
imports:
 - { resource: parameters.php }

	XML<!-- app/config/config.xml -->
<imports>
 <import resource="parameters.php" />
</imports>

	PHP// app/config/config.php
$loader->import('parameters.php');

Note

A resource file can be one of many types. PHP, XML, YAML, INI, and
closure resources are all supported by the imports directive.

In parameters.php, tell the service container the parameters that you wish
to set. This is useful when important configuration is in a nonstandard
format. The example below includes a Drupal database’s configuration in
the symfony service container.

// app/config/parameters.php

include_once('/path/to/drupal/sites/default/settings.php');
$container->setParameter('drupal.database.url', $db_url);

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Use a Factory to Create Services

Symfony2’s Service Container provides a powerful way of controlling the
creation of objects, allowing you to specify arguments passed to the constructor
as well as calling methods and setting parameters. Sometimes, however, this
will not provide you with everything you need to construct your objects.
For this situation, you can use a factory to create the object and tell the
service container to call a method on the factory rather than directly instantiating
the object.

Suppose you have a factory that configures and returns a new NewsletterManager
object:

namespace Acme\HelloBundle\Newsletter;

class NewsletterFactory
{
 public function get()
 {
 $newsletterManager = new NewsletterManager();

 // ...

 return $newsletterManager;
 }
}

To make the NewsletterManager object available as a service, you can
configure the service container to use the NewsletterFactory factory
class:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
parameters:
 # ...
 newsletter_manager.class: Acme\HelloBundle\Newsletter\NewsletterManager
 newsletter_factory.class: Acme\HelloBundle\Newsletter\NewsletterFactory
services:
 newsletter_manager:
 class: %newsletter_manager.class%
 factory_class: %newsletter_factory.class%
 factory_method: get

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<parameters>
 <!-- ... -->
 <parameter key="newsletter_manager.class">Acme\HelloBundle\Newsletter\NewsletterManager</parameter>
 <parameter key="newsletter_factory.class">Acme\HelloBundle\Newsletter\NewsletterFactory</parameter>
</parameters>

<services>
 <service id="newsletter_manager"
 class="%newsletter_manager.class%"
 factory-class="%newsletter_factory.class%"
 factory-method="get"
 />
</services>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;

// ...
$container->setParameter('newsletter_manager.class', 'Acme\HelloBundle\Newsletter\NewsletterManager');
$container->setParameter('newsletter_factory.class', 'Acme\HelloBundle\Newsletter\NewsletterFactory');

$container->setDefinition('newsletter_manager', new Definition(
 '%newsletter_manager.class%'
))->setFactoryClass(
 '%newsletter_factory.class%'
)->setFactoryMethod(
 'get'
);

When you specify the class to use for the factory (via factory_class)
the method will be called statically. If the factory itself should be instantiated
and the resulting object’s method called (as in this example), configure the
factory itself as a service:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
parameters:
 # ...
 newsletter_manager.class: Acme\HelloBundle\Newsletter\NewsletterManager
 newsletter_factory.class: Acme\HelloBundle\Newsletter\NewsletterFactory
services:
 newsletter_factory:
 class: %newsletter_factory.class%
 newsletter_manager:
 class: %newsletter_manager.class%
 factory_service: newsletter_factory
 factory_method: get

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<parameters>
 <!-- ... -->
 <parameter key="newsletter_manager.class">Acme\HelloBundle\Newsletter\NewsletterManager</parameter>
 <parameter key="newsletter_factory.class">Acme\HelloBundle\Newsletter\NewsletterFactory</parameter>
</parameters>

<services>
 <service id="newsletter_factory" class="%newsletter_factory.class%"/>
 <service id="newsletter_manager"
 class="%newsletter_manager.class%"
 factory-service="newsletter_factory"
 factory-method="get"
 />
</services>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;

// ...
$container->setParameter('newsletter_manager.class', 'Acme\HelloBundle\Newsletter\NewsletterManager');
$container->setParameter('newsletter_factory.class', 'Acme\HelloBundle\Newsletter\NewsletterFactory');

$container->setDefinition('newsletter_factory', new Definition(
 '%newsletter_factory.class%'
))
$container->setDefinition('newsletter_manager', new Definition(
 '%newsletter_manager.class%'
))->setFactoryService(
 'newsletter_factory'
)->setFactoryMethod(
 'get'
);

Note

The factory service is specified by its id name and not a reference to
the service itself. So, you do not need to use the @ syntax.

Passing Arguments to the Factory Method

If you need to pass arguments to the factory method, you can use the arguments
options inside the service container. For example, suppose the get method
in the previous example takes the templating service as an argument:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
parameters:
 # ...
 newsletter_manager.class: Acme\HelloBundle\Newsletter\NewsletterManager
 newsletter_factory.class: Acme\HelloBundle\Newsletter\NewsletterFactory
services:
 newsletter_factory:
 class: %newsletter_factory.class%
 newsletter_manager:
 class: %newsletter_manager.class%
 factory_service: newsletter_factory
 factory_method: get
 arguments:
 - @templating

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<parameters>
 <!-- ... -->
 <parameter key="newsletter_manager.class">Acme\HelloBundle\Newsletter\NewsletterManager</parameter>
 <parameter key="newsletter_factory.class">Acme\HelloBundle\Newsletter\NewsletterFactory</parameter>
</parameters>

<services>
 <service id="newsletter_factory" class="%newsletter_factory.class%"/>
 <service id="newsletter_manager"
 class="%newsletter_manager.class%"
 factory-service="newsletter_factory"
 factory-method="get"
 >
 <argument type="service" id="templating" />
 </service>
</services>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;

// ...
$container->setParameter('newsletter_manager.class', 'Acme\HelloBundle\Newsletter\NewsletterManager');
$container->setParameter('newsletter_factory.class', 'Acme\HelloBundle\Newsletter\NewsletterFactory');

$container->setDefinition('newsletter_factory', new Definition(
 '%newsletter_factory.class%'
))
$container->setDefinition('newsletter_manager', new Definition(
 '%newsletter_manager.class%',
 array(new Reference('templating'))
))->setFactoryService(
 'newsletter_factory'
)->setFactoryMethod(
 'get'
);

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Manage Common Dependencies with Parent Services

As you add more functionality to your application, you may well start to have
related classes that share some of the same dependencies. For example you
may have a Newsletter Manager which uses setter injection to set its dependencies:

namespace Acme\HelloBundle\Mail;

use Acme\HelloBundle\Mailer;
use Acme\HelloBundle\EmailFormatter;

class NewsletterManager
{
 protected $mailer;
 protected $emailFormatter;

 public function setMailer(Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 public function setEmailFormatter(EmailFormatter $emailFormatter)
 {
 $this->emailFormatter = $emailFormatter;
 }
 // ...
}

and also a Greeting Card class which shares the same dependencies:

namespace Acme\HelloBundle\Mail;

use Acme\HelloBundle\Mailer;
use Acme\HelloBundle\EmailFormatter;

class GreetingCardManager
{
 protected $mailer;
 protected $emailFormatter;

 public function setMailer(Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 public function setEmailFormatter(EmailFormatter $emailFormatter)
 {
 $this->emailFormatter = $emailFormatter;
 }
 // ...
}

The service config for these classes would look something like this:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
parameters:
 # ...
 newsletter_manager.class: Acme\HelloBundle\Mail\NewsletterManager
 greeting_card_manager.class: Acme\HelloBundle\Mail\GreetingCardManager
services:
 my_mailer:
 # ...
 my_email_formatter:
 # ...
 newsletter_manager:
 class: %newsletter_manager.class%
 calls:
 - [setMailer, [@my_mailer]]
 - [setEmailFormatter, [@my_email_formatter]]

 greeting_card_manager:
 class: %greeting_card_manager.class%
 calls:
 - [setMailer, [@my_mailer]]
 - [setEmailFormatter, [@my_email_formatter]]

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<parameters>
 <!-- ... -->
 <parameter key="newsletter_manager.class">Acme\HelloBundle\Mail\NewsletterManager</parameter>
 <parameter key="greeting_card_manager.class">Acme\HelloBundle\Mail\GreetingCardManager</parameter>
</parameters>

<services>
 <service id="my_mailer" ... >
 <!-- ... -->
 </service>
 <service id="my_email_formatter" ... >
 <!-- ... -->
 </service>
 <service id="newsletter_manager" class="%newsletter_manager.class%">
 <call method="setMailer">
 <argument type="service" id="my_mailer" />
 </call>
 <call method="setEmailFormatter">
 <argument type="service" id="my_email_formatter" />
 </call>
 </service>
 <service id="greeting_card_manager" class="%greeting_card_manager.class%">
 <call method="setMailer">
 <argument type="service" id="my_mailer" />
 </call>
 <call method="setEmailFormatter">
 <argument type="service" id="my_email_formatter" />
 </call>
 </service>
</services>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

// ...
$container->setParameter('newsletter_manager.class', 'Acme\HelloBundle\Mail\NewsletterManager');
$container->setParameter('greeting_card_manager.class', 'Acme\HelloBundle\Mail\GreetingCardManager');

$container->setDefinition('my_mailer', ...);
$container->setDefinition('my_email_formatter', ...);
$container->setDefinition('newsletter_manager', new Definition(
 '%newsletter_manager.class%'
))->addMethodCall('setMailer', array(
 new Reference('my_mailer')
))->addMethodCall('setEmailFormatter', array(
 new Reference('my_email_formatter')
));
$container->setDefinition('greeting_card_manager', new Definition(
 '%greeting_card_manager.class%'
))->addMethodCall('setMailer', array(
 new Reference('my_mailer')
))->addMethodCall('setEmailFormatter', array(
 new Reference('my_email_formatter')
));

There is a lot of repetition in both the classes and the configuration. This
means that if you changed, for example, the Mailer of EmailFormatter
classes to be injected via the constructor, you would need to update the config
in two places. Likewise if you needed to make changes to the setter methods
you would need to do this in both classes. The typical way to deal with the
common methods of these related classes would be to extract them to a super class:

namespace Acme\HelloBundle\Mail;

use Acme\HelloBundle\Mailer;
use Acme\HelloBundle\EmailFormatter;

abstract class MailManager
{
 protected $mailer;
 protected $emailFormatter;

 public function setMailer(Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 public function setEmailFormatter(EmailFormatter $emailFormatter)
 {
 $this->emailFormatter = $emailFormatter;
 }
 // ...
}

The NewsletterManager and GreetingCardManager can then extend this
super class:

namespace Acme\HelloBundle\Mail;

class NewsletterManager extends MailManager
{
 // ...
}

and:

namespace Acme\HelloBundle\Mail;

class GreetingCardManager extends MailManager
{
 // ...
}

In a similar fashion, the Symfony2 service container also supports extending
services in the configuration so you can also reduce the repetition by specifying
a parent for a service.

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
parameters:
 # ...
 newsletter_manager.class: Acme\HelloBundle\Mail\NewsletterManager
 greeting_card_manager.class: Acme\HelloBundle\Mail\GreetingCardManager
 mail_manager.class: Acme\HelloBundle\Mail\MailManager
services:
 my_mailer:
 # ...
 my_email_formatter:
 # ...
 mail_manager:
 class: %mail_manager.class%
 abstract: true
 calls:
 - [setMailer, [@my_mailer]]
 - [setEmailFormatter, [@my_email_formatter]]

 newsletter_manager:
 class: %newsletter_manager.class%
 parent: mail_manager

 greeting_card_manager:
 class: %greeting_card_manager.class%
 parent: mail_manager

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<parameters>
 <!-- ... -->
 <parameter key="newsletter_manager.class">Acme\HelloBundle\Mail\NewsletterManager</parameter>
 <parameter key="greeting_card_manager.class">Acme\HelloBundle\Mail\GreetingCardManager</parameter>
 <parameter key="mail_manager.class">Acme\HelloBundle\Mail\MailManager</parameter>
</parameters>

<services>
 <service id="my_mailer" ... >
 <!-- ... -->
 </service>
 <service id="my_email_formatter" ... >
 <!-- ... -->
 </service>
 <service id="mail_manager" class="%mail_manager.class%" abstract="true">
 <call method="setMailer">
 <argument type="service" id="my_mailer" />
 </call>
 <call method="setEmailFormatter">
 <argument type="service" id="my_email_formatter" />
 </call>
 </service>
 <service id="newsletter_manager" class="%newsletter_manager.class%" parent="mail_manager"/>
 <service id="greeting_card_manager" class="%greeting_card_manager.class%" parent="mail_manager"/>
</services>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

// ...
$container->setParameter('newsletter_manager.class', 'Acme\HelloBundle\Mail\NewsletterManager');
$container->setParameter('greeting_card_manager.class', 'Acme\HelloBundle\Mail\GreetingCardManager');
$container->setParameter('mail_manager.class', 'Acme\HelloBundle\Mail\MailManager');

$container->setDefinition('my_mailer', ...);
$container->setDefinition('my_email_formatter', ...);
$container->setDefinition('mail_manager', new Definition(
 '%mail_manager.class%'
))->SetAbstract(
 true
)->addMethodCall('setMailer', array(
 new Reference('my_mailer')
))->addMethodCall('setEmailFormatter', array(
 new Reference('my_email_formatter')
));
$container->setDefinition('newsletter_manager', new DefinitionDecorator(
 'mail_manager'
))->setClass(
 '%newsletter_manager.class%'
);
$container->setDefinition('greeting_card_manager', new DefinitionDecorator(
 'mail_manager'
))->setClass(
 '%greeting_card_manager.class%'
);

In this context, having a parent service implies that the arguments and
method calls of the parent service should be used for the child services.
Specifically, the setter methods defined for the parent service will be called
when the child services are instantiated.

Note

If you remove the parent config key, the services will still be instantiated
and they will still of course extend the MailManager class. The difference
is that omitting the parent config key will mean that the calls
defined on the mail_manager service will not be executed when the
child services are instantiated.

The parent class is abstract as it should not be directly instantiated. Setting
it to abstract in the config file as has been done above will mean that it
can only be used as a parent service and cannot be used directly as a service
to inject and will be removed at compile time. In other words, it exists merely
as a “template” that other services can use.

Overriding Parent Dependencies

There may be times where you want to override what class is passed in for
a dependency of one child service only. Fortunately, by adding the method
call config for the child service, the dependencies set by the parent class
will be overridden. So if you needed to pass a different dependency just
to the NewsletterManager class, the config would look like this:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
parameters:
 # ...
 newsletter_manager.class: Acme\HelloBundle\Mail\NewsletterManager
 greeting_card_manager.class: Acme\HelloBundle\Mail\GreetingCardManager
 mail_manager.class: Acme\HelloBundle\Mail\MailManager
services:
 my_mailer:
 # ...
 my_alternative_mailer:
 # ...
 my_email_formatter:
 # ...
 mail_manager:
 class: %mail_manager.class%
 abstract: true
 calls:
 - [setMailer, [@my_mailer]]
 - [setEmailFormatter, [@my_email_formatter]]

 newsletter_manager:
 class: %newsletter_manager.class%
 parent: mail_manager
 calls:
 - [setMailer, [@my_alternative_mailer]]

 greeting_card_manager:
 class: %greeting_card_manager.class%
 parent: mail_manager

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<parameters>
 <!-- ... -->
 <parameter key="newsletter_manager.class">Acme\HelloBundle\Mail\NewsletterManager</parameter>
 <parameter key="greeting_card_manager.class">Acme\HelloBundle\Mail\GreetingCardManager</parameter>
 <parameter key="mail_manager.class">Acme\HelloBundle\Mail\MailManager</parameter>
</parameters>

<services>
 <service id="my_mailer" ... >
 <!-- ... -->
 </service>
 <service id="my_alternative_mailer" ... >
 <!-- ... -->
 </service>
 <service id="my_email_formatter" ... >
 <!-- ... -->
 </service>
 <service id="mail_manager" class="%mail_manager.class%" abstract="true">
 <call method="setMailer">
 <argument type="service" id="my_mailer" />
 </call>
 <call method="setEmailFormatter">
 <argument type="service" id="my_email_formatter" />
 </call>
 </service>
 <service id="newsletter_manager" class="%newsletter_manager.class%" parent="mail_manager">
 <call method="setMailer">
 <argument type="service" id="my_alternative_mailer" />
 </call>
 </service>
 <service id="greeting_card_manager" class="%greeting_card_manager.class%" parent="mail_manager"/>
</services>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

// ...
$container->setParameter('newsletter_manager.class', 'Acme\HelloBundle\Mail\NewsletterManager');
$container->setParameter('greeting_card_manager.class', 'Acme\HelloBundle\Mail\GreetingCardManager');
$container->setParameter('mail_manager.class', 'Acme\HelloBundle\Mail\MailManager');

$container->setDefinition('my_mailer', ...);
$container->setDefinition('my_alternative_mailer', ...);
$container->setDefinition('my_email_formatter', ...);
$container->setDefinition('mail_manager', new Definition(
 '%mail_manager.class%'
))->SetAbstract(
 true
)->addMethodCall('setMailer', array(
 new Reference('my_mailer')
))->addMethodCall('setEmailFormatter', array(
 new Reference('my_email_formatter')
));
$container->setDefinition('newsletter_manager', new DefinitionDecorator(
 'mail_manager'
))->setClass(
 '%newsletter_manager.class%'
)->addMethodCall('setMailer', array(
 new Reference('my_alternative_mailer')
));
$container->setDefinition('greeting_card_manager', new DefinitionDecorator(
 'mail_manager'
))->setClass(
 '%greeting_card_manager.class%'
);

The GreetingCardManager will receive the same dependencies as before,
but the NewsletterManager will be passed the my_alternative_mailer
instead of the my_mailer service.

Collections of Dependencies

It should be noted that the overridden setter method in the previous example
is actually called twice - once per the parent definition and once per the
child definition. In the previous example, that was fine, since the second
setMailer call replaces mailer object set by the first call.

In some cases, however, this can be a problem. For example, if the overridden
method call involves adding something to a collection, then two objects will
be added to that collection. The following shows such a case, if the parent
class looks like this:

namespace Acme\HelloBundle\Mail;

use Acme\HelloBundle\Mailer;
use Acme\HelloBundle\EmailFormatter;

abstract class MailManager
{
 protected $filters;

 public function setFilter($filter)
 {
 $this->filters[] = $filter;
 }
 // ...
}

If you had the following config:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
parameters:
 # ...
 newsletter_manager.class: Acme\HelloBundle\Mail\NewsletterManager
 mail_manager.class: Acme\HelloBundle\Mail\MailManager
services:
 my_filter:
 # ...
 another_filter:
 # ...
 mail_manager:
 class: %mail_manager.class%
 abstract: true
 calls:
 - [setFilter, [@my_filter]]

 newsletter_manager:
 class: %newsletter_manager.class%
 parent: mail_manager
 calls:
 - [setFilter, [@another_filter]]

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<parameters>
 <!-- ... -->
 <parameter key="newsletter_manager.class">Acme\HelloBundle\Mail\NewsletterManager</parameter>
 <parameter key="mail_manager.class">Acme\HelloBundle\Mail\MailManager</parameter>
</parameters>

<services>
 <service id="my_filter" ... >
 <!-- ... -->
 </service>
 <service id="another_filter" ... >
 <!-- ... -->
 </service>
 <service id="mail_manager" class="%mail_manager.class%" abstract="true">
 <call method="setFilter">
 <argument type="service" id="my_filter" />
 </call>
 </service>
 <service id="newsletter_manager" class="%newsletter_manager.class%" parent="mail_manager">
 <call method="setFilter">
 <argument type="service" id="another_filter" />
 </call>
 </service>
</services>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

// ...
$container->setParameter('newsletter_manager.class', 'Acme\HelloBundle\Mail\NewsletterManager');
$container->setParameter('mail_manager.class', 'Acme\HelloBundle\Mail\MailManager');

$container->setDefinition('my_filter', ...);
$container->setDefinition('another_filter', ...);
$container->setDefinition('mail_manager', new Definition(
 '%mail_manager.class%'
))->SetAbstract(
 true
)->addMethodCall('setFilter', array(
 new Reference('my_filter')
));
$container->setDefinition('newsletter_manager', new DefinitionDecorator(
 'mail_manager'
))->setClass(
 '%newsletter_manager.class%'
)->addMethodCall('setFilter', array(
 new Reference('another_filter')
));

In this example, the setFilter of the newsletter_manager service
will be called twice, resulting in the $filters array containing both
my_filter and another_filter objects. This is great if you just want
to add additional filters to the subclasses. If you want to replace the filters
passed to the subclass, removing the parent setting from the config will
prevent the base class from calling to setFilter.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to work with Scopes

This entry is all about scopes, a somewhat advanced topic related to the
Service Container. If you’ve ever gotten an error mentioning
“scopes” when creating services, or need to create a service that depends
on the request service, then this entry is for you.

Understanding Scopes

The scope of a service controls how long an instance of a service is used
by the container. The Dependency Injection component provides two generic
scopes:

	container (the default one): The same instance is used each time you
request it from this container.

	prototype: A new instance is created each time you request the service.

The FrameworkBundle also defines a third scope: request. This scopes is
tied to the request, meaning a new instance is created for each subrequest
and is unavailable outside the request (for instance in the CLI).

Scopes add a constraint on the dependencies of a service: a service cannot
depend on services from a narrower scope. For example, if you create a generic
my_foo service, but try to inject the request component, you’ll receive
a Symfony\Component\DependencyInjection\Exception\ScopeWideningInjectionException
when compiling the container. Read the sidebar below for more details.

Scopes and Dependencies

Imagine you’ve configured a my_mailer service. You haven’t configured
the scope of the service, so it defaults to container. In other words,
everytime you ask the container for the my_mailer service, you get
the same object back. This is usually how you want your services to work.

Imagine, however, that you need the request service in your my_mailer
service, maybe because you’re reading the URL of the current request.
So, you add it as a constructor argument. Let’s look at why this presents
a problem:

	When requesting my_mailer, an instance of my_mailer (let’s call
it MailerA) is created and the request service (let’s call it
RequestA) is passed to it. Life is good!

	You’ve now made a subrequest in Symfony, which is a fancy way of saying
that you’ve called, for example, the {% render ... %} Twig function,
which executes another controller. Internally, the old request service
(RequestA) is actually replaced by a new request instance (RequestB).
This happens in the background, and it’s totally normal.

	In your embedded controller, you once again ask for the my_mailer
service. Since your service is in the container scope, the same
instance (MailerA) is just re-used. But here’s the problem: the
MailerA instance still contains the old RequestA object, which
is now not the correct request object to have (RequestB is now
the current request service). This is subtle, but the mis-match could
cause major problems, which is why it’s not allowed.

So, that’s the reason why scopes exists, and how they can cause
problems. Keep reading to find out the common solutions.

Note

A service can of course depend on a service from a wider scope without
any issue.

Setting the Scope in the Definition

The scope of a service is defined in the definition of the service:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
services:
 greeting_card_manager:
 class: Acme\HelloBundle\Mail\GreetingCardManager
 scope: request

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<services>
 <service id="greeting_card_manager" class="Acme\HelloBundle\Mail\GreetingCardManager" scope="request" />
</services>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;

$container->setDefinition(
 'greeting_card_manager',
 new Definition('Acme\HelloBundle\Mail\GreetingCardManager')
)->setScope('request');

If you don’t specify the scope, it defaults to container, which is what
you want most of the time. Unless your service depends on another service
that’s scoped to a narrower scope (most commonly, the request service),
you probably don’t need to set the scope.

Using a Service from a narrower Scope

If your service depends on a scoped service, the best solution is to put
it in the same scope (or a narrower one). Usually, this means putting your
new service in the request scope.

But this is not always possible (for instance, a twig extension must be in
the container scope as the Twig environment needs it as a dependency).
In these cases, you should pass the entire container into your service and
retrieve your dependency from the container each time we need it to be sure
you have the right instance:

namespace Acme\HelloBundle\Mail;

use Symfony\Component\DependencyInjection\ContainerInterface;

class Mailer
{
 protected $container;

 public function __construct(ContainerInterface $container)
 {
 $this->container = $container;
 }

 public function sendEmail()
 {
 $request = $this->container->get('request');
 // Do something using the request here
 }
}

Caution

Take care not to store the request in a property of the object for a
future call of the service as it would be the same issue described
in the first section (except that symfony cannot detect that you are
wrong).

The service config for this class would look something like this:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
parameters:
 # ...
 my_mailer.class: Acme\HelloBundle\Mail\Mailer
services:
 my_mailer:
 class: %my_mailer.class%
 arguments:
 - "@service_container"
 # scope: container can be omitted as it is the default

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<parameters>
 <!-- ... -->
 <parameter key="my_mailer.class">Acme\HelloBundle\Mail\Mailer</parameter>
</parameters>

<services>
 <service id="my_mailer" class="%my_mailer.class%">
 <argument type="service" id="service_container" />
 </service>
</services>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

// ...
$container->setParameter('my_mailer.class', 'Acme\HelloBundle\Mail\Mailer');

$container->setDefinition('my_mailer', new Definition(
 '%my_mailer.class%',
 array(new Reference('service_container'))
));

Note

Injecting the whole container into a service is generally not a good
idea (only inject what you need). In some rare cases, it’s necessary
when you have a service in the container scope that needs a service
in the request scope.

If you define a controller as a service then you can get the Request object
without injecting the container by having it passed in as an argument of your
action method. See The Request as a Controller Argument for details.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to make your Services use Tags

Several of Symfony2’s core services depend on tags to recognize which services
should be loaded, notified of events, or handled in some other special way.
For example, Twig uses the tag twig.extension to load extra extensions.

But you can also use tags in your own bundles. For example in case your service
handles a collection of some kind, or implements a “chain”, in which several alternative
strategies are tried until one of them is successful. In this article I will use the example
of a “transport chain”, which is a collection of classes implementing \Swift_Transport.
Using the chain, the Swift mailer may try several ways of transport, until one succeeds.
This post focuses mainly on the dependency injection part of the story.

To begin with, define the TransportChain class:

namespace Acme\MailerBundle;

class TransportChain
{
 private $transports;

 public function __construct()
 {
 $this->transports = array();
 }

 public function addTransport(\Swift_Transport $transport)
 {
 $this->transports[] = $transport;
 }
}

Then, define the chain as a service:

	YAML# src/Acme/MailerBundle/Resources/config/services.yml
parameters:
 acme_mailer.transport_chain.class: Acme\MailerBundle\TransportChain

services:
 acme_mailer.transport_chain:
 class: %acme_mailer.transport_chain.class%

	XML<!-- src/Acme/MailerBundle/Resources/config/services.xml -->

<parameters>
 <parameter key="acme_mailer.transport_chain.class">Acme\MailerBundle\TransportChain</parameter>
</parameters>

<services>
 <service id="acme_mailer.transport_chain" class="%acme_mailer.transport_chain.class%" />
</services>

	PHP// src/Acme/MailerBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;

$container->setParameter('acme_mailer.transport_chain.class', 'Acme\MailerBundle\TransportChain');

$container->setDefinition('acme_mailer.transport_chain', new Definition('%acme_mailer.transport_chain.class%'));

Define Services with a Custom Tag

Now we want several of the \Swift_Transport classes to be instantiated
and added to the chain automatically using the addTransport() method.
As an example we add the following transports as services:

	YAML# src/Acme/MailerBundle/Resources/config/services.yml
services:
 acme_mailer.transport.smtp:
 class: \Swift_SmtpTransport
 arguments:
 - %mailer_host%
 tags:
 - { name: acme_mailer.transport }
 acme_mailer.transport.sendmail:
 class: \Swift_SendmailTransport
 tags:
 - { name: acme_mailer.transport }

	XML<!-- src/Acme/MailerBundle/Resources/config/services.xml -->
<service id="acme_mailer.transport.smtp" class="\Swift_SmtpTransport">
 <argument>%mailer_host%</argument>
 <tag name="acme_mailer.transport" />
</service>

<service id="acme_mailer.transport.sendmail" class="\Swift_SendmailTransport">
 <tag name="acme_mailer.transport" />
</service>

	PHP// src/Acme/MailerBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;

$definitionSmtp = new Definition('\Swift_SmtpTransport', array('%mailer_host%'));
$definitionSmtp->addTag('acme_mailer.transport');
$container->setDefinition('acme_mailer.transport.smtp', $definitionSmtp);

$definitionSendmail = new Definition('\Swift_SendmailTransport');
$definitionSendmail->addTag('acme_mailer.transport');
$container->setDefinition('acme_mailer.transport.sendmail', $definitionSendmail);

Notice the tags named “acme_mailer.transport”. We want the bundle to recognize
these transports and add them to the chain all by itself. In order to achieve
this, we need to add a build() method to the AcmeMailerBundle class:

namespace Acme\MailerBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;
use Symfony\Component\DependencyInjection\ContainerBuilder;

use Acme\MailerBundle\DependencyInjection\Compiler\TransportCompilerPass;

class AcmeMailerBundle extends Bundle
{
 public function build(ContainerBuilder $container)
 {
 parent::build($container);

 $container->addCompilerPass(new TransportCompilerPass());
 }
}

Create a CompilerPass

You will have spotted a reference to the not yet existing TransportCompilerPass class.
This class will make sure that all services with a tag acme_mailer.transport
will be added to the TransportChain class by calling the addTransport()
method. The TransportCompilerPass should look like this:

namespace Acme\MailerBundle\DependencyInjection\Compiler;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Compiler\CompilerPassInterface;
use Symfony\Component\DependencyInjection\Reference;

class TransportCompilerPass implements CompilerPassInterface
{
 public function process(ContainerBuilder $container)
 {
 if (false === $container->hasDefinition('acme_mailer.transport_chain')) {
 return;
 }

 $definition = $container->getDefinition('acme_mailer.transport_chain');

 foreach ($container->findTaggedServiceIds('acme_mailer.transport') as $id => $attributes) {
 $definition->addMethodCall('addTransport', array(new Reference($id)));
 }
 }
}

The process() method checks for the existence of the acme_mailer.transport_chain
service, then looks for all services tagged acme_mailer.transport. It adds
to the definition of the acme_mailer.transport_chain service a call to
addTransport() for each “acme_mailer.transport” service it has found.
The first argument of each of these calls will be the mailer transport service
itself.

Note

By convention, tag names consist of the name of the bundle (lowercase,
underscores as separators), followed by a dot, and finally the “real”
name, so the tag “transport” in the AcmeMailerBundle should be: acme_mailer.transport.

The Compiled Service Definition

Adding the compiler pass will result in the automatic generation of the following
lines of code in the compiled service container. In case you are working
in the “dev” environment, open the file /cache/dev/appDevDebugProjectContainer.php
and look for the method getTransportChainService(). It should look like this:

protected function getAcmeMailer_TransportChainService()
{
 $this->services['acme_mailer.transport_chain'] = $instance = new \Acme\MailerBundle\TransportChain();

 $instance->addTransport($this->get('acme_mailer.transport.smtp'));
 $instance->addTransport($this->get('acme_mailer.transport.sendmail'));

 return $instance;
}

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to use PdoSessionStorage to store Sessions in the Database

The default session storage of Symfony2 writes the session information to
file(s). Most medium to large websites use a database to store the session
values instead of files, because databases are easier to use and scale in a
multi-webserver environment.

Symfony2 has a built-in solution for database session storage called
Symfony\Component\HttpFoundation\SessionStorage\PdoSessionStorage.
To use it, you just need to change some parameters in config.yml (or the
configuration format of your choice):

	YAML# app/config/config.yml
framework:
 session:
 # ...
 storage_id: session.storage.pdo

parameters:
 pdo.db_options:
 db_table: session
 db_id_col: session_id
 db_data_col: session_value
 db_time_col: session_time

services:
 pdo:
 class: PDO
 arguments:
 dsn: "mysql:dbname=mydatabase"
 user: myuser
 password: mypassword

 session.storage.pdo:
 class: Symfony\Component\HttpFoundation\SessionStorage\PdoSessionStorage
 arguments: [@pdo, %session.storage.options%, %pdo.db_options%]

	XML<!-- app/config/config.xml -->
<framework:config>
 <framework:session storage-id="session.storage.pdo" lifetime="3600" auto-start="true"/>
</framework:config>

<parameters>
 <parameter key="pdo.db_options" type="collection">
 <parameter key="db_table">session</parameter>
 <parameter key="db_id_col">session_id</parameter>
 <parameter key="db_data_col">session_value</parameter>
 <parameter key="db_time_col">session_time</parameter>
 </parameter>
</parameters>

<services>
 <service id="pdo" class="PDO">
 <argument>mysql:dbname=mydatabase</argument>
 <argument>myuser</argument>
 <argument>mypassword</argument>
 </service>

 <service id="session.storage.pdo" class="Symfony\Component\HttpFoundation\SessionStorage\PdoSessionStorage">
 <argument type="service" id="pdo" />
 <argument>%session.storage.options%</argument>
 <argument>%pdo.db_options%</argument>
 </service>
</services>

	PHP// app/config/config.yml
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$container->loadFromExtension('framework', array(
 // ...
 'session' => array(
 // ...
 'storage_id' => 'session.storage.pdo',
),
));

$container->setParameter('pdo.db_options', array(
 'db_table' => 'session',
 'db_id_col' => 'session_id',
 'db_data_col' => 'session_value',
 'db_time_col' => 'session_time',
));

$pdoDefinition = new Definition('PDO', array(
 'mysql:dbname=mydatabase',
 'myuser',
 'mypassword',
));
$container->setDefinition('pdo', $pdoDefinition);

$storageDefinition = new Definition('Symfony\Component\HttpFoundation\SessionStorage\PdoSessionStorage', array(
 new Reference('pdo'),
 '%session.storage.options%',
 '%pdo.db_options%',
));
$container->setDefinition('session.storage.pdo', $storageDefinition);

	db_table: The name of the session table in your database

	db_id_col: The name of the id column in your session table (VARCHAR(255) or larger)

	db_data_col: The name of the value column in your session table (TEXT or CLOB)

	db_time_col: The name of the time column in your session table (INTEGER)

Sharing your Database Connection Information

With the given configuration, the database connection settings are defined for
the session storage connection only. This is OK when you use a separate
database for the session data.

But if you’d like to store the session data in the same database as the rest
of your project’s data, you can use the connection settings from the
parameter.ini by referencing the database-related parameters defined there:

	YAMLpdo:
 class: PDO
 arguments:
 - "mysql:dbname=%database_name%"
 - %database_user%
 - %database_password%

	XML<service id="pdo" class="PDO">
 <argument>mysql:dbname=%database_name%</argument>
 <argument>%database_user%</argument>
 <argument>%database_password%</argument>
</service>

	XML$pdoDefinition = new Definition('PDO', array(
 'mysql:dbname=%database_name%',
 '%database_user%',
 '%database_password%',
));

Example SQL Statements

MySQL

The SQL statement for creating the needed database table might look like the
following (MySQL):

CREATE TABLE `session` (
 `session_id` varchar(255) NOT NULL,
 `session_value` text NOT NULL,
 `session_time` int(11) NOT NULL,
 PRIMARY KEY (`session_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

PostgreSQL

For PostgreSQL, the statement should look like this:

CREATE TABLE session (
 session_id character varying(255) NOT NULL,
 session_value text NOT NULL,
 session_time integer NOT NULL,
 CONSTRAINT session_pkey PRIMARY KEY (session_id),
);

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

Bundle Structure and Best Practices

A bundle is a directory that has a well-defined structure and can host anything
from classes to controllers and web resources. Even if bundles are very
flexible, you should follow some best practices if you want to distribute them.

Bundle Name

A bundle is also a PHP namespace. The namespace must follow the technical
interoperability standards [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md] for PHP 5.3 namespaces and class names: it
starts with a vendor segment, followed by zero or more category segments, and
it ends with the namespace short name, which must end with a Bundle
suffix.

A namespace becomes a bundle as soon as you add a bundle class to it. The
bundle class name must follow these simple rules:

	Use only alphanumeric characters and underscores;

	Use a CamelCased name;

	Use a descriptive and short name (no more than 2 words);

	Prefix the name with the concatenation of the vendor (and optionally the
category namespaces);

	Suffix the name with Bundle.

Here are some valid bundle namespaces and class names:

	Namespace
	Bundle Class Name

	Acme\Bundle\BlogBundle
	AcmeBlogBundle

	Acme\Bundle\Social\BlogBundle
	AcmeSocialBlogBundle

	Acme\BlogBundle
	AcmeBlogBundle

By convention, the getName() method of the bundle class should return the
class name.

Note

If you share your bundle publicly, you must use the bundle class name as
the name of the repository (AcmeBlogBundle and not BlogBundle
for instance).

Note

Symfony2 core Bundles do not prefix the Bundle class with Symfony
and always add a Bundle subnamespace; for example:
Symfony\Bundle\FrameworkBundle\FrameworkBundle.

Each bundle has an alias, which is the lower-cased short version of the bundle
name using underscores (acme_hello for AcmeHelloBundle, or
acme_social_blog for Acme\Social\BlogBundle for instance). This alias
is used to enforce uniqueness within a bundle (see below for some usage
examples).

Directory Structure

The basic directory structure of a HelloBundle bundle must read as
follows:

XXX/...
 HelloBundle/
 HelloBundle.php
 Controller/
 Resources/
 meta/
 LICENSE
 config/
 doc/
 index.rst
 translations/
 views/
 public/
 Tests/

The XXX directory(ies) reflects the namespace structure of the bundle.

The following files are mandatory:

	HelloBundle.php;

	Resources/meta/LICENSE: The full license for the code;

	Resources/doc/index.rst: The root file for the Bundle documentation.

Note

These conventions ensure that automated tools can rely on this default
structure to work.

The depth of sub-directories should be kept to the minimal for most used
classes and files (2 levels at a maximum). More levels can be defined for
non-strategic, less-used files.

The bundle directory is read-only. If you need to write temporary files, store
them under the cache/ or log/ directory of the host application. Tools
can generate files in the bundle directory structure, but only if the generated
files are going to be part of the repository.

The following classes and files have specific emplacements:

	Type
	Directory

	Commands
	Command/

	Controllers
	Controller/

	Service Container Extensions
	DependencyInjection/

	Event Listeners
	EventListener/

	Configuration
	Resources/config/

	Web Resources
	Resources/public/

	Translation files
	Resources/translations/

	Templates
	Resources/views/

	Unit and Functional Tests
	Tests/

Classes

The bundle directory structure is used as the namespace hierarchy. For
instance, a HelloController controller is stored in
Bundle/HelloBundle/Controller/HelloController.php and the fully qualified
class name is Bundle\HelloBundle\Controller\HelloController.

All classes and files must follow the Symfony2 coding standards.

Some classes should be seen as facades and should be as short as possible, like
Commands, Helpers, Listeners, and Controllers.

Classes that connect to the Event Dispatcher should be suffixed with
Listener.

Exceptions classes should be stored in an Exception sub-namespace.

Vendors

A bundle must not embed third-party PHP libraries. It should rely on the
standard Symfony2 autoloading instead.

A bundle should not embed third-party libraries written in JavaScript, CSS, or
any other language.

Tests

A bundle should come with a test suite written with PHPUnit and stored under
the Tests/ directory. Tests should follow the following principles:

	The test suite must be executable with a simple phpunit command run from
a sample application;

	The functional tests should only be used to test the response output and
some profiling information if you have some;

	The code coverage should at least covers 95% of the code base.

Note

A test suite must not contain AllTests.php scripts, but must rely on the
existence of a phpunit.xml.dist file.

Documentation

All classes and functions must come with full PHPDoc.

Extensive documentation should also be provided in the reStructuredText format, under the Resources/doc/
directory; the Resources/doc/index.rst file is the only mandatory file and
must be the entry point for the documentation.

Controllers

As a best practice, controllers in a bundle that’s meant to be distributed
to others must not extend the
Symfony\Bundle\FrameworkBundle\Controller\Controller base class.
They can implement
Symfony\Component\DependencyInjection\ContainerAwareInterface or
extend Symfony\Component\DependencyInjection\ContainerAware
instead.

Note

If you have a look at
Symfony\Bundle\FrameworkBundle\Controller\Controller methods,
you will see that they are only nice shortcuts to ease the learning curve.

Routing

If the bundle provides routes, they must be prefixed with the bundle alias.
For an AcmeBlogBundle for instance, all routes must be prefixed with
acme_blog_.

Templates

If a bundle provides templates, they must use Twig. A bundle must not provide
a main layout, except if it provides a full working application.

Translation Files

If a bundle provides message translations, they must be defined in the XLIFF
format; the domain should be named after the bundle name (bundle.hello).

A bundle must not override existing messages from another bundle.

Configuration

To provide more flexibility, a bundle can provide configurable settings by
using the Symfony2 built-in mechanisms.

For simple configuration settings, rely on the default parameters entry of
the Symfony2 configuration. Symfony2 parameters are simple key/value pairs; a
value being any valid PHP value. Each parameter name should start with the
bundle alias, though this is just a best-practice suggestion. The rest of the
parameter name will use a period (.) to separate different parts (e.g.
acme_hello.email.from).

The end user can provide values in any configuration file:

	YAML# app/config/config.yml
parameters:
 acme_hello.email.from: fabien@example.com

	XML<!-- app/config/config.xml -->
<parameters>
 <parameter key="acme_hello.email.from">fabien@example.com</parameter>
</parameters>

	PHP// app/config/config.php
$container->setParameter('acme_hello.email.from', 'fabien@example.com');

	INI[parameters]
acme_hello.email.from = fabien@example.com

Retrieve the configuration parameters in your code from the container:

$container->getParameter('acme_hello.email.from');

Even if this mechanism is simple enough, you are highly encouraged to use the
semantic configuration described in the cookbook.

Note

If you are defining services, they should also be prefixed with the bundle
alias.

Learn more from the Cookbook

	How to expose a Semantic Configuration for a Bundle

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to use Bundle Inheritance to Override parts of a Bundle

When working with third-party bundles, you’ll probably come across a situation
where you want to override a file in that third-party bundle with a file
in one of your own bundles. Symfony gives you a very convenient way to override
things like controllers, templates, and other files in a bundle’s
Resources/ directory.

For example, suppose that you’re installing the FOSUserBundle [https://github.com/friendsofsymfony/fosuserbundle], but you
want to override its base layout.html.twig template, as well as one of
its controllers. Suppose also that you have your own AcmeUserBundle
where you want the overridden files to live. Start by registering the FOSUserBundle
as the “parent” of your bundle:

// src/Acme/UserBundle/AcmeUserBundle.php
namespace Acme\UserBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class AcmeUserBundle extends Bundle
{
 public function getParent()
 {
 return 'FOSUserBundle';
 }
}

By making this simple change, you can now override several parts of the FOSUserBundle
simply by creating a file with the same name.

Overriding Controllers

Suppose you want to add some functionality to the registerAction of a
RegistrationController that lives inside FOSUserBundle. To do so,
just create your own RegistrationController.php file, override the bundle’s
original method, and change its functionality:

// src/Acme/UserBundle/Controller/RegistrationController.php
namespace Acme\UserBundle\Controller;

use FOS\UserBundle\Controller\RegistrationController as BaseController;

class RegistrationController extends BaseController
{
 public function registerAction()
 {
 $response = parent::registerAction();

 // do custom stuff

 return $response;
 }
}

Tip

Depending on how severely you need to change the behavior, you might
call parent::registerAction() or completely replace its logic with
your own.

Note

Overriding controllers in this way only works if the bundle refers to
the controller using the standard FOSUserBundle:Registration:register
syntax in routes and templates. This is the best practice.

Overriding Resources: Templates, Routing, Validation, etc

Most resources can also be overridden, simply by creating a file in the same
location as your parent bundle.

For example, it’s very common to need to override the FOSUserBundle‘s
layout.html.twig template so that it uses your application’s base layout.
Since the file lives at Resources/views/layout.html.twig in the FOSUserBundle,
you can create your own file in the same location of AcmeUserBundle.
Symfony will ignore the file that lives inside the FOSUserBundle entirely,
and use your file instead.

The same goes for routing files, validation configuration and other resources.

Note

The overriding of resources only works when you refer to resources with
the @FosUserBundle/Resources/config/routing/security.xml method.
If you refer to resources without using the @BundleName shortcut, they
can’t be overridden in this way.

Caution

Translation files do not work in the same way as described above. All
translation files are accumulated into a set of “pools” (one for each)
domain. Symfony loads translation files from bundles first (in the order
that the bundles are initialized) and then from your app/Resources
directory. If the same translation is specified in two resources, the
translation from the resource that’s loaded last will win.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Override any Part of a Bundle

This article has not been written yet, but will soon. If you’re interested
in writing this entry, see Contributing to the Documentation.

This topic is meant to show how you can override each and every part of a
bundle, both from your application and from other bundles. This may include:

	Templates

	Routing

	Controllers

	Services & Configuration

	Entities & Entity mapping

	Forms

	Validation metadata

In some cases, this may talk about the best practices that a bundle must
use in order for certain pieces to be overridable (or easily overridable).
We may also talk about how certain pieces aren’t really overridable, but
your best approach at solving your problems anyways.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to expose a Semantic Configuration for a Bundle

If you open your application configuration file (usually app/config/config.yml),
you’ll see a number of different configuration “namespaces”, such as framework,
twig, and doctrine. Each of these configures a specific bundle, allowing
you to configure things at a high level and then let the bundle make all the
low-level, complex changes that result.

For example, the following tells the FrameworkBundle to enable the form
integration, which involves the defining of quite a few services as well
as integration of other related components:

	YAMLframework:
 # ...
 form: true

	XML<framework:config>
 <framework:form />
</framework:config>

	PHP$container->loadFromExtension('framework', array(
 // ...
 'form' => true,
 // ...
));

When you create a bundle, you have two choices on how to handle configuration:

	Normal Service Configuration (easy):

You can specify your services in a configuration file (e.g. services.yml)
that lives in your bundle and then import it from your main application
configuration. This is really easy, quick and totally effective. If you
make use of parameters, then
you still have the flexibility to customize your bundle from your application
configuration. See “Importing Configuration with imports” for more
details.

	Exposing Semantic Configuration (advanced):

This is the way configuration is done with the core bundles (as described
above). The basic idea is that, instead of having the user override individual
parameters, you let the user configure just a few, specifically created
options. As the bundle developer, you then parse through that configuration
and load services inside an “Extension” class. With this method, you won’t
need to import any configuration resources from your main application
configuration: the Extension class can handle all of this.

The second option - which you’ll learn about in this article - is much more
flexible, but also requires more time to setup. If you’re wondering which
method you should use, it’s probably a good idea to start with method #1,
and then change to #2 later if you need to.

The second method has several specific advantages:

	Much more powerful than simply defining parameters: a specific option value
might trigger the creation of many service definitions;

	Ability to have configuration hierarchy

	Smart merging when several configuration files (e.g. config_dev.yml
and config.yml) override each other’s configuration;

	Configuration validation (if you use a Configuration Class);

	IDE auto-completion when you create an XSD and developers use XML.

Overriding bundle parameters

If a Bundle provides an Extension class, then you should generally not
override any service container parameters from that bundle. The idea
is that if an Extension class is present, every setting that should be
configurable should be present in the configuration made available by
that class. In other words the extension class defines all the publicly
supported configuration settings for which backward compatibility will
be maintained.

Creating an Extension Class

If you do choose to expose a semantic configuration for your bundle, you’ll
first need to create a new “Extension” class, which will handle the process.
This class should live in the DependencyInjection directory of your bundle
and its name should be constructed by replacing the Bundle suffix of the
Bundle class name with Extension. For example, the Extension class of
AcmeHelloBundle would be called AcmeHelloExtension:

// Acme/HelloBundle/DependencyInjection/AcmeHelloExtension.php
use Symfony\Component\HttpKernel\DependencyInjection\Extension;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class AcmeHelloExtension extends Extension
{
 public function load(array $configs, ContainerBuilder $container)
 {
 // where all of the heavy logic is done
 }

 public function getXsdValidationBasePath()
 {
 return __DIR__.'/../Resources/config/';
 }

 public function getNamespace()
 {
 return 'http://www.example.com/symfony/schema/';
 }
}

Note

The getXsdValidationBasePath and getNamespace methods are only
required if the bundle provides optional XSD’s for the configuration.

The presence of the previous class means that you can now define an acme_hello
configuration namespace in any configuration file. The namespace acme_hello
is constructed from the extension’s class name by removing the word Extension
and then lowercasing and underscoring the rest of the name. In other words,
AcmeHelloExtension becomes acme_hello.

You can begin specifying configuration under this namespace immediately:

	YAML# app/config/config.yml
acme_hello: ~

	XML<!-- app/config/config.xml -->
<?xml version="1.0" ?>

<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:acme_hello="http://www.example.com/symfony/schema/"
 xsi:schemaLocation="http://www.example.com/symfony/schema/ http://www.example.com/symfony/schema/hello-1.0.xsd">

 <acme_hello:config />
 ...

</container>

	PHP// app/config/config.php
$container->loadFromExtension('acme_hello', array());

Tip

If you follow the naming conventions laid out above, then the load()
method of your extension code is always called as long as your bundle
is registered in the Kernel. In other words, even if the user does not
provide any configuration (i.e. the acme_hello entry doesn’t even
appear), the load() method will be called and passed an empty $configs
array. You can still provide some sensible defaults for your bundle if
you want.

Parsing the $configs Array

Whenever a user includes the acme_hello namespace in a configuration file,
the configuration under it is added to an array of configurations and
passed to the load() method of your extension (Symfony2 automatically
converts XML and YAML to an array).

Take the following configuration:

	YAML# app/config/config.yml
acme_hello:
 foo: fooValue
 bar: barValue

	XML<!-- app/config/config.xml -->
<?xml version="1.0" ?>

<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:acme_hello="http://www.example.com/symfony/schema/"
 xsi:schemaLocation="http://www.example.com/symfony/schema/ http://www.example.com/symfony/schema/hello-1.0.xsd">

 <acme_hello:config foo="fooValue">
 <acme_hello:bar>barValue</acme_hello:bar>
 </acme_hello:config>

</container>

	PHP// app/config/config.php
$container->loadFromExtension('acme_hello', array(
 'foo' => 'fooValue',
 'bar' => 'barValue',
));

The array passed to your load() method will look like this:

array(
 array(
 'foo' => 'fooValue',
 'bar' => 'barValue',
)
)

Notice that this is an array of arrays, not just a single flat array of the
configuration values. This is intentional. For example, if acme_hello
appears in another configuration file - say config_dev.yml - with different
values beneath it, then the incoming array might look like this:

array(
 array(
 'foo' => 'fooValue',
 'bar' => 'barValue',
),
 array(
 'foo' => 'fooDevValue',
 'baz' => 'newConfigEntry',
),
)

The order of the two arrays depends on which one is set first.

It’s your job, then, to decide how these configurations should be merged
together. You might, for example, have later values override previous values
or somehow merge them together.

Later, in the Configuration Class
section, you’ll learn of a truly robust way to handle this. But for now,
you might just merge them manually:

public function load(array $configs, ContainerBuilder $container)
{
 $config = array();
 foreach ($configs as $subConfig) {
 $config = array_merge($config, $subConfig);
 }

 // now use the flat $config array
}

Caution

Make sure the above merging technique makes sense for your bundle. This
is just an example, and you should be careful to not use it blindly.

Using the load() Method

Within load(), the $container variable refers to a container that only
knows about this namespace configuration (i.e. it doesn’t contain service
information loaded from other bundles). The goal of the load() method
is to manipulate the container, adding and configuring any methods or services
needed by your bundle.

Loading External Configuration Resources

One common thing to do is to load an external configuration file that may
contain the bulk of the services needed by your bundle. For example, suppose
you have a services.xml file that holds much of your bundle’s service
configuration:

use Symfony\Component\DependencyInjection\Loader\XmlFileLoader;
use Symfony\Component\Config\FileLocator;

public function load(array $configs, ContainerBuilder $container)
{
 // prepare your $config variable

 $loader = new XmlFileLoader($container, new FileLocator(__DIR__.'/../Resources/config'));
 $loader->load('services.xml');
}

You might even do this conditionally, based on one of the configuration values.
For example, suppose you only want to load a set of services if an enabled
option is passed and set to true:

public function load(array $configs, ContainerBuilder $container)
{
 // prepare your $config variable

 $loader = new XmlFileLoader($container, new FileLocator(__DIR__.'/../Resources/config'));

 if (isset($config['enabled']) && $config['enabled']) {
 $loader->load('services.xml');
 }
}

Configuring Services and Setting Parameters

Once you’ve loaded some service configuration, you may need to modify the
configuration based on some of the input values. For example, suppose you
have a service whose first argument is some string “type” that it will use
internally. You’d like this to be easily configured by the bundle user, so
in your service configuration file (e.g. services.xml), you define this
service and use a blank parameter - acme_hello.my_service_type - as
its first argument:

<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <parameters>
 <parameter key="acme_hello.my_service_type" />
 </parameters>

 <services>
 <service id="acme_hello.my_service" class="Acme\HelloBundle\MyService">
 <argument>%acme_hello.my_service_type%</argument>
 </service>
 </services>
</container>

But why would you define an empty parameter and then pass it to your service?
The answer is that you’ll set this parameter in your extension class, based
on the incoming configuration values. Suppose, for example, that you want
to allow the user to define this type option under a key called my_type.
Add the following to the load() method to do this:

public function load(array $configs, ContainerBuilder $container)
{
 // prepare your $config variable

 $loader = new XmlFileLoader($container, new FileLocator(__DIR__.'/../Resources/config'));
 $loader->load('services.xml');

 if (!isset($config['my_type'])) {
 throw new \InvalidArgumentException('The "my_type" option must be set');
 }

 $container->setParameter('acme_hello.my_service_type', $config['my_type']);
}

Now, the user can effectively configure the service by specifying the my_type
configuration value:

	YAML# app/config/config.yml
acme_hello:
 my_type: foo
 # ...

	XML<!-- app/config/config.xml -->
<?xml version="1.0" ?>

<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:acme_hello="http://www.example.com/symfony/schema/"
 xsi:schemaLocation="http://www.example.com/symfony/schema/ http://www.example.com/symfony/schema/hello-1.0.xsd">

 <acme_hello:config my_type="foo">
 <!-- ... -->
 </acme_hello:config>

</container>

	PHP// app/config/config.php
$container->loadFromExtension('acme_hello', array(
 'my_type' => 'foo',
 // ...
));

Global Parameters

When you’re configuring the container, be aware that you have the following
global parameters available to use:

	kernel.name

	kernel.environment

	kernel.debug

	kernel.root_dir

	kernel.cache_dir

	kernel.logs_dir

	kernel.bundle_dirs

	kernel.bundles

	kernel.charset

Caution

All parameter and service names starting with a _ are reserved for the
framework, and new ones must not be defined by bundles.

