

 导航

 	
 索引

 	
 下一页 |

 	Symfony Framework Documentation 文档

Symfony Documentation

Quick Tour

Get started fast with the Symfony Quick Tour:

	The Big Picture >

	The View >

	The Controller >

	The Architecture

Book

Dive into Symfony with the topical guides:

	Symfony and HTTP Fundamentals

	使用 Symfony 与不使用框架的对比

	Installing and Configuring Symfony

	Creating Pages in Symfony

	控制器（Controller）

	Routing

	Creating and Using Templates

	Databases and Doctrine

	Databases and Propel

	Testing

	Validation

	Forms

	Security

	HTTP Cache

	Translations

	Service Container

	Performance

	Internals

Cookbook

Read the Cookbook.

Best Practices

Read the Official Best Practices.

Components

Read the Components documentation.

Reference Documents

Get answers quickly with reference documents:

	Configuration Options

Ever wondered what configuration options you have available to you in files
such as app/config/config.yml? In this section, all the available configuration
is broken down by the key (e.g. framework) that defines each possible
section of your Symfony configuration.

	framework

	doctrine

	security

	assetic

	swiftmailer

	twig

	monolog

	web_profiler

	Configuring the Kernel (e.g. AppKernel)

	Forms and Validation

	Form Field Type Reference

	Validation Constraints Reference

	Twig Template Function and Variable Reference

	Twig Extensions (forms, filters, tags, etc) Reference

	Other Areas

	The Dependency Injection Tags

	Requirements for Running Symfony

Contributing

Contribute to Symfony:

	Code
	Bugs

	Patches

	The Core Team

	Security

	Tests

	Backwards Compatibility

	Coding Standards

	Code Conventions

	Git

	License

	Documentation
	Overview

	Format

	Documentation Standards

	Translations

	License

	Community
	Release Process

	Other Resources

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

The Documentation Changelog

This documentation is always changing: All new features need new documentation
and bugs/typos get fixed. This article holds all important changes of the
documentation.

小技巧

Do you also want to participate in the Symfony Documentation? Take a look
at the “Contributing to the Documentation” article.

January, 2015

New Documentation

	b32accb [https://github.com/symfony/symfony-docs/commit/b32accbe3bf3cc8fd37f1d7668983531569e4020] minor #4935 Fix typos (ifdattic)

	ad74169 [https://github.com/symfony/symfony-docs/commit/ad7416975bfca530b75bbebd29baa89eeeae5e51] #4628 Varnish cookbook session cookie handling (dbu)

	3bb7b61 [https://github.com/symfony/symfony-docs/commit/3bb7b61dde079611180a2bc4e12e70eac8caef51] #4645 Remove note that’s no longer the case (thewilkybarkid)

	3293286 [https://github.com/symfony/symfony-docs/commit/3293286ac82c6adb0cc4938fce33fef17f5f7108] #4801 [Cookbook][cache][varnish] be more precise about version differences (dbu)

	528e8e1 [https://github.com/symfony/symfony-docs/commit/528e8e14aa690bf761d5ad4fa763593f856c6afb] #4740 Use AppBundle whenever it’s possible (javiereguiluz)

	9742b92 [https://github.com/symfony/symfony-docs/commit/9742b9291e4b0f4ad4f1e8eff61261cc9598213f] #4761 [Cookbook][Security] don’t output message from AuthenticationException (xabbuh)

	a23e7d2 [https://github.com/symfony/symfony-docs/commit/a23e7d2ec1b28afe2c3452d1bf5488d7558a478a] #4643 How to override vendor directory location (gajdaw)

	99aca45 [https://github.com/symfony/symfony-docs/commit/99aca4532681c1fbc5d85b2935145b3d4fe9934c] #4749 [2.3][Book][Security] Add isPasswordValid doc as in 2.6 (xelaris)

	d9935a3 [https://github.com/symfony/symfony-docs/commit/d9935a3f918791a65488a0cd5ca721482c76f09e] #4141 Notes about caching pages with a CSRF Form (ricardclau)

	207f2f0 [https://github.com/symfony/symfony-docs/commit/207f2f065e10a29172095c6b6f88a2d8fa071223] #4711 [Reference] Add default_locale config description (xelaris)

	1b0fe77 [https://github.com/symfony/symfony-docs/commit/1b0fe7735d4863223e8c4896b956b54d2541344e] #4708 Change Apache php-fpm proxy configuration (TeLiXj)

	127ebc1 [https://github.com/symfony/symfony-docs/commit/127ebc1d45e2ccf3b29e23e9658cf984765d0899] #4650 Documented the characters that provoke a YAML escaping string (javiereguiluz)

	0c0b708 [https://github.com/symfony/symfony-docs/commit/0c0b708efa989560fb8b5e193c7b1a3f56eba195] #4454 More concrete explanation of validation groups (peterrehm)

	144e5af [https://github.com/symfony/symfony-docs/commit/144e5afbfe44e096a0a743f144a07ac1c6c57696] #4611 Adding a guide about upgrading (weaverryan)

	01df3e7 [https://github.com/symfony/symfony-docs/commit/01df3e7db74ede4643a507e646b9b534bcf3b1a5] #4626 clean up cache invalidation information on the cache chapter (dbu)

	5f7ef85 [https://github.com/symfony/symfony-docs/commit/5f7ef8573b649c0c9688f113ff5b7f4b42c5559a] #4651 Documented the security:check command (javiereguiluz)

Fixed Documentation

	ea51aeb [https://github.com/symfony/symfony-docs/commit/ea51aeb4a7426fefe1a3b4b388c67e749c9b70ee] #4926 Finish #4505: Fixed composer create-project command (windows) (Epskampie)

	b32accb [https://github.com/symfony/symfony-docs/commit/b32accbe3bf3cc8fd37f1d7668983531569e4020] minor #4935 Fix typos (ifdattic)

	7e84533 [https://github.com/symfony/symfony-docs/commit/7e84533cde4e546c174f23cb390cd2e6ccd763ac] #4886 [Best Pracitices] restore example in the “Service: No Class Parameter” section (u-voelkel)

	a6b7d72 [https://github.com/symfony/symfony-docs/commit/a6b7d7208e672676d2bf522850c1b145b898669f] #4861 Ifdattic’s fixes (ifdattic)

	b9359a2 [https://github.com/symfony/symfony-docs/commit/b9359a2e22223ae4b4062075cd7ed5602ace9899] #4905 Update routing.rst (IlhamiD)

	9fee9ee [https://github.com/symfony/symfony-docs/commit/9fee9eed5366a1a4408821cfc950a34ea4c7fbce] #4746 Revert #4651 for 2.3 branch (xelaris)

	5940d52 [https://github.com/symfony/symfony-docs/commit/5940d5252b82db7bc247c8723e7761c5cfc9c84b] #4735 [BestPractices] remove @Security annotation for Symfony 2.3 (xabbuh)

	ffe3425 [https://github.com/symfony/symfony-docs/commit/ffe3425f6a0ef97be45f29608c6be02db24e98f9] #4765 [Book][Forms] avoid the request service where possible (xabbuh)

	d8e8d75 [https://github.com/symfony/symfony-docs/commit/d8e8d75961ea0a77c74634a56b6d3237d00ca8a4] #4756 [Components][Config] don’t show deprecated usage of Yaml::parse() (xabbuh)

	310f4ae [https://github.com/symfony/symfony-docs/commit/310f4ae6dda955fa5b0dbc1ab7744ef32bda54d5] #4639 Update by_reference.rst.inc (docteurklein)

Minor Documentation Changes

	2cff942 [https://github.com/symfony/symfony-docs/commit/2cff94272c8b1b9f12dab3dfe8f3cd076f833811] #4878 [Book][Security] Remove out-dated anchor (xelaris)

	a97646f [https://github.com/symfony/symfony-docs/commit/a97646feebb514fef132d31397a8ea956bed725f] #4882 Remove horizontal scrollbar (ifdattic)

	c24c787 [https://github.com/symfony/symfony-docs/commit/c24c787ab9f841c1ec8c6366659525fa8f83029b] #4931 Remove horizontal scrollbar (ifdattic)

	83696b8 [https://github.com/symfony/symfony-docs/commit/83696b8cc209db17775c9a09ddb83846a3267d27] #4934 Fixes for 2.3 branch (ifdattic)

	99d225b [https://github.com/symfony/symfony-docs/commit/99d225b525346ba7bc814086ab638e6b6b02a4ff] #4943 Fixes for 2.3 branch (ifdattic)

	137ba72 [https://github.com/symfony/symfony-docs/commit/137ba72abf814d176ff0a5100889832f66c0e404] #4945 Fixes for 2.3 branch (ifdattic)

	b32accb [https://github.com/symfony/symfony-docs/commit/b32accbe3bf3cc8fd37f1d7668983531569e4020] #4935 Fix typos (ifdattic)

	0fa9cbd [https://github.com/symfony/symfony-docs/commit/0fa9cbd3800ad5526675113b5beb70315e0cf664] #4937 Keeping documentation consistent (thecatontheflat)

	3921d70 [https://github.com/symfony/symfony-docs/commit/3921d7049bbd5b207498277e7f7c92c33dbc0836] #4918 Quick proofread of the email cookbook (weaverryan)

	418a73b [https://github.com/symfony/symfony-docs/commit/418a73b45cf8f1d240e1fc0b6550cf1c071c0d8b] #4922 Fix typo: missing space (ifdattic)

	20d80c3 [https://github.com/symfony/symfony-docs/commit/20d80c333dfe49f998815c2407ee4f737b70a2ef] #4916 Fixes for 2.3 branch (ifdattic)

	d7acccf [https://github.com/symfony/symfony-docs/commit/d7acccf89059fb5a246f76fc629adf25b0f06880] #4914 Fix typo, remove horizontal scrollbar (ifdattic)

	fc776ab [https://github.com/symfony/symfony-docs/commit/fc776ab1ae93db6bf25773734f51c9db1246fc4b] #4894 Align methods in YAML example (ifdattic)

	bd279f6 [https://github.com/symfony/symfony-docs/commit/bd279f6967aec73a23ff5dac7e54322552838836] #4908 Set twig service as private (ifdattic)

	37fd035 [https://github.com/symfony/symfony-docs/commit/37fd035bc4da0266d119532b21e26f21ddc84f0c] #4899 Fix typo: looks => look (ifdattic)

	fbaeecd [https://github.com/symfony/symfony-docs/commit/fbaeecddebd8ef808405d8ad53c29c41fae5c9b5] #4898 added Kévin Dunglas as a merger for the Serializer component (fabpot)

	7c66a8b [https://github.com/symfony/symfony-docs/commit/7c66a8b0b0f3c085abab04abcbdb6cb1e73a06d9] #4893 Move annotations example to front (ifdattic)

	2b7e5ee [https://github.com/symfony/symfony-docs/commit/2b7e5ee896c148b263a890541b8b2489e1aa0ee5] #4891 fixed typo (acme -> app) (adiebler)

	00981de [https://github.com/symfony/symfony-docs/commit/00981de76d0c7bd71f331c48f51b937a4dbccc52] #4890 Fixed typo (beni0888)

	dc87147 [https://github.com/symfony/symfony-docs/commit/dc87147e9b6343446265fc09c083f156a2afe310] #4876 Remove horizontal scrollbar (ifdattic)

	f5f3c1b [https://github.com/symfony/symfony-docs/commit/f5f3c1bfc1c131163b9e76082c50808e5be22330] #4865 Removed literals for bundle names (WouterJ)

	9a6d7b9 [https://github.com/symfony/symfony-docs/commit/9a6d7b9ec4b1d7e69f163af6bb17dcbc2a02a1f1] #4831 Update override.rst (ifdattic)

	f9c2d69 [https://github.com/symfony/symfony-docs/commit/f9c2d6939a8d5b91e6d1cdcd0f8d654ca0796389] #4803 [Book][Translation] Added tip for routing params (xelaris)

	3774a37 [https://github.com/symfony/symfony-docs/commit/3774a375bc5ccb32d04546f97bf65d74656575df] #4881 Remove ‘acme’ (ifdattic)

	6a15077 [https://github.com/symfony/symfony-docs/commit/6a150771e0679088ebc6c67bb22c9f99b63b109e] #4874 Remove trailing whitespace (WouterJ)

	80bef5a [https://github.com/symfony/symfony-docs/commit/80bef5a339ba8f52f607db7d7216f9f7ba61489b] #4873 [BestPractices] fix typo (xabbuh)

	6cffa4e [https://github.com/symfony/symfony-docs/commit/6cffa4e5f3136b2bd5c4e8d23d1fa1576a5ec7c4] #4866 Remove horizontal scrollbar (ifdattic)

	bcf1508 [https://github.com/symfony/symfony-docs/commit/bcf150860c81459f3accce4dca3e57eafb213e4d] #4785 [Book][Security] add back old anchors (xabbuh)

	cf3d38a [https://github.com/symfony/symfony-docs/commit/cf3d38ad333f09fb324ed610c4f5452f4fda213b] #4731 [Book][Testing] bump required PHPUnit version (xabbuh)

	4f47dec [https://github.com/symfony/symfony-docs/commit/4f47decd9ffd404326ca0386d74d58380c9d8843] #4837 Monolog Cookbook Typo Fix: “allows to” should be “allows you to” (mattjanssen)

	c454fd2 [https://github.com/symfony/symfony-docs/commit/c454fd2dfa070b1b04c3e21c8036529671e3e8ff] #4857 Add custom link labels where Cookbook articles titles looked wrong (javiereguiluz)

	17989fd [https://github.com/symfony/symfony-docs/commit/17989fd4455bc7005eba2e1e5fe186270779a68f] #4860 [Components][HttpKernel] replace API link for SwiftmailerBundle (xabbuh)

	e347ec8 [https://github.com/symfony/symfony-docs/commit/e347ec862a1d36195ef1e5cd6c8aafd0501f68ff] #4819 Removed a leftover comma in security config sample (javiereguiluz)

	11b9d23 [https://github.com/symfony/symfony-docs/commit/11b9d23a4815c306ddc2df1da170e35f61f1648b] #4772 Tweaks to the new form csrf caching entry (weaverryan)

	f9c1389 [https://github.com/symfony/symfony-docs/commit/f9c138916771383481ac88309eb34a53bd308db9] #4845 Update security.rst (meelijane)

	9680ec0 [https://github.com/symfony/symfony-docs/commit/9680ec0b0c6eb0435072e119ae1be7612948f0dc] #4844 Update routing.rst (bglamer)

	c243d00 [https://github.com/symfony/symfony-docs/commit/c243d0040a156536d414c0efafa8808f9ccccb2a] #4843 Fixed typo (beni0888)

	13ffb83 [https://github.com/symfony/symfony-docs/commit/13ffb835efffdaaed060a5e88866455608ddc703] #4835 Fixed broken link (SofHad)

	d2a67ac [https://github.com/symfony/symfony-docs/commit/d2a67acc9c57889ba89162c7fed419aaefdde141] #4826 Fixed 404 page (SofHad)

	f34fc2d [https://github.com/symfony/symfony-docs/commit/f34fc2d14a63b5b90e4f2ed9ed43013b2c0f9172] #4825 Fixed the 404 not found error (SofHad)

	91a89b7 [https://github.com/symfony/symfony-docs/commit/91a89b7a9c5dfd14993c93f3b8fe77675792ad1d] #4821 Fixed typo (SofHad)

	f7179df [https://github.com/symfony/symfony-docs/commit/f7179df7b4f1447d1e52a2385a7ac130ce9e9be7] #4818 [Routing] Removed deprecated usage (WouterJ)

	892586b [https://github.com/symfony/symfony-docs/commit/892586bf3ceb5c9f8c1e0f5e3cfa0a5100628161] #4808 Email message instantiation changed to a more ‘symfonysh’ way. (alebo)

	e913808 [https://github.com/symfony/symfony-docs/commit/e913808bbbf300fd437c63934ae295e597ba9b50] #4802 [Cookbook][Routing] Fixed typo (xelaris)

	236c26f [https://github.com/symfony/symfony-docs/commit/236c26fd7dc6f74d170b6cea409e57519dfd95d9] #4796 Update service_container.rst (ifdattic)

	f85c44c [https://github.com/symfony/symfony-docs/commit/f85c44c7b4c29e9f0a408427b7afaff9ba30aad5] #4795 Remove horizontal scrollbar (ifdattic)

	45189bb [https://github.com/symfony/symfony-docs/commit/45189bb477878af0faa24b6977d93b831dd97b2e] #4792 [BestPractices] add filename to codeblock (xelaris)

	fccea1d [https://github.com/symfony/symfony-docs/commit/fccea1dffc9662673162c1fd29c0276d52b29dd6] #4791 Fix heading level in form_login_setup.rst (xelaris)

	74c3a35 [https://github.com/symfony/symfony-docs/commit/74c3a35d04ec8c3b4a3e43d8081c22ceec72874d] #4788 Controller is a callable (timglabisch)

	28571fc [https://github.com/symfony/symfony-docs/commit/28571fc7acf00d2bef565fa1bc172559a433592e] #4780 Add missing semicolon (NightFox7)

	dc5d8f8 [https://github.com/symfony/symfony-docs/commit/dc5d8f8c2736a6fee74aa07a818e717bf799cf13] #4760 Update routing.rst (ifdattic)

	4e880c1 [https://github.com/symfony/symfony-docs/commit/4e880c1dba02924ccfef47049c2dd4dc14f2db65] #4755 fix typo (xabbuh)

	463c30b [https://github.com/symfony/symfony-docs/commit/463c30b8bbded334b646db083ae8f22d259ad14f] #4751 [BestPractices] fix alignment of YAML values (xelaris)

	1972757 [https://github.com/symfony/symfony-docs/commit/1972757afc62c7ade55d3775988dae654d88a16f] #4775 Corrected validation information on inheritance (peterrehm)

	f4f8621 [https://github.com/symfony/symfony-docs/commit/f4f8621ec02d91fe7947ab5c320337296e90185c] #4762 [Cookbook][Configuration] update text to use SetHandler (not ProxyPassMatch) (xabbuh)

	43543bb [https://github.com/symfony/symfony-docs/commit/43543bb0fbb058898ea7f531601754ea9e0074a3] #4748 Re-reading private service section (weaverryan)

	e447e70 [https://github.com/symfony/symfony-docs/commit/e447e70eb0a1cd79edbde4b3d249212892423fed] #4743 [Book][Security] Fix typo and remove redundant sentence (xelaris)

	9819113 [https://github.com/symfony/symfony-docs/commit/981911384be4a04476eb7b00d426efded707ea5b] #4702 Clarify tip for creating a new AppBundle (xelaris)

	8f2fe87 [https://github.com/symfony/symfony-docs/commit/8f2fe870eb07dde5edc17482f9e1020ad39dc1dd] #4683 [Reference] update the configuration reference (xabbuh)

	e889813 [https://github.com/symfony/symfony-docs/commit/e889813b4c93d41713fb7382eb7ab4ce4bcb5660] #4677 Add exception to console exception log (adrienbrault)

	9958c41 [https://github.com/symfony/symfony-docs/commit/9958c41f8efdd143cba1b1e832c7d8b61aa15030] #4656 Tried to clarify private services (WouterJ)

	1d5966c [https://github.com/symfony/symfony-docs/commit/1d5966c422f190a7b227ca49d146d6d8af03ad7b] #4703 Fix representation (ifdattic)

	aa9d982 [https://github.com/symfony/symfony-docs/commit/aa9d9822833891cf8ff7d61fe6591d8d4c6eb06c] #4697 Set twig service as private (ifdattic)

	ece2c81 [https://github.com/symfony/symfony-docs/commit/ece2c818fb38223bf62aa5ea534d4d84e989ea3e] #4722 Improve readability (ifdattic)

	dcc9516 [https://github.com/symfony/symfony-docs/commit/dcc9516221ed92e14e849a1be6da5b39662e15b8] #4725 Remove horizontal scrollbar (ifdattic)

	25dd825 [https://github.com/symfony/symfony-docs/commit/25dd8257deceb22d055bff366d4cb4f86919f5e1] #4730 Fix typo: as => is (ifdattic)

	760a441 [https://github.com/symfony/symfony-docs/commit/760a4415f7ce3789631d77fa11c0a17b1906a377] #4734 [BestPractices] add missing comma (xabbuh)

	8c1afb9 [https://github.com/symfony/symfony-docs/commit/8c1afb9591e948edcad48ec664ade53a721aa33b] #4738 [Contributing][Code] update year in license (xabbuh)

	4ad72d0 [https://github.com/symfony/symfony-docs/commit/4ad72d0146a62a698123a5daec6fa47b8efcc4ee] #4741 use the doc role for internal links (jms85, xabbuh)

December, 2014

New Documentation

	00a13d6 [https://github.com/symfony/symfony-docs/commit/00a13d6bd618cc09b0957b1ff4d93b384dc85a78] #4606 Completely re-reading the security book (weaverryan)

	bd65c3c [https://github.com/symfony/symfony-docs/commit/bd65c3c1bd950419438061646edbb4b1453493a7] #4673 [Reference] add validation config reference section (xabbuh)

	55a32cf [https://github.com/symfony/symfony-docs/commit/55a32cfccb7abedf602d24f4c7ef68b81477c5ea] #4173 use a global Composer installation (xabbuh)

	c5e409b [https://github.com/symfony/symfony-docs/commit/c5e409b70060405732b2251ae92e0278fd5f5e3d] #4526 Deploy Symfony application on Platform.sh. (GuGuss)

	c837ea1 [https://github.com/symfony/symfony-docs/commit/c837ea105494ce53049ab38dbeb0834904c4ec1f] #4665 Documented the console environment variables (javiereguiluz)

	f4a7196 [https://github.com/symfony/symfony-docs/commit/f4a71967a8887ce6a6531294bfc001ddfedd9ade] #4627 Rewrite the varnish cookbook article (dbu)

	92a186d [https://github.com/symfony/symfony-docs/commit/92a186d8d02e2927d26c995c72eaefe246d6ae04] #4654 Rewritten from scratch the chapter about installing Symfony (javiereguiluz)

	90ef4ec [https://github.com/symfony/symfony-docs/commit/90ef4ec1daff25b3c0f12048b0036757593cefcd] #4580 Updated installation instructions to use the new Symfony Installer (javiereguiluz)

	f591e6e [https://github.com/symfony/symfony-docs/commit/f591e6e1d7b04faf5703dd76be10d2f8d5870dcd] #4532 GetResponse*Events stop after a response was set (Lumbendil)

	71495e8 [https://github.com/symfony/symfony-docs/commit/71495e81eebd61fba8bdb93da5018163cb768fb3] #4528 Update web_server_configuration.rst (thePanz)

	9b330ef [https://github.com/symfony/symfony-docs/commit/9b330efdf38ee568cd7b6e5cf7aada74c9a3e511] #4507 Comply with best practices, Round 2 (WouterJ)

	39a36bc [https://github.com/symfony/symfony-docs/commit/39a36bcb82540e6b9670f9ca7a0e81f76e0c0535] #4405 Finish 3744 (mickaelandrieu, xabbuh)

	db35c42 [https://github.com/symfony/symfony-docs/commit/db35c4242a724325cb6ae7f0dbb42ed769ae1f88] #4591 Instructions for setting SYMFONY_ENV on Heroku (dzuelke)

	8bba316 [https://github.com/symfony/symfony-docs/commit/8bba31667333f654349f151e116593a9580c1c46] #4457 [RFC] Clarification on formatting for bangs (!) (bryanagee)

Fixed Documentation

	153565e [https://github.com/symfony/symfony-docs/commit/153565e108185904ad013f05ab65caa8c147df33] #4707 [Cookbook] Fix XML example for RTE (dunglas)

	cad4d3f [https://github.com/symfony/symfony-docs/commit/cad4d3f88bc3edffab2133f0689d03d4297ddeb4] #4582 Completed the needed context to successfully test commands with Helpers (peterrehm)

	a137918 [https://github.com/symfony/symfony-docs/commit/a137918e8d1a38b30d66c1166f7f8a4597c20e8d] #4641 Add missing autoload include in basic console application example (senkal)

	0de8286 [https://github.com/symfony/symfony-docs/commit/0de8286b9a9073f335e300a19ba48e969ed30f6a] #4513 [Contributing] update contribution guide for 2.7/3.0 (xabbuh)

	7ea4b10 [https://github.com/symfony/symfony-docs/commit/7ea4b108462ac43b5b3c371acb1f82ef0c8b4856] #4646 Update the_controller.rst (teggen)

	baf61a0 [https://github.com/symfony/symfony-docs/commit/baf61a06048a6901c4a9257b3d893413591b78eb] #4623 [OptionsResolver] Fix Namespace link (xavren)

	8246693 [https://github.com/symfony/symfony-docs/commit/82466930edbaa25e8810b9bc465fdaec937c2339] #4613 Change refering block name from content to body (martin-cerny)