Validation and Merging with a Configuration Class

So far, you’ve done the merging of your configuration arrays by hand and
are checking for the presence of config values manually using the isset()
PHP function. An optional Configuration system is also available which
can help with merging, validation, default values, and format normalization.

Note

Format normalization refers to the fact that certain formats - largely XML -
result in slightly different configuration arrays and that these arrays
need to be “normalized” to match everything else.

To take advantage of this system, you’ll create a Configuration class
and build a tree that defines your configuration in that class:

// src/Acme/HelloBundle/DependencyExtension/Configuration.php
namespace Acme\HelloBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\TreeBuilder;
use Symfony\Component\Config\Definition\ConfigurationInterface;

class Configuration implements ConfigurationInterface
{
 public function getConfigTreeBuilder()
 {
 $treeBuilder = new TreeBuilder();
 $rootNode = $treeBuilder->root('acme_hello');

 $rootNode
 ->children()
 ->scalarNode('my_type')->defaultValue('bar')->end()
 ->end()
 ;

 return $treeBuilder;
 }

This is a very simple example, but you can now use this class in your load()
method to merge your configuration and force validation. If any options other
than my_type are passed, the user will be notified with an exception
that an unsupported option was passed:

use Symfony\Component\Config\Definition\Processor;
// ...

public function load(array $configs, ContainerBuilder $container)
{
 $processor = new Processor();
 $configuration = new Configuration();
 $config = $processor->processConfiguration($configuration, $configs);

 // ...
}

The processConfiguration() method uses the configuration tree you’ve defined
in the Configuration class to validate, normalize and merge all of the
configuration arrays together.

The Configuration class can be much more complicated than shown here,
supporting array nodes, “prototype” nodes, advanced validation, XML-specific
normalization and advanced merging. The best way to see this in action is
to checkout out some of the core Configuration classes, such as the one from
the FrameworkBundle Configuration [https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/FrameworkBundle/DependencyInjection/Configuration.php] or the TwigBundle Configuration [https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/TwigBundle/DependencyInjection/Configuration.php].

Default Configuration Dump

New in version 2.1: The config:dump-reference command was added in Symfony 2.1

The config:dump-reference command allows a bundle’s default configuration to
be output to the console in yaml.

As long as your bundle’s configuration is located in the standard location
(YourBundle\DependencyInjection\Configuration) and does not have a
__constructor() it will work automatically. If you have a something
different your Extension class will have to override the
Extension::getConfiguration() method. Have it return an instance of your
Configuration.

Comments and examples can be added to your configuration nodes using the
->setInfo() and ->setExample() methods:

// src/Acme/HelloBundle/DependencyExtension/Configuration.php
namespace Acme\HelloBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\TreeBuilder;
use Symfony\Component\Config\Definition\ConfigurationInterface;

class Configuration implements ConfigurationInterface
{
 public function getConfigTreeBuilder()
 {
 $treeBuilder = new TreeBuilder();
 $rootNode = $treeBuilder->root('acme_hello');

 $rootNode
 ->children()
 ->scalarNode('my_type')
 ->defaultValue('bar')
 ->setInfo('what my_type configures')
 ->setExample('example setting')
 ->end()
 ->end()
 ;

 return $treeBuilder;
 }

This text appears as yaml comments in the output of the config:dump-reference
command.

Extension Conventions

When creating an extension, follow these simple conventions:

	The extension must be stored in the DependencyInjection sub-namespace;

	The extension must be named after the bundle name and suffixed with
Extension (AcmeHelloExtension for AcmeHelloBundle);

	The extension should provide an XSD schema.

If you follow these simple conventions, your extensions will be registered
automatically by Symfony2. If not, override the Bundle
:method:`Symfony\\Component\\HttpKernel\\Bundle\\Bundle::build` method in
your bundle:

use Acme\HelloBundle\DependencyInjection\UnconventionalExtensionClass;

class AcmeHelloBundle extends Bundle
{
 public function build(ContainerBuilder $container)
 {
 parent::build($container);

 // register extensions that do not follow the conventions manually
 $container->registerExtension(new UnconventionalExtensionClass());
 }
}

In this case, the extension class must also implement a getAlias() method
and return a unique alias named after the bundle (e.g. acme_hello). This
is required because the class name doesn’t follow the standards by ending
in Extension.

Additionally, the load() method of your extension will only be called
if the user specifies the acme_hello alias in at least one configuration
file. Once again, this is because the Extension class doesn’t follow the
standards set out above, so nothing happens automatically.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to send an Email

Sending emails is a classic task for any web application and one that has
special complications and potential pitfalls. Instead of recreating the wheel,
one solution to send emails is to use the SwiftmailerBundle, which leverages
the power of the Swiftmailer [http://www.swiftmailer.org/] library.

Note

Don’t forget to enable the bundle in your kernel before using it:

public function registerBundles()
{
 $bundles = array(
 // ...
 new Symfony\Bundle\SwiftmailerBundle\SwiftmailerBundle(),
);

 // ...
}

Configuration

Before using Swiftmailer, be sure to include its configuration. The only
mandatory configuration parameter is transport:

	YAML# app/config/config.yml
swiftmailer:
 transport: smtp
 encryption: ssl
 auth_mode: login
 host: smtp.gmail.com
 username: your_username
 password: your_password

	XML<!-- app/config/config.xml -->

<!--
xmlns:swiftmailer="http://symfony.com/schema/dic/swiftmailer"
http://symfony.com/schema/dic/swiftmailer http://symfony.com/schema/dic/swiftmailer/swiftmailer-1.0.xsd
-->

<swiftmailer:config
 transport="smtp"
 encryption="ssl"
 auth-mode="login"
 host="smtp.gmail.com"
 username="your_username"
 password="your_password" />

	PHP// app/config/config.php
$container->loadFromExtension('swiftmailer', array(
 'transport' => "smtp",
 'encryption' => "ssl",
 'auth_mode' => "login",
 'host' => "smtp.gmail.com",
 'username' => "your_username",
 'password' => "your_password",
));

The majority of the Swiftmailer configuration deals with how the messages
themselves should be delivered.

The following configuration attributes are available:

	transport (smtp, mail, sendmail, or gmail)

	username

	password

	host

	port

	encryption (tls, or ssl)

	auth_mode (plain, login, or cram-md5)

	spool
	type (how to queue the messages, only file is supported currently)

	path (where to store the messages)

	delivery_address (an email address where to send ALL emails)

	disable_delivery (set to true to disable delivery completely)

Sending Emails

The Swiftmailer library works by creating, configuring and then sending
Swift_Message objects. The “mailer” is responsible for the actual delivery
of the message and is accessible via the mailer service. Overall, sending
an email is pretty straightforward:

public function indexAction($name)
{
 $message = \Swift_Message::newInstance()
 ->setSubject('Hello Email')
 ->setFrom('send@example.com')
 ->setTo('recipient@example.com')
 ->setBody($this->renderView('HelloBundle:Hello:email.txt.twig', array('name' => $name)))
 ;
 $this->get('mailer')->send($message);

 return $this->render(...);
}

To keep things decoupled, the email body has been stored in a template and
rendered with the renderView() method.

The $message object supports many more options, such as including attachments,
adding HTML content, and much more. Fortunately, Swiftmailer covers the topic
of Creating Messages [http://swiftmailer.org/docs/messages] in great detail in its documentation.

Tip

Several other cookbook articles are available related to sending emails
in Symfony2:

	How to use Gmail to send Emails

	How to Work with Emails During Development

	How to Spool Email

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to use Gmail to send Emails

During development, instead of using a regular SMTP server to send emails, you
might find using Gmail easier and more practical. The Swiftmailer bundle makes
it really easy.

Tip

Instead of using your regular Gmail account, it’s of course recommended
that you create a special account.

In the development configuration file, change the transport setting to
gmail and set the username and password to the Google credentials:

	YAML# app/config/config_dev.yml
swiftmailer:
 transport: gmail
 username: your_gmail_username
 password: your_gmail_password

	XML<!-- app/config/config_dev.xml -->

<!--
xmlns:swiftmailer="http://symfony.com/schema/dic/swiftmailer"
http://symfony.com/schema/dic/swiftmailer http://symfony.com/schema/dic/swiftmailer/swiftmailer-1.0.xsd
-->

<swiftmailer:config
 transport="gmail"
 username="your_gmail_username"
 password="your_gmail_password" />

	PHP// app/config/config_dev.php
$container->loadFromExtension('swiftmailer', array(
 'transport' => "gmail",
 'username' => "your_gmail_username",
 'password' => "your_gmail_password",
));

You’re done!

Note

The gmail transport is simply a shortcut that uses the smtp transport
and sets encryption, auth_mode and host to work with Gmail.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Work with Emails During Development

When developing an application which sends email, you will often
not want to actually send the email to the specified recipient during
development. If you are using the SwiftmailerBundle with Symfony2, you
can easily achieve this through configuration settings without having to
make any changes to your application’s code at all. There are two main
choices when it comes to handling email during development: (a) disabling the
sending of email altogether or (b) sending all email to a specific
address.

Disabling Sending

You can disable sending email by setting the disable_delivery option
to true. This is the default in the test environment in the Standard
distribution. If you do this in the test specific config then email
will not be sent when you run tests, but will continue to be sent in the
prod and dev environments:

	YAML# app/config/config_test.yml
swiftmailer:
 disable_delivery: true

	XML<!-- app/config/config_test.xml -->

<!--
xmlns:swiftmailer="http://symfony.com/schema/dic/swiftmailer"
http://symfony.com/schema/dic/swiftmailer http://symfony.com/schema/dic/swiftmailer/swiftmailer-1.0.xsd
-->

<swiftmailer:config
 disable-delivery="true" />

	PHP// app/config/config_test.php
$container->loadFromExtension('swiftmailer', array(
 'disable_delivery' => "true",
));

If you’d also like to disable deliver in the dev environment, simply
add this same configuration to the config_dev.yml file.

Sending to a Specified Address

You can also choose to have all email sent to a specific address, instead
of the address actually specified when sending the message. This can be done
via the delivery_address option:

	YAML# app/config/config_dev.yml
swiftmailer:
 delivery_address: dev@example.com

	XML<!-- app/config/config_dev.xml -->

<!--
xmlns:swiftmailer="http://symfony.com/schema/dic/swiftmailer"
http://symfony.com/schema/dic/swiftmailer http://symfony.com/schema/dic/swiftmailer/swiftmailer-1.0.xsd
-->

<swiftmailer:config
 delivery-address="dev@example.com" />

	PHP// app/config/config_dev.php
$container->loadFromExtension('swiftmailer', array(
 'delivery_address' => "dev@example.com",
));

Now, suppose you’re sending an email to recipient@example.com.

public function indexAction($name)
{
 $message = \Swift_Message::newInstance()
 ->setSubject('Hello Email')
 ->setFrom('send@example.com')
 ->setTo('recipient@example.com')
 ->setBody($this->renderView('HelloBundle:Hello:email.txt.twig', array('name' => $name)))
 ;
 $this->get('mailer')->send($message);

 return $this->render(...);
}

In the dev environment, the email will instead be sent to dev@example.com.
Swiftmailer will add an extra header to the email, X-Swift-To, containing
the replaced address, so you can still see who it would have been sent to.

Note

In addition to the to addresses, this will also stop the email being
sent to any CC and BCC addresses set for it. Swiftmailer will add
additional headers to the email with the overridden addresses in them.
These are X-Swift-Cc and X-Swift-Bcc for the CC and BCC
addresses respectively.

Viewing from the Web Debug Toolbar

You can view any email sent during a single response when you are in the
dev environment using the Web Debug Toolbar. The email icon in the toolbar
will show how many emails were sent. If you click it, a report will open
showing the details of the sent emails.

If you’re sending an email and then immediately redirecting to another page,
the web debug toolbar will not display an email icon or a report on the next
page.

Instead, you can set the intercept_redirects option to true in the
config_dev.yml file, which will cause the redirect to stop and allow
you to open the report with details of the sent emails.

Tip

Alternatively, you can open the profiler after the redirect and search
by the submit URL used on previous request (e.g. /contact/handle).
The profiler’s search feature allows you to load the profiler information
for any past requests.

	YAML# app/config/config_dev.yml
web_profiler:
 intercept_redirects: true

	XML<!-- app/config/config_dev.xml -->

<!-- xmlns:webprofiler="http://symfony.com/schema/dic/webprofiler" -->
<!-- xsi:schemaLocation="http://symfony.com/schema/dic/webprofiler http://symfony.com/schema/dic/webprofiler/webprofiler-1.0.xsd"> -->

<webprofiler:config
 intercept-redirects="true"
/>

	PHP// app/config/config_dev.php
$container->loadFromExtension('web_profiler', array(
 'intercept_redirects' => 'true',
));

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Spool Email

When you are using the SwiftmailerBundle to send an email from a Symfony2
application, it will default to sending the email immediately. You may, however,
want to avoid the performance hit of the communication between Swiftmailer
and the email transport, which could cause the user to wait for the next
page to load while the email is sending. This can be avoided by choosing
to “spool” the emails instead of sending them directly. This means that Swiftmailer
does not attempt to send the email but instead saves the message to somewhere
such as a file. Another process can then read from the spool and take care
of sending the emails in the spool. Currently only spooling to file is supported
by Swiftmailer.

In order to use the spool, use the following configuration:

	YAML# app/config/config.yml
swiftmailer:
 # ...
 spool:
 type: file
 path: /path/to/spool

	XML<!-- app/config/config.xml -->

<!--
xmlns:swiftmailer="http://symfony.com/schema/dic/swiftmailer"
http://symfony.com/schema/dic/swiftmailer http://symfony.com/schema/dic/swiftmailer/swiftmailer-1.0.xsd
-->

<swiftmailer:config>
 <swiftmailer:spool
 type="file"
 path="/path/to/spool" />
</swiftmailer:config>

	PHP// app/config/config.php
$container->loadFromExtension('swiftmailer', array(
 // ...
 'spool' => array(
 'type' => 'file',
 'path' => '/path/to/spool',
)
));

Tip

If you want to store the spool somewhere with your project directory,
remember that you can use the %kernel.root_dir% parameter to reference
the project’s root:

path: %kernel.root_dir%/spool

Now, when your app sends an email, it will not actually be sent but instead
added to the spool. Sending the messages from the spool is done separately.
There is a console command to send the messages in the spool:

php app/console swiftmailer:spool:send

It has an option to limit the number of messages to be sent:

php app/console swiftmailer:spool:send --message-limit=10

You can also set the time limit in seconds:

php app/console swiftmailer:spool:send --time-limit=10

Of course you will not want to run this manually in reality. Instead, the
console command should be triggered by a cron job or scheduled task and run
at a regular interval.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to simulate HTTP Authentication in a Functional Test

If your application needs HTTP authentication, pass the username and password
as server variables to createClient():

$client = static::createClient(array(), array(
 'PHP_AUTH_USER' => 'username',
 'PHP_AUTH_PW' => 'pa$$word',
));

You can also override it on a per request basis:

$client->request('DELETE', '/post/12', array(), array(
 'PHP_AUTH_USER' => 'username',
 'PHP_AUTH_PW' => 'pa$$word',
));

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to test the Interaction of several Clients

If you need to simulate an interaction between different Clients (think of a
chat for instance), create several Clients:

$harry = static::createClient();
$sally = static::createClient();

$harry->request('POST', '/say/sally/Hello');
$sally->request('GET', '/messages');

$this->assertEquals(201, $harry->getResponse()->getStatusCode());
$this->assertRegExp('/Hello/', $sally->getResponse()->getContent());

This works except when your code maintains a global state or if it depends on
third-party libraries that has some kind of global state. In such a case, you
can insulate your clients:

$harry = static::createClient();
$sally = static::createClient();

$harry->insulate();
$sally->insulate();

$harry->request('POST', '/say/sally/Hello');
$sally->request('GET', '/messages');

$this->assertEquals(201, $harry->getResponse()->getStatusCode());
$this->assertRegExp('/Hello/', $sally->getResponse()->getContent());

Insulated clients transparently execute their requests in a dedicated and
clean PHP process, thus avoiding any side-effects.

Tip

As an insulated client is slower, you can keep one client in the main
process, and insulate the other ones.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to use the Profiler in a Functional Test

It’s highly recommended that a functional test only tests the Response. But if
you write functional tests that monitor your production servers, you might
want to write tests on the profiling data as it gives you a great way to check
various things and enforce some metrics.

The Symfony2 Profiler gathers a lot of
data for each request. Use this data to check the number of database calls,
the time spent in the framework, ... But before writing assertions, always
check that the profiler is indeed available (it is enabled by default in the
test environment):

class HelloControllerTest extends WebTestCase
{
 public function testIndex()
 {
 $client = static::createClient();
 $crawler = $client->request('GET', '/hello/Fabien');

 // Write some assertions about the Response
 // ...

 // Check that the profiler is enabled
 if ($profile = $client->getProfile()) {
 // check the number of requests
 $this->assertTrue($profile->getCollector('db')->getQueryCount() < 10);

 // check the time spent in the framework
 $this->assertTrue($profile->getCollector('timer')->getTime() < 0.5);
 }
 }
}

If a test fails because of profiling data (too many DB queries for instance),
you might want to use the Web Profiler to analyze the request after the tests
finish. It’s easy to achieve if you embed the token in the error message:

$this->assertTrue(
 $profile->get('db')->getQueryCount() < 30,
 sprintf('Checks that query count is less than 30 (token %s)', $profile->getToken())
);

Caution

The profiler store can be different depending on the environment
(especially if you use the SQLite store, which is the default configured
one).

Note

The profiler information is available even if you insulate the client or
if you use an HTTP layer for your tests.

Tip

Read the API for built-in data collectors
to learn more about their interfaces.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to test Doctrine Repositories

Unit testing Doctrine repositories in a Symfony project is not a straightforward
task. Indeed, to load a repository you need to load your entities, an entity
manager, and some other stuff like a connection.

To test your repository, you have two different options:

	Functional test: This includes using a real database connection with
real database objects. It’s easy to setup and can test anything, but is
slower to execute. See Functional Testing.

	Unit test: Unit testing is faster to run and more precise in how you
test. It does require a little bit more setup, which is covered in this
document. It can also only test methods that, for example, build queries,
not methods that actually execute them.

Unit Testing

As Symfony and Doctrine share the same testing framework, it’s quite easy to
implement unit tests in your Symfony project. The ORM comes with its own set
of tools to ease the unit testing and mocking of everything you need, such as
a connection, an entity manager, etc. By using the testing components provided
by Doctrine - along with some basic setup - you can leverage Doctrine’s tools
to unit test your repositories.

Keep in mind that if you want to test the actual execution of your queries,
you’ll need a functional test (see Functional Testing).
Unit testing is only possible when testing a method that builds a query.

Setup

First, you need to add the DoctrineTests namespace to your autoloader:

// app/autoload.php
$loader->registerNamespaces(array(
 //...
 'Doctrine\\Tests' => __DIR__.'/../vendor/doctrine/tests',
));

Next, you will need to setup an entity manager in each test so that Doctrine
will be able to load your entities and repositories for you.

As Doctrine is not able by default to load annotation metadata from your
entities, you’ll need to configure the annotation reader to be able to parse
and load the entities:

// src/Acme/ProductBundle/Tests/Entity/ProductRepositoryTest.php
namespace Acme\ProductBundle\Tests\Entity;

use Doctrine\Tests\OrmTestCase;
use Doctrine\Common\Annotations\AnnotationReader;
use Doctrine\ORM\Mapping\Driver\DriverChain;
use Doctrine\ORM\Mapping\Driver\AnnotationDriver;

class ProductRepositoryTest extends OrmTestCase
{
 private $_em;

 protected function setUp()
 {
 $reader = new AnnotationReader();
 $reader->setIgnoreNotImportedAnnotations(true);
 $reader->setEnableParsePhpImports(true);

 $metadataDriver = new AnnotationDriver(
 $reader,
 // provide the namespace of the entities you want to tests
 'Acme\\ProductBundle\\Entity'
);

 $this->_em = $this->_getTestEntityManager();

 $this->_em->getConfiguration()
 ->setMetadataDriverImpl($metadataDriver);

 // allows you to use the AcmeProductBundle:Product syntax
 $this->_em->getConfiguration()->setEntityNamespaces(array(
 'AcmeProductBundle' => 'Acme\\ProductBundle\\Entity'
));
 }
}

If you look at the code, you can notice:

	You extend from \Doctrine\Tests\OrmTestCase, which provide useful methods
for unit testing;

	You need to setup the AnnotationReader to be able to parse and load the
entities;

	You create the entity manager by calling _getTestEntityManager, which
returns a mocked entity manager with a mocked connection.

That’s it! You’re ready to write units tests for your Doctrine repositories.

Writing your Unit Test

Remember that Doctrine repository methods can only be tested if they are
building and returning a query (but not actually executing a query). Take
the following example:

// src/Acme/StoreBundle/Entity/ProductRepository
namespace Acme\StoreBundle\Entity;

use Doctrine\ORM\EntityRepository;

class ProductRepository extends EntityRepository
{
 public function createSearchByNameQueryBuilder($name)
 {
 return $this->createQueryBuilder('p')
 ->where('p.name LIKE :name')
 ->setParameter('name', $name);
 }
}

In this example, the method is returning a QueryBuilder instance. You
can test the result of this method in a variety of ways:

class ProductRepositoryTest extends \Doctrine\Tests\OrmTestCase
{
 /* ... */

 public function testCreateSearchByNameQueryBuilder()
 {
 $queryBuilder = $this->_em->getRepository('AcmeProductBundle:Product')
 ->createSearchByNameQueryBuilder('foo');

 $this->assertEquals('p.name LIKE :name', (string) $queryBuilder->getDqlPart('where'));
 $this->assertEquals(array('name' => 'foo'), $queryBuilder->getParameters());
 }
 }

In this test, you dissect the QueryBuilder object, looking that each
part is as you’d expect. If you were adding other things to the query builder,
you might check the dql parts: select, from, join, set, groupBy,
having, or orderBy.

If you only have a raw Query object or prefer to test the actual query,
you can test the DQL query string directly:

public function testCreateSearchByNameQueryBuilder()
{
 $queryBuilder = $this->_em->getRepository('AcmeProductBundle:Product')
 ->createSearchByNameQueryBuilder('foo');

 $query = $queryBuilder->getQuery();

 // test DQL
 $this->assertEquals(
 'SELECT p FROM Acme\ProductBundle\Entity\Product p WHERE p.name LIKE :name',
 $query->getDql()
);
}

Functional Testing

If you need to actually execute a query, you will need to boot the kernel
to get a valid connection. In this case, you’ll extend the WebTestCase,
which makes all of this quite easy:

// src/Acme/ProductBundle/Tests/Entity/ProductRepositoryFunctionalTest.php
namespace Acme\ProductBundle\Tests\Entity;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class ProductRepositoryFunctionalTest extends WebTestCase
{
 /**
 * @var \Doctrine\ORM\EntityManager
 */
 private $_em;

 public function setUp()
 {
 $kernel = static::createKernel();
 $kernel->boot();
 $this->_em = $kernel->getContainer()
 ->get('doctrine.orm.entity_manager');
 }

 public function testProductByCategoryName()
 {
 $results = $this->_em->getRepository('AcmeProductBundle:Product')
 ->searchProductsByNameQuery('foo')
 ->getResult();

 $this->assertEquals(count($results), 1);
 }
}

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to add “Remember Me” Login Functionality

Once a user is authenticated, their credentials are typically stored in the
session. This means that when the session ends they will be logged out and
have to provide their login details again next time they wish to access the
application. You can allow users to choose to stay logged in for longer than
the session lasts using a cookie with the remember_me firewall option.
The firewall needs to have a secret key configured, which is used to encrypt
the cookie’s content. It also has several options with default values which
are shown here:

	YAML# app/config/security.yml
firewalls:
 main:
 remember_me:
 key: aSecretKey
 lifetime: 3600
 path: /
 domain: ~ # Defaults to the current domain from $_SERVER

	XML<!-- app/config/security.xml -->
<config>
 <firewall>
 <remember-me
 key="aSecretKey"
 lifetime="3600"
 path="/"
 domain="" <!-- Defaults to the current domain from $_SERVER -->
 />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array('remember_me' => array(
 'key' => 'aSecretKey',
 'lifetime' => 3600,
 'path' => '/',
 'domain' => '', // Defaults to the current domain from $_SERVER
)),
),
));

It’s a good idea to provide the user with the option to use or not use the
remember me functionality, as it will not always be appropriate. The usual
way of doing this is to add a checkbox to the login form. By giving the checkbox
the name _remember_me, the cookie will automatically be set when the checkbox
is checked and the user successfully logs in. So, your specific login form
might ultimately look like this:

	Twig{# src/Acme/SecurityBundle/Resources/views/Security/login.html.twig #}
{% if error %}
 <div>{{ error.message }}</div>
{% endif %}

<form action="{{ path('login_check') }}" method="post">
 <label for="username">Username:</label>
 <input type="text" id="username" name="_username" value="{{ last_username }}" />

 <label for="password">Password:</label>
 <input type="password" id="password" name="_password" />

 <input type="checkbox" id="remember_me" name="_remember_me" checked />
 <label for="remember_me">Keep me logged in</label>

 <input type="submit" name="login" />
</form>

	PHP<?php // src/Acme/SecurityBundle/Resources/views/Security/login.html.php ?>
<?php if ($error): ?>
 <div><?php echo $error->getMessage() ?></div>
<?php endif; ?>

<form action="<?php echo $view['router']->generate('login_check') ?>" method="post">
 <label for="username">Username:</label>
 <input type="text" id="username"
 name="_username" value="<?php echo $last_username ?>" />

 <label for="password">Password:</label>
 <input type="password" id="password" name="_password" />

 <input type="checkbox" id="remember_me" name="_remember_me" checked />
 <label for="remember_me">Keep me logged in</label>

 <input type="submit" name="login" />
</form>

The user will then automatically be logged in on subsequent visits while
the cookie remains valid.

Forcing the User to Re-authenticate before accessing certain Resources

When the user returns to your site, he/she is authenticated automatically based
on the information stored in the remember me cookie. This allows the user
to access protected resources as if the user had actually authenticated upon
visiting the site.

In some cases, however, you may want to force the user to actually re-authenticate
before accessing certain resources. For example, you might allow a “remember me”
user to see basic account information, but then require them to actually
re-authenticate before modifying that information.

The security component provides an easy way to do this. In addition to roles
explicitly assigned to them, users are automatically given one of the following
roles depending on how they are authenticated:

	IS_AUTHENTICATED_ANONYMOUSLY - automatically assigned to a user who is
in a firewall protected part of the site but who has not actually logged in.
This is only possible if anonymous access has been allowed.

	IS_AUTHENTICATED_REMEMBERED - automatically assigned to a user who
was authenticated via a remember me cookie.

	IS_AUTHENTICATED_FULLY - automatically assigned to a user that has
provided their login details during the current session.

You can use these to control access beyond the explicitly assigned roles.

Note

If you have the IS_AUTHENTICATED_REMEMBERED role, then you also
have the IS_AUTHENTICATED_ANONYMOUSLY role. If you have the IS_AUTHENTICATED_FULLY
role, then you also have the other two roles. In other words, these roles
represent three levels of increasing “strength” of authentication.

You can use these additional roles for finer grained control over access to
parts of a site. For example, you may want you user to be able to view their
account at /account when authenticated by cookie but to have to provide
their login details to be able to edit the account details. You can do this
by securing specific controller actions using these roles. The edit action
in the controller could be secured using the service context.

In the following example, the action is only allowed if the user has the
IS_AUTHENTICATED_FULLY role.

use Symfony\Component\Security\Core\Exception\AccessDeniedException
// ...

public function editAction()
{
 if (false === $this->get('security.context')->isGranted(
 'IS_AUTHENTICATED_FULLY'
)) {
 throw new AccessDeniedException();
 }

 // ...
}

You can also choose to install and use the optional JMSSecurityExtraBundle [https://github.com/schmittjoh/JMSSecurityExtraBundle],
which can secure your controller using annotations:

use JMS\SecurityExtraBundle\Annotation\Secure;

/**
 * @Secure(roles="IS_AUTHENTICATED_FULLY")
 */
public function editAction($name)
{
 // ...
}

Tip

If you also had an access control in your security configuration that
required the user to have a ROLE_USER role in order to access any
of the account area, then you’d have the following situation:

	If a non-authenticated (or anonymously authenticated user) tries to
access the account area, the user will be asked to authenticate.

	Once the user has entered his username and password, assuming the
user receives the ROLE_USER role per your configuration, the user
will have the IS_AUTHENTICATED_FULLY role and be able to access
any page in the account section, including the editAction controller.

	If the user’s session ends, when the user returns to the site, he will
be able to access every account page - except for the edit page - without
being forced to re-authenticate. However, when he tries to access the
editAction controller, he will be forced to re-authenticate, since
he is not, yet, fully authenticated.

For more information on securing services or methods in this way,
see How to secure any Service or Method in your Application.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to implement your own Voter to blacklist IP Addresses

The Symfony2 security component provides several layers to authenticate users.
One of the layers is called a voter. A voter is a dedicated class that checks
if the user has the rights to be connected to the application. For instance,
Symfony2 provides a layer that checks if the user is fully authenticated or if
it has some expected roles.

It is sometimes useful to create a custom voter to handle a specific case not
handled by the framework. In this section, you’ll learn how to create a voter
that will allow you to blacklist users by their IP.

The Voter Interface

A custom voter must implement
Symfony\Component\Security\Core\Authorization\Voter\VoterInterface,
which requires the following three methods:

interface VoterInterface
{
 function supportsAttribute($attribute);
 function supportsClass($class);
 function vote(TokenInterface $token, $object, array $attributes);
}

The supportsAttribute() method is used to check if the voter supports
the given user attribute (i.e: a role, an acl, etc.).

The supportsClass() method is used to check if the voter supports the
current user token class.

The vote() method must implement the business logic that verifies whether
or not the user is granted access. This method must return one of the following
values:

	VoterInterface::ACCESS_GRANTED: The user is allowed to access the application

	VoterInterface::ACCESS_ABSTAIN: The voter cannot decide if the user is granted or not

	VoterInterface::ACCESS_DENIED: The user is not allowed to access the application

In this example, we will check if the user’s IP address matches against a list of
blacklisted addresses. If the user’s IP is blacklisted, we will return
VoterInterface::ACCESS_DENIED, otherwise we will return
VoterInterface::ACCESS_ABSTAIN as this voter’s purpose is only to deny
access, not to grant access.

Creating a Custom Voter

To blacklist a user based on its IP, we can use the request service
and compare the IP address against a set of blacklisted IP addresses:

namespace Acme\DemoBundle\Security\Authorization\Voter;

use Symfony\Component\DependencyInjection\ContainerInterface;
use Symfony\Component\Security\Core\Authorization\Voter\VoterInterface;
use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;

class ClientIpVoter implements VoterInterface
{
 public function __construct(ContainerInterface $container, array $blacklistedIp = array())
 {
 $this->container = $container;
 $this->blacklistedIp = $blacklistedIp;
 }

 public function supportsAttribute($attribute)
 {
 // we won't check against a user attribute, so we return true
 return true;
 }

 public function supportsClass($class)
 {
 // our voter supports all type of token classes, so we return true
 return true;
 }

 function vote(TokenInterface $token, $object, array $attributes)
 {
 $request = $this->container->get('request');
 if (in_array($request->getClientIp(), $this->blacklistedIp)) {
 return VoterInterface::ACCESS_DENIED;
 }

 return VoterInterface::ACCESS_ABSTAIN;
 }
}

That’s it! The voter is done. The next step is to inject the voter into
the security layer. This can be done easily through the service container.

Declaring the Voter as a Service

To inject the voter into the security layer, we must declare it as a service,
and tag it as a “security.voter”:

	YAML# src/Acme/AcmeBundle/Resources/config/services.yml

services:
 security.access.blacklist_voter:
 class: Acme\DemoBundle\Security\Authorization\Voter\ClientIpVoter
 arguments: [@service_container, [123.123.123.123, 171.171.171.171]]
 public: false
 tags:
 - { name: security.voter }

	XML<!-- src/Acme/AcmeBundle/Resources/config/services.xml -->

<service id="security.access.blacklist_voter"
 class="Acme\DemoBundle\Security\Authorization\Voter\ClientIpVoter" public="false">
 <argument type="service" id="service_container" strict="false" />
 <argument type="collection">
 <argument>123.123.123.123</argument>
 <argument>171.171.171.171</argument>
 </argument>
 <tag name="security.voter" />
</service>

	PHP// src/Acme/AcmeBundle/Resources/config/services.php

use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$definition = new Definition(
 'Acme\DemoBundle\Security\Authorization\Voter\ClientIpVoter',
 array(
 new Reference('service_container'),
 array('123.123.123.123', '171.171.171.171'),
),
);
$definition->addTag('security.voter');
$definition->setPublic(false);

$container->setDefinition('security.access.blacklist_voter', $definition);

Tip

Be sure to import this configuration file from your main application
configuration file (e.g. app/config/config.yml). For more information
see Importing Configuration with imports. To read more about defining
services in general, see the Service Container chapter.

Changing the Access Decision Strategy

In order for the new voter to take effect, we need to change the default access
decision strategy, which, by default, grants access if any voter grants
access.

In our case, we will choose the unanimous strategy. Unlike the affirmative
strategy (the default), with the unanimous strategy, if only one voter
denies access (e.g. the ClientIpVoter), access is not granted to the
end user.

To do that, override the default access_decision_manager section of your
application configuration file with the following code.

	YAML# app/config/security.yml
security:
 access_decision_manager:
 # Strategy can be: affirmative, unanimous or consensus
 strategy: unanimous

That’s it! Now, when deciding whether or not a user should have access,
the new voter will deny access to any user in the list of blacklisted IPs.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

Access Control Lists (ACLs)

In complex applications, you will often face the problem that access decisions
cannot only be based on the person (Token) who is requesting access, but
also involve a domain object that access is being requested for. This is where
the ACL system comes in.

Imagine you are designing a blog system where your users can comment on your
posts. Now, you want a user to be able to edit his own comments, but not those
of other users; besides, you yourself want to be able to edit all comments. In
this scenario, Comment would be our domain object that you want to
restrict access to. You could take several approaches to accomplish this using
Symfony2, two basic approaches are (non-exhaustive):

	Enforce security in your business methods: Basically, that means keeping a
reference inside each Comment to all users who have access, and then
compare these users to the provided Token.

	Enforce security with roles: In this approach, you would add a role for
each Comment object, i.e. ROLE_COMMENT_1, ROLE_COMMENT_2, etc.

Both approaches are perfectly valid. However, they couple your authorization
logic to your business code which makes it less reusable elsewhere, and also
increases the difficulty of unit testing. Besides, you could run into
performance issues if many users would have access to a single domain object.

Fortunately, there is a better way, which we will talk about now.

Bootstrapping

Now, before we finally can get into action, we need to do some bootstrapping.
First, we need to configure the connection the ACL system is supposed to use:

	YAML# app/config/security.yml
security:
 acl:
 connection: default

	XML<!-- app/config/security.xml -->
<acl>
 <connection>default</connection>
</acl>

	PHP// app/config/security.php
$container->loadFromExtension('security', 'acl', array(
 'connection' => 'default',
));

Note

The ACL system requires at least one Doctrine DBAL connection to be
configured. However, that does not mean that you have to use Doctrine for
mapping your domain objects. You can use whatever mapper you like for your
objects, be it Doctrine ORM, Mongo ODM, Propel, or raw SQL, the choice is
yours.

After the connection is configured, we have to import the database structure.
Fortunately, we have a task for this. Simply run the following command:

php app/console init:acl

Getting Started

Coming back to our small example from the beginning, let’s implement ACL for
it.

Creating an ACL, and adding an ACE

use Symfony\Component\Security\Core\Exception\AccessDeniedException;
use Symfony\Component\Security\Acl\Domain\ObjectIdentity;
use Symfony\Component\Security\Acl\Domain\UserSecurityIdentity;
use Symfony\Component\Security\Acl\Permission\MaskBuilder;
// ...

// BlogController.php
public function addCommentAction(Post $post)
{
 $comment = new Comment();

 // setup $form, and bind data
 // ...

 if ($form->isValid()) {
 $entityManager = $this->get('doctrine.orm.default_entity_manager');
 $entityManager->persist($comment);
 $entityManager->flush();

 // creating the ACL
 $aclProvider = $this->get('security.acl.provider');
 $objectIdentity = ObjectIdentity::fromDomainObject($comment);
 $acl = $aclProvider->createAcl($objectIdentity);

 // retrieving the security identity of the currently logged-in user
 $securityContext = $this->get('security.context');
 $user = $securityContext->getToken()->getUser();
 $securityIdentity = UserSecurityIdentity::fromAccount($user);

 // grant owner access
 $acl->insertObjectAce($securityIdentity, MaskBuilder::MASK_OWNER);
 $aclProvider->updateAcl($acl);
 }
}

There are a couple of important implementation decisions in this code snippet.
For now, I only want to highlight two:

First, you may have noticed that ->createAcl() does not accept domain
objects directly, but only implementations of the ObjectIdentityInterface.
This additional step of indirection allows you to work with ACLs even when you
have no actual domain object instance at hand. This will be extremely helpful
if you want to check permissions for a large number of objects without
actually hydrating these objects.

The other interesting part is the ->insertObjectAce() call. In our
example, we are granting the user who is currently logged in owner access to
the Comment. The MaskBuilder::MASK_OWNER is a pre-defined integer bitmask;
don’t worry the mask builder will abstract away most of the technical details,
but using this technique we can store many different permissions in one
database row which gives us a considerable boost in performance.

Tip

The order in which ACEs are checked is significant. As a general rule, you
should place more specific entries at the beginning.

Checking Access

// BlogController.php
public function editCommentAction(Comment $comment)
{
 $securityContext = $this->get('security.context');

 // check for edit access
 if (false === $securityContext->isGranted('EDIT', $comment))
 {
 throw new AccessDeniedException();
 }

 // retrieve actual comment object, and do your editing here
 // ...
}

In this example, we check whether the user has the EDIT permission.
Internally, Symfony2 maps the permission to several integer bitmasks, and
checks whether the user has any of them.

Note

You can define up to 32 base permissions (depending on your OS PHP might
vary between 30 to 32). In addition, you can also define cumulative
permissions.

Cumulative Permissions

In our first example above, we only granted the user the OWNER base
permission. While this effectively also allows the user to perform any
operation such as view, edit, etc. on the domain object, there are cases where
we want to grant these permissions explicitly.

The MaskBuilder can be used for creating bit masks easily by combining
several base permissions:

$builder = new MaskBuilder();
$builder
 ->add('view')
 ->add('edit')
 ->add('delete')
 ->add('undelete')
;
$mask = $builder->get(); // int(15)

This integer bitmask can then be used to grant a user the base permissions you
added above:

$acl->insertObjectAce(new UserSecurityIdentity('johannes'), $mask);

The user is now allowed to view, edit, delete, and un-delete objects.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

Advanced ACL Concepts

The aim of this chapter is to give a more in-depth view of the ACL system, and
also explain some of the design decisions behind it.

Design Concepts

Symfony2’s object instance security capabilities are based on the concept of
an Access Control List. Every domain object instance has its own ACL. The
ACL instance holds a detailed list of Access Control Entries (ACEs) which are
used to make access decisions. Symfony2’s ACL system focuses on two main
objectives:

	providing a way to efficiently retrieve a large amount of ACLs/ACEs for your
domain objects, and to modify them;

	providing a way to easily make decisions of whether a person is allowed to
perform an action on a domain object or not.

As indicated by the first point, one of the main capabilities of Symfony2’s
ACL system is a high-performance way of retrieving ACLs/ACEs. This is
extremely important since each ACL might have several ACEs, and inherit from
another ACL in a tree-like fashion. Therefore, we specifically do not leverage
any ORM, but the default implementation interacts with your connection
directly using Doctrine’s DBAL.

Object Identities

The ACL system is completely decoupled from your domain objects. They don’t
even have to be stored in the same database, or on the same server. In order
to achieve this decoupling, in the ACL system your objects are represented
through object identity objects. Everytime, you want to retrieve the ACL for a
domain object, the ACL system will first create an object identity from your
domain object, and then pass this object identity to the ACL provider for
further processing.

Security Identities

This is analog to the object identity, but represents a user, or a role in
your application. Each role, or user has its own security identity.

Database Table Structure

The default implementation uses five database tables as listed below. The
tables are ordered from least rows to most rows in a typical application:

	acl_security_identities: This table records all security identities (SID)
which hold ACEs. The default implementation ships with two security
identities: RoleSecurityIdentity, and UserSecurityIdentity

	acl_classes: This table maps class names to a unique id which can be
referenced from other tables.

	acl_object_identities: Each row in this table represents a single domain
object instance.

	acl_object_identity_ancestors: This table allows us to determine all the
ancestors of an ACL in a very efficient way.

	acl_entries: This table contains all ACEs. This is typically the table
with the most rows. It can contain tens of millions without significantly
impacting performance.

Scope of Access Control Entries

Access control entries can have different scopes in which they apply. In
Symfony2, we have basically two different scopes:

	Class-Scope: These entries apply to all objects with the same class.

	Object-Scope: This was the scope we solely used in the previous chapter, and
it only applies to one specific object.

Sometimes, you will find the need to apply an ACE only to a specific field of
the object. Let’s say you want the ID only to be viewable by an administrator,
but not by your customer service. To solve this common problem, we have added
two more sub-scopes:

	Class-Field-Scope: These entries apply to all objects with the same class,
but only to a specific field of the objects.

	Object-Field-Scope: These entries apply to a specific object, and only to a
specific field of that object.

Pre-Authorization Decisions

For pre-authorization decisions, that is decisions before any method, or
secure action is invoked, we rely on the proven AccessDecisionManager service
that is also used for reaching authorization decisions based on roles. Just
like roles, the ACL system adds several new attributes which may be used to
check for different permissions.

Built-in Permission Map

	Attribute
	Intended Meaning
	Integer Bitmasks

	VIEW
	Whether someone is allowed
to view the domain object.
	VIEW, EDIT, OPERATOR,
MASTER, or OWNER

	EDIT
	Whether someone is allowed
to make changes to the
domain object.
	EDIT, OPERATOR, MASTER,
or OWNER

	CREATE
	Whether someone is allowed
to create the domain
object.
	CREATE, OPERATOR, MASTER,
or OWNER

	DELETE
	Whether someone is allowed
to delete the domain
object.
	DELETE, OPERATOR, MASTER,
or OWNER

	UNDELETE
	Whether someone is allowed
to restore a previously
deleted domain object.
	UNDELETE, OPERATOR, MASTER,
or OWNER

	OPERATOR
	Whether someone is allowed
to perform all of the above
actions.
	OPERATOR, MASTER, or OWNER

	MASTER
	Whether someone is allowed
to perform all of the above
actions, and in addition is
allowed to grant
any of the above
permissions to others.
	MASTER, or OWNER

	OWNER
	Whether someone owns the
domain object. An owner can
perform any of the above
actions and grant master
and owner permissions.
	OWNER

Permission Attributes vs. Permission Bitmasks

Attributes are used by the AccessDecisionManager, just like roles are
attributes used by the AccessDecisionManager. Often, these attributes
represent in fact an aggregate of integer bitmasks. Integer bitmasks on the
other hand, are used by the ACL system internally to efficiently store your
users’ permissions in the database, and perform access checks using extremely
fast bitmask operations.

Extensibility

The above permission map is by no means static, and theoretically could be
completely replaced at will. However, it should cover most problems you
encounter, and for interoperability with other bundles, we encourage you to
stick to the meaning we have envisaged for them.

Post Authorization Decisions

Post authorization decisions are made after a secure method has been invoked,
and typically involve the domain object which is returned by such a method.
After invocation providers also allow to modify, or filter the domain object
before it is returned.

Due to current limitations of the PHP language, there are no
post-authorization capabilities build into the core Security component.
However, there is an experimental JMSSecurityExtraBundle [https://github.com/schmittjoh/JMSSecurityExtraBundle] which adds these
capabilities. See its documentation for further information on how this is
accomplished.

Process for Reaching Authorization Decisions

The ACL class provides two methods for determining whether a security identity
has the required bitmasks, isGranted and isFieldGranted. When the ACL
receives an authorization request through one of these methods, it delegates
this request to an implementation of PermissionGrantingStrategy. This allows
you to replace the way access decisions are reached without actually modifying
the ACL class itself.

The PermissionGrantingStrategy first checks all your object-scope ACEs if none
is applicable, the class-scope ACEs will be checked, if none is applicable,
then the process will be repeated with the ACEs of the parent ACL. If no
parent ACL exists, an exception will be thrown.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to force HTTPS or HTTP for Different URLs

You can force areas of your site to use the HTTPS protocol in the security
config. This is done through the access_control rules using the requires_channel
option. For example, if you want to force all URLs starting with /secure
to use HTTPS then you could use the following config:

	YAMLaccess_control:
 - path: ^/secure
 roles: ROLE_ADMIN
 requires_channel: https

	XML<access-control>
 <rule path="^/secure" role="ROLE_ADMIN" requires_channel="https" />
</access-control>

	PHP'access_control' => array(
 array('path' => '^/secure',
 'role' => 'ROLE_ADMIN',
 'requires_channel' => 'https'
),
),

The login form itself needs to allow anonymous access otherwise users will
be unable to authenticate. To force it to use HTTPS you can still use
access_control rules by using the IS_AUTHENTICATED_ANONYMOUSLY
role:

	YAMLaccess_control:
 - path: ^/login
 roles: IS_AUTHENTICATED_ANONYMOUSLY
 requires_channel: https

	XML<access-control>
 <rule path="^/login"
 role="IS_AUTHENTICATED_ANONYMOUSLY"
 requires_channel="https" />
</access-control>

	PHP'access_control' => array(
 array('path' => '^/login',
 'role' => 'IS_AUTHENTICATED_ANONYMOUSLY',
 'requires_channel' => 'https'
),
),

It is also possible to specify using HTTPS in the routing configuration
see How to force routes to always use HTTPS or HTTP for more details.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to customize your Form Login

Using a form login for authentication is
a common, and flexible, method for handling authentication in Symfony2. Pretty
much every aspect of the form login can be customized. The full, default
configuration is shown in the next section.

Form Login Configuration Reference

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 form_login:
 # the user is redirected here when he/she needs to login
 login_path: /login

 # if true, forward the user to the login form instead of redirecting
 use_forward: false

 # submit the login form here
 check_path: /login_check

 # by default, the login form *must* be a POST, not a GET
 post_only: true

 # login success redirecting options (read further below)
 always_use_default_target_path: false
 default_target_path: /
 target_path_parameter: _target_path
 use_referer: false

 # login failure redirecting options (read further below)
 failure_path: null
 failure_forward: false

 # field names for the username and password fields
 username_parameter: _username
 password_parameter: _password

 # csrf token options
 csrf_parameter: _csrf_token
 intention: authenticate

	XML<!-- app/config/security.xml -->
<config>
 <firewall>
 <form-login
 check_path="/login_check"
 login_path="/login"
 use_forward="false"
 always_use_default_target_path="false"
 default_target_path="/"
 target_path_parameter="_target_path"
 use_referer="false"
 failure_path="null"
 failure_forward="false"
 username_parameter="_username"
 password_parameter="_password"
 csrf_parameter="_csrf_token"
 intention="authenticate"
 post_only="true"
 />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array('form_login' => array(
 'check_path' => '/login_check',
 'login_path' => '/login',
 'user_forward' => false,
 'always_use_default_target_path' => false,
 'default_target_path' => '/',
 'target_path_parameter' => _target_path,
 'use_referer' => false,
 'failure_path' => null,
 'failure_forward' => false,
 'username_parameter' => '_username',
 'password_parameter' => '_password',
 'csrf_parameter' => '_csrf_token',
 'intention' => 'authenticate',
 'post_only' => true,
)),
),
));

Redirecting after Success

You can change where the login form redirects after a successful login using
the various config options. By default the form will redirect to the URL the
user requested (i.e. the URL which triggered the login form being shown).
For example, if the user requested http://www.example.com/admin/post/18/edit
then after he/she will eventually be sent back to http://www.example.com/admin/post/18/edit
after successfully logging in. This is done by storing the requested URL
in the session. If no URL is present in the session (perhaps the user went
directly to the login page), then the user is redirected to the default page,
which is / (i.e. the homepage) by default. You can change this behavior
in several ways.

Note

As mentioned, by default the user is redirected back to the page he originally
requested. Sometimes, this can cause problems, like if a background AJAX
request “appears” to be the last visited URL, causing the user to be
redirected there. For information on controlling this behavior, see
How to change the Default Target Path Behavior.

Changing the Default Page

First, the default page can be set (i.e. the page the user is redirected to
if no previous page was stored in the session). To set it to /admin use
the following config:

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 form_login:
 # ...
 default_target_path: /admin

	XML<!-- app/config/security.xml -->
<config>
 <firewall>
 <form-login
 default_target_path="/admin"
 />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array('form_login' => array(
 // ...
 'default_target_path' => '/admin',
)),
),
));

Now, when no URL is set in the session users will be sent to /admin.

Always Redirect to the Default Page

You can make it so that users are always redirected to the default page regardless
of what URL they had requested previously by setting the
always_use_default_target_path option to true:

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 form_login:
 # ...
 always_use_default_target_path: true

	XML<!-- app/config/security.xml -->
<config>
 <firewall>
 <form-login
 always_use_default_target_path="true"
 />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array('form_login' => array(
 // ...
 'always_use_default_target_path' => true,
)),
),
));

Using the Referring URL

In case no previous URL was stored in the session, you may wish to try using
the HTTP_REFERER instead, as this will often be the same. You can do
this by setting use_referer to true (it defaults to false):

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 form_login:
 # ...
 use_referer: true

	XML<!-- app/config/security.xml -->
<config>
 <firewall>
 <form-login
 use_referer="true"
 />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array('form_login' => array(
 // ...
 'use_referer' => true,
)),
),
));

New in version 2.1: As of 2.1, if the referer is equal to the login_path option, the
user will be redirected to the default_target_path.

Control the Redirect URL from inside the Form

You can also override where the user is redirected to via the form itself by
including a hidden field with the name _target_path. For example, to
redirect to the URL defined by some acount route, use the following:

	Twig{# src/Acme/SecurityBundle/Resources/views/Security/login.html.twig #}
{% if error %}
 <div>{{ error.message }}</div>
{% endif %}

<form action="{{ path('login_check') }}" method="post">
 <label for="username">Username:</label>
 <input type="text" id="username" name="_username" value="{{ last_username }}" />

 <label for="password">Password:</label>
 <input type="password" id="password" name="_password" />

 <input type="hidden" name="_target_path" value="account" />

 <input type="submit" name="login" />
</form>

	PHP<?php // src/Acme/SecurityBundle/Resources/views/Security/login.html.php ?>
<?php if ($error): ?>
 <div><?php echo $error->getMessage() ?></div>
<?php endif; ?>

<form action="<?php echo $view['router']->generate('login_check') ?>" method="post">
 <label for="username">Username:</label>
 <input type="text" id="username" name="_username" value="<?php echo $last_username ?>" />

 <label for="password">Password:</label>
 <input type="password" id="password" name="_password" />

 <input type="hidden" name="_target_path" value="account" />

 <input type="submit" name="login" />
</form>

Now, the user will be redirected to the value of the hidden form field. The
value attribute can be a relative path, absolute URL, or a route name. You
can even change the name of the hidden form field by changing the target_path_parameter
option to another value.

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 form_login:
 target_path_parameter: redirect_url

	XML<!-- app/config/security.xml -->
<config>
 <firewall>
 <form-login
 target_path_parameter="redirect_url"
 />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array('form_login' => array(
 'target_path_parameter' => redirect_url,
)),
),
));

Redirecting on Login Failure

In addition to redirect the user after a successful login, you can also set
the URL that the user should be redirected to after a failed login (e.g. an
invalid username or password was submitted). By default, the user is redirected
back to the login form itself. You can set this to a different URL with the
following config:

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 form_login:
 # ...
 failure_path: /login_failure

	XML<!-- app/config/security.xml -->
<config>
 <firewall>
 <form-login
 failure_path="login_failure"
 />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array('form_login' => array(
 // ...
 'failure_path' => login_failure,
)),
),
));

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to secure any Service or Method in your Application

In the security chapter, you can see how to secure a controller
by requesting the security.context service from the Service Container
and checking the current user’s role:

use Symfony\Component\Security\Core\Exception\AccessDeniedException;
// ...

public function helloAction($name)
{
 if (false === $this->get('security.context')->isGranted('ROLE_ADMIN')) {
 throw new AccessDeniedException();
 }

 // ...
}

You can also secure any service in a similar way by injecting the security.context
service into it. For a general introduction to injecting dependencies into
services see the Service Container chapter of the book. For
example, suppose you have a NewsletterManager class that sends out emails
and you want to restrict its use to only users who have some ROLE_NEWSLETTER_ADMIN
role. Before you add security, the class looks something like this:

namespace Acme\HelloBundle\Newsletter;

class NewsletterManager
{

 public function sendNewsletter()
 {
 // where you actually do the work
 }

 // ...
}

Your goal is to check the user’s role when the sendNewsletter() method is
called. The first step towards this is to inject the security.context
service into the object. Since it won’t make sense not to perform the security
check, this is an ideal candidate for constructor injection, which guarantees
that the security context object will be available inside the NewsletterManager
class:

namespace Acme\HelloBundle\Newsletter;

use Symfony\Component\Security\Core\SecurityContextInterface;

class NewsletterManager
{
 protected $securityContext;

 public function __construct(SecurityContextInterface $securityContext)
 {
 $this->securityContext = $securityContext;
 }

 // ...
}

Then in your service configuration, you can inject the service:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
parameters:
 newsletter_manager.class: Acme\HelloBundle\Newsletter\NewsletterManager

services:
 newsletter_manager:
 class: %newsletter_manager.class%
 arguments: [@security.context]

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<parameters>
 <parameter key="newsletter_manager.class">Acme\HelloBundle\Newsletter\NewsletterManager</parameter>
</parameters>

<services>
 <service id="newsletter_manager" class="%newsletter_manager.class%">
 <argument type="service" id="security.context"/>
 </service>
</services>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$container->setParameter('newsletter_manager.class', 'Acme\HelloBundle\Newsletter\NewsletterManager');

$container->setDefinition('newsletter_manager', new Definition(
 '%newsletter_manager.class%',
 array(new Reference('security.context'))
));

The injected service can then be used to perform the security check when the
sendNewsletter() method is called:

namespace Acme\HelloBundle\Newsletter;

use Symfony\Component\Security\Core\Exception\AccessDeniedException;
use Symfony\Component\Security\Core\SecurityContextInterface;
// ...

class NewsletterManager
{
 protected $securityContext;

 public function __construct(SecurityContextInterface $securityContext)
 {
 $this->securityContext = $securityContext;
 }

 public function sendNewsletter()
 {
 if (false === $this->securityContext->isGranted('ROLE_NEWSLETTER_ADMIN')) {
 throw new AccessDeniedException();
 }

 //--
 }

 // ...
}

If the current user does not have the ROLE_NEWSLETTER_ADMIN, they will
be prompted to log in.