	1750b9b [https://github.com/symfony/symfony-docs/commit/1750b9b80a778dc5bc52cb7ea451ec1c6d2fc977] #4599 [Contributing] fix feature freeze dates (xabbuh)

	8e2e988 [https://github.com/symfony/symfony-docs/commit/8e2e988122facccf6e79cf02c25ebc4ecccf18b1] #4603 Replace form_enctype(form) with form_start(form). (xelaris)

	7acf27c [https://github.com/symfony/symfony-docs/commit/7acf27c42853e366270149335cdc3bc522f28a1d] #4552 required PHPUnit version in the docs should be updated to 4.2 (or later)... (jzawadzki)

	df60ba7 [https://github.com/symfony/symfony-docs/commit/df60ba7d9e74abf5dc0e7ec601874503829358ee] #4548 Remove ExpressionLanguage reference for 2.3 version (dangarzon)

	727c92a [https://github.com/symfony/symfony-docs/commit/727c92a2aa10314df7cede068b87157cd77c2424] #4594 Missing attribute ‘original’ (Marcelsj)

	97a9c43 [https://github.com/symfony/symfony-docs/commit/97a9c43bd8822d273c2ee5378bb8ca6d7c6a3c44] #4533 Add command to make symfony.phar executable. (xelaris)

Minor Documentation Changes

	8bd694f [https://github.com/symfony/symfony-docs/commit/8bd694f4f0f51faf8b744a2b077a58031e8a9d61] #4709 [Reference] fix wording (xabbuh)

	1bd9ed4 [https://github.com/symfony/symfony-docs/commit/1bd9ed40132cd1f46daafd958b4b3fe79a563d09] #4721 [Cookbook][Composer] fix note directive (xabbuh)

	5055ef4 [https://github.com/symfony/symfony-docs/commit/5055ef46ec4d38c4f32351a5cf0c802cf35f210a] #4715 Improve readability (ifdattic)

	d3d6d22 [https://github.com/symfony/symfony-docs/commit/d3d6d2212f1321e1537cd98053412ca3710bbc91] #4716 Fix typo: con => on (ifdattic)

	afe8684 [https://github.com/symfony/symfony-docs/commit/afe86848ec3a2244690e17c4a68208ec4c1b535c] #4720 Link fixed (kuldipem)

	4b442a0 [https://github.com/symfony/symfony-docs/commit/4b442a0b572979c73e70e18d7c9edaf0a17e9ff5] #4695 Misc changes (ifdattic)

	0db36ea [https://github.com/symfony/symfony-docs/commit/0db36ea40e4536f0778ca6166b892bdfb9e00f4b] #4706 Fix typo: than in Twig => than Twig templates (ifdattic)

	94b833e [https://github.com/symfony/symfony-docs/commit/94b833ea46d1af54117249ecf9cee94150c37c13] #4679 General grammar and style fixes in the book (frne)

	3f3464f [https://github.com/symfony/symfony-docs/commit/3f3464f88769a0a3cd5f48d414140cd13d66350f] #4689 Update form_customization.rst (rodrigorigotti)

	8d32393 [https://github.com/symfony/symfony-docs/commit/8d3239334cb79126dde232c3eb68d85da2b49980] #4691 replace “or” with ”,” (timglabisch)

	9b4d747 [https://github.com/symfony/symfony-docs/commit/9b4d74796318065dadec40b10109f20fdfe3eb35] #4670 Change PHPUnit link to avoid redirect to homepage (xelaris)

	8ccffb0 [https://github.com/symfony/symfony-docs/commit/8ccffb08e503e0ff23e909edc3062447305e3701] #4669 Harmonize PHPUnit version to 4.2 or above (xelaris)

	84bf5e5 [https://github.com/symfony/symfony-docs/commit/84bf5e5c50a34f68038c02387250d05d9faf4cd0] #4667 Remove redundant “default” connection (xelaris)

	ceca63f [https://github.com/symfony/symfony-docs/commit/ceca63f2ef3d785652e6808045c9a459516ac788] #4653 update ordered list syntax (xabbuh)

	459875b [https://github.com/symfony/symfony-docs/commit/459875becb9ff243a0e5c9da1a45c247806cb3cd] #4550 Ref #3903 - Normalize methods listings (ternel)

	87365fa [https://github.com/symfony/symfony-docs/commit/87365fa1fc14bb86401a0f65125314ac76225b27] #4648 Update forms.rst (keefekwan)

	70f2ae8 [https://github.com/symfony/symfony-docs/commit/70f2ae8194b56f268400f7e51ed5fa3e3d29dfe7] #4640 [Book] link to the API documentation (xabbuh)

	95fc487 [https://github.com/symfony/symfony-docs/commit/95fc4874aa19666f026aee771b685c31775d51b1] #4608 Removing some installation instructions (weaverryan)

	96455e6 [https://github.com/symfony/symfony-docs/commit/96455e6c20a07de109ad5b6f97f726ad639ff195] #4539 Normalization of method listings (pedronofuentes)

	bd44e6b [https://github.com/symfony/symfony-docs/commit/bd44e6b607b15ae5c1e1b25c880d50b4ead79755] #4664 Spelling mistake tens to tons (albabar)

	48cc9cd [https://github.com/symfony/symfony-docs/commit/48cc9cdad1a97162de4cba83eb56284e899d9fcd] #4647 Update controllers.rst (keefekwan)

	2efed8c [https://github.com/symfony/symfony-docs/commit/2efed8cdafbf28c64fe6af32ce16ac325959c999] #4660 Fix indentation of YAML example (xelaris)

	b55ec30 [https://github.com/symfony/symfony-docs/commit/b55ec30b98fa64009fc223df652c71ea45136e63] #4659 Fixed some code indentation (javiereguiluz)

	18af18b [https://github.com/symfony/symfony-docs/commit/18af18b79a755a14b477f1ff3ea3cb8a15547411] #4652 replace Symfony2 with Symfony (xabbuh)

	a70c489 [https://github.com/symfony/symfony-docs/commit/a70c4890a57777c4ae0fe4d4a2e3562e13dab058] #4649 Linked the PDO/DBAL Session article from the Doctrine category (javiereguiluz)

	f672a66 [https://github.com/symfony/symfony-docs/commit/f672a66de496793fbe0e6b9b8712410dff576463] #4625 Added ‘-ing’ title ending to unify titles look (kix)

	9600950 [https://github.com/symfony/symfony-docs/commit/96009506bcb888c2a221502a1c770dd15dba8baf] #4617 [Filesystem] filesystem headlines match method names (xabbuh)

	8b006bb [https://github.com/symfony/symfony-docs/commit/8b006bb4e75f40e43cbbe4ada279dad92134c159] #4607 [Best Practices] readd mistakenly removed label (xabbuh)

	7dcce1b [https://github.com/symfony/symfony-docs/commit/7dcce1b072618bbe14c64c599798ae0ec2fb7934] #4585 When explaining how to install dependencies for running unit tests, (carlosbuenosvinos)

	33ca697 [https://github.com/symfony/symfony-docs/commit/33ca697e663f7a8ed23d83e508d9c716d8117c7b] #4561 Use the new build env on Travis (joshk)

	107610e [https://github.com/symfony/symfony-docs/commit/107610e9df251c55ee835b2ed1fe88ee66e3521b] #4531 [symfony] [Hackday] Fixed typos (pborreli)

	3b1611d [https://github.com/symfony/symfony-docs/commit/3b1611d950f9296e0fe384d85a163ffb670fab9e] #4519 remove service class parameters (xabbuh)

	3bd17af [https://github.com/symfony/symfony-docs/commit/3bd17af2d7d8c69a15d1042b687af08b0286dbd8] #4518 [Components][DependencyInjection] backport service factory improvements (xabbuh)

	d203e5a [https://github.com/symfony/symfony-docs/commit/d203e5aaf7417e7264b30ef75cfa19e7e883942e] #4495 [Best Practices][Business Logic] link to a bundle’s current (not master) docs (xabbuh)

	0a9c146 [https://github.com/symfony/symfony-docs/commit/0a9c1467aa858ba9407963cef8455488b2a31877] #4422 Fix typos in code (ifdattic)

	4f0051d [https://github.com/symfony/symfony-docs/commit/4f0051db9d14580ac7ddb3a235b7d74fb666355e] #4574 fixed little typo (adridev)

November, 2014

New Documentation

	135aae6 [https://github.com/symfony/symfony-docs/commit/135aae6caa9508b12a2960579ea0af4dacd3e479] #4433 Completely re-reading the controller chapter (weaverryan)

	422e0f1 [https://github.com/symfony/symfony-docs/commit/422e0f12a4412f9e1668094eb19df4163bc6f2d8] #4465 Modifying the best practice to use form_start() instead of <form (weaverryan, WouterJ)

	0a21446 [https://github.com/symfony/symfony-docs/commit/0a21446430347724f8ef29aa51ff15fd0284f22e] #4463 [BestPractices] Proposing that we make the service names just a little bit longer (weaverryan)

	1d88a1b [https://github.com/symfony/symfony-docs/commit/1d88a1b6b029d4dd2e14534f44e3b1b6b745caf9] #4443 Added the release dates for the upcoming Symfony 3 versions (javiereguiluz)

	f2ab245 [https://github.com/symfony/symfony-docs/commit/f2ab245ac945e86fe4c6553efe37acb6556a23bd] #4374 [WCM] Revamped the Quick Start tutorial (javiereguiluz)

	2c190ed [https://github.com/symfony/symfony-docs/commit/2c190ed8af7517607931dca6da41b4f7ad987b6c] #4427 Update most important book articles to follow the best practices (WouterJ)

	12a09ab [https://github.com/symfony/symfony-docs/commit/12a09ab7806b4f57d109929fa03c770cc7e03169] #4377 Added interlinking and fixed install template for reusable bundles (WouterJ)

	8259d71 [https://github.com/symfony/symfony-docs/commit/8259d712997ef2b94cc6b4490c46e603db64bcd9] #4425 Updating component usage to use composer require (weaverryan)

	0e80aba [https://github.com/symfony/symfony-docs/commit/0e80aba9c96efc4c6c70c0920d679182571fe97e] #4369 [reference][configuration][security]Added key_length for pbkdf2 encoder (Guillaume-Rossignol)

	5165419 [https://github.com/symfony/symfony-docs/commit/51654191bea12960f64ead9a00cf0c293532246a] #4295 [Security] Hidden front controller for Nginx (phansys)

Fixed Documentation

	9d599a0 [https://github.com/symfony/symfony-docs/commit/9d599a054007474f1b65d2c7b04f634c5faf74d0] minor #4544 #4273 - fix doctrine version in How to Provide Model Classes for several Doctrine Implementations cookbook (ternel)

	6aabece [https://github.com/symfony/symfony-docs/commit/6aabece040cda7976a6b702bf4e7a8cd2818e007] #4273 - fix doctrine version in How to Provide Model Classes for several Doctrine Implementations cookbook

	4f66d48 [https://github.com/symfony/symfony-docs/commit/4f66d4842d8c1d515f2c4430db889af021b1b0cf] #4506 SetDescription required on Product entities (yearofthegus)

	85bf906 [https://github.com/symfony/symfony-docs/commit/85bf906dfa3f0a09847db005e1f04216e080e4c1] #4444 fix elseif statement (MightyBranch)

	ad14e78 [https://github.com/symfony/symfony-docs/commit/ad14e7803ed8be7f066ee67c748d00c3ddaf3d8b] #4494 Updated the Symfony Installer installation instructions (javiereguiluz)

	33bf462 [https://github.com/symfony/symfony-docs/commit/33bf4627545e212a10af5180b790428ebacf0ae3] #4407 [Components][Console] array options need array default values (xabbuh)

	2ab2e1f [https://github.com/symfony/symfony-docs/commit/2ab2e1f712c693f039297311c9396ef120a48ec1] #4342 Reworded a misleading Doctrine explanation (javiereguiluz)

Minor Documentation Changes

	05f5dba [https://github.com/symfony/symfony-docs/commit/05f5dbacac092554ab3398601be92120945cd221] #4536 Add Ryan Weaver as 10th core team member (ifdattic)

	7b1ff2a [https://github.com/symfony/symfony-docs/commit/7b1ff2a33964ee29adbd2e240a3bc382b9ca16a3] #4554 Changed url to PHP-CS-FIXER repository (jzawadzki)

	9d599a0 [https://github.com/symfony/symfony-docs/commit/9d599a054007474f1b65d2c7b04f634c5faf74d0] #4544 bug #4273 - fix doctrine version in How to Provide Model Classes for several Doctrine Implementations cookbook (ternel)

	7b3500c [https://github.com/symfony/symfony-docs/commit/7b3500ca43b1f411657f6aa37cd4d84aed8ff525] #4542 Update conventions.rst (csuarez)

	5aaba1e [https://github.com/symfony/symfony-docs/commit/5aaba1e336cc85254882c28f34389725d65636df] #4529 Best Practices: Update link title to match cookbook article title (dangarzon)

	ab8e7f5 [https://github.com/symfony/symfony-docs/commit/ab8e7f59ec106d5aade1c696f8731671455aee83] #4530 Book: Update link title to match cookbook article title (dangarzon)

	bf61658 [https://github.com/symfony/symfony-docs/commit/bf616581f4ccce6d355413595fb6fe69831fc553] #4523 Add missing semicolons to PropertyAccess examples (loonytoons)

	5db8386 [https://github.com/symfony/symfony-docs/commit/5db83862999bb2e8c2a30c6bc36cc0cf7a6a24a9] #4462 [Reference] Fixed lots of things using the review bot (WouterJ)

	dbfaac1 [https://github.com/symfony/symfony-docs/commit/dbfaac1f1b307a6143e3f8b5a1c326c0b330d662] #4459 Fix up the final sentence to be a bit cleaner. (micheal)

	3761e50 [https://github.com/symfony/symfony-docs/commit/3761e50b36cb274af2d0de72a129ad2010d9c5ca] #4514 [Contributing][Documentation] typo fix (xabbuh)

	21afb4c [https://github.com/symfony/symfony-docs/commit/21afb4c7c27d4737a5f6d471c88422303264d752] #4445 Removed unnecessary use statement (Alex Salguero)

	3969fd6 [https://github.com/symfony/symfony-docs/commit/3969fd6d3e85966973692961e2c6b13437c653f2] #4432 [Reference][Twig] tweaks to the Twig reference (xabbuh)

	188dd1f [https://github.com/symfony/symfony-docs/commit/188dd1f17f96c7d31950ba30314683fae0614ba3] #4400 Continues #4307 (SamanShafigh, WouterJ)

	c008733 [https://github.com/symfony/symfony-docs/commit/c008733b9ee8d7e12507ab2cf813d03808b49ab5] #4399 Explain form() and form_widget() in form customization (oopsFrogs, WouterJ)

	2139754 [https://github.com/symfony/symfony-docs/commit/2139754cbb0c7ef871daae30a7eff4205dc83794] #4253 Adder and remover sidenote (kshishkin)

	b81eb4d [https://github.com/symfony/symfony-docs/commit/b81eb4db59de238334b477a5fbdc1d336b82e4f0] #4488 Terrible mistake! Comma instead of semicolon... (nuvolapl)

	0ee3ae7 [https://github.com/symfony/symfony-docs/commit/0ee3ae74457af8082364fafa7b4b1d7d6a6eab17] #4481 [Cookbook][Cache] add syntax highlighting for Varnish code blocks (xabbuh)

	0577559 [https://github.com/symfony/symfony-docs/commit/057755984ebdf7c334ec69cce62b61f9daf296ae] #4418 use the C lexer for Varnish config examples (xabbuh)

	97d8f61 [https://github.com/symfony/symfony-docs/commit/97d8f616f02e49daeb93dfc5719be312a3317292] #4403 Improved naming (WouterJ)

	6298595 [https://github.com/symfony/symfony-docs/commit/6298595e44c6f1ce759114668000477fb5da5e4e] #4453 Fixed make file (WouterJ)

	0c7dd72 [https://github.com/symfony/symfony-docs/commit/0c7dd721e1b3ae633de989448e9ffa7c77d849cd] #4475 Fixed typos (pborreli)

	b847b2d [https://github.com/symfony/symfony-docs/commit/b847b2d8af6720117b4ebbd421ac0da15c769075] #4480 Fix spelling (nurikabe)

	0d91cc5 [https://github.com/symfony/symfony-docs/commit/0d91cc5dd90a5febc76d54ba16853db3aae9217c] #4461 Update doctrine.rst (guiguiboy)

	81fc1c6 [https://github.com/symfony/symfony-docs/commit/81fc1c6000bb64ce02868cee8e618041d0f9766f] #4448 [Book][HTTP Cache] moved inlined URL to the bottom of the file (xabbuh)

	6995b07 [https://github.com/symfony/symfony-docs/commit/6995b07f2330004f466da5f86b599acc402a4d72] #4435 consistent table headlines (xabbuh)

	0380d34 [https://github.com/symfony/symfony-docs/commit/0380d340674fc0e9776f30e0f737a6730ba9f232] #4447 [Book] tweaks to #4427 (xabbuh)

	eb0d8ac [https://github.com/symfony/symfony-docs/commit/eb0d8acc985417368878b77e6313f4b4a748f168] #4441 Updated first code-block``::`` bash (Nitaco)

	41bc061 [https://github.com/symfony/symfony-docs/commit/41bc061762b8cf73e8ef0d9317a1af68a2a4c564] #4106 removed references to documentation from external sources (fabpot, WouterJ)

	c9a8dff [https://github.com/symfony/symfony-docs/commit/c9a8dffbb352ba3b61003fabaa6cd2e9fe63b038] #4352 [Best Practices] update best practices index (xabbuh)

	8a93c95 [https://github.com/symfony/symfony-docs/commit/8a93c958a3ab0450cb841e36d1653b3c3d96706b] #4437 Correct link to scopes page (mayeco)

	91eb652 [https://github.com/symfony/symfony-docs/commit/91eb65253b854a65435d4d943507c5b736e6cce4] #4438 Fix typo: Objected => Object (ifdattic)

	5d6d0c2 [https://github.com/symfony/symfony-docs/commit/5d6d0c2c16178a214e67ffa2fbaac7879f53e54d] #4436 remove semicolons in PHP templates (xabbuh)

	97c4b2e [https://github.com/symfony/symfony-docs/commit/97c4b2e152c42fc5bb953e41666117fea6619b5e] #4434 remove unused label (xabbuh)

	4be6786 [https://github.com/symfony/symfony-docs/commit/4be678650bfcd4fe6ce208261485081fd9854bb1] #4326 [Components][Form] Grammar improvement (fabschurt)

	a27238e [https://github.com/symfony/symfony-docs/commit/a27238e1084c18692dd2e159fcf741ce07e32df9] #4313 Improved and fixed twig reference (WouterJ)

	1ce9dc5 [https://github.com/symfony/symfony-docs/commit/1ce9dc5bfbdedacd093f35282327f577a34bdb45] #4398 A few small improvements to the EventDispatcher Component docs (GeertDD)

	42abc66 [https://github.com/symfony/symfony-docs/commit/42abc66af0620c8f0bf0b2057764327c0cadc561] #4421 [Best Practices] removed unused links in business-logic (77web)

	61c0bc5 [https://github.com/symfony/symfony-docs/commit/61c0bc57dd5d4b6391dbd85585e4ed24fe3469af] #4419 [DependencyInjection] Add missing space in code (michaelperrin)

October, 2014

New Documentation

	d7ef1c7 [https://github.com/symfony/symfony-docs/commit/d7ef1c753e427480e225310a45bd4cf352c14dc3] #4348 Updated information about handling validation of embedded forms to Valid... (peterrehm)

	691b13d [https://github.com/symfony/symfony-docs/commit/691b13d686b64884b6e91eb6ffdf1e70bd5b8154] #4340 [Cookbook][Web Server] add sidebar for the built-in server in VMs (xabbuh)

	d79c48d [https://github.com/symfony/symfony-docs/commit/d79c48dfdd6fa7b92c19d5092f2171dc99ad0b24] #4280 [Cookbook][Cache] Added config example for Varnish 4.0 (thierrymarianne)

	5849f7f [https://github.com/symfony/symfony-docs/commit/5849f7f5a7c8c0f4652be44b86df903d9a0f5db9] #4168 [Components][Form] describe how to access form errors (xabbuh)

	c10e9c1 [https://github.com/symfony/symfony-docs/commit/c10e9c19f8d425598a8be0578df4c84b232ff214] #4371 Added a code example for emailing on 4xx and 5xx errors without 404’s (weaverryan)

	0c57939 [https://github.com/symfony/symfony-docs/commit/0c57939e2be3b900a4eb0afa6aaa5a6620c9d239] #4327 First import of the “Official Best Practices” book (javiereguiluz)

	8dc90ef [https://github.com/symfony/symfony-docs/commit/8dc90efdff19a00c55ee0be187866b1f97c0b16f] #4224 [Components][HttpKernel] outline implications of the kernel.terminate event (xabbuh)

	d3b5ba2 [https://github.com/symfony/symfony-docs/commit/d3b5ba29f42bc3d3c73abb2420ad05a8dbac54cc] #4085 [Component][Forms] add missing features introduced in 2.3 (xabbuh)

	f433e64 [https://github.com/symfony/symfony-docs/commit/f433e64f5878b15feaa5b86aa374b58e32f633c6] #4099 Composer installation verbosity tip (dannykopping)

	925a162 [https://github.com/symfony/symfony-docs/commit/925a162879990d28d6093df1af7dfd22fcb27890] #4290 Updating library/bundle install docs to use “require” (weaverryan)

	44f570b [https://github.com/symfony/symfony-docs/commit/44f570b3e5efbc3a318beb789b87ecf69febdfa1] #4294 Improve cookbook entry for error pages in 2.3~ (mpdude)

	3b6c2b9 [https://github.com/symfony/symfony-docs/commit/3b6c2b97f1ff7304cc981a74bc521e91e0ed1873] #4269 [Cookbook][External Parameters] Enhance content (bicpi)

	62bafad [https://github.com/symfony/symfony-docs/commit/62bafad2a1cb6718bde3ae7d7612e65bfd3fd123] #4246 [Reference] add description for the ```validation_groups``` option (xabbuh)

	c2342a7 [https://github.com/symfony/symfony-docs/commit/c2342a72d0bc237c951b035a02651a1a3ac84c90] #4241 [Form] Added information about float choice lists (peterrehm)

Fixed Documentation

	68a2c7b [https://github.com/symfony/symfony-docs/commit/68a2c7b87b779aad5cbf02ad196aeb89aa4d0ee5] #4381 Updated Valid constraint reference (inso)

	db01e57 [https://github.com/symfony/symfony-docs/commit/db01e57482a66f52501b07de0edfbda6ee195465] #4362 Missing apostrophe in source example. (astery)

	d49d51f [https://github.com/symfony/symfony-docs/commit/d49d51ff97ca74c5acaced86293f4c29639f0c84] #4350 Removed extra parenthesis (sivolobov)

	e6d7d8f [https://github.com/symfony/symfony-docs/commit/e6d7d8f12617cd097818bb9fc36484c141299f4f] #4315 Update choice.rst (odolbeau)

	1b15d57 [https://github.com/symfony/symfony-docs/commit/1b15d57eaca4d78f249e3ebca9abebd0eab41cd3] #4300 [Components][PropertyAccess] Fix PropertyAccessorBuilder usage (Thierry Geindre)

	061324f [https://github.com/symfony/symfony-docs/commit/061324f69e8418d5cc8f5bef28ac7b3618f44e8c] #4297 [Cookbook][Doctrine] Fix typo in XML configuration for custom SQL functions (jdecool)

	f81b7ad [https://github.com/symfony/symfony-docs/commit/f81b7ad00cc5e2cdb9fbaf36c91db566b54970ff] #4292 Fixed broken external link to DemoController Test (danielsan)

	9591a04 [https://github.com/symfony/symfony-docs/commit/9591a04b612869a7078dc104589628a2f6d77965] #4284 change misleading language identifier (Kristof Van Cauwenbergh, kristofvc)

Minor Documentation Changes

	a4f7d51 [https://github.com/symfony/symfony-docs/commit/a4f7d5112776002e5509b66a255cd07dd5476d79] #4396 Corrected latin abbreviation (GeertDD)

	ebf2927 [https://github.com/symfony/symfony-docs/commit/ebf29274fba3d3b39a867c0ff58dd5457ce36c5e] #4387 Inline condition removed for easier reading (acidjames)

	aa70028 [https://github.com/symfony/symfony-docs/commit/aa70028c2c436c65a1e332151fcd7fecc8cb6cd2] #4375 Removed the redundant usage of layer. (micheal)

	f3dd676 [https://github.com/symfony/symfony-docs/commit/f3dd6763a0e33c03300c06e2396eb28b0d949f43] #4394 update Sphinx extension submodule reference (xabbuh)

	9e03f2d [https://github.com/symfony/symfony-docs/commit/9e03f2dd00f3aa0df16cfa001610d57636eba93c] #4388 Minor spelling fix (GeertDD)

	4dfd607 [https://github.com/symfony/symfony-docs/commit/4dfd607ecdeb4867507c30bc59caecdb90a16966] #4356 Remove incoherence between Doctrine and Propel introduction paragraphs (arnaugm)

	1d71332 [https://github.com/symfony/symfony-docs/commit/1d71332030658d0bfe91752af8cb007f929457cd] #4344 [Templating] Added a sentence that explains what a Template Helper is (iltar)

	9a76309 [https://github.com/symfony/symfony-docs/commit/9a76309a14c7eabe077111dfdc9ac74aab6593c9] #4384 fix typo (kokoon)

	3e8aa59 [https://github.com/symfony/symfony-docs/commit/3e8aa59ba74ac1b1ec5938de8370bf449e3790dc] #4376 Cleaned up javascript code (flip111)

	06e7c5f [https://github.com/symfony/symfony-docs/commit/06e7c5f54a75e55d0cdb6ddf364aa8a17bbda22d] #4364 changed submit button label (OskarStark)

	d1810ca [https://github.com/symfony/symfony-docs/commit/d1810ca52c177c19fbc870ee733751427fcdba37] #4357 fix Twig-extensions links (mhor)

	e2e2915 [https://github.com/symfony/symfony-docs/commit/e2e29153aa2457bd8103aca1ef0459f3b2b7bb38] #4359 Added missing closing parenthesis to example. (mattjanssen)

	f1bb8bb [https://github.com/symfony/symfony-docs/commit/f1bb8bbdd0eb372e5fb880a9bd3a942ef8a84545] #4358 Fixed link to documentation standards (sivolobov)

	65c891d [https://github.com/symfony/symfony-docs/commit/65c891dd2403facb6d8df06520d458155e58e3a5] #4355 Missing space (ErikSaunier)

	7359cb4 [https://github.com/symfony/symfony-docs/commit/7359cb4d35091055683358a0674747f0acb2146c] #4196 Clarified the bundle base template bit. (Veltar)

	6ceb8cb [https://github.com/symfony/symfony-docs/commit/6ceb8cbf0d3e448f66d5ab822c4e68c33aef1ec3] #4345 Correct capitalization for the Content-Type header (GeertDD)

	3e4c92a [https://github.com/symfony/symfony-docs/commit/3e4c92a12cf794dc09ccb640c2b1928213e06d80] #4104 Use ${APACHE_LOG_DIR} instead of /var/log/apache2 (xamgreen)

	3da0776 [https://github.com/symfony/symfony-docs/commit/3da0776b502dd23b399c3e005a27e965dc70e46f] #4338 ESI Variable Details Continuation (Farkie, weaverryan)

	7f461d2 [https://github.com/symfony/symfony-docs/commit/7f461d23ebc2cabf52380ca85582a581b7b0482b] #4325 [Components][Form] Correct a typo (fabschurt)

	d162329 [https://github.com/symfony/symfony-docs/commit/d1623295fb561849de82815eebba7f9db4e82651] #4276 [Components][HttpFoundation]Make a small grammatical adjustment (fabschurt)

	69bfac1 [https://github.com/symfony/symfony-docs/commit/69bfac17420c3a690ae170df530990859256d850] #4322 [Components][DependencyInjection] Correct a typo: replace “then” by “the” (fabschurt)

	8073239 [https://github.com/symfony/symfony-docs/commit/80732390c57c0a65a37e62230a1d76f617831bdf] #4318 [Cookbook][Bundles] Correct a typo: remove unnecessary “the” word (fabschurt)

	34e22d6 [https://github.com/symfony/symfony-docs/commit/34e22d6039a5130a57bb9755eeccdb51dd0de613] #4317 Remove horizontal scrollbar and change event name to follow conventions (ifdattic)

	090afab [https://github.com/symfony/symfony-docs/commit/090afab6e873171f58f8e48abfa4d09361937884] #4287 support Varnish in configuration blocks (xabbuh)

	1603463 [https://github.com/symfony/symfony-docs/commit/16034633f498c23af8abce8edce266f8af36a010] #4306 Improve readability (ifdattic)

	31d7905 [https://github.com/symfony/symfony-docs/commit/31d79055a700df631165107d5b0b948690c165be] #4302 View documentation had a reference to the wrong twig template (milan)

	ef11ef4 [https://github.com/symfony/symfony-docs/commit/ef11ef40d1cc3b33d481ffda386773314903d5d5] #4250 Clarifying Bundle Best Practices is for reusable bundles (weaverryan)

	430eabf [https://github.com/symfony/symfony-docs/commit/430eabf0e563247884b1702b4c5149c83c9c49e4] #4298 Book HTTP Fundamentals routing example fixed with routing.xml file (peterkokot)

	7ab6df9 [https://github.com/symfony/symfony-docs/commit/7ab6df94b858a0a11276ccc9d40c25e00806caa5] #4237 Finished #3886 (ahsio, WouterJ)

	990b453 [https://github.com/symfony/symfony-docs/commit/990b4531f8ee636e3167537bd0dce7c88da16b98] #4245 [Contributing] tweaks to the contribution chapter (xabbuh)

September, 2014

New Documentation

	eac0e51 [https://github.com/symfony/symfony-docs/commit/eac0e5101ef8cb142fd37810e7f4faf2396c84d5] #4195 Added a note about the total deprecation of YUI (javiereguiluz)

	e44c791 [https://github.com/symfony/symfony-docs/commit/e44c791b510f0439c9727642390c4184d0b94227] #4047 Documented info method (WouterJ)

	d5d46ec [https://github.com/symfony/symfony-docs/commit/d5d46ec61e2bd851914550274d97f142c9397a93] #4017 Clarify that route defaults don’t need a placeholder (iamdto)

	1d56da4 [https://github.com/symfony/symfony-docs/commit/1d56da4384b09298d8ae11b8a14f1ae62b82d5ff] #4239 Remove redundant references to trusting HttpCache (thewilkybarkid)

	c306b68 [https://github.com/symfony/symfony-docs/commit/c306b68d7d40d6d5ca815ea1af2a7bda63f4f060] #4249 provide node path on configuration (desarrolla2)

	9b4b36f [https://github.com/symfony/symfony-docs/commit/9b4b36fa5f653e621e86363cd060c693c308c62f] #4236 Javiereguiluz bundle install instructions (WouterJ)

	a578de9 [https://github.com/symfony/symfony-docs/commit/a578de99b2ba4a83605a530a76111a4cf4daf1fa] #4223 Revamped the documentation about “Contributing Docs” (javiereguiluz)

	de60dbe [https://github.com/symfony/symfony-docs/commit/de60dbed64c719792c0259248e4dc52aefd6b088] #4182 Added note about exporting SYMFONY_ENV (jpb0104)

	a8dc2bf [https://github.com/symfony/symfony-docs/commit/a8dc2bfe0f5cfcc5af24565e195d8293f45ee393] #4166 Translation custom loaders (raulfraile)

Fixed Documentation

	5500e0b [https://github.com/symfony/symfony-docs/commit/5500e0b211633e65de693f0eca7dddfef52ee35e] #4267 Fix error in bundle installation standard example (WouterJ)

	082755d [https://github.com/symfony/symfony-docs/commit/082755dac2385250c11a8c6024ca2d74048bd654] #4240 [Components][EventDispatcher] fix ContainerAwareEventDispatcher definition (xabbuh)

	2319d6a [https://github.com/symfony/symfony-docs/commit/2319d6a391ee16f772ac34b5c4336680a26f8992] #4213 Handle “constraints” option in form unit testing (sarcher)

	c567707 [https://github.com/symfony/symfony-docs/commit/c5677076f81b1c13d6230332fef0d5727354b9af] #4222 [Components][DependencyInjection] do not reference services in parameters (xabbuh)

Minor Documentation Changes

	df16779 [https://github.com/symfony/symfony-docs/commit/df167799641899e679a4022dcd260d2f63035276] #4226 add note about parameters in imports (xabbuh)

	c332063 [https://github.com/symfony/symfony-docs/commit/c3320637e61f053af6ce279b9d792b6a793eea4e] #4278 Missing word in DependencyInjection => Types of Injection (fabschurt)

	3a4e226 [https://github.com/symfony/symfony-docs/commit/3a4e22689d6e72edcd5f628a6f74fea633919021] #4263 Fixed typo (zebba)

	187c255 [https://github.com/symfony/symfony-docs/commit/187c25511ebe2d9109bb356d7f0e62f22a3abaaa] #4259 Added feature freeze dates for Symfony versions (javiereguiluz)

	efc1436 [https://github.com/symfony/symfony-docs/commit/efc1436e02600aefbd39546068b362a4d22800cc] #4247 [Reference] link translation DIC tags to components section (xabbuh)

	17addb1 [https://github.com/symfony/symfony-docs/commit/17addb112a2a0e5b5b233a61b3541dd1f8aa58b9] #4238 Finished #3924 (WouterJ)

	19a0c35 [https://github.com/symfony/symfony-docs/commit/19a0c35d08af7f8ff474d6a52fac88c5d7db24f8] #4252 Removed unnecessary comma (allejo)

	9fd91d6 [https://github.com/symfony/symfony-docs/commit/9fd91d60644d2111bdc3a7dfc872b90aa3a97ac7] #4219 Cache needs be cleared (burki94)

	025f02e [https://github.com/symfony/symfony-docs/commit/025f02e7917473cc9a885b41de1fe9ca945044b8] #4220 Added a note about the side effects of enabling both PHP and Twig (javiereguiluz)

	46fcb67 [https://github.com/symfony/symfony-docs/commit/46fcb678392e2f0c8f0bbe34a94f01429e256a4a] #4218 Caution that roles should start with ROLE_ (jrjohnson)

	78eea60 [https://github.com/symfony/symfony-docs/commit/78eea60c0cc93849732f071801b39042feed3cbf] #4077 Removed outdated translations from the official list (WouterJ)

	2cf9e47 [https://github.com/symfony/symfony-docs/commit/2cf9e47f4c3399db3f0b4a2a11647b6292cbdee3] #4171 Fixed version for composer install (zomberg)

	5c62b36 [https://github.com/symfony/symfony-docs/commit/5c62b36f63a308b9d7be262dff9a02b89d94600d] #4216 Update Collection.rst (azarzag)

	8591b87 [https://github.com/symfony/symfony-docs/commit/8591b872facc7a6b4bd1447d5438fe68cd21e112] #4215 Fixed code highlighting (WouterJ)

	f276e34 [https://github.com/symfony/symfony-docs/commit/f276e348faf446e26be9871bf49caa14a1a05a40] #4205 replace “Symfony2” with “Symfony” (xabbuh)

	6db13ac [https://github.com/symfony/symfony-docs/commit/6db13ac022006f9746c5a97a63a6f1f02458edca] #4208 Added a note about the lacking features of Yaml Component (javiereguiluz)

	f8c6201 [https://github.com/symfony/symfony-docs/commit/f8c6201b5c24661d2545618e2667949fd53c3020] #4200 Moved ‘contributing’ images to their own directory (javiereguiluz)

	b4650fa [https://github.com/symfony/symfony-docs/commit/b4650fa7a3c9b7cef533c1174e7c9783528be247] #4199 fix name of the Yaml component (xabbuh)

	9d89bb0 [https://github.com/symfony/symfony-docs/commit/9d89bb030714617d42f80e06e11d7c5fecb7b1b6] #4190 add link to form testing chapter in test section (xabbuh)

August, 2014

New Documentation

	bccb080 [https://github.com/symfony/symfony-docs/commit/bccb080bd7eeb30e3d3c48c656be0c696b0cec85] #4140 [Cookbook][Logging] document multiple recipients in XML configs (xabbuh)

	7a6e3d1 [https://github.com/symfony/symfony-docs/commit/7a6e3d19115a027bcd717916548accb9702b2fe9] #4150 Added the schema_filter option to the reference (peterrehm)

	be90d8a [https://github.com/symfony/symfony-docs/commit/be90d8a631f9ec39f2307959bb43dc23e36fcf5a] #4142 [Cookbook][Configuration] tweaks for the web server configuration chapter (xabbuh)

	041105c [https://github.com/symfony/symfony-docs/commit/041105c438f5f5072cbe6ceb380212412a2c5ef6] #3883 Removed redundant POST request exclusion info (ryancastle)

	4f9fef6 [https://github.com/symfony/symfony-docs/commit/4f9fef61a96cfda6fa5c3ac228647ccbdbde8ea9] #4000 [Cookbook] add cookbook article for the server:run command (xabbuh)

	4ea4dfe [https://github.com/symfony/symfony-docs/commit/4ea4dfecd531a18d4a10a697f3af8b8b9f44c365] #3915 [Cookbook][Configuration] documentation of Apache + PHP-FPM (xabbuh)

	4d5adaa [https://github.com/symfony/symfony-docs/commit/4d5adaa4ccef36fbec631ad05ce7389cbd575ebd] #4125 Added link to JSFiddle example (WouterJ)

	75bda4b [https://github.com/symfony/symfony-docs/commit/75bda4bcdcf887e5a01a399bdf7790c72499a2e9] #4124 Rebased #3965 (WouterJ)

	fdb8a32 [https://github.com/symfony/symfony-docs/commit/fdb8a324b07c183cbda5e8e77ae2f59f2319a301] #3950 [Components][EventDispatcher] describe the usage of the RegisterListenersPass (xabbuh)

	7e09383 [https://github.com/symfony/symfony-docs/commit/7e093830741508805d548402561b443874403760] #3940 Updated docs for Monolog “swift” handler in cookbook. (phansys)

	8adfe98 [https://github.com/symfony/symfony-docs/commit/8adfe98d822c905ac7877affa14ec5e447662fbe] #3894 Rewrote Extension & Configuration docs (WouterJ)

	cafea43 [https://github.com/symfony/symfony-docs/commit/cafea438624ea9e36639f48d38483c292a6dd476] #3888 Updated the example used to explain page creation (javiereguiluz)

	df0cf68 [https://github.com/symfony/symfony-docs/commit/df0cf68b6ab3b8974c03482349602833f4ec5387] #3885 [RFR] Added “How to Organize Configuration Files” cookbook (javiereguiluz)

	41116da [https://github.com/symfony/symfony-docs/commit/41116dae3d9e34852cc3ef5e105d23f5c1f67c63] #4081 [Components][ClassLoader] documentation for the ClassMapGenerator class (xabbuh)

	35a0f66 [https://github.com/symfony/symfony-docs/commit/35a0f66254429dff1c79e20925969509c90aba0b] #4102 Adding a new entry about reverse proxies in the framework (weaverryan)

	95c2066 [https://github.com/symfony/symfony-docs/commit/95c20664ddc5bb2c8e059b9acf44a938c573c19e] #4096 labels in submit buttons + new screenshot (ricardclau)

Fixed Documentation

	4882b99 [https://github.com/symfony/symfony-docs/commit/4882b998e3284211616e721e924fbcba0c8c96ce] #4164 Fixed minor typos. (ahsio)

	eaaa35a [https://github.com/symfony/symfony-docs/commit/eaaa35af3b9d9753484bfc0d35fc07bc933fdb0d] #4145 Fix documentation for group_sequence_provider (giosh94mhz)

	2c93aa5 [https://github.com/symfony/symfony-docs/commit/2c93aa52114f62cb59053340b91998630316465d] #4147 [Cookbook][Logging] add missing Monolog handler type in XML config (xabbuh)

	53b2c2b [https://github.com/symfony/symfony-docs/commit/53b2c2be9f077afb5120cb3a3b39d58961073861] #4139 cleaned up the code example (gondo)

	b5c9f2a [https://github.com/symfony/symfony-docs/commit/b5c9f2ae0ab8b3761bf005e36c3a20df12ae4c0f] #4138 fixed wrongly linked dependency (gondo)

	b486b22 [https://github.com/symfony/symfony-docs/commit/b486b220d3993cd0b2b60a75c2a6ba986439f5c4] #4131 Replaced old way of specifying http method by the new one (Baptouuuu)

	93481d7 [https://github.com/symfony/symfony-docs/commit/93481d7b2236394939941809020f82005194844a] #4120 Fix use mistakes (mbutkereit)

	c0a0120 [https://github.com/symfony/symfony-docs/commit/c0a0120cb59ae97abc813425a68311b458dc722e] #4119 Fix class name in ConsoleTerminateListener example (alOneh)

	d699255 [https://github.com/symfony/symfony-docs/commit/d6992559f1a4e59fe4f29db1a1b5961266d085c5] #4083 [Reference] field dependent empty_data option description (xabbuh)

	3ffc20f [https://github.com/symfony/symfony-docs/commit/3ffc20fcee21b3df5b16e7d270634ac4e682d163] #4103 [Cookbook][Forms] fix PHP template file name (xabbuh)

	234fa36 [https://github.com/symfony/symfony-docs/commit/234fa364612d70da60ad3cb997fca0123db473e6] #4095 Fix php template (piotrantosik)

	01fb9f2 [https://github.com/symfony/symfony-docs/commit/01fb9f245975d8769ab6f27e9c25578270d55a29] #4093 See #4091 (dannykopping)

	7d39b03 [https://github.com/symfony/symfony-docs/commit/7d39b03b09d60ebb0d400f080079e6d2a2d55bdd] #4079 Fixed typo in filesystem component (kohkimakimoto)

	f0bde03 [https://github.com/symfony/symfony-docs/commit/f0bde034a600179024847fc54fa0dcdcdd9299be] #4075 Fixed typo in the yml validation (timothymctim)

Minor Documentation Changes

	e9d317a [https://github.com/symfony/symfony-docs/commit/e9d317a1fc653636605a207ed5cb2c4880860658] #4160 [Reference] consistent & complete config examples (xabbuh)

	3e68ee7 [https://github.com/symfony/symfony-docs/commit/3e68ee78c2a7288ba0bf9264833c22c3c1b28aff] #4152 Adding ‘attr’ option to the Textarea options list (ronanguilloux)

	c4eb628 [https://github.com/symfony/symfony-docs/commit/c4eb628781d5cb487d15e7effed51efbe6f64f13] #4130 A set of small typos (Baptouuuu)

	236d8e0 [https://github.com/symfony/symfony-docs/commit/236d8e08b5d282948a42c169f0090faed66c42fc] #4137 fixed directive syntax (WouterJ)

	6e90520 [https://github.com/symfony/symfony-docs/commit/6e90520d4c8ea72a90d910b0adac917e33e5d963] #4135 [#3940] Adding php example for an array of emails (weaverryan)

	b37ee61 [https://github.com/symfony/symfony-docs/commit/b37ee61d264fa81811ff90e3f492708f0f70b58a] #4132 Use proper way to reference a doc page for legacy sessions (Baptouuuu)

	189a123 [https://github.com/symfony/symfony-docs/commit/189a1234bbf0630004c4ad76a9e535e382c354ce] #4129 [Components] consistent & complete config examples (xabbuh)

	46f3108 [https://github.com/symfony/symfony-docs/commit/46f3108fee8f6a514b4376ad9dddb37aa6e5342d] #4126 Rebased #3848 (WouterJ)

	84e6e7f [https://github.com/symfony/symfony-docs/commit/84e6e7f69f7fc5693075012d69509ad437f455ff] #4114 [Book] consistent and complete config examples (xabbuh)

	03fcab1 [https://github.com/symfony/symfony-docs/commit/03fcab142743528643ee04895b2287420e2a1d76] #4112 [Contributing][Documentation] add order of translation formats (xabbuh)

	650120a [https://github.com/symfony/symfony-docs/commit/650120ada5c432d2a2a3f54386c88f180d0f43b3] #4002 added Github teams for the core team (fabpot)

	10792c3 [https://github.com/symfony/symfony-docs/commit/10792c330506ad2366147f36410233341e86701e] #3959 [book][cache][tip] added cache annotations. (aitboudad)

	ebaed21 [https://github.com/symfony/symfony-docs/commit/ebaed21ff67074d02d5812060fc9d5f85ec237e1] #3944 Update dbal.rst (bpiepiora)

	16e346a [https://github.com/symfony/symfony-docs/commit/16e346ad07c8139b20bbc10600ceed1563fbe1f2] #3890 [Components][HttpFoundation] use a placeholder for the constructor arguments (xabbuh)

	7bb4f34 [https://github.com/symfony/symfony-docs/commit/7bb4f3447d0b0a7bd524dfbb89dc4a17f8090a8b] #4115 [Documentation] [Minor] Changes foobar.net in example.com (magnetik)

	12d0b82 [https://github.com/symfony/symfony-docs/commit/12d0b825f158639928e0ea9acc9535cc4ffbd676] #4113 tweaks to the new reverse proxy/load balancer chapter (xabbuh)

	4cce133 [https://github.com/symfony/symfony-docs/commit/4cce133b5b55fce7cafa26257e530838f587a814] #4057 Update introduction.rst (carltondickson)

	26141d6 [https://github.com/symfony/symfony-docs/commit/26141d68dfda0959ad75e17c5db51de399f97975] #4080 [Reference] order form type options alphabetically (xabbuh)

	7806aa7 [https://github.com/symfony/symfony-docs/commit/7806aa7de543baf167d445dc5901121a2e460599] #4117 Added a note about the automatic handling of the memory spool in the CLI (stof)

	5959b6c [https://github.com/symfony/symfony-docs/commit/5959b6c64156e0e6dfca060412358b12c5ea117b] #4101 [Contributing] extended Symfony 2.4 maintenance (xabbuh)

	e2056ad [https://github.com/symfony/symfony-docs/commit/e2056ad7db522e117c5f310690c993a2a5a3a725] #4072 [Contributing][Code] add note on Symfony SE forks for bug reports (xabbuh)

	665c091 [https://github.com/symfony/symfony-docs/commit/665c0913e52470f4b4b8070a52462285cad62863] #4087 Typo (tvlooy)

	f95bbf3 [https://github.com/symfony/symfony-docs/commit/f95bbf34c990d3d7e06fa48d790f06ff5814563e] #4023 [Cookbook][Security] usage of a non-default entity manager in an entity user provider (xabbuh)

	27b1003 [https://github.com/symfony/symfony-docs/commit/27b10033d12a247f3af22333e7854d402ff3139d] #4074 Fixed (again) a typo: Toolbet –> Toolbelt (javiereguiluz)

	c97418f [https://github.com/symfony/symfony-docs/commit/c97418fdb030960c5f0dd10a635a4d49579c4216] #4073 Reworded bundle requirement (WouterJ)

	e5d5eb8 [https://github.com/symfony/symfony-docs/commit/e5d5eb8ae4307c17b3e2e157eafb4d5d32d0f557] #4066 Update inherit_data_option.rst (Oylex)

	9c08572 [https://github.com/symfony/symfony-docs/commit/9c08572fc55a8dff83ff7e3c985f3e66936d57af] #4064 Fixed typo on tag service (saro0h)

July, 2014

New Documentation

	1b4c1c8 [https://github.com/symfony/symfony-docs/commit/1b4c1c86a3e4729e1a6ce226963ac05577b8ab8f] #4045 Added a new “Deploying to Heroku Cloud” cookbook article (javiereguiluz)

	f943eee [https://github.com/symfony/symfony-docs/commit/f943eee70cf81b90a598d94f400a3723216fe726] #4009 Remove “Controllers extends ContainerAware” best practice (tgalopin)

	eae9ad0 [https://github.com/symfony/symfony-docs/commit/eae9ad037ed402752238e4eb1c9c0b2fdc443d7d] #3875 Added a note about customizing a form with more than one template (javiereguiluz)

	d6787b7 [https://github.com/symfony/symfony-docs/commit/d6787b7b64ed6d20cafee0134a99e590bee6102b] #3989 adde stof as a merger (fabpot)

	4a9e49e [https://github.com/symfony/symfony-docs/commit/4a9e49ef142fdeeb5523dbdcf73503ac602373e7] #3946 DQL custom functions on doctrine reference page (healdropper)

Fixed Documentation

	1b695b5 [https://github.com/symfony/symfony-docs/commit/1b695b52a3f8094daf18d212a124a6050f2fad1a] #4063 fix parent form types (xabbuh)

	7901005 [https://github.com/symfony/symfony-docs/commit/7901005f37d223cd4541648131bccc0e4bd687d5] #4048 $this->request replaced by $request (danielsan)

	f6123f1 [https://github.com/symfony/symfony-docs/commit/f6123f1bb06d624fc2d0506bcf6f4016c0b3e371] #4031 Update form_events.rst (redstar504)

	eb813a5 [https://github.com/symfony/symfony-docs/commit/eb813a563c564358ba82253ea667516cd3e7191d] #3979 removed invalid processors option (ricoli)