Securing Methods Using Annotations

You can also secure method calls in any service with annotations by using the
optional JMSSecurityExtraBundle [https://github.com/schmittjoh/JMSSecurityExtraBundle] bundle. This bundle is included in the
Symfony2 Standard Distribution.

To enable the annotations functionality, tag
the service you want to secure with the security.secure_service tag
(you can also automatically enable this functionality for all services, see
the sidebar below):

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
...

services:
 newsletter_manager:
 # ...
 tags:
 - { name: security.secure_service }

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<!-- ... -->

<services>
 <service id="newsletter_manager" class="%newsletter_manager.class%">
 <!-- ... -->
 <tag name="security.secure_service" />
 </service>
</services>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$definition = new Definition(
 '%newsletter_manager.class%',
 array(new Reference('security.context'))
));
$definition->addTag('security.secure_service');
$container->setDefinition('newsletter_manager', $definition);

You can then achieve the same results as above using an annotation:

namespace Acme\HelloBundle\Newsletter;

use JMS\SecurityExtraBundle\Annotation\Secure;
// ...

class NewsletterManager
{

 /**
 * @Secure(roles="ROLE_NEWSLETTER_ADMIN")
 */
 public function sendNewsletter()
 {
 //--
 }

 // ...
}

Note

The annotations work because a proxy class is created for your class
which performs the security checks. This means that, whilst you can use
annotations on public and protected methods, you cannot use them with
private methods or methods marked final.

The JMSSecurityExtraBundle also allows you to secure the parameters and return
values of methods. For more information, see the JMSSecurityExtraBundle [https://github.com/schmittjoh/JMSSecurityExtraBundle]
documentation.

Activating the Annotations Functionality for all Services

When securing the method of a service (as shown above), you can either
tag each service individually, or activate the functionality for all
services at once. To do so, set the secure_all_services configuration
option to true:

	YAML# app/config/config.yml
jms_security_extra:
 # ...
 secure_all_services: true

	XML<!-- app/config/config.xml -->
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <jms_security_extra secure_controllers="true" secure_all_services="true" />

</srv:container>

	PHP// app/config/config.php
$container->loadFromExtension('jms_security_extra', array(
 // ...
 'secure_all_services' => true,
));

The disadvantage of this method is that, if activated, the initial page
load may be very slow depending on how many services you have defined.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to load Security Users from the Database (the Entity Provider)

The security layer is one of the smartest tools of Symfony. It handles two
things: the authentication and the authorization processes. Although it may
seem difficult to understand how it works internally, the security system
is very flexible and allows you to integrate your application with any authentication
backend, like Active Directory, an OAuth server or a database.

Introduction

This article focuses on how to authenticate users against a database table
managed by a Doctrine entity class. The content of this cookbook entry is split
in three parts. The first part is about designing a Doctrine User entity
class and making it usable in the security layer of Symfony. The second part
describes how to easily authenticate a user with the Doctrine
Symfony\Bridge\Doctrine\Security\User\EntityUserProvider object
bundled with the framework and some configuration.
Finally, the tutorial will demonstrate how to create a custom
Symfony\Bridge\Doctrine\Security\User\EntityUserProvider object to
retrieve users from a database with custom conditions.

This tutorial assumes there is a bootstrapped and loaded
Acme\UserBundle bundle in the application kernel.

The Data Model

For the purpose of this cookbook, the AcmeUserBundle bundle contains a
User entity class with the following fields: id, username, salt,
password, email and isActive. The isActive field tells whether
or not the user account is active.

To make it shorter, the getter and setter methods for each have been removed to
focus on the most important methods that come from the
Symfony\Component\Security\Core\User\UserInterface.

New in version 2.1: In Symfony 2.1, the equals method was removed from UserInterface.
If you need to override the default implementation of comparison logic,
implement the new Symfony\Component\Security\Core\User\EquatableInterface
interface.

// src/Acme/UserBundle/Entity/User.php

namespace Acme\UserBundle\Entity;

use Symfony\Component\Security\Core\User\UserInterface;
use Doctrine\ORM\Mapping as ORM;

/**
 * Acme\UserBundle\Entity\User
 *
 * @ORM\Table(name="acme_users")
 * @ORM\Entity(repositoryClass="Acme\UserBundle\Entity\UserRepository")
 */
class User implements UserInterface
{
 /**
 * @ORM\Column(name="id", type="integer")
 * @ORM\Id()
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 private $id;

 /**
 * @ORM\Column(name="username", type="string", length=25, unique=true)
 */
 private $username;

 /**
 * @ORM\Column(name="salt", type="string", length=40)
 */
 private $salt;

 /**
 * @ORM\Column(name="password", type="string", length=40)
 */
 private $password;

 /**
 * @ORM\Column(name="email", type="string", length=60, unique=true)
 */
 private $email;

 /**
 * @ORM\Column(name="is_active", type="boolean")
 */
 private $isActive;

 public function __construct()
 {
 $this->isActive = true;
 $this->salt = base_convert(sha1(uniqid(mt_rand(), true)), 16, 36);
 }

 public function getRoles()
 {
 return array('ROLE_USER');
 }

 public function eraseCredentials()
 {
 }

 public function getUsername()
 {
 return $this->username;
 }

 public function getSalt()
 {
 return $this->salt;
 }

 public function getPassword()
 {
 return $this->password;
 }
}

In order to use an instance of the AcmeUserBundle:User class in the Symfony
security layer, the entity class must implement the
Symfony\Component\Security\Core\User\UserInterface. This
interface forces the class to implement the five following methods: getRoles(),
getPassword(), getSalt(), getUsername(), eraseCredentials().
For more details on each of these, see Symfony\Component\Security\Core\User\UserInterface.

Below is an export of my User table from MySQL. For details on how to
create user records and encode their password, see Encoding the User’s Password.

mysql> select * from user;
+----+----------+--+--+--------------------+-----------+
| id | username | salt | password | email | is_active |
+----+----------+--+--+--------------------+-----------+
1	hhamon	7308e59b97f6957fb42d66f894793079c366d7c2	09610f61637408828a35d7debee5b38a8350eebe	hhamon@example.com	1
2	jsmith	ce617a6cca9126bf4036ca0c02e82deea081e564	8390105917f3a3d533815250ed7c64b4594d7ebf	jsmith@example.com	1
3	maxime	cd01749bb995dc658fa56ed45458d807b523e4cf	9764731e5f7fb944de5fd8efad4949b995b72a3c	maxime@example.com	0
4	donald	6683c2bfd90c0426088402930cadd0f84901f2f4	5c3bcec385f59edcc04490d1db95fdb8673bf612	donald@example.com	1
+----+----------+--+--+--------------------+-----------+
4 rows in set (0.00 sec)

The database now contains four users with different usernames, emails and
statuses. The next part will focus on how to authenticate one of these users
thanks to the Doctrine entity user provider and a couple of lines of
configuration.

Authenticating Someone against a Database

Authenticating a Doctrine user against the database with the Symfony security
layer is a piece of cake. Everything resides in the configuration of the
SecurityBundle stored in the
app/config/security.yml file.

Below is an example of configuration where the user will enter his/her
username and password via HTTP basic authentication. That information will
then be checked against our User entity records in the database:

	YAML# app/config/security.yml
security:
 encoders:
 Acme\UserBundle\Entity\User:
 algorithm: sha1
 encode_as_base64: false
 iterations: 1

 providers:
 administrators:
 entity: { class: AcmeUserBundle:User, property: username }

 firewalls:
 admin_area:
 pattern: ^/admin
 http_basic: ~

 access_control:
 - { path: ^/admin, roles: ROLE_ADMIN }

The encoders section associates the sha1 password encoder to the entity
class. This means that Symfony will expect the password that’s encoded in
the database to be encoded using this algorithm. For details on how to create
a new User object with a properly encoded password, see the
Encoding the User’s Password section of the security chapter.

The providers section defines an administrators user provider. A
user provider is a “source” of where users are loaded during authentication.
In this case, the entity keyword means that Symfony will use the Doctrine
entity user provider to load User entity objects from the database by using
the username unique field. In other words, this tells Symfony how to
fetch the user from the database before checking the password validity.

This code and configuration works but it’s not enough to secure the application
for active users. As of now, we still can authenticate with maxime. The
next section explains how to forbid non active users.

Forbid non Active Users

The easiest way to exclude non active users is to implement the
Symfony\Component\Security\Core\User\AdvancedUserInterface
interface that takes care of checking the user’s account status.
The Symfony\Component\Security\Core\User\AdvancedUserInterface
extends the Symfony\Component\Security\Core\User\UserInterface
interface, so you just need to switch to the new interface in the AcmeUserBundle:User
entity class to benefit from simple and advanced authentication behaviors.

The Symfony\Component\Security\Core\User\AdvancedUserInterface
interface adds four extra methods to validate the account status:

	isAccountNonExpired() checks whether the user’s account has expired,

	isAccountNonLocked() checks whether the user is locked,

	isCredentialsNonExpired() checks whether the user’s credentials (password)
has expired,

	isEnabled() checks whether the user is enabled.

For this example, the first three methods will return true whereas the
isEnabled() method will return the boolean value in the isActive field.

// src/Acme/UserBundle/Entity/User.php

namespace Acme\Bundle\UserBundle\Entity;

// ...
use Symfony\Component\Security\Core\User\AdvancedUserInterface;

// ...
class User implements AdvancedUserInterface
{
 // ...
 public function isAccountNonExpired()
 {
 return true;
 }

 public function isAccountNonLocked()
 {
 return true;
 }

 public function isCredentialsNonExpired()
 {
 return true;
 }

 public function isEnabled()
 {
 return $this->isActive;
 }
}

If we try to authenticate a maxime, the access is now forbidden as this
user does not have an enabled account. The next session will focus on how
to write a custom entity provider to authenticate a user with his username
or his email address.

Authenticating Someone with a Custom Entity Provider

The next step is to allow a user to authenticate with his username or his email
address as they are both unique in the database. Unfortunately, the native
entity provider is only able to handle a single property to fetch the user from
the database.

To accomplish this, create a custom entity provider that looks for a user
whose username or email field matches the submitted login username.
The good news is that a Doctrine repository object can act as an entity user
provider if it implements the
Symfony\Component\Security\Core\User\UserProviderInterface. This
interface comes with three methods to implement: loadUserByUsername($username),
refreshUser(UserInterface $user), and supportsClass($class). For
more details, see Symfony\Component\Security\Core\User\UserProviderInterface.

The code below shows the implementation of the
Symfony\Component\Security\Core\User\UserProviderInterface in the
UserRepository class:

// src/Acme/UserBundle/Entity/UserRepository.php

namespace Acme\UserBundle\Entity;

use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Security\Core\User\UserProviderInterface;
use Symfony\Component\Security\Core\Exception\UsernameNotFoundException;
use Symfony\Component\Security\Core\Exception\UnsupportedUserException;
use Doctrine\ORM\EntityRepository;
use Doctrine\ORM\NoResultException;

class UserRepository extends EntityRepository implements UserProviderInterface
{
 public function loadUserByUsername($username)
 {
 $q = $this
 ->createQueryBuilder('u')
 ->where('u.username = :username OR u.email = :email')
 ->setParameter('username', $username)
 ->setParameter('email', $username)
 ->getQuery()
 ;

 try {
 // The Query::getSingleResult() method throws an exception
 // if there is no record matching the criteria.
 $user = $q->getSingleResult();
 } catch (NoResultException $e) {
 throw new UsernameNotFoundException(sprintf('Unable to find an active admin AcmeUserBundle:User object identified by "%s".', $username), null, 0, $e);
 }

 return $user;
 }

 public function refreshUser(UserInterface $user)
 {
 $class = get_class($user);
 if (!$this->supportsClass($class)) {
 throw new UnsupportedUserException(sprintf('Instances of "%s" are not supported.', $class));
 }

 return $this->loadUserByUsername($user->getUsername());
 }

 public function supportsClass($class)
 {
 return $this->getEntityName() === $class || is_subclass_of($class, $this->getEntityName());
 }
}

To finish the implementation, the configuration of the security layer must be
changed to tell Symfony to use the new custom entity provider instead of the
generic Doctrine entity provider. It’s trival to achieve by removing the
property field in the security.providers.administrators.entity section
of the security.yml file.

	YAML# app/config/security.yml
security:
 # ...
 providers:
 administrators:
 entity: { class: AcmeUserBundle:User }
 # ...

By doing this, the security layer will use an instance of UserRepository and
call its loadUserByUsername() method to fetch a user from the database
whether he filled in his username or email address.

Managing Roles in the Database

The end of this tutorial focuses on how to store and retrieve a list of roles
from the database. As mentioned previously, when your user is loaded, its
getRoles() method returns the array of security roles that should be
assigned to the user. You can load this data from anywhere - a hardcoded
list used for all users (e.g. array('ROLE_USER')), a Doctrine array
property called roles, or via a Doctrine relationship, as we’ll learn
about in this section.

Caution

In a typical setup, you should always return at least 1 role from the getRoles()
method. By convention, a role called ROLE_USER is usually returned.
If you fail to return any roles, it may appear as if your user isn’t
authenticated at all.

In this example, the AcmeUserBundle:User entity class defines a
many-to-many relationship with a AcmeUserBundle:Group entity class. A user
can be related several groups and a group can be composed of one or
more users. As a group is also a role, the previous getRoles() method now
returns the list of related groups:

// src/Acme/UserBundle/Entity/User.php

namespace Acme\Bundle\UserBundle\Entity;

use Doctrine\Common\Collections\ArrayCollection;

// ...
class User implements AdvancedUserInterface
{
 /**
 * @ORM\ManyToMany(targetEntity="Group", inversedBy="users")
 *
 */
 private $groups;

 public function __construct()
 {
 $this->groups = new ArrayCollection();
 }

 // ...

 public function getRoles()
 {
 return $this->groups->toArray();
 }
}

The AcmeUserBundle:Group entity class defines three table fields (id,
name and role). The unique role field contains the role name used by
the Symfony security layer to secure parts of the application. The most
important thing to notice is that the AcmeUserBundle:Group entity class
implements the Symfony\Component\Security\Core\Role\RoleInterface
that forces it to have a getRole() method:

namespace Acme\Bundle\UserBundle\Entity;

use Symfony\Component\Security\Core\Role\RoleInterface;
use Doctrine\Common\Collections\ArrayCollection;
use Doctrine\ORM\Mapping as ORM;

/**
 * @ORM\Table(name="acme_groups")
 * @ORM\Entity()
 */
class Group implements RoleInterface
{
 /**
 * @ORM\Column(name="id", type="integer")
 * @ORM\Id()
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 private $id;

 /** @ORM\Column(name="name", type="string", length=30) */
 private $name;

 /** @ORM\Column(name="role", type="string", length=20, unique=true) */
 private $role;

 /** @ORM\ManyToMany(targetEntity="User", mappedBy="groups") */
 private $users;

 public function __construct()
 {
 $this->users = new ArrayCollection();
 }

 // ... getters and setters for each property

 /** @see RoleInterface */
 public function getRole()
 {
 return $this->role;
 }
}

To improve performances and avoid lazy loading of groups when retrieving a user
from the custom entity provider, the best solution is to join the groups
relationship in the UserRepository::loadUserByUsername() method. This will
fetch the user and his associated roles / groups with a single query:

// src/Acme/UserBundle/Entity/UserRepository.php

namespace Acme\Bundle\UserBundle\Entity;

// ...

class UserRepository extends EntityRepository implements UserProviderInterface
{
 public function loadUserByUsername($username)
 {
 $q = $this
 ->createQueryBuilder('u')
 ->select('u, g')
 ->leftJoin('u.groups', 'g')
 ->where('u.username = :username OR u.email = :email')
 ->setParameter('username', $username)
 ->setParameter('email', $username)
 ->getQuery()
 ;

 // ...
 }

 // ...
}

The QueryBuilder::leftJoin() method joins and fetches related groups from
the AcmeUserBundle:User model class when a user is retrieved with his email
address or username.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to create a custom User Provider

Part of Symfony’s standard authentication process depends on “user providers”.
When a user submits a username and password, the authentication layer asks
the configured user provider to return a user object for a given username.
Symfony then checks whether the password of this user is correct and generates
a security token so the user stays authenticated during the current session.
Out of the box, Symfony has an “in_memory” and an “entity” user provider.
In this entry we’ll see how you can create your own user provider, which
could be useful if your users are accessed via a custom database, a file,
or - as we show in this example - a web service.

Create a User Class

First, regardless of where your user data is coming from, you’ll need to
create a User class that represents that data. The User can look
however you want and contain any data. The only requirement is that the
class implements Symfony\Component\Security\Core\User\UserInterface.
The methods in this interface should therefore be defined in the custom user
class: getRoles(), getPassword(), getSalt(), getUsername(),
eraseCredentials(), equals().

Let’s see this in action:

// src/Acme/WebserviceUserBundle/Security/User.php
namespace Acme\WebserviceUserBundle\Security\User;

use Symfony\Component\Security\Core\User\UserInterface;

class WebserviceUser implements UserInterface
{
 private $username;
 private $password;
 private $salt;
 private $roles;

 public function __construct($username, $password, $salt, array $roles)
 {
 $this->username = $username;
 $this->password = $password;
 $this->salt = $salt;
 $this->roles = $roles;
 }

 public function getRoles()
 {
 return $this->roles;
 }

 public function getPassword()
 {
 return $this->password;
 }

 public function getSalt()
 {
 return $this->salt;
 }

 public function getUsername()
 {
 return $this->username;
 }

 public function eraseCredentials()
 {
 }

 public function equals(UserInterface $user)
 {
 if (!$user instanceof WebserviceUser) {
 return false;
 }

 if ($this->password !== $user->getPassword()) {
 return false;
 }

 if ($this->getSalt() !== $user->getSalt()) {
 return false;
 }

 if ($this->username !== $user->getUsername()) {
 return false;
 }

 return true;
 }
}

If you have more information about your users - like a “first name” - then
you can add a firstName field to hold that data.

For more details on each of the methods, see Symfony\Component\Security\Core\User\UserInterface.

Create a User Provider

Now that we have a User class, we’ll create a user provider, which will
grab user information from some web service, create a WebserviceUser object,
and populate it with data.

The user provider is just a plain PHP class that has to implement the
Symfony\Component\Security\Core\User\UserProviderInterface,
which requires three methods to be defined: loadUserByUsername($username),
refreshUser(UserInterface $user), and supportsClass($class). For
more details, see Symfony\Component\Security\Core\User\UserProviderInterface.

Here’s an example of how this might look:

// src/Acme/WebserviceUserBundle/Security/User/WebserviceUserProvider.php
namespace Acme\WebserviceUserBundle\Security\User;

use Symfony\Component\Security\Core\User\UserProviderInterface;
use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Security\Core\Exception\UsernameNotFoundException;
use Symfony\Component\Security\Core\Exception\UnsupportedUserException;

class WebserviceUserProvider implements UserProviderInterface
{
 public function loadUserByUsername($username)
 {
 // make a call to your webservice here
 // $userData = ...
 // pretend it returns an array on success, false if there is no user

 if ($userData) {
 // $password = '...';
 // ...

 return new WebserviceUser($username, $password, $salt, $roles)
 } else {
 throw new UsernameNotFoundException(sprintf('Username "%s" does not exist.', $username));
 }
 }

 public function refreshUser(UserInterface $user)
 {
 if (!$user instanceof WebserviceUser) {
 throw new UnsupportedUserException(sprintf('Instances of "%s" are not supported.', get_class($user)));
 }

 return $this->loadUserByUsername($user->getUsername());
 }

 public function supportsClass($class)
 {
 return $class === 'Acme\WebserviceUserBundle\Security\User\WebserviceUser';
 }
}

Create a Service for the User Provider

Now we make the user provider available as service.

	YAML# src/Acme/MailerBundle/Resources/config/services.yml
parameters:
 webservice_user_provider.class: Acme\WebserviceUserBundle\Security\User\WebserviceUserProvider

services:
 webservice_user_provider:
 class: %webservice_user_provider.class%

	XML<!-- src/Acme/WebserviceUserBundle/Resources/config/services.xml -->
<parameters>
 <parameter key="webservice_user_provider.class">Acme\WebserviceUserBundle\Security\User\WebserviceUserProvider</parameter>
</parameters>

<services>
 <service id="webservice_user_provider" class="%webservice_user_provider.class%"></service>
</services>

	PHP// src/Acme/WebserviceUserBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;

$container->setParameter('webservice_user_provider.class', 'Acme\WebserviceUserBundle\Security\User\WebserviceUserProvider');

$container->setDefinition('webservice_user_provider', new Definition('%webservice_user_provider.class%');

Tip

The real implementation of the user provider will probably have some
dependencies or configuration options or other services. Add these as
arguments in the service definition.

Note

Make sure the services file is being imported. See Importing Configuration with imports
for details.

Modify security.yml

In /app/config/security.yml everything comes together. Add the user provider
to the list of providers in the “security” section. Choose a name for the user provider
(e.g. “webservice”) and mention the id of the service you just defined.

security:
 providers:
 webservice:
 id: webservice_user_provider

Symfony also needs to know how to encode passwords that are supplied by website
users, e.g. by filling in a login form. You can do this by adding a line to the
“encoders” section in /app/config/security.yml.

security:
 encoders:
 Acme\WebserviceUserBundle\Security\User\WebserviceUser: sha512

The value here should correspond with however the passwords were originally
encoded when creating your users (however those users were created). When
a user submits her password, the password is appended to the salt value and
then encoded using this algorithm before being compared to the hashed password
returned by your getPassword() method. Additionally, depending on your
options, the password may be encoded multiple times and encoded to base64.

Specifics on how passwords are encoded

Symfony uses a specific method to combine the salt and encode the password
before comparing it to your encoded password. If getSalt() returns
nothing, then the submitted password is simply encoded using the algorithm
you specify in security.yml. If a salt is specified, then the following
value is created and then hashed via the algorithm:

$password.'{'.$salt.'}';

If your external users have their passwords salted via a different method,
then you’ll need to do a bit more work so that Symfony properly encodes
the password. That is beyond the scope of this entry, but would include
sub-classing MessageDigestPasswordEncoder and overriding the mergePasswordAndSalt
method.

Additionally, the hash, by default, is encoded multiple times and encoded
to base64. For specific details, see MessageDigestPasswordEncoder [https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Security/Core/Encoder/MessageDigestPasswordEncoder.php].
To prevent this, configure it in security.yml:

security:
 encoders:
 Acme\WebserviceUserBundle\Security\User\WebserviceUser:
 algorithm: sha512
 encode_as_base64: false
 iterations: 1

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to create a custom Authentication Provider

If you have read the chapter on Security, you understand the
distinction Symfony2 makes between authentication and authorization in the
implementation of security. This chapter discusses the core classes involved
in the authentication process, and how to implement a custom authentication
provider. Because authentication and authorization are separate concepts,
this extension will be user-provider agnostic, and will function with your
application’s user providers, may they be based in memory, a database, or
wherever else you choose to store them.

Meet WSSE

The following chapter demonstrates how to create a custom authentication
provider for WSSE authentication. The security protocol for WSSE provides
several security benefits:

	Username / Password encryption

	Safe guarding against replay attacks

	No web server configuration required

WSSE is very useful for the securing of web services, may they be SOAP or
REST.

There is plenty of great documentation on WSSE [http://www.xml.com/pub/a/2003/12/17/dive.html], but this article will
focus not on the security protocol, but rather the manner in which a custom
protocol can be added to your Symfony2 application. The basis of WSSE is
that a request header is checked for encrypted credentials, verified using
a timestamp and nonce [http://en.wikipedia.org/wiki/Cryptographic_nonce], and authenticated for the requested user using a
password digest.

Note

WSSE also supports application key validation, which is useful for web
services, but is outside the scope of this chapter.

The Token

The role of the token in the Symfony2 security context is an important one.
A token represents the user authentication data present in the request. Once
a request is authenticated, the token retains the user’s data, and delivers
this data across the security context. First, we will create our token class.
This will allow the passing of all relevant information to our authentication
provider.

// src/Acme/DemoBundle/Security/Authentication/Token/WsseUserToken.php
namespace Acme\DemoBundle\Security\Authentication\Token;

use Symfony\Component\Security\Core\Authentication\Token\AbstractToken;

class WsseUserToken extends AbstractToken
{
 public $created;
 public $digest;
 public $nonce;

 public function getCredentials()
 {
 return '';
 }
}

Note

The WsseUserToken class extends the security component’s
Symfony\Component\Security\Core\Authentication\Token\AbstractToken
class, which provides basic token functionality. Implement the
Symfony\Component\Security\Core\Authentication\Token\TokenInterface
on any class to use as a token.

The Listener

Next, you need a listener to listen on the security context. The listener
is responsible for fielding requests to the firewall and calling the authentication
provider. A listener must be an instance of
Symfony\Component\Security\Http\Firewall\ListenerInterface.
A security listener should handle the
Symfony\Component\HttpKernel\Event\GetResponseEvent event, and
set an authenticated token in the security context if successful.

// src/Acme/DemoBundle/Security/Firewall/WsseListener.php
namespace Acme\DemoBundle\Security\Firewall;

use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpKernel\Event\GetResponseEvent;
use Symfony\Component\Security\Http\Firewall\ListenerInterface;
use Symfony\Component\Security\Core\Exception\AuthenticationException;
use Symfony\Component\Security\Core\SecurityContextInterface;
use Symfony\Component\Security\Core\Authentication\AuthenticationManagerInterface;
use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;
use Acme\DemoBundle\Security\Authentication\Token\WsseUserToken;

class WsseListener implements ListenerInterface
{
 protected $securityContext;
 protected $authenticationManager;

 public function __construct(SecurityContextInterface $securityContext, AuthenticationManagerInterface $authenticationManager)
 {
 $this->securityContext = $securityContext;
 $this->authenticationManager = $authenticationManager;
 }

 public function handle(GetResponseEvent $event)
 {
 $request = $event->getRequest();

 if ($request->headers->has('x-wsse')) {

 $wsseRegex = '/UsernameToken Username="([^"]+)", PasswordDigest="([^"]+)", Nonce="([^"]+)", Created="([^"]+)"/';

 if (preg_match($wsseRegex, $request->headers->get('x-wsse'), $matches)) {
 $token = new WsseUserToken();
 $token->setUser($matches[1]);

 $token->digest = $matches[2];
 $token->nonce = $matches[3];
 $token->created = $matches[4];

 try {
 $returnValue = $this->authenticationManager->authenticate($token);

 if ($returnValue instanceof TokenInterface) {
 return $this->securityContext->setToken($returnValue);
 } else if ($returnValue instanceof Response) {
 return $event->setResponse($returnValue);
 }
 } catch (AuthenticationException $e) {
 // you might log something here
 }
 }
 }

 $response = new Response();
 $response->setStatusCode(403);
 $event->setResponse($response);
 }
}

This listener checks the request for the expected X-WSSE header, matches
the value returned for the expected WSSE information, creates a token using
that information, and passes the token on to the authentication manager. If
the proper information is not provided, or the authentication manager throws
an Symfony\Component\Security\Core\Exception\AuthenticationException,
a 403 Response is returned.

Note

A class not used above, the
Symfony\Component\Security\Http\Firewall\AbstractAuthenticationListener
class, is a very useful base class which provides commonly needed functionality
for security extensions. This includes maintaining the token in the session,
providing success / failure handlers, login form urls, and more. As WSSE
does not require maintaining authentication sessions or login forms, it
won’t be used for this example.

The Authentication Provider

The authentication provider will do the verification of the WsseUserToken.
Namely, the provider will verify the Created header value is valid within
five minutes, the Nonce header value is unique within five minutes, and
the PasswordDigest header value matches with the user’s password.

// src/Acme/DemoBundle/Security/Authentication/Provider/WsseProvider.php
namespace Acme\DemoBundle\Security\Authentication\Provider;

use Symfony\Component\Security\Core\Authentication\Provider\AuthenticationProviderInterface;
use Symfony\Component\Security\Core\User\UserProviderInterface;
use Symfony\Component\Security\Core\Exception\AuthenticationException;
use Symfony\Component\Security\Core\Exception\NonceExpiredException;
use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;
use Acme\DemoBundle\Security\Authentication\Token\WsseUserToken;

class WsseProvider implements AuthenticationProviderInterface
{
 private $userProvider;
 private $cacheDir;

 public function __construct(UserProviderInterface $userProvider, $cacheDir)
 {
 $this->userProvider = $userProvider;
 $this->cacheDir = $cacheDir;
 }

 public function authenticate(TokenInterface $token)
 {
 $user = $this->userProvider->loadUserByUsername($token->getUsername());

 if ($user && $this->validateDigest($token->digest, $token->nonce, $token->created, $user->getPassword())) {
 $authenticatedToken = new WsseUserToken($user->getRoles());
 $authenticatedToken->setUser($user);

 return $authenticatedToken;
 }

 throw new AuthenticationException('The WSSE authentication failed.');
 }

 protected function validateDigest($digest, $nonce, $created, $secret)
 {
 // Expire timestamp after 5 minutes
 if (time() - strtotime($created) > 300) {
 return false;
 }

 // Validate nonce is unique within 5 minutes
 if (file_exists($this->cacheDir.'/'.$nonce) && file_get_contents($this->cacheDir.'/'.$nonce) + 300 < time()) {
 throw new NonceExpiredException('Previously used nonce detected');
 }
 file_put_contents($this->cacheDir.'/'.$nonce, time());

 // Validate Secret
 $expected = base64_encode(sha1(base64_decode($nonce).$created.$secret, true));

 return $digest === $expected;
 }

 public function supports(TokenInterface $token)
 {
 return $token instanceof WsseUserToken;
 }
}

Note

The Symfony\Component\Security\Core\Authentication\Provider\AuthenticationProviderInterface
requires an authenticate method on the user token, and a supports
method, which tells the authentication manager whether or not to use this
provider for the given token. In the case of multiple providers, the
authentication manager will then move to the next provider in the list.

The Factory

You have created a custom token, custom listener, and custom provider. Now
you need to tie them all together. How do you make your provider available
to your security configuration? The answer is by using a factory. A factory
is where you hook into the security component, telling it the name of your
provider and any configuration options available for it. First, you must
create a class which implements
Symfony\Bundle\SecurityBundle\DependencyInjection\Security\Factory\SecurityFactoryInterface.

// src/Acme/DemoBundle/DependencyInjection/Security/Factory/WsseFactory.php
namespace Acme\DemoBundle\DependencyInjection\Security\Factory;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Reference;
use Symfony\Component\DependencyInjection\DefinitionDecorator;
use Symfony\Component\Config\Definition\Builder\NodeDefinition;
use Symfony\Bundle\SecurityBundle\DependencyInjection\Security\Factory\SecurityFactoryInterface;

class WsseFactory implements SecurityFactoryInterface
{
 public function create(ContainerBuilder $container, $id, $config, $userProvider, $defaultEntryPoint)
 {
 $providerId = 'security.authentication.provider.wsse.'.$id;
 $container
 ->setDefinition($providerId, new DefinitionDecorator('wsse.security.authentication.provider'))
 ->replaceArgument(0, new Reference($userProvider))
 ;

 $listenerId = 'security.authentication.listener.wsse.'.$id;
 $listener = $container->setDefinition($listenerId, new DefinitionDecorator('wsse.security.authentication.listener'));

 return array($providerId, $listenerId, $defaultEntryPoint);
 }

 public function getPosition()
 {
 return 'pre_auth';
 }

 public function getKey()
 {
 return 'wsse';
 }

 public function addConfiguration(NodeDefinition $node)
 {}
}

The Symfony\Bundle\SecurityBundle\DependencyInjection\Security\Factory\SecurityFactoryInterface
requires the following methods:

	create method, which adds the listener and authentication provider
to the DI container for the appropriate security context;

	getPosition method, which must be of type pre_auth, form, http,
and remember_me and defines the position at which the provider is called;

	getKey method which defines the configuration key used to reference
the provider;

	addConfiguration method, which is used to define the configuration
options underneath the configuration key in your security configuration.
Setting configuration options are explained later in this chapter.

Note

A class not used in this example,
Symfony\Bundle\SecurityBundle\DependencyInjection\Security\Factory\AbstractFactory,
is a very useful base class which provides commonly needed functionality
for security factories. It may be useful when defining an authentication
provider of a different type.

Now that you have created a factory class, the wsse key can be used as
a firewall in your security configuration.

Note

You may be wondering “why do we need a special factory class to add listeners
and providers to the dependency injection container?”. This is a very
good question. The reason is you can use your firewall multiple times,
to secure multiple parts of your application. Because of this, each
time your firewall is used, a new service is created in the DI container.
The factory is what creates these new services.

Configuration

It’s time to see your authentication provider in action. You will need to
do a few things in order to make this work. The first thing is to add the
services above to the DI container. Your factory class above makes reference
to service ids that do not exist yet: wsse.security.authentication.provider and
wsse.security.authentication.listener. It’s time to define those services.

	YAML# src/Acme/DemoBundle/Resources/config/services.yml
services:
 wsse.security.authentication.provider:
 class: Acme\DemoBundle\Security\Authentication\Provider\WsseProvider
 arguments: ['', %kernel.cache_dir%/security/nonces]

 wsse.security.authentication.listener:
 class: Acme\DemoBundle\Security\Firewall\WsseListener
 arguments: [@security.context, @security.authentication.manager]

	XML<!-- src/Acme/DemoBundle/Resources/config/services.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="wsse.security.authentication.provider"
 class="Acme\DemoBundle\Security\Authentication\Provider\WsseProvider" public="false">
 <argument /> <!-- User Provider -->
 <argument>%kernel.cache_dir%/security/nonces</argument>
 </service>

 <service id="wsse.security.authentication.listener"
 class="Acme\DemoBundle\Security\Firewall\WsseListener" public="false">
 <argument type="service" id="security.context"/>
 <argument type="service" id="security.authentication.manager" />
 </service>
 </services>
</container>

	PHP// src/Acme/DemoBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$container->setDefinition('wsse.security.authentication.provider',
 new Definition(
 'Acme\DemoBundle\Security\Authentication\Provider\WsseProvider',
 array('', '%kernel.cache_dir%/security/nonces')
));

$container->setDefinition('wsse.security.authentication.listener',
 new Definition(
 'Acme\DemoBundle\Security\Firewall\WsseListener', array(
 new Reference('security.context'),
 new Reference('security.authentication.manager'))
));

Now that your services are defined, tell your security context about your
factory. Factories must be included in an individual configuration file,
at the time of this writing. So, start first by creating the file with the
factory service, tagged as security.listener.factory:

	YAML# src/Acme/DemoBundle/Resources/config/security_factories.yml
services:
 security.authentication.factory.wsse:
 class: Acme\DemoBundle\DependencyInjection\Security\Factory\WsseFactory
 tags:
 - { name: security.listener.factory }

	XML<!-- src/Acme/DemoBundle/Resources/config/security_factories.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="security.authentication.factory.wsse"
 class="Acme\DemoBundle\DependencyInjection\Security\Factory\WsseFactory" public="false">
 <tag name="security.listener.factory" />
 </service>
 </services>
</container>

New in version 2.1: Before 2.1, the factory below was added via security.yml instead.

As a final step, add the factory to the security extension in your bundle class.

// src/Acme/DemoBundle/AcmeDemoBundle.php
namespace Acme\DemoBundle;

use Acme\DemoBundle\DependencyInjection\Security\Factory\WsseFactory;
use Symfony\Component\HttpKernel\Bundle\Bundle;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class AcmeDemoBundle extends Bundle
{
 public function build(ContainerBuilder $container)
 {
 parent::build($container);

 $extension = $container->getExtension('security');
 $extension->addSecurityListenerFactory(new WsseFactory());
 }
}

You are finished! You can now define parts of your app as under WSSE protection.

security:
 firewalls:
 wsse_secured:
 pattern: /api/.*
 wsse: true

Congratulations! You have written your very own custom security authentication
provider!

A Little Extra

How about making your WSSE authentication provider a bit more exciting? The
possibilities are endless. Why don’t you start by adding some spackle
to that shine?

Configuration

You can add custom options under the wsse key in your security configuration.
For instance, the time allowed before expiring the Created header item,
by default, is 5 minutes. Make this configurable, so different firewalls
can have different timeout lengths.

You will first need to edit WsseFactory and define the new option in
the addConfiguration method.

class WsseFactory implements SecurityFactoryInterface
{
 # ...

 public function addConfiguration(NodeDefinition $node)
 {
 $node
 ->children()
 ->scalarNode('lifetime')->defaultValue(300)
 ->end()
 ;
 }
}

Now, in the create method of the factory, the $config argument will
contain a ‘lifetime’ key, set to 5 minutes (300 seconds) unless otherwise
set in the configuration. Pass this argument to your authentication provider
in order to put it to use.

class WsseFactory implements SecurityFactoryInterface
{
 public function create(ContainerBuilder $container, $id, $config, $userProvider, $defaultEntryPoint)
 {
 $providerId = 'security.authentication.provider.wsse.'.$id;
 $container
 ->setDefinition($providerId,
 new DefinitionDecorator('wsse.security.authentication.provider'))
 ->replaceArgument(0, new Reference($userProvider))
 ->replaceArgument(2, $config['lifetime'])
 ;
 // ...
 }
 // ...
}

Note

You’ll also need to add a third argument to the wsse.security.authentication.provider
service configuration, which can be blank, but will be filled in with
the lifetime in the factory. The WsseProvider class will also now
need to accept a third constructor argument - the lifetime - which it
should use instead of the hard-coded 300 seconds. These two steps are
not shown here.

The lifetime of each wsse request is now configurable, and can be
set to any desirable value per firewall.

security:
 firewalls:
 wsse_secured:
 pattern: /api/.*
 wsse: { lifetime: 30 }

The rest is up to you! Any relevant configuration items can be defined
in the factory and consumed or passed to the other classes in the container.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to change the Default Target Path Behavior

By default, the security component retains the information of the last request
URI in a session variable named _security.target_path. Upon a successful
login, the user is redirected to this path, as to help her continue from
the last known page she visited.

On some occasions, this is unexpected. For example when the last request
URI was an HTTP POST against a route which is configured to allow only a POST
method, the user is redirected to this route only to get a 404 error.

To get around this behavior, you would simply need to extend the ExceptionListener
class and override the default method named setTargetPath().

First, override the security.exception_listener.class parameter in your
configuration file. This can be done from your main configuration file (in
app/config) or from a configuration file being imported from a bundle:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
parameters:
 # ...
 security.exception_listener.class: Acme\HelloBundle\Security\Firewall\ExceptionListener

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<parameters>
 <!-- ... -->
 <parameter key="security.exception_listener.class">Acme\HelloBundle\Security\Firewall\ExceptionListener</parameter>
</parameters>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
// ...
$container->setParameter('security.exception_listener.class', 'Acme\HelloBundle\Security\Firewall\ExceptionListener');

Next, create your own ExceptionListener:

// src/Acme/HelloBundle/Security/Firewall/ExceptionListener.php
namespace Acme\HelloBundle\Security\Firewall;

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\Security\Http\Firewall\ExceptionListener as BaseExceptionListener;

class ExceptionListener extends BaseExceptionListener
{
 protected function setTargetPath(Request $request)
 {
 // Do not save target path for XHR and non-GET requests
 // You can add any more logic here you want
 if ($request->isXmlHttpRequest() || 'GET' !== $request->getMethod()) {
 return;
 }

 $request->getSession()->set('_security.target_path', $request->getUri());
 }
}

Add as much or few logic here as required for your scenario!

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to use Varnish to speed up my Website

Because Symfony2’s cache uses the standard HTTP cache headers, the
Symfony2 Reverse Proxy can easily be replaced with any other reverse
proxy. Varnish is a powerful, open-source, HTTP accelerator capable of serving
cached content quickly and including support for Edge Side
Includes.

Configuration

As seen previously, Symfony2 is smart enough to detect whether it talks to a
reverse proxy that understands ESI or not. It works out of the box when you
use the Symfony2 reverse proxy, but you need a special configuration to make
it work with Varnish. Thankfully, Symfony2 relies on yet another standard
written by Akamaï (Edge Architecture [http://www.w3.org/TR/edge-arch]), so the configuration tips in this
chapter can be useful even if you don’t use Symfony2.

Note

Varnish only supports the src attribute for ESI tags (onerror and
alt attributes are ignored).

First, configure Varnish so that it advertises its ESI support by adding a
Surrogate-Capability header to requests forwarded to the backend
application:

sub vcl_recv {
 set req.http.Surrogate-Capability = "abc=ESI/1.0";
}

Then, optimize Varnish so that it only parses the Response contents when there
is at least one ESI tag by checking the Surrogate-Control header that
Symfony2 adds automatically:

sub vcl_fetch {
 if (beresp.http.Surrogate-Control ~ "ESI/1.0") {
 unset beresp.http.Surrogate-Control;

 // for Varnish >= 3.0
 set beresp.do_esi = true;
 // for Varnish < 3.0
 // esi;
 }
}

Caution

Compression with ESI was not supported in Varnish until version 3.0
(read GZIP and Varnish [https://www.varnish-cache.org/docs/3.0/phk/gzip.html]). If you’re not using Varnish 3.0, put a web
server in front of Varnish to perform the compression.

Cache Invalidation

You should never need to invalidate cached data because invalidation is already
taken into account natively in the HTTP cache models (see Cache Invalidation).

Still, Varnish can be configured to accept a special HTTP PURGE method
that will invalidate the cache for a given resource:

sub vcl_hit {
 if (req.request == "PURGE") {
 set obj.ttl = 0s;
 error 200 "Purged";
 }
}

sub vcl_miss {
 if (req.request == "PURGE") {
 error 404 "Not purged";
 }
}

Caution

You must protect the PURGE HTTP method somehow to avoid random people
purging your cached data.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

Injecting variables into all templates (i.e. Global Variables)

Sometimes you want a variable to be accessible to all the templates you use.
This is possible inside your app/config/config.yml file:

app/config/config.yml
twig:
 # ...
 globals:
 ga_tracking: UA-xxxxx-x

Now, the variable ga_tracking is available in all Twig templates:

<p>Our google tracking code is: {{ ga_tracking }} </p>

It’s that easy! You can also take advantage of the built-in Service Parameters
system, which lets you isolate or reuse the value:

; app/config/parameters.yml
[parameters]
 ga_tracking: UA-xxxxx-x

app/config/config.yml
twig:
 globals:
 ga_tracking: %ga_tracking%

The same variable is available exactly as before.

More Complex Global Variables

If the global variable you want to set is more complicated - say an object -
then you won’t be able to use the above method. Instead, you’ll need to create
a Twig Extension and return the
global variable as one of the entries in the getGlobals method.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to use PHP instead of Twig for Templates

Even if Symfony2 defaults to Twig for its template engine, you can still use
plain PHP code if you want. Both templating engines are supported equally in
Symfony2. Symfony2 adds some nice features on top of PHP to make writing
templates with PHP more powerful.

Rendering PHP Templates

If you want to use the PHP templating engine, first, make sure to enable it in
your application configuration file:

	YAML# app/config/config.yml
framework:
 # ...
 templating: { engines: ['twig', 'php'] }

	XML<!-- app/config/config.xml -->
<framework:config ... >
 <!-- ... -->
 <framework:templating ... >
 <framework:engine id="twig" />
 <framework:engine id="php" />
 </framework:templating>
</framework:config>

	PHP$container->loadFromExtension('framework', array(
 // ...
 'templating' => array(
 'engines' => array('twig', 'php'),
),
));

You can now render a PHP template instead of a Twig one simply by using the
.php extension in the template name instead of .twig. The controller
below renders the index.html.php template:

// src/Acme/HelloBundle/Controller/HelloController.php

public function indexAction($name)
{
 return $this->render('AcmeHelloBundle:Hello:index.html.php', array('name' => $name));
}

Decorating Templates

More often than not, templates in a project share common elements, like the
well-known header and footer. In Symfony2, we like to think about this problem
differently: a template can be decorated by another one.

The index.html.php template is decorated by layout.html.php, thanks to
the extend() call:

<!-- src/Acme/HelloBundle/Resources/views/Hello/index.html.php -->
<?php $view->extend('AcmeHelloBundle::layout.html.php') ?>

Hello <?php echo $name ?>!

The AcmeHelloBundle::layout.html.php notation sounds familiar, doesn’t it? It
is the same notation used to reference a template. The :: part simply
means that the controller element is empty, so the corresponding file is
directly stored under views/.

Now, let’s have a look at the layout.html.php file:

<!-- src/Acme/HelloBundle/Resources/views/layout.html.php -->
<?php $view->extend('::base.html.php') ?>

<h1>Hello Application</h1>

<?php $view['slots']->output('_content') ?>

The layout is itself decorated by another one (::base.html.php). Symfony2
supports multiple decoration levels: a layout can itself be decorated by
another one. When the bundle part of the template name is empty, views are
looked for in the app/Resources/views/ directory. This directory store
global views for your entire project:

<!-- app/Resources/views/base.html.php -->
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title><?php $view['slots']->output('title', 'Hello Application') ?></title>
 </head>
 <body>
 <?php $view['slots']->output('_content') ?>
 </body>
</html>

For both layouts, the $view['slots']->output('_content') expression is
replaced by the content of the child template, index.html.php and
layout.html.php respectively (more on slots in the next section).

As you can see, Symfony2 provides methods on a mysterious $view object. In
a template, the $view variable is always available and refers to a special
object that provides a bunch of methods that makes the template engine tick.

Working with Slots

A slot is a snippet of code, defined in a template, and reusable in any layout
decorating the template. In the index.html.php template, define a
title slot:

<!-- src/Acme/HelloBundle/Resources/views/Hello/index.html.php -->
<?php $view->extend('AcmeHelloBundle::layout.html.php') ?>

<?php $view['slots']->set('title', 'Hello World Application') ?>

Hello <?php echo $name ?>!

The base layout already has the code to output the title in the header:

<!-- app/Resources/views/base.html.php -->
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title><?php $view['slots']->output('title', 'Hello Application') ?></title>
</head>

The output() method inserts the content of a slot and optionally takes a
default value if the slot is not defined. And _content is just a special
slot that contains the rendered child template.

For large slots, there is also an extended syntax:

<?php $view['slots']->start('title') ?>
 Some large amount of HTML
<?php $view['slots']->stop() ?>

Including other Templates

The best way to share a snippet of template code is to define a template that
can then be included into other templates.

Create a hello.html.php template:

<!-- src/Acme/HelloBundle/Resources/views/Hello/hello.html.php -->
Hello <?php echo $name ?>!

And change the index.html.php template to include it:

<!-- src/Acme/HelloBundle/Resources/views/Hello/index.html.php -->
<?php $view->extend('AcmeHelloBundle::layout.html.php') ?>

<?php echo $view->render('AcmeHelloBundle:Hello:hello.html.php', array('name' => $name)) ?>

The render() method evaluates and returns the content of another template
(this is the exact same method as the one used in the controller).

Embedding other Controllers

And what if you want to embed the result of another controller in a template?
That’s very useful when working with Ajax, or when the embedded template needs
some variable not available in the main template.

If you create a fancy action, and want to include it into the
index.html.php template, simply use the following code:

<!-- src/Acme/HelloBundle/Resources/views/Hello/index.html.php -->
<?php echo $view['actions']->render('AcmeHelloBundle:Hello:fancy', array('name' => $name, 'color' => 'green')) ?>

Here, the AcmeHelloBundle:Hello:fancy string refers to the fancy action of the
Hello controller:

// src/Acme/HelloBundle/Controller/HelloController.php

class HelloController extends Controller
{
 public function fancyAction($name, $color)
 {
 // create some object, based on the $color variable
 $object = ...;

 return $this->render('AcmeHelloBundle:Hello:fancy.html.php', array('name' => $name, 'object' => $object));
 }

 // ...
}

But where is the $view['actions'] array element defined? Like
$view['slots'], it’s called a template helper, and the next section tells
you more about those.

Using Template Helpers

The Symfony2 templating system can be easily extended via helpers. Helpers are
PHP objects that provide features useful in a template context. actions and
slots are two of the built-in Symfony2 helpers.

Creating Links between Pages

Speaking of web applications, creating links between pages is a must. Instead
of hardcoding URLs in templates, the router helper knows how to generate
URLs based on the routing configuration. That way, all your URLs can be easily
updated by changing the configuration:

<a href="<?php echo $view['router']->generate('hello', array('name' => 'Thomas')) ?>">
 Greet Thomas!

The generate() method takes the route name and an array of parameters as
arguments. The route name is the main key under which routes are referenced
and the parameters are the values of the placeholders defined in the route
pattern:

src/Acme/HelloBundle/Resources/config/routing.yml
hello: # The route name
 pattern: /hello/{name}
 defaults: { _controller: AcmeHelloBundle:Hello:index }

Using Assets: images, JavaScripts, and stylesheets

What would the Internet be without images, JavaScripts, and stylesheets?
Symfony2 provides the assets tag to deal with them easily:

<link href="<?php echo $view['assets']->getUrl('css/blog.css') ?>" rel="stylesheet" type="text/css" />

<img src="<?php echo $view['assets']->getUrl('images/logo.png') ?>" />

The assets helper’s main purpose is to make your application more
portable. Thanks to this helper, you can move the application root directory
anywhere under your web root directory without changing anything in your
template’s code.

Output Escaping

When using PHP templates, escape variables whenever they are displayed to the
user:

<?php echo $view->escape($var) ?>

By default, the escape() method assumes that the variable is outputted
within an HTML context. The second argument lets you change the context. For
instance, to output something in a JavaScript script, use the js context:

<?php echo $view->escape($var, 'js') ?>

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to use Monolog to write Logs

Monolog [https://github.com/Seldaek/monolog] is a logging library for PHP 5.3 used by Symfony2. It is
inspired by the Python LogBook library.

Usage

In Monolog each logger defines a logging channel. Each channel has a
stack of handlers to write the logs (the handlers can be shared).

Tip

When injecting the logger in a service you can
use a custom channel to see easily which
part of the application logged the message.

The basic handler is the StreamHandler which writes logs in a stream
(by default in the app/logs/prod.log in the prod environment and
app/logs/dev.log in the dev environment).

Monolog comes also with a powerful built-in handler for the logging in
prod environment: FingersCrossedHandler. It allows you to store the
messages in a buffer and to log them only if a message reaches the
action level (ERROR in the configuration provided in the standard
edition) by forwarding the messages to another handler.

To log a message simply get the logger service from the container in
your controller:

$logger = $this->get('logger');
$logger->info('We just got the logger');
$logger->err('An error occurred');

Tip

Using only the methods of the
Symfony\Component\HttpKernel\Log\LoggerInterface interface
allows to change the logger implementation without changing your code.

Using several handlers

The logger uses a stack of handlers which are called successively. This
allows you to log the messages in several ways easily.

	YAMLmonolog:
 handlers:
 syslog:
 type: stream
 path: /var/log/symfony.log
 level: error
 main:
 type: fingers_crossed
 action_level: warning
 handler: file
 file:
 type: stream
 level: debug

	XML<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog http://symfony.com/schema/dic/monolog/monolog-1.0.xsd">

 <monolog:config>
 <monolog:handler
 name="syslog"
 type="stream"
 path="/var/log/symfony.log"
 level="error"
 />
 <monolog:handler
 name="main"
 type="fingers_crossed"
 action-level="warning"
 handler="file"
 />
 <monolog:handler
 name="file"
 type="stream"
 level="debug"
 />
 </monolog:config>
</container>

The above configuration defines a stack of handlers which will be called
in the order where they are defined.

Tip

The handler named “file” will not be included in the stack itself as
it is used as a nested handler of the fingers_crossed handler.

Note

If you want to change the config of MonologBundle in another config
file you need to redefine the whole stack. It cannot be merged
because the order matters and a merge does not allow to control the
order.

Changing the formatter

The handler uses a Formatter to format the record before logging
it. All Monolog handlers use an instance of
Monolog\Formatter\LineFormatter by default but you can replace it
easily. Your formatter must implement
Monolog\Formatter\FormatterInterface.

	YAMLservices:
 my_formatter:
 class: Monolog\Formatter\JsonFormatter
monolog:
 handlers:
 file:
 type: stream
 level: debug
 formatter: my_formatter

	XML<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog http://symfony.com/schema/dic/monolog/monolog-1.0.xsd">

 <services>
 <service id="my_formatter" class="Monolog\Formatter\JsonFormatter" />
 </services>
 <monolog:config>
 <monolog:handler
 name="file"
 type="stream"
 level="debug"
 formatter="my_formatter"
 />
 </monolog:config>
</container>

Adding some extra data in the log messages

Monolog allows to process the record before logging it to add some
extra data. A processor can be applied for the whole handler stack or
only for a specific handler.

A processor is simply a callable receiving the record as it’s first argument.

Processors are configured using the monolog.processor DIC tag. See the
reference about it.

Adding a Session/Request Token

Sometimes it is hard to tell which entries in the log belong to which session
and/or request. The following example will add a unique token for each request
using a processor.

namespace Acme\MyBundle;

use Symfony\Component\HttpFoundation\Session;

class SessionRequestProcessor
{
 private $session;
 private $token;

 public function __construct(Session $session)
 {
 $this->session = $session;
 }

 public function processRecord(array $record)
 {
 if (null === $this->token) {
 try {
 $this->token = substr($this->session->getId(), 0, 8);
 } catch (\RuntimeException $e) {
 $this->token = '????????';
 }
 $this->token .= '-' . substr(uniqid(), -8);
 }
 $record['extra']['token'] = $this->token;

 return $record;
 }
}

	YAMLservices:
 monolog.formatter.session_request:
 class: Monolog\Formatter\LineFormatter
 arguments:
 - "[%%datetime%%] [%%extra.token%%] %%channel%%.%%level_name%%: %%message%%\n"

 monolog.processor.session_request:
 class: Acme\MyBundle\SessionRequestProcessor
 arguments: [@session]
 tags:
 - { name: monolog.processor, method: processRecord }

monolog:
 handlers:
 main:
 type: stream
 path: %kernel.logs_dir%/%kernel.environment%.log
 level: debug
 formatter: monolog.formatter.session_request

Note

If you use several handlers, you can also register the processor at the
handler level instead of globally.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Configure Monolog to Email Errors

Monolog [https://github.com/Seldaek/monolog] can be configured to send an email when an error occurs with an
application. The configuration for this requires a few nested handlers
in order to avoid receiving too many emails. This configuration looks
complicated at first but each handler is fairly straight forward when
it is broken down.