Minor Documentation Changes

	a4bdb97 [https://github.com/symfony/symfony-docs/commit/a4bdb97a92dd54709cd85be8e9998a6ced6974da] #4070 Added a note about permissions in the Quick Tour (javiereguiluz)

	b3f15b2 [https://github.com/symfony/symfony-docs/commit/b3f15b2dc78c0593e6db09311c0c79eba68a97f0] #4059 eraseCredentials method typo (danielsan)

	44091b1 [https://github.com/symfony/symfony-docs/commit/44091b132c1007535ff3030a64126751486982cd] #4053 Update doctrine.rst (sr972)

	b06ad60 [https://github.com/symfony/symfony-docs/commit/b06ad6041164479c049ae4c202b13b3f248c3bed] #4052 [Security] [Custom Provider] Use properties on WebserviceUser (entering)

	a834a7e [https://github.com/symfony/symfony-docs/commit/a834a7e883e78005ed41a6cea0dcee058ed85b1f] #4042 [Cookbook] apply headline guidelines to the cookbook articles (xabbuh)

	f25faf3 [https://github.com/symfony/symfony-docs/commit/f25faf3ed3facd3812b743288465ee9ca25397a4] #4046 Fixed a syntax error (javiereguiluz)

	3c660d1 [https://github.com/symfony/symfony-docs/commit/3c660d13390cc1cf05e9d0be98bbce847002c05b] #4044 Added editorconfig (WouterJ)

	ae3ec04 [https://github.com/symfony/symfony-docs/commit/ae3ec048e8583082928bffadb079d1391e888f0f] #4041 [Cookbook][Deployment] link to the deployment index (xabbuh)

	2e4fc7f [https://github.com/symfony/symfony-docs/commit/2e4fc7f3a5dd4caa4ee5cbfade6989e71bcda123] #4030 enclose YAML strings containing % with quotes (xabbuh)

	9520d92 [https://github.com/symfony/symfony-docs/commit/9520d9299e6ddbc19985e0ed322349c70d89cdc7] #4038 Update rendered tag (kirill-oficerov)

	f5c2602 [https://github.com/symfony/symfony-docs/commit/f5c260219f8e7df969493df2fe2d2feb1fc97e19] #4036 Update page_creation.rst (redstar504)

	c2eda93 [https://github.com/symfony/symfony-docs/commit/c2eda939ad8681721cd1b12bcedadd1faf294725] #4034 Update internals.rst (redstar504)

	a5ad0df [https://github.com/symfony/symfony-docs/commit/a5ad0dfbf9ad2dcc84e7f9c6de73c8bad2a89e2f] #4035 Update version in Rework your Patch section (yguedidi)

	d8b037a [https://github.com/symfony/symfony-docs/commit/d8b037a989c1581ae671e81284d0d758254d8e1e] #4019 Update twig_reference.rst (redstar504)

	579a873 [https://github.com/symfony/symfony-docs/commit/579a8732299dd944998ab3fee4fa738a3c45cea2] #4015 Fixed bad indenting (the list was treated as a blockquote) (javiereguiluz)

	4669620 [https://github.com/symfony/symfony-docs/commit/466962051e0753557fc75d9d449083d68ae48992] #4004 use GitHub instead of Github (xabbuh)

	a3fe74f [https://github.com/symfony/symfony-docs/commit/a3fe74f4fad9f691dc570fb9234acd15bd6ccfdc] #3993 [Console] Fix Console component getHelperSet()->get() to getHelper() (eko)

	a41af7e [https://github.com/symfony/symfony-docs/commit/a41af7e0f4a10cf7a6230598fd955dab2559935e] #3880 document the mysterious abc part of the header (greg0ire)

	90773b0 [https://github.com/symfony/symfony-docs/commit/90773b03425388542d1b0face5368eb4c47ce3b8] #3990 Move the section about collect: false to the cookbook entry (weaverryan)

	2ae8281 [https://github.com/symfony/symfony-docs/commit/2ae82816556478c75ba9873589b2d77987156c36] #3864 plug rules for static methods (cordoval)

	d882cc0 [https://github.com/symfony/symfony-docs/commit/d882cc0e0b41e8c49187854d40dfb0963b429939] #3988 fix typos. (yositani2002)

	b67a059 [https://github.com/symfony/symfony-docs/commit/b67a059d5ff8c45482df135ed8dda5b3bcc81f3a] #3986 Rebased #3982 - Some fixes (WouterJ)

	801c756 [https://github.com/symfony/symfony-docs/commit/801c7565a3e6c0d440fb86f1b2fd4a076ff4399c] #3977 [WCM] removed call to deprecated getRequest() method (Baptouuuu)

	4c1d4ae [https://github.com/symfony/symfony-docs/commit/4c1d4ae506a7dc68fad57ddf6cc25c17a00169a4] #3968 Proofreading the new Azure deployment article (weaverryan)

June, 2014

New Documentation

	5540e0b [https://github.com/symfony/symfony-docs/commit/5540e0b4a8dd455cb6ac4e149d1545385f4b203b] #3963 [cookbook] [deployment] added cookbook showing how to deploy to the Microsoft Azure Website Cloud (hhamon)

	6cba0f1 [https://github.com/symfony/symfony-docs/commit/6cba0f129056a4ac20f7a84cc069d7e726a090b4] #3936 Varnish only takes into account max-age (gonzalovilaseca)

	3c95af5 [https://github.com/symfony/symfony-docs/commit/3c95af5ebb26710f1e2f95bb9ded3abc7ea3b709] #3928 Reorder page from simple to advanced (rebased) (clemens-tolboom)

	350b805 [https://github.com/symfony/symfony-docs/commit/350b8055458e02c63cb2f24b3e261b6b334b30b1] #3916 [Component][EventDispatcher] documentation for the TraceableEventDispatcher (xabbuh)

	1702133 [https://github.com/symfony/symfony-docs/commit/17021333289c9de37ab7383dee4b94bdb04f4ea7] #3913 [Cookbook][Security] Added doc for x509 pre authenticated listener (zefrog)

	32b9058 [https://github.com/symfony/symfony-docs/commit/32b9058563637def77d2820d659f8d647b5b2e5b] #3909 Update the CssSelector component documentation (stof)

	23b51c8 [https://github.com/symfony/symfony-docs/commit/23b51c84e72a2a7692667fd449d3362ec6f542a1] #3901 Bootstraped the standards for “Files and Directories” (javiereguiluz)

	8931c36 [https://github.com/symfony/symfony-docs/commit/8931c362c2b256bb52507ca2d367b72eea421d84] #3889 Fixed the section about getting services from a command (javiereguiluz)

	9fddab6 [https://github.com/symfony/symfony-docs/commit/9fddab6e0cb6e7a023056e1f8456ebc3520e5cfb] #3877 Added a note about configuring several paths under the same namespace (javiereguiluz)

Fixed Documentation

	aeffd12 [https://github.com/symfony/symfony-docs/commit/aeffd126b3dff698792fb39374d856b702990e1e] #3961 Fixing php coding (mvhirsch)

	d8329dc [https://github.com/symfony/symfony-docs/commit/d8329dc05523bfe17e7fcc24099122932e638ba3] #3943 Fixing simple quotes in double quotes (ptitlazy)

	0626f2b [https://github.com/symfony/symfony-docs/commit/0626f2bda67fa34ac6039a400a9b23f5968d9e82] #3897 Collection constraint (hhamon)

	3387cb2 [https://github.com/symfony/symfony-docs/commit/3387cb2c79affaae9359ffdce929a2148f87de55] #3871 Fix missing Front Controller (parthasarathigk)

	8257be9 [https://github.com/symfony/symfony-docs/commit/8257be91df0a873fd3ea9277a2c7e308a579a4ce] #3891 Fixed wrong method call. (cmfcmf)

Minor Documentation Changes

	75ee6b4 [https://github.com/symfony/symfony-docs/commit/75ee6b4d62e7caf0932f6966b3fb8dfcefdb8335] #3969 [cookbook] [deployment] removed marketing introduction in Azure Deployme... (hhamon)

	02aeade [https://github.com/symfony/symfony-docs/commit/02aeade9a01155ca5e203f065008fd2ec2044cb4] #3967 fix typo. (yositani2002)

	208b0dc [https://github.com/symfony/symfony-docs/commit/208b0dc78b07f4dbabb4d3e7dd6b2c7f1ac4863a] #3951 fix origin of AcmeDemoBundle (hice3000)

	fba083e [https://github.com/symfony/symfony-docs/commit/fba083efaddd92ad782e453d43a62bdec053cfa0] #3957 [Cookbook][Bundles] fix typos in the prepend extension chapter (xabbuh)

	c444b5d [https://github.com/symfony/symfony-docs/commit/c444b5ddb2df7bede3a84f8fffa543892a629916] #3948 update the Sphinx extensions to raise warnings when backslashes are not ... (xabbuh)

	8fef7b7 [https://github.com/symfony/symfony-docs/commit/8fef7b7fd81ee12aca2d45ac59c2ef2da11528d0] #3938 [Contributing][Documentation] don’t render the list inside a blockquote (xabbuh)

	222a014 [https://github.com/symfony/symfony-docs/commit/222a014164c005a38ff69a8b1ed3dd80612b6403] #3933 render directory inside a code block (xabbuh)

	7937864 [https://github.com/symfony/symfony-docs/commit/793786494d80f37dc0311520585f2699ab07a149] #3927 [Cookbook][Security] Explicit ‘your_user_provider’ configuration parameter (zefrog)

	26d00d0 [https://github.com/symfony/symfony-docs/commit/26d00d084386df90f625a1b7302e65974326008b] #3925 Fixed the indentation of two code blocks (javiereguiluz)

	351b2cf [https://github.com/symfony/symfony-docs/commit/351b2cf60575e4e2f1249c9c7ac7b19a0ecbe1b8] #3922 update fabpot Sphinx extensions version (xabbuh)

	35cbffc [https://github.com/symfony/symfony-docs/commit/35cbffcd90920494231d07a487deee1d9a8ae967] #3920 [Components][Form] remove blank line to render the versionadded directive properly (xabbuh)

	36337e7 [https://github.com/symfony/symfony-docs/commit/36337e7b44af6237ad43533742571c27d8976faa] #3906 Blockquote introductions (xabbuh)

	5e0e119 [https://github.com/symfony/symfony-docs/commit/5e0e1196cf1b7735e489b25fe2c2263fea13d8ff] #3899 [RFR] Misc. fixes mostly related to formatting issues (javiereguiluz)

	349cbeb [https://github.com/symfony/symfony-docs/commit/349cbeb161cb9d1eec9238a58fc21004a560ced9] #3900 Fixed the formatting of the table headers (javiereguiluz)

	1dc8b4a [https://github.com/symfony/symfony-docs/commit/1dc8b4af41b6e89a22ca79ed95c84955e1e8a1e6] #3898 clarifying the need of a factory for auth-provider (leberknecht)

	0c20141 [https://github.com/symfony/symfony-docs/commit/0c2014162aec345fc2665602ab0b0380cb50fe57] #3896 Fixing comment typo for Doctrine findBy and findOneBy code example (beenanner)

	b00573c [https://github.com/symfony/symfony-docs/commit/b00573c4be04f4181896127437aa3d09c4817669] #3870 Fix wrong indentation for lists (WouterJ)

May, 2014

New Documentation

	af8c20f [https://github.com/symfony/symfony-docs/commit/af8c20fa357695645a98570a916658688894eb6d] #3818 [Form customization] added block_name example. (aitboudad)

	c788325 [https://github.com/symfony/symfony-docs/commit/c78832551744ed1c6aa2d3eb48501e0e1039d073] #3841 [Cookbook][Logging] register processor per handler and per channel (xabbuh)

	979533a [https://github.com/symfony/symfony-docs/commit/979533aa4430a0db4c421744023028192e02cb3d] #3839 document how to test actions (greg0ire)

	d8aaac3 [https://github.com/symfony/symfony-docs/commit/d8aaac3de8c867f05ce3c1543ebeb75eda3816e9] #3835 Updated framework.ide configuration (WouterJ)

	f665e14 [https://github.com/symfony/symfony-docs/commit/f665e14059f56f729b20448ade416b3e11a14be8] #3704 [Form] Added documentation for Form Events (csarrazi)

	14b9f14 [https://github.com/symfony/symfony-docs/commit/14b9f140aff2e8a8fe23a18181f94e1f5e0d8a9b] #3777 added docs for the core team (fabpot)

Fixed Documentation

	0649c21 [https://github.com/symfony/symfony-docs/commit/0649c212b3ea28c8890914912ffb2503bfdfdad0] #3869 Add a missing argument to the PdoSessionHandler (jakzal)

	259a2b7 [https://github.com/symfony/symfony-docs/commit/259a2b7a891ba9c2f271cbcee5bf0130a15c98ac] #3866 [Book][Security]fixed Login when there is no session. (aitboudad)

	9b7584f [https://github.com/symfony/symfony-docs/commit/9b7584f0501a34016c4ec20a1c439c25ac663f5b] #3863 Error in XML (tvlooy)

	0cb9c3b [https://github.com/symfony/symfony-docs/commit/0cb9c3bc3fb6d17a8fafd778abf8dc6981fc550d] #3827 Update ‘How to Create and store a Symfony2 Project in Git’ (nicwortel)

	4ed9a08 [https://github.com/symfony/symfony-docs/commit/4ed9a08f073aa515636dd8bb2a0279f7e39d1ab8] #3830 Generate an APC prefix based on __FILE__ (trsteel88)

	9a65412 [https://github.com/symfony/symfony-docs/commit/9a654126306b113b329b6965a700632c477a5585] #3840 Update dialoghelper.rst (jdecoster)

	1853fea [https://github.com/symfony/symfony-docs/commit/1853fea967cc1defc35afec179932581038ffae0] #3716 Fix issue #3712 (umpirsky)

	80d70a4 [https://github.com/symfony/symfony-docs/commit/80d70a4907e6e26784c63f6c41fae8e2d57b67db] #3779 [Book][Security] constants are defined in the SecurityContextInterface (xabbuh)

Minor Documentation Changes

	302fa82 [https://github.com/symfony/symfony-docs/commit/302fa8254f6ae1c4777e90db58503ef5d145816e] #3872 Update hostname_pattern.rst (sofany)

	50672f7 [https://github.com/symfony/symfony-docs/commit/50672f7768d7eb6ae7acf4d954902d913aa6a20e] #3867 fixed missing info about FosUserBundle. (aitboudad)

	b32ec15 [https://github.com/symfony/symfony-docs/commit/b32ec158602704de28325ca5ba5cd7a915d97af8] #3856 Update voters_data_permission.rst (MarcomTeam)

	bffe163 [https://github.com/symfony/symfony-docs/commit/bffe1635435b61a95ef26e433391ca8385984430] #3859 Add filter cssrewrite (DOEO)

	f617ff8 [https://github.com/symfony/symfony-docs/commit/f617ff88087b1f7ec2df55f9b6b63cc1f69b0a9d] #3764 Update testing.rst (NAYZO)

	3792fee [https://github.com/symfony/symfony-docs/commit/3792fee4a18cc1b411ca02c4909534e17ee22593] #3858 Clarified Password Encoders example (WouterJ)

	663d68c [https://github.com/symfony/symfony-docs/commit/663d68c034c41bd539064ae544b466c372cd7f5b] #3857 Added little bit information about the route name (WouterJ)

	4211bff [https://github.com/symfony/symfony-docs/commit/4211bff395f613d8dd3630178da3208b328df2bc] #3852 Fixed link and typo in type_guesser.rst (rpg600)

	78ae7ec [https://github.com/symfony/symfony-docs/commit/78ae7ecc6d35cb7f0bc1e9124aac961f13113d02] #3845 added link to /cookbook/security/force_https. (aitboudad)

	6c69362 [https://github.com/symfony/symfony-docs/commit/6c693626ec93dfeb7e04529cc752e3a0dc9174e1] #3846 [Routing][Loader] added JMSI18nRoutingBundle (aitboudad)

	136864b [https://github.com/symfony/symfony-docs/commit/136864b7727820196014ef3247fdc1da02106eea] #3844 [Components] Fixed some typos. (ahsio)

	b0710bc [https://github.com/symfony/symfony-docs/commit/b0710bc58740f6e5fcc1b98b25088870adda8389] #3842 Update dialoghelper.rst (bijsterdee)

	9f1a354 [https://github.com/symfony/symfony-docs/commit/9f1a354fe63a90bf4f6672082fe8cb2dc7900178] #3804 [Components][DependencyInjection] add note about a use case that requires to compile the container (xabbuh)

	d92c522 [https://github.com/symfony/symfony-docs/commit/d92c5228e3460dd3bce024c180829fd13a623672] #3769 Updated references to new Session() (scottwarren)

	7288a33 [https://github.com/symfony/symfony-docs/commit/7288a337b1d86e9c00b3eb7f7d778d643d0d2802] #3789 [Reference][Forms] Improvements to the form type (xabbuh)

	72fae25 [https://github.com/symfony/symfony-docs/commit/72fae25898b37e6e6761ac9c52bee45520545332] #3790 [Reference][Forms] move versionadded directives for form options directly below the option’s headline (xabbuh)

	b4d4ac3 [https://github.com/symfony/symfony-docs/commit/b4d4ac34d999a09556517431d91d3221a9fa5be3] #3838 fix filename typo in cookbook/form/unit_testing.rst (hice3000)

	0b06287 [https://github.com/symfony/symfony-docs/commit/0b06287e617d870dd7ea7173b7670893b7f6c6dc] #3836 remove unnecessary rewrite from nginx conf (Burgov)

	e58e39f [https://github.com/symfony/symfony-docs/commit/e58e39f8211791a7531eee71eb0af8b0cb8f9627] #3832 fix the wording in versionadded directives (for the 2.3 branch) (xabbuh)

	09d6ca1 [https://github.com/symfony/symfony-docs/commit/09d6ca1ee588982b2f6d067744b09ec911e1538a] #3829 [Components] consistent headlines (xabbuh)

	54e0882 [https://github.com/symfony/symfony-docs/commit/54e08822dd490e340aeefab5cd0e222077d56287] #3828 [Contributing] consistent headlines (xabbuh)

	b1336d7 [https://github.com/symfony/symfony-docs/commit/b1336d7ed2290c320f9199dcea0778d8af0755bb] #3823 Added empty line after if statements (zomberg)

	79b9fdc [https://github.com/symfony/symfony-docs/commit/79b9fdc325a49643aa5a42e2f59337acb5473de9] #3822 Update voters_data_permission.rst (mimol91)

	69cb7b8 [https://github.com/symfony/symfony-docs/commit/69cb7b8b8fe29b68bb7b153f582818ffac2f1c50] #3821 Update custom_authentication_provider.rst (leberknecht)

	9f602c4 [https://github.com/symfony/symfony-docs/commit/9f602c4a54414b235a616a6d13254c2cbe71d392] #3820 Update page_creation.rst (adreeun)

	52518c0 [https://github.com/symfony/symfony-docs/commit/52518c0a97b3d1b75bade2d3566e8029080a9d88] #3819 Update csrf_in_login_form.rst (micheal)

	1adfd9b [https://github.com/symfony/symfony-docs/commit/1adfd9b7b9d4d0e33cf0fd266d05d3cef36a2faa] #3802 Add a note about which types can be used in Symfony (fabpot)

	fa27ded [https://github.com/symfony/symfony-docs/commit/fa27ded5dfdef27d43f33c2f6b325f69acae87a6] #3801 [Cookbook][Form] Fixed Typo & missing word. (ahsio)

	127beed [https://github.com/symfony/symfony-docs/commit/127beedf880e51965ee723f2896c010c7906b339] #3770 Update factories.rst (AlaaAttya)

	822d985 [https://github.com/symfony/symfony-docs/commit/822d985c964f175380f697f175345ad6bbd63fda] #3817 Update translation.rst (richardpi)

	241d923 [https://github.com/symfony/symfony-docs/commit/241d9238e4cda9248bf5588433d9087cd5cd6d09] #3813 [Reference][Forms]fix time field count. (yositani2002)

	bc96f55 [https://github.com/symfony/symfony-docs/commit/bc96f55f27eda223b920206925ab9582f200f14a] #3812 [Cookbook][Configuration] Fixed broken link. (ahsio)

	5867327 [https://github.com/symfony/symfony-docs/commit/58673278fa53554bcedeabc7609bb19c3af12063] #3809 Fixed typo (WouterJ)

April, 2014

New Documentation

	322972e [https://github.com/symfony/symfony-docs/commit/322972e322be754d34171d75514fa6f31a6677c8] #3803 [Book][Validation] configuration examples for the GroupSequenceProvider (xabbuh)

	d4ca16a [https://github.com/symfony/symfony-docs/commit/d4ca16a7605697787424c5e09f0506c617880687] #3743 Improve examples in parent services (WouterJ)

	d611e77 [https://github.com/symfony/symfony-docs/commit/d611e77fa1408064c6f066c6acd9d8b4464198ef] #3701 [Serializer] add documentation for serializer callbacks (cordoval)

	80c645c [https://github.com/symfony/symfony-docs/commit/80c645caba36e80d269c513c67f3c305507685d4] #3719 Fixed event listeners priority (tony-co)

Fixed Documentation

	f801e2e [https://github.com/symfony/symfony-docs/commit/f801e2e3998ae3da050e774411c0a726918e117c] #3805 Add missing autocomplete argument in askAndValidate method (ifdattic)

	a81d367 [https://github.com/symfony/symfony-docs/commit/a81d367d6f96bc498a609eec3b553cd1a605e361] #3786 replaceArguments should be setArguments (RobinvdVleuten)

	33b64e1 [https://github.com/symfony/symfony-docs/commit/33b64e16a79757d4c4964c18c9df97977e524a1c] #3788 Fix link for StopwatchEvent class (rpg600)

	529d4ce [https://github.com/symfony/symfony-docs/commit/529d4ce6d587a98b36564366058eb34babbbab81] #3761 buildViewBottomUp has been renamed to finishView (Nyholm)

	d743139 [https://github.com/symfony/symfony-docs/commit/d743139aed36813ba1dc4479290d6290cdc4316f] #3768 the Locale component does not have elements tagged with @api (xabbuh)

	2b8e44d [https://github.com/symfony/symfony-docs/commit/2b8e44d59ab7fca426be86afd30df6c98583d1e3] #3747 Fix Image constraint class and validator link (weaverryan)

	fa362ca [https://github.com/symfony/symfony-docs/commit/fa362caf410e876ca71070862abdb2df5242884a] #3741 correct RuntimeException reference (shieldo)

	d92545e [https://github.com/symfony/symfony-docs/commit/d92545e998d8999435e554ab03cbe6eee5f05e83] #3734 [book] [testing] fixed the path of the phpunit.xml file (javiereguiluz)

Minor Documentation Changes

	1094a13 [https://github.com/symfony/symfony-docs/commit/1094a13b2de0a7153e59f205aa57b93425da82cf] #3807 Added some exceptions to the method order in CS (stof)

	55442b5 [https://github.com/symfony/symfony-docs/commit/55442b55fb3efb2d59914724eec197ec17cb76e4] #3800 Fixed another blockquote rendering issue (WouterJ)

	969fd71 [https://github.com/symfony/symfony-docs/commit/969fd71a5fbef26a721784551d62dbd842d05ad4] #3785 ensure that destination directories don’t exist before creating them (xabbuh)

	79322ff [https://github.com/symfony/symfony-docs/commit/79322fffd6e9ee739c1edab481bbe40ba3a67127] #3799 Fix list to not render in a block quote (WouterJ)

	1a6f730 [https://github.com/symfony/symfony-docs/commit/1a6f7301015e51c5ba255df289f4058c1ba1dc3c] #3793 language tweak for the tip introduced in #3743 (xabbuh)

	dda9e88 [https://github.com/symfony/symfony-docs/commit/dda9e88af29b866041b81251a1a44ed02b2c9ff4] #3778 Adding information on internal reverse proxy (tcz)

	d36bbd9 [https://github.com/symfony/symfony-docs/commit/d36bbd9418bdc2929745866d856448b7205a2676] #3765 [WIP] make headlines consistent with our standards (xabbuh)

	daa81a0 [https://github.com/symfony/symfony-docs/commit/daa81a0f34d342ece53b8656832fec6d4dfca657] #3766 [Book] add note about services and the service container in the form cha... (xabbuh)

	4529858 [https://github.com/symfony/symfony-docs/commit/45298580fada950a77536b142d903c3c4db11d0d] #3767 [Book] link to the bc promise in the stable API description (xabbuh)

	a5471b3 [https://github.com/symfony/symfony-docs/commit/a5471b34ad8618430962a31571f34e25259c3358] #3775 Fixed variable naming (peterrehm)