	YAML# app/config/config.yml
monolog:
 handlers:
 mail:
 type: fingers_crossed
 action_level: critical
 handler: buffered
 buffered:
 type: buffer
 handler: swift
 swift:
 type: swift_mailer
 from_email: error@example.com
 to_email: error@example.com
 subject: An Error Occurred!
 level: debug

	XML<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog http://symfony.com/schema/dic/monolog/monolog-1.0.xsd">

 <monolog:config>
 <monolog:handler
 name="mail"
 type="fingers_crossed"
 action-level="critical"
 handler="buffered"
 />
 <monolog:handler
 name="buffered"
 type="buffer"
 handler="swift"
 />
 <monolog:handler
 name="swift"
 from-email="error@example.com"
 to-email="error@example.com"
 subject="An Error Occurred!"
 level="debug"
 />
 </monolog:config>
</container>

The mail handler is a fingers_crossed handler which means that
it is only triggered when the action level, in this case critical is reached.
It then logs everything including messages below the action level. The
critical level is only triggered for 5xx HTTP code errors. The handler
setting means that the output is then passed onto the buffered handler.

Tip

If you want both 400 level and 500 level errors to trigger an email,
set the action_level to error instead of critical.

The buffered handler simply keeps all the messages for a request and
then passes them onto the nested handler in one go. If you do not use this
handler then each message will be emailed separately. This is then passed
to the swift handler. This is the handler that actually deals with
emailing you the error. The settings for this are straightforward, the
to and from addresses and the subject.

You can combine these handlers with other handlers so that the errors still
get logged on the server as well as the emails being sent:

	YAML# app/config/config.yml
monolog:
 handlers:
 main:
 type: fingers_crossed
 action_level: critical
 handler: grouped
 grouped:
 type: group
 members: [streamed, buffered]
 streamed:
 type: stream
 path: %kernel.logs_dir%/%kernel.environment%.log
 level: debug
 buffered:
 type: buffer
 handler: swift
 swift:
 type: swift_mailer
 from_email: error@example.com
 to_email: error@example.com
 subject: An Error Occurred!
 level: debug

	XML<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog http://symfony.com/schema/dic/monolog/monolog-1.0.xsd">

 <monolog:config>
 <monolog:handler
 name="main"
 type="fingers_crossed"
 action_level="critical"
 handler="grouped"
 />
 <monolog:handler
 name="grouped"
 type="group"
 >
 <member type="stream"/>
 <member type="buffered"/>
 </monolog:handler>
 <monolog:handler
 name="stream"
 path="%kernel.logs_dir%/%kernel.environment%.log"
 level="debug"
 />
 <monolog:handler
 name="buffered"
 type="buffer"
 handler="swift"
 />
 <monolog:handler
 name="swift"
 from-email="error@example.com"
 to-email="error@example.com"
 subject="An Error Occurred!"
 level="debug"
 />
 </monolog:config>
</container>

This uses the group handler to send the messages to the two
group members, the buffered and the stream handlers. The messages will
now be both written to the log file and emailed.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to optimize your development Environment for debugging

When you work on a Symfony project on your local machine, you should use the
dev environment (app_dev.php front controller). This environment
configuration is optimized for two main purposes:

	Give the developer accurate feedback whenever something goes wrong (web
debug toolbar, nice exception pages, profiler, ...);

	Be as similar as possible as the production environment to avoid problems
when deploying the project.

Disabling the Bootstrap File and Class Caching

And to make the production environment as fast as possible, Symfony creates
big PHP files in your cache containing the aggregation of PHP classes your
project needs for every request. However, this behavior can confuse your IDE
or your debugger. This recipe shows you how you can tweak this caching
mechanism to make it friendlier when you need to debug code that involves
Symfony classes.

The app_dev.php front controller reads as follows by default:

// ...

require_once __DIR__.'/../app/bootstrap.php.cache';
require_once __DIR__.'/../app/AppKernel.php';

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('dev', true);
$kernel->loadClassCache();
$kernel->handle(Request::createFromGlobals())->send();

To make you debugger happier, disable all PHP class caches by removing the
call to loadClassCache() and by replacing the require statements like
below:

// ...

// require_once __DIR__.'/../app/bootstrap.php.cache';
require_once __DIR__.'/../vendor/symfony/src/Symfony/Component/ClassLoader/UniversalClassLoader.php';
require_once __DIR__.'/../app/autoload.php';
require_once __DIR__.'/../app/AppKernel.php';

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('dev', true);
// $kernel->loadClassCache();
$kernel->handle(Request::createFromGlobals())->send();

Tip

If you disable the PHP caches, don’t forget to revert after your debugging
session.

Some IDEs do not like the fact that some classes are stored in different
locations. To avoid problems, you can either tell your IDE to ignore the PHP
cache files, or you can change the extension used by Symfony for these files:

$kernel->loadClassCache('classes', '.php.cache');

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to extend a Class without using Inheritance

To allow multiple classes to add methods to another one, you can define the
magic __call() method in the class you want to be extended like this:

class Foo
{
 // ...

 public function __call($method, $arguments)
 {
 // create an event named 'foo.method_is_not_found'
 $event = new HandleUndefinedMethodEvent($this, $method, $arguments);
 $this->dispatcher->dispatch($this, 'foo.method_is_not_found', $event);

 // no listener was able to process the event? The method does not exist
 if (!$event->isProcessed()) {
 throw new \Exception(sprintf('Call to undefined method %s::%s.', get_class($this), $method));
 }

 // return the listener returned value
 return $event->getReturnValue();
 }
}

This uses a special HandleUndefinedMethodEvent that should also be
created. This is a generic class that could be reused each time you need to
use this pattern of class extension:

use Symfony\Component\EventDispatcher\Event;

class HandleUndefinedMethodEvent extends Event
{
 protected $subject;
 protected $method;
 protected $arguments;
 protected $returnValue;
 protected $isProcessed = false;

 public function __construct($subject, $method, $arguments)
 {
 $this->subject = $subject;
 $this->method = $method;
 $this->arguments = $arguments;
 }

 public function getSubject()
 {
 return $this->subject;
 }

 public function getMethod()
 {
 return $this->method;
 }

 public function getArguments()
 {
 return $this->arguments;
 }

 /**
 * Sets the value to return and stops other listeners from being notified
 */
 public function setReturnValue($val)
 {
 $this->returnValue = $val;
 $this->isProcessed = true;
 $this->stopPropagation();
 }

 public function getReturnValue($val)
 {
 return $this->returnValue;
 }

 public function isProcessed()
 {
 return $this->isProcessed;
 }
}

Next, create a class that will listen to the foo.method_is_not_found event
and add the method bar():

class Bar
{
 public function onFooMethodIsNotFound(HandleUndefinedMethodEvent $event)
 {
 // we only want to respond to the calls to the 'bar' method
 if ('bar' != $event->getMethod()) {
 // allow another listener to take care of this unknown method
 return;
 }

 // the subject object (the foo instance)
 $foo = $event->getSubject();

 // the bar method arguments
 $arguments = $event->getArguments();

 // do something
 // ...

 // set the return value
 $event->setReturnValue($someValue);
 }
}

Finally, add the new bar method to the Foo class by register an
instance of Bar with the foo.method_is_not_found event:

$bar = new Bar();
$dispatcher->addListener('foo.method_is_not_found', $bar);

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to customize a Method Behavior without using Inheritance

Doing something before or after a Method Call

If you want to do something just before, or just after a method is called, you
can dispatch an event respectively at the beginning or at the end of the
method:

class Foo
{
 // ...

 public function send($foo, $bar)
 {
 // do something before the method
 $event = new FilterBeforeSendEvent($foo, $bar);
 $this->dispatcher->dispatch('foo.pre_send', $event);

 // get $foo and $bar from the event, they may have been modified
 $foo = $event->getFoo();
 $bar = $event->getBar();
 // the real method implementation is here
 // $ret = ...;

 // do something after the method
 $event = new FilterSendReturnValue($ret);
 $this->dispatcher->dispatch('foo.post_send', $event);

 return $event->getReturnValue();
 }
}

In this example, two events are thrown: foo.pre_send, before the method is
executed, and foo.post_send after the method is executed. Each uses a
custom Event class to communicate information to the listeners of the two
events. These event classes would need to be created by you and should allow,
in this example, the variables $foo, $bar and $ret to be retrieved
and set by the listeners.

For example, assuming the FilterSendReturnValue has a setReturnValue
method, one listener might look like this:

public function onFooPostSend(FilterSendReturnValue $event)
{
 $ret = $event->getReturnValue();
 // modify the original ``$ret`` value

 $event->setReturnValue($ret);
}

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to register a new Request Format and Mime Type

Every Request has a “format” (e.g. html, json), which is used
to determine what type of content to return in the Response. In fact,
the request format, accessible via
:method:`Symfony\\Component\\HttpFoundation\\Request::getRequestFormat`,
is used to set the MIME type of the Content-Type header on the Response
object. Internally, Symfony contains a map of the most common formats (e.g.
html, json) and their associated MIME types (e.g. text/html,
application/json). Of course, additional format-MIME type entries can
easily be added. This document will show how you can add the jsonp format
and corresponding MIME type.

Create an kernel.request Listener

The key to defining a new MIME type is to create a class that will “listen” to
the kernel.request event dispatched by the Symfony kernel. The
kernel.request event is dispatched early in Symfony’s request handling
process and allows you to modify the request object.

Create the following class, replacing the path with a path to a bundle in your
project:

// src/Acme/DemoBundle/RequestListener.php
namespace Acme\DemoBundle;

use Symfony\Component\HttpKernel\HttpKernelInterface;
use Symfony\Component\HttpKernel\Event\GetResponseEvent;

class RequestListener
{
 public function onKernelRequest(GetResponseEvent $event)
 {
 $event->getRequest()->setFormat('jsonp', 'application/javascript');
 }
}

Registering your Listener

As for any other listener, you need to add it in one of your configuration
file and register it as a listener by adding the kernel.event_listener tag:

	XML<!-- app/config/config.xml -->
<?xml version="1.0" ?>

<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">
 <services>
 <service id="acme.demobundle.listener.request" class="Acme\DemoBundle\RequestListener">
 <tag name="kernel.event_listener" event="kernel.request" method="onKernelRequest" />
 </service>
 </services>
</container>

	YAML# app/config/config.yml
services:
 acme.demobundle.listener.request:
 class: Acme\DemoBundle\RequestListener
 tags:
 - { name: kernel.event_listener, event: kernel.request, method: onKernelRequest }

	PHP# app/config/config.php
$definition = new Definition('Acme\DemoBundle\RequestListener');
$definition->addTag('kernel.event_listener', array('event' => 'kernel.request', 'method' => 'onKernelRequest'));
$container->setDefinition('acme.demobundle.listener.request', $definition);

At this point, the acme.demobundle.listener.request service has been
configured and will be notified when the Symfony kernel dispatches the
kernel.request event.

Tip

You can also register the listener in a configuration extension class (see
Importing Configuration via Container Extensions for more information).

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to create a custom Data Collector

The Symfony2 Profiler delegates data
collecting to data collectors. Symfony2 comes bundled with a few of them, but
you can easily create your own.

Creating a Custom Data Collector

Creating a custom data collector is as simple as implementing the
Symfony\Component\HttpKernel\DataCollector\DataCollectorInterface:

interface DataCollectorInterface
{
 /**
 * Collects data for the given Request and Response.
 *
 * @param Request $request A Request instance
 * @param Response $response A Response instance
 * @param \Exception $exception An Exception instance
 */
 function collect(Request $request, Response $response, \Exception $exception = null);

 /**
 * Returns the name of the collector.
 *
 * @return string The collector name
 */
 function getName();
}

The getName() method must return a unique name. This is used to access the
information later on (see How to use the Profiler in a Functional Test for
instance).

The collect() method is responsible for storing the data it wants to give
access to in local properties.

Caution

As the profiler serializes data collector instances, you should not
store objects that cannot be serialized (like PDO objects), or you need
to provide your own serialize() method.

Most of the time, it is convenient to extend
Symfony\Component\HttpKernel\DataCollector\DataCollector and
populate the $this->data property (it takes care of serializing the
$this->data property):

class MemoryDataCollector extends DataCollector
{
 public function collect(Request $request, Response $response, \Exception $exception = null)
 {
 $this->data = array(
 'memory' => memory_get_peak_usage(true),
);
 }

 public function getMemory()
 {
 return $this->data['memory'];
 }

 public function getName()
 {
 return 'memory';
 }
}

Enabling Custom Data Collectors

To enable a data collector, add it as a regular service in one of your
configuration, and tag it with data_collector:

	YAMLservices:
 data_collector.your_collector_name:
 class: Fully\Qualified\Collector\Class\Name
 tags:
 - { name: data_collector }

	XML<service id="data_collector.your_collector_name" class="Fully\Qualified\Collector\Class\Name">
 <tag name="data_collector" />
</service>

	PHP$container
 ->register('data_collector.your_collector_name', 'Fully\Qualified\Collector\Class\Name')
 ->addTag('data_collector')
;

Adding Web Profiler Templates

When you want to display the data collected by your Data Collector in the web
debug toolbar or the web profiler, create a Twig template following this
skeleton:

{% extends 'WebProfilerBundle:Profiler:layout.html.twig' %}

{% block toolbar %}
 {# the web debug toolbar content #}
{% endblock %}

{% block head %}
 {# if the web profiler panel needs some specific JS or CSS files #}
{% endblock %}

{% block menu %}
 {# the menu content #}
{% endblock %}

{% block panel %}
 {# the panel content #}
{% endblock %}

Each block is optional. The toolbar block is used for the web debug
toolbar and menu and panel are used to add a panel to the web
profiler.

All blocks have access to the collector object.

Tip

Built-in templates use a base64 encoded image for the toolbar (<img
src="src="data:image/png;base64,..."). You can easily calculate the
base64 value for an image with this little script: echo
base64_encode(file_get_contents($_SERVER['argv'][1]));.

To enable the template, add a template attribute to the data_collector
tag in your configuration. For example, assuming your template is in some
AcmeDebugBundle:

	YAMLservices:
 data_collector.your_collector_name:
 class: Acme\DebugBundle\Collector\Class\Name
 tags:
 - { name: data_collector, template: "AcmeDebug:Collector:templatename", id: "your_collector_name" }

	XML<service id="data_collector.your_collector_name" class="Acme\DebugBundle\Collector\Class\Name">
 <tag name="data_collector" template="AcmeDebug:Collector:templatename" id="your_collector_name" />
</service>

	PHP$container
 ->register('data_collector.your_collector_name', 'Acme\DebugBundle\Collector\Class\Name')
 ->addTag('data_collector', array('template' => 'AcmeDebugBundle:Collector:templatename', 'id' => 'your_collector_name'))
;

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How to Create a SOAP Web Service in a Symfony2 Controller

Setting up a controller to act as a SOAP server is simple with a couple
tools. You must, of course, have the PHP SOAP [http://php.net/manual/en/book.soap.php] extension installed.
As the PHP SOAP extension can not currently generate a WSDL, you must either
create one from scratch or use a 3rd party generator.

Note

There are several SOAP server implementations available for use with
PHP. Zend SOAP [http://framework.zend.com/manual/en/zend.soap.server.html] and NuSOAP [http://sourceforge.net/projects/nusoap] are two examples. Although we use
the PHP SOAP extension in our examples, the general idea should still
be applicable to other implementations.

SOAP works by exposing the methods of a PHP object to an external entity
(i.e. the person using the SOAP service). To start, create a class - HelloService -
which represents the functionality that you’ll expose in your SOAP service.
In this case, the SOAP service will allow the client to call a method called
hello, which happens to send an email:

namespace Acme\SoapBundle;

class HelloService
{
 private $mailer;

 public function __construct(\Swift_Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 public function hello($name)
 {

 $message = \Swift_Message::newInstance()
 ->setTo('me@example.com')
 ->setSubject('Hello Service')
 ->setBody($name . ' says hi!');

 $this->mailer->send($message);

 return 'Hello, ' . $name;
 }
}

Next, you can train Symfony to be able to create an instance of this class.
Since the class sends an e-mail, it’s been designed to accept a Swift_Mailer
instance. Using the Service Container, we can configure Symfony to construct
a HelloService object properly:

	YAML# app/config/config.yml
services:
 hello_service:
 class: Acme\DemoBundle\Services\HelloService
 arguments: [mailer]

	XML<!-- app/config/config.xml -->
<services>
 <service id="hello_service" class="Acme\DemoBundle\Services\HelloService">
 <argument>mailer</argument>
 </service>
</services>

Below is an example of a controller that is capable of handling a SOAP
request. If indexAction() is accessible via the route /soap, then the
WSDL document can be retrieved via /soap?wsdl.

namespace Acme\SoapBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class HelloServiceController extends Controller
{
 public function indexAction()
 {
 $server = new \SoapServer('/path/to/hello.wsdl');
 $server->setObject($this->get('hello_service'));

 $response = new Response();
 $response->headers->set('Content-Type', 'text/xml; charset=ISO-8859-1');

 ob_start();
 $server->handle();
 $response->setContent(ob_get_clean());

 return $response;
 }
}

Take note of the calls to ob_start() and ob_get_clean(). These
methods control output buffering [http://php.net/manual/en/book.outcontrol.php] which allows you to “trap” the echoed
output of $server->handle(). This is necessary because Symfony expects
your controller to return a Response object with the output as its “content”.
You must also remember to set the “Content-Type” header to “text/xml”, as
this is what the client will expect. So, you use ob_start() to start
buffering the STDOUT and use ob_get_clean() to dump the echoed output
into the content of the Response and clear the output buffer. Finally, you’re
ready to return the Response.

Below is an example calling the service using NuSOAP [http://sourceforge.net/projects/nusoap] client. This example
assumes that the indexAction in the controller above is accessible via the
route /soap:

$client = new \soapclient('http://example.com/app.php/soap?wsdl', true);

$result = $client->call('hello', array('name' => 'Scott'));

An example WSDL is below.

<?xml version="1.0" encoding="ISO-8859-1"?>
 <definitions xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns="urn:arnleadservicewsdl"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="urn:helloservicewsdl">
 <types>
 <xsd:schema targetNamespace="urn:hellowsdl">
 <xsd:import namespace="http://schemas.xmlsoap.org/soap/encoding/" />
 <xsd:import namespace="http://schemas.xmlsoap.org/wsdl/" />
 </xsd:schema>
 </types>
 <message name="helloRequest">
 <part name="name" type="xsd:string" />
 </message>
 <message name="helloResponse">
 <part name="return" type="xsd:string" />
 </message>
 <portType name="hellowsdlPortType">
 <operation name="hello">
 <documentation>Hello World</documentation>
 <input message="tns:helloRequest"/>
 <output message="tns:helloResponse"/>
 </operation>
 </portType>
 <binding name="hellowsdlBinding" type="tns:hellowsdlPortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="hello">
 <soap:operation soapAction="urn:arnleadservicewsdl#hello" style="rpc"/>
 <input>
 <soap:body use="encoded" namespace="urn:hellowsdl"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded" namespace="urn:hellowsdl"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>
 <service name="hellowsdl">
 <port name="hellowsdlPort" binding="tns:hellowsdlBinding">
 <soap:address location="http://example.com/app.php/soap" />
 </port>
 </service>
</definitions>

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Cookbook

How Symfony2 differs from symfony1

The Symfony2 framework embodies a significant evolution when compared with
the first version of the framework. Fortunately, with the MVC architecture
at its core, the skills used to master a symfony1 project continue to be
very relevant when developing in Symfony2. Sure, app.yml is gone, but
routing, controllers and templates all remain.

In this chapter, we’ll walk through the differences between symfony1 and Symfony2.
As you’ll see, many tasks are tackled in a slightly different way. You’ll
come to appreciate these minor differences as they promote stable, predictable,
testable and decoupled code in your Symfony2 applications.

So, sit back and relax as we take you from “then” to “now”.

Directory Structure

When looking at a Symfony2 project - for example, the Symfony2 Standard [https://github.com/symfony/symfony-standard] -
you’ll notice a very different directory structure than in symfony1. The
differences, however, are somewhat superficial.

The app/ Directory

In symfony1, your project has one or more applications, and each lives inside
the apps/ directory (e.g. apps/frontend). By default in Symfony2,
you have just one application represented by the app/ directory. Like
in symfony1, the app/ directory contains configuration specific to that
application. It also contains application-specific cache, log and template
directories as well as a Kernel class (AppKernel), which is the base
object that represents the application.

Unlike symfony1, almost no PHP code lives in the app/ directory. This
directory is not meant to house modules or library files as it did in symfony1.
Instead, it’s simply the home of configuration and other resources (templates,
translation files).

The src/ Directory

Put simply, your actual code goes here. In Symfony2, all actual application-code
lives inside a bundle (roughly equivalent to a symfony1 plugin) and, by default,
each bundle lives inside the src directory. In that way, the src
directory is a bit like the plugins directory in symfony1, but much more
flexible. Additionally, while your bundles will live in the src/ directory,
third-party bundles may live in the vendor/bundles/ directory.

To get a better picture of the src/ directory, let’s first think of a
symfony1 application. First, part of your code likely lives inside one or
more applications. Most commonly these include modules, but could also include
any other PHP classes you put in your application. You may have also created
a schema.yml file in the config directory of your project and built
several model files. Finally, to help with some common functionality, you’re
using several third-party plugins that live in the plugins/ directory.
In other words, the code that drives your application lives in many different
places.

In Symfony2, life is much simpler because all Symfony2 code must live in
a bundle. In our pretend symfony1 project, all the code could be moved
into one or more plugins (which is a very good practice, in fact). Assuming
that all modules, PHP classes, schema, routing configuration, etc were moved
into a plugin, the symfony1 plugins/ directory would be very similar
to the Symfony2 src/ directory.

Put simply again, the src/ directory is where your code, assets,
templates and most anything else specific to your project will live.

The vendor/ Directory

The vendor/ directory is basically equivalent to the lib/vendor/
directory in symfony1, which was the conventional directory for all vendor
libraries and bundles. By default, you’ll find the Symfony2 library files in
this directory, along with several other dependent libraries such as Doctrine2,
Twig and Swiftmailer. 3rd party Symfony2 bundles usually live in the
vendor/bundles/.

The web/ Directory

Not much has changed in the web/ directory. The most noticeable difference
is the absence of the css/, js/ and images/ directories. This
is intentional. Like with your PHP code, all assets should also live inside
a bundle. With the help of a console command, the Resources/public/
directory of each bundle is copied or symbolically-linked to the web/bundles/
directory. This allows you to keep assets organized inside your bundle, but
still make them available to the public. To make sure that all bundles are
available, run the following command:

php app/console assets:install web

Note

This command is the Symfony2 equivalent to the symfony1 plugin:publish-assets
command.

Autoloading

One of the advantages of modern frameworks is never needing to worry about
requiring files. By making use of an autoloader, you can refer to any class
in your project and trust that it’s available. Autoloading has changed in
Symfony2 to be more universal, faster, and independent of needing to clear
your cache.

In symfony1, autoloading was done by searching the entire project for the
presence of PHP class files and caching this information in a giant array.
That array told symfony1 exactly which file contained each class. In the
production environment, this caused you to need to clear the cache when classes
were added or moved.

In Symfony2, a new class - UniversalClassLoader - handles this process.
The idea behind the autoloader is simple: the name of your class (including
the namespace) must match up with the path to the file containing that class.
Take the FrameworkExtraBundle from the Symfony2 Standard Edition as an
example:

namespace Sensio\Bundle\FrameworkExtraBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;
// ...

class SensioFrameworkExtraBundle extends Bundle
{
 // ...

The file itself lives at
vendor/bundle/Sensio/Bundle/FrameworkExtraBundle/SensioFrameworkExtraBundle.php.
As you can see, the location of the file follows the namespace of the class.
Specifically, the namespace, Sensio\Bundle\FrameworkExtraBundle, spells out
the directory that the file should live in
(vendor/bundle/Sensio/Bundle/FrameworkExtraBundle). This is because, in the
app/autoload.php file, you’ll configure Symfony to look for the Sensio
namespace in the vendor/bundle directory:

// app/autoload.php

// ...
$loader->registerNamespaces(array(
 // ...
 'Sensio' => __DIR__.'/../vendor/bundles',
));

If the file did not live at this exact location, you’d receive a
Class "Sensio\Bundle\FrameworkExtraBundle\SensioFrameworkExtraBundle" does not exist.
error. In Symfony2, a “class does not exist” means that the suspect class
namespace and physical location do not match. Basically, Symfony2 is looking
in one exact location for that class, but that location doesn’t exist (or
contains a different class). In order for a class to be autoloaded, you
never need to clear your cache in Symfony2.

As mentioned before, for the autoloader to work, it needs to know that the
Sensio namespace lives in the vendor/bundles directory and that, for
example, the Doctrine namespace lives in the vendor/doctrine/lib/
directory. This mapping is entirely controlled by you via the
app/autoload.php file.

If you look at the HelloController from the Symfony2 Standard Edition you
can see that it lives in the Acme\DemoBundle\Controller namespace. Yet, the
Acme namespace is not defined in the app/autoload.php. By default you
do not need to explicitly configure the location of bundles that live in the
src/ directory. The UniversalClassLoader is configured to fallback to
the src/ directory using its registerNamespaceFallbacks method:

// app/autoload.php

// ...
$loader->registerNamespaceFallbacks(array(
 __DIR__.'/../src',
));

Using the Console

In symfony1, the console is in the root directory of your project and is
called symfony:

php symfony

In Symfony2, the console is now in the app sub-directory and is called
console:

php app/console

Applications

In a symfony1 project, it is common to have several applications: one for the
frontend and one for the backend for instance.

In a Symfony2 project, you only need to create one application (a blog
application, an intranet application, ...). Most of the time, if you want to
create a second application, you might instead create another project and
share some bundles between them.

And if you need to separate the frontend and the backend features of some
bundles, you can create sub-namespaces for controllers, sub-directories for
templates, different semantic configurations, separate routing configurations,
and so on.

Of course, there’s nothing wrong with having multiple applications in your
project, that’s entirely up to you. A second application would mean a new
directory, e.g. my_app/, with the same basic setup as the app/ directory.

Tip

Read the definition of a Project, an Application, and a
Bundle in the glossary.

Bundles and Plugins

In a symfony1 project, a plugin could contain configuration, modules, PHP
libraries, assets and anything else related to your project. In Symfony2,
the idea of a plugin is replaced by the “bundle”. A bundle is even more powerful
than a plugin because the core Symfony2 framework is brought in via a series
of bundles. In Symfony2, bundles are first-class citizens that are so flexible
that even core code itself is a bundle.

In symfony1, a plugin must be enabled inside the ProjectConfiguration
class:

// config/ProjectConfiguration.class.php
public function setup()
{
 $this->enableAllPluginsExcept(array(/* some plugins here */));
}

In Symfony2, the bundles are activated inside the application kernel:

// app/AppKernel.php
public function registerBundles()
{
 $bundles = array(
 new Symfony\Bundle\FrameworkBundle\FrameworkBundle(),
 new Symfony\Bundle\TwigBundle\TwigBundle(),
 // ...
 new Acme\DemoBundle\AcmeDemoBundle(),
);

 return $bundles;
}

Routing (routing.yml) and Configuration (config.yml)

In symfony1, the routing.yml and app.yml configuration files were
automatically loaded inside any plugin. In Symfony2, routing and application
configuration inside a bundle must be included manually. For example, to
include a routing resource from a bundle called AcmeDemoBundle, you can
do the following:

app/config/routing.yml
_hello:
 resource: "@AcmeDemoBundle/Resources/config/routing.yml"

This will load the routes found in the Resources/config/routing.yml file
of the AcmeDemoBundle. The special @AcmeDemoBundle is a shortcut syntax
that, internally, resolves to the full path to that bundle.

You can use this same strategy to bring in configuration from a bundle:

app/config/config.yml
imports:
 - { resource: "@AcmeDemoBundle/Resources/config/config.yml" }

In Symfony2, configuration is a bit like app.yml in symfony1, except much
more systematic. With app.yml, you could simply create any keys you wanted.
By default, these entries were meaningless and depended entirely on how you
used them in your application:

some app.yml file from symfony1
all:
 email:
 from_address: foo.bar@example.com

In Symfony2, you can also create arbitrary entries under the parameters
key of your configuration:

parameters:
 email.from_address: foo.bar@example.com

You can now access this from a controller, for example:

public function helloAction($name)
{
 $fromAddress = $this->container->getParameter('email.from_address');
}

In reality, the Symfony2 configuration is much more powerful and is used
primarily to configure objects that you can use. For more information, see
the chapter titled “Service Container”.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

The Components

	The ClassLoader Component

	The Console Component

	The CssSelector Component

	The DomCrawler Component

	The Finder Component

	The HttpFoundation Component

	The Locale Component

	The Process Component

	The Routing Component

	The YAML Component

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	The Components

The ClassLoader Component

The ClassLoader Component loads your project classes automatically if they
follow some standard PHP conventions.

Whenever you use an undefined class, PHP uses the autoloading mechanism to
delegate the loading of a file defining the class. Symfony2 provides a
“universal” autoloader, which is able to load classes from files that
implement one of the following conventions:

	The technical interoperability standards [http://groups.google.com/group/php-standards/web/psr-0-final-proposal] for PHP 5.3 namespaces and class
names;

	The PEAR [http://pear.php.net/manual/en/standards.php] naming convention for classes.

If your classes and the third-party libraries you use for your project follow
these standards, the Symfony2 autoloader is the only autoloader you will ever
need.

Installation

You can install the component in many different ways:

	Use the official Git repository (https://github.com/symfony/ClassLoader);

	Install it via PEAR (pear.symfony.com/ClassLoader);

	Install it via Composer (symfony/class-loader on Packagist).

Usage

New in version 2.1: The useIncludePath method was added in Symfony 2.1.

Registering the Symfony\Component\ClassLoader\UniversalClassLoader
autoloader is straightforward:

require_once '/path/to/src/Symfony/Component/ClassLoader/UniversalClassLoader.php';

use Symfony\Component\ClassLoader\UniversalClassLoader;

$loader = new UniversalClassLoader();

// You can search the include_path as a last resort.
$loader->useIncludePath(true);

$loader->register();

For minor performance gains class paths can be cached in memory using APC by
registering the Symfony\Component\ClassLoader\ApcUniversalClassLoader:

require_once '/path/to/src/Symfony/Component/ClassLoader/UniversalClassLoader.php';
require_once '/path/to/src/Symfony/Component/ClassLoader/ApcUniversalClassLoader.php';

use Symfony\Component\ClassLoader\ApcUniversalClassLoader;

$loader = new ApcUniversalClassLoader('apc.prefix.');
$loader->register();

The autoloader is useful only if you add some libraries to autoload.

Note

The autoloader is automatically registered in a Symfony2 application (see
app/autoload.php).

If the classes to autoload use namespaces, use the
:method:`Symfony\\Component\\ClassLoader\\UniversalClassLoader::registerNamespace`
or
:method:`Symfony\\Component\\ClassLoader\\UniversalClassLoader::registerNamespaces`
methods:

$loader->registerNamespace('Symfony', __DIR__.'/vendor/symfony/src');

$loader->registerNamespaces(array(
 'Symfony' => __DIR__.'/../vendor/symfony/src',
 'Monolog' => __DIR__.'/../vendor/monolog/src',
));

$loader->register();

For classes that follow the PEAR naming convention, use the
:method:`Symfony\\Component\\ClassLoader\\UniversalClassLoader::registerPrefix`
or
:method:`Symfony\\Component\\ClassLoader\\UniversalClassLoader::registerPrefixes`
methods:

$loader->registerPrefix('Twig_', __DIR__.'/vendor/twig/lib');

$loader->registerPrefixes(array(
 'Swift_' => __DIR__.'/vendor/swiftmailer/lib/classes',
 'Twig_' => __DIR__.'/vendor/twig/lib',
));

$loader->register();

Note

Some libraries also require their root path be registered in the PHP
include path (set_include_path()).

Classes from a sub-namespace or a sub-hierarchy of PEAR classes can be looked
for in a location list to ease the vendoring of a sub-set of classes for large
projects:

$loader->registerNamespaces(array(
 'Doctrine\\Common' => __DIR__.'/vendor/doctrine-common/lib',
 'Doctrine\\DBAL\\Migrations' => __DIR__.'/vendor/doctrine-migrations/lib',
 'Doctrine\\DBAL' => __DIR__.'/vendor/doctrine-dbal/lib',
 'Doctrine' => __DIR__.'/vendor/doctrine/lib',
));

$loader->register();

In this example, if you try to use a class in the Doctrine\Common namespace
or one of its children, the autoloader will first look for the class under the
doctrine-common directory, and it will then fallback to the default
Doctrine directory (the last one configured) if not found, before giving up.
The order of the registrations is significant in this case.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	The Components

The Console Component

The Console component eases the creation of beautiful and testable command
line interfaces.

Symfony2 ships with a Console component, which allows you to create
command-line commands. Your console commands can be used for any recurring
task, such as cronjobs, imports, or other batch jobs.

Installation

You can install the component in many different ways:

	Use the official Git repository (https://github.com/symfony/Console);

	Install it via PEAR (pear.symfony.com/Console);

	Install it via Composer (symfony/console on Packagist).

Creating a basic Command

To make the console commands available automatically with Symfony2, create a
Command directory inside your bundle and create a php file suffixed with
Command.php for each command that you want to provide. For example, if you
want to extend the AcmeDemoBundle (available in the Symfony Standard
Edition) to greet us from the command line, create GreetCommand.php and
add the following to it:

// src/Acme/DemoBundle/Command/GreetCommand.php
namespace Acme\DemoBundle\Command;

use Symfony\Bundle\FrameworkBundle\Command\ContainerAwareCommand;
use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Output\OutputInterface;

class GreetCommand extends ContainerAwareCommand
{
 protected function configure()
 {
 $this
 ->setName('demo:greet')
 ->setDescription('Greet someone')
 ->addArgument('name', InputArgument::OPTIONAL, 'Who do you want to greet?')
 ->addOption('yell', null, InputOption::VALUE_NONE, 'If set, the task will yell in uppercase letters')
 ;
 }

 protected function execute(InputInterface $input, OutputInterface $output)
 {
 $name = $input->getArgument('name');
 if ($name) {
 $text = 'Hello '.$name;
 } else {
 $text = 'Hello';
 }

 if ($input->getOption('yell')) {
 $text = strtoupper($text);
 }

 $output->writeln($text);
 }
}

You also need to create the file to run at the command line which creates
an Application and adds commands to it:

Test the new console command by running the following

app/console demo:greet Fabien

This will print the following to the command line:

Hello Fabien

You can also use the --yell option to make everything uppercase:

app/console demo:greet Fabien --yell

This prints:

HELLO FABIEN

Coloring the Output

Whenever you output text, you can surround the text with tags to color its
output. For example:

// green text
$output->writeln('<info>foo</info>');

// yellow text
$output->writeln('<comment>foo</comment>');

// black text on a cyan background
$output->writeln('<question>foo</question>');

// white text on a red background
$output->writeln('<error>foo</error>');

Using Command Arguments

The most interesting part of the commands are the arguments and options that
you can make available. Arguments are the strings - separated by spaces - that
come after the command name itself. They are ordered, and can be optional
or required. For example, add an optional last_name argument to the command
and make the name argument required:

$this
 // ...
 ->addArgument('name', InputArgument::REQUIRED, 'Who do you want to greet?')
 ->addArgument('last_name', InputArgument::OPTIONAL, 'Your last name?')
 // ...

You now have access to a last_name argument in your command:

if ($lastName = $input->getArgument('last_name')) {
 $text .= ' '.$lastName;
}

The command can now be used in either of the following ways:

app/console demo:greet Fabien
app/console demo:greet Fabien Potencier

Using Command Options

Unlike arguments, options are not ordered (meaning you can specify them in any
order) and are specified with two dashes (e.g. --yell - you can also
declare a one-letter shortcut that you can call with a single dash like
-y). Options are always optional, and can be setup to accept a value
(e.g. dir=src) or simply as a boolean flag without a value (e.g.
yell).

Tip

It is also possible to make an option optionally accept a value (so that
--yell or yell=loud work). Options can also be configured to
accept an array of values.

For example, add a new option to the command that can be used to specify
how many times in a row the message should be printed:

$this
 // ...
 ->addOption('iterations', null, InputOption::VALUE_REQUIRED, 'How many times should the message be printed?', 1)

Next, use this in the command to print the message multiple times:

for ($i = 0; $i < $input->getOption('iterations'); $i++) {
 $output->writeln($text);
}

Now, when you run the task, you can optionally specify a --iterations
flag:

app/console demo:greet Fabien

app/console demo:greet Fabien --iterations=5

The first example will only print once, since iterations is empty and
defaults to 1 (the last argument of addOption). The second example
will print five times.

Recall that options don’t care about their order. So, either of the following
will work:

app/console demo:greet Fabien --iterations=5 --yell
app/console demo:greet Fabien --yell --iterations=5

There are 4 option variants you can use:

	Option
	Value

	InputOption::VALUE_IS_ARRAY
	This option accepts multiple values

	InputOption::VALUE_NONE
	Do not accept input for this option (e.g. --yell)

	InputOption::VALUE_REQUIRED
	This value is required (e.g. iterations=5)

	InputOption::VALUE_OPTIONAL
	This value is optional

You can combine VALUE_IS_ARRAY with VALUE_REQUIRED or VALUE_OPTIONAL like this:

$this
 // ...
 ->addOption('iterations', null, InputOption::VALUE_REQUIRED | InputOption::VALUE_IS_ARRAY, 'How many times should the message be printed?', 1)

Asking the User for Information

When creating commands, you have the ability to collect more information
from the user by asking him/her questions. For example, suppose you want
to confirm an action before actually executing it. Add the following to your
command:

$dialog = $this->getHelperSet()->get('dialog');
if (!$dialog->askConfirmation($output, '<question>Continue with this action?</question>', false)) {
 return;
}

In this case, the user will be asked “Continue with this action”, and unless
they answer with y, the task will stop running. The third argument to
askConfirmation is the default value to return if the user doesn’t enter
any input.

You can also ask questions with more than a simple yes/no answer. For example,
if you needed to know the name of something, you might do the following:

$dialog = $this->getHelperSet()->get('dialog');
$name = $dialog->ask($output, 'Please enter the name of the widget', 'foo');

Testing Commands

Symfony2 provides several tools to help you test your commands. The most
useful one is the Symfony\Component\Console\Tester\CommandTester
class. It uses special input and output classes to ease testing without a real
console:

use Symfony\Component\Console\Tester\CommandTester;
use Symfony\Bundle\FrameworkBundle\Console\Application;
use Acme\DemoBundle\Command\GreetCommand;

class ListCommandTest extends \PHPUnit_Framework_TestCase
{
 public function testExecute()
 {
 $application = new Application();
 $application->add(new GreetCommand());

 $command = $application->find('demo:greet');
 $commandTester = new CommandTester($command);
 $commandTester->execute(array('command' => $command->getName()));

 $this->assertRegExp('/.../', $commandTester->getDisplay());

 // ...
 }
}

The :method:`Symfony\\Component\\Console\\Tester\\CommandTester::getDisplay`
method returns what would have been displayed during a normal call from the
console.

You can test sending arguments and options to the command by passing them
as an array to the :method:`Symfony\\Component\\Console\\Tester\\CommandTester::getDisplay`
method:

use Symfony\Component\Console\Tester\CommandTester;
use Symfony\Bundle\FrameworkBundle\Console\Application;
use Acme\DemoBundle\Command\GreetCommand;

class ListCommandTest extends \PHPUnit_Framework_TestCase
{

 //--

 public function testNameIsOutput()
 {
 $application = new Application();
 $application->add(new GreetCommand());

 $command = $application->find('demo:greet');
 $commandTester = new CommandTester($command);
 $commandTester->execute(
 array('command' => $command->getName(), 'name' => 'Fabien')
);

 $this->assertRegExp('/Fabien/', $commandTester->getDisplay());
 }
}

Tip

You can also test a whole console application by using
Symfony\Component\Console\Tester\ApplicationTester.

Calling an existing Command

If a command depends on another one being run before it, instead of asking the
user to remember the order of execution, you can call it directly yourself.
This is also useful if you want to create a “meta” command that just runs a
bunch of other commands (for instance, all commands that need to be run when
the project’s code has changed on the production servers: clearing the cache,
generating Doctrine2 proxies, dumping Assetic assets, ...).

Calling a command from another one is straightforward:

protected function execute(InputInterface $input, OutputInterface $output)
{
 $command = $this->getApplication()->find('demo:greet');

 $arguments = array(
 'command' => 'demo:greet',
 'name' => 'Fabien',
 '--yell' => true,
);

 $input = new ArrayInput($arguments);
 $returnCode = $command->run($input, $output);

 // ...
}

First, you :method:`Symfony\\Component\\Console\\Command\\Command::find` the
command you want to execute by passing the command name.

Then, you need to create a new
Symfony\Component\Console\Input\ArrayInput with the arguments and
options you want to pass to the command.

Eventually, calling the run() method actually executes the command and
returns the returned code from the command (0 if everything went fine, any
other integer otherwise).

Note

Most of the time, calling a command from code that is not executed on the
command line is not a good idea for several reasons. First, the command’s
output is optimized for the console. But more important, you can think of
a command as being like a controller; it should use the model to do
something and display feedback to the user. So, instead of calling a
command from the Web, refactor your code and move the logic to a new
class.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	The Components

The CssSelector Component

The CssSelector Component converts CSS selectors to XPath expressions.

Installation

You can install the component in several different ways:

	Use the official Git repository (https://github.com/symfony/CssSelector);

	Install it via PEAR (pear.symfony.com/CssSelector);

	Install it via Composer (symfony/css-selector on Packagist).

Usage

Why use CSS selectors?

When you’re parsing an HTML or an XML document, by far the most powerful
method is XPath.

XPath expressions are incredibly flexible, so there is almost always an
XPath expression that will find the element you need. Unfortunately, they
can also become very complicated, and the learning curve is steep. Even common
operations (such as finding an element with a particular class) can require
long and unwieldy expressions.

Many developers – particularly web developers – are more comfortable
using CSS selectors to find elements. As well as working in stylesheets,
CSS selectors are used in Javascript with the querySelectorAll function
and in popular Javascript libraries such as jQuery, Prototype and MooTools.

CSS selectors are less powerful than XPath, but far easier to write, read
and understand. Since they are less powerful, almost all CSS selectors can
be converted to an XPath equivalent. This XPath expression can then be used
with other functions and classes that use XPath to find elements in a
document.

The CssSelector component

The component’s only goal is to convert CSS selectors to their XPath
equivalents:

use Symfony\Component\CssSelector\CssSelector;

print CssSelector::toXPath('div.item > h4 > a');

This gives the following output:

descendant-or-self::div[contains(concat(' ',normalize-space(@class), ' '), ' item ')]/h4/a

You can use this expression with, for instance, :phpclass:`DOMXPath` or
:phpclass:`SimpleXMLElement` to find elements in a document.

Tip

The :method:`Crawler::filter()<Symfony\\Component\\DomCrawler\\Crawler::filter>` method
uses the CssSelector component to find elements based on a CSS selector
string. See the The DomCrawler Component for more details.

Limitations of the CssSelector component

Not all CSS selectors can be converted to XPath equivalents.

There are several CSS selectors that only make sense in the context of a
web-browser.

	link-state selectors: :link, :visited, :target

	selectors based on user action: :hover, :focus, :active

	UI-state selectors: :enabled, :disabled, :indeterminate
(however, :checked and :unchecked are available)

Pseudo-elements (:before, :after, :first-line,
:first-letter) are not supported because they select portions of text
rather than elements.

Several pseudo-classes are not yet supported:

	:lang(language)

	root

	*:first-of-type, *:last-of-type, *:nth-of-type,
*:nth-last-of-type, *:only-of-type. (These work with an element
name (e.g. li:first-of-type) but not with *.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	The Components

The DomCrawler Component

The DomCrawler Component eases DOM navigation for HTML and XML documents.

Installation

You can install the component in many different ways:

	Use the official Git repository (https://github.com/symfony/DomCrawler);

	Install it via PEAR (pear.symfony.com/DomCrawler);

	Install it via Composer (symfony/dom-crawler on Packagist).

Usage

The Symfony\Component\DomCrawler\Crawler class provides methods
to query and manipulate HTML and XML documents.

An instance of the Crawler represents a set (:phpclass:`SplObjectStorage`)
of :phpclass:`DOMElement` objects, which are basically nodes that you can
traverse easily:

use Symfony\Component\DomCrawler\Crawler;

$html = <<<'HTML'
<html>
 <body>
 <p class="message">Hello World!</p>
 <p>Hello Crawler!</p>
 </body>
</html>
HTML;

$crawler = new Crawler($html);

foreach ($crawler as $domElement) {
 print $domElement->nodeName;
}

Specialized Symfony\Component\DomCrawler\Link and
Symfony\Component\DomCrawler\Form classes are useful for
interacting with html links and forms as you traverse through the HTML tree.

Node Filtering

Using XPath expressions is really easy:

$crawler = $crawler->filterXPath('descendant-or-self::body/p');

Tip

DOMXPath::query is used internally to actually perform an XPath query.

Filtering is even easier if you have the CssSelector Component installed.
This allows you to use jQuery-like selectors to traverse:

$crawler = $crawler->filter('body > p');

Anonymous function can be used to filter with more complex criteria:

$crawler = $crawler->filter('body > p')->reduce(function ($node, $i) {
 // filter even nodes
 return ($i % 2) == 0;
});

To remove a node the anonymous function must return false.

Note

All filter methods return a new Symfony\Component\DomCrawler\Crawler
instance with filtered content.

Node Traversing

Access node by its position on the list:

$crawler->filter('body > p')->eq(0);

Get the first or last node of the current selection:

$crawler->filter('body > p')->first();
$crawler->filter('body > p')->last();

Get the nodes of the same level as the current selection:

$crawler->filter('body > p')->siblings();

Get the same level nodes after or before the current selection:

$crawler->filter('body > p')->nextAll();
$crawler->filter('body > p')->previousAll();

Get all the child or parent nodes:

$crawler->filter('body')->children();
$crawler->filter('body > p')->parents();

Note

All the traversal methods return a new Symfony\Component\DomCrawler\Crawler
instance.

Accessing Node Values

Access the value of the first node of the current selection:

$message = $crawler->filterXPath('//body/p')->text();

Access the attribute value of the first node of the current selection:

$class = $crawler->filterXPath('//body/p')->attr('class');

Extract attribute and/or node values from the list of nodes:

$attributes = $crawler->filterXpath('//body/p')->extract(array('_text', 'class'));

Note

Special attribute _text represents a node value.

Call an anonymous function on each node of the list:

$nodeValues = $crawler->filter('p')->each(function ($node, $i) {
 return $node->nodeValue;
});

The anonymous function receives the position and the node as arguments.
The result is an array of values returned by the anonymous function calls.

Adding the Content

The crawler supports multiple ways of adding the content:

$crawler = new Crawler('<html><body /></html>');

$crawler->addHtmlContent('<html><body /></html>');
$crawler->addXmlContent('<root><node /></root>');

$crawler->addContent('<html><body /></html>');
$crawler->addContent('<root><node /></root>', 'text/xml');

$crawler->add('<html><body /></html>');
$crawler->add('<root><node /></root>');

As the Crawler’s implementation is based on the DOM extension, it is also able
to interact with native :phpclass:`DOMDocument`, :phpclass:`DOMNodeList`
and :phpclass:`DOMNode` objects:

$document = new \DOMDocument();
$document->loadXml('<root><node /><node /></root>');
$nodeList = $document->getElementsByTagName('node');
$node = $document->getElementsByTagName('node')->item(0);

$crawler->addDocument($document);
$crawler->addNodeList($nodeList);
$crawler->addNodes(array($node));
$crawler->addNode($node);
$crawler->add($document);

Form and Link support

Special treatment is given to links and forms inside the DOM tree.

Links

To find a link by name (or a clickable image by its alt attribute), use
the selectLink method on an existing crawler. This returns a Crawler
instance with just the selected link(s). Calling link() gives us a special
Symfony\Component\DomCrawler\Link object:

$linksCrawler = $crawler->selectLink('Go elsewhere...');
$link = $linksCrawler->link();

// or do this all at once
$link = $crawler->selectLink('Go elsewhere...')->link();

The Symfony\Component\DomCrawler\Link object has several useful
methods to get more information about the selected link itself:

// return the raw href value
$href = $link->getRawUri();

// return the proper URI that can be used to make another request
$uri = $link->getUri();

The getUri() is especially useful as it cleans the href value and
transforms it into how it should really be processed. For example, for a
link with href="#foo", this would return the full URI of the current
page suffixed with #foo. The return from getUri() is always a full
URI that you can act on.

Forms

Special treatment is also given to forms. A selectButton() method is
available on the Crawler which returns another Crawler that matches a button
(input[type=submit], input[type=image], or a button) with the
given text. This method is especially useful because you can use it to return
a Symfony\Component\DomCrawler\Form object that represents the
form that the button lives in:

$form = $crawler->selectButton('validate')->form();

// or "fill" the form fields with data
$form = $crawler->selectButton('validate')->form(array(
 'name' => 'Ryan',
));

The Symfony\Component\DomCrawler\Form object has lots of very
useful methods for working with forms:

$uri = $form->getUri();

$method = $form->getMethod();

The :method:`Symfony\\Component\\DomCrawler\\Form::getUri` method does more
than just return the action attribute of the form. If the form method
is GET, then it mimics the browser’s behavior and returns the action
attribute followed by a query string of all of the form’s values.

You can virtually set and get values on the form:

// set values on the form internally
$form->setValues(array(
 'registration[username]' => 'symfonyfan',
 'registration[terms]' => 1,
));

// get back an array of values - in the "flat" array like above
$values = $form->getValues();

// returns the values like PHP would see them, where "registration" is its own array
$values = $form->getPhpValues();

To work with multi-dimensional fields:

<form>
 <input name="multi[]" />
 <input name="multi[]" />
 <input name="multi[dimensional]" />
</form>

You must specify the fully qualified name of the field:

// Set a single field
$form->setValue('multi[0]', 'value');

// Set multiple fields at once
$form->setValue('multi', array(
 1 => 'value',
 'dimensional' => 'an other value'
));

This is great, but it gets better! The Form object allows you to interact
with your form like a browser, selecting radio values, ticking checkboxes,
and uploading files:

$form['registration[username]']->setValue('symfonyfan');

// check or uncheck a checkbox
$form['registration[terms]']->tick();
$form['registration[terms]']->untick();

// select an option
$form['registration[birthday][year]']->select(1984);

// select many options from a "multiple" select or checkboxes
$form['registration[interests]']->select(array('symfony', 'cookies'));

// even fake a file upload
$form['registration[photo]']->upload('/path/to/lucas.jpg');

What’s the point of doing all of this? If you’re testing internally, you
can grab the information off of your form as if it had just been submitted
by using the PHP values:

$values = $form->getPhpValues();
$files = $form->getPhpFiles();

If you’re using an external HTTP client, you can use the form to grab all
of the information you need to create a POST request for the form:

$uri = $form->getUri();
$method = $form->getMethod();
$values = $form->getValues();
$files = $form->getFiles();

// now use some HTTP client and post using this information

One great example of an integrated system that uses all of this is Goutte [https://github.com/fabpot/goutte].
Goutte understands the Symfony Crawler object and can use it to submit forms
directly:

use Goutte\Client;

// make a real request to an external site
$client = new Client();
$crawler = $client->request('GET', 'https://github.com/login');

// select the form and fill in some values
$form = $crawler->selectButton('Log in')->form();
$form['login'] = 'symfonyfan';
$form['password'] = 'anypass';

// submit that form
$crawler = $client->submit($form);

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	The Components

The Finder Component

The Finder Component finds files and directories via an intuitive fluent
interface.

Installation

You can install the component in many different ways:

	Use the official Git repository (https://github.com/symfony/Finder);

	Install it via PEAR (pear.symfony.com/Finder);

	Install it via Composer (symfony/finder on Packagist).

Usage

The Symfony\Component\Finder\Finder class finds files and/or
directories:

use Symfony\Component\Finder\Finder;

$finder = new Finder();
$finder->files()->in(__DIR__);

foreach ($finder as $file) {
 // Print the absolute path
 print $file->getRealpath()."\n";
 // Print the relative path to the file, omitting the filename
 print $file->getRelativePath()."\n";
 // Print the relative path to the file
 print $file->getRelativePathname()."\n";
}

The $file is an instance of Symfony\Component\Finder\SplFileInfo
which extends :phpclass:`SplFileInfo` to provide methods to work with relative
paths.

The above code prints the names of all the files in the current directory
recursively. The Finder class uses a fluent interface, so all methods return
the Finder instance.

Tip

A Finder instance is a PHP Iterator [http://www.php.net/manual/en/spl.iterators.php]. So, instead of iterating over the
Finder with foreach, you can also convert it to an array with the
:phpfunction:`iterator_to_array` method, or get the number of items with
:phpfunction:`iterator_count`.

Criteria

Location

The location is the only mandatory criteria. It tells the finder which
directory to use for the search:

$finder->in(__DIR__);

Search in several locations by chaining calls to
:method:`Symfony\\Component\\Finder\\Finder::in`:

$finder->files()->in(__DIR__)->in('/elsewhere');

Exclude directories from matching with the
:method:`Symfony\\Component\\Finder\\Finder::exclude` method:

$finder->in(__DIR__)->exclude('ruby');

As the Finder uses PHP iterators, you can pass any URL with a supported
protocol [http://www.php.net/manual/en/wrappers.php]:

$finder->in('ftp://example.com/pub/');

And it also works with user-defined streams:

use Symfony\Component\Finder\Finder;

$s3 = new \Zend_Service_Amazon_S3($key, $secret);
$s3->registerStreamWrapper("s3");

$finder = new Finder();
$finder->name('photos*')->size('< 100K')->date('since 1 hour ago');
foreach ($finder->in('s3://bucket-name') as $file) {
 // do something

 print $file->getFilename()."\n";
}

Note

Read the Streams [http://www.php.net/streams] documentation to learn how to create your own streams.

Files or Directories

By default, the Finder returns files and directories; but the
:method:`Symfony\\Component\\Finder\\Finder::files` and
:method:`Symfony\\Component\\Finder\\Finder::directories` methods control that:

$finder->files();

$finder->directories();

If you want to follow links, use the followLinks() method:

$finder->files()->followLinks();

By default, the iterator ignores popular VCS files. This can be changed with
the ignoreVCS() method:

$finder->ignoreVCS(false);

Sorting

Sort the result by name or by type (directories first, then files):

$finder->sortByName();

$finder->sortByType();

Note

Notice that the sort* methods need to get all matching elements to do
their jobs. For large iterators, it is slow.

You can also define your own sorting algorithm with sort() method:

$sort = function (\SplFileInfo $a, \SplFileInfo $b)
{
 return strcmp($a->getRealpath(), $b->getRealpath());
};

$finder->sort($sort);

File Name

Restrict files by name with the
:method:`Symfony\\Component\\Finder\\Finder::name` method:

$finder->files()->name('*.php');

The name() method accepts globs, strings, or regexes:

$finder->files()->name('/\.php$/');

The notNames() method excludes files matching a pattern:

$finder->files()->notName('*.rb');

File Size

Restrict files by size with the
:method:`Symfony\\Component\\Finder\\Finder::size` method:

$finder->files()->size('< 1.5K');

Restrict by a size range by chaining calls:

$finder->files()->size('>= 1K')->size('<= 2K');

The comparison operator can be any of the following: >, >=, <, ‘<=’,
‘==’.

The target value may use magnitudes of kilobytes (k, ki), megabytes
(m, mi), or gigabytes (g, gi). Those suffixed with an i use
the appropriate 2**n version in accordance with the IEC standard [http://physics.nist.gov/cuu/Units/binary.html].

File Date

Restrict files by last modified dates with the
:method:`Symfony\\Component\\Finder\\Finder::date` method:

$finder->date('since yesterday');

The comparison operator can be any of the following: >, >=, <, ‘<=’,
‘==’. You can also use since or after as an alias for >, and
until or before as an alias for <.

The target value can be any date supported by the strtotime [http://www.php.net/manual/en/datetime.formats.php] function.

Directory Depth

By default, the Finder recursively traverse directories. Restrict the depth of
traversing with :method:`Symfony\\Component\\Finder\\Finder::depth`:

$finder->depth('== 0');
$finder->depth('< 3');

Custom Filtering

To restrict the matching file with your own strategy, use
:method:`Symfony\\Component\\Finder\\Finder::filter`:

$filter = function (\SplFileInfo $file)
{
 if (strlen($file) > 10) {
 return false;
 }
};

$finder->files()->filter($filter);

The filter() method takes a Closure as an argument. For each matching file,
it is called with the file as a Symfony\Component\Finder\SplFileInfo
instance. The file is excluded from the result set if the Closure returns
false.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	The Components

The HttpFoundation Component

The HttpFoundation Component defines an object-oriented layer for the HTTP
specification.

In PHP, the request is represented by some global variables ($_GET,
$_POST, $_FILE, $_COOKIE, $_SESSION...) and the response is
generated by some functions (echo, header, setcookie, ...).

The Symfony2 HttpFoundation component replaces these default PHP global
variables and functions by an Object-Oriented layer.

Installation

You can install the component in many different ways:

	Use the official Git repository (https://github.com/symfony/HttpFoundation);

	Install it via PEAR (pear.symfony.com/HttpFoundation);

	Install it via Composer (symfony/http-foundation on Packagist).

Request

The most common way to create request is to base it on the current PHP global
variables with
:method:`Symfony\\Component\\HttpFoundation\\Request::createFromGlobals`:

use Symfony\Component\HttpFoundation\Request;

$request = Request::createFromGlobals();

which is almost equivalent to the more verbose, but also more flexible,
:method:`Symfony\\Component\\HttpFoundation\\Request::__construct` call:

$request = new Request($_GET, $_POST, array(), $_COOKIE, $_FILES, $_SERVER);

Accessing Request Data

A Request object holds information about the client request. This information
can be accessed via several public properties:

	request: equivalent of $_POST;

	query: equivalent of $_GET ($request->query->get('name'));

	cookies: equivalent of $_COOKIE;

	attributes: no equivalent - used by your app to store other data (see below)

	files: equivalent of $_FILE;

	server: equivalent of $_SERVER;

	headers: mostly equivalent to a sub-set of $_SERVER
($request->headers->get('Content-Type')).

Each property is a Symfony\Component\HttpFoundation\ParameterBag
instance (or a sub-class of), which is a data holder class:

	request: Symfony\Component\HttpFoundation\ParameterBag;

	query: Symfony\Component\HttpFoundation\ParameterBag;

	cookies: Symfony\Component\HttpFoundation\ParameterBag;

	attributes: Symfony\Component\HttpFoundation\ParameterBag;

	files: Symfony\Component\HttpFoundation\FileBag;

	server: Symfony\Component\HttpFoundation\ServerBag;

	headers: Symfony\Component\HttpFoundation\HeaderBag.

All Symfony\Component\HttpFoundation\ParameterBag instances have
methods to retrieve and update its data:

	:method:`Symfony\\Component\\HttpFoundation\\ParameterBag::all`: Returns
the parameters;

	:method:`Symfony\\Component\\HttpFoundation\\ParameterBag::keys`: Returns
the parameter keys;

	:method:`Symfony\\Component\\HttpFoundation\\ParameterBag::replace`:
Replaces the current parameters by a new set;

	:method:`Symfony\\Component\\HttpFoundation\\ParameterBag::add`: Adds
parameters;

	:method:`Symfony\\Component\\HttpFoundation\\ParameterBag::get`: Returns a
parameter by name;

	:method:`Symfony\\Component\\HttpFoundation\\ParameterBag::set`: Sets a
parameter by name;

	:method:`Symfony\\Component\\HttpFoundation\\ParameterBag::has`: Returns
true if the parameter is defined;

	:method:`Symfony\\Component\\HttpFoundation\\ParameterBag::remove`: Removes
a parameter.

The Symfony\Component\HttpFoundation\ParameterBag instance also
has some methods to filter the input values:

	:method:`Symfony\\Component\\HttpFoundation\\Request::getAlpha`: Returns
the alphabetic characters of the parameter value;

	:method:`Symfony\\Component\\HttpFoundation\\Request::getAlnum`: Returns
the alphabetic characters and digits of the parameter value;

	:method:`Symfony\\Component\\HttpFoundation\\Request::getDigits`: Returns
the digits of the parameter value;

	:method:`Symfony\\Component\\HttpFoundation\\Request::getInt`: Returns the
parameter value converted to integer;

	:method:`Symfony\\Component\\HttpFoundation\\Request::filter`: Filters the
parameter by using the PHP filter_var() function.

All getters takes up to three arguments: the first one is the parameter name
and the second one is the default value to return if the parameter does not
exist:

// the query string is '?foo=bar'

$request->query->get('foo');
// returns bar

$request->query->get('bar');
// returns null

$request->query->get('bar', 'bar');
// returns 'bar'

When PHP imports the request query, it handles request parameters like
foo[bar]=bar in a special way as it creates an array. So you can get the
foo parameter and you will get back an array with a bar element. But
sometimes, you might want to get the value for the “original” parameter name:
foo[bar]. This is possible with all the ParameterBag getters like
:method:`Symfony\\Component\\HttpFoundation\\Request::get` via the third
argument:

// the query string is '?foo[bar]=bar'

$request->query->get('foo');
// returns array('bar' => 'bar')

$request->query->get('foo[bar]');
// returns null

$request->query->get('foo[bar]', null, true);
// returns 'bar'

Last, but not the least, you can also store additional data in the request,
thanks to the attributes public property, which is also an instance of
Symfony\Component\HttpFoundation\ParameterBag. This is mostly used
to attach information that belongs to the Request and that needs to be
accessed from many different points in your application. For information
on how this is used in the Symfony2 framework, see read more.

Identifying a Request

In your application, you need a way to identify a request; most of the time,
this is done via the “path info” of the request, which can be accessed via the
:method:`Symfony\\Component\\HttpFoundation\\Request::getPathInfo` method:

// for a request to http://example.com/blog/index.php/post/hello-world
// the path info is "/post/hello-world"
$request->getPathInfo();

Simulating a Request

Instead of creating a Request based on the PHP globals, you can also simulate
a Request:

$request = Request::create('/hello-world', 'GET', array('name' => 'Fabien'));

The :method:`Symfony\\Component\\HttpFoundation\\Request::create` method
creates a request based on a path info, a method and some parameters (the
query parameters or the request ones depending on the HTTP method); and of
course, you an also override all other variables as well (by default, Symfony
creates sensible defaults for all the PHP global variables).

Based on such a request, you can override the PHP global variables via
:method:`Symfony\\Component\\HttpFoundation\\Request::overrideGlobals`:

$request->overrideGlobals();

Tip

You can also duplicate an existing query via
:method:`Symfony\\Component\\HttpFoundation\\Request::duplicate` or
change a bunch of parameters with a single call to
:method:`Symfony\\Component\\HttpFoundation\\Request::initialize`.

Accessing the Session

If you have a session attached to the Request, you can access it via the
:method:`Symfony\\Component\\HttpFoundation\\Request::getSession` method;
the
:method:`Symfony\\Component\\HttpFoundation\\Request::hasPreviousSession`
method tells you if the request contains a Session which was started in one of
the previous requests.

Accessing other Data

The Request class has many other methods that you can use to access the
request information. Have a look at the API for more information about them.

Response

A Symfony\Component\HttpFoundation\Response object holds all the
information that needs to be sent back to the client from a given request. The
constructor takes up to three arguments: the response content, the status
code, and an array of HTTP headers:

use Symfony\Component\HttpFoundation\Response;

$response = new Response('Content', 200, array('content-type' => 'text/html'));

These information can also be manipulated after the Response object creation:

$response->setContent('Hello World');

// the headers public attribute is a ResponseHeaderBag
$response->headers->set('Content-Type', 'text/plain');

$response->setStatusCode(404);

When setting the Content-Type of the Response, you can set the charset,
but it is better to set it via the
:method:`Symfony\\Component\\HttpFoundation\\Response::setCharset` method:

$response->setCharset('ISO-8859-1');

Note that by default, Symfony assumes that your Responses are encoded in
UTF-8.

Sending the Response

Before sending the Response, you can ensure that it is compliant with the HTTP
specification by calling the
:method:`Symfony\\Component\\HttpFoundation\\Response::prepare` method:

$response->prepare($request);

Sending the response to the client is then as simple as calling
:method:`Symfony\\Component\\HttpFoundation\\Response::send`:

$response->send();

Setting Cookies

The response cookies can be manipulated though the headers public
attribute:

use Symfony\Component\HttpFoundation\Cookie;

$response->headers->setCookie(new Cookie('foo', 'bar'));

The
:method:`Symfony\\Component\\HttpFoundation\\ResponseHeaderBag::setCookie`
method takes an instance of
Symfony\Component\HttpFoundation\Cookie as an argument.

You can clear a cookie via the
:method:`Symfony\\Component\\HttpFoundation\\Response::clearCookie` method.

Managing the HTTP Cache

The Symfony\Component\HttpFoundation\Response class has a rich set
of methods to manipulate the HTTP headers related to the cache:

	:method:`Symfony\\Component\\HttpFoundation\\Response::setPublic`;

	:method:`Symfony\\Component\\HttpFoundation\\Response::setPrivate`;

	:method:`Symfony\\Component\\HttpFoundation\\Response::expire`;

	:method:`Symfony\\Component\\HttpFoundation\\Response::setExpires`;

	:method:`Symfony\\Component\\HttpFoundation\\Response::setMaxAge`;

	:method:`Symfony\\Component\\HttpFoundation\\Response::setSharedMaxAge`;

	:method:`Symfony\\Component\\HttpFoundation\\Response::setTtl`;

	:method:`Symfony\\Component\\HttpFoundation\\Response::setClientTtl`;

	:method:`Symfony\\Component\\HttpFoundation\\Response::setLastModified`;

	:method:`Symfony\\Component\\HttpFoundation\\Response::setEtag`;

	:method:`Symfony\\Component\\HttpFoundation\\Response::setVary`;

The :method:`Symfony\\Component\\HttpFoundation\\Response::setCache` method
can be used to set the most commonly used cache information in one method
call:

$response->setCache(array(
 'etag' => 'abcdef',
 'last_modified' => new \DateTime(),
 'max_age' => 600,
 's_maxage' => 600,
 'private' => false,
 'public' => true,
));

To check if the Response validators (ETag, Last-Modified) match a
conditional value specified in the client Request, use the
:method:`Symfony\\Component\\HttpFoundation\\Response::isNotModified`
method:

if ($response->isNotModified($request)) {
 $response->send();
}

If the Response is not modified, it sets the status code to 304 and remove the
actual response content.

Redirecting the User

To redirect the client to another URL, you can use the
Symfony\Component\HttpFoundation\RedirectResponse class:

use Symfony\Component\HttpFoundation\RedirectResponse;

$response = new RedirectResponse('http://example.com/');

Streaming a Response

New in version 2.1: Support for streamed responses was added in Symfony 2.1.

The Symfony\Component\HttpFoundation\StreamedResponse class allows
you to stream the Response back to the client. The response content is
represented by a PHP callable instead of a string:

use Symfony\Component\HttpFoundation\StreamedResponse;

$response = new StreamedResponse();
$response->setCallback(function () {
 echo 'Hello World';
 flush();
 sleep(2);
 echo 'Hello World';
 flush();
});
$response->send();

Downloading Files

New in version 2.1: The makeDisposition method was added in Symfony 2.1.

When uploading a file, you must add a Content-Disposition header to your
response. While creating this header for basic file downloads is easy, using
non-ASCII filenames is more involving. The
:method:`:Symfony\\Component\\HttpFoundation\\Response:makeDisposition`
abstracts the hard work behind a simple API:

use Symfony\\Component\\HttpFoundation\\ResponseHeaderBag;

$d = $response->headers->makeDisposition(ResponseHeaderBag::DISPOSITION_ATTACHMENT, 'foo.pdf');

$response->headers->set('Content-Disposition', $d);

Session

TBD – This part has not been written yet as it will probably be refactored
soon in Symfony 2.1.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	The Components

The Locale Component

Locale component provides fallback code to handle cases when the intl extension is missing.
Additionally it extends the implementation of a native :phpclass:`Locale` class with several handy methods.

Replacement for the following functions and classes is provided:

	:phpfunction:`intl_is_failure()`

	:phpfunction:`intl_get_error_code()`

	:phpfunction:`intl_get_error_message()`

	:phpclass:`Collator`

	:phpclass:`IntlDateFormatter`

	:phpclass:`Locale`

	:phpclass:`NumberFormatter`

Note

Stub implementation only supports the en locale.

Installation

You can install the component in many different ways:

	Use the official Git repository (https://github.com/symfony/Locale);

	Install it via PEAR (pear.symfony.com/Locale);

	Install it via Composer (symfony/locale on Packagist).

Usage

Taking advantage of the fallback code includes requiring function stubs and adding class stubs to the autoloader.

When using the ClassLoader component following code is sufficient to supplement missing intl extension:

if (!function_exists('intl_get_error_code')) {
 require __DIR__.'/path/to/src/Symfony/Component/Locale/Resources/stubs/functions.php';

 $loader->registerPrefixFallbacks(array(__DIR__.'/path/to/src/Symfony/Component/Locale/Resources/stubs'));
}

Symfony\Component\Locale\Locale class enriches native :phpclass:`Locale` class with additional features:

use Symfony\Component\Locale\Locale;

// Get the country names for a locale or get all country codes
$countries = Locale::getDisplayCountries('pl');
$countryCodes = Locale::getCountries();

// Get the language names for a locale or get all language codes
$languages = Locale::getDisplayLanguages('fr');
$languageCodes = Locale::getLanguages();

// Get the locale names for a given code or get all locale codes
$locales = Locale::getDisplayLocales('en');
$localeCodes = Locale::getLocales();

// Get ICU versions
$icuVersion = Locale::getIcuVersion();
$icuDataVersion = Locale::getIcuDataVersion();

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	The Components

The Process Component

The Process Component executes commands in sub-processes.

Installation

You can install the component in many different ways:

	Use the official Git repository (https://github.com/symfony/Process);

	Install it via PEAR (pear.symfony.com/Process);

	Install it via Composer (symfony/process on Packagist).

Usage

The Symfony\Component\Process\Process class allows you to execute
a command in a sub-process:

use Symfony\Component\Process\Process;

$process = new Process('ls -lsa');
$process->setTimeout(3600);
$process->run();
if (!$process->isSuccessful()) {
 throw new RuntimeException($process->getErrorOutput());
}

print $process->getOutput();

The :method:`Symfony\\Component\\Process\\Process::run` method takes care
of the subtle differences between the different platforms when executing the
command.

When executing a long running command (like rsync-ing files to a remote
server), you can give feedback to the end user in real-time by passing an
anonymous function to the
:method:`Symfony\\Component\\Process\\Process::run` method:

use Symfony\Component\Process\Process;

$process = new Process('ls -lsa');
$process->run(function ($type, $buffer) {
 if ('err' === $type) {
 echo 'ERR > '.$buffer;
 } else {
 echo 'OUT > '.$buffer;
 }
});

If you want to execute some PHP code in isolation, use the PhpProcess
instead:

use Symfony\Component\Process\PhpProcess;

$process = new PhpProcess(<<<EOF
 <?php echo 'Hello World'; ?>
EOF);
$process->run();

New in version 2.1: The ProcessBuilder class has been as of 2.1.

To make your code work better on all platforms, you might want to use the
Symfony\Component\Process\ProcessBuilder class instead:

use Symfony\Component\Process\ProcessBuilder;

$builder = new ProcessBuilder(array('ls', '-lsa'));
$builder->getProcess()->run();

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	The Components

The Routing Component

The Routing Component maps an HTTP request to a set of configuration
variables.

Installation

You can install the component in many different ways:

	Use the official Git repository (https://github.com/symfony/Routing);

	Install it via PEAR (pear.symfony.com/Routing);

	Install it via Composer (symfony/routing on Packagist)

Usage

In order to set up a basic routing system you need three parts:

	A Symfony\Component\Routing\RouteCollection, which contains the route definitions (instances of the class Symfony\Component\Routing\Route)

	A Symfony\Component\Routing\RequestContext, which has information about the request

	A Symfony\Component\Routing\Matcher\UrlMatcher, which performs the mapping of the request to a single route

Let’s see a quick example. Notice that this assumes that you’ve already configured
your autoloader to load the Routing component:

use Symfony\Component\Routing\Matcher\UrlMatcher;
use Symfony\Component\Routing\RequestContext;
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$routes = new RouteCollection();
$routes->add('route_name', new Route('/foo', array('controller' => 'MyController')));

$context = new RequestContext($_SERVER['REQUEST_URI']);

$matcher = new UrlMatcher($routes, $context);

$parameters = $matcher->match('/foo');
// array('controller' => 'MyController', '_route' => 'route_name')

Note

Be careful when using $_SERVER['REQUEST_URI'], as it may include
any query parameters on the URL, which will cause problems with route
matching. An easy way to solve this is to use the HTTPFoundation component
as explained below.

You can add as many routes as you like to a
Symfony\Component\Routing\RouteCollection.

The :method:`RouteCollection::add()<Symfony\\Component\\Routing\\RouteCollection::add>`
method takes two arguments. The first is the name of the route, The second
is a Symfony\Component\Routing\Route object, which expects a
URL path and some array of custom variables in its constructor. This array
of custom variables can be anything that’s significant to your application,
and is returned when that route is matched.

If no matching route can be found a
Symfony\Component\Routing\Exception\ResourceNotFoundException will be thrown.

In addition to your array of custom variables, a _route key is added,
which holds the name of the matched route.

Defining routes

A full route definition can contain up to four parts:

1. The URL pattern route. This is matched against the URL passed to the RequestContext,
and can contain named wildcard placeholders (e.g. {placeholders})
to match dynamic parts in the URL.

2. An array of default values. This contains an array of arbitrary values
that will be returned when the request matches the route.

3. An array of requirements. These define constraints for the values of the
placeholders as regular expressions.

4. An array of options. These contain internal settings for the route and
are the least commonly needed.

Take the following route, which combines several of these ideas:

$route = new Route(
 '/archive/{month}', // path
 array('controller' => 'showArchive'), // default values
 array('month' => '[0-9]{4}-[0-9]{2}'), // requirements
 array() // options
);

// ...

$parameters = $matcher->match('/archive/2012-01');
// array('controller' => 'showArchive', 'month' => 2012-01'', '_route' => '...')

$parameters = $matcher->match('/archive/foo');
// throws ResourceNotFoundException

In this case, the route is matched by /archive/2012/01, because the {month}
wildcard matches the regular expression wildcard given. However, /archive/foo
does not match, because “foo” fails the month wildcard.

Besides the regular expression constraints there are two special requirements
you can define:

	_method enforces a certain HTTP request method (HEAD, GET, POST, ...)

	_scheme enforces a certain HTTP scheme (http, https)

For example, the following route would only accept requests to /foo with
the POST method and a secure connection:

$route = new Route('/foo', array('_method' => 'post', '_scheme' => 'https'));

Tip

If you want to match all urls which start with a certain path and end in an
arbitrary suffix you can use the following route definition:

$route = new Route('/start/{suffix}', array('suffix' => ''), array('suffix' => '.*'));

Using Prefixes

You can add routes or other instances of
Symfony\Component\Routing\RouteCollection to another collection.
This way you can build a tree of routes. Additionally you can define a prefix,
default requirements and default options to all routes of a subtree:

$rootCollection = new RouteCollection();

$subCollection = new RouteCollection();
$subCollection->add(/*...*/);
$subCollection->add(/*...*/);

$rootCollection->addCollection($subCollection, '/prefix', array('_scheme' => 'https'));

Set the Request Parameters

The Symfony\Component\Routing\RequestContext provides information
about the current request. You can define all parameters of an HTTP request
with this class via its constructor:

public function __construct($baseUrl = '', $method = 'GET', $host = 'localhost', $scheme = 'http', $httpPort = 80, $httpsPort = 443)

Normally you can pass the values from the $_SERVER variable to populate the
Symfony\Component\Routing\RequestContext. But If you use the
HttpFoundation component, you can use its
Symfony\Component\HttpFoundation\Request class to feed the
Symfony\Component\Routing\RequestContext in a shortcut:

use Symfony\Component\HttpFoundation\Request;

$context = new RequestContext();
$context->fromRequest(Request::createFromGlobals());

Generate a URL

While the Symfony\Component\Routing\Matcher\UrlMatcher tries
to find a route that fits the given request you can also build a URL from
a certain route:

use Symfony\Component\Routing\Generator\UrlGenerator;

$routes = new RouteCollection();
$routes->add('show_post', new Route('/show/{slug}'));

$context = new RequestContext($_SERVER['REQUEST_URI']);

$generator = new UrlGenerator($routes, $context);

$url = $generator->generate('show_post', array(
 'slug' => 'my-blog-post'
));
// /show/my-blog-post

Note

If you have defined the _scheme requirement, an absolute URL is generated
if the scheme of the current Symfony\Component\Routing\RequestContext
does not match the requirement.

Load Routes from a File

You’ve already seen how you can easily add routes to a collection right inside
PHP. But you can also load routes from a number of different files.

The Routing component comes with a number of loader classes, each giving
you the ability to load a collection of route definitions from an external
file of some format.
Each loader expects a Symfony\Component\Config\FileLocator instance
as the constructor argument. You can use the Symfony\Component\Config\FileLocator
to define an array of paths in which the loader will look for the requested files.
If the file is found, the loader returns a Symfony\Component\Routing\RouteCollection.

If you’re using the YamlFileLoader, then route definitions look like this:

routes.yml
route1:
 pattern: /foo
 defaults: { controller: 'MyController::fooAction' }

route2:
 pattern: /foo/bar
 defaults: { controller: 'MyController::foobarAction' }

To load this file, you can use the following code. This assumes that your
routes.yml file is in the same directory as the below code:

use Symfony\Component\Config\FileLocator;
use Symfony\Component\Routing\Loader\YamlFileLoader;

// look inside *this* directory
$locator = new FileLocator(array(__DIR__));
$loader = new YamlFileLoader($locator);
$collection = $loader->load('routes.yml');

Besides Symfony\Component\Routing\Loader\YamlFileLoader there are two
other loaders that work the same way:

	Symfony\Component\Routing\Loader\XmlFileLoader

	Symfony\Component\Routing\Loader\PhpFileLoader

If you use the Symfony\Component\Routing\Loader\PhpFileLoader you
have to provide the name of a php file which returns a Symfony\Component\Routing\RouteCollection:

// RouteProvider.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('route_name', new Route('/foo', array('controller' => 'ExampleController')));
// ...

return $collection;

Routes as Closures

There is also the Symfony\Component\Routing\Loader\ClosureLoader, which
calls a closure and uses the result as a Symfony\Component\Routing\RouteCollection:

use Symfony\Component\Routing\Loader\ClosureLoader;

$closure = function() {
 return new RouteCollection();
};

$loader = new ClosureLoader();
$collection = $loader->load($closure);

Routes as Annotations

Last but not least there are
Symfony\Component\Routing\Loader\AnnotationDirectoryLoader and
Symfony\Component\Routing\Loader\AnnotationFileLoader to load
route definitions from class annotations. The specific details are left
out here.

The all-in-one Router

The Symfony\Component\Routing\Router class is a all-in-one package
to quickly use the Routing component. The constructor expects a loader instance,
a path to the main route definition and some other settings:

public function __construct(LoaderInterface $loader, $resource, array $options = array(), RequestContext $context = null, array $defaults = array());

With the cache_dir option you can enable route caching (if you provide a
path) or disable caching (if it’s set to null). The caching is done
automatically in the background if you want to use it. A basic example of the
Symfony\Component\Routing\Router class would look like:

$locator = new FileLocator(array(__DIR__));
$requestContext = new RequestContext($_SERVER['REQUEST_URI']);

$router = new Router(
 new YamlFileLoader($locator),
 "routes.yml",
 array('cache_dir' => __DIR__.'/cache'),
 $requestContext,
);
$router->match('/foo/bar');

Note

If you use caching, the Routing component will compile new classes which
are saved in the cache_dir. This means your script must have write
permissions for that location.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	The Components

The YAML Component

The YAML Component loads and dumps YAML files.

What is it?

The Symfony2 YAML Component parses YAML strings to convert them to PHP arrays.
It is also able to convert PHP arrays to YAML strings.

YAML [http://yaml.org/], YAML Ain’t Markup Language, is a human friendly data serialization
standard for all programming languages. YAML is a great format for your
configuration files. YAML files are as expressive as XML files and as readable
as INI files.

The Symfony2 YAML Component implements the YAML 1.2 version of the
specification.

Installation

You can install the component in many different ways:

	Use the official Git repository (https://github.com/symfony/Yaml);

	Install it via PEAR (pear.symfony.com/Yaml);

	Install it via Composer (symfony/yaml on Packagist).

Why?

Fast

One of the goal of Symfony YAML is to find the right balance between speed and
features. It supports just the needed feature to handle configuration files.

Real Parser

It sports a real parser and is able to parse a large subset of the YAML
specification, for all your configuration needs. It also means that the parser
is pretty robust, easy to understand, and simple enough to extend.

Clear error messages

Whenever you have a syntax problem with your YAML files, the library outputs a
helpful message with the filename and the line number where the problem
occurred. It eases the debugging a lot.

Dump support

It is also able to dump PHP arrays to YAML with object support, and inline
level configuration for pretty outputs.

Types Support

It supports most of the YAML built-in types like dates, integers, octals,
booleans, and much more...

Full merge key support

Full support for references, aliases, and full merge key. Don’t repeat
yourself by referencing common configuration bits.

Using the Symfony2 YAML Component

The Symfony2 YAML Component is very simple and consists of two main classes:
one parses YAML strings (Symfony\Component\Yaml\Parser), and the
other dumps a PHP array to a YAML string
(Symfony\Component\Yaml\Dumper).

On top of these two classes, the Symfony\Component\Yaml\Yaml class
acts as a thin wrapper that simplifies common uses.

Reading YAML Files

The :method:`Symfony\\Component\\Yaml\\Parser::parse` method parses a YAML
string and converts it to a PHP array:

use Symfony\Component\Yaml\Parser;

$yaml = new Parser();

$value = $yaml->parse(file_get_contents('/path/to/file.yml'));

If an error occurs during parsing, the parser throws a
Symfony\Component\Yaml\Exception\ParseException exception
indicating the error type and the line in the original YAML string where the
error occurred:

use Symfony\Component\Yaml\Exception\ParseException;

try {
 $value = $yaml->parse(file_get_contents('/path/to/file.yml'));
} catch (ParseException $e) {
 printf("Unable to parse the YAML string: %s", $e->getMessage());
}

Tip

As the parser is re-entrant, you can use the same parser object to load
different YAML strings.

When loading a YAML file, it is sometimes better to use the
:method:`Symfony\\Component\\Yaml\\Yaml::parse` wrapper method:

use Symfony\Component\Yaml\Yaml;

$loader = Yaml::parse('/path/to/file.yml');

The :method:`Symfony\\Component\\Yaml\\Yaml::parse` static method takes a YAML
string or a file containing YAML. Internally, it calls the
:method:`Symfony\\Component\\Yaml\\Parser::parse` method, but with some added
bonuses:

	It executes the YAML file as if it was a PHP file, so that you can embed PHP
commands in YAML files;

	When a file cannot be parsed, it automatically adds the file name to the
error message, simplifying debugging when your application is loading
several YAML files.

Writing YAML Files

The :method:`Symfony\\Component\\Yaml\\Dumper::dump` method dumps any PHP
array to its YAML representation:

use Symfony\Component\Yaml\Dumper;

$array = array('foo' => 'bar', 'bar' => array('foo' => 'bar', 'bar' => 'baz'));

$dumper = new Dumper();

$yaml = $dumper->dump($array);

file_put_contents('/path/to/file.yml', $yaml);

Note

Of course, the Symfony2 YAML dumper is not able to dump resources. Also,
even if the dumper is able to dump PHP objects, it is considered to be a
not supported feature.

If an error occurs during the dump, the parser throws a
Symfony\Component\Yaml\Exception\DumpException exception.

If you only need to dump one array, you can use the
:method:`Symfony\\Component\\Yaml\\Yaml::dump` static method shortcut:

use Symfony\Component\Yaml\Yaml;

$yaml = Yaml::dump($array, $inline);

The YAML format supports two kind of representation for arrays, the expanded
one, and the inline one. By default, the dumper uses the inline
representation:

{ foo: bar, bar: { foo: bar, bar: baz } }

The second argument of the :method:`Symfony\\Component\\Yaml\\Dumper::dump`
method customizes the level at which the output switches from the expanded
representation to the inline one:

echo $dumper->dump($array, 1);

foo: bar
bar: { foo: bar, bar: baz }

echo $dumper->dump($array, 2);

foo: bar
bar:
 foo: bar
 bar: baz

The YAML Format

According to the official YAML [http://yaml.org/] website, YAML is “a human friendly data
serialization standard for all programming languages”.

Even if the YAML format can describe complex nested data structure, this
chapter only describes the minimum set of features needed to use YAML as a
configuration file format.

YAML is a simple language that describes data. As PHP, it has a syntax for
simple types like strings, booleans, floats, or integers. But unlike PHP, it
makes a difference between arrays (sequences) and hashes (mappings).

Scalars

The syntax for scalars is similar to the PHP syntax.

Strings

A string in YAML

'A singled-quoted string in YAML'

Tip

In a single quoted string, a single quote ' must be doubled:

'A single quote '' in a single-quoted string'

"A double-quoted string in YAML\n"

Quoted styles are useful when a string starts or ends with one or more
relevant spaces.

Tip

The double-quoted style provides a way to express arbitrary strings, by
using \ escape sequences. It is very useful when you need to embed a
\n or a unicode character in a string.

When a string contains line breaks, you can use the literal style, indicated
by the pipe (|), to indicate that the string will span several lines. In
literals, newlines are preserved:

|
 \/ /| |\/| |
 / / | | | |__

Alternatively, strings can be written with the folded style, denoted by >,
where each line break is replaced by a space:

>
 This is a very long sentence
 that spans several lines in the YAML
 but which will be rendered as a string
 without carriage returns.

Note

Notice the two spaces before each line in the previous examples. They
won’t appear in the resulting PHP strings.

Numbers

an integer
12

an octal
014

an hexadecimal
0xC

a float
13.4

an exponential number
1.2e+34

infinity
.inf

Nulls

Nulls in YAML can be expressed with null or ~.

Booleans

Booleans in YAML are expressed with true and false.

Dates

YAML uses the ISO-8601 standard to express dates:

2001-12-14t21:59:43.10-05:00

simple date
2002-12-14

Collections

A YAML file is rarely used to describe a simple scalar. Most of the time, it
describes a collection. A collection can be a sequence or a mapping of
elements. Both sequences and mappings are converted to PHP arrays.

Sequences use a dash followed by a space (``- ``):

- PHP
- Perl
- Python

The previous YAML file is equivalent to the following PHP code:

array('PHP', 'Perl', 'Python');

Mappings use a colon followed by a space (``: ``) to mark each key/value pair:

PHP: 5.2
MySQL: 5.1
Apache: 2.2.20

which is equivalent to this PHP code:

array('PHP' => 5.2, 'MySQL' => 5.1, 'Apache' => '2.2.20');

Note

In a mapping, a key can be any valid scalar.

The number of spaces between the colon and the value does not matter:

PHP: 5.2
MySQL: 5.1
Apache: 2.2.20

YAML uses indentation with one or more spaces to describe nested collections:

"symfony 1.0":
 PHP: 5.0
 Propel: 1.2
"symfony 1.2":
 PHP: 5.2
 Propel: 1.3

The following YAML is equivalent to the following PHP code:

array(
 'symfony 1.0' => array(
 'PHP' => 5.0,
 'Propel' => 1.2,
),
 'symfony 1.2' => array(
 'PHP' => 5.2,
 'Propel' => 1.3,
),
);

There is one important thing you need to remember when using indentation in a
YAML file: Indentation must be done with one or more spaces, but never with
tabulations.

You can nest sequences and mappings as you like:

'Chapter 1':
 - Introduction
 - Event Types
'Chapter 2':
 - Introduction
 - Helpers

YAML can also use flow styles for collections, using explicit indicators
rather than indentation to denote scope.

A sequence can be written as a comma separated list within square brackets
([]):

[PHP, Perl, Python]

A mapping can be written as a comma separated list of key/values within curly
braces ({}):

{ PHP: 5.2, MySQL: 5.1, Apache: 2.2.20 }

You can mix and match styles to achieve a better readability:

'Chapter 1': [Introduction, Event Types]
'Chapter 2': [Introduction, Helpers]

"symfony 1.0": { PHP: 5.0, Propel: 1.2 }
"symfony 1.2": { PHP: 5.2, Propel: 1.3 }

Comments

Comments can be added in YAML by prefixing them with a hash mark (#):

Comment on a line
"symfony 1.0": { PHP: 5.0, Propel: 1.2 } # Comment at the end of a line
"symfony 1.2": { PHP: 5.2, Propel: 1.3 }

Note

Comments are simply ignored by the YAML parser and do not need to be
indented according to the current level of nesting in a collection.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

Reference Documents

	Configuration Options:

Ever wondered what configuration options you have available to you in files
such as app/config/config.yml? In this section, all the available configuration
is broken down by the key (e.g. framework) that defines each possible
section of your Symfony2 configuration.

	framework

	doctrine

	security

	assetic

	swiftmailer

	twig

	monolog

	web_profiler

	Forms and Validation

	Form Field Type Reference

	Validation Constraints Reference

	Twig Template Function Reference

	Other Areas

	The Dependency Injection Tags

	Requirements for running Symfony2

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

FrameworkBundle Configuration (“framework”)

This reference document is a work in progress. It should be accurate, but
all options are not yet fully covered.

The FrameworkBundle contains most of the “base” framework functionality
and can be configured under the framework key in your application configuration.
This includes settings related to sessions, translation, forms, validation,
routing and more.

Configuration

	charset

	secret

	ide

	test

	
	form

	
	enabled

	
	csrf_protection

	
	enabled

	field_name

	
	session

	
	lifetime

	
	templating

	
	assets_base_urls

	assets_version

	assets_version_format

charset

type: string default: UTF-8

The character set that’s used throughout the framework. It becomes the service
container parameter named kernel.charset.

secret

type: string required

This is a string that should be unique to your application. In practice,
it’s used for generating the CSRF tokens, but it could be used in any other
context where having a unique string is useful. It becomes the service container
parameter named kernel.secret.

ide

type: string default: null

If you’re using an IDE like TextMate or Mac Vim, then Symfony can turn all
of the file paths in an exception message into a link, which will open that
file in your IDE.

If you use TextMate or Mac Vim, you can simply use one of the following built-in
values:

	textmate

	macvim

You can also specify a custom file link string. If you do this, all percentage
signs (%) must be doubled to escape that character. For example, the
full TextMate string would look like this:

framework:
 ide: "txmt://open?url=file://%%f&line=%%l"

Of course, since every developer uses a different IDE, it’s better to set
this on a system level. This can be done by setting the xdebug.file_link_format
PHP.ini value to the file link string. If this configuration value is set, then
the ide option does not need to be specified.

test

type: Boolean

If this configuration parameter is present (and not false), then the
services related to testing your application (e.g. test.client) are loaded.
This setting should be present in your test environment (usually via
app/config/config_test.yml). For more information, see Testing.

form

csrf_protection

session

lifetime

type: integer default: 0

This determines the lifetime of the session - in seconds. By default it will use
0, which means the cookie is valid for the length of the browser session.

templating

assets_base_urls

default: { http: [], https: [] }

This option allows you to define base URL’s to be used for assets referenced
from http and https pages. A string value may be provided in lieu of a
single-element array. If multiple base URL’s are provided, Symfony2 will select
one from the collection each time it generates an asset’s path.

For your convenience, assets_base_urls can be set directly with a string or
array of strings, which will be automatically organized into collections of base
URL’s for http and https requests. If a URL starts with https:// or
is protocol-relative [http://tools.ietf.org/html/rfc3986#section-4.2] (i.e. starts with //) it will be added to both
collections. URL’s starting with http:// will only be added to the
http collection.

New in version 2.1: Unlike most configuration blocks, successive values for assets_base_urls
will overwrite each other instead of being merged. This behavior was chosen
because developers will typically define base URL’s for each environment.
Given that most projects tend to inherit configurations
(e.g. config_test.yml imports config_dev.yml) and/or share a common
base configuration (i.e. config.yml), merging could yield a set of base
URL’s for multiple environments.

assets_version

type: string

This option is used to bust the cache on assets by globally adding a query
parameter to all rendered asset paths (e.g. /images/logo.png?v2). This
applies only to assets rendered via the Twig asset function (or PHP equivalent)
as well as assets rendered with Assetic.

For example, suppose you have the following:

	Twig

	PHP<img src="<?php echo $view['assets']->getUrl('images/logo.png') ?>" alt="Symfony!" />

By default, this will render a path to your image such as /images/logo.png.
Now, activate the assets_version option:

	YAML# app/config/config.yml
framework:
 # ...
 templating: { engines: ['twig'], assets_version: v2 }

	XML<!-- app/config/config.xml -->
<framework:templating assets-version="v2">
 <framework:engine id="twig" />
</framework:templating>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 // ...
 'templating' => array(
 'engines' => array('twig'),
 'assets_version' => 'v2',
),
));

Now, the same asset will be rendered as /images/logo.png?v2 If you use
this feature, you must manually increment the assets_version value
before each deployment so that the query parameters change.

You can also control how the query string works via the assets_version_format
option.

assets_version_format

type: string default: %%s?%%s

This specifies a sprintf() [http://php.net/manual/en/function.sprintf.php] pattern that will be used with the assets_version
option to construct an asset’s path. By default, the pattern adds the asset’s
version as a query string. For example, if assets_version_format is set to
%%s?version=%%s and assets_version is set to 5, the asset’s path
would be /images/logo.png?version=5.

Note

All percentage signs (%) in the format string must be doubled to escape
the character. Without escaping, values might inadvertently be interpretted
as Service Parameters.

Tip

Some CDN’s do not support cache-busting via query strings, so injecting the
version into the actual file path is necessary. Thankfully, assets_version_format
is not limited to producing versioned query strings.

The pattern receives the asset’s original path and version as its first and
second parameters, respectively. Since the asset’s path is one parameter, we
cannot modify it in-place (e.g. /images/logo-v5.png); however, we can
prefix the asset’s path using a pattern of version-%%2$s/%%1$s, which
would result in the path version-5/images/logo.png.

URL rewrite rules could then be used to disregard the version prefix before
serving the asset. Alternatively, you could copy assets to the appropriate
version path as part of your deployment process and forgot any URL rewriting.
The latter option is useful if you would like older asset versions to remain
accessible at their original URL.

Full Default Configuration

	YAMLframework:

 # general configuration
 charset: ~
 secret: ~ # Required
 ide: ~
 test: ~
 default_locale: en
 trust_proxy_headers: false

 # form configuration
 form:
 enabled: true
 csrf_protection:
 enabled: true
 field_name: _token

 # esi configuration
 esi:
 enabled: true

 # profiler configuration
 profiler:
 only_exceptions: false
 only_master_requests: false
 dsn: sqlite:%kernel.cache_dir%/profiler.db
 username:
 password:
 lifetime: 86400
 matcher:
 ip: ~
 path: ~
 service: ~

 # router configuration
 router:
 resource: ~ # Required
 type: ~
 http_port: 80
 https_port: 443

 # session configuration
 session:
 auto_start: ~
 storage_id: session.storage.native
 name: ~
 lifetime: 86400
 path: ~
 domain: ~
 secure: ~
 httponly: ~

 # templating configuration
 templating:
 assets_version: ~
 assets_version_format: "%%s?%%s"
 assets_base_urls:
 http: []
 ssl: []
 cache: ~
 engines: # Required
 form:
 resources: [FrameworkBundle:Form]

 # Example:
 - twig
 loaders: []
 packages:

 # Prototype
 name:
 version: ~
 version_format: ~
 base_urls:
 http: []
 ssl: []

 # translator configuration
 translator:
 enabled: true
 fallback: en

 # validation configuration
 validation:
 enabled: true
 cache: ~
 enable_annotations: false

 # annotation configuration
 annotations:
 cache: file
 file_cache_dir: %kernel.cache_dir%/annotations
 debug: true

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

AsseticBundle Configuration Reference

Full Default Configuration

	YAMLassetic:
 debug: true
 use_controller: true
 read_from: %kernel.root_dir%/../web
 write_to: %assetic.read_from%
 java: /usr/bin/java
 node: /usr/bin/node
 sass: /usr/bin/sass
 bundles:

 # Defaults (all currently registered bundles):
 - FrameworkBundle
 - SecurityBundle
 - TwigBundle
 - MonologBundle
 - SwiftmailerBundle
 - DoctrineBundle
 - AsseticBundle
 - ...

 assets:

 # Prototype
 name:
 inputs: []
 filters: []
 options:

 # Prototype
 name: []
 filters:

 # Prototype
 name: []
 twig:
 functions:

 # Prototype
 name: []

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

Configuration Reference

	YAMLdoctrine:
 dbal:
 default_connection: default
 connections:
 default:
 dbname: database
 host: localhost
 port: 1234
 user: user
 password: secret
 driver: pdo_mysql
 driver_class: MyNamespace\MyDriverImpl
 options:
 foo: bar
 path: %kernel.data_dir%/data.sqlite
 memory: true
 unix_socket: /tmp/mysql.sock
 wrapper_class: MyDoctrineDbalConnectionWrapper
 charset: UTF8
 logging: %kernel.debug%
 platform_service: MyOwnDatabasePlatformService
 mapping_types:
 enum: string
 conn1:
 # ...
 types:
 custom: Acme\HelloBundle\MyCustomType
 orm:
 auto_generate_proxy_classes: false
 proxy_namespace: Proxies
 proxy_dir: %kernel.cache_dir%/doctrine/orm/Proxies
 default_entity_manager: default # The first defined is used if not set
 entity_managers:
 default:
 # The name of a DBAL connection (the one marked as default is used if not set)
 connection: conn1
 mappings: # Required
 AcmeHelloBundle: ~
 class_metadata_factory_name: Doctrine\ORM\Mapping\ClassMetadataFactory
 # All cache drivers have to be array, apc, xcache or memcache
 metadata_cache_driver: array
 query_cache_driver: array
 result_cache_driver:
 type: memcache
 host: localhost
 port: 11211
 instance_class: Memcache
 class: Doctrine\Common\Cache\MemcacheCache
 dql:
 string_functions:
 test_string: Acme\HelloBundle\DQL\StringFunction
 numeric_functions:
 test_numeric: Acme\HelloBundle\DQL\NumericFunction
 datetime_functions:
 test_datetime: Acme\HelloBundle\DQL\DatetimeFunction
 hydrators:
 custom: Acme\HelloBundle\Hydrators\CustomHydrator
 em2:
 # ...

	XML<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:doctrine="http://symfony.com/schema/dic/doctrine"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/doctrine http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd">

 <doctrine:config>
 <doctrine:dbal default-connection="default">
 <doctrine:connection
 name="default"
 dbname="database"
 host="localhost"
 port="1234"
 user="user"
 password="secret"
 driver="pdo_mysql"
 driver-class="MyNamespace\MyDriverImpl"
 path="%kernel.data_dir%/data.sqlite"
 memory="true"
 unix-socket="/tmp/mysql.sock"
 wrapper-class="MyDoctrineDbalConnectionWrapper"
 charset="UTF8"
 logging="%kernel.debug%"
 platform-service="MyOwnDatabasePlatformService"
 >
 <doctrine:option key="foo">bar</doctrine:option>
 <doctrine:mapping-type name="enum">string</doctrine:mapping-type>
 </doctrine:connection>
 <doctrine:connection name="conn1" />
 <doctrine:type name="custom">Acme\HelloBundle\MyCustomType</doctrine:type>
 </doctrine:dbal>

 <doctrine:orm default-entity-manager="default" auto-generate-proxy-classes="false" proxy-namespace="Proxies" proxy-dir="%kernel.cache_dir%/doctrine/orm/Proxies">
 <doctrine:entity-manager name="default" query-cache-driver="array" result-cache-driver="array" connection="conn1" class-metadata-factory-name="Doctrine\ORM\Mapping\ClassMetadataFactory">
 <doctrine:metadata-cache-driver type="memcache" host="localhost" port="11211" instance-class="Memcache" class="Doctrine\Common\Cache\MemcacheCache" />
 <doctrine:mapping name="AcmeHelloBundle" />
 <doctrine:dql>
 <doctrine:string-function name="test_string>Acme\HelloBundle\DQL\StringFunction</doctrine:string-function>
 <doctrine:numeric-function name="test_numeric>Acme\HelloBundle\DQL\NumericFunction</doctrine:numeric-function>
 <doctrine:datetime-function name="test_datetime>Acme\HelloBundle\DQL\DatetimeFunction</doctrine:datetime-function>
 </doctrine:dql>
 </doctrine:entity-manager>
 <doctrine:entity-manager name="em2" connection="conn2" metadata-cache-driver="apc">
 <doctrine:mapping
 name="DoctrineExtensions"
 type="xml"
 dir="%kernel.root_dir%/../src/vendor/DoctrineExtensions/lib/DoctrineExtensions/Entity"
 prefix="DoctrineExtensions\Entity"
 alias="DExt"
 />
 </doctrine:entity-manager>
 </doctrine:orm>
 </doctrine:config>
</container>

Configuration Overview

This following configuration example shows all the configuration defaults that
the ORM resolves to:

doctrine:
 orm:
 auto_mapping: true
 # the standard distribution overrides this to be true in debug, false otherwise
 auto_generate_proxy_classes: false
 proxy_namespace: Proxies
 proxy_dir: %kernel.cache_dir%/doctrine/orm/Proxies
 default_entity_manager: default
 metadata_cache_driver: array
 query_cache_driver: array
 result_cache_driver: array

There are lots of other configuration options that you can use to overwrite
certain classes, but those are for very advanced use-cases only.

Caching Drivers

For the caching drivers you can specify the values “array”, “apc”, “memcache”
or “xcache”.

The following example shows an overview of the caching configurations:

doctrine:
 orm:
 auto_mapping: true
 metadata_cache_driver: apc
 query_cache_driver: xcache
 result_cache_driver:
 type: memcache
 host: localhost
 port: 11211
 instance_class: Memcache

Mapping Configuration

Explicit definition of all the mapped entities is the only necessary
configuration for the ORM and there are several configuration options that you
can control. The following configuration options exist for a mapping:

	type One of annotation, xml, yml, php or staticphp.
This specifies which type of metadata type your mapping uses.

	dir Path to the mapping or entity files (depending on the driver). If
this path is relative it is assumed to be relative to the bundle root. This
only works if the name of your mapping is a bundle name. If you want to use
this option to specify absolute paths you should prefix the path with the
kernel parameters that exist in the DIC (for example %kernel.root_dir%).

	prefix A common namespace prefix that all entities of this mapping
share. This prefix should never conflict with prefixes of other defined
mappings otherwise some of your entities cannot be found by Doctrine. This
option defaults to the bundle namespace + Entity, for example for an
application bundle called AcmeHelloBundle prefix would be
Acme\HelloBundle\Entity.

	alias Doctrine offers a way to alias entity namespaces to simpler,
shorter names to be used in DQL queries or for Repository access. When using
a bundle the alias defaults to the bundle name.

	is_bundle This option is a derived value from dir and by default is
set to true if dir is relative proved by a file_exists() check that
returns false. It is false if the existence check returns true. In this case
an absolute path was specified and the metadata files are most likely in a
directory outside of a bundle.

Doctrine DBAL Configuration

Note

DoctrineBundle supports all parameters that default Doctrine drivers
accept, converted to the XML or YAML naming standards that Symfony
enforces. See the Doctrine DBAL documentation [http://www.doctrine-project.org/docs/dbal/2.0/en] for more information.

Besides default Doctrine options, there are some Symfony-related ones that you
can configure. The following block shows all possible configuration keys:

	YAMLdoctrine:
 dbal:
 dbname: database
 host: localhost
 port: 1234
 user: user
 password: secret
 driver: pdo_mysql
 driver_class: MyNamespace\MyDriverImpl
 options:
 foo: bar
 path: %kernel.data_dir%/data.sqlite
 memory: true
 unix_socket: /tmp/mysql.sock
 wrapper_class: MyDoctrineDbalConnectionWrapper
 charset: UTF8
 logging: %kernel.debug%
 platform_service: MyOwnDatabasePlatformService
 mapping_types:
 enum: string
 types:
 custom: Acme\HelloBundle\MyCustomType

	XML<!-- xmlns:doctrine="http://symfony.com/schema/dic/doctrine" -->
<!-- xsi:schemaLocation="http://symfony.com/schema/dic/doctrine http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd"> -->

<doctrine:config>
 <doctrine:dbal
 name="default"
 dbname="database"
 host="localhost"
 port="1234"
 user="user"
 password="secret"
 driver="pdo_mysql"
 driver-class="MyNamespace\MyDriverImpl"
 path="%kernel.data_dir%/data.sqlite"
 memory="true"
 unix-socket="/tmp/mysql.sock"
 wrapper-class="MyDoctrineDbalConnectionWrapper"
 charset="UTF8"
 logging="%kernel.debug%"
 platform-service="MyOwnDatabasePlatformService"
 >
 <doctrine:option key="foo">bar</doctrine:option>
 <doctrine:mapping-type name="enum">string</doctrine:mapping-type>
 <doctrine:type name="custom">Acme\HelloBundle\MyCustomType</doctrine:type>
 </doctrine:dbal>
</doctrine:config>

If you want to configure multiple connections in YAML, put them under the
connections key and give them a unique name:

doctrine:
 dbal:
 default_connection: default
 connections:
 default:
 dbname: Symfony2
 user: root
 password: null
 host: localhost
 customer:
 dbname: customer
 user: root
 password: null
 host: localhost

The database_connection service always refers to the default connection,
which is the first one defined or the one configured via the
default_connection parameter.

Each connection is also accessible via the doctrine.dbal.[name]_connection
service where [name] if the name of the connection.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

Security Configuration Reference

The security system is one of the most powerful parts of Symfony2, and can
largely be controlled via its configuration.

Full Default Configuration

The following is the full default configuration for the security system.
Each part will be explained in the next section.

	YAML# app/config/security.yml
security:
 access_denied_url: /foo/error403

 always_authenticate_before_granting: false

 # whether or not to call eraseCredentials on the token
 erase_credentials: true

 # strategy can be: none, migrate, invalidate
 session_fixation_strategy: migrate

 access_decision_manager:
 strategy: affirmative
 allow_if_all_abstain: false
 allow_if_equal_granted_denied: true

 acl:
 connection: default # any name configured in doctrine.dbal section
 tables:
 class: acl_classes
 entry: acl_entries
 object_identity: acl_object_identities
 object_identity_ancestors: acl_object_identity_ancestors
 security_identity: acl_security_identities
 cache:
 id: service_id
 prefix: sf2_acl_
 voter:
 allow_if_object_identity_unavailable: true

 encoders:
 somename:
 class: Acme\DemoBundle\Entity\User
 Acme\DemoBundle\Entity\User: sha512
 Acme\DemoBundle\Entity\User: plaintext
 Acme\DemoBundle\Entity\User:
 algorithm: sha512
 encode_as_base64: true
 iterations: 5000
 Acme\DemoBundle\Entity\User:
 id: my.custom.encoder.service.id

 providers:
 memory_provider_name:
 memory:
 users:
 foo: { password: foo, roles: ROLE_USER }
 bar: { password: bar, roles: [ROLE_USER, ROLE_ADMIN] }
 entity_provider_name:
 entity: { class: SecurityBundle:User, property: username }

 factories:
 MyFactory: %kernel.root_dir%/../src/Acme/DemoBundle/Resources/config/security_factories.xml

 firewalls:
 somename:
 pattern: .*
 request_matcher: some.service.id
 access_denied_url: /foo/error403
 access_denied_handler: some.service.id
 entry_point: some.service.id
 provider: some_provider_key_from_above
 context: name
 stateless: false
 x509:
 provider: some_provider_key_from_above
 http_basic:
 provider: some_provider_key_from_above
 http_digest:
 provider: some_provider_key_from_above
 form_login:
 check_path: /login_check
 login_path: /login
 use_forward: false
 always_use_default_target_path: false
 default_target_path: /
 target_path_parameter: _target_path
 use_referer: false
 failure_path: /foo
 failure_forward: false
 failure_handler: some.service.id
 success_handler: some.service.id
 username_parameter: _username
 password_parameter: _password
 csrf_parameter: _csrf_token
 intention: authenticate
 csrf_provider: my.csrf_provider.id
 post_only: true
 remember_me: false
 remember_me:
 token_provider: name
 key: someS3cretKey
 name: NameOfTheCookie
 lifetime: 3600 # in seconds
 path: /foo
 domain: somedomain.foo
 secure: true
 httponly: true
 always_remember_me: false
 remember_me_parameter: _remember_me
 logout:
 path: /logout
 target: /
 invalidate_session: false
 delete_cookies:
 a: { path: null, domain: null }
 b: { path: null, domain: null }
 handlers: [some.service.id, another.service.id]
 success_handler: some.service.id
 anonymous: ~

 access_control:
 -
 path: ^/foo
 host: mydomain.foo
 ip: 192.0.0.0/8
 roles: [ROLE_A, ROLE_B]
 requires_channel: https

 role_hierarchy:
 ROLE_SUPERADMIN: ROLE_ADMIN
 ROLE_SUPERADMIN: 'ROLE_ADMIN, ROLE_USER'
 ROLE_SUPERADMIN: [ROLE_ADMIN, ROLE_USER]
 anything: { id: ROLE_SUPERADMIN, value: 'ROLE_USER, ROLE_ADMIN' }
 anything: { id: ROLE_SUPERADMIN, value: [ROLE_USER, ROLE_ADMIN] }

Form Login Configuration

When using the form_login authentication listener beneath a firewall,
there are several common options for configuring the “form login” experience:

The Login Form and Process

	login_path (type: string, default: /login)
This is the URL that the user will be redirected to (unless use_forward
is set to true) when he/she tries to access a protected resource
but isn’t fully authenticated.