	703c2a6 [https://github.com/symfony/symfony-docs/commit/703c2a66282f7e42d6b2f74a71bd3dac28393984] #3772 [Cookbook][Sessions] some language improvements (xabbuh)

	3d30b56 [https://github.com/symfony/symfony-docs/commit/3d30b560db2a69d2f98d6ad2caf1ab29fecf9d94] #3773 modify Symfony CMF configuration values in the build process so that the... (xabbuh)

	cfd6d7c [https://github.com/symfony/symfony-docs/commit/cfd6d7c1f07ac80e557fb9eb358256a319acc8b9] #3758 [Book][Routing] Fixed typo on PHP version of a route definition (saro0h)

	6bd134c [https://github.com/symfony/symfony-docs/commit/6bd134c00c79804a24d5210a74f342295014b847] #3754 ignore more files and directories which are created when building the documentation (xabbuh)

	54d6a9e [https://github.com/symfony/symfony-docs/commit/54d6a9e738f99db87ff7c20cc6b394de11641155] #3736 [book] Misc. routing fixes (javiereguiluz)

	f149dcf [https://github.com/symfony/symfony-docs/commit/f149dcf85efb5eb029a499413a80543be094a1df] #3739 [book] [forms] misc. fixes and tweaks (javiereguiluz)

	ce582ec [https://github.com/symfony/symfony-docs/commit/ce582ec9e072c07ebbba37c70da08692a6707e12] #3735 [book] [controller] fixed the code of a session sample code (javiereguiluz)

	499ba5c [https://github.com/symfony/symfony-docs/commit/499ba5c33b5a0c76c378f04dae01ea8c792973e5] #3733 [book] [validation] fixed typos (javiereguiluz)

	4d0ff8f [https://github.com/symfony/symfony-docs/commit/4d0ff8f8762ea7d8e19b04c21065269e3b4667ab] #3732 Update routing.rst. Explain using url() v. path(). (ackerman)

	44c6273 [https://github.com/symfony/symfony-docs/commit/44c6273ad86e8506463e23e88bcbac5f03e2a680] #3727 Added a note about inlined private services (javiereguiluz)

March, 2014

New Documentation

	3b640aa [https://github.com/symfony/symfony-docs/commit/3b640aa120ca6ff9c4c20bd95bfac142b65ee410] #3644 made some small addition about our BC promise and semantic versioning (fabpot)

	2d1ecd9 [https://github.com/symfony/symfony-docs/commit/2d1ecd9622109a06fd9f72b0ef987d3fcd7801c1] #3525 Update file_uploads.rst (juanmf)

	b1e8f56 [https://github.com/symfony/symfony-docs/commit/b1e8f566a20d029f657994ae8228bb5ef7eeb5b8] #3368 The host parameter has to be in defaults, not requirements (MarieMinasyan)

	00a462a [https://github.com/symfony/symfony-docs/commit/00a462a0149c20bf2b469e0480ce19db95ace347] minor #3658 Fix PSR coding standards error (ifdattic)

	acf255d [https://github.com/symfony/symfony-docs/commit/acf255d6a723c59af44299f8266a854903ecf6a4] #3328 [WIP] Travis integration (WouterJ)

	3e7028d [https://github.com/symfony/symfony-docs/commit/3e7028d8972fd71c1c683dd44dffe870a12e0c5b] #3659 [Internals] Complete notification description for kernel.terminate (bicpi)

	db3cde7 [https://github.com/symfony/symfony-docs/commit/db3cde7ddf7929da282cfc70e8a8b524ffb72f11] #3124 Add note about the property attribute (Property Accessor) (raziel057)

	5965ec8 [https://github.com/symfony/symfony-docs/commit/5965ec809237c5f0aab41b9d53cd928200517216] #3420 [Cookbook][Configuration] add configuration cookbook handlig parameters in Configurator class (cordoval)

	a1050eb [https://github.com/symfony/symfony-docs/commit/a1050eba5cc08682a0cfda5a14122981c99a666a] #3411 [Cookbook][Dynamic Form Modification] Add AJAX sample (bicpi)

	6951460 [https://github.com/symfony/symfony-docs/commit/6951460dd0f2bef4a87f53df88f4779649143c82] #3601 Added documentation for missing ctype extension (slavafomin)

	2657ee7 [https://github.com/symfony/symfony-docs/commit/2657ee78de23a16fe4423f2deffcc8fe3d0552c4] #3597 Document how to create a custom type guesser (WouterJ)

	5ad1599 [https://github.com/symfony/symfony-docs/commit/5ad1599bda2bde0fdff2762c9fcb852eb39c5b32] #3577 Development of custom error pages is impractical if you need to set kernel.debug=false (mpdude)

	3f4b319 [https://github.com/symfony/symfony-docs/commit/3f4b319f65f30ada4a57ad243072824d325e7f52] #3610 [HttpFoundation] Add doc for Request::getContent() method (bicpi)

	56bc266 [https://github.com/symfony/symfony-docs/commit/56bc2660041162c828cdad6c64a722a602c1f126] #3589 Finishing the Templating component docs (WouterJ)

	d881181 [https://github.com/symfony/symfony-docs/commit/d881181f88d090f86627a9dd7b5278a36087a63a] #3588 Documented all form variables (WouterJ)

	e96e12d [https://github.com/symfony/symfony-docs/commit/e96e12d4c40e6205bf169db3c8545d6a3faa597d] #3234 [Cookbook] New cookbok: How to use the Cloud to send Emails (bicpi)

	d5d64ce [https://github.com/symfony/symfony-docs/commit/d5d64ce3a09062e3be9d6a248fdbf5f19f588cab] #3436 [Reference][Form Types] Add missing docs for “action” and “method” option (bicpi)

	3df34af [https://github.com/symfony/symfony-docs/commit/3df34afbe3d77c975bccc4b3c6f629db3bd537c3] #3490 Tweaking Doctrine book chapter (WouterJ)

	b9608a7 [https://github.com/symfony/symfony-docs/commit/b9608a777d7dd2316e26bf0f985fd4b3cb8cd810] #3594 New Data Voter Article (continuation) (weaverryan)

Fixed Documentation

	06c56c1 [https://github.com/symfony/symfony-docs/commit/06c56c17160dba9ab53b5326f454e474d690be9e] #3709 [Components][Security] Fix #3708 (bicpi)

	aadc61d [https://github.com/symfony/symfony-docs/commit/aadc61d4e42a09461120cc940ee1add2ae5b95e5] #3707 make method supportsClass() in custom voter compatible with the interface’s documentation (xabbuh)

	65150f9 [https://github.com/symfony/symfony-docs/commit/65150f989d84c3590aa43dc29b71856378bb2351] #3637 Update render_without_controller.rst (94noni)

	9fcccc7 [https://github.com/symfony/symfony-docs/commit/9fcccc734fdda2aa07ee2ced0da88c3c86f006a8] #3634 Fix goal of “framework.profiler.only_exceptions“ option which profile on each exceptions on controller (not only 500) (stephpy)

	9dd8d96 [https://github.com/symfony/symfony-docs/commit/9dd8d962ea0043ad446b096754b51d74992f80ed] #3689 Fix cache warmer description (WouterJ)

	6221f35 [https://github.com/symfony/symfony-docs/commit/6221f35df8558b273baaf6dcfc7dfa318e2c75c4] #3671 miss extends keyword in define BlogController class (ghanbari)

	4ce7a15 [https://github.com/symfony/symfony-docs/commit/4ce7a15e92a82541bee319206620cb175978844f] #3543 Fix the definition of customizing form’s global errors. (mtrojanowski)

	5d4a3a4 [https://github.com/symfony/symfony-docs/commit/5d4a3a4859e00e8a9b07474ae7289e5a88b7e1ec] #3343 [Testing] Fix phpunit test dir paths (bicpi)

	badaae7 [https://github.com/symfony/symfony-docs/commit/badaae7d06f6730f37fe4051fa07fada32cf89d0] #3622 [Components][Routing] Fix addPrefix() sample code (bicpi)

	de0a5e1 [https://github.com/symfony/symfony-docs/commit/de0a5e1fc9baa62fa670b1486eedb9ae66b529ec] #3665 [Cookbook][Test] fix sample code (inalgnu)

	4ef746a [https://github.com/symfony/symfony-docs/commit/4ef746a10b373c7d7ce88bbc43fce8fe37c0dde2] #3614 [Internals] Fix Profiler:find() arguments (bicpi)

	0c41762 [https://github.com/symfony/symfony-docs/commit/0c41762a768c6b8979d6eb79256b65df762156fd] #3600 [Security][Authentication] Fix instructions for creating password encoders (bicpi)

	0ab1f24 [https://github.com/symfony/symfony-docs/commit/0ab1f24a8c418c0bc3c4330e1f725363e4fb61f7] #3593 Clarified Default and ClassName groups (WouterJ)

	178984b [https://github.com/symfony/symfony-docs/commit/178984bac0487875fbaec4ebfa471d34d6d9cb6f] #3648 [Routing] Remove outdated tip about sticky locale (bicpi)

Minor Documentation Changes

	abca098 [https://github.com/symfony/symfony-docs/commit/abca0980d80c12cd640757a64f6316dbf85dd125] #3726 Minor tweaks after merging #3644 by @stof and @xabbuh (weaverryan)

	d16be31 [https://github.com/symfony/symfony-docs/commit/d16be31547c57f01d454dea914ed38484efc5144] #3725 Minor tweaks related to #3368 (weaverryan)

	aa9bb25 [https://github.com/symfony/symfony-docs/commit/aa9bb2523286329432559d69103bcce091f6b643] #3636 Update security.rst (nomack84)

	9f26da8 [https://github.com/symfony/symfony-docs/commit/9f26da860a642b228d8a9fa56ab3e93acf33339a] #3720 [#3539] A backport of a sentence - the parts that apply to 2.3 (weaverryan)

	5a3ba1b [https://github.com/symfony/symfony-docs/commit/5a3ba1b89f9a0f8ed7de83c9a538ed7a735f900b] #3715 change variable name to a better fitting one (xabbuh)

	e7580c0 [https://github.com/symfony/symfony-docs/commit/e7580c0110926585c892d76c0ff799bd7bcdc07e] #3713 Updated versionadded directives to use “introduced” (WouterJ)

	e15afe0 [https://github.com/symfony/symfony-docs/commit/e15afe0c5421ba0bff8723440bd57a07931661bc] #3711 Simplified the Travis configuration (stof)

	5035837 [https://github.com/symfony/symfony-docs/commit/5035837f46ed407cbabd11ad2c15098b349127e7] #3706 Add support for nginx (guiditoito)

	00a462a [https://github.com/symfony/symfony-docs/commit/00a462a0149c20bf2b469e0480ce19db95ace347] #3658 Fix PSR coding standards error (ifdattic)

	868de1e [https://github.com/symfony/symfony-docs/commit/868de1e9dfe4174f84e2d3d82e0aa0dafc559fb0] #3698 Dynamic form modification cookbook: Fix inclusion of code (michaelperrin)

	41b2eb8 [https://github.com/symfony/symfony-docs/commit/41b2eb88c10a9319e57c70c35319455e4fb21a11] #3693 Tweak to Absolute URL generation (weaverryan)

	bd473db [https://github.com/symfony/symfony-docs/commit/bd473db186bf9d1b6cef930cca49d0f640f90af5] #3563 Add another tip to setup permissions (tony-co)

	67129b1 [https://github.com/symfony/symfony-docs/commit/67129b1d72918c164eae9ea0c586898bce778286] #3611 [Reference][Forms] add an introductory table containing all options of the basic form type (xabbuh)

	fd8f7ae [https://github.com/symfony/symfony-docs/commit/fd8f7ae8b52322b0a2e4243641c4dbd751414d14] #3694 fix the referenced documents names (xabbuh)

	d617011 [https://github.com/symfony/symfony-docs/commit/d6170116af79aa1cc99413edc6cb7ad2b4683bf7] #3657 Fix typos, remove trailing whitespace. (ifdattic)

	1b4f6a6 [https://github.com/symfony/symfony-docs/commit/1b4f6a6344ecaa29478293767a21dd896fd22cf2] #3656 Minimize horizontal scrolling, add missing characters, remove trailing whitespace. (ifdattic)

	7c0c5d1 [https://github.com/symfony/symfony-docs/commit/7c0c5d1565a186dfa6be4d65c84d1e8eadf4b540] #3653 Http cache validation rewording (weaverryan)

	0fb2c5f [https://github.com/symfony/symfony-docs/commit/0fb2c5f87131212480eb5a7bc8795ba1df56e19a] #3651 [Reference][Forms] remove the label_attr option which is not available in the button type (xabbuh)

	69ac21b [https://github.com/symfony/symfony-docs/commit/69ac21bcc2c40df3211c6353d4476b6868ff6415] #3642 Fixed some typos and formatting issues (javiereguiluz)

	93c35d0 [https://github.com/symfony/symfony-docs/commit/93c35d01a5d8dac8aa4ac672f367b5679bef72a5] #3641 Added some examples to the “services as parameters” section (javiereguiluz)

	12a6676 [https://github.com/symfony/symfony-docs/commit/12a667625ea2233f3ec556eebe9d229f2c9b518d] #3640 [minor] fixed one typo and one formatting issue (javiereguiluz)

	9967b0c [https://github.com/symfony/symfony-docs/commit/9967b0c5e7c4094df74802696179e69c1e0e7d53] #3638 [#3116] Fixing wrong table name - singular is used elsewhere (weaverryan)

	4fbf1cd [https://github.com/symfony/symfony-docs/commit/4fbf1cdf65d8f7546f0cfd8fa36ada3f1fa18dab] #3635 [QuickTour] close opened literals (xabbuh)

	2192c32 [https://github.com/symfony/symfony-docs/commit/2192c3274e7a64f3a5de1eab5a9a4cb6adf2be9e] #3650 Fixing some build errors (xabbuh)

	fa3f531 [https://github.com/symfony/symfony-docs/commit/fa3f531bd81446f2a7e6fd8f416abe334319177f] #3677 [Reference][Forms] Remove variables section from tables (xabbuh)

	1f384bc [https://github.com/symfony/symfony-docs/commit/1f384bc2bf8fef59f7cb97837a273d355a72fb75] #3631 Added documentation for message option of the True constraint (naitsirch)

	f6a41b9 [https://github.com/symfony/symfony-docs/commit/f6a41b9c0e67a7984ba87c8c323fb5484b439042] #3630 Minor tweaks to form action/method (weaverryan)

	ae755e0 [https://github.com/symfony/symfony-docs/commit/ae755e0cbb85d80b968ceebb3ff4164a52f9d0f3] #3628 Added anchor for permissions (WouterJ)

	6380113 [https://github.com/symfony/symfony-docs/commit/6380113ce6ce702d51783bf62c5080ad1e31571d] #3667 Update index.rst (NAYZO)

	97ef2f7 [https://github.com/symfony/symfony-docs/commit/97ef2f7dcfce4ca6c46a06def7dc8efe6d99e379] #3566 Changes ACL permission setting hints (MicheleOnGit)

	9f7d742 [https://github.com/symfony/symfony-docs/commit/9f7d7423434e0092135e614bd144613d4ca07f6c] #3654 [Cookbook][Security] Fix VoterInterface signature (bicpi)

	e34204e [https://github.com/symfony/symfony-docs/commit/e34204e5a3029013d5663b8b3ea821ff1c44159f] #3605 Fixed a plural issue (benjaminpaap)

	e7d5a45 [https://github.com/symfony/symfony-docs/commit/e7d5a459db50fbedbacbb60e59f0a98f7242db6a] #3599 [CHANGELOG] fix reference to contributing docs (xabbuh)

	3582bf1 [https://github.com/symfony/symfony-docs/commit/3582bf1cb6a8f2d57f0652834214d0f0d4af0ba2] #3598 add changelog to hidden toctree (xabbuh)

	58b7f96 [https://github.com/symfony/symfony-docs/commit/58b7f96781f3696fbfaa8adc2f4504b986405161] #3596 [HTTP Cache] Validation model: Fix header name (bicpi)

	6d1378e [https://github.com/symfony/symfony-docs/commit/6d1378e03e152851fc2d536fee77aa85a521d6af] #3592 Added a tip about hardcoding URLs in functional tests (javiereguiluz)

	04cf9f8 [https://github.com/symfony/symfony-docs/commit/04cf9f8699d322497b5979f1e38547da509f70f4] #3595 Collection of fixes and improvements (bicpi)

	2ed0943 [https://github.com/symfony/symfony-docs/commit/2ed0943572465a334d8c6d5b7c2d7c709275b515] #3645 Adjusted the BC rules to be consistent (stof)

	664a0be [https://github.com/symfony/symfony-docs/commit/664a0bef8b4904b62abf5ec1eb3d7a7afa04f43c] #3633 Added missing PHP syntax coloration (DerekRoth)

	1714a31 [https://github.com/symfony/symfony-docs/commit/1714a31344020bce18315b5977429bddab1db9a0] #3585 Use consistent method chaining in BlogBundle sample application (ockcyp)

	cb61f4f [https://github.com/symfony/symfony-docs/commit/cb61f4fcda438583f297591fee1ecd081f4e72a3] #3581 Add missing hyphen in HTTP Fundamentals page (ockcyp)

February, 2014

New Documentation

	9dcf467 [https://github.com/symfony/symfony-docs/commit/9dcf467b1cfb247f6acfbc892b55fd33cbe5e02b] #3613 Javiereguiluz revamped quick tour (weaverryan)

	89c6f1d [https://github.com/symfony/symfony-docs/commit/89c6f1d8437d2c950f3a641140579b437d5346ef] #3439 [Review] Added detailed Backwards Compatibility Promise text (webmozart)

	0029408 [https://github.com/symfony/symfony-docs/commit/0029408c86b8829c6a37b68b8be94a09f5a48eb1] #3558 Created Documentation CHANGELOG (WouterJ)

	f6dd678 [https://github.com/symfony/symfony-docs/commit/f6dd67829ff83b9e14486902b6a285dbeb4b3e6d] #3548 Update forms.rst (atmosf3ar)

	527c8b6 [https://github.com/symfony/symfony-docs/commit/527c8b6d9042bc8719c5dbe2c1c68a57feeb6eb7] #3496 Added a section about using named assets (vmattila)

Fixed Documentation

	5c367b4 [https://github.com/symfony/symfony-docs/commit/5c367b4dfa5c3adc8993702b1ae8f686c74419c8] #3517 Fixed OptionsResolver component docs (WouterJ)

	adcbb5d [https://github.com/symfony/symfony-docs/commit/adcbb5de6c3b8d6ba59e619315ef13fe45318494] #3615 Fixes to cookbook/doctrine/registration_form.rst (Crushnaut)

	a21fb26 [https://github.com/symfony/symfony-docs/commit/a21fb260978eaa27b1cb94fccb0bd0af71b6df7f] #3559 Remove reference to copying parameters.yml from Git cookbook (pwaring)

	de71a51 [https://github.com/symfony/symfony-docs/commit/de71a5143f6d30fff7e890cea250d047a63916d2] #3551 [Cookbook][Dynamic Form Modification] Fix sample code (rybakit)

	143db2f [https://github.com/symfony/symfony-docs/commit/143db2f75caa9ef6d7e1c230d0ac9d59c17fde5f] #3550 Update introduction.rst (taavit)

	384538b [https://github.com/symfony/symfony-docs/commit/384538bcb030c4ae6f8df06840ccd725fca28661] #3549 Fixed createPropertyAccessorBuilder usage (antonbabenko)

	d275302 [https://github.com/symfony/symfony-docs/commit/d27530241cf75de4846fe9040bc6ce2235b924f3] #3541 Update generic_event.rst (Lumbendil)

	819949c [https://github.com/symfony/symfony-docs/commit/819949cce72a4253ef9a4df6f7d260f83d08e5c6] #3537 Add missing variable assignment (colinodell)

	d7e8262 [https://github.com/symfony/symfony-docs/commit/d7e8262a350b7fa40f34a89b7d3796b06c660db2] #3535 fix form type name. (yositani2002)

	821af3b [https://github.com/symfony/symfony-docs/commit/821af3ba55c53246670a9bc62a3360ca064777d8] #3493 Type fix in remove.rst (weaverryan)

	003230f [https://github.com/symfony/symfony-docs/commit/003230fc6c8657c9b12976789618aff30a83fce6] #3530 Update form_customization.rst (dczech)

	696313c [https://github.com/symfony/symfony-docs/commit/696313cf8eef0e72685f3e943d6d6d094f1157ed] #3513 [Component-DI] Fixed typo (saro0h)

	27dcebd [https://github.com/symfony/symfony-docs/commit/27dcebd1c53cca2d8d991fa4b5060288d8f17c57] #3509 Fix typo: side.bar.twig => sidebar.twig (ifdattic)

	e385d28 [https://github.com/symfony/symfony-docs/commit/e385d28bee7c7418c8175d43befc4954a43a300c] #3503 file extension correction xfliff to xliff (nixilla)

	7fe0de3 [https://github.com/symfony/symfony-docs/commit/7fe0de330b2d72155b6b7ec87c59f5a7e7ee4881] #3475 Fixed doc for framework.session.cookie_lifetime refrence. (tyomo4ka)

	8155e4c [https://github.com/symfony/symfony-docs/commit/8155e4cab70e481962a4775274a4412a4465ecdc] #3473 Update proxy_examples.rst (AZielinski)

Minor Documentation Changes

	0928249 [https://github.com/symfony/symfony-docs/commit/0928249282cb29336aca665fbe9a8904ec71e994] #3568 Update checkbox_compound.rst.inc (joshuaadickerson)

	38def3b [https://github.com/symfony/symfony-docs/commit/38def3bd2cd03208b95dfebfbe76aaf994e049ac] #3567 Update checkbox_compound.rst.inc (joshuaadickerson)

	15d8ab8 [https://github.com/symfony/symfony-docs/commit/15d8ab892168efacb34c53b22b222ef669e90897] #3553 Minimize horizontal scrolling in code blocks to improve readability (ifdattic)

	5120863 [https://github.com/symfony/symfony-docs/commit/512086321061d3d2d9ae53975d430f7f3d90babf] #3547 Update acl.rst (iqfoundry)

	d974c77 [https://github.com/symfony/symfony-docs/commit/d974c773c9e1a9122244fe2a1aedbe32ee232490] #3556 Fix PSR error (ifdattic)

	f4bb017 [https://github.com/symfony/symfony-docs/commit/f4bb017d99b225c2ab06490633cb9d30bc0e456c] #3555 Wrap variables in {} for safer interpolation (ifdattic)

	5f02bca [https://github.com/symfony/symfony-docs/commit/5f02bca0959e20d54c9977d0428bd9bb1324f009] #3552 Fix typos (ifdattic)

	6e32c47 [https://github.com/symfony/symfony-docs/commit/6e32c473b0bb04620ce3723d962c5650c56b1568] #3546 Fix README: contributions should be based off 2.3 or higher (colinodell)

	ffa8f76 [https://github.com/symfony/symfony-docs/commit/ffa8f76d3582fe4cc78cc788f6f9c7018ebca75e] #3545 Example of getting entity managers directly from the container (colinodell)

	6a2a55b [https://github.com/symfony/symfony-docs/commit/6a2a55b2ebf898f20081c4e627f21f700b4fee85] #3579 Fix build errors (xabbuh)

	73adf8b [https://github.com/symfony/symfony-docs/commit/73adf8b6f3d9e55addd19363a3ce010429ce3f05] #3528 Clarify service parameters usages (WouterJ)

	9ba4fa7 [https://github.com/symfony/symfony-docs/commit/9ba4fa7d35bfc02cab66e1f7f595a39c6ddf3e2a] #3527 Changes to components domcrawler (ifdattic)

	8973c81 [https://github.com/symfony/symfony-docs/commit/8973c812c57dca77037da16eb72f3c7c565ef73a] #3526 Changes for Console component (ifdattic)

	6848bed [https://github.com/symfony/symfony-docs/commit/6848bed188528fb3b11d4f491aa5e3af6440ddb7] #3538 Rebasing #3518 (weaverryan)

	c838df8 [https://github.com/symfony/symfony-docs/commit/c838df869dade91aa41a703da0485194daacf2c7] #3511 [Component-DI] Removed useless else statement in code example (saro0h)

	1af6742 [https://github.com/symfony/symfony-docs/commit/1af67425f9653b539f898888d30b42e8e69aa5aa] #3510 add empty line (lazyants)

	1131247 [https://github.com/symfony/symfony-docs/commit/11312477437e5367da466727acdc89c97b8ed73a] #3508 Add ‘in XML’ for additional clarity (ifdattic)

	a650b93 [https://github.com/symfony/symfony-docs/commit/a650b9364297aa5eaa5ffd3c018b3f0858d12238] #3506 Nykopol overriden options (weaverryan)

	ab10035 [https://github.com/symfony/symfony-docs/commit/ab1003501de3e81bc48226b32b53156e2e7a573a] #3505 replace Akamaï with Akamai (xabbuh)