This URL must be accessible by a normal, un-authenticated user, else
you may create a redirect loop. For details, see
“Avoid Common Pitfalls”.

	check_path (type: string, default: /login_check)
This is the URL that your login form must submit to. The firewall will
intercept any requests (POST requests only, be default) to this URL
and process the submitted login credentials.

Be sure that this URL is covered by your main firewall (i.e. don’t create
a separate firewall just for check_path URL).

	use_forward (type: Boolean, default: false)
If you’d like the user to be forwarded to the login form instead of being
redirected, set this option to true.

	username_parameter (type: string, default: _username)
This is the field name that you should give to the username field of
your login form. When you submit the form to check_path, the security
system will look for a POST parameter with this name.

	password_parameter (type: string, default: _password)
This is the field name that you should give to the password field of
your login form. When you submit the form to check_path, the security
system will look for a POST parameter with this name.

	post_only (type: Boolean, default: true)
By default, you must submit your login form to the check_path URL
as a POST request. By setting this option to false, you can send a
GET request to the check_path URL.

Redirecting after Login

	always_use_default_target_path (type: Boolean, default: false)

	default_target_path (type: string, default: /)

	target_path_parameter (type: string, default: _target_path)

	use_referer (type: Boolean, default: false)

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

SwiftmailerBundle Configuration (“swiftmailer”)

This reference document is a work in progress. It should be accurate, but
all options are not yet fully covered. For a full list of the default configuration
options, see Full Default Configuration

The swiftmailer key configures Symfony’s integration with Swiftmailer,
which is responsible for creating and delivering email messages.

Configuration

	transport

	username

	password

	host

	port

	encryption

	auth_mode

	
	spool

	
	type

	path

	sender_address

	
	antiflood

	
	threshold

	sleep

	delivery_address

	disable_delivery

	logging

transport

type: string default: smtp

The exact transport method to use to deliver emails. Valid values are:

	smtp

	gmail (see How to use Gmail to send Emails)

	mail

	sendmail

	null (same as setting disable_delivery to true)

username

type: string

The username when using smtp as the transport.

password

type: string

The password when using smtp as the transport.

host

type: string default: localhost

The host to connect to when using smtp as the transport.

port

type: string default: 25 or 465 (depending on encryption)

The port when using smtp as the transport. This defaults to 465 if encryption
is ssl and 25 otherwise.

encryption

type: string

The encryption mode to use when using smtp as the transport. Valid values
are tls, ssl, or null (indicating no encryption).

auth_mode

type: string

The authentication mode to use when using smtp as the transport. Valid
values are plain, login, cram-md5, or null.

spool

For details on email spooling, see How to Spool Email.

type

type: string default: file

The method used to store spooled messages. Currently only file is supported.
However, a custom spool should be possible by creating a service called
swiftmailer.spool.myspool and setting this value to myspool.

path

type: string default: %kernel.cache_dir%/swiftmailer/spool

When using the file spool, this is the path where the spooled messages
will be stored.

sender_address

type: string

If set, all messages will be delivered with this address as the “return path”
address, which is where bounced messages should go. This is handled internally
by Swiftmailer’s Swift_Plugins_ImpersonatePlugin class.

antiflood

threshold

type: string default: 99

Used with Swift_Plugins_AntiFloodPlugin. This is the number of emails
to send before restarting the transport.

sleep

type: string default: 0

Used with Swift_Plugins_AntiFloodPlugin. This is the number of seconds
to sleep for during a transport restart.

delivery_address

type: string

If set, all email messages will be sent to this address instead of being sent
to their actual recipients. This is often useful when developing. For example,
by setting this in the config_dev.yml file, you can guarantee that all
emails sent during development go to a single account.

This uses Swift_Plugins_RedirectingPlugin. Original recipients are available
on the X-Swift-To, X-Swift-Cc and X-Swift-Bcc headers.

disable_delivery

type: Boolean default: false

If true, the transport will automatically be set to null, and no
emails will actually be delivered.

logging

type: Boolean default: %kernel.debug%

If true, Symfony’s data collector will be activated for Swiftmailer and the
information will be available in the profiler.

Full Default Configuration

	YAMLswiftmailer:
 transport: smtp
 username: ~
 password: ~
 host: localhost
 port: false
 encryption: ~
 auth_mode: ~
 spool:
 type: file
 path: %kernel.cache_dir%/swiftmailer/spool
 sender_address: ~
 antiflood:
 threshold: 99
 sleep: 0
 delivery_address: ~
 disable_delivery: ~
 logging: %kernel.debug%

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

TwigBundle Configuration Reference

	YAMLtwig:
 form:
 resources:

 # Default:
 - div_layout.html.twig

 # Example:
 - MyBundle::form.html.twig
 globals:

 # Examples:
 foo: "@bar"
 pi: 3.14

 # Prototype
 key:
 id: ~
 type: ~
 value: ~
 autoescape: ~
 base_template_class: ~ # Example: Twig_Template
 cache: %kernel.cache_dir%/twig
 charset: %kernel.charset%
 debug: %kernel.debug%
 strict_variables: ~
 auto_reload: ~
 exception_controller: Symfony\Bundle\TwigBundle\Controller\ExceptionController::showAction

	XML<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:twig="http://symfony.com/schema/dic/twig"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/twig http://symfony.com/schema/dic/doctrine/twig-1.0.xsd">

 <twig:config auto-reload="%kernel.debug%" autoescape="true" base-template-class="Twig_Template" cache="%kernel.cache_dir%/twig" charset="%kernel.charset%" debug="%kernel.debug%" strict-variables="false">
 <twig:form>
 <twig:resource>MyBundle::form.html.twig</twig:resource>
 </twig:form>
 <twig:global key="foo" id="bar" type="service" />
 <twig:global key="pi">3.14</twig:global>
 </twig:config>
</container>

	PHP$container->loadFromExtension('twig', array(
 'form' => array(
 'resources' => array(
 'MyBundle::form.html.twig',
)
),
 'globals' => array(
 'foo' => '@bar',
 'pi' => 3.14,
),
 'auto_reload' => '%kernel.debug%',
 'autoescape' => true,
 'base_template_class' => 'Twig_Template',
 'cache' => '%kernel.cache_dir%/twig',
 'charset' => '%kernel.charset%',
 'debug' => '%kernel.debug%',
 'strict_variables' => false,
));

Configuration

exception_controller

type: string default: Symfony\\Bundle\\TwigBundle\\Controller\\ExceptionController::showAction

This is the controller that is activated after an exception is thrown anywhere
in your application. The default controller
(Symfony\Bundle\TwigBundle\Controller\ExceptionController)
is what’s responsible for rendering specific templates under different error
conditions (see How to customize Error Pages). Modifying this
option is advanced. If you need to customize an error page you should use
the previous link. If you need to perform some behavior on an exception,
you should add a listener to the kernel.exception event (see Enabling Custom Listeners).

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

Configuration Reference

	YAMLmonolog:
 handlers:

 # Examples:
 syslog:
 type: stream
 path: /var/log/symfony.log
 level: ERROR
 bubble: false
 formatter: my_formatter
 main:
 type: fingers_crossed
 action_level: WARNING
 buffer_size: 30
 handler: custom
 custom:
 type: service
 id: my_handler

 # Prototype
 name:
 type: ~ # Required
 id: ~
 priority: 0
 level: DEBUG
 bubble: true
 path: %kernel.logs_dir%/%kernel.environment%.log
 ident: false
 facility: user
 max_files: 0
 action_level: WARNING
 stop_buffering: true
 buffer_size: 0
 handler: ~
 members: []
 from_email: ~
 to_email: ~
 subject: ~
 email_prototype:
 id: ~ # Required (when the email_prototype is used)
 method: ~
 formatter: ~

	XML<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog http://symfony.com/schema/dic/monolog/monolog-1.0.xsd">

 <monolog:config>
 <monolog:handler
 name="syslog"
 type="stream"
 path="/var/log/symfony.log"
 level="error"
 bubble="false"
 formatter="my_formatter"
 />
 <monolog:handler
 name="main"
 type="fingers_crossed"
 action-level="warning"
 handler="custom"
 />
 <monolog:handler
 name="custom"
 type="service"
 id="my_handler"
 />
 </monolog:config>
</container>

Note

When the profiler is enabled, a handler is added to store the logs’
messages in the profiler. The profiler uses the name “debug” so it
is reserved and cannot be used in the configuration.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

WebProfilerBundle Configuration

Full Default Configuration

	YAMLweb_profiler:

 # display secondary information to make the toolbar shorter
 verbose: true

 # display the web debug toolbar at the bottom of pages with a summary of profiler info
 toolbar: false

 # gives you the opportunity to look at the collected data before following the redirect
 intercept_redirects: false

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

Form Types Reference

A form is composed of fields, each of which are built with the help of
a field type (e.g. a text type, choice type, etc). Symfony2 comes
standard with a large list of field types that can be used in your application.

Supported Field Types

The following field types are natively available in Symfony2:

Text Fields

	text

	textarea

	email

	integer

	money

	number

	password

	percent

	search

	url

Choice Fields

	choice

	entity

	country

	language

	locale

	timezone

Date and Time Fields

	date

	datetime

	time

	birthday

Other Fields

	checkbox

	file

	radio

Field Groups

	collection

	repeated

Hidden Fields

	hidden

	csrf

Base Fields

	field

	form

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

birthday Field Type

A date field that specializes in handling
birthdate data.

Can be rendered as a single text box, three text boxes (month, day, and year),
or three select boxes.

This type is essentially the same as the date
type, but with a more appropriate default for the years option. The years
option defaults to 120 years ago to the current year.

	Underlying Data Type
	can be DateTime, string, timestamp, or array (see the input option)

	Rendered as
	can be three select boxes or 1 or 3 text boxes, based on the widget option

	Options
	
	years

	Inherited
options
	
	widget

	input

	months

	days

	format

	pattern

	data_timezone

	user_timezone

	Parent type
	date

	Class
	Symfony\Component\Form\Extension\Core\Type\BirthdayType

Field Options

years

type: array default: 120 years ago to the current year

List of years available to the year field type. This option is only
relevant when the widget option is set to choice.

Inherited options

These options inherit from the date type:

widget

type: string default: choice

The basic way in which this field should be rendered. Can be one of the following:

	choice: renders three select inputs. The order of the selects is defined
in the pattern option.

	text: renders a three field input of type text (month, day, year).

	single_text: renders a single input of type text. User’s input is validated
based on the format option.

input

type: string default: datetime

The format of the input data - i.e. the format that the date is stored on
your underlying object. Valid values are:

	string (e.g. 2011-06-05)

	datetime (a DateTime object)

	array (e.g. array('year' => 2011, 'month' => 06, 'day' => 05))

	timestamp (e.g. 1307232000)

The value that comes back from the form will also be normalized back into
this format.

months

type: array default: 1 to 12

List of months available to the month field type. This option is only relevant
when the widget option is set to choice.

days

type: array default: 1 to 31

List of days available to the day field type. This option is only relevant
when the widget option is set to choice:

'days' => range(1,31)

format

type: integer or string default: IntlDateFormatter::MEDIUM

Option passed to the IntlDateFormatter class, used to transform user input
into the proper format. This is critical when the widget option is
set to single_text, and will define how the user will input the data.
By default, the format is determined based on the current user locale; you
can override it by passing the format as a string.

For more information on valid formats, see Date/Time Format Syntax [http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax]. For
example, to render a single text box that expects the user to end yyyy-MM-dd,
use the following options:

$builder->add('date_created', 'date', array(
 'widget' => 'single_text',
 'format' => 'yyyy-MM-dd',
));

pattern

type: string

This option is only relevant when the widget is set to choice.
The default pattern is based off the format option, and tries to
match the characters M, d, and y in the format pattern. If
no match is found, the default is the string {{ year }}-{{ month }}-{{ day }}.
Tokens for this option include:

	{{ year }}: Replaced with the year widget

	{{ month }}: Replaced with the month widget

	{{ day }}: Replaced with the day widget

data_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the
PHP supported timezones [http://php.net/manual/en/timezones.php]

user_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also
the data that the user submits). This must be one of the PHP supported timezones [http://php.net/manual/en/timezones.php]

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

checkbox Field Type

Creates a single input checkbox. This should always be used for a field that
has a Boolean value: if the box is checked, the field will be set to true,
if the box is unchecked, the value will be set to false.

	Rendered as
	input text field

	Options
	
	value

	Inherited
options
	
	required

	label

	read_only

	error_bubbling

	Parent type
	field

	Class
	Symfony\Component\Form\Extension\Core\Type\CheckboxType

Example Usage

$builder->add('public', 'checkbox', array(
 'label' => 'Show this entry publicly?',
 'required' => false,
));

Field Options

value

type: mixed default: 1

The value that’s actually used as the value for the checkbox. This does
not affect the value that’s set on your object.

Inherited options

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

choice Field Type

A multi-purpose field used to allow the user to “choose” one or more options.
It can be rendered as a select tag, radio buttons, or checkboxes.

To use this field, you must specify either the choice_list or choices
option.

	Rendered as
	can be various tags (see below)

	Options
	
	choices

	choice_list

	multiple

	expanded

	preferred_choices

	empty_value

	empty_data

	Inherited
options
	
	required

	label

	read_only

	error_bubbling

	Parent type
	form (if expanded), field otherwise

	Class
	Symfony\Component\Form\Extension\Core\Type\ChoiceType

Example Usage

The easiest way to use this field is to specify the choices directly via the
choices option. The key of the array becomes the value that’s actually
set on your underlying object (e.g. m), while the value is what the
user sees on the form (e.g. Male).

$builder->add('gender', 'choice', array(
 'choices' => array('m' => 'Male', 'f' => 'Female'),
 'required' => false,
));

By setting multiple to true, you can allow the user to choose multiple
values. The widget will be rendered as a multiple select tag or a series
of checkboxes depending on the expanded option:

$builder->add('availability', 'choice', array(
 'choices' => array(
 'morning' => 'Morning',
 'afternoon' => 'Afternoon',
 'evening' => 'Evening',
),
 'multiple' => true,
));

You can also use the choice_list option, which takes an object that can
specify the choices for your widget.

Select tag, Checkboxes or Radio Buttons

This field may be rendered as one of several different HTML fields, depending
on the expanded and multiple options:

	element type
	expanded
	multiple

	select tag
	false
	false

	select tag (with multiple attribute)
	false
	true

	radio buttons
	true
	false

	checkboxes
	true
	true

Field Options

choices

type: array default: array()

This is the most basic way to specify the choices that should be used
by this field. The choices option is an array, where the array key
is the item value and the array value is the item’s label:

$builder->add('gender', 'choice', array(
 'choices' => array('m' => 'Male', 'f' => 'Female')
));

choice_list

type: Symfony\Component\Form\Extension\Core\ChoiceList\ChoiceListInterface

This is one way of specifying the options to be used for this field.
The choice_list option must be an instance of the ChoiceListInterface.
For more advanced cases, a custom class that implements the interface
can be created to supply the choices.

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed
to choosing just one option). Depending on the value of the expanded
option, this will render either a select tag or checkboxes if true and
a select tag or radio buttons if false. The returned value will be an array.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending
on the multiple value). If false, a select element will be rendered.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be
moved to the top of the select menu. The following would move the “Baz” option
to the top, with a visual separator between it and the rest of the options:

$builder->add('foo_choices', 'choice', array(
 'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
 'preferred_choices' => array('baz'),
));

Note that preferred choices are only meaningful when rendering as a select
element (i.e. expanded is false). The preferred choices and normal choices
are separated visually by a set of dotted lines (i.e. -------------------).
This can be customized when rendering the field:

	Twig{{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

	PHP<?php echo $view['form']->widget($form['foo_choices'], array('separator' => '=====')) ?>

empty_value

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if both
the expanded and multiple options are set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

empty_data

type: mixed default: array() if multiple or expanded, '' otherwise

This option determines what value the field will return when the empty_value
choice is selected.

For example, if you want the gender field to be set to null when no
value is selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

Inherited options

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

collection Field Type

This field type is used to render a “collection” of some field or form. In
the easiest sense, it could be an array of text fields that populate
an array emails field. In more complex examples, you can embed entire
forms, which is useful when creating forms that expose one-to-many relationships
(e.g. a product from where you can manage many related product photos).

	Rendered as
	depends on the type option

	Options
	
	type

	options

	allow_add

	allow_delete

	prototype

	Inherited
options
	
	label

	error_bubbling

	by_reference

	Parent type
	form

	Class
	Symfony\Component\Form\Extension\Core\Type\CollectionType

Basic Usage

This type is used when you want to manage a collection of similar items in
a form. For example, suppose you have an emails field that corresponds
to an array of email addresses. In the form, you want to expose each email
address as its own input text box:

$builder->add('emails', 'collection', array(
 // each item in the array will be an "email" field
 'type' => 'email',
 // these options are passed to each "email" type
 'options' => array(
 'required' => false,
 'attr' => array('class' => 'email-box')
),
));

The simplest way to render this is all at once:

	Twig{{ form_row(form.emails) }}

	PHP<?php echo $view['form']->row($form['emails]) ?>

A much more flexible method would look like this:

	Twig{{ form_label(form.emails) }}
{{ form_errors(form.emails) }}

{% for emailField in form.emails %}

 {{ form_errors(emailField) }}
 {{ form_widget(emailField) }}

{% endfor %}

	PHP<?php echo $view['form']->label($form['emails']) ?>
<?php echo $view['form']->errors($form['emails']) ?>

{% for emailField in form.emails %}
<?php foreach ($form['emails'] as $emailField): ?>

 <?php echo $view['form']->errors($emailField) ?>
 <?php echo $view['form']->widget($emailField) ?>

<?php endforeach; ?>

In both cases, no input fields would render unless your emails data array
already contained some emails.

In this simple example, it’s still impossible to add new addresses or remove
existing addresses. Adding new addresses is possible by using the allow_add
option (and optionally the prototype option) (see example below). Removing
emails from the emails array is possible with the allow_delete option.

Adding and Removing items

If allow_add is set to true, then if any unrecognized items are submitted,
they’ll be added seamlessly to the array of items. This is great in theory,
but takes a little bit more effort in practice to get the client-side JavaScript
correct.

Following along with the previous example, suppose you start with two
emails in the emails data array. In that case, two input fields will
be rendered that will look something like this (depending on the name of
your form):

<input type="email" id="form_emails_1" name="form[emails][0]" value="foo@foo.com" />
<input type="email" id="form_emails_1" name="form[emails][1]" value="bar@bar.com" />

To allow your user to add another email, just set allow_add to true
and - via JavaScript - render another field with the name form[emails][2]
(and so on for more and more fields).

To help make this easier, setting the prototype option to true allows
you to render a “template” field, which you can then use in your JavaScript
to help you dynamically create these new fields. A rendered prototype field
will look like this:

<input type="email" id="form_emails_$$name$$" name="form[emails][$$name$$]" value="" />

By replacing $$name$$ with some unique value (e.g. 2),
you can build and insert new HTML fields into your form.

Using jQuery, a simple example might look like this. If you’re rendering
your collection fields all at once (e.g. form_row(form.emails)), then
things are even easier because the data-prototype attribute is rendered
automatically for you (with a slight difference - see note below) and all
you need is the JavaScript:

	Twig<form action="..." method="POST" {{ form_enctype(form) }}>
 {# ... #}

 {# store the prototype on the data-prototype attribute #}
 <ul id="email-fields-list" data-prototype="{{ form_widget(form.emails.get('prototype')) | e }}">
 {% for emailField in form.emails %}

 {{ form_errors(emailField) }}
 {{ form_widget(emailField) }}

 {% endfor %}

 Add another email

 {# ... #}
</form>

<script type="text/javascript">
 // keep track of how many email fields have been rendered
 var emailCount = '{{ form.emails | length }}';

 jQuery(document).ready(function() {
 jQuery('#add-another-email').click(function() {
 var emailList = jQuery('#email-fields-list');

 // grab the prototype template
 var newWidget = emailList.attr('data-prototype');
 // replace the "$$name$$" used in the id and name of the prototype
 // with a number that's unique to our emails
 // end name attribute looks like name="contact[emails][2]"
 newWidget = newWidget.replace(/\$\$name\$\$/g, emailCount);
 emailCount++;

 // create a new list element and add it to our list
 var newLi = jQuery('').html(newWidget);
 newLi.appendTo(jQuery('#email-fields-list'));

 return false;
 });
 })
</script>

Tip

If you’re rendering the entire collection at once, then the prototype
is automatically available on the data-prototype attribute of the
element (e.g. div or table) that surrounds your collection. The
only difference is that the entire “form row” is rendered for you, meaning
you wouldn’t have to wrap it in any container element like we’ve done
above.

Field Options

type

type: string or Symfony\Component\Form\FormTypeInterface required

This is the field type for each item in this collection (e.g. text, choice,
etc). For example, if you have an array of email addresses, you’d use the
:doc`email</reference/forms/types/email>` type. If you want to embed
a collection of some other form, create a new instance of your form type
and pass it as this option.

options

type: array default: array()

This is the array that’s passed to the form type specified in the type
option. For example, if you used the :doc`choice</reference/forms/types/choice>`
type as your type option (e.g. for a collection of drop-down menus), then
you’d need to at least pass the choices option to the underlying type:

$builder->add('favorite_cities', 'collection', array(
 'type' => 'choice',
 'options' => array(
 'choices' => array(
 'nashville' => 'Nashville',
 'paris' => 'Paris',
 'berlin' => 'Berlin',
 'london' => 'London',
),
),
));

allow_add

type: Boolean default: false

If set to true, then if unrecognized items are submitted to the collection,
they will be added as new items. The ending array will contain the existing
items as well as the new item that was in the submitted data. See the above
example for more details.

The prototype option can be used to help render a prototype item that
can be used - with JavaScript - to create new form items dynamically on the
client side. For more information, see the above example and Allowing “new” todos with the “prototype”.

Caution

If you’re embedding entire other forms to reflect a one-to-many database
relationship, you may need to manually ensure that the foreign key of
these new objects is set correctly. If you’re using Doctrine, this won’t
happen automatically. See the above link for more details.

allow_delete

type: Boolean default: false

If set to true, then if an existing item is not contained in the submitted
data, it will be correctly absent from the final array of items. This means
that you can implement a “delete” button via JavaScript which simply removes
a form element from the DOM. When the user submits the form, its absence
from the submitted data will mean that it’s removed from the final array.

For more information, see Allowing todos to be removed.

Caution

Be careful when using this option when you’re embedding a collection
of objects. In this case, if any embedded forms are removed, they will
correctly be missing from the final array of objects. However, depending on
your application logic, when one of those objects is removed, you may want
to delete it or at least remove its foreign key reference to the main object.
None of this is handled automatically. For more information, see
Allowing todos to be removed.

prototype

type: Boolean default: true

This option is useful when using the allow_add option. If true (and
if allow_add is also true), a special “prototype” attribute will be
available so that you can render a “template” example on your page of what
a new element should look like. The name attribute given to this element
is $$name$$. This allows you to add a “add another” button via JavaScript
which reads the prototype, replaces $$name$$ with some unique name or
number, and render it inside your form. When submitted, it will be added
to your underlying array due to the allow_add option.

The prototype field can be rendered via the prototype variable in the
collection field:

	Twig{{ form_row(form.emails.get('prototype')) }}

	PHP<?php echo $view['form']->row($form['emails']->get('prototype')) ?>

Note that all you really need is the “widget”, but depending on how you’re
rendering your form, having the entire “form row” may be easier for you.

Tip

If you’re rendering the entire collection field at once, then the prototype
form row is automatically available on the data-prototype attribute
of the element (e.g. div or table) that surrounds your collection.

For details on how to actually use this option, see the above example as well
as Allowing “new” todos with the “prototype”.

Inherited options

These options inherit from the field type.
Not all options are listed here - only the most applicable to this type:

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

error_bubbling

type: Boolean default: true

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

by_reference

type: Boolean default: true

If the underlying value of a field is an object and this option is set to
true, then the resulting object won’t actually be set when binding the
form. For example, if you have a protected author field on your underlying
object which is an instance of some Author object, then if by_reference
is false, that Author object will be updated with the submitted data,
but setAuthor will not actually be called on the main object. Since the
Author object is a reference, this only really makes a difference if
you have some custom logic in your setAuthor method that you want to
guarantee will be run. In that case, set this option to false.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

country Field Type

The country type is a subset of the ChoiceType that displays countries
of the world. As an added bonus, the country names are displayed in the language
of the user.

The “value” for each country is the two-letter country code.

Note

The locale of your user is guessed using Locale::getDefault() [http://php.net/manual/en/locale.getdefault.php]

Unlike the choice type, you don’t need to specify a choices or
choice_list option as the field type automatically uses all of the countries
of the world. You can specify either of these options manually, but then
you should just use the choice type directly.

	Rendered as
	can be various tags (see Select tag, Checkboxes or Radio Buttons)

	Inherited
options
	
	multiple

	expanded

	preferred_choices

	empty_value

	error_bubbling

	required

	label

	read_only

	Parent type
	choice

	Class
	Symfony\Component\Form\Extension\Core\Type\CountryType

Inherited options

These options inherit from the choice type:

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed
to choosing just one option). Depending on the value of the expanded
option, this will render either a select tag or checkboxes if true and
a select tag or radio buttons if false. The returned value will be an array.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending
on the multiple value). If false, a select element will be rendered.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be
moved to the top of the select menu. The following would move the “Baz” option
to the top, with a visual separator between it and the rest of the options:

$builder->add('foo_choices', 'choice', array(
 'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
 'preferred_choices' => array('baz'),
));

Note that preferred choices are only meaningful when rendering as a select
element (i.e. expanded is false). The preferred choices and normal choices
are separated visually by a set of dotted lines (i.e. -------------------).
This can be customized when rendering the field:

	Twig{{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

	PHP<?php echo $view['form']->widget($form['foo_choices'], array('separator' => '=====')) ?>

empty_value

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if both
the expanded and multiple options are set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

csrf Field Type

The csrf type is a hidden input field containing a CSRF token.

	Rendered as
	input hidden field

	Options
	
	csrf_provider

	intention

	property_path

	Parent type
	hidden

	Class
	Symfony\Component\Form\Extension\Csrf\Type\CsrfType

Field Options

csrf_provider

type: Symfony\Component\Form\CsrfProvider\CsrfProviderInterface

The CsrfProviderInterface object that should generate the CSRF token.
If not set, this defaults to the default provider.

intention

type: string

An optional unique identifier used to generate the CSRF token.

property_path

type: any default: the field's value

Fields display a property value of the form’s domain object by default. When
the form is submitted, the submitted value is written back into the object.

If you want to override the property that a field reads from and writes to,
you can set the property_path option. Its default value is the field’s
name.

If you wish the field to be ignored when reading or writing to the object
you can set the property_path option to false

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

date Field Type

A field that allows the user to modify date information via a variety of
different HTML elements.

The underlying data used for this field type can be a DateTime object,
a string, a timestamp or an array. As long as the input option is set
correctly, the field will take care of all of the details.

The field can be rendered as a single text box, three text boxes (month,
day, and year) or three select boxes (see the widget_ option).

	Underlying Data Type
	can be DateTime, string, timestamp, or array (see the input option)

	Rendered as
	single text box or three select fields

	Options
	
	widget

	input

	empty_value

	years

	months

	days

	format

	pattern

	data_timezone

	user_timezone

	Parent type
	field (if text), form otherwise

	Class
	Symfony\Component\Form\Extension\Core\Type\DateType

Basic Usage

This field type is highly configurable, but easy to use. The most important
options are input and widget.

Suppose that you have a publishedAt field whose underlying date is a
DateTime object. The following configures the date type for that
field as three different choice fields:

$builder->add('publishedAt', 'date', array(
 'input' => 'datetime',
 'widget' => 'choice',
));

The input option must be changed to match the type of the underlying
date data. For example, if the publishedAt field’s data were a unix timestamp,
you’d need to set input to timestamp:

$builder->add('publishedAt', 'date', array(
 'input' => 'timestamp',
 'widget' => 'choice',
));

The field also supports an array and string as valid input option
values.

Field Options

widget

type: string default: choice

The basic way in which this field should be rendered. Can be one of the following:

	choice: renders three select inputs. The order of the selects is defined
in the pattern option.

	text: renders a three field input of type text (month, day, year).

	single_text: renders a single input of type text. User’s input is validated
based on the format option.

input

type: string default: datetime

The format of the input data - i.e. the format that the date is stored on
your underlying object. Valid values are:

	string (e.g. 2011-06-05)

	datetime (a DateTime object)

	array (e.g. array('year' => 2011, 'month' => 06, 'day' => 05))

	timestamp (e.g. 1307232000)

The value that comes back from the form will also be normalized back into
this format.

empty_value

type: string or array

If your widget option is set to choice, then this field will be represented
as a series of select boxes. The empty_value option can be used to
add a “blank” entry to the top of each select box:

$builder->add('dueDate', 'date', array(
 'empty_value' => '',
));

Alternatively, you can specify a string to be displayed for the “blank” value:

$builder->add('dueDate', 'date', array(
 'empty_value' => array('year' => 'Year', 'month' => 'Month', 'day' => 'Day')
));

years

type: array default: five years before to five years after the current year

List of years available to the year field type. This option is only relevant
when the widget option is set to choice.

months

type: array default: 1 to 12

List of months available to the month field type. This option is only relevant
when the widget option is set to choice.

days

type: array default: 1 to 31

List of days available to the day field type. This option is only relevant
when the widget option is set to choice:

'days' => range(1,31)

format

type: integer or string default: IntlDateFormatter::MEDIUM

Option passed to the IntlDateFormatter class, used to transform user input
into the proper format. This is critical when the widget option is
set to single_text, and will define how the user will input the data.
By default, the format is determined based on the current user locale; you
can override it by passing the format as a string.

For more information on valid formats, see Date/Time Format Syntax [http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax]. For
example, to render a single text box that expects the user to end yyyy-MM-dd,
use the following options:

$builder->add('date_created', 'date', array(
 'widget' => 'single_text',
 'format' => 'yyyy-MM-dd',
));

pattern

type: string

This option is only relevant when the widget is set to choice.
The default pattern is based off the format option, and tries to
match the characters M, d, and y in the format pattern. If
no match is found, the default is the string {{ year }}-{{ month }}-{{ day }}.
Tokens for this option include:

	{{ year }}: Replaced with the year widget

	{{ month }}: Replaced with the month widget

	{{ day }}: Replaced with the day widget

data_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the
PHP supported timezones [http://php.net/manual/en/timezones.php]

user_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also
the data that the user submits). This must be one of the PHP supported timezones [http://php.net/manual/en/timezones.php]

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

datetime Field Type

This field type allows the user to modify data that represents a specific
date and time (e.g. 1984-06-05 12:15:30).

Can be rendered as a text input or select tags. The underlying format of the
data can be a DateTime object, a string, a timestamp or an array.

	Underlying Data Type
	can be DateTime, string, timestamp, or array (see the input option)

	Rendered as
	single text box or three select fields

	Options
	
	date_widget

	time_widget

	input

	date_format

	hours

	minutes

	seconds

	years

	months

	days

	with_seconds

	data_timezone

	user_timezone

	Parent type
	form

	Class
	Symfony\Component\Form\Extension\Core\Type\DateTimeType

Field Options

date_widget

type: string default: choice

Defines the widget option for the date type

time_widget

type: string default: choice

Defines the widget option for the time type

input

type: string default: datetime

The format of the input data - i.e. the format that the date is stored on
your underlying object. Valid values are:

	string (e.g. 2011-06-05 12:15:00)

	datetime (a DateTime object)

	array (e.g. array(2011, 06, 05, 12, 15, 0))

	timestamp (e.g. 1307276100)

The value that comes back from the form will also be normalized back into
this format.

date_format

type: integer or string default: IntlDateFormatter::MEDIUM

Defines the format option that will be passed down to the date field.

hours

type: integer default: 1 to 23

List of hours available to the hours field type. This option is only relevant
when the widget option is set to choice.

minutes

type: integer default: 1 to 59

List of minutes available to the minutes field type. This option is only
relevant when the widget option is set to choice.

seconds

type: integer default: 1 to 59

List of seconds available to the seconds field type. This option is only
relevant when the widget option is set to choice.

years

type: array default: five years before to five years after the current year

List of years available to the year field type. This option is only relevant
when the widget option is set to choice.

months

type: array default: 1 to 12

List of months available to the month field type. This option is only relevant
when the widget option is set to choice.

days

type: array default: 1 to 31

List of days available to the day field type. This option is only relevant
when the widget option is set to choice:

'days' => range(1,31)

with_seconds

type: Boolean default: false

Whether or not to include seconds in the input. This will result in an additional
input to capture seconds.

data_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the
PHP supported timezones [http://php.net/manual/en/timezones.php]

user_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also
the data that the user submits). This must be one of the PHP supported timezones [http://php.net/manual/en/timezones.php]

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

email Field Type

The email field is a text field that is rendered using the HTML5
<input type="email" /> tag.

	Rendered as
	input email field (a text box)

	Inherited
options
	
	max_length

	required

	label

	trim

	read_only

	error_bubbling

	Parent type
	field

	Class
	Symfony\Component\Form\Extension\Core\Type\EmailType

Inherited Options

These options inherit from the field type:

max_length

type: integer

This option is used to add a max_length attribute, which is used by
some browsers to limit the amount of text in a field.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped
via the trim() function when the data is bound. This guarantees that
if a value is submitted with extra whitespace, it will be removed before
the value is merged back onto the underlying object.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

entity Field Type

A special choice field that’s designed to load options from a Doctrine
entity. For example, if you have a Category entity, you could use this
field to display a select field of all, or some, of the Category
objects from the database.

	Rendered as
	can be various tags (see Select tag, Checkboxes or Radio Buttons)

	Options
	
	class

	property

	query_builder

	em

	Inherited
options
	
	required

	label

	multiple

	expanded

	preferred_choices

	empty_value

	read_only

	error_bubbling

	Parent type
	choice

	Class
	Symfony\Bridge\Doctrine\Form\Type\EntityType

Basic Usage

The entity type has just one required option: the entity which should
be listed inside the choice field:

$builder->add('users', 'entity', array(
 'class' => 'AcmeHelloBundle:User',
));

In this case, all User objects will be loaded from the database and rendered
as either a select tag, a set or radio buttons or a series of checkboxes
(this depends on the multiple and expanded values).

Using a Custom Query for the Entities

If you need to specify a custom query to use when fetching the entities (e.g.
you only want to return some entities, or need to order them), use the query_builder
option. The easiest way to use the option is as follows:

use Doctrine\ORM\EntityRepository;
// ...

$builder->add('users', 'entity', array(
 'class' => 'AcmeHelloBundle:User',
 'query_builder' => function(EntityRepository $er) {
 return $er->createQueryBuilder('u')
 ->orderBy('u.username', 'ASC');
 },
));

Select tag, Checkboxes or Radio Buttons

This field may be rendered as one of several different HTML fields, depending
on the expanded and multiple options:

	element type
	expanded
	multiple

	select tag
	false
	false

	select tag (with multiple attribute)
	false
	true

	radio buttons
	true
	false

	checkboxes
	true
	true

Field Options

class

type: string required

The class of your entity (e.g. AcmeStoreBundle:Category). This can be
a fully-qualified class name (e.g. Acme\StoreBundle\Entity\Category)
or the short alias name (as shown prior).

property

type: string

This is the property that should be used for displaying the entities
as text in the HTML element. If left blank, the entity object will be
cast into a string and so must have a __toString() method.

query_builder

type: Doctrine\ORM\QueryBuilder or a Closure

If specified, this is used to query the subset of options (and their
order) that should be used for the field. The value of this option can
either be a QueryBuilder object or a Closure. If using a Closure,
it should take a single argument, which is the EntityRepository of
the entity.

em

type: string default: the default entity manager

If specified, the specified entity manager will be used to load the choices
instead of the default entity manager.

Inherited options

These options inherit from the choice type:

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed
to choosing just one option). Depending on the value of the expanded
option, this will render either a select tag or checkboxes if true and
a select tag or radio buttons if false. The returned value will be an array.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending
on the multiple value). If false, a select element will be rendered.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be
moved to the top of the select menu. The following would move the “Baz” option
to the top, with a visual separator between it and the rest of the options:

$builder->add('foo_choices', 'choice', array(
 'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
 'preferred_choices' => array('baz'),
));

Note that preferred choices are only meaningful when rendering as a select
element (i.e. expanded is false). The preferred choices and normal choices
are separated visually by a set of dotted lines (i.e. -------------------).
This can be customized when rendering the field:

	Twig{{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

	PHP<?php echo $view['form']->widget($form['foo_choices'], array('separator' => '=====')) ?>

empty_value

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if both
the expanded and multiple options are set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

file Field Type

The file type represents a file input in your form.

	Rendered as
	input file field

	Inherited
options
	
	required

	label

	read_only

	error_bubbling

	Parent type
	form

	Class
	Symfony\Component\Form\Extension\Core\Type\FileType

Basic Usage

Let’s say you have this form definition:

$builder->add('attachment', 'file');

Caution

Don’t forget to add the enctype attribute in the form tag: <form
action="#" method="post" {{ form_enctype(form) }}>.

When the form is submitted, the attachment field will be an instance of
Symfony\Component\HttpFoundation\File\UploadedFile. It can be
used to move the attachment file to a permanent location:

use Symfony\Component\HttpFoundation\File\UploadedFile;

public function uploadAction()
{
 // ...

 if ($form->isValid()) {
 $someNewFilename = ...

 $form['attachment']->getData()->move($dir, $someNewFilename);

 // ...
 }

 // ...
}

The move() method takes a directory and a file name as its arguments.
You might calculate the filename in one of the following ways:

// use the original file name
$file->move($dir, $file->getClientOriginalName());

// compute a random name and try to guess the extension (more secure)
$extension = $file->guessExtension();
if (!$extension) {
 // extension cannot be guessed
 $extension = 'bin';
}
$file->move($dir, rand(1, 99999).'.'.$extension);

Using the original name via getClientOriginalName() is not safe as it
could have been manipulated by the end-user. Moreover, it can contain
characters that are not allowed in file names. You should sanitize the name
before using it directly.

Read the cookbook for an example of
how to manage a file upload associated with a Doctrine entity.

Inherited options

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

The Abstract “field” Type

The field form type is not an actual field type you use, but rather
functions as the parent field type for many other fields.

The field type predefines a couple of options:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

	disabled [type: Boolean, default: false]
If you don’t want a user to modify the value of a field, you can set
the disabled option to true. Any submitted value will be ignored.

use Symfony\Component\Form\TextField

$field = new TextField('status', array(
 'data' => 'Old data',
 'disabled' => true,
));
$field->submit('New data');

// prints "Old data"
echo $field->getData();

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped
via the trim() function when the data is bound. This guarantees that
if a value is submitted with extra whitespace, it will be removed before
the value is merged back onto the underlying object.

property_path

type: any default: the field's value

Fields display a property value of the form’s domain object by default. When
the form is submitted, the submitted value is written back into the object.

If you want to override the property that a field reads from and writes to,
you can set the property_path option. Its default value is the field’s
name.

If you wish the field to be ignored when reading or writing to the object
you can set the property_path option to false

attr

type: array default: Empty array

If you want to add extra attributes to HTML field representation
you can use attr option. It’s an associative array with HTML attribute
as a key. This can be useful when you need to set a custom class for some widget:

$builder->add('body', 'textarea', array(
 'attr' => array('class' => 'tinymce'),
));

translation_domain

type: string default: messages

This is the translation domain that will be used for any labels or options
that are rendered for this field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

form Field Type

See Symfony\Component\Form\Extension\Core\Type\FormType.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

hidden Field Type

The hidden type represents a hidden input field.

	Rendered as
	input hidden field

	Inherited
options
	
	data

	property_path

	Parent type
	field

	Class
	Symfony\Component\Form\Extension\Core\Type\HiddenType

Inherited Options

These options inherit from the field type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

property_path

type: any default: the field's value

Fields display a property value of the form’s domain object by default. When
the form is submitted, the submitted value is written back into the object.

If you want to override the property that a field reads from and writes to,
you can set the property_path option. Its default value is the field’s
name.

If you wish the field to be ignored when reading or writing to the object
you can set the property_path option to false

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

integer Field Type

Renders an input “number” field. Basically, this is a text field that’s good
at handling data that’s in an integer form. The input number field looks
like a text box, except that - if the user’s browser supports HTML5 - it will
have some extra frontend functionality.

This field has different options on how to handle input values that aren’t
integers. By default, all non-integer values (e.g. 6.78) will round down (e.g. 6).

	Rendered as
	input text field

	Options
	
	rounding_mode

	grouping

	Inherited
options
	
	required

	label

	read_only

	error_bubbling

	Parent type
	field

	Class
	Symfony\Component\Form\Extension\Core\Type\IntegerType

Field Options

rounding_mode

type: integer default: IntegerToLocalizedStringTransformer::ROUND_DOWN

By default, if the user enters a non-integer number, it will be rounded
down. There are several other rounding methods, and each is a constant
on the Symfony\Component\Form\Extension\Core\DataTransformer\IntegerToLocalizedStringTransformer:

	IntegerToLocalizedStringTransformer::ROUND_DOWN Rounding mode to
round towards zero.

	IntegerToLocalizedStringTransformer::ROUND_FLOOR Rounding mode to
round towards negative infinity.

	IntegerToLocalizedStringTransformer::ROUND_UP Rounding mode to round
away from zero.

	IntegerToLocalizedStringTransformer::ROUND_CEILING Rounding mode
to round towards positive infinity.

grouping

type: integer default: false

This value is used internally as the NumberFormatter::GROUPING_USED value when using PHP’s NumberFormatter class. Its documentation is non-existent, but it appears that if you set this to true, numbers will be grouped with a comma or period (depending on your locale): 12345.123 would display as 12,345.123.

Inherited options

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

language Field Type

The language type is a subset of the ChoiceType that allows the user
to select from a large list of languages. As an added bonus, the language names
are displayed in the language of the user.

The “value” for each locale is either the two letter ISO639-1 language code
(e.g. fr).

Note

The locale of your user is guessed using Locale::getDefault() [http://php.net/manual/en/locale.getdefault.php]

Unlike the choice type, you don’t need to specify a choices or
choice_list option as the field type automatically uses a large list
of languages. You can specify either of these options manually, but then
you should just use the choice type directly.

	Rendered as
	can be various tags (see Select tag, Checkboxes or Radio Buttons)

	Inherited
options
	
	multiple

	expanded

	preferred_choices

	empty_value

	error_bubbling

	required

	label

	read_only

	Parent type
	choice

	Class
	Symfony\Component\Form\Extension\Core\Type\LanguageType

Inherited Options

These options inherit from the choice type:

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed
to choosing just one option). Depending on the value of the expanded
option, this will render either a select tag or checkboxes if true and
a select tag or radio buttons if false. The returned value will be an array.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending
on the multiple value). If false, a select element will be rendered.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be
moved to the top of the select menu. The following would move the “Baz” option
to the top, with a visual separator between it and the rest of the options:

$builder->add('foo_choices', 'choice', array(
 'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
 'preferred_choices' => array('baz'),
));

Note that preferred choices are only meaningful when rendering as a select
element (i.e. expanded is false). The preferred choices and normal choices
are separated visually by a set of dotted lines (i.e. -------------------).
This can be customized when rendering the field:

	Twig{{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

	PHP<?php echo $view['form']->widget($form['foo_choices'], array('separator' => '=====')) ?>

empty_value

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if both
the expanded and multiple options are set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

locale Field Type

The locale type is a subset of the ChoiceType that allows the user
to select from a large list of locales (language+country). As an added bonus,
the locale names are displayed in the language of the user.

The “value” for each locale is either the two letter ISO639-1 language code
(e.g. fr), or the language code followed by an underscore (_), then
the ISO3166 country code (e.g. fr_FR for French/France).

Note

The locale of your user is guessed using Locale::getDefault() [http://php.net/manual/en/locale.getdefault.php]

Unlike the choice type, you don’t need to specify a choices or
choice_list option as the field type automatically uses a large list
of locales. You can specify either of these options manually, but then
you should just use the choice type directly.

	Rendered as
	can be various tags (see Select tag, Checkboxes or Radio Buttons)

	Inherited
options
	
	multiple

	expanded

	preferred_choices

	empty_value

	error_bubbling

	required

	label

	read_only

	Parent type
	choice

	Class
	Symfony\Component\Form\Extension\Core\Type\LanguageType

Inherited options

These options inherit from the choice type:

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed
to choosing just one option). Depending on the value of the expanded
option, this will render either a select tag or checkboxes if true and
a select tag or radio buttons if false. The returned value will be an array.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending
on the multiple value). If false, a select element will be rendered.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be
moved to the top of the select menu. The following would move the “Baz” option
to the top, with a visual separator between it and the rest of the options:

$builder->add('foo_choices', 'choice', array(
 'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
 'preferred_choices' => array('baz'),
));

Note that preferred choices are only meaningful when rendering as a select
element (i.e. expanded is false). The preferred choices and normal choices
are separated visually by a set of dotted lines (i.e. -------------------).
This can be customized when rendering the field:

	Twig{{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

	PHP<?php echo $view['form']->widget($form['foo_choices'], array('separator' => '=====')) ?>

empty_value

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if both
the expanded and multiple options are set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

money Field Type

Renders an input text field and specializes in handling submitted “money”
data.

This field type allows you to specify a currency, whose symbol is rendered
next to the text field. There are also several other options for customizing
how the input and output of the data is handled.

	Rendered as
	input text field

	Options
	
	currency

	divisor

	precision

	grouping

	Inherited
options
	
	required

	label

	read_only

	error_bubbling

	Parent type
	field

	Class
	Symfony\Component\Form\Extension\Core\Type\MoneyType

Field Options

currency

type: string default: EUR

Specifies the currency that the money is being specified in. This determines
the currency symbol that should be shown by the text box. Depending on
the currency - the currency symbol may be shown before or after the input
text field.

This can also be set to false to hide the currency symbol.

divisor

type: integer default: 1

If, for some reason, you need to divide your starting value by a number
before rendering it to the user, you can use the divisor option.
For example:

$builder->add('price', 'money', array(
 'divisor' => 100,
));

In this case, if the price field is set to 9900, then the value
99 will actually be rendered to the user. When the user submits the
value 99, it will be multiplied by 100 and 9900 will ultimately
be set back on your object.

precision

type: integer default: 2

For some reason, if you need some precision other than 2 decimal places,
you can modify this value. You probably won’t need to do this unless,
for example, you want to round to the nearest dollar (set the precision
to 0).

grouping

type: integer default: false

This value is used internally as the NumberFormatter::GROUPING_USED value when using PHP’s NumberFormatter class. Its documentation is non-existent, but it appears that if you set this to true, numbers will be grouped with a comma or period (depending on your locale): 12345.123 would display as 12,345.123.

Inherited Options

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

number Field Type

Renders an input text field and specializes in handling number input. This
type offers different options for the precision, rounding, and grouping that
you want to use for your number.

	Rendered as
	input text field

	Options
	
	rounding_mode

	precision

	grouping

	Inherited
options
	
	required

	label

	read_only

	error_bubbling

	Parent type
	field

	Class
	Symfony\Component\Form\Extension\Core\Type\NumberType

Field Options

precision

type: integer default: Locale-specific (usually around 3)

This specifies how many decimals will be allowed until the field rounds
the submitted value (via rounding_mode). For example, if precision
is set to 2, a submitted value of 20.123 will be rounded to,
for example, 20.12 (depending on your rounding_mode).

rounding_mode

type: integer default: IntegerToLocalizedStringTransformer::ROUND_HALFUP

If a submitted number needs to be rounded (based on the precision
option), you have several configurable options for that rounding. Each
option is a constant on the Symfony\Component\Form\Extension\Core\DataTransformer\IntegerToLocalizedStringTransformer:

	IntegerToLocalizedStringTransformer::ROUND_DOWN Rounding mode to
round towards zero.

	IntegerToLocalizedStringTransformer::ROUND_FLOOR Rounding mode to
round towards negative infinity.

	IntegerToLocalizedStringTransformer::ROUND_UP Rounding mode to round
away from zero.

	IntegerToLocalizedStringTransformer::ROUND_CEILING Rounding mode
to round towards positive infinity.

	IntegerToLocalizedStringTransformer::ROUND_HALFDOWN Rounding mode
to round towards “nearest neighbor” unless both neighbors are equidistant,
in which case round down.

	IntegerToLocalizedStringTransformer::ROUND_HALFEVEN Rounding mode
to round towards the “nearest neighbor” unless both neighbors are equidistant,
in which case, round towards the even neighbor.

	IntegerToLocalizedStringTransformer::ROUND_HALFUP Rounding mode to
round towards “nearest neighbor” unless both neighbors are equidistant,
in which case round up.

grouping

type: integer default: false

This value is used internally as the NumberFormatter::GROUPING_USED value when using PHP’s NumberFormatter class. Its documentation is non-existent, but it appears that if you set this to true, numbers will be grouped with a comma or period (depending on your locale): 12345.123 would display as 12,345.123.

Inherited Options

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

password Field Type

The password field renders an input password text box.

	Rendered as
	input password field

	Options
	
	always_empty

	Inherited
options
	
	max_length

	required

	label

	trim

	read_only

	error_bubbling

	Parent type
	text

	Class
	Symfony\Component\Form\Extension\Core\Type\PasswordType

Field Options

always_empty

type: Boolean default: true

If set to true, the field will always render blank, even if the corresponding
field has a value. When set to false, the password field will be rendered
with the value attribute set to its true value.

Put simply, if for some reason you want to render your password field
with the password value already entered into the box, set this to false.

Inherited Options

These options inherit from the field type:

max_length

type: integer

This option is used to add a max_length attribute, which is used by
some browsers to limit the amount of text in a field.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped
via the trim() function when the data is bound. This guarantees that
if a value is submitted with extra whitespace, it will be removed before
the value is merged back onto the underlying object.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

percent Field Type

The percent type renders an input text field and specializes in handling
percentage data. If your percentage data is stored as a decimal (e.g. .95),
you can use this field out-of-the-box. If you store your data as a number
(e.g. 95), you should set the type option to integer.

This field adds a percentage sign “%” after the input box.

	Rendered as
	input text field

	Options
	
	type

	precision

	Inherited
options
	
	required

	label

	read_only

	error_bubbling

	Parent type
	field

	Class
	Symfony\Component\Form\Extension\Core\Type\PercentType

Options

type

type: string default: fractional

This controls how your data is stored on your object. For example, a percentage
corresponding to “55%”, might be stored as .55 or 55 on your
object. The two “types” handle these two cases:

	fractional
If your data is stored as a decimal (e.g. .55), use this type.
The data will be multiplied by 100 before being shown to the
user (e.g. 55). The submitted data will be divided by 100
on form submit so that the decimal value is stored (.55);

	integer
If your data is stored as an integer (e.g. 55), then use this option.
The raw value (55) is shown to the user and stored on your object.
Note that this only works for integer values.

precision

type: integer default: 0

By default, the input numbers are are rounded. To allow for more decimal
places, use this option.

Inherited Options

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

radio Field Type

Creates a single radio button. This should always be used for a field that
has a Boolean value: if the radio button is selected, the field will be set
to true, if the button is not selected, the value will be set to false.

The radio type isn’t usually used directly. More commonly it’s used
internally by other types such as choice.
If you want to have a Boolean field, use checkbox.

	Rendered as
	input radio field

	Options
	
	value

	Inherited
options
	
	required

	label

	read_only

	error_bubbling

	Parent type
	field

	Class
	Symfony\Component\Form\Extension\Core\Type\RadioType

Field Options

value

type: mixed default: 1

The value that’s actually used as the value for the radio button. This does
not affect the value that’s set on your object.

Inherited Options

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

repeated Field Type

This is a special field “group”, that creates two identical fields whose
values must match (or a validation error is thrown). The most common use
is when you need the user to repeat his or her password or email to verify
accuracy.

	Rendered as
	input text field by default, but see type option

	Options
	
	type

	options

	first_name

	second_name

	Inherited
options
	
	invalid_message

	invalid_message_parameters

	error_bubbling

	Parent type
	field

	Class
	Symfony\Component\Form\Extension\Core\Type\RepeatedType

Example Usage

$builder->add('password', 'repeated', array(
 'type' => 'password',
 'invalid_message' => 'The password fields must match.',
 'options' => array('label' => 'Password'),
));

Upon a successful form submit, the value entered into both of the “password”
fields becomes the data of the password key. In other words, even though
two fields are actually rendered, the end data from the form is just the
single value (usually a string) that you need.

The most important option is type, which can be any field type and determines
the actual type of the two underlying fields. The options option is passed
to each of those individual fields, meaning - in this example - any option
supported by the password type can be passed in this array.

Validation

One of the key features of the repeated field is internal validation
(you don’t need to do anything to set this up) that forces the two fields
to have a matching value. If the two fields don’t match, an error will be
shown to the user.

The invalid_message is used to customize the error that will
be displayed when the two fields do not match each other.

Field Options

type

type: string default: text

The two underlying fields will be of this field type. For example, passing
a type of password will render two password fields.

options

type: array default: array()

This options array will be passed to each of the two underlying fields. In
other words, these are the options that customize the individual field types.
For example, if the type option is set to password, this array might
contain the options always_empty or required - both options that are
supported by the password field type.

first_name

type: string default: first

This is the actual field name to be used for the first field. This is mostly
meaningless, however, as the actual data entered into both of the fields will
be available under the key assigned to the repeated field itself (e.g.
password). However, if you don’t specify a label, this field name is used
to “guess” the label for you.

second_name

type: string default: second

The same as first_name, but for the second field.

Inherited options

These options inherit from the field type:

invalid_message

type: string default: This value is not valid

This is the validation error message that’s used when the data entered
is determined by internal validation of a field type. This might happen,
for example, if the user enters a string into a time
field that cannot be converted into a real time. For normal validation
messages (such as when setting a minimum length for a field), set the
validation messages with your validation rules
(reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to
include some variables in the string. This can be done by adding placeholders
to that option and including the variables in this option:

$builder->add('some_field', 'some_type', array(
 // ...
 'invalid_message' => 'You entered an invalid value - it should include %num% letters',
 'invalid_message_parameters' => array('%num%' => 6),
));

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

search Field Type

This renders an <input type="search" /> field, which is a text box with
special functionality supported by some browsers.

Read about the input search field at DiveIntoHTML5.info [http://diveintohtml5.info/forms.html#type-search]

	Rendered as
	input search field

	Inherited
options
	
	max_length

	required

	label

	trim

	read_only

	error_bubbling

	Parent type
	text

	Class
	Symfony\Component\Form\Extension\Core\Type\SearchType

Inherited Options

These options inherit from the field type:

max_length

type: integer

This option is used to add a max_length attribute, which is used by
some browsers to limit the amount of text in a field.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped
via the trim() function when the data is bound. This guarantees that
if a value is submitted with extra whitespace, it will be removed before
the value is merged back onto the underlying object.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

text Field Type

The text field represents the most basic input text field.

	Rendered as
	input text field

	Inherited
options
	
	max_length

	required

	label

	trim

	read_only

	error_bubbling

	Parent type
	field

	Class
	Symfony\Component\Form\Extension\Core\Type\TextType

Inherited Options

These options inherit from the field type:

max_length

type: integer

This option is used to add a max_length attribute, which is used by
some browsers to limit the amount of text in a field.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped
via the trim() function when the data is bound. This guarantees that
if a value is submitted with extra whitespace, it will be removed before
the value is merged back onto the underlying object.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

textarea Field Type

Renders a textarea HTML element.

	Rendered as
	textarea tag

	Inherited
options
	
	max_length

	required

	label

	trim

	read_only

	error_bubbling

	Parent type
	field

	Class
	Symfony\Component\Form\Extension\Core\Type\TextareaType

Inherited Options

These options inherit from the field type:

max_length

type: integer

This option is used to add a max_length attribute, which is used by
some browsers to limit the amount of text in a field.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped
via the trim() function when the data is bound. This guarantees that
if a value is submitted with extra whitespace, it will be removed before
the value is merged back onto the underlying object.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

time Field Type

A field to capture time input.

This can be rendered as a text field, a series of text fields (e.g. hour,
minute, second) or a series of select fields. The underlying data can be stored
as a DateTime object, a string, a timestamp or an array.

	Underlying Data Type
	can be DateTime, string, timestamp, or array (see the input option)

	Rendered as
	can be various tags (see below)

	Options
	
	widget

	input

	with_seconds

	hours

	minutes

	seconds

	data_timezone

	user_timezone

	Parent type
	form

	Class
	Symfony\Component\Form\Extension\Core\Type\TimeType

Basic Usage

This field type is highly configurable, but easy to use. The most important
options are input and widget.

Suppose that you have a startTime field whose underlying time data is a
DateTime object. The following configures the time type for that
field as three different choice fields:

$builder->add('startTime', 'time', array(
 'input' => 'datetime',
 'widget' => 'choice',
));

The input option must be changed to match the type of the underlying
date data. For example, if the startTime field’s data were a unix timestamp,
you’d need to set input to timestamp:

$builder->add('startTime', 'time', array(
 'input' => 'timestamp',
 'widget' => 'choice',
));

The field also supports an array and string as valid input option
values.

Field Options

widget

type: string default: choice

The basic way in which this field should be rendered. Can be one of the following:

	choice: renders two (or three if with_seconds is true) select inputs.

	text: renders a two or three text inputs (hour, minute, second).

	single_text: renders a single input of type text. User’s input will
be validated against the form hh:mm (or hh:mm:ss if using seconds).

input

type: string default: datetime

The format of the input data - i.e. the format that the date is stored on
your underlying object. Valid values are:

	string (e.g. 12:17:26)

	datetime (a DateTime object)

	array (e.g. array('hour' => 12, 'minute' => 17, 'second' => 26))

	timestamp (e.g. 1307232000)

The value that comes back from the form will also be normalized back into
this format.

with_seconds

type: Boolean default: false

Whether or not to include seconds in the input. This will result in an additional
input to capture seconds.

hours

type: integer default: 1 to 23

List of hours available to the hours field type. This option is only relevant
when the widget option is set to choice.

minutes

type: integer default: 1 to 59

List of minutes available to the minutes field type. This option is only
relevant when the widget option is set to choice.

seconds

type: integer default: 1 to 59

List of seconds available to the seconds field type. This option is only
relevant when the widget option is set to choice.

data_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the
PHP supported timezones [http://php.net/manual/en/timezones.php]

user_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also
the data that the user submits). This must be one of the PHP supported timezones [http://php.net/manual/en/timezones.php]

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

timezone Field Type

The timezone type is a subset of the ChoiceType that allows the user
to select from all possible timezones.

The “value” for each timezone is the full timezone name, such as America/Chicago
or Europe/Istanbul.

Unlike the choice type, you don’t need to specify a choices or
choice_list option as the field type automatically uses a large list
of locales. You can specify either of these options manually, but then
you should just use the choice type directly.

	Rendered as
	can be various tags (see Select tag, Checkboxes or Radio Buttons)

	Inherited
options
	
	multiple

	expanded

	preferred_choices

	empty_value

	error_bubbling

	required

	label

	read_only

	Parent type
	choice

	Class
	Symfony\Component\Form\Extension\Core\Type\TimezoneType

Inherited options

These options inherit from the choice type:

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed
to choosing just one option). Depending on the value of the expanded
option, this will render either a select tag or checkboxes if true and
a select tag or radio buttons if false. The returned value will be an array.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending
on the multiple value). If false, a select element will be rendered.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be
moved to the top of the select menu. The following would move the “Baz” option
to the top, with a visual separator between it and the rest of the options:

$builder->add('foo_choices', 'choice', array(
 'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
 'preferred_choices' => array('baz'),
));

Note that preferred choices are only meaningful when rendering as a select
element (i.e. expanded is false). The preferred choices and normal choices
are separated visually by a set of dotted lines (i.e. -------------------).
This can be customized when rendering the field:

	Twig{{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

	PHP<?php echo $view['form']->widget($form['foo_choices'], array('separator' => '=====')) ?>

empty_value

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if both
the expanded and multiple options are set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

These options inherit from the field type:

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Form Types Reference

url Field Type

The url field is a text field that prepends the submitted value with
a given protocol (e.g. http://) if the submitted value doesn’t already
have a protocol.

	Rendered as
	input url field

	Options
	
	default_protocol

	Inherited
options
	
	max_length

	required

	label

	trim

	read_only

	error_bubbling

	Parent type
	text

	Class
	Symfony\Component\Form\Extension\Core\Type\UrlType

Field Options

default_protocol

type: string default: http

If a value is submitted that doesn’t begin with some protocol (e.g. http://,
ftp://, etc), this protocol will be prepended to the string when
the data is bound to the form.

Inherited Options

These options inherit from the field type:

max_length

type: integer

This option is used to add a max_length attribute, which is used by
some browsers to limit the amount of text in a field.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. The label can
also be directly set inside the template:

{{ form_label(form.name, 'Your name') }}

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped
via the trim() function when the data is bound. This guarantees that
if a value is submitted with extra whitespace, it will be removed before
the value is merged back onto the underlying object.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the disabled
attribute so that the field is not editable.

error_bubbling

type: Boolean default: false

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

Twig Template Form Function Reference

This reference manual covers all the possible Twig functions available for
rendering forms. There are several different functions available, and each
is responsible for rendering a different part of a form (e.g. labels, errors,
widgets, etc).

form_label(form.name, label, variables)

Renders the label for the given field. You can optionally pass the specific
label you want to display as the second argument.

{{ form_label(form.name) }}

{# The two following syntaxes are equivalent #}
{{ form_label(form.name, 'Your Name', { 'attr': {'class': 'foo'} }) }}
{{ form_label(form.name, null, { 'label': 'Your name', 'attr': {'class': 'foo'} }) }}

form_errors(form.name)

Renders any errors for the given field.

{{ form_errors(form.name) }}

{# render any "global" errors #}
{{ form_errors(form) }}

form_widget(form.name, variables)

Renders the HTML widget of a given field. If you apply this to an entire form
or collection of fields, each underlying form row will be rendered.

{# render a widget, but add a "foo" class to it #}
{{ form_widget(form.name, { 'attr': {'class': 'foo'} }) }}

The second argument to form_widget is an array of variables. The most
common variable is attr, which is an array of HTML attributes to apply
to the HTML widget. In some cases, certain types also have other template-related
options that can be passed. These are discussed on a type-by-type basis.

form_row(form.name, variables)

Renders the “row” of a given field, which is the combination of the field’s
label, errors and widget.

{# render a field row, but display a label with text "foo" #}
{{ form_row(form.name, { 'label': 'foo' }) }}

The second argument to form_row is an array of variables. The templates
provided in Symfony only allow to override the label as shown in the example
above.

form_rest(form, variables)

This renders all fields that have not yet been rendered for the given form.
It’s a good idea to always have this somewhere inside your form as it’ll
render hidden fields for you and make any fields you forgot to render more
obvious (since it’ll render the field for you).

{{ form_rest(form) }}

form_enctype(form)

If the form contains at least one file upload field, this will render the
required enctype="multipart/form-data" form attribute. It’s always a
good idea to include this in your form tag:

<form action="{{ path('form_submit') }}" method="post" {{ form_enctype(form) }}>

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

Validation Constraints Reference

The Validator is designed to validate objects against constraints.
In real life, a constraint could be: “The cake must not be burned”. In
Symfony2, constraints are similar: They are assertions that a condition is
true.

Supported Constraints

The following constraints are natively available in Symfony2:

Basic Constraints

These are the basic constraints: use them to assert very basic things about
the value of properties or the return value of methods on your object.

	NotBlank

	Blank

	NotNull

	Null

	True

	False

	Type

String Constraints

	Email

	MinLength

	MaxLength

	Url

	Regex

	Ip

Number Constraints

	Max

	Min

Date Constraints

	Date

	DateTime

	Time

Collection Constraints

	Choice

	Collection

	UniqueEntity

	Language

	Locale

	Country

File Constraints

	File

	Image

Other Constraints

	Callback

	All

	UserPassword

	Valid

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

NotBlank

Validates that a value is not blank, defined as not equal to a blank string
and also not equal to null. To force that a value is simply not equal to
null, see the NotNull constraint.

	Applies to
	property or method

	Options
	
	message

	Class
	Symfony\Component\Validator\Constraints\NotBlank

	Validator
	Symfony\Component\Validator\Constraints\NotBlankValidator

Basic Usage

If you wanted to ensure that the firstName property of an Author class
were not blank, you could do the following:

	YAMLproperties:
 firstName:
 - NotBlank: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\NotBlank()
 */
 protected $firstName;
}

Options

message

type: string default: This value should not be blank

This is the message that will be shown if the value is blank.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Blank

Validates that a value is blank, defined as equal to a blank string or equal
to null. To force that a value strictly be equal to null, see the
Null constraint. To force that a value is not
blank, see NotBlank.

	Applies to
	property or method

	Options
	
	message

	Class
	Symfony\Component\Validator\Constraints\Blank

	Validator
	Symfony\Component\Validator\Constraints\BlankValidator

Basic Usage

If, for some reason, you wanted to ensure that the firstName property
of an Author class were blank, you could do the following:

	YAMLproperties:
 firstName:
 - Blank: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Blank()
 */
 protected $firstName;
}

Options

message

type: string default: This value should be blank

This is the message that will be shown if the value is not blank.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

NotNull

Validates that a value is not strictly equal to null. To ensure that
a value is simply not blank (not a blank string), see the NotBlank
constraint.

	Applies to
	property or method

	Options
	
	message

	Class
	Symfony\Component\Validator\Constraints\NotNull

	Validator
	Symfony\Component\Validator\Constraints\NotNullValidator

Basic Usage

If you wanted to ensure that the firstName property of an Author class
were not strictly equal to null, you would:

	YAMLproperties:
 firstName:
 - NotNull: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\NotNull()
 */
 protected $firstName;
}

Options

message

type: string default: This value should not be null

This is the message that will be shown if the value is null.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Null

Validates that a value is exactly equal to null. To force that a property
is simply blank (blank string or null), see the Blank
constraint. To ensure that a property is not null, see NotNull.

	Applies to
	property or method

	Options
	
	message

	Class
	Symfony\Component\Validator\Constraints\Null

	Validator
	Symfony\Component\Validator\Constraints\NullValidator

Basic Usage

If, for some reason, you wanted to ensure that the firstName property
of an Author class exactly equal to null, you could do the following:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 firstName:
 - Null: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Null()
 */
 protected $firstName;
}

Options

message

type: string default: This value should be null

This is the message that will be shown if the value is not null.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

True

Validates that a value is true. Specifically, this checks to see if
the value is exactly true, exactly the integer 1, or exactly the
string “1”.

Also see False.

	Applies to
	property or method

	Options
	
	message

	Class
	Symfony\Component\Validator\Constraints\True

	Validator
	Symfony\Component\Validator\Constraints\TrueValidator

Basic Usage

This constraint can be applied to properties (e.g. a termsAccepted property
on a registration model) or to a “getter” method. It’s most powerful in the
latter case, where you can assert that a method returns a true value. For
example, suppose you have the following method:

// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

class Author
{
 protected $token;

 public function isTokenValid()
 {
 return $this->token == $this->generateToken();
 }
}

Then you can constrain this method with True.

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 getters:
 tokenValid:
 - "True": { message: "The token is invalid" }

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 protected $token;

 /**
 * @Assert\True(message = "The token is invalid")
 */
 public function isTokenValid()
 {
 return $this->token == $this->generateToken();
 }
}

	XML<?xml version="1.0" encoding="UTF-8" ?>
<!-- src/Acme/Blogbundle/Resources/config/validation.xml -->

<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <getter property="tokenValid">
 <constraint name="True">
 <option name="message">The token is invalid...</option>
 </constraint>
 </getter>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\True;

class Author
{
 protected $token;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addGetterConstraint('tokenValid', new True(array(
 'message' => 'The token is invalid',
)));
 }

 public function isTokenValid()
 {
 return $this->token == $this->generateToken();
 }
}

If the isTokenValid() returns false, the validation will fail.

Options

message

type: string default: This value should be true

This message is shown if the underlying data is not true.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

False

Validates that a value is false. Specifically, this checks to see if
the value is exactly false, exactly the integer 0, or exactly the
string “0”.

Also see True.

	Applies to
	property or method

	Options
	
	message

	Class
	Symfony\Component\Validator\Constraints\False

	Validator
	Symfony\Component\Validator\Constraints\FalseValidator

Basic Usage

The False constraint can be applied to a property or a “getter” method,
but is most commonly useful in the latter case. For example, suppose that
you want to guarantee that some state property is not in a dynamic
invalidStates array. First, you’d create a “getter” method:

protected $state;

protectd $invalidStates = array();

public function isStateInvalid()
{
 return in_array($this->state, $this->invalidStates);
}

In this case, the underlying object is only valid if the isStateInvalid
method returns false:

	YAML# src/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author
 getters:
 stateInvalid:
 - "False":
 message: You've entered an invalid state.

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\False()
 */
 public function isStateInvalid($message = "You've entered an invalid state.")
 {
 // ...
 }
}

Caution

When using YAML, be sure to surround False with quotes ("False")
or else YAML will convert this into a Boolean value.

Options

message

type: string default: This value should be false

This message is shown if the underlying data is not false.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Type

Validates that a value is of a specific data type. For example, if a variable
should be an array, you can use this constraint with the array type option
to validate this.

	Applies to
	property or method

	Options
	
	type

	message

	Class
	Symfony\Component\Validator\Constraints\Type

	Validator
	Symfony\Component\Validator\Constraints\TypeValidator

Basic Usage

	YAML# src/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 age:
 - Type:
 type: integer
 message: The value {{ value }} is not a valid {{ type }}.

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Type(type="integer", message="The value {{ value }} is not a valid {{ type }}.")
 */
 protected $age;
}

Options

type

type: string [default option]

This required option is the fully qualified class name or one of the PHP datatypes
as determined by PHP’s is_ functions.

	array [http://php.net/is_array]

	bool [http://php.net/is_bool]

	callable [http://php.net/is_callable]

	float [http://php.net/is_float]

	double [http://php.net/is_double]

	int [http://php.net/is_int]

	integer [http://php.net/is_integer]

	long [http://php.net/is_long]

	null [http://php.net/is_null]

	numeric [http://php.net/is_numeric]

	object [http://php.net/is_object]

	real [http://php.net/is_real]

	resource [http://php.net/is_resource]

	scalar [http://php.net/is_scalar]

	string [http://php.net/is_string]

message

type: string default: This value should be of type {{ type }}

The message if the underlying data is not of the given type.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Email

Validates that a value is a valid email address. The underlying value is
cast to a string before being validated.

	Applies to
	property or method

	Options
	
	message

	checkMX

	Class
	Symfony\Component\Validator\Constraints\Email

	Validator
	Symfony\Component\Validator\Constraints\EmailValidator

Basic Usage

	YAML# src/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 email:
 - Email:
 message: The email "{{ value }}" is not a valid email.
 checkMX: true

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Email(
 * message = "The email '{{ value }}' is not a valid email.",
 * checkMX = true
 *)
 */
 protected $email;
}

Options

message

type: string default: This value is not a valid email address

This message is shown if the underlying data is not a valid email address.

checkMX

type: Boolean default: false

If true, then the checkdnsrr [http://www.php.net/manual/en/function.checkdnsrr.php] PHP function will be used to check the validity
of the MX record of the host of the given email.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

MinLength

Validates that the length of a string is at least as long as the given limit.

	Applies to
	property or method

	Options
	
	limit

	message

	charset

	Class
	Symfony\Component\Validator\Constraints\MinLength

	Validator
	Symfony\Component\Validator\Constraints\MinLengthValidator

Basic Usage

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Blog:
 properties:
 firstName:
 - MinLength: { limit: 3, message: "Your name must have at least {{ limit }} characters." }

	Annotations// src/Acme/BlogBundle/Entity/Blog.php
use Symfony\Component\Validator\Constraints as Assert;

class Blog
{
 /**
 * @Assert\MinLength(
 * limit=3,
 * message="Your name must have at least {{ limit }} characters."
 *)
 */
 protected $summary;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<class name="Acme\BlogBundle\Entity\Blog">
 <property name="summary">
 <constraint name="MinLength">
 <option name="limit">3</option>
 <option name="message">Your name must have at least {{ limit }} characters.</option>
 </constraint>
 </property>
</class>

Options

limit

type: integer [default option]

This required option is the “min” value. Validation will fail if the length
of the give string is less than this number.

message

type: string default: This value is too short. It should have {{ limit }} characters or more

The message that will be shown if the underlying string has a length that
is shorter than the limit option.

charset

type: charset default: UTF-8

If the PHP extension “mbstring” is installed, then the PHP function mb_strlen [http://php.net/manual/en/function.mb-strlen.php]
will be used to calculate the length of the string. The value of the charset
option is passed as the second argument to that function.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

MaxLength

Validates that the length of a string is not larger than the given limit.

	Applies to
	property or method

	Options
	
	limit

	message

	charset

	Class
	Symfony\Component\Validator\Constraints\MaxLength

	Validator
	Symfony\Component\Validator\Constraints\MaxLengthValidator

Basic Usage

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Blog:
 properties:
 summary:
 - MaxLength: 100

	Annotations// src/Acme/BlogBundle/Entity/Blog.php
use Symfony\Component\Validator\Constraints as Assert;

class Blog
{
 /**
 * @Assert\MaxLength(100)
 */
 protected $summary;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<class name="Acme\BlogBundle\Entity\Blog">
 <property name="summary">
 <constraint name="MaxLength">
 <value>100</value>
 </constraint>
 </property>
</class>

Options

limit

type: integer [default option]

This required option is the “max” value. Validation will fail if the length
of the give string is greater than this number.

message

type: string default: This value is too long. It should have {{ limit }} characters or less

The message that will be shown if the underlying string has a length that
is longer than the limit option.

charset

type: charset default: UTF-8

If the PHP extension “mbstring” is installed, then the PHP function mb_strlen [http://php.net/manual/en/function.mb-strlen.php]
will be used to calculate the length of the string. The value of the charset
option is passed as the second argument to that function.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Url

Validates that a value is a valid URL string.

	Applies to
	property or method

	Options
	
	message

	protocols

	Class
	Symfony\Component\Validator\Constraints\Url

	Validator
	Symfony\Component\Validator\Constraints\UrlValidator

Basic Usage

	YAML# src/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 bioUrl:
 - Url:

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Url()
 */
 protected $bioUrl;
}

Options

message

type: string default: This value is not a valid URL

This message is shown if the URL is invalid.

protocols

type: array default: array('http', 'https')

The protocols that will be considered to be valid. For example, if you also
needed ftp:// type URLs to be valid, you’d redefine the protocols
array, listing http, https, and also ftp.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Regex

Validates that a value matches a regular expression.

	Applies to
	property or method

	Options
	
	pattern

	match

	message

	Class
	Symfony\Component\Validator\Constraints\Regex

	Validator
	Symfony\Component\Validator\Constraints\RegexValidator

Basic Usage

Suppose you have a description field and you want to verify that it begins
with a valid word character. The regular expression to test for this would
be /^\w+/, indicating that you’re looking for at least one or more word
characters at the beginning of your string:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 description:
 - Regex: "/^\w+/"

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Regex("/^\w+/")
 */
 protected $description;
}

Alternatively, you can set the match option to false in order to assert
that a given string does not match. In the following example, you’ll assert
that the firstName field does not contain any numbers and give it a custom
message:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 firstName:
 - Regex:
 pattern: "/\d/"
 match: false
 message: Your name cannot contain a number

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Regex(
 * pattern="/\d/",
 * match=false,
 * message="Your name cannot contain a number"
 *)
 */
 protected $firstName;
}

Options

pattern

type: string [default option]

This required option is the regular expression pattern that the input will
be matched against. By default, this validator will fail if the input string
does not match this regular expression (via the preg_match [http://php.net/manual/en/function.preg-match.php] PHP function).
However, if match is set to false, then validation will fail if the input
string does match this pattern.

match

type: Boolean default: true

If true (or not set), this validator will pass if the given string matches
the given pattern regular expression. However, when this option is set
to false, the opposite will occur: validation will pass only if the given
string does not match the pattern regular expression.

message

type: string default: This value is not valid

This is the message that will be shown if this validator fails.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Ip

Validates that a value is a valid IP address. By default, this will validate
the value as IPv4, but a number of different options exist to validate as
IPv6 and many other combinations.

	Applies to
	property or method

	Options
	
	version

	message

	Class
	Symfony\Component\Validator\Constraints\Ip

	Validator
	Symfony\Component\Validator\Constraints\IpValidator

Basic Usage

	YAML# src/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 ipAddress:
 - Ip:

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Ip
 */
 protected $ipAddress;
}

Options

version

type: string default: 4

This determines exactly how the ip address is validated and can take one
of a variety of different values:

All ranges

	4 - Validates for IPv4 addresses

	6 - Validates for IPv6 addresses

	all - Validates all IP formats

No private ranges

	4_no_priv - Validates for IPv4 but without private IP ranges

	6_no_priv - Validates for IPv6 but without private IP ranges

	all_no_priv - Validates for all IP formats but without private IP ranges

No reserved ranges

	4_no_res - Validates for IPv4 but without reserved IP ranges

	6_no_res - Validates for IPv6 but without reserved IP ranges

	all_no_res - Validates for all IP formats but without reserved IP ranges

Only public ranges

	4_public - Validates for IPv4 but without private and reserved ranges

	6_public - Validates for IPv6 but without private and reserved ranges

	all_public - Validates for all IP formats but without private and reserved ranges

message

type: string default: This is not a valid IP address

This message is shown if the string is not a valid IP address.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Max

Validates that a given number is less than some maximum number.

	Applies to
	property or method

	Options
	
	limit

	message

	invalidMessage

	Class
	Symfony\Component\Validator\Constraints\Max

	Validator
	Symfony\Component\Validator\Constraints\MaxValidator

Basic Usage

To verify that the “age” field of a class is not greater than “50”, you might
add the following:

	YAML# src/Acme/EventBundle/Resources/config/validation.yml
Acme\EventBundle\Entity\Participant:
 properties:
 age:
 - Max: { limit: 50, message: You must be 50 or under to enter. }

	Annotations// src/Acme/EventBundle/Entity/Participant.php
use Symfony\Component\Validator\Constraints as Assert;

class Participant
{
 /**
 * @Assert\Max(limit = 50, message = "You must be 50 or under to enter.")
 */
 protected $age;
}

Options

limit

type: integer [default option]

This required option is the “max” value. Validation will fail if the given
value is greater than this max value.

message

type: string default: This value should be {{ limit }} or less

The message that will be shown if the underlying value is greater than the
limit option.

invalidMessage

type: string default: This value should be a valid number

The message that will be shown if the underlying value is not a number (per
the is_numeric [http://www.php.net/manual/en/function.is-numeric.php] PHP function).

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Min

Validates that a given number is greater than some minimum number.

	Applies to
	property or method

	Options
	
	limit

	message

	invalidMessage

	Class
	Symfony\Component\Validator\Constraints\Min

	Validator
	Symfony\Component\Validator\Constraints\MinValidator

Basic Usage

To verify that the “age” field of a class is “18” or greater, you might add
the following:

	YAML# src/Acme/EventBundle/Resources/config/validation.yml
Acme\EventBundle\Entity\Participant:
 properties:
 age:
 - Min: { limit: 18, message: You must be 18 or older to enter. }

	Annotations// src/Acme/EventBundle/Entity/Participant.php
use Symfony\Component\Validator\Constraints as Assert;

class Participant
{
 /**
 * @Assert\Min(limit = "18", message = "You must be 18 or older to enter")
 */
 protected $age;
}

Options

limit

type: integer [default option]

This required option is the “min” value. Validation will fail if the given
value is less than this min value.

message

type: string default: This value should be {{ limit }} or more

The message that will be shown if the underlying value is less than the limit
option.

invalidMessage

type: string default: This value should be a valid number

The message that will be shown if the underlying value is not a number (per
the is_numeric [http://www.php.net/manual/en/function.is-numeric.php] PHP function).

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Date

Validates that a value is a valid date, meaning either a DateTime object
or a string (or an object that can be cast into a string) that follows a
valid YYYY-MM-DD format.

	Applies to
	property or method

	Options
	
	message

	Class
	Symfony\Component\Validator\Constraints\Date

	Validator
	Symfony\Component\Validator\Constraints\DateValidator

Basic Usage

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 birthday:
 - Date: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Date()
 */
 protected $birthday;
}

Options

message

type: string default: This value is not a valid date

This message is shown if the underlying data is not a valid date.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

DateTime

Validates that a value is a valid “datetime”, meaning either a DateTime
object or a string (or an object that can be cast into a string) that follows
a valid YYYY-MM-DD HH:MM:SS format.

	Applies to
	property or method

	Options
	
	message

	Class
	Symfony\Component\Validator\Constraints\DateTime

	Validator
	Symfony\Component\Validator\Constraints\DateTimeValidator

Basic Usage

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 createdAt:
 - DateTime: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\DateTime()
 */
 protected $createdAt;
}

Options

message

type: string default: This value is not a valid datetime

This message is shown if the underlying data is not a valid datetime.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Time

Validates that a value is a valid time, meaning either a DateTime object
or a string (or an object that can be cast into a string) that follows
a valid “HH:MM:SS” format.

	Applies to
	property or method

	Options
	
	message

	Class
	Symfony\Component\Validator\Constraints\Time

	Validator
	Symfony\Component\Validator\Constraints\TimeValidator

Basic Usage

Suppose you have an Event class, with a startAt field that is the time
of the day when the event starts:

	YAML# src/Acme/EventBundle/Resources/config/validation.yml
Acme\EventBundle\Entity\Event:
 properties:
 startsAt:
 - Time: ~

	Annotations// src/Acme/EventBundle/Entity/Event.php
namespace Acme\EventBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Event
{
 /**
 * @Assert\Time()
 */
 protected $startsAt;
}

Options

message

type: string default: This value is not a valid time

This message is shown if the underlying data is not a valid time.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Choice

This constraint is used to ensure that the given value is one of a given
set of valid choices. It can also be used to validate that each item in
an array of items is one of those valid choices.

	Applies to
	property or method

	Options
	
	choices

	callback

	multiple

	min

	max

	message

	multipleMessage

	minMessage

	maxMessage

	strict

	Class
	Symfony\Component\Validator\Constraints\Choice

	Validator
	Symfony\Component\Validator\Constraints\ChoiceValidator

Basic Usage

The basic idea of this constraint is that you supply it with an array of
valid values (this can be done in several ways) and it validates that the
value of the given property exists in that array.

If your valid choice list is simple, you can pass them in directly via the
choices option:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 gender:
 - Choice:
 choices: [male, female]
 message: Choose a valid gender.

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<class name="Acme\BlogBundle\EntityAuthor">
 <property name="gender">
 <constraint name="Choice">
 <option name="choices">
 <value>male</value>
 <value>female</value>
 </option>
 <option name="message">Choose a valid gender.</option>
 </constraint>
 </property>
</class>

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Choice(choices = {"male", "female"}, message = "Choose a valid gender.")
 */
 protected $gender;
}

	PHP// src/Acme/BlogBundle/EntityAuthor.php
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\Choice;

class Author
{
 protected $gender;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('gender', new Choice(array(
 'choices' => array('male', 'female'),
 'message' => 'Choose a valid gender',
)));
 }
}

Supplying the Choices with a Callback Function

You can also use a callback function to specify your options. This is useful
if you want to keep your choices in some central location so that, for example,
you can easily access those choices for validation or for building a select
form element.

// src/Acme/BlogBundle/Entity/Author.php
class Author
{
 public static function getGenders()
 {
 return array('male', 'female');
 }
}

You can pass the name of this method to the callback_ option of the Choice
constraint.

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 gender:
 - Choice: { callback: getGenders }

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Choice(callback = "getGenders")
 */
 protected $gender;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<class name="Acme\BlogBundle\Entity\Author">
 <property name="gender">
 <constraint name="Choice">
 <option name="callback">getGenders</option>
 </constraint>
 </property>
</class>

If the static callback is stored in a different class, for example Util,
you can pass the class name and the method as an array.

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 gender:
 - Choice: { callback: [Util, getGenders] }

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<class name="Acme\BlogBundle\Entity\Author">
 <property name="gender">
 <constraint name="Choice">
 <option name="callback">
 <value>Util</value>
 <value>getGenders</value>
 </option>
 </constraint>
 </property>
</class>

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Choice(callback = {"Util", "getGenders"})
 */
 protected $gender;
}

Available Options

choices

type: array [default option]

A required option (unless callback is specified) - this is the array
of options that should be considered in the valid set. The input value
will be matched against this array.

callback

type: string|array|Closure

This is a callback method that can be used instead of the choices option
to return the choices array. See Supplying the Choices with a Callback Function
for details on its usage.

multiple

type: Boolean default: false

If this option is true, the input value is expected to be an array instead
of a single, scalar value. The constraint will check that each value of
the input array can be found in the array of valid choices. If even one
of the input values cannot be found, the validation will fail.

min

type: integer

If the multiple option is true, then you can use the min option
to force at least XX number of values to be selected. For example, if
min is 3, but the input array only contains 2 valid items, the validation
will fail.

max

type: integer

If the multiple option is true, then you can use the max option
to force no more than XX number of values to be selected. For example, if
max is 3, but the input array contains 4 valid items, the validation
will fail.

message

type: string default: The value you selected is not a valid choice

This is the message that you will receive if the multiple option is set
to false, and the underlying value is not in the valid array of choices.

multipleMessage

type: string default: One or more of the given values is invalid

This is the message that you will receive if the multiple option is set
to true, and one of the values on the underlying array being checked
is not in the array of valid choices.

minMessage

type: string default: You must select at least {{ limit }} choices

This is the validation error message that’s displayed when the user chooses
too few choices per the min option.

maxMessage

type: string default: You must select at most {{ limit }} choices

This is the validation error message that’s displayed when the user chooses
too many options per the max option.

strict

type: Boolean default: false

If true, the validator will also check the type of the input value. Specifically,
this value is passed to as the third argument to the PHP in_array [http://php.net/manual/en/function.in-array.php] method
when checking to see if a value is in the valid choices array.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Collection

This constraint is used when the underlying data is a collection (i.e. an
array or an object that implements Traversable and ArrayAccess),
but you’d like to validate different keys of that collection in different
ways. For example, you might validate the email key using the Email
constraint and the inventory key of the collection with the Min constraint.

This constraint can also make sure that certain collection keys are present
and that extra keys are not present.

	Applies to
	property or method

	Options
	
	fields

	allowExtraFields

	extraFieldsMessage

	allowMissingFields

	missingFieldsMessage

	Class
	Symfony\Component\Validator\Constraints\Collection

	Validator
	Symfony\Component\Validator\Constraints\CollectionValidator

Basic Usage

The Collection constraint allows you to validate the different keys of
a collection individually. Take the following example:

namespace Acme\BlogBundle\Entity;

class Author
{
 protected $profileData = array(
 'personal_email',
 'short_bio',
);

 public function setProfileData($key, $value)
 {
 $this->profileData[$key] = $value;
 }
}

To validate that the personal_email element of the profileData array
property is a valid email address and that the short_bio element is not
blank but is no longer than 100 characters in length, you would do the following:

	YAMLproperties:
 profileData:
 - Collection:
 fields:
 personal_email: Email
 short_bio:
 - NotBlank
 - MaxLength:
 limit: 100
 message: Your short bio is too long!
 allowMissingfields: true

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Collection(
 * fields = {
 * "personal_email" = @Assert\Email,
 * "short_bio" = {
 * @Assert\NotBlank(),
 * @Assert\MaxLength(
 * limit = 100,
 * message = "Your bio is too long!"
 *)
 * }
 * },
 * allowMissingfields = true
 *)
 */
 protected $profileData = array(
 'personal_email',
 'short_bio',
);
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<class name="Acme\BlogBundle\Entity\Author">
 <property name="profileData">
 <constraint name="Collection">
 <option name="fields">
 <value key="personal_email">
 <constraint name="Email" />
 </value>
 <value key="short_bio">
 <constraint name="NotBlank" />
 <constraint name="MaxLength">
 <option name="limit">100</option>
 <option name="message">Your bio is too long!</option>
 </constraint>
 </value>
 </option>
 <option name="allowMissingFields">true</option>
 </constraint>
 </property>
</class>

	PHP// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\Collection;
use Symfony\Component\Validator\Constraints\Email;
use Symfony\Component\Validator\Constraints\MaxLength;

class Author
{
 private $options = array();

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('profileData', new Collection(array(
 'fields' => array(
 'personal_email' => new Email(),
 'lastName' => array(new NotBlank(), new MaxLength(100)),
),
 'allowMissingFields' => true,
)));
 }
}

Presence and Absence of Fields

By default, this constraint validates more than simply whether or not the
individual fields in the collection pass their assigned constraints. In fact,
if any keys of a collection are missing or if there are any unrecognized
keys in the collection, validation errors will be thrown.

If you would like to allow for keys to be absent from the collection or if
you would like “extra” keys to be allowed in the collection, you can modify
the allowMissingFields and allowExtraFields options respectively. In
the above example, the allowMissingFields option was set to true, meaning
that if either of the personal_email or short_bio elements were missing
from the $personalData property, no validation error would occur.

Options

fields

type: array [default option]

This option is required, and is an associative array defining all of the
keys in the collection and, for each key, exactly which validator(s) should
be executed against that element of the collection.

allowExtraFields

type: Boolean default: false

If this option is set to false and the underlying collection contains
one or more elements that are not included in the fields option, a validation
error will be returned. If set to true, extra fields are ok.

extraFieldsMessage

type: Boolean default: The fields {{ fields }} were not expected

The message shown if allowExtraFields is false and an extra field is detected.

allowMissingFields

type: Boolean default: false

If this option is set to false and one or more fields from the fields
option are not present in the underlying collection, a validation error will
be returned. If set to true, it’s ok if some fields in the fields_
option are not present in the underlying collection.

missingFieldsMessage

type: Boolean default: The fields {{ fields }} are missing

The message shown if allowMissingFields is false and one or more fields
are missing from the underlying collection.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

UniqueEntity

Validates that a particular field (or fields) in a Doctrine entity are unique.
This is commonly used, for example, to prevent a new user to register using
an email address that already exists in the system.

	Applies to
	class

	Options
	
	fields

	message

	em

	Class
	Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity

	Validator
	Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity\Validator

Basic Usage

Suppose you have an AcmeUserBundle with a User entity that has an
email field. You can use the Unique constraint to guarantee that the
email field remains unique between all of the constrains in your user table:

	Annotations// Acme/UserBundle/Entity/User.php
use Symfony\Component\Validator\Constraints as Assert;
use Doctrine\ORM\Mapping as ORM;

// DON'T forget this use statement!!!
use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;

/**
 * @ORM\Entity
 * @UniqueEntity("email")
 */
class Author
{
 /**
 * @var string $email
 *
 * @ORM\Column(name="email", type="string", length=255, unique=true)
 * @Assert\Email()
 */
 protected $email;

 // ...
}

	YAML# src/Acme/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Entity\Author:
 constraints:
 - Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity: email
 properties:
 email:
 - Email: ~

	XML<class name="Acme\UserBundle\Entity\Author">
 <constraint name="Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity">
 <option name="fields">email</option>
 <option name="message">This email already exists.</option>
 </constraint>
 <property name="email">
 <constraint name="Email" />
 </property>
</class>

Options

fields

type: array``|``string [default option]

This required option is the field (or list of fields) on which this entity
should be unique. For example, you could specify that both the email and
name fields in the User example above should be unique.

message

type: string default: This value is already used.

The message that’s displayed with this constraint fails.

em

type: string

The name of the entity manager to use for making the query to determine the
uniqueness. If left blank, the correct entity manager will determined for
this class. For that reason, this option should probably not need to be
used.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Language

Validates that a value is a valid language code.

	Applies to
	property or method

	Options
	
	message

	Class
	Symfony\Component\Validator\Constraints\Language

	Validator
	Symfony\Component\Validator\Constraints\LanguageValidator

Basic Usage

	YAML# src/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Entity\User:
 properties:
 preferredLanguage:
 - Language:

	Annotations// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class User
{
 /**
 * @Assert\Language
 */
 protected $preferredLanguage;
}

Options

message

type: string default: This value is not a valid language

This message is shown if the string is not a valid language code.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Locale

Validates that a value is a valid locale.

The “value” for each locale is either the two letter ISO639-1 language code
(e.g. fr), or the language code followed by an underscore (_), then
the ISO3166 country code (e.g. fr_FR for French/France).

	Applies to
	property or method

	Options
	
	message

	Class
	Symfony\Component\Validator\Constraints\Locale

	Validator
	Symfony\Component\Validator\Constraints\LocaleValidator

Basic Usage

	YAML# src/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Entity\User:
 properties:
 locale:
 - Locale:

	Annotations// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class User
{
 /**
 * @Assert\Locale
 */
 protected $locale;
}

Options

message

type: string default: This value is not a valid locale

This message is shown if the string is not a valid locale.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Country

Validates that a value is a valid two-letter country code.

	Applies to
	property or method

	Options
	
	message

	Class
	Symfony\Component\Validator\Constraints\Country

	Validator
	Symfony\Component\Validator\Constraints\CountryValidator

Basic Usage

	YAML# src/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Entity\User:
 properties:
 country:
 - Country:

	Annotations// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class User
{
 /**
 * @Assert\Country
 */
 protected $country;
}

Options

message

type: string default: This value is not a valid country

This message is shown if the string is not a valid country code.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

File

Validates that a value is a valid “file”, which can be one of the following:

	A string (or object with a __toString() method) path to an existing file;

	A valid Symfony\Component\HttpFoundation\File\File object
(including objects of class Symfony\Component\HttpFoundation\File\UploadedFile).

This constraint is commonly used in forms with the file
form type.

Tip

If the file you’re validating is an image, try the Image
constraint.

	Applies to
	property or method

	Options
	
	maxSize

	mimeTypes

	maxSizeMessage

	mimeTypesMessage

	notFoundMessage

	notReadableMessage

	uploadIniSizeErrorMessage

	uploadFormSizeErrorMessage

	uploadErrorMessage

	Class
	Symfony\Component\Validator\Constraints\File

	Validator
	Symfony\Component\Validator\Constraints\FileValidator

Basic Usage

This constraint is most commonly used on a property that will be rendered
in a form as a file form type. For example,
suppose you’re creating an author form where you can upload a “bio” PDF for
the author. In your form, the bioFile property would be a file type.
The Author class might look as follows:

// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\HttpFoundation\File\File;

class Author
{
 protected $bioFile;

 public function setBioFile(File $file = null)
 {
 $this->bioFile = $file;
 }

 public function getBioFile()
 {
 return $this->bioFile;
 }
}

To guarantee that the bioFile File object is valid, and that it is
below a certain file size and a valid PDF, add the following:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author
 properties:
 bioFile:
 - File:
 maxSize: 1024k
 mimeTypes: [application/pdf, application/x-pdf]
 mimeTypesMessage: Please upload a valid PDF

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\File(
 * maxSize = "1024k",
 * mimeTypes = {"application/pdf", "application/x-pdf"},
 * mimeTypesMessage = "Please upload a valid PDF"
 *)
 */
 protected $bioFile;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<class name="Acme\BlogBundle\Entity\Author">
 <property name="bioFile">
 <constraint name="File">
 <option name="maxSize">1024k</option>
 <option name="mimeTypes">
 <value>application/pdf</value>
 <value>application/x-pdf</value>
 </option>
 <option name="mimeTypesMessage">Please upload a valid PDF</option>
 </constraint>
 </property>
</class>

	PHP// src/Acme/BlogBundle/Entity/Author.php
// ...

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\File;

class Author
{
 // ...

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('bioFile', new File(array(
 'maxSize' => '1024k',
 'mimeTypes' => array(
 'application/pdf',
 'application/x-pdf',
),
 'mimeTypesMessage' => 'Please upload a valid PDF',
)));
 }
}

The bioFile property is validated to guarantee that it is a real file.
Its size and mime type are also validated because the appropriate options
have been specified.

Options

maxSize

type: mixed

If set, the size of the underlying file must be below this file size in order
to be valid. The size of the file can be given in one of the following formats:

	bytes: To specify the maxSize in bytes, pass a value that is entirely
numeric (e.g. 4096);

	kilobytes: To specify the maxSize in kilobytes, pass a number and
suffix it with a lowercase “k” (e.g. 200k);

	megabytes: To specify the maxSize in megabytes, pass a number and
suffix it with a capital “M” (e.g. 4M).

mimeTypes

type: array or string

If set, the validator will check that the mime type of the underlying file
is equal to the given mime type (if a string) or exists in the collection
of given mime types (if an array).

maxSizeMessage

type: string default: The file is too large ({{ size }}). Allowed maximum size is {{ limit }}

The message displayed if the file is larger than the maxSize option.

mimeTypesMessage

type: string default: The mime type of the file is invalid ({{ type }}). Allowed mime types are {{ types }}

The message displayed if the mime type of the file is not a valid mime type
per the mimeTypes option.

notFoundMessage

type: string default: The file could not be found

The message displayed if no file can be found at the given path. This error
is only likely if the underlying value is a string path, as a File object
cannot be constructed with an invalid file path.

notReadableMessage

type: string default: The file is not readable

The message displayed if the file exists, but the PHP is_readable function
fails when passed the path to the file.

uploadIniSizeErrorMessage

type: string default: The file is too large. Allowed maximum size is {{ limit }}

The message that is displayed if the uploaded file is larger than the upload_max_filesize
PHP.ini setting.

uploadFormSizeErrorMessage

type: string default: The file is too large

The message that is displayed if the uploaded file is larger than allowed
by the HTML file input field.

uploadErrorMessage

type: string default: The file could not be uploaded

The message that is displayed if the uploaded file could not be uploaded
for some unknown reason, such as the file upload failed or it couldn’t be written
to disk.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Image

The Image constraint works exactly like the File
constraint, except that its mimeTypes and mimeTypesMessage options are
automatically setup to work for image files specifically.

Additionally, as of Symfony 2.1, it has options so you can validate against
the width and height of the image.

See the File constraint for the bulk of
the documentation on this constraint.

	Applies to
	property or method

	Options
	
	mimeTypes

	minWidth

	maxWidth

	maxHeight

	minHeight

	mimeTypesMessage

	sizeNotDetectedMessage

	maxWidthMessage

	minWidthMessage

	maxHeightMessage

	minHeightMessage

	See File for inherited options

	Class
	Symfony\Component\Validator\Constraints\File

	Validator
	Symfony\Component\Validator\Constraints\FileValidator

Basic Usage

This constraint is most commonly used on a property that will be rendered
in a form as a file form type. For example,
suppose you’re creating an author form where you can upload a “headshot”
image for the author. In your form, the headshot property would be a
file type. The Author class might look as follows:

// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\HttpFoundation\File\File;

class Author
{
 protected $headshot;

 public function setHeadshot(File $file = null)
 {
 $this->headshot = $file;
 }

 public function getHeadshot()
 {
 return $this->headshot;
 }
}

To guarantee that the headshot File object is a valid image and that
it is between a certain size, add the following:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author
 properties:
 headshot:
 - Image:
 minWidth: 200
 maxWidth: 400
 minHeight: 200
 maxHeight: 400

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\File(
 * minWidth = 200,
 * maxWidth = 400,
 * minHeight = 200,
 * maxHeight = 400,
 *)
 */
 protected $headshot;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<class name="Acme\BlogBundle\Entity\Author">
 <property name="headshot">
 <constraint name="File">
 <option name="minWidth">200</option>
 <option name="maxWidth">400</option>
 <option name="minHeight">200</option>
 <option name="maxHeight">400</option>
 </constraint>
 </property>
</class>

	PHP// src/Acme/BlogBundle/Entity/Author.php
// ...

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\File;

class Author
{
 // ...

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('headshot', new File(array(
 'minWidth' => 200,
 'maxWidth' => 400,
 'minHeight' => 200,
 'maxHeight' => 400,
)));
 }
}

The headshot property is validated to guarantee that it is a real image
and that it is between a certain width and height.

Options

This constraint shares all of its options with the File
constraint. It does, however, modify two of the default option values and
add several other options.

mimeTypes

type: array or string default: image/*

mimeTypesMessage

type: string default: This file is not a valid image

New in version 2.1: All of the min/max width/height options are new to Symfony 2.1.

minWidth

type: integer

If set, the width of the image file must be greater than or equal to this
value in pixels.

maxWidth

type: integer

If set, the width of the image file must be less than or equal to this
value in pixels.

minHeight

type: integer

If set, the height of the image file must be greater than or equal to this
value in pixels.

maxHeight

type: integer

If set, the height of the image file must be less than or equal to this
value in pixels.

sizeNotDetectedMessage

type: string default: The size of the image could not be detected

If the system is unable to determine the size of the image, this error will
be displayed. This will only occur when at least one of the four size constraint
options has been set.

maxWidthMessage

type: string default: The image width is too big ({{ width }}px). Allowed maximum width is {{ max_width }}px

The error message if the width of the image exceeds maxWidth.

minWidthMessage

type: string default: The image width is too small ({{ width }}px). Minimum width expected is {{ min_width }}px

The error message if the width of the image is less than minWidth.

maxHeightMessage

type: string default: The image height is too big ({{ height }}px). Allowed maximum height is {{ max_height }}px

The error message if the height of the image exceeds maxHeight.

minHeightMessage

type: string default: The image height is too small ({{ height }}px). Minimum height expected is {{ min_height }}px

The error message if the height of the image is less than minHeight.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Callback

The purpose of the Callback assertion is to let you create completely custom
validation rules and to assign any validation errors to specific fields on
your object. If you’re using validation with forms, this means that you can
make these custom errors display next to a specific field, instead of simply
at the top of your form.

This process works by specifying one or more callback methods, each of
which will be called during the validation process. Each of those methods
can do anything, including creating and assigning validation errors.

Note

A callback method itself doesn’t fail or return any value. Instead,
as you’ll see in the example, a callback method has the ability to directly
add validator “violations”.

	Applies to
	class

	Options
	
	methods

	Class
	Symfony\Component\Validator\Constraints\Callback

	Validator
	Symfony\Component\Validator\Constraints\CallbackValidator

Setup

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 constraints:
 - Callback:
 methods: [isAuthorValid]

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<class name="Acme\BlogBundle\Entity\Author">
 <constraint name="Callback">
 <option name="methods">
 <value>isAuthorValid</value>
 </option>
 </constraint>
</class>

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

/**
 * @Assert\Callback(methods={"isAuthorValid"})
 */
class Author
{
}

The Callback Method

The callback method is passed a special ExecutionContext object. You
can set “violations” directly on this object and determine to which field
those errors should be attributed:

// ...
use Symfony\Component\Validator\ExecutionContext;

class Author
{
 // ...
 private $firstName;

 public function isAuthorValid(ExecutionContext $context)
 {
 // somehow you have an array of "fake names"
 $fakeNames = array();

 // check if the name is actually a fake name
 if (in_array($this->getFirstName(), $fakeNames)) {
 $propertyPath = $context->getPropertyPath() . '.firstName';
 $context->setPropertyPath($propertyPath);
 $context->addViolation('This name sounds totally fake!', array(), null);
 }
 }

Options

methods

type: array default: array() [default option]

This is an array of the methods that should be executed during the validation
process. Each method can be one of the following formats:

	String method name

If the name of a method is a simple string (e.g. isAuthorValid), that
method will be called on the same object that’s being validated and the
ExecutionContext will be the only argument (see the above example).

	Static array callback

Each method can also be specified as a standard array callback:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 constraints:
 - Callback:
 methods:
 - [Acme\BlogBundle\MyStaticValidatorClass, isAuthorValid]

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

/**
 * @Assert\Callback(methods={
 * { "Acme\BlogBundle\MyStaticValidatorClass", "isAuthorValid"}
 * })
 */
class Author
{
}

	PHP// src/Acme/BlogBundle/Entity/Author.php

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\Callback;

class Author
{
 public $name;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addConstraint(new Callback(array(
 'methods' => array('isAuthorValid'),
)));
 }
}

In this case, the static method isAuthorValid will be called on the
Acme\BlogBundle\MyStaticValidatorClass class. It’s passed both the original
object being validated (e.g. Author) as well as the ExecutionContext:

namespace Acme\BlogBundle;

use Symfony\Component\Validator\ExecutionContext;
use Acme\BlogBundle\Entity\Author;

class MyStaticValidatorClass
{
 static public function isAuthorValid(Author $author, ExecutionContext $context)
 {
 // ...
 }
}

Tip

If you specify your Callback constraint via PHP, then you also have
the option to make your callback either a PHP closure or a non-static
callback. It is not currently possible, however, to specify a service
as a constraint. To validate using a service, you should
create a custom validation constraint
and add that new constraint to your class.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

All

When applied to an array (or Traversable object), this constraint allows
you to apply a collection of constraints to each element of the array.

	Applies to
	property or method

	Options
	
	constraints

	Class
	Symfony\Component\Validator\Constraints\All

	Validator
	Symfony\Component\Validator\Constraints\AllValidator

Basic Usage

Suppose that you have an array of strings, and you want to validate each
entry in that array:

	YAML# src/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Entity\User:
 properties:
 favoriteColors:
 - All:
 - NotBlank: ~
 - MinLength: 5

	Annotations// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class User
{
 /**
 * @Assert\All({
 * @Assert\NotBlank
 * @Assert\MinLength(5),
 * })
 */
 protected $favoriteColors = array();
}

Now, each entry in the favoriteColors array will be validated to not
be blank and to be at least 5 characters long.

Options

constraints

type: array [default option]

This required option is the array of validation constraints that you want
to apply to each element of the underlying array.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

UserPassword

New in version 2.1: This constraint is new in version 2.1.

This validates that an input value is equal to the current authenticated
user’s password. This is useful in a form where a user can change his password,
but needs to enter his old password for security.

Note

This should not be used validate a login form, since this is done
automatically by the security system.

When applied to an array (or Traversable object), this constraint allows
you to apply a collection of constraints to each element of the array.

	Applies to
	property or method

	Options
	
	message

	Class
	Symfony\Component\Validator\Constraints\UserPassword

	Validator
	Symfony\Bundle\SecurityBundle\Validator\Constraint\UserPasswordValidator

Basic Usage

Suppose you have a PasswordChange class, that’s used in a form where the
user can change his password by entering his old password and a new password.
This constraint will validate that the old password matches the user’s current
password:

	YAML# src/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Form\Model\ChangePassword:
 properties:
 oldPassword:
 - UserPassword:
 message: "Wrong value for your current password"

	Annotations// src/Acme/UserBundle/Form/Model/ChangePassword.php
namespace Acme\UserBundle\Form\Model;

use Symfony\Component\Validator\Constraints as Assert;

class ChangePassword
{
 /**
 * @Assert\UserPassword(
 * message = "Wrong value for your current password"
 *)
 */
 protected $oldPassword;
}

Options

message

type: message default: This value should be the user current password

This is the message that’s displayed when the underlying string does not
match the current user’s password.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

 	Validation Constraints Reference

Valid

This constraint is used to enable validation on objects that are embedded
as properties on an object being validated. This allows you to validate an
object and all sub-objects associated with it.

	Applies to
	property or method

	Options
	
	traverse

	Class
	Symfony\Component\Validator\Constraints\Type

Basic Usage

In the following example, we create two classes Author and Address
that both have constraints on their properties. Furthermore, Author stores
an Address instance in the $address property.