	7f56c20 [https://github.com/symfony/symfony-docs/commit/7f56c201ea4cd9b1e7b7ed36ceb2046352a143f2] #3501 [Security] Fix markup (tyx)

	80a90ba [https://github.com/symfony/symfony-docs/commit/80a90ba8b5c2eceeb2d80bb1386fb2620b8e0c6e] #3500 Minimize horizontal scrolling in code blocks (improve readability) (ifdattic)

	e5bc4ea [https://github.com/symfony/symfony-docs/commit/e5bc4eafeab96b8b12070ce0435b8a77ee85c6c1] #3498 Remove second empty data (xabbuh)

	d084d87 [https://github.com/symfony/symfony-docs/commit/d084d876e3ab961c92f2753c73b0a73a75ee7a8b] #3485 [Cookbook][Assetic] Fix “javascripts” tag name typo (bicpi)

	3250aba [https://github.com/symfony/symfony-docs/commit/3250aba13ccf8662aa8e38cb624b3adeab0944bc] #3481 Fix code block (minimise horizontal scrolling), typo in yaml (ifdattic)

January, 2014

New Documentation

No changes

Fixed Documentation

	e385d28 [https://github.com/symfony/symfony-docs/commit/e385d28bee7c7418c8175d43befc4954a43a300c] #3503 file extension correction xfliff to xliff (nixilla)

	7fe0de3 [https://github.com/symfony/symfony-docs/commit/7fe0de330b2d72155b6b7ec87c59f5a7e7ee4881] #3475 Fixed doc for framework.session.cookie_lifetime refrence. (tyomo4ka)

	8155e4c [https://github.com/symfony/symfony-docs/commit/8155e4cab70e481962a4775274a4412a4465ecdc] #3473 Update proxy_examples.rst (AZielinski)

	c205bc6 [https://github.com/symfony/symfony-docs/commit/c205bc6798bac34741f2d4d91450aac75ab14b93] #3468 enclose YAML string with double quotes to fix syntax highlighting (xabbuh)

	89963cc [https://github.com/symfony/symfony-docs/commit/89963cc246263e7e7cdecd3cad1f019ff9cb28a5] #3463 Fix typos in cookbook/testing/database (ifdattic)

	e0a52ec [https://github.com/symfony/symfony-docs/commit/e0a52ecf0cbcf1b5aa029f323588880080f5c6f3] #3460 remove confusing outdated note on interactive rebasing (xabbuh)

	6831b13 [https://github.com/symfony/symfony-docs/commit/6831b1337f99c26d9f04eb82990cc3b3ac128de0] #3455 [Contributing][Code] fix indentation so that the text is rendered properly (xabbuh)

	ea5816f [https://github.com/symfony/symfony-docs/commit/ea5816f571309decd946bf30aa0b3b84fffacb9e] #3433 [WIP][Reference][Form Types] Update “radio” form type (bicpi)

	42c80d1 [https://github.com/symfony/symfony-docs/commit/42c80d12ac760f40834afef76fd42db83d4d4a33] #3448 Overridden tweak (weaverryan)

	d9d7c58 [https://github.com/symfony/symfony-docs/commit/d9d7c58ca41ae370545ae25f13857780c089f970] #3444 Fix issue #3442 (ifdattic)

	9e2e64b [https://github.com/symfony/symfony-docs/commit/9e2e64b26a355416038b632b7eec89c7c14490cb] #3427 Removed code references to Symfony Standard Distribution (danielcsgomes)

	26b8146 [https://github.com/symfony/symfony-docs/commit/26b8146188a3f8bedf2e681d40509b418c8e7ec0] #3415 [#3334] the data_class option was not introduced in 2.4 (xabbuh)

	0b2a491 [https://github.com/symfony/symfony-docs/commit/0b2a49199752f60aa1bcc16d48f4c558160e852e] #3414 add missing code-block directive (xabbuh)

	4988118 [https://github.com/symfony/symfony-docs/commit/4988118e127dc51d73e2518982c0a0f4ca9206f1] #3432 [Reference][Form Types] Add “max_length” option in form type (nykopol)

	26a7b1b [https://github.com/symfony/symfony-docs/commit/26a7b1b80aa654c9293599743f9c0a38054eb4d3] #3423 [Session Configuration] add clarifying notes on session save handler proxies (cordoval)

Minor Documentation Changes

	1131247 [https://github.com/symfony/symfony-docs/commit/11312477437e5367da466727acdc89c97b8ed73a] #3508 Add ‘in XML’ for additional clarity (ifdattic)

	a650b93 [https://github.com/symfony/symfony-docs/commit/a650b9364297aa5eaa5ffd3c018b3f0858d12238] #3506 Nykopol overriden options (weaverryan)

	ab10035 [https://github.com/symfony/symfony-docs/commit/ab1003501de3e81bc48226b32b53156e2e7a573a] #3505 replace Akamaï with Akamai (xabbuh)

	7f56c20 [https://github.com/symfony/symfony-docs/commit/7f56c201ea4cd9b1e7b7ed36ceb2046352a143f2] #3501 [Security] Fix markup (tyx)

	80a90ba [https://github.com/symfony/symfony-docs/commit/80a90ba8b5c2eceeb2d80bb1386fb2620b8e0c6e] #3500 Minimize horizontal scrolling in code blocks (improve readability) (ifdattic)

	e5bc4ea [https://github.com/symfony/symfony-docs/commit/e5bc4eafeab96b8b12070ce0435b8a77ee85c6c1] #3498 Remove second empty data (xabbuh)

	d084d87 [https://github.com/symfony/symfony-docs/commit/d084d876e3ab961c92f2753c73b0a73a75ee7a8b] #3485 [Cookbook][Assetic] Fix “javascripts” tag name typo (bicpi)

	3250aba [https://github.com/symfony/symfony-docs/commit/3250aba13ccf8662aa8e38cb624b3adeab0944bc] #3481 Fix code block (minimise horizontal scrolling), typo in yaml (ifdattic)

	f285d93 [https://github.com/symfony/symfony-docs/commit/f285d930377d8cbaedccc3ad46853fa72ee6439d] #3451 some language tweaks (AE, third-person perspective) (xabbuh)

	2b7e0f6 [https://github.com/symfony/symfony-docs/commit/2b7e0f6f2f9982e600918f447852a6f4c60966a1] #3497 Fix highlighting (WouterJ)

	a535ae0 [https://github.com/symfony/symfony-docs/commit/a535ae0383a2a6715021681980877b0205dc3281] #3471 Fixed ```versionadded``` inconsistencies in Symfony 2.3 (danielcsgomes)

	f077a8e [https://github.com/symfony/symfony-docs/commit/f077a8e71c4973e7775db8c9fb548a0866d21131] #3465 change wording in versionadded example to be consistent with what we use... (xabbuh)

	f9f7548 [https://github.com/symfony/symfony-docs/commit/f9f7548c7a53e62564b30d7e945a9b52b3f358db] #3462 Replace ... with etc (ifdattic)

	65efcc4 [https://github.com/symfony/symfony-docs/commit/65efcc4f64365acf5895597bb32e9b611f9bbfcd] #3445 [Reference][Form Types] Add missing (but existing) options to “form” type (bicpi)

	1d1b91d [https://github.com/symfony/symfony-docs/commit/1d1b91d6cbd4479e85ff2fdbc2cbab4f7a9a778b] #3431 [Config] add cautionary note on ini file loader limitation (cordoval)

	f2eaf9b [https://github.com/symfony/symfony-docs/commit/f2eaf9bbc5d3a73c83ef6e4ce1830bd3e277dcc0] #3419 doctrine file upload example uses dir – caution added (cordoval)

	72b53ad [https://github.com/symfony/symfony-docs/commit/72b53ad4312f74920568e39ebbddc2b3b8008797] #3404 [#3276] Trying to further clarify the session storage directory details (weaverryan)

	67b7bbd [https://github.com/symfony/symfony-docs/commit/67b7bbda858337555b7404a17e6ead20d2144eff] #3413 [Cookbook][Bundles] improve explanation of code block for bundle removal (cordoval)

	7c5a914 [https://github.com/symfony/symfony-docs/commit/7c5a9141d6dd716e692b27904190225be324f332] #3369 Indicate that Group Sequence Providers can use YAML (karptonite)

	1e0311e [https://github.com/symfony/symfony-docs/commit/1e0311ef0124fda8ad0cb07f73a3a52ce3303f2b] #3416 add empty_data option where required option is used (xabbuh)

	2be3f52 [https://github.com/symfony/symfony-docs/commit/2be3f52cf5178606e54826e0766f31ce110ee122] #3422 [Cookbook][Custom Authentication Provider] add a note of warning for when forbidding anonymous users (cordoval)

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

The Quick Tour

	The Big Picture

	The View

	The Controller

	The Architecture

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Quick Tour

The Big Picture

Start using Symfony in 10 minutes! This chapter will walk you through the most
important concepts behind Symfony and explain how you can get started quickly
by showing you a simple project in action.

If you’ve used a web framework before, you should feel right at home with
Symfony. If not, welcome to a whole new way of developing web applications.

The only technical requisite to follow this tutorial is to have PHP 5.4 or higher
installed on your computer. If you use a packaged PHP solution such as WAMP,
XAMP or MAMP, check out that they are using PHP 5.4 or a more recent version.
You can also execute the following command in your terminal or command console
to display the installed PHP version:

$ php --version

Installing Symfony

In the past, Symfony had to be installed manually for each new project. Now you
can use the Symfony Installer, which has to be installed the very first time
you use Symfony on a computer.

On Linux and Mac OS X systems, execute the following console commands:

$ curl -LsS http://symfony.com/installer > symfony.phar
$ sudo mv symfony.phar /usr/local/bin/symfony
$ chmod a+x /usr/local/bin/symfony

注解

If your system doesn’t have cURL installed, execute the following
commands instead:

$ php -r "readfile('http://symfony.com/installer');" > symfony.phar
$ sudo mv symfony.phar /usr/local/bin/symfony
$ chmod a+x /usr/local/bin/symfony

After installing the Symfony installer, you’ll have to open a new console window
to be able to execute the new symfony command:

$ symfony

On Windows systems, execute the following console command:

c:\> php -r "readfile('http://symfony.com/installer');" > symfony.phar

This command downloads a file called symfony.phar which contains the Symfony
installer. Save or move that file to the directory where you create the Symfony
projects and then, execute the Symfony installer right away with this command:

c:\> php symfony.phar

Creating Your First Symfony Project

Once the Symfony Installer is set up, use the new command to create new
Symfony projects. Let’s create a new project called myproject:

Linux and Mac OS X
$ symfony new myproject

Windows
c:\> php symfony.phar new myproject

This command downloads the latest Symfony stable version and creates an empty
project in the myproject/ directory so you can start developing your
application right away.

Running Symfony

This tutorial leverages the internal web server provided by PHP to run Symfony
applications. Therefore, running a Symfony application is a matter of browsing
the project directory and executing this command:

$ cd myproject/
$ php app/console server:run

Open your browser and access the http://localhost:8000 URL to see the
Welcome page of Symfony:

[image: Symfony Welcome Page]
Congratulations! Your first Symfony project is up and running!

注解

Instead of the welcome page, you may see a blank page or an error page.
This is caused by a directory permission misconfiguration. There are several
possible solutions depending on your operating system. All of them are
explained in the Setting up Permissions
section of the official book.

When you are finished working on your Symfony application, you can stop the
server with the server:stop command:

$ php app/console server:stop

小技巧

If you prefer a traditional web server such as Apache or Nginx, read the
Configuring a Web Server article.

Understanding the Fundamentals

One of the main goals of a framework is to keep your code organized and to allow
your application to evolve easily over time by avoiding the mixing of database
calls, HTML tags and other PHP code in the same script. To achieve this goal
with Symfony, you’ll first need to learn a few fundamental concepts.

When developing a Symfony application, your responsibility as a developer is to
write the code that maps the user’s request (e.g. http://localhost:8000/)
to the resource associated with it (the Welcome to Symfony! HTML page).

The code to execute is defined in actions and controllers. The mapping
between user’s requests and that code is defined via the routing configuration.
And the contents displayed in the browser are usually rendered using templates.

When you browsed http://localhost:8000/ earlier, Symfony executed the
controller defined in the src/AppBundle/Controller/DefaultController.php
file and rendered the app/Resources/views/default/index.html.twig template.
In the following sections you’ll learn in detail the inner workings of Symfony
controllers, routes and templates.

Actions and Controllers

Open the src/AppBundle/Controller/DefaultController.php file and you’ll see
the following code (for now, don’t look at the @Route configuration because
that will be explained in the next section):

namespace AppBundle\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class DefaultController extends Controller
{
 /**
 * @Route("/", name="homepage")
 */
 public function indexAction()
 {
 return $this->render('default/index.html.twig');
 }
}

In Symfony applications, controllers are usually PHP classes whose names are
suffixed with the Controller word. In this example, the controller is called
Default and the PHP class is called DefaultController.

The methods defined in a controller are called actions, they are usually
associated with one URL of the application and their names are suffixed with
Action. In this example, the Default controller has only one action
called index and defined in the indexAction method.

Actions are usually very short - around 10-15 lines of code - because they just
call other parts of the application to get or generate the needed information and
then they render a template to show the results to the user.

In this example, the index action is practically empty because it doesn’t
need to call any other method. The action just renders a template with the
Welcome to Symfony! content.

Routing

Symfony routes each request to the action that handles it by matching the
requested URL against the paths configured by the application. Open again the
src/AppBundle/Controller/DefaultController.php file and take a look at the
three lines of code above the indexAction method:

// src/AppBundle/Controller/DefaultController.php
namespace AppBundle\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class DefaultController extends Controller
{
 /**
 * @Route("/", name="homepage")
 */
 public function indexAction()
 {
 return $this->render('default/index.html.twig');
 }
}

These three lines define the routing configuration via the @Route() annotation.
A PHP annotation is a convenient way to configure a method without having to
write regular PHP code. Beware that annotation blocks start with /**, whereas
regular PHP comments start with /*.

The first value of @Route() defines the URL that will trigger the execution
of the action. As you don’t have to add the host of your application to the URL
(e.g. `http://example.com), these URLs are always relative and they are usually
called paths. In this case, the / path refers to the application homepage.
The second value of @Route() (e.g. name="homepage") is optional and sets
the name of this route. For now this name is not needed, but later it’ll be useful
for linking pages.

Considering all this, the @Route("/", name="homepage") annotation creates a
new route called homepage which makes Symfony execute the index action
of the Default controller when the user browses the / path of the application.

小技巧

In addition to PHP annotations, routes can be configured in YAML, XML or
PHP files, as explained in the Routing chapter of the Symfony book.
This flexibility is one of the main features of Symfony, a framework that
never imposes a particular configuration format on you.

Templates

The only content of the index action is this PHP instruction:

return $this->render('default/index.html.twig');

The $this->render() method is a convenient shortcut to render a template.
Symfony provides some useful shortcuts to any controller extending from the
Controller class.

By default, application templates are stored in the app/Resources/views/
directory. Therefore, the default/index.html.twig template corresponds to the
app/Resources/views/default/index.html.twig. Open that file and you’ll see
the following code:

{# app/Resources/views/default/index.html.twig #}
{% extends 'base.html.twig' %}

{% block body %}
 <h1>Welcome to Symfony!</h1>
{% endblock %}

This template is created with Twig [http://twig.sensiolabs.org/], a new template engine created for modern
PHP applications. The second part of this tutorial
will introduce how templates work in Symfony.

Working with Environments

Now that you have a better understanding of how Symfony works, take a closer
look at the bottom of any Symfony rendered page. You should notice a small
bar with the Symfony logo. This is the “Web Debug Toolbar”, and it is a
Symfony developer’s best friend!

[image: ../_images/web_debug_toolbar.png]
But what you see initially is only the tip of the iceberg; click on any of the
bar sections to open the profiler and get much more detailed information about
the request, the query parameters, security details, and database queries:

[image: ../_images/profiler.png]
This tool provides so much internal information about your application that you
may be worried about your visitors accessing sensible information. Symfony is
aware of this issue and for that reason, it won’t display this bar when your
application is running in the production server.

How does Symfony know whether your application is running locally or on a
production server? Keep reading to discover the concept of execution environments.

What is an Environment?

An Environment represents a group of configurations that’s used to run
your application. Symfony defines two environments by default: dev
(suited for when developing the application locally) and prod (optimized
for when executing the application on production).

When you visit the http://localhost:8000 URL in your browser, you’re executing
your Symfony application in the dev environment. To visit your application
in the prod environment, visit the http://localhost:8000/app.php URL instead.
If you prefer to always show the dev environment in the URL, you can visit
http://localhost:8000/app_dev.php URL.

The main difference between environments is that dev is optimized to provide
lots of information to the developer, which means worse application performance.
Meanwhile, prod is optimized to get the best performance, which means that
debug information is disabled, as well as the Web Debug Toolbar.

The other difference between environments is the configuration options used to
execute the application. When you access the dev environment, Symfony loads
the app/config/config_dev.yml configuration file. When you access the prod
environment, Symfony loads app/config/config_prod.yml file.

Typically, the environments share a large amount of configuration options. For
that reason, you put your common configuration in config.yml and override
the specific configuration file for each environment where necessary:

app/config/config_dev.yml
imports:
 - { resource: config.yml }

web_profiler:
 toolbar: true
 intercept_redirects: false

In this example, the config_dev.yml configuration file imports the common
config.yml file and then overrides any existing web debug toolbar configuration
with its own options.

For more details on environments, see
“Environments & Front Controllers” article.

Final Thoughts

Congratulations! You’ve had your first taste of Symfony code. That wasn’t so
hard, was it? There’s a lot more to explore, but you should already see how
Symfony makes it really easy to implement web sites better and faster. If you
are eager to learn more about Symfony, dive into the next section:
“The View”.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Quick Tour

The View

After reading the first part of this tutorial, you have decided that Symfony
was worth another 10 minutes. In this second part, you will learn more about
Twig [http://twig.sensiolabs.org/], the fast, flexible, and secure template engine for PHP applications.
Twig makes your templates more readable and concise; it also makes them more
friendly for web designers.

Getting familiar with Twig

The official Twig documentation [http://twig.sensiolabs.org/documentation] is the best resource to learn everything
about this template engine. This section just gives you a quick overview of
its main concepts.

A Twig template is a text file that can generate any type of content (HTML, CSS,
JavaScript, XML, CSV, LaTeX, etc.) Twig elements are separated from the rest of
the template contents using any of these delimiters:

	{{ ... }}

	Prints the content of a variable or the result of evaluating an expression;

	{% ... %}

	Controls the logic of the template; it is used for example to execute for
loops and if statements.

	{# ... #}

	Allows including comments inside templates. Contrary to HTML comments, they
aren’t included in the rendered template.

Below is a minimal template that illustrates a few basics, using two variables
page_title and navigation, which would be passed into the template:

<!DOCTYPE html>
<html>
 <head>
 <title>{{ page_title }}</title>
 </head>
 <body>
 <h1>{{ page_title }}</h1>

 <ul id="navigation">
 {% for item in navigation %}
 {{ item.label }}
 {% endfor %}

 </body>
</html>

To render a template in Symfony, use the render method from within a controller.
If the template needs variables to generate its contents, pass them as an array
using the second optional argument:

$this->render('default/index.html.twig', array(
 'variable_name' => 'variable_value',
));

Variables passed to a template can be strings, arrays or even objects. Twig
abstracts the difference between them and lets you access “attributes” of a
variable with the dot (.) notation. The following code listing shows how to
display the content of a variable passed by the controller depending on its type:

{# 1. Simple variables #}
{# $this->render('template.html.twig', array('name' => 'Fabien')) #}
{{ name }}

{# 2. Arrays #}
{# $this->render('template.html.twig', array('user' => array('name' => 'Fabien'))) #}
{{ user.name }}

{# alternative syntax for arrays #}
{{ user['name'] }}

{# 3. Objects #}
{# $this->render('template.html.twig', array('user' => new User('Fabien'))) #}
{{ user.name }}
{{ user.getName }}

{# alternative syntax for objects #}
{{ user.name() }}
{{ user.getName() }}

Decorating Templates

More often than not, templates in a project share common elements, like the
well-known header and footer. Twig solves this problem elegantly with a concept
called “template inheritance”. This feature allows you to build a base template
that contains all the common elements of your site and defines “blocks” of contents
that child templates can override.

The index.html.twig template uses the extends tag to indicate that it
inherits from the base.html.twig template:

{# app/Resources/views/default/index.html.twig #}
{% extends 'base.html.twig' %}

{% block body %}
 <h1>Welcome to Symfony!</h1>
{% endblock %}

Open the app/Resources/views/base.html.twig file that corresponds to the
base.html.twig template and you’ll find the following Twig code:

{# app/Resources/views/base.html.twig #}
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>{% block title %}Welcome!{% endblock %}</title>
 {% block stylesheets %}{% endblock %}
 <link rel="icon" type="image/x-icon" href="{{ asset('favicon.ico') }}" />
 </head>
 <body>
 {% block body %}{% endblock %}
 {% block javascripts %}{% endblock %}
 </body>
</html>

The {% block %} tags tell the template engine that a child template may
override those portions of the template. In this example, the index.html.twig
template overrides the body block, but not the title block, which will
display the default content defined in the base.html.twig template.

Using Tags, Filters, and Functions

One of the best features of Twig is its extensibility via tags, filters, and
functions. Take a look at the following sample template that uses filters
extensively to modify the information before displaying it to the user:

<h1>{{ article.title|capitalize }}</h1>

<p>{{ article.content|striptags|slice(0, 255) }} ...</p>

<p>Tags: {{ article.tags|sort|join(", ") }}</p>

<p>Activate your account before {{ 'next Monday'|date('M j, Y') }}</p>

Don’t forget to check out the official Twig documentation [http://twig.sensiolabs.org/documentation] to learn everything
about filters, functions and tags.

Including other Templates

The best way to share a snippet of code between several templates is to create a
new template fragment that can then be included from other templates.

Imagine that we want to display ads on some pages of our application. First,
create a banner.html.twig template:

{# app/Resources/views/ads/banner.html.twig #}
<div id="ad-banner">
 ...
</div>

To display this ad on any page, include the banner.html.twig template using
the include() function:

{# app/Resources/views/default/index.html.twig #}
{% extends 'base.html.twig' %}

{% block body %}
 <h1>Welcome to Symfony!</h1>

 {{ include('ads/banner.html.twig') }}
{% endblock %}

Embedding other Controllers

And what if you want to embed the result of another controller in a template?
That’s very useful when working with Ajax, or when the embedded template needs
some variable not available in the main template.

Suppose you’ve created a topArticlesAction controller method to display the
most popular articles of your website. If you want to “render” the result of
that method (usually some HTML content) inside the index template, use the
render() function:

{# app/Resources/views/index.html.twig #}
{{ render(controller('AppBundle:Default:topArticles')) }}

Here, the render() and controller() functions use the special
AppBundle:Default:topArticles syntax to refer to the topArticlesAction
action of the Default controller (the AppBundle part will be explained later):

// src/AppBundle/Controller/DefaultController.php

class DefaultController extends Controller
{
 public function topArticlesAction()
 {
 // look for the most popular articles in the database
 $articles = ...;

 return $this->render('default/top_articles.html.twig', array(
 'articles' => $articles,
));
 }

 // ...
}

Creating Links between Pages

Creating links between pages is a must for web applications. Instead of
hardcoding URLs in templates, the path function knows how to generate
URLs based on the routing configuration. That way, all your URLs can be easily
updated by just changing the configuration:

Return to homepage

The path function takes the route name as the first argument and you can
optionally pass an array of route parameters as the second argument.

小技巧

The url function is very similar to the path function, but generates
absolute URLs, which is very handy when rendering emails and RSS files:
Visit our website.

Including Assets: Images, JavaScripts and Stylesheets

What would the Internet be without images, JavaScripts, and stylesheets?
Symfony provides the asset function to deal with them easily:

<link href="{{ asset('css/blog.css') }}" rel="stylesheet" type="text/css" />

The asset() function looks for the web assets inside the web/ directory.
If you store them in another directory, read this article
to learn how to manage web assets.

Using the asset function, your application is more portable. The reason is
that you can move the application root directory anywhere under your web root
directory without changing anything in your template’s code.

Final Thoughts

Twig is simple yet powerful. Thanks to layouts, blocks, templates and action
inclusions, it is very easy to organize your templates in a logical and
extensible way.

You have only been working with Symfony for about 20 minutes, but you can
already do pretty amazing stuff with it. That’s the power of Symfony. Learning
the basics is easy, and you will soon learn that this simplicity is hidden
under a very flexible architecture.