// src/Acme/HelloBundle/Address.php
class Address
{
 protected $street;
 protected $zipCode;
}

// src/Acme/HelloBundle/Author.php
class Author
{
 protected $firstName;
 protected $lastName;
 protected $address;
}

	YAML# src/Acme/HelloBundle/Resources/config/validation.yml
Acme\HelloBundle\Address:
 properties:
 street:
 - NotBlank: ~
 zipCode:
 - NotBlank: ~
 - MaxLength: 5

Acme\HelloBundle\Author:
 properties:
 firstName:
 - NotBlank: ~
 - MinLength: 4
 lastName:
 - NotBlank: ~

	XML<!-- src/Acme/HelloBundle/Resources/config/validation.xml -->
<class name="Acme\HelloBundle\Address">
 <property name="street">
 <constraint name="NotBlank" />
 </property>
 <property name="zipCode">
 <constraint name="NotBlank" />
 <constraint name="MaxLength">5</constraint>
 </property>
</class>

<class name="Acme\HelloBundle\Author">
 <property name="firstName">
 <constraint name="NotBlank" />
 <constraint name="MinLength">4</constraint>
 </property>
 <property name="lastName">
 <constraint name="NotBlank" />
 </property>
</class>

	Annotations// src/Acme/HelloBundle/Address.php
use Symfony\Component\Validator\Constraints as Assert;

class Address
{
 /**
 * @Assert\NotBlank()
 */
 protected $street;

 /**
 * @Assert\NotBlank
 * @Assert\MaxLength(5)
 */
 protected $zipCode;
}

// src/Acme/HelloBundle/Author.php
class Author
{
 /**
 * @Assert\NotBlank
 * @Assert\MinLength(4)
 */
 protected $firstName;

 /**
 * @Assert\NotBlank
 */
 protected $lastName;

 protected $address;
}

	PHP// src/Acme/HelloBundle/Address.php
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\NotBlank;
use Symfony\Component\Validator\Constraints\MaxLength;

class Address
{
 protected $street;

 protected $zipCode;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('street', new NotBlank());
 $metadata->addPropertyConstraint('zipCode', new NotBlank());
 $metadata->addPropertyConstraint('zipCode', new MaxLength(5));
 }
}

// src/Acme/HelloBundle/Author.php
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\NotBlank;
use Symfony\Component\Validator\Constraints\MinLength;

class Author
{
 protected $firstName;

 protected $lastName;

 protected $address;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('firstName', new NotBlank());
 $metadata->addPropertyConstraint('firstName', new MinLength(4));
 $metadata->addPropertyConstraint('lastName', new NotBlank());
 }
}

With this mapping, it is possible to successfully validate an author with an
invalid address. To prevent that, add the Valid constraint to the $address
property.

	YAML# src/Acme/HelloBundle/Resources/config/validation.yml
Acme\HelloBundle\Author:
 properties:
 address:
 - Valid: ~

	XML<!-- src/Acme/HelloBundle/Resources/config/validation.xml -->
<class name="Acme\HelloBundle\Author">
 <property name="address">
 <constraint name="Valid" />
 </property>
</class>

	Annotations// src/Acme/HelloBundle/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /* ... */

 /**
 * @Assert\Valid
 */
 protected $address;
}

	PHP// src/Acme/HelloBundle/Author.php
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\Valid;

class Author
{
 protected $address;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('address', new Valid());
 }
}

If you validate an author with an invalid address now, you can see that the
validation of the Address fields failed.

AcmeHelloBundleAuthor.address.zipCode:
This value is too long. It should have 5 characters or less

Options

traverse

type: string default: true

If this constraint is applied to a property that holds an array of objects,
then each object in that array will be validated only if this option is set
to true.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

The Dependency Injection Tags

Tags:

	data_collector

	form.type

	form.type_extension

	form.type_guesser

	kernel.cache_warmer

	kernel.event_listener

	kernel.event_subscriber

	monolog.logger

	monolog.processor

	templating.helper

	routing.loader

	translation.loader

	twig.extension

	validator.initializer

Enabling Custom PHP Template Helpers

To enable a custom template helper, add it as a regular service in one
of your configuration, tag it with templating.helper and define an
alias attribute (the helper will be accessible via this alias in the
templates):

	YAMLservices:
 templating.helper.your_helper_name:
 class: Fully\Qualified\Helper\Class\Name
 tags:
 - { name: templating.helper, alias: alias_name }

	XML<service id="templating.helper.your_helper_name" class="Fully\Qualified\Helper\Class\Name">
 <tag name="templating.helper" alias="alias_name" />
</service>

	PHP$container
 ->register('templating.helper.your_helper_name', 'Fully\Qualified\Helper\Class\Name')
 ->addTag('templating.helper', array('alias' => 'alias_name'))
;

Enabling Custom Twig Extensions

To enable a Twig extension, add it as a regular service in one of your
configuration, and tag it with twig.extension:

	YAMLservices:
 twig.extension.your_extension_name:
 class: Fully\Qualified\Extension\Class\Name
 tags:
 - { name: twig.extension }

	XML<service id="twig.extension.your_extension_name" class="Fully\Qualified\Extension\Class\Name">
 <tag name="twig.extension" />
</service>

	PHP$container
 ->register('twig.extension.your_extension_name', 'Fully\Qualified\Extension\Class\Name')
 ->addTag('twig.extension')
;

For information on how to create the actual Twig Extension class, see
Twig’s documentation [http://twig.sensiolabs.org/doc/extensions.html] on the topic.

Before writing your own extensions, have a look at the
Twig official extension repository [http://github.com/fabpot/Twig-extensions] which already includes several
useful extensions. For example Intl and its localizeddate filter
that formats a date according to user’s locale. These official Twig extensions
also have to be added as regular services:

	YAMLservices:
 twig.extension.intl:
 class: Twig_Extensions_Extension_Intl
 tags:
 - { name: twig.extension }

	XML<service id="twig.extension.intl" class="Twig_Extensions_Extension_Intl">
 <tag name="twig.extension" />
</service>

	PHP$container
 ->register('twig.extension.intl', 'Twig_Extensions_Extension_Intl')
 ->addTag('twig.extension')
;

Enabling Custom Listeners

To enable a custom listener, add it as a regular service in one of your
configuration, and tag it with kernel.event_listener. You must provide
the name of the event your service listens to, as well as the method that
will be called:

	YAMLservices:
 kernel.listener.your_listener_name:
 class: Fully\Qualified\Listener\Class\Name
 tags:
 - { name: kernel.event_listener, event: xxx, method: onXxx }

	XML<service id="kernel.listener.your_listener_name" class="Fully\Qualified\Listener\Class\Name">
 <tag name="kernel.event_listener" event="xxx" method="onXxx" />
</service>

	PHP$container
 ->register('kernel.listener.your_listener_name', 'Fully\Qualified\Listener\Class\Name')
 ->addTag('kernel.event_listener', array('event' => 'xxx', 'method' => 'onXxx'))
;

Note

You can also specify priority as an attribute of the kernel.event_listener
tag (much like the method or event attributes), with either a positive
or negative integer. This allows you to make sure your listener will always
be called before or after another listener listening for the same event.

Enabling Custom Subscribers

New in version 2.1: The ability to add kernel event subscribers is new to 2.1.

To enable a custom subscriber, add it as a regular service in one of your
configuration, and tag it with kernel.event_subscriber:

	YAMLservices:
 kernel.subscriber.your_subscriber_name:
 class: Fully\Qualified\Subscriber\Class\Name
 tags:
 - { name: kernel.event_subscriber }

	XML<service id="kernel.subscriber.your_subscriber_name" class="Fully\Qualified\Subscriber\Class\Name">
 <tag name="kernel.event_subscriber" />
</service>

	PHP$container
 ->register('kernel.subscriber.your_subscriber_name', 'Fully\Qualified\Subscriber\Class\Name')
 ->addTag('kernel.event_subscriber')
;

Note

Your service must implement the SymfonyComponentEventDispatcherEventSubscriberInterface
interface.

Note

If your service is created by a factory, you MUST correctly set the class
parameter for this tag to work correctly.

Enabling Custom Template Engines

To enable a custom template engine, add it as a regular service in one
of your configuration, tag it with templating.engine:

	YAMLservices:
 templating.engine.your_engine_name:
 class: Fully\Qualified\Engine\Class\Name
 tags:
 - { name: templating.engine }

	XML<service id="templating.engine.your_engine_name" class="Fully\Qualified\Engine\Class\Name">
 <tag name="templating.engine" />
</service>

	PHP$container
 ->register('templating.engine.your_engine_name', 'Fully\Qualified\Engine\Class\Name')
 ->addTag('templating.engine')
;

Enabling Custom Routing Loaders

To enable a custom routing loader, add it as a regular service in one
of your configuration, and tag it with routing.loader:

	YAMLservices:
 routing.loader.your_loader_name:
 class: Fully\Qualified\Loader\Class\Name
 tags:
 - { name: routing.loader }

	XML<service id="routing.loader.your_loader_name" class="Fully\Qualified\Loader\Class\Name">
 <tag name="routing.loader" />
</service>

	PHP$container
 ->register('routing.loader.your_loader_name', 'Fully\Qualified\Loader\Class\Name')
 ->addTag('routing.loader')
;

Using a custom logging channel with Monolog

Monolog allows you to share its handlers between several logging channels.
The logger service uses the channel app but you can change the
channel when injecting the logger in a service.

	YAMLservices:
 my_service:
 class: Fully\Qualified\Loader\Class\Name
 arguments: [@logger]
 tags:
 - { name: monolog.logger, channel: acme }

	XML<service id="my_service" class="Fully\Qualified\Loader\Class\Name">
 <argument type="service" id="logger" />
 <tag name="monolog.logger" channel="acme" />
</service>

	PHP$definition = new Definition('Fully\Qualified\Loader\Class\Name', array(new Reference('logger'));
$definition->addTag('monolog.logger', array('channel' => 'acme'));
$container->register('my_service', $definition);;

Note

This works only when the logger service is a constructor argument,
not when it is injected through a setter.

Adding a processor for Monolog

Monolog allows you to add processors in the logger or in the handlers to add
extra data in the records. A processor receives the record as an argument and
must return it after adding some extra data in the extra attribute of
the record.

Let’s see how you can use the built-in IntrospectionProcessor to add
the file, the line, the class and the method where the logger was triggered.

You can add a processor globally:

	YAMLservices:
 my_service:
 class: Monolog\Processor\IntrospectionProcessor
 tags:
 - { name: monolog.processor }

	XML<service id="my_service" class="Monolog\Processor\IntrospectionProcessor">
 <tag name="monolog.processor" />
</service>

	PHP$definition = new Definition('Monolog\Processor\IntrospectionProcessor');
$definition->addTag('monolog.processor');
$container->register('my_service', $definition);

Tip

If your service is not a callable (using __invoke) you can add the
method attribute in the tag to use a specific method.

You can add also a processor for a specific handler by using the handler
attribute:

	YAMLservices:
 my_service:
 class: Monolog\Processor\IntrospectionProcessor
 tags:
 - { name: monolog.processor, handler: firephp }

	XML<service id="my_service" class="Monolog\Processor\IntrospectionProcessor">
 <tag name="monolog.processor" handler="firephp" />
</service>

	PHP$definition = new Definition('Monolog\Processor\IntrospectionProcessor');
$definition->addTag('monolog.processor', array('handler' => 'firephp');
$container->register('my_service', $definition);

You can also add a processor for a specific logging channel by using the channel
attribute. This will register the processor only for the security logging
channel used in the Security component:

	YAMLservices:
 my_service:
 class: Monolog\Processor\IntrospectionProcessor
 tags:
 - { name: monolog.processor, channel: security }

	XML<service id="my_service" class="Monolog\Processor\IntrospectionProcessor">
 <tag name="monolog.processor" channel="security" />
</service>

	PHP$definition = new Definition('Monolog\Processor\IntrospectionProcessor');
$definition->addTag('monolog.processor', array('channel' => 'security');
$container->register('my_service', $definition);

Note

You cannot use both the handler and channel attributes for the
same tag as handlers are shared between all channels.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Reference Documents

Requirements for running Symfony2

To run Symfony2, your system needs to adhere to a list of requirements. You can
easily see if your system passes all requirements by running the web/config.php
in your Symfony distribution. Since the CLI often uses a different php.ini
configuration file, it’s also a good idea to check your requirements from
the command line via:

php app/check.php

Below is the list of required and optional requirements.

Required

	PHP needs to be a minimum version of PHP 5.3.2

	JSON needs to be enabled

	ctype needs to be enabled

	Your PHP.ini needs to have the date.timezone setting

Optional

	You need to have the PHP-XML module installed

	You need to have at least version 2.6.21 of libxml

	PHP tokenizer needs to be enabled

	mbstring functions need to be enabled

	iconv needs to be enabled

	POSIX needs to be enabled (only on *nix)

	Intl needs to be installed with ICU 4+

	APC 3.0.17+ (or another opcode cache needs to be installed)

	PHP.ini recommended settings

	short_open_tag = Off

	magic_quotes_gpc = Off

	register_globals = Off

	session.autostart = Off

Doctrine

If you want to use Doctrine, you will need to have PDO installed. Additionally,
you need to have the PDO driver installed for the database server you want
to use.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

Symfony SE Bundles

	SensioFrameworkExtraBundle

	SensioGeneratorBundle

	JMSSecurityExtraBundle

	DoctrineFixturesBundle

	DoctrineMigrationsBundle

	DoctrineMongoDBBundle

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

Contributing

	Code:
	Bugs |

	Patches |

	Security |

	Tests |

	Coding Standards |

	Code Conventions |

	License

	Documentation:
	Overview |

	Format |

	Translations |

	License

	Community:
	IRC Meetings |

	Other Resources

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

Contributing Code

	Reporting a Bug

	Submitting a Patch
	Check List

	Initial Setup

	Working on a Patch

	Submitting a Patch

	Reporting a Security Issue

	Running Symfony2 Tests
	PHPUnit

	Dependencies (optional)

	Running

	Code Coverage

	Coding Standards
	Structure

	Naming Conventions

	Documentation

	License

	Conventions
	Method Names

	Symfony2 License
	The License

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

 	Contributing Code

Reporting a Bug

Whenever you find a bug in Symfony2, we kindly ask you to report it. It helps
us make a better Symfony2.

Caution

If you think you’ve found a security issue, please use the special
procedure instead.

Before submitting a bug:

	Double-check the official documentation [http://symfony.com/doc/2.0/] to see if you’re not misusing the
framework;

	Ask for assistance on the users mailing-list [http://groups.google.com/group/symfony-users], the forum [http://forum.symfony-project.org/], or on the
#symfony IRC channel if you’re not sure if your issue is really a bug.

If your problem definitely looks like a bug, report it using the official bug
tracker [https://github.com/symfony/symfony/issues] and follow some basic rules:

	Use the title field to clearly describe the issue;

	Describe the steps needed to reproduce the bug with short code examples
(providing a unit test that illustrates the bug is best);

	Give as much details as possible about your environment (OS, PHP version,
Symfony version, enabled extensions, ...);

	(optional) Attach a patch.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

 	Contributing Code

Submitting a Patch

Patches are the best way to provide a bug fix or to propose enhancements to
Symfony2.

Check List

The purpose of the check list is to ensure that contributions may be reviewed
without needless feedback loops to ensure that your contributions can be included
into Symfony2 as quickly as possible.

The pull request title should be prefixed with the component name or bundle
it relates to.

[Component] Short title description here.

An example title might look like this:

[Form] Add selectbox field type.

Tip

Please use the title with “[WIP]” if the submission is not yet completed
or the tests are incomplete or not yet passing.

All pull requests should include the following template in the request
description:

Bug fix: [yes|no]
Feature addition: [yes|no]
Backwards compatibility break: [yes|no]
Symfony2 tests pass: [yes|no]
Fixes the following tickets: [comma separated list of tickets fixed by the PR]
Todo: [list of todos pending]

An example submission could now look as follows:

Bug fix: no
Feature addition: yes
Backwards compatibility break: no
Symfony2 tests pass: yes
Fixes the following tickets: -
Todo: -

Thank you for including the filled out template in your submission!

Tip

All feature addition’s should be sent to the “master” branch, while all
bug fixes should be sent to the oldest still active branch. Furthermore
submissions should, as a rule of thumb, not break backwards compatibility.

Tip

To automatically get your feature branch tested, you can add your fork to
travis-ci.org [http://travis-ci.org]. Just login using your github.com account and then simply
flip a single switch to enable automated testing. In your pull request,
instead of specifying “Symfony2 tests pass: [yes|no]”, you can link to
the travis-ci.org status icon [http://about.travis-ci.org/docs/user/status-images/]. For more details, see the
travis-ci.org Getting Started Guide [http://about.travis-ci.org/docs/user/getting-started/].

Initial Setup

Before working on Symfony2, setup a friendly environment with the following
software:

	Git;

	PHP version 5.3.2 or above;

	PHPUnit 3.6.4 or above.

Set up your user information with your real name and a working email address:

$ git config --global user.name "Your Name"
$ git config --global user.email you@example.com

Tip

If you are new to Git, we highly recommend you to read the excellent and
free ProGit [http://progit.org/] book.

Tip

Windows users: when installing Git, the installer will ask what to do with
line endings and suggests to replace all Lf by CRLF. This is the wrong
setting if you wish to contribute to Symfony! Selecting the as-is method is
your best choice, as git will convert your line feeds to the ones in the
repository. If you have already installed Git, you can check the value of
this setting by typing:

$ git config core.autocrlf

This will return either “false”, “input” or “true”, “true” and “false” being
the wrong values. Set it to another value by typing:

$ git config --global core.autocrlf input

Replace –global by –local if you want to set it only for the active
repository

Get the Symfony2 source code:

	Create a GitHub [https://github.com/signup/free] account and sign in;

	Fork the Symfony2 repository [https://github.com/symfony/symfony] (click on the “Fork” button);

	After the “hardcore forking action” has completed, clone your fork locally
(this will create a symfony directory):

$ git clone git@github.com:USERNAME/symfony.git

	Add the upstream repository as remote:

$ cd symfony
$ git remote add upstream git://github.com/symfony/symfony.git

Now that Symfony2 is installed, check that all unit tests pass for your
environment as explained in the dedicated document.

Working on a Patch

Each time you want to work on a patch for a bug or on an enhancement, you need
to create a topic branch.

The branch should be based on the master branch if you want to add a new
feature. But if you want to fix a bug, use the oldest but still maintained
version of Symfony where the bug happens (like 2.0).

Create the topic branch with the following command:

$ git checkout -b BRANCH_NAME master

Or, if you want to provide a bugfix for the 2.0 branch, you need to first track
the remote 2.0 branch locally:

$ git checkout -t origin/2.0

Then you can create a new branch off the 2.0 branch to work on the bugfix:

$ git checkout -b BRANCH_NAME 2.0

Tip

Use a descriptive name for your branch (ticket_XXX where XXX is the
ticket number is a good convention for bug fixes).

The above checkout commands automatically switch the code to the newly created
branch (check the branch you are working on with git branch).

Work on the code as much as you want and commit as much as you want; but keep
in mind the following:

	Follow the coding standards (use git diff –check to
check for trailing spaces);

	Add unit tests to prove that the bug is fixed or that the new feature
actually works;

	Do atomic and logically separate commits (use the power of git rebase to
have a clean and logical history);

	Write good commit messages.

Tip

A good commit message is composed of a summary (the first line),
optionally followed by a blank line and a more detailed description. The
summary should start with the Component you are working on in square
brackets ([DependencyInjection], [FrameworkBundle], ...). Use a
verb (fixed ..., added ..., ...) to start the summary and don’t
add a period at the end.

Submitting a Patch

Before submitting your patch, update your branch (needed if it takes you a
while to finish your changes):

$ git checkout master
$ git fetch upstream
$ git merge upstream/master
$ git checkout BRANCH_NAME
$ git rebase master

Tip

Replace master with 2.0 if you are working on a bugfix

When doing the rebase command, you might have to fix merge conflicts.
git status will show you the unmerged files. Resolve all the conflicts,
then continue the rebase:

$ git add ... # add resolved files
$ git rebase --continue

Check that all tests still pass and push your branch remotely:

$ git push origin BRANCH_NAME

You can now discuss your patch on the dev mailing-list [http://groups.google.com/group/symfony-devs] or make a pull
request (they must be done on the symfony/symfony repository). To ease the
core team work, always include the modified components in your pull request
message, like in:

[Yaml] foo bar
[Form] [Validator] [FrameworkBundle] foo bar

Tip

Take care to point your pull request towards symfony:2.0 if you want
the core team to pull a bugfix based on the 2.0 branch.

If you are going to send an email to the mailing-list, don’t forget to
reference you branch URL (https://github.com/USERNAME/symfony.git
BRANCH_NAME) or the pull request URL.

Based on the feedback from the mailing-list or via the pull request on GitHub,
you might need to rework your patch. Before re-submitting the patch, rebase
with upstream/master or upstream/2.0, don’t merge; and force the push to the
origin:

$ git rebase -f upstream/master
$ git push -f origin BRANCH_NAME

Note

when doing a push -f (or –force), always specify the branch name explicitly
to avoid messing other branches in the repo (–force tells git that you
really want to mess with things so do it carefully).

Often, moderators will ask you to “squash” your commits. This means you will
convert many commits to one commit. To do this, use the rebase command:

$ git rebase -i head~3
$ git push -f origin BRANCH_NAME

The number 3 here must equal the amount of commits in your branch. After you
type this command, an editor will popup showing a list of commits:

pick 1a31be6 first commit
pick 7fc64b4 second commit
pick 7d33018 third commit

To squash all commits into the first one, remove the word “pick” before the
second and the last commits, and replace it by the word “squash” or just “s”.
When you save, git will start rebasing, and if succesful, will ask you to edit
the commit message, which by default is a listing of the commit messages of all
the commits. When you finish, execute the push command.

Note

All patches you are going to submit must be released under the MIT
license, unless explicitly specified in the code.

All bug fixes merged into maintenance branches are also merged into more
recent branches on a regular basis. For instance, if you submit a patch for
the 2.0 branch, the patch will also be applied by the core team on the
master branch.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

 	Contributing Code

Reporting a Security Issue

Found a security issue in Symfony2? Don’t use the mailing-list or the bug
tracker. All security issues must be sent to security [at]
symfony-project.com instead. Emails sent to this address are forwarded to
the Symfony core-team private mailing-list.

For each report, we first try to confirm the vulnerability. When it is
confirmed, the core-team works on a solution following these steps:

	Send an acknowledgement to the reporter;

	Work on a patch;

	Write a post describing the vulnerability, the possible exploits, and how
to patch/upgrade affected applications;

	Apply the patch to all maintained versions of Symfony;

	Publish the post on the official Symfony blog.

Note

While we are working on a patch, please do not reveal the issue publicly.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

 	Contributing Code

Running Symfony2 Tests

Before submitting a patch for inclusion, you need to run the
Symfony2 test suite to check that you have not broken anything.

PHPUnit

To run the Symfony2 test suite, install [http://www.phpunit.de/manual/current/en/installation.html] PHPUnit 3.6.4 or later first:

$ pear channel-discover pear.phpunit.de
$ pear channel-discover components.ez.no
$ pear channel-discover pear.symfony-project.com
$ pear install phpunit/PHPUnit

Dependencies (optional)

To run the entire test suite, including tests that depend on external
dependencies, Symfony2 needs to be able to autoload them. By default, they are
autoloaded from vendor/ under the main root directory (see
autoload.php.dist).

The test suite needs the following third-party libraries:

	Doctrine

	Swiftmailer

	Twig

	Monolog

To install them all, run the vendors script:

$ php vendors.php install

Note

Note that the script takes some time to finish.

After installation, you can update the vendors to their latest version with
the follow command:

$ php vendors.php update

Running

First, update the vendors (see above).

Then, run the test suite from the Symfony2 root directory with the following
command:

$ phpunit

The output should display OK. If not, you need to figure out what’s going on
and if the tests are broken because of your modifications.

Tip

Run the test suite before applying your modifications to check that they
run fine on your configuration.

Code Coverage

If you add a new feature, you also need to check the code coverage by using
the coverage-html option:

$ phpunit --coverage-html=cov/

Check the code coverage by opening the generated cov/index.html page in a
browser.

Tip

The code coverage only works if you have XDebug enabled and all
dependencies installed.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

 	Contributing Code

Coding Standards

When contributing code to Symfony2, you must follow its coding standards. To
make a long story short, here is the golden rule: Imitate the existing
Symfony2 code. Most open-source Bundles and libraries used by Symfony2 also
follow the same guidelines, and you should too.

Remember that the main advantage of standards is that every piece of code
looks and feels familiar, it’s not about this or that being more readable.

Since a picture - or some code - is worth a thousand words, here’s a short
example containing most features described below:

<?php

/*
 * This file is part of the Symfony package.
 *
 * (c) Fabien Potencier <fabien@symfony.com>
 *
 * For the full copyright and license information, please view the LICENSE
 * file that was distributed with this source code.
 */

namespace Acme;

class Foo
{
 const SOME_CONST = 42;

 private $foo;

 /**
 * @param string $dummy Some argument description
 */
 public function __construct($dummy)
 {
 $this->foo = $this->transform($dummy);
 }

 /**
 * @param string $dummy Some argument description
 * @return string|null Transformed input
 */
 private function transform($dummy)
 {
 if (true === $dummy) {
 return;
 }
 if ('string' === $dummy) {
 $dummy = substr($dummy, 0, 5);
 }

 return $dummy;
 }
}

Structure

	Never use short tags (<?);

	Don’t end class files with the usual ?> closing tag;

	Indentation is done by steps of four spaces (tabs are never allowed);

	Use the linefeed character (0x0A) to end lines;

	Add a single space after each comma delimiter;

	Don’t put spaces after an opening parenthesis and before a closing one;

	Add a single space around operators (==, &&, ...);

	Add a single space before the opening parenthesis of a control keyword
(if, else, for, while, ...);

	Add a blank line before return statements, unless the return is alone
inside a statement-group (like an if statement);

	Don’t add trailing spaces at the end of lines;

	Use braces to indicate control structure body regardless of the number of
statements it contains;

	Put braces on their own line for classes, methods, and functions
declaration;

	Separate the conditional statements (if, else, ...) and the opening
brace with a single space and no blank line;

	Declare visibility explicitly for class, methods, and properties (usage of
var is prohibited);

	Use lowercase PHP native typed constants: false, true, and null. The
same goes for array();

	Use uppercase strings for constants with words separated with underscores;

	Define one class per file - this does not apply to private helper classes
that are not intended to be instantiated from the outside and thus are not
concerned by the PSR-0 standard;

	Declare class properties before methods;

	Declare public methods first, then protected ones and finally private ones.

Naming Conventions

	Use camelCase, not underscores, for variable, function and method
names;

	Use underscores for option, argument, parameter names;

	Use namespaces for all classes;

	Suffix interfaces with Interface;

	Use alphanumeric characters and underscores for file names;

	Don’t forget to look at the more verbose Conventions document for
more subjective naming considerations.

Documentation

	Add PHPDoc blocks for all classes, methods, and functions;

	Omit the @return tag if the method does not return anything;

	The @package and @subpackage annotations are not used.

License

	Symfony is released under the MIT license, and the license block has to be
present at the top of every PHP file, before the namespace.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

 	Contributing Code

Conventions

The Coding Standards document describes the coding standards for the Symfony2
projects and the internal and third-party bundles. This document describes
coding standards and conventions used in the core framework to make it more
consistent and predictable. You are encouraged to follow them in your own
code, but you don’t need to.

Method Names

When an object has a “main” many relation with related “things”
(objects, parameters, ...), the method names are normalized:

	get()

	set()

	has()

	all()

	replace()

	remove()

	clear()

	isEmpty()

	add()

	register()

	count()

	keys()

The usage of these methods are only allowed when it is clear that there
is a main relation:

	a CookieJar has many Cookie objects;

	a Service Container has many services and many parameters (as services
is the main relation, we use the naming convention for this relation);

	a Console Input has many arguments and many options. There is no “main”
relation, and so the naming convention does not apply.

For many relations where the convention does not apply, the following methods
must be used instead (where XXX is the name of the related thing):

	Main Relation
	Other Relations

	get()
	getXXX()

	set()
	setXXX()

	n/a
	replaceXXX()

	has()
	hasXXX()

	all()
	getXXXs()

	replace()
	setXXXs()

	remove()
	removeXXX()

	clear()
	clearXXX()

	isEmpty()
	isEmptyXXX()

	add()
	addXXX()

	register()
	registerXXX()

	count()
	countXXX()

	keys()
	n/a

Note

While “setXXX” and “replaceXXX” are very similar, there is one notable
difference: “setXXX” may replace, or add new elements to the relation.
“replaceXXX” on the other hand is specifically forbidden to add new
elements, but most throw an exception in these cases.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

 	Contributing Code

Symfony2 License

Symfony2 is released under the MIT license.

According to Wikipedia [http://en.wikipedia.org/wiki/MIT_License]:

“It is a permissive license, meaning that it permits reuse within
proprietary software on the condition that the license is distributed with
that software. The license is also GPL-compatible, meaning that the GPL
permits combination and redistribution with software that uses the MIT
License.”

The License

Copyright (c) 2004-2011 Fabien Potencier

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished
to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

Contributing Documentation

	Contributing to the Documentation
	Contributing

	Reporting an Issue

	Translating

	Documentation Format
	reStructuredText

	Sphinx

	Translations
	Contributing

	Joining the Translation Team

	Adding a new Language

	Maintenance

	Symfony2 Documentation License

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

 	Contributing Documentation

Contributing to the Documentation

Documentation is as important as code. It follows the exact same principles:
DRY, tests, ease of maintenance, extensibility, optimization, and refactoring
just to name a few. And of course, documentation has bugs, typos, hard to read
tutorials, and more.

Contributing

Before contributing, you need to become familiar with the markup
language used by the documentation.

The Symfony2 documentation is hosted on GitHub:

https://github.com/symfony/symfony-docs

If you want to submit a patch, fork [http://help.github.com/fork-a-repo/] the official repository on GitHub and
then clone your fork:

$ git clone git://github.com/YOURUSERNAME/symfony-docs.git

Unless you’re documenting a feature that’s new to Symfony 2.1, you changes
should be based on the 2.0 branch instead of the master branch. To do this
checkout the 2.0 branch before the next step:

$ git checkout 2.0

Next, create a dedicated branch for your changes (for organization):

$ git checkout -b improving_foo_and_bar

You can now make your changes directly to this branch and commit them. When
you’re done, push this branch to your GitHub fork and initiate a pull request.
The pull request will be between your improving_foo_and_bar branch and
the symfony-docs master branch.

[image: ../../_images/docs-pull-request.png]
If you have made your changes based
on the 2.0 branch then you need to follow the change commit link and change
the base branch to be @2.0:

[image: ../../_images/docs-pull-request-change-base.png]
GitHub covers the topic of pull requests [http://help.github.com/pull-requests/] in detail.

Note

The Symfony2 documentation is licensed under a Creative Commons
Attribution-Share Alike 3.0 Unported License.

Reporting an Issue

The most easy contribution you can make is reporting issues: a typo, a grammar
mistake, a bug in code example, a missing explanation, and so on.

Steps:

	Submit a bug in the bug tracker;

	(optional) Submit a patch.

Translating

Read the dedicated document.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

 	Contributing Documentation

Documentation Format

The Symfony2 documentation uses reStructuredText [http://docutils.sf.net/rst.html] as its markup language and
Sphinx [http://sphinx.pocoo.org/] for building the output (HTML, PDF, ...).

reStructuredText

reStructuredText “is an easy-to-read, what-you-see-is-what-you-get plaintext
markup syntax and parser system”.

You can learn more about its syntax by reading existing Symfony2 documents [http://github.com/symfony/symfony-docs]
or by reading the reStructuredText Primer [http://sphinx.pocoo.org/rest.html] on the Sphinx website.

If you are familiar with Markdown, be careful as things as sometimes very
similar but different:

	Lists starts at the beginning of a line (no indentation is allowed);

	Inline code blocks use double-ticks (``like this``).

Sphinx

Sphinx is a build system that adds some nice tools to create documentation
from reStructuredText documents. As such, it adds new directives and
interpreted text roles to standard reST markup [http://sphinx.pocoo.org/markup/].

Syntax Highlighting

All code examples uses PHP as the default highlighted language. You can change
it with the code-block directive:

.. code-block:: yaml

 { foo: bar, bar: { foo: bar, bar: baz } }

If your PHP code begins with <?php, then you need to use html+php as
the highlighted pseudo-language:

.. code-block:: html+php

 <?php echo $this->foobar(); ?>

Note

A list of supported languages is available on the Pygments website [http://pygments.org/languages/].

Configuration Blocks

Whenever you show a configuration, you must use the configuration-block
directive to show the configuration in all supported configuration formats
(PHP, YAML, and XML)

.. configuration-block::

 .. code-block:: yaml

 # Configuration in YAML

 .. code-block:: xml

 <!-- Configuration in XML //-->

 .. code-block:: php

 // Configuration in PHP

The previous reST snippet renders as follow:

	YAML# Configuration in YAML

	XML<!-- Configuration in XML //-->

	PHP// Configuration in PHP

The current list of supported formats are the following:

	Markup format
	Displayed

	html
	HTML

	xml
	XML

	php
	PHP

	yaml
	YAML

	jinja
	Twig

	html+jinja
	Twig

	jinja+html
	Twig

	php+html
	PHP

	html+php
	PHP

	ini
	INI

	php-annotations
	Annotations

Testing Documentation

To test documentation before a commit:

	Install Sphinx [http://sphinx.pocoo.org/];

	Run the Sphinx quick setup [http://sphinx.pocoo.org/tutorial.html#setting-up-the-documentation-sources];

	Install the configuration-block Sphinx extension (see below);

	Run make html and view the generated HTML in the build directory.

Installing the configuration-block Sphinx extension

	Download the extension from the configuration-block source [https://github.com/fabpot/sphinx-php] repository

	Copy the configurationblock.py to the _exts folder under your
source folder (where conf.py is located)

	Add the following to the conf.py file:

...
sys.path.append(os.path.abspath('_exts'))

...
add configurationblock to the list of extensions
extensions = ['configurationblock']

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

 	Contributing Documentation

Translations

The Symfony2 documentation is written in English and many people are involved
in the translation process.

Contributing

First, become familiar with the markup language used by the
documentation.

Then, subscribe to the Symfony docs mailing-list [http://groups.google.com/group/symfony-docs], as collaboration happens
there.

Finally, find the master repository for the language you want to contribute
for. Here is the list of the official master repositories:

	English: http://github.com/symfony/symfony-docs

	French: https://github.com/gscorpio/symfony-docs-fr

	Italian: https://github.com/garak/symfony-docs-it

	Japanese: https://github.com/symfony-japan/symfony-docs-ja

	Polish: http://github.com/ampluso/symfony-docs-pl

	Romanian: http://github.com/sebio/symfony-docs-ro

	Russian: http://github.com/avalanche123/symfony-docs-ru

	Spanish: https://github.com/gitnacho/symfony-docs-es

Note

If you want to contribute translations for a new language, read the
dedicated section.

Joining the Translation Team

If you want to help translating some documents for your language or fix some
bugs, consider joining us; it’s a very easy process:

	Introduce yourself on the Symfony docs mailing-list [http://groups.google.com/group/symfony-docs];

	(optional) Ask which documents you can work on;

	Fork the master repository for your language (click the “Fork” button on
the GitHub page);

	Translate some documents;

	Ask for a pull request (click on the “Pull Request” from your page on
GitHub);

	The team manager accepts your modifications and merges them into the master
repository;

	The documentation website is updated every other night from the master
repository.

Adding a new Language

This section gives some guidelines for starting the translation of the
Symfony2 documentation for a new language.

As starting a translation is a lot of work, talk about your plan on the
Symfony docs mailing-list [http://groups.google.com/group/symfony-docs] and try to find motivated people willing to help.

When the team is ready, nominate a team manager; he will be responsible for
the master repository.

Create the repository and copy the English documents.

The team can now start the translation process.

When the team is confident that the repository is in a consistent and stable
state (everything is translated, or non-translated documents have been removed
from the toctrees – files named index.rst and map.rst.inc), the team
manager can ask that the repository is added to the list of official master
repositories by sending an email to Fabien (fabien at symfony.com).

Maintenance

Translation does not end when everything is translated. The documentation is a
moving target (new documents are added, bugs are fixed, paragraphs are
reorganized, ...). The translation team need to closely follow the English
repository and apply changes to the translated documents as soon as possible.

Caution

Non maintained languages are removed from the official list of
repositories as obsolete documentation is dangerous.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

 	Contributing Documentation

Symfony2 Documentation License

The Symfony2 documentation is licensed under a Creative Commons
Attribution-Share Alike 3.0 Unported License [http://creativecommons.org/licenses/by-sa/3.0/].

You are free:

	to Share — to copy, distribute and transmit the work;

	to Remix — to adapt the work.

Under the following conditions:

	Attribution — You must attribute the work in the manner specified by
the author or licensor (but not in any way that suggests that they
endorse you or your use of the work);

	Share Alike — If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same or similar license
to this one.

With the understanding that:

	Waiver — Any of the above conditions can be waived if you get
permission from the copyright holder;

	Public Domain — Where the work or any of its elements is in the public
domain under applicable law, that status is in no way affected by the
license;

	Other Rights — In no way are any of the following rights affected by the
license:

	Your fair dealing or fair use rights, or other applicable copyright
exceptions and limitations;

	The author’s moral rights;

	Rights other persons may have either in the work itself or in how
the work is used, such as publicity or privacy rights.

	Notice — For any reuse or distribution, you must make clear to others
the license terms of this work. The best way to do this is with a link
to this web page.

This is a human-readable summary of the Legal Code (the full license) [http://creativecommons.org/licenses/by-sa/3.0/legalcode].

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

Community

	IRC Meetings

	Other Resources

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

 	Community

IRC Meetings

The purpose of this meeting is to discuss topics in real time with many of the
Symfony2 devs.

Anyone may propose topics on the symfony-dev [http://groups.google.com/group/symfony-devs] mailing-list until 24 hours
before the meeting, ideally including well prepared relevant information via
some URL. 24 hours before the meeting a link to a doodle [http://doodle.com] will be posted
including a list of all proposed topics. Anyone can vote on the topics until
the beginning of the meeting to define the order in the agenda. Each topic
will be timeboxed to 15mins and the meeting lasts one hour, leaving enough
time for at least 4 topics.

Caution

Note that its not the expected goal of them meeting to find final
solutions, but more to ensure that there is a common understanding of the
issue at hand and move the discussion forward in ways which are hard to
achieve with less real time communication tools.

Meetings will happen each Thursday at 17:00 CET (+01:00) on the #symfony-dev
channel on the Freenode IRC server.

The IRC logs [http://trac.symfony-project.org/wiki/Symfony2IRCMeetingLogs] will later be published on the trac wiki, which will include a
short summary for each of the topics. Tickets will be created for any tasks or
issues identified during the meeting and referenced in the summary.

Some simple guidelines and pointers for participation:

	It’s possible to change votes until the beginning of the meeting by clicking
on “Edit an entry”;

	The doodle will be closed for voting at the beginning of the meeting;

	Agenda is defined by which topics got the most votes in the doodle, or
whichever was proposed first in case of a tie;

	At the beginning of the meeting one person will identify him/herself as the
moderator;

	The moderator is essentially responsible for ensuring the 15min timebox and
ensuring that tasks are clearly identified;

	Usually the moderator will also handle writing the summary and creating trac
tickets unless someone else steps up;

	Anyone can join and is explicitly invited to participate;

	Ideally one should familiarize oneself with the proposed topic before the
meeting;

	When starting on a new topic the proposer is invited to start things off
with a few words;

	Anyone can then comment as they see fit;

	Depending on how many people participate one should potentially retrain
oneself from pushing a specific argument too hard;

	Remember the IRC logs [http://trac.symfony-project.org/wiki/Symfony2IRCMeetingLogs] will be published later on, so people have the
chance to review comments later on once more;

	People are encouraged to raise their hand to take on tasks defined during
the meeting.

Here is an example [http://doodle.com/4cnzme7xys3ay53w] doodle.

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Symfony2 Docs 2 documentation

 	Contributing

 	Community

Other Resources

In order to follow what is happening in the community you might find helpful
these additional resources:

	List of open pull requests [https://github.com/symfony/symfony/pulls]

	List of recent commits [https://github.com/symfony/symfony/commits/master]

	List of open bugs and enhancements [https://github.com/symfony/symfony/issues]

	List of open source bundles [http://symfony2bundles.org/]

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Symfony2 Docs 2 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W
 | Y

A

 	

 	Acme

 	Action

 	Application

 	

 	Asset

 	
 Assetic

 	

 	Configuration Reference

 	
 Autoloader

 	

 	Configuration

B

 	

 	Bundle

 	

 	Extension Configuration

 	Inheritance, [1]

 	

 	
 Bundles

 	

 	Best Practices

 	Extension

 	Naming Conventions

C

 	

 	Cache

 	

 	Cache-Control Header

 	Cache-Control header

 	Conditional Get

 	Configuration

 	ESI

 	Etag header

 	Expires header

 	Gateway

 	HTTP

 	HTTP Expiration

 	Invalidation

 	Last-Modified header

 	Proxy

 	Reverse Proxy

 	Safe methods

 	Symfony2 Reverse Proxy

 	Twig

 	Types of

 	Validation

 	Varnish

 	Vary

 	
 CLI

 	

 	Doctrine ORM

 	
 Components

 	

 	Routing

 	
 Configuration

 	

 	Autoloader

 	Cache

 	Convention

 	Debug mode

 	Doctrine DBAL

 	PHPUnit

 	Semantic

 	Tests

 	Validation

 	
 Configuration Reference

 	

 	Assetic

 	Doctrine ORM

 	Framework

 	Monolog

 	Swiftmailer

 	Twig

 	WebProfiler

 	

 	
 Console

 	

 	CLI

 	Controller, [1]

 	

 	404 pages

 	Accessing services

 	As Services

 	Base controller class

 	Common Tasks

 	Controller arguments

 	Forwarding

 	Managing errors

 	Redirecting

 	Rendering templates

 	Request object

 	Request-controller-response lifecycle

 	Response object

 	Routes and controllers

 	Simple example

 	String naming format

 	The session

 	
 Convention

 	

 	Configuration

 	CSS Selector

D

 	

 	
 DBAL

 	

 	Doctrine

 	Debugging

 	Dependency Injection Container

 	Dependency Injection, Extension

 	

 	Directory Structure

 	Distribution

 	Doctrine

 	

 	Adding mapping metadata

 	DBAL

 	DBAL configuration

 	Forms

 	Generating entities from existing database

 	ORM Configuration Reference

 	ORM Console Commands

 	DomCrawler

E

 	

 	Emails

 	

 	Gmail

 	Environment

 	
 Environments

 	

 	Cache directory

 	Configuration

 	Configuration files

 	Creating a new environment

 	Executing different environments

 	External Parameters

 	Introduction

 	Environments;

 	

 	ESI

 	
 Event

 	

 	Kernel

 	kernel.controller

 	kernel.exception

 	kernel.request

 	kernel.response

 	kernel.view

 	Event Dispatcher, [1], [2]

 	

 	Creating and Dispatching an Event

 	Event Subclasses

 	Event subscribers

 	Events

 	Listeners

 	Naming conventions

 	Stopping event flow

F

 	

 	Finder

 	Firewall

 	
 Form

 	

 	Custom field type

 	Custom form rendering

 	Embed collection of forms

 	Events

 	

 	Forms

 	

 	Basic template rendering

 	Built-in Field Types

 	CSRF Protection

 	Create a form in a controller

 	Create a simple form

 	Creating form classes

 	Customizing fields

 	Doctrine

 	Embedded forms

 	Field type guessing, [1]

 	Field type options

 	Fields; birthday

 	Fields; checkbox

 	Fields; choice, [1]

 	Fields; collection

 	Fields; country

 	Fields; csrf

 	Fields; date

 	Fields; datetime

 	Fields; email

 	Fields; field

 	Fields; file

 	Fields; form

 	Fields; hidden

 	Fields; integer

 	Fields; language

 	Fields; locale

 	Fields; money

 	Fields; number

 	Fields; password

 	Fields; percent

 	Fields; radio

 	Fields; repeated

 	Fields; search

 	Fields; text

 	Fields; textarea

 	Fields; time

 	Fields; timezone

 	Fields; url

 	Global Theming

 	Handling form submission

 	Rendering each field by hand

 	Rendering in a Template

 	Template Fragment Inheritance

 	Template fragment naming

 	Theming

 	Twig form function reference

 	Types Reference

 	Validation

 	Validation Groups

 	Front Controller

H

 	

 	HTTP

 	

 	304

 	Request-response paradigm

 	
 HTTP headers

 	

 	Cache-Control, [1]

 	Etag

 	Expires

 	Last-Modified

 	Vary

 	

 	HTTP Specification

 	HttpFoundation

I

 	

 	Installation

 	

 	Internals

 	

 	Controller Resolver

 	Internal Requests

 	Kernel

 	Request Handling

J

 	

 	
 Javascripts

 	

 	Including Javascripts

K

 	

 	Kernel

 	

 	Event

L

 	

 	Layout

 	Locale

 	

 	Logging

M

 	

 	
 Monolog

 	

 	Configuration Reference

N

 	

 	
 Naming Conventions

 	

 	Bundles

 	

 	
 Naming conventions

 	

 	Event Dispatcher

P

 	

 	Page creation

 	

 	Example

 	
 Performance

 	

 	Autoloader

 	Bootstrap files

 	Byte code cache

 	PHP Templates

 	
 PHPUnit

 	

 	Configuration

 	

 	Process

 	Profiler

 	

 	Using the profiler service

 	Visualizing, [1]

 	
 Profiling

 	

 	Data Collector

 	Project

R

 	

 	
 Request

 	

 	Add a request format and mime type

 	Requirements

 	

 	Routing, [1]

 	

 	Absolute URLs

 	Advanced example

 	Allow / in route parameter

 	Basics

 	Controllers

 	Creating routes

 	Debugging

 	Generating URLs

 	Generating URLs in a template

 	Importing routing resources

 	Method requirement

 	Placeholders

 	Requirements

 	Scheme requirement

 	Under the hood

 	_format parameter

S

 	

 	Security

 	

 	Access Control Lists (ACLs)

 	Advanced ACL concepts

 	Configuration Reference

 	Custom Authentication Provider

 	Entity Provider

 	Target redirect path

 	User Provider, [1]

 	Security, Voters

 	Service

 	Service Container, [1]

 	

 	Advanced configuration

 	Configuring services

 	Extension configuration

 	Referencing services

 	Tags

 	What is a service?

 	What is?

 	imports

 	Session

 	

 	Database Storage

 	
 single

 	

 	Template; Overriding exception templates

 	Template; Overriding templates

 	

 	
 single Session

 	

 	Flash messages

 	Slot

 	
 Stylesheets

 	

 	Including stylesheets

 	Symfony2 Components

 	Symfony2 Fundamentals

 	

 	Requests and responses

T

 	

 	Templating

 	

 	Embedding Pages

 	Embedding action

 	File Locations

 	Formats

 	Global variables

 	Helpers, [1]

 	Include

 	Including other templates

 	Including stylesheets and Javascripts

 	Inheritance

 	Layout

 	Linking to assets

 	Linking to pages

 	Naming Conventions

 	Output escaping

 	Slot

 	Tags and Helpers

 	The templating service

 	Three-level inheritance pattern

 	What is a template?

 	Tests, [1], [2]

 	

 	Assertions

 	Client

 	Configuration

 	Crawler

 	Doctrine

 	Functional Tests

 	HTTP Authentication

 	Profiling

 	Unit Tests

 	

 	Translations

 	

 	Basic translation

 	Configuration

 	Creating translation resources

 	Fallback and default locale

 	In templates

 	Message catalogues

 	Message domains

 	Message placeholders

 	Pluralization

 	Translation resource locations

 	User's locale

 	
 Twig

 	

 	Cache

 	Configuration Reference

 	Introduction

V

 	

 	Validation

 	

 	Configuration

 	Constraint targets

 	Constraints

 	Constraints configuration

 	Custom constraints

 	Getter constraints

 	Property constraints

 	Using the validator

 	Validating raw values

 	Validation with forms

 	
 Varnish

 	

 	Invalidation

 	configuration

 	

 	Vendor

W

 	

 	
 Web Services

 	

 	SOAP

Y

 	

 	YAML

 Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

 _static/down-pressed.png

_static/plus.png

_static/down.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/file.png

_images/security_ryan_no_role_admin_access.png
403 Forbidden
<h1>Access Denied</ht>

_images/docs-pull-request-change-base.png
Base branch - tag - commit

((symfony/symfony-docs) @ [z

_images/security_anonymous_user_denied_authorization.png
ROLE_ADMIN role.

_images/security_admin_role_access.png
Im admin,
my password Is kiten

<h1>Admin Foo<h>

_images/doctrine_image_2.png
Table: product Table: category.
id na price nhwy id name
128 $80000 ﬁx-d 2 Bkes
18 He $2099 black,fit 6 Hoimets

14 |Jer$35.00 women's 7 derseys

_images/form-simple2.png
Task
Duedate

_images/docs-pull-request.png
Youto g @ symtony 1o st 1 comens - SEEEEEE fom ermssceme

o Prvim Dcumsio | 3 Gt 5 i G ¢

_images/web_debug_toolbar.png
@ i

Hello Fabien!

T e g

_images/form-simple.png
‘Task Write a blog post

Duedate
Ll 24
[submit |

2011

_images/doctrine_image_1.png
AProduct Object Table: product

=0 id neme price description
name: Biko 12 Bke 80000 _fixed geer, bue,fast

prios: $800.00 13 Helmet $20.99 |black, fits most

e e 14 Jersey $35.00 | women's smal, green and white

_images/request-flow.png

_images/doctrine_web_debug_toolbar.png
@ Symfony.

Welcome!

_images/security_authentication_authorization.png
- Verifies you are who you say you are | |- Decides if you have permission to

- Methods: access a resource.
a. Login form - Methods:
b. HTTP authentication ‘. Access controls for URLS
c. HTTP digest b. Secure objects and methods.
6. X.509 certficates c. Access control Ists (ACLS)

&. Custom authentication method

_images/profiler.png
@ sriom

u

@

&
A

]

Request GET Parameters

Request POST Parameters

Request Attributes.

_images/security_anonymous_user_access.png

_images/http-xkcd-request.png
www.websequencediagrams.com

_images/http-xkcd.png
Hey manl Con T see today's conic?

Server prepares the page's HTAL

Sure dude] Here's that page's HTAL.

www.websequencediagrams.com

glossary.html

 Navigation

 		
 index

 		Symfony2 Docs 2 documentation »

Glossary

		Acme

		Acme is a sample company name used in Symfony demos and documentation.
It’s used as a namespace where you would normally use your own company’s
name (e.g. Acme\BlogBundle).

		Action

		An action is a PHP function or method that executes, for example,
when a given route is matched. The term action is synonymous with
controller, though a controller may also refer to an entire PHP
class that includes several actions. See the Controller Chapter.

		Application

		An Application is a directory containing the configuration for a
given set of Bundles.

		Asset

		An asset is any non-executable, static component of a web application,
including CSS, JavaScript, images and video. Assets may be placed
directly in the project’s web directory, or published from a Bundle
to the web directory using the assets:install console task.

		Bundle

		A Bundle is a directory containing a set of files (PHP files,
stylesheets, JavaScripts, images, ...) that implement a single
feature (a blog, a forum, etc). In Symfony2, (almost) everything
lives inside a bundle. (see The Bundle System)

		Controller

		A controller is a PHP function that houses all the logic necessary
to return a Response object that represents a particular page.
Typically, a route is mapped to a controller, which then uses information
from the request to process information, perform actions, and ultimately
construct and return a Response object.

		Distribution

		A Distribution is a package made of the Symfony2 Components, a
selection of bundles, a sensible directory structure, a default
configuration, and an optional configuration system.

		Environment

		An environment is a string (e.g. prod or dev) that corresponds
to a specific set of configuration. The same application can be run
on the same machine using different configuration by running the application
in different environments. This is useful as it allows a single application
to have a dev environment built for debugging and a prod environment
that’s optimized for speed.

		Firewall

		In Symfony2, a Firewall doesn’t have to do with networking. Instead,
it defines the authentication mechanisms (i.e. it handles the process
of determining the identity of your users), either for the whole
application or for just a part of it. See the
Security chapters.

		Front Controller

		A Front Controller is a short PHP script that lives in the web directory
of your project. Typically, all requests are handled by executing
the same front controller, whose job is to bootstrap the Symfony
application.

		HTTP Specification

		The Http Specification is a document that describes the Hypertext
Transfer Protocol - a set of rules laying out the classic client-server
request-response communication. The specification defines the format
used for a request and response as well as the possible HTTP headers
that each may have. For more information, read the Http Wikipedia [http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol]
article or the HTTP 1.1 RFC [http://www.w3.org/Protocols/rfc2616/rfc2616.html].

		Kernel

		The Kernel is the core of Symfony2. The Kernel object handles HTTP
requests using all the bundles and libraries registered to it. See
The Architecture: The Application Directory and the
Internals chapter.

		Project

		A Project is a directory composed of an Application, a set of
bundles, vendor libraries, an autoloader, and web front controller
scripts.

		Service

		A Service is a generic term for any PHP object that performs a
specific task. A service is usually used “globally”, such as a database
connection object or an object that delivers email messages. In Symfony2,
services are often configured and retrieved from the service container.
An application that has many decoupled services is said to follow
a service-oriented architecture [http://wikipedia.org/wiki/Service-oriented_architecture].

		Service Container

		A Service Container, also known as a Dependency Injection Container,
is a special object that manages the instantiation of services inside
an application. Instead of creating services directly, the developer
trains the service container (via configuration) on how to create
the services. The service container takes care of lazily instantiating
and injecting dependent services. See Service Container
chapter.

		Vendor

		A vendor is a supplier of PHP libraries and bundles including Symfony2
itself. Despite the usual commercial connotations of the word, vendors
in Symfony often (even usually) include free software. Any library you
add to your Symfony2 project should go in the vendor directory. See
The Architecture: Using Vendors.

		YAML

		YAML is a recursive acronym for “YAML Ain’t a Markup Language”. It’s a
lightweight, humane data serialization language used extensively in
Symfony2’s configuration files. See the The YAML Component
chapter.

 © Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		Symfony2 Docs 2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Sensio Labs.
 Created using Sphinx 1.3.1.

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/comment-close.png

_static/minus.png

_images/doctrine_image_3.png
13 He $2099 black fit 5
14 Jor[$3500 women's 7

User asks
for product 12

Now with Category $product->getCategory()->getName(
Data
B
6 Holmets
Doctrine lazlly populates 7 b

the category data

_images/hello_fabien.png
@ 5o .

Hello Fabien!

P L

e

_images/welcome.jpg
0 Symfony

Welcome!