But I’m getting ahead of myself. First, you need to learn more about the controller
and that’s exactly the topic of the next part of this tutorial.
Ready for another 10 minutes with Symfony?

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Quick Tour

The Controller

Still here after the first two parts? You are already becoming a Symfony fan!
Without further ado, discover what controllers can do for you.

Returning Raw Responses

Symfony defines itself as a Request-Response framework. When the user makes a
request to your application, Symfony creates a Request object to encapsulate
all the information related to that request. Similarly, the result of executing
any action of any controller is the creation of a Response object which
Symfony uses to generate the HTML content returned to the user.

So far, all the actions shown in this tutorial used the $this->render()
shortcut to return a rendered response as result. In case you need it, you can
also create a raw Response object to return any text content:

// src/AppBundle/Controller/DefaultController.php
namespace AppBundle\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Response;

class DefaultController extends Controller
{
 /**
 * @Route("/", name="homepage")
 */
 public function indexAction()
 {
 return new Response('Welcome to Symfony!');
 }
}

Route Parameters

Most of the time, the URLs of applications include variable parts on them. If you
are creating for example a blog application, the URL to display the articles should
include their title or some other unique identifier to let the application know
the exact article to display.

In Symfony applications, the variable parts of the routes are enclosed in curly
braces (e.g. /blog/read/{article_title}/). Each variable part is assigned a
unique name that can be used later in the controller to retrieve each value.

Let’s create a new action with route variables to show this feature in action.
Open the src/AppBundle/Controller/DefaultController.php file and add a new
method called helloAction with the following content:

// src/AppBundle/Controller/DefaultController.php
namespace AppBundle\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class DefaultController extends Controller
{
 // ...

 /**
 * @Route("/hello/{name}", name="hello")
 */
 public function helloAction($name)
 {
 return $this->render('default/hello.html.twig', array(
 'name' => $name
));
 }
}

Open your browser and access the http://localhost:8000/hello/fabien URL to
see the result of executing this new action. Instead of the action result, you’ll
see an error page. As you probably guessed, the cause of this error is that we’re
trying to render a template (default/hello.html.twig) that doesn’t exist yet.

Create the new app/Resources/views/default/hello.html.twig template with the
following content:

{# app/Resources/views/default/hello.html.twig #}
{% extends 'base.html.twig' %}

{% block body %}
 <h1>Hi {{ name }}! Welcome to Symfony!</h1>
{% endblock %}

Browse again the http://localhost:8000/hello/fabien URL and you’ll see this
new template rendered with the information passed by the controller. If you
change the last part of the URL (e.g. http://localhost:8000/hello/thomas)
and reload your browser, the page will display a different message. And if you
remove the last part of the URL (e.g. http://localhost:8000/hello), Symfony
will display an error because the route expects a name and you haven’t provided it.

Using Formats

Nowadays, a web application should be able to deliver more than just HTML
pages. From XML for RSS feeds or Web Services, to JSON for Ajax requests,
there are plenty of different formats to choose from. Supporting those formats
in Symfony is straightforward thanks to a special variable called _format
which stores the format requested by the user.

Tweak the hello route by adding a new _format variable with html as
its default value:

// src/AppBundle/Controller/DefaultController.php
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;

// ...

/**
 * @Route("/hello/{name}.{_format}", defaults={"_format"="html"}, name="hello")
 */
public function helloAction($name, $_format)
{
 return $this->render('default/hello.'.$_format.'.twig', array(
 'name' => $name
));
}

Obviously, when you support several request formats, you have to provide a
template for each of the supported formats. In this case, you should create a
new hello.xml.twig template:

<!-- app/Resources/views/default/hello.xml.twig -->
<hello>
 <name>{{ name }}</name>
</hello>

Now, when you browse to http://localhost:8000/hello/fabien, you’ll see the
regular HTML page because html is the default format. When visiting
http://localhost:8000/hello/fabien.html you’ll get again the HTML page, this
time because you explicitly asked for the html format. Lastly, if you visit
http://localhost:8000/hello/fabien.xml you’ll see the new XML template rendered
in your browser.

That’s all there is to it. For standard formats, Symfony will also
automatically choose the best Content-Type header for the response. To
restrict the formats supported by a given action, use the requirements
option of the @Route() annotation:

// src/AppBundle/Controller/DefaultController.php
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;

// ...

/**
 * @Route("/hello/{name}.{_format}",
 * defaults = {"_format"="html"},
 * requirements = { "_format" = "html|xml|json" },
 * name = "hello"
 *)
 */
public function helloAction($name, $_format)
{
 return $this->render('default/hello.'.$_format.'.twig', array(
 'name' => $name
));
}

The hello action will now match URLs like /hello/fabien.xml or
/hello/fabien.json, but it will show a 404 error if you try to get URLs
like /hello/fabien.js, because the value of the _format variable doesn’t
meet its requirements.

Redirecting and Forwarding

If you want to redirect the user to another page, use the redirectToRoute()
method:

// src/AppBundle/Controller/DefaultController.php
class DefaultController extends Controller
{
 /**
 * @Route("/", name="homepage")
 */
 public function indexAction()
 {
 return $this->redirectToRoute('hello', array('name' => 'Fabien'));
 }
}

The redirectToRoute() method takes as arguments the route name and an optional
array of parameters and redirects the user to the URL generated with those arguments.

You can also internally forward the action to another action of the same or
different controller using the forward() method:

// src/AppBundle/Controller/DefaultController.php
class DefaultController extends Controller
{
 /**
 * @Route("/", name="homepage")
 */
 public function indexAction()
 {
 return $this->forward('AppBundle:Blog:index', array(
 'name' => $name
);
 }
}

Displaying Error Pages

Errors will inevitably happen during the execution of every web application.
In the case of 404 errors, Symfony includes a handy shortcut that you can
use in your controllers:

// src/AppBundle/Controller/DefaultController.php
// ...

class DefaultController extends Controller
{
 /**
 * @Route("/", name="homepage")
 */
 public function indexAction()
 {
 // ...
 throw $this->createNotFoundException();
 }
}

For 500 errors, just throw a regular PHP exception inside the controller and
Symfony will transform it into a proper 500 error page:

// src/AppBundle/Controller/DefaultController.php
// ...

class DefaultController extends Controller
{
 /**
 * @Route("/", name="homepage")
 */
 public function indexAction()
 {
 // ...
 throw new \Exception('Something went horribly wrong!');
 }
}

Getting Information from the Request

Sometimes your controllers need to access the information related to the user
request, such as their preferred language, IP address or the URL query parameters.
To get access to this information, add a new argument of type Request to the
action. The name of this new argument doesn’t matter, but it must be preceded
by the Request type in order to work (don’t forget to add the new use
statement that imports this Request class):

// src/AppBundle/Controller/DefaultController.php
namespace AppBundle\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Request;

class DefaultController extends Controller
{
 /**
 * @Route("/", name="homepage")
 */
 public function indexAction(Request $request)
 {
 // is it an Ajax request?
 $isAjax = $request->isXmlHttpRequest();

 // what's the preferred language of the user?
 $language = $request->getPreferredLanguage(array('en', 'fr'));

 // get the value of a $_GET parameter
 $pageName = $request->query->get('page');

 // get the value of a $_POST parameter
 $pageName = $request->request->get('page');
 }
}

In a template, you can also access the Request object via the special
app.request variable automatically provided by Symfony:

{{ app.request.query.get('page') }}

{{ app.request.request.get('page') }}

Persisting Data in the Session

Even if the HTTP protocol is stateless, Symfony provides a nice session object
that represents the client (be it a real person using a browser, a bot, or a
web service). Between two requests, Symfony stores the attributes in a cookie
by using native PHP sessions.

Storing and retrieving information from the session can be easily achieved
from any controller:

use Symfony\Component\HttpFoundation\Request;

public function indexAction(Request $request)
{
 $session = $request->getSession();

 // store an attribute for reuse during a later user request
 $session->set('foo', 'bar');

 // get the value of a session attribute
 $foo = $session->get('foo');

 // use a default value if the attribute doesn't exist
 $foo = $session->get('foo', 'default_value');
}

You can also store “flash messages” that will auto-delete after the next request.
They are useful when you need to set a success message before redirecting the
user to another page (which will then show the message):

public function indexAction(Request $request)
{
 // ...

 // store a message for the very next request
 $this->addFlash('notice', 'Congratulations, your action succeeded!');
}

And you can display the flash message in the template like this:

<div>
 {{ app.session.flashbag.get('notice') }}
</div>

Final Thoughts

That’s all there is to it, and I’m not even sure you’ll have spent the full
10 minutes. You were briefly introduced to bundles in the first part, and all the
features you’ve learned about so far are part of the core framework bundle.
But thanks to bundles, everything in Symfony can be extended or replaced.
That’s the topic of the next part of this tutorial.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Quick Tour

The Architecture

You are my hero! Who would have thought that you would still be here after the
first three parts? Your efforts will be well rewarded soon. The first three
parts didn’t look too deeply at the architecture of the framework. Because it
makes Symfony stand apart from the framework crowd, let’s dive into the
architecture now.

Understanding the Directory Structure

The directory structure of a Symfony application is rather flexible,
but the recommended structure is as follows:

	app/

	The application configuration, templates and translations.

	src/

	The project’s PHP code.

	vendor/

	The third-party dependencies.

	web/

	The web root directory.

The web/ Directory

The web root directory is the home of all public and static files like images,
stylesheets, and JavaScript files. It is also where each front controller
lives, such as the production controller shown here:

// web/app.php
require_once __DIR__.'/../app/bootstrap.php.cache';
require_once __DIR__.'/../app/AppKernel.php';

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('prod', false);
$kernel->loadClassCache();
$request = Request::createFromGlobals();
$response = $kernel->handle($request);
$response->send();

The controller first bootstraps the application using a kernel class (AppKernel
in this case). Then, it creates the Request object using the PHP’s global
variables and passes it to the kernel. The last step is to send the response
contents returned by the kernel back to the user.

The app/ Directory

The AppKernel class is the main entry point of the application
configuration and as such, it is stored in the app/ directory.

This class must implement two methods:

	registerBundles()

	Must return an array of all bundles needed to run the application, as explained
in the next section.

	registerContainerConfiguration()

	Loads the application configuration (more on this later).

Autoloading is handled automatically via Composer [http://getcomposer.org], which means that you
can use any PHP class without doing anything at all! All dependencies
are stored under the vendor/ directory, but this is just a convention.
You can store them wherever you want, globally on your server or locally
in your projects.

Understanding the Bundle System

This section introduces one of the greatest and most powerful features of
Symfony, the bundle system.

A bundle is kind of like a plugin in other software. So why is it called a
bundle and not a plugin? This is because everything is a bundle in
Symfony, from the core framework features to the code you write for your
application.

All the code you write for your application is organized in bundles. In Symfony
speak, a bundle is a structured set of files (PHP files, stylesheets, JavaScripts,
images, ...) that implements a single feature (a blog, a forum, ...) and which
can be easily shared with other developers.

Bundles are first-class citizens in Symfony. This gives you the flexibility
to use pre-built features packaged in third-party bundles or to distribute your
own bundles. It makes it easy to pick and choose which features to enable in
your application and optimize them the way you want. And at the end of the day,
your application code is just as important as the core framework itself.

Symfony already includes an AppBundle that you may use to start developing your
application. Then, if you need to split the application into reusable
components, you can create your own bundles.

Registering a Bundle

An application is made up of bundles as defined in the registerBundles()
method of the AppKernel class. Each bundle is a directory that contains
a single Bundle class that describes it:

// app/AppKernel.php
public function registerBundles()
{
 $bundles = array(
 new Symfony\Bundle\FrameworkBundle\FrameworkBundle(),
 new Symfony\Bundle\SecurityBundle\SecurityBundle(),
 new Symfony\Bundle\TwigBundle\TwigBundle(),
 new Symfony\Bundle\MonologBundle\MonologBundle(),
 new Symfony\Bundle\SwiftmailerBundle\SwiftmailerBundle(),
 new Symfony\Bundle\DoctrineBundle\DoctrineBundle(),
 new Symfony\Bundle\AsseticBundle\AsseticBundle(),
 new Sensio\Bundle\FrameworkExtraBundle\SensioFrameworkExtraBundle(),
 new AppBundle\AppBundle();
);

 if (in_array($this->getEnvironment(), array('dev', 'test'))) {
 $bundles[] = new Symfony\Bundle\WebProfilerBundle\WebProfilerBundle();
 $bundles[] = new Sensio\Bundle\DistributionBundle\SensioDistributionBundle();
 $bundles[] = new Sensio\Bundle\GeneratorBundle\SensioGeneratorBundle();
 }

 return $bundles;
}

In addition to the AppBundle that was already talked about, notice that the
kernel also enables other bundles that are part of Symfony, such as FrameworkBundle,
DoctrineBundle, SwiftmailerBundle and AsseticBundle.

Configuring a Bundle

Each bundle can be customized via configuration files written in YAML, XML, or
PHP. Have a look at this sample of the default Symfony configuration:

app/config/config.yml
imports:
 - { resource: parameters.yml }
 - { resource: security.yml }
 - { resource: services.yml }

framework:
 #esi: ~
 #translator: { fallback: "%locale%" }
 secret: "%secret%"
 router:
 resource: "%kernel.root_dir%/config/routing.yml"
 strict_requirements: "%kernel.debug%"
 form: true
 csrf_protection: true
 validation: { enable_annotations: true }
 templating: { engines: ['twig'] }
 default_locale: "%locale%"
 trusted_proxies: ~
 session: ~

Twig Configuration
twig:
 debug: "%kernel.debug%"
 strict_variables: "%kernel.debug%"

Swift Mailer Configuration
swiftmailer:
 transport: "%mailer_transport%"
 host: "%mailer_host%"
 username: "%mailer_user%"
 password: "%mailer_password%"
 spool: { type: memory }

...

Each first level entry like framework, twig and swiftmailer defines
the configuration for a specific bundle. For example, framework configures
the FrameworkBundle while swiftmailer configures the SwiftmailerBundle.

Each environment can override the default configuration by providing a
specific configuration file. For example, the dev environment loads the
config_dev.yml file, which loads the main configuration (i.e. config.yml)
and then modifies it to add some debugging tools:

app/config/config_dev.yml
imports:
 - { resource: config.yml }

framework:
 router: { resource: "%kernel.root_dir%/config/routing_dev.yml" }
 profiler: { only_exceptions: false }

web_profiler:
 toolbar: true
 intercept_redirects: false

...

Extending a Bundle

In addition to being a nice way to organize and configure your code, a bundle
can extend another bundle. Bundle inheritance allows you to override any existing
bundle in order to customize its controllers, templates, or any of its files.

Logical File Names

When you want to reference a file from a bundle, use this notation:
@BUNDLE_NAME/path/to/file; Symfony will resolve @BUNDLE_NAME
to the real path to the bundle. For instance, the logical path
@AppBundle/Controller/DefaultController.php would be converted to
src/AppBundle/Controller/DefaultController.php, because Symfony knows
the location of the AppBundle.

Logical Controller Names

For controllers, you need to reference actions using the format
BUNDLE_NAME:CONTROLLER_NAME:ACTION_NAME. For instance,
AppBundle:Default:index maps to the indexAction method from the
AppBundle\Controller\DefaultController class.

Extending Bundles

If you follow these conventions, then you can use bundle inheritance
to override files, controllers or templates. For example, you can create
a bundle - NewBundle - and specify that it overrides AppBundle.
When Symfony loads the AppBundle:Default:index controller, it will
first look for the DefaultController class in NewBundle and, if
it doesn’t exist, then look inside AppBundle. This means that one bundle
can override almost any part of another bundle!

Do you understand now why Symfony is so flexible? Share your bundles between
applications, store them locally or globally, your choice.

Using Vendors

Odds are that your application will depend on third-party libraries. Those
should be stored in the vendor/ directory. You should never touch anything
in this directory, because it is exclusively managed by Composer. This directory
already contains the Symfony libraries, the SwiftMailer library, the Doctrine ORM,
the Twig templating system and some other third party libraries and bundles.

Understanding the Cache and Logs

Symfony applications can contain several configuration files defined in several
formats (YAML, XML, PHP, etc.) Instead of parsing and combining all those files
for each request, Symfony uses its own cache system. In fact, the application
configuration is only parsed for the very first request and then compiled down
to plain PHP code stored in the app/cache/ directory.

In the development environment, Symfony is smart enough to update the cache when
you change a file. But in the production environment, to speed things up, it is
your responsibility to clear the cache when you update your code or change its
configuration. Execute this command to clear the cache in the prod environment:

$ php app/console cache:clear --env=prod

When developing a web application, things can go wrong in many ways. The log
files in the app/logs/ directory tell you everything about the requests
and help you fix the problem quickly.

Using the Command Line Interface

Each application comes with a command line interface tool (app/console)
that helps you maintain your application. It provides commands that boost your
productivity by automating tedious and repetitive tasks.

Run it without any arguments to learn more about its capabilities:

$ php app/console

The --help option helps you discover the usage of a command:

$ php app/console router:debug --help

Final Thoughts

Call me crazy, but after reading this part, you should be comfortable with
moving things around and making Symfony work for you. Everything in Symfony
is designed to get out of your way. So, feel free to rename and move directories
around as you see fit.

And that’s all for the quick tour. From testing to sending emails, you still
need to learn a lot to become a Symfony master. Ready to dig into these
topics now? Look no further - go to the official The Book and pick
any topic you want.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

The Book

	Symfony and HTTP Fundamentals

	使用 Symfony 与不使用框架的对比

	Installing and Configuring Symfony

	Creating Pages in Symfony

	控制器（Controller）

	Routing

	Creating and Using Templates

	Databases and Doctrine

	Databases and Propel

	Testing

	Validation

	Forms

	Security

	HTTP Cache

	Translations

	Service Container

	Performance

	Internals

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

Symfony and HTTP Fundamentals

Congratulations! By learning about Symfony, you’re well on your way towards
being a more productive, well-rounded and popular web developer (actually,
you’re on your own for the last part). Symfony is built to get back to
basics: to develop tools that let you develop faster and build more robust
applications, while staying out of your way. Symfony is built on the best
ideas from many technologies: the tools and concepts you’re about to learn
represent the efforts of thousands of people, over many years. In other words,
you’re not just learning “Symfony”, you’re learning the fundamentals of the
web, development best practices and how to use many amazing new PHP libraries,
inside or independently of Symfony. So, get ready.

True to the Symfony philosophy, this chapter begins by explaining the fundamental
concept common to web development: HTTP. Regardless of your background or
preferred programming language, this chapter is a must-read for everyone.

HTTP is Simple

HTTP (Hypertext Transfer Protocol to the geeks) is a text language that allows
two machines to communicate with each other. That’s it! For example, when
checking for the latest xkcd [http://xkcd.com/] comic, the following (approximate) conversation
takes place:

[image: ../_images/http-xkcd.png]
And while the actual language used is a bit more formal, it’s still dead-simple.
HTTP is the term used to describe this simple text-based language. No matter
how you develop on the web, the goal of your server is always to understand
simple text requests, and return simple text responses.

Symfony is built from the ground up around that reality. Whether you realize
it or not, HTTP is something you use every day. With Symfony, you’ll learn
how to master it.

Step1: The Client Sends a Request

Every conversation on the web starts with a request. The request is a text
message created by a client (e.g. a browser, a smartphone app, etc) in a
special format known as HTTP. The client sends that request to a server,
and then waits for the response.

Take a look at the first part of the interaction (the request) between a
browser and the xkcd web server:

[image: ../_images/http-xkcd-request.png]
In HTTP-speak, this HTTP request would actually look something like this:

GET / HTTP/1.1
Host: xkcd.com
Accept: text/html
User-Agent: Mozilla/5.0 (Macintosh)

This simple message communicates everything necessary about exactly which
resource the client is requesting. The first line of an HTTP request is the
most important and contains two things: the URI and the HTTP method.

The URI (e.g. /, /contact, etc) is the unique address or location
that identifies the resource the client wants. The HTTP method (e.g. GET)
defines what you want to do with the resource. The HTTP methods are the
verbs of the request and define the few common ways that you can act upon
the resource:

	GET
	Retrieve the resource from the server

	POST
	Create a resource on the server

	PUT
	Update the resource on the server

	DELETE
	Delete the resource from the server

With this in mind, you can imagine what an HTTP request might look like to
delete a specific blog entry, for example:

DELETE /blog/15 HTTP/1.1

注解

There are actually nine HTTP methods defined by the HTTP specification,
but many of them are not widely used or supported. In reality, many modern
browsers don’t even support the PUT and DELETE methods.

In addition to the first line, an HTTP request invariably contains other
lines of information called request headers. The headers can supply a wide
range of information such as the requested Host, the response formats
the client accepts (Accept) and the application the client is using to
make the request (User-Agent). Many other headers exist and can be found
on Wikipedia’s List of HTTP header fields [http://en.wikipedia.org/wiki/List_of_HTTP_header_fields] article.

Step 2: The Server Returns a Response

Once a server has received the request, it knows exactly which resource the
client needs (via the URI) and what the client wants to do with that resource
(via the method). For example, in the case of a GET request, the server
prepares the resource and returns it in an HTTP response. Consider the response
from the xkcd web server:

[image: ../_images/http-xkcd.png]
Translated into HTTP, the response sent back to the browser will look something
like this:

HTTP/1.1 200 OK
Date: Sat, 02 Apr 2011 21:05:05 GMT
Server: lighttpd/1.4.19
Content-Type: text/html

<html>
 <!-- ... HTML for the xkcd comic -->
</html>

The HTTP response contains the requested resource (the HTML content in this
case), as well as other information about the response. The first line is
especially important and contains the HTTP response status code (200 in this
case). The status code communicates the overall outcome of the request back
to the client. Was the request successful? Was there an error? Different
status codes exist that indicate success, an error, or that the client needs
to do something (e.g. redirect to another page). A full list can be found
on Wikipedia’s List of HTTP status codes [http://en.wikipedia.org/wiki/List_of_HTTP_status_codes] article.

Like the request, an HTTP response contains additional pieces of information
known as HTTP headers. For example, one important HTTP response header is
Content-Type. The body of the same resource could be returned in multiple
different formats like HTML, XML, or JSON and the Content-Type header uses
Internet Media Types like text/html to tell the client which format is
being returned. A list of common media types can be found on Wikipedia’s
List of common media types [http://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_types] article.

Many other headers exist, some of which are very powerful. For example, certain
headers can be used to create a powerful caching system.

Requests, Responses and Web Development

This request-response conversation is the fundamental process that drives all
communication on the web. And as important and powerful as this process is,
it’s inescapably simple.

The most important fact is this: regardless of the language you use, the
type of application you build (web, mobile, JSON API) or the development
philosophy you follow, the end goal of an application is always to understand
each request and create and return the appropriate response.

Symfony is architected to match this reality.

小技巧

To learn more about the HTTP specification, read the original HTTP 1.1 RFC [http://www.w3.org/Protocols/rfc2616/rfc2616.html]
or the HTTP Bis [http://datatracker.ietf.org/wg/httpbis/], which is an active effort to clarify the original
specification. A great tool to check both the request and response headers
while browsing is the Live HTTP Headers [https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/] extension for Firefox.

Requests and Responses in PHP

So how do you interact with the “request” and create a “response” when using
PHP? In reality, PHP abstracts you a bit from the whole process:

$uri = $_SERVER['REQUEST_URI'];
$foo = $_GET['foo'];

header('Content-Type: text/html');
echo 'The URI requested is: '.$uri;
echo 'The value of the "foo" parameter is: '.$foo;

As strange as it sounds, this small application is in fact taking information
from the HTTP request and using it to create an HTTP response. Instead of
parsing the raw HTTP request message, PHP prepares superglobal variables
such as $_SERVER and $_GET that contain all the information from
the request. Similarly, instead of returning the HTTP-formatted text response,
you can use the header() function to create response headers and simply
print out the actual content that will be the content portion of the response
message. PHP will create a true HTTP response and return it to the client:

HTTP/1.1 200 OK
Date: Sat, 03 Apr 2011 02:14:33 GMT
Server: Apache/2.2.17 (Unix)
Content-Type: text/html

The URI requested is: /testing?foo=symfony
The value of the "foo" parameter is: symfony

Requests and Responses in Symfony

Symfony provides an alternative to the raw PHP approach via two classes that
allow you to interact with the HTTP request and response in an easier way.
The Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html] class is a simple
object-oriented representation of the HTTP request message. With it, you
have all the request information at your fingertips:

use Symfony\Component\HttpFoundation\Request;

$request = Request::createFromGlobals();

// the URI being requested (e.g. /about) minus any query parameters
$request->getPathInfo();

// retrieve GET and POST variables respectively
$request->query->get('foo');
$request->request->get('bar', 'default value if bar does not exist');

// retrieve SERVER variables
$request->server->get('HTTP_HOST');

// retrieves an instance of UploadedFile identified by foo
$request->files->get('foo');

// retrieve a COOKIE value
$request->cookies->get('PHPSESSID');

// retrieve an HTTP request header, with normalized, lowercase keys
$request->headers->get('host');
$request->headers->get('content_type');

$request->getMethod(); // GET, POST, PUT, DELETE, HEAD
$request->getLanguages(); // an array of languages the client accepts

As a bonus, the Request class does a lot of work in the background that
you’ll never need to worry about. For example, the isSecure() method
checks the three different values in PHP that can indicate whether or not
the user is connecting via a secured connection (i.e. HTTPS).

ParameterBags and Request Attributes

As seen above, the $_GET and $_POST variables are accessible via
the public query and request properties respectively. Each of
these objects is a ParameterBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html]
object, which has methods like
get() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_get],
has() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_has],
all() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_all] and more.
In fact, every public property used in the previous example is some instance
of the ParameterBag.

The Request class also has a public attributes property, which holds
special data related to how the application works internally. For the
Symfony framework, the attributes holds the values returned by the
matched route, like _controller, id (if you have an {id}
wildcard), and even the name of the matched route (_route). The
attributes property exists entirely to be a place where you can
prepare and store context-specific information about the request.

Symfony also provides a Response class: a simple PHP representation of
an HTTP response message. This allows your application to use an object-oriented
interface to construct the response that needs to be returned to the client:

use Symfony\Component\HttpFoundation\Response;

$response = new Response();

$response->setContent('<html><body><h1>Hello world!</h1></body></html>');
$response->setStatusCode(200);
$response->headers->set('Content-Type', 'text/html');

// prints the HTTP headers followed by the content
$response->send();

If Symfony offered nothing else, you would already have a toolkit for easily
accessing request information and an object-oriented interface for creating
the response. Even as you learn the many powerful features in Symfony, keep
in mind that the goal of your application is always to interpret a request
and create the appropriate response based on your application logic.

小技巧

The Request and Response classes are part of a standalone component
included with Symfony called HttpFoundation. This component can be
used entirely independently of Symfony and also provides classes for handling
sessions and file uploads.

The Journey from the Request to the Response

Like HTTP itself, the Request and Response objects are pretty simple.
The hard part of building an application is writing what comes in between.
In other words, the real work comes in writing the code that interprets the
request information and creates the response.

Your application probably does many things, like sending emails, handling
form submissions, saving things to a database, rendering HTML pages and protecting
content with security. How can you manage all of this and still keep your
code organized and maintainable?

Symfony was created to solve these problems so that you don’t have to.

The Front Controller

Traditionally, applications were built so that each “page” of a site was
its own physical file:

index.php
contact.php
blog.php

There are several problems with this approach, including the inflexibility
of the URLs (what if you wanted to change blog.php to news.php without
breaking all of your links?) and the fact that each file must manually
include some set of core files so that security, database connections and
the “look” of the site can remain consistent.

A much better solution is to use a front controller: a single PHP
file that handles every request coming into your application. For example:

	/index.php
	executes index.php

	/index.php/contact
	executes index.php

	/index.php/blog
	executes index.php

小技巧

Using Apache’s mod_rewrite (or equivalent with other web servers),
the URLs can easily be cleaned up to be just /, /contact and
/blog.

Now, every request is handled exactly the same way. Instead of individual URLs
executing different PHP files, the front controller is always executed,
and the routing of different URLs to different parts of your application
is done internally. This solves both problems with the original approach.
Almost all modern web apps do this - including apps like WordPress.

Stay Organized

Inside your front controller, you have to figure out which code should be
executed and what the content to return should be. To figure this out, you’ll
need to check the incoming URI and execute different parts of your code depending
on that value. This can get ugly quickly:

// index.php
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

$request = Request::createFromGlobals();
$path = $request->getPathInfo(); // the URI path being requested

if (in_array($path, array('', '/'))) {
 $response = new Response('Welcome to the homepage.');
} elseif ('/contact' === $path) {
 $response = new Response('Contact us');
} else {
 $response = new Response('Page not found.', 404);
}
$response->send();

Solving this problem can be difficult. Fortunately it’s exactly what Symfony
is designed to do.

The Symfony Application Flow

When you let Symfony handle each request, life is much easier. Symfony follows
the same simple pattern for every request:

[image: Symfony request flow]
Incoming requests are interpreted by the routing and passed to controller
functions that return Response objects.

Each “page” of your site is defined in a routing configuration file that
maps different URLs to different PHP functions. The job of each PHP function,
called a controller, is to use information from the request - along
with many other tools Symfony makes available - to create and return a Response
object. In other words, the controller is where your code goes: it’s where
you interpret the request and create a response.

It’s that easy! To review:

	Each request executes a front controller file;

	The routing system determines which PHP function should be executed based
on information from the request and routing configuration you’ve created;

	The correct PHP function is executed, where your code creates and returns
the appropriate Response object.

A Symfony Request in Action

Without diving into too much detail, here is this process in action. Suppose
you want to add a /contact page to your Symfony application. First, start
by adding an entry for /contact to your routing configuration file:

	YAML# app/config/routing.yml
contact:
 path: /contact
 defaults: { _controller: AppBundle:Main:contact }

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="contact" path="/contact">
 <default key="_controller">AppBundle:Main:contact</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\Route;
use Symfony\Component\Routing\RouteCollection;

$collection = new RouteCollection();
$collection->add('contact', new Route('/contact', array(
 '_controller' => 'AppBundle:Main:contact',
)));

return $collection;

When someone visits the /contact page, this route is matched, and the
specified controller is executed. As you’ll learn in the routing chapter,
the AcmeDemoBundle:Main:contact string is a short syntax that points to a
specific PHP method contactAction inside a class called MainController:

// src/AppBundle/Controller/MainController.php
namespace AppBundle\Controller;

use Symfony\Component\HttpFoundation\Response;

class MainController
{
 public function contactAction()
 {
 return new Response('<h1>Contact us!</h1>');
 }
}

In this very simple example, the controller simply creates a
Response [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html] object with the HTML
<h1>Contact us!</h1>. In the controller chapter,
you’ll learn how a controller can render templates, allowing your “presentation”
code (i.e. anything that actually writes out HTML) to live in a separate
template file. This frees up the controller to worry only about the hard
stuff: interacting with the database, handling submitted data, or sending
email messages.

Symfony: Build your App, not your Tools

You now know that the goal of any app is to interpret each incoming request
and create an appropriate response. As an application grows, it becomes more
difficult to keep your code organized and maintainable. Invariably, the same
complex tasks keep coming up over and over again: persisting things to the
database, rendering and reusing templates, handling form submissions, sending
emails, validating user input and handling security.

The good news is that none of these problems is unique. Symfony provides
a framework full of tools that allow you to build your application, not your
tools. With Symfony, nothing is imposed on you: you’re free to use the full
Symfony framework, or just one piece of Symfony all by itself.

Standalone Tools: The Symfony Components

So what is Symfony? First, Symfony is a collection of over twenty independent
libraries that can be used inside any PHP project. These libraries, called
the Symfony Components, contain something useful for almost any situation,
regardless of how your project is developed. To name a few:

	HttpFoundation

	Contains the Request and Response classes, as well as other classes for
handling sessions and file uploads.

	Routing

	Powerful and fast routing system that allows you to map a specific URI
(e.g. /contact) to some information about how that request should be handled
(e.g. execute the contactAction() method).

	Form

	A full-featured and flexible framework for creating forms and handling form
submissions.

	Validator [https://github.com/symfony/Validator]

	A system for creating rules about data and then validating whether or not
user-submitted data follows those rules.

	Templating

	A toolkit for rendering templates, handling template inheritance (i.e. a
template is decorated with a layout) and performing other common template tasks.

	Security

	A powerful library for handling all types of security inside an application.

	Translation

	A framework for translating strings in your application.

Each one of these components is decoupled and can be used in any
PHP project, regardless of whether or not you use the Symfony framework.
Every part is made to be used if needed and replaced when necessary.

The Full Solution: The Symfony Framework

So then, what is the Symfony Framework? The Symfony Framework is
a PHP library that accomplishes two distinct tasks:

	Provides a selection of components (i.e. the Symfony Components) and
third-party libraries (e.g. Swift Mailer [http://swiftmailer.org/] for sending emails);

	Provides sensible configuration and a “glue” library that ties all of these
pieces together.

The goal of the framework is to integrate many independent tools in order
to provide a consistent experience for the developer. Even the framework
itself is a Symfony bundle (i.e. a plugin) that can be configured or replaced
entirely.

Symfony provides a powerful set of tools for rapidly developing web applications
without imposing on your application. Normal users can quickly start development
by using a Symfony distribution, which provides a project skeleton with
sensible defaults. For more advanced users, the sky is the limit.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

使用 Symfony 与不使用框架的对比

为什么用 Symfony 开发比打开一个文件直接写 PHP 代码更好？

如果你没有接触过 PHP 框架，也不清楚什么是 MVC，或者对 Symfony 好处的传言感到好奇，那么这一章就是写给你的。在这里我们不会 告诉 你 Symfony 可以让你的开发更快速、更好，而是会带你你亲身见证这一切。

在本章中，我们将带你用纯 PHP 写一个简单的应用程序，然后将其重构，使之更有条理。你将会穿越时空，了解为什么网站开发在过去几年中会发生如此翻天覆地的变化。

最后带你体会为什么 Symfony 可以让你摆脱掉一切繁琐，从而真正掌控你的代码。

先用纯 PHP 写一个简单的博客程序

首先，让我们不使用框架写一个博客程序。创建一个来显示数据库里保存的文章的页面。纯 PHP 的话非常简单，但看起来并不舒服：

<?php
// index.php
$link = mysql_connect('localhost', 'myuser', 'mypassword');
mysql_select_db('blog_db', $link);

$result = mysql_query('SELECT id, title FROM post', $link);
?>

<!DOCTYPE html>
<html>
 <head>
 <title>文章列表</title>
 </head>
 <body>
 <h1>文章列表</h1>

 <?php while ($row = mysql_fetch_assoc($result)): ?>

 <a href="/show.php?id=<?php echo $row['id'] ?>">
 <?php echo $row['title'] ?>

 <?php endwhile ?>

 </body>
</html>

<?php
mysql_close($link);
?>

这样写起来并不费事，运行起来也不慢，但有没有想过随着你程序规模的增大，你该如何维护它。这里列出了几个你可能遇到的问题：

	没有出错检查：如果数据库连接失败怎么办？

	代码结构性差：随着代码的增多，文件将越来越多
最后导致你没法继续维护。如果你要处理表单，对应的代码放在
哪儿？如何验证用户提交上来的数据？发邮件的代码写在
哪儿呢？

	代码重复利用率低：因为所有的代码都写在一个文件里，
也就没法在这个博客的别的“页面”里重复使用任何一段代码了。

注解

另外一个没有指出的问题是，上面的代码只能用来连接
MySQL 数据库。虽然有些超出本章的范围，但还是很想让你知道，Symfony 完整集成了 Doctrine [http://www.doctrine-project.org]，
一个提供抽象数据库操作和表字段映射的库。

抽离表现层

现在可以立即将包含了 HTML 代码的“表现层”代码单独保存为一个文件，让表现层与主“逻辑”文件分离：

<?php
// index.php
$link = mysql_connect('localhost', 'myuser', 'mypassword');
mysql_select_db('blog_db', $link);

$result = mysql_query('SELECT id, title FROM post', $link);

$posts = array();
while ($row = mysql_fetch_assoc($result)) {
 $posts[] = $row;
}

mysql_close($link);

// 导入 HTML 表现层文件
require 'templates/list.php';

现在 HTML 代码都保存在一个独立的文件（templates/list.php）中，这个文件在 HTML 代码中嵌入了模板风格的 PHP 代码：

<!DOCTYPE html>
<html>
 <head>
 <title>文章列表</title>
 </head>
 <body>
 <h1>文章列表</h1>

 <?php foreach ($posts as $post): ?>

 <a href="/read?id=<?php echo $post['id'] ?>">
 <?php echo $post['title'] ?>

 <?php endforeach ?>

 </body>
</html>

根据惯例，上面的包含所有程序逻辑的文件 index.php 被称为“Controller（控制器）”。所谓 controller 是无论你使用的是语言还是框架都会经常听到的一个术语。简单来讲，它是一块 你写的 处理用户输入并准备响应的代码。

在上面的例子里，控制器从数据库里读出数据，然后导入一个模板文件来展现这些数据。通过分离控制器的代码，你将可以轻松地修改模板文件，比如以另外的格式来扩展博客文章的渲染方式（如创建一个对应 JSON 格式的 list.json.php 模板）。

分离应用程序逻辑（域）

到目前为止，我们的程序只有一个页面。但是，如果第二个页面需要使用相同的连接数据库的代码或者要用相同的博客文章的数组呢？让我们再次重构代码，将核心的行为和数据访问功能从原来的程序代码中分离出来放入一个叫做 model.php 的新文件中：

<?php
// model.php
function open_database_connection()
{
 $link = mysql_connect('localhost', 'myuser', 'mypassword');
 mysql_select_db('blog_db', $link);

 return $link;
}

function close_database_connection($link)
{
 mysql_close($link);
}

function get_all_posts()
{
 $link = open_database_connection();

 $result = mysql_query('SELECT id, title FROM post', $link);
 $posts = array();
 while ($row = mysql_fetch_assoc($result)) {
 $posts[] = $row;
 }
 close_database_connection($link);

 return $posts;
}

小技巧

使用 model.php 来命名刚才的新文件是因为程序逻辑和数据访问
一般被叫做“Model（模型）”层。在一个代码组织良好的
程序中，大多数“业务逻辑”的代码
都在模型层中（而不是控制器中）。不像
这个例子里的模型层只关注
访问数据库这一小部分。

现在的控制器（ index.php ）就很简单了：

<?php
require_once 'model.php';

$posts = get_all_posts();

require 'templates/list.php';

现在控制器的唯一任务就是从模型层中得到数据，然后调用一个模板来渲染这些数据。这就是一个最简单的 MVC 模式。

抽离布局

现在已经把程序重构成三个有着明显不同优势的部分，并且能在不同的页面中重复使用几乎所有的东西。

在代码中唯一 不能 被重用的就只有布局了，因此让我们创建一个新的 layout.php 文件来解决这个问题。

<!-- templates/layout.php -->
<!DOCTYPE html>
<html>
 <head>
 <title><?php echo $title ?></title>
 </head>
 <body>
 <?php echo $content ?>
 </body>
</html>

现在模板文件（templates/list.php）可以简单地从基础布局中“扩展”出来。

<?php $title = '文章列表' ?>

<?php ob_start() ?>
 <h1>文章列表</h1>

 <?php foreach ($posts as $post): ?>

 <a href="/read?id=<?php echo $post['id'] ?>">
 <?php echo $post['title'] ?>

 <?php endforeach ?>

<?php $content = ob_get_clean() ?>

<?php include 'layout.php' ?>

现在你已经知道了重复使用布局的方法。但不幸的是按照现在的思路，你不得不在模板中使用很多丑陋的PHP函数（诸如 ob_start()、ob_get_clean()）。在 Symfony 中，可以使用模板组件来让这一切变得更整洁、更方便。你马上就会看到我们如何使用它。

添加一个显示博文的页面

我们已经重构了博客的“列表”页，使它的代码具有了更好的组织性和可重复使用性。为了检验这一点，让我们添加一个显示博文的页面，来显示被通过 id 参数标记了的单篇博文。

首先在 model.php 文件中新增一个函数，用来通过给定的 id 检索单篇博文:

// model.php
function get_post_by_id($id)
{
 $link = open_database_connection();

 $id = intval($id);
 $query = 'SELECT date, title, body FROM post WHERE id = '.$id;
 $result = mysql_query($query);
 $row = mysql_fetch_assoc($result);

 close_database_connection($link);

 return $row;
}

接下来创建一个新的叫做 show.php 文件，作为新页面的控制器:

<?php
require_once 'model.php';

$post = get_post_by_id($_GET['id']);

require 'templates/show.php';

最后创建新的模板文件 templates/show.php ，来渲染单篇博文:

<?php $title = $post['title'] ?>

<?php ob_start() ?>
 <h1><?php echo $post['title'] ?></h1>

 <div class="date"><?php echo $post['date'] ?></div>
 <div class="body">
 <?php echo $post['body'] ?>
 </div>
<?php $content = ob_get_clean() ?>

<?php include 'layout.php' ?>

现在创建第二页已经非常容易了，也没有写重复的代码。然而这一页还有一堆的问题。选择一个框架吧，把这些问题交给它来解决。例如，缺失或无效的 id 参数会导致页面崩溃。如果能够触发 404 页面将会更好，但做到这一点并不容易。更糟的是，如果你忘记了用 intval() 函数对 id 参数进行清理的话，你将会让整个数据库陷入 SQL 注入攻击的危险之中。

另一个问题就是每一个单独的控制器都必须包含 model.php 文件。如果每个控制器都突然需要包含一个别的文件或者执行其它全局任务（如安全管理）呢？按照目前的情况，这些代码必须添加到每个控制器文件中。如果你忘了包含某个文件，希望这不会给我们带来不安全的因素…

用一个“前端控制器”来解救

现在，使用 front controller: 来解救我们的程序吧，它是一个单独的 PHP 文件，我们可以通过它来处理 所有 的请求。有了前端控制器，程序的 URI 略有变化，但开始变得更灵活了：

没有前端控制器
/index.php => 博客的列表页（index.php 被运行）
/show.php => 博客的博文展示页（show.php 被运行）

使用 index.php 作为前端控制器
/index.php => 博客的列表页（index.php 被运行）
/index.php/show => 博客的博文展示页（index.php 被运行）

小技巧

如果使用了 Apache 网页服务器的 rewrite 规则
（或别的网页服务器的相同功能），URI 中的 index.php 部分就可以省略掉了。这样的话，博客的
博文展示页的 URI 结果就可以简单地用 /show 来表示。

当使用前端控制器时，单个 PHP 文件（在这里是 index.php ）将渲染 所有的 请求，对于博文展示页来说， /index.php/show 最终实际执行的是 index.php ，它现在负责用完整的 URI 来进行内部路由请求。。如你所见，前端控制器是个非常强大的工具。

制作前端控制器

我们就要对程序进行 重大 改动了。一旦单个文件接管了所有的请求，你就可以集中精力处理诸如安全、加载配置、路由等等这类事情了。在这个例子里， index.php 要足够智能，以便根据请求的 URL 区分并渲染博客列表页和博文展示页：

<?php
// index.php

// 加载并初始化任何全局库
require_once 'model.php';
require_once 'controllers.php';

// 在内部路由用户的请求
$uri = parse_url($_SERVER['REQUEST_URI'], PHP_URL_PATH);
if ('/index.php' == $uri) {
 list_action();
} elseif ('/index.php/show' == $uri && isset($_GET['id'])) {
 show_action($_GET['id']);
} else {
 header('Status: 404 Not Found');
 echo '<html><body><h1>页面未找到！</h1></body></html>';
}

为了更好地组织代码，将两个控制器（之前分别在 index.php 和 show.php``里）写成两个 PHP 函数，并放到新的 ``controllers.php 文件里：

function list_action()
{
 $posts = get_all_posts();
 require 'templates/list.php';
}

function show_action($id)
{
 $post = get_post_by_id($id);
 require 'templates/show.php';
}

作为前端控制器， index.php 扮演了一个新的角色：加载核心库并且路由所有的请求，以便使两个控制器之一（ list_action() 或 show_action() 函数）被调用。实际上，前端控制器看来去也变得很像 Symfony 中处理请求和路由请求的机制了。

小技巧

前端控制器另一个优点就是可以提供更灵活的 URL 。注意，
博客显示页的URL只需在一个位置修改一下，
就可以从 /show 变成 /read 。而在此之前，你需要将整个文件
重命名。在 Symfony 中，URL 将更加灵活。

现在，我们的程序已经从单个的文件发展为拥有良好架构并允许代码重新使用的程序了。你应该觉得高兴，但别感到满意。例如，“路由”系统是多变的，列表页（ /index.php ）也要可以通过 / 来访问（如果添加了 Apache 重写规则的话）。而且，大量的时间花费在“架构”（如路由、控制器和模板等）上，而非花在真正的博客的开发上。你还需要在处理提交上来的表单、验证用户的输入、记录运行日志和安全上花费更多的时间。为什么你要重新发明这些轮子呢？

接触一下 Symfony

Symfony 来支援我们啦！在用 Symfony 之前，你要先下载它。你可以用 Composer ，它会给你下载正确的版本并安装相关依赖，而且还提供了一个自动加载器。自动加载器是一个可以让你在没有明确声明包含所用的 PHP 类文件时，就可以使用这个类的一个工具。

在网站的根目录创建 composer.json 文件并写入以下内容：

{
 "require": {
 "symfony/symfony": "2.3.*"
 },
 "autoload": {
 "files": ["model.php","controllers.php"]
 }
}

下一步， download Composer [http://getcomposer.org/download/] 并运行以下命令来把 Symfony 下载到 vendor/ 目录下：

$ composer install

Composer 在下载依赖的时候会同时生成 vendor/autoload.php 文件，这个文件会自动装载 Symfony 的所有的文件到 composer.json 描述的自动装载的文件中。

Symfony 哲学的核心是：程序的主要任务就是解释每个请求并返回对应的响应。因此，Symfony 提供了 Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html] 和 Response [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html] ，
class. 这两个类是原始的 HTTP 中处理请求和返回响应的面向对象的表述。使用它们来改善我们的博客：

<?php
// index.php
require_once 'vendor/autoload.php';

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

$request = Request::createFromGlobals();

$uri = $request->getPathInfo();
if ('/' == $uri) {
 $response = list_action();
} elseif ('/show' == $uri && $request->query->has('id')) {
 $response = show_action($request->query->get('id'));
} else {
 $html = '<html><body><h1>页面未找到！</h1></body></html>';
 $response = new Response($html, 404);
}

// 输出响应头并发回响应
$response->send();

现在控制器可以通过返回一个 Response 对象来返回响应。为了更加方便，你可以加入一个新的 render_template() 函数，该函数的行为很像 Symfony 的模板引擎：

// controllers.php
use Symfony\Component\HttpFoundation\Response;

function list_action()
{
 $posts = get_all_posts();
 $html = render_template('templates/list.php', array('posts' => $posts));

 return new Response($html);
}

function show_action($id)
{
 $post = get_post_by_id($id);
 $html = render_template('templates/show.php', array('post' => $post));

 return new Response($html);
}

// 模板渲染帮手函数
function render_template($path, array $args)
{
 extract($args);
 ob_start();
 require $path;
 $html = ob_get_clean();

 return $html;
}

通过运用 Symfony 的一小部分，我们的程序变得更加灵活可靠。Request 类提供了一个访问 HTTP 请求信息的可靠方式。具体来说， getPathInfo() 方法返回一个被清理过的的 URI（比如它会返回 /show ，而不会是 /index.php/show）。因此即使用户在地址栏里写的是 /index.php/show，应用程序也会智能地将请求路由到 show_action()。

在构造 HTTP 响应时， Response 对象十分灵活，它允许通过一个面向对象的接口写入响应头和内容。虽然在我们的这个博客程序中响应是很简单的，但你将体会到当程序增长时这种灵活性将带来的好处。

Symfony 程序示例

我们的程序走到现在花了 很长 的时间，相信你已经体会到即使这么简单的程序也包含了大量的代码。一路走来，我们制作了简单的路由系统，并且还写了一个使用 ob_start() 和 ob_get_clean() 渲染模板的方法。如果在你下一次从零开始搭建“框架”的时候，你至少可以使用 Symfony 中的独立 Routing [https://github.com/symfony/Routing] 和 Templating [https://github.com/symfony/Templating] 组件，因为它们已经帮你解决了很多问题。

为了不用重新发明轮子，你可以让 Symfony 接管一些部分，下面是我们的程序基于 Symfony 的写法:

// src/AppBundle/Controller/BlogController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class BlogController extends Controller
{
 public function listAction()
 {
 $posts = $this->get('doctrine')
 ->getManager()
 ->createQuery('SELECT p FROM AcmeBlogBundle:Post p')
 ->execute();

 return $this->render('Blog/list.html.php', array('posts' => $posts));
 }

 public function showAction($id)
 {
 $post = $this->get('doctrine')
 ->getManager()
 ->getRepository('AppBundle:Post')
 ->find($id);

 if (!$post) {
 // 抛出 404 错误
 throw $this->createNotFoundException();
 }

 return $this->render('Blog/show.html.php', array('post' => $post));
 }
}

这两个控制器仍然很轻量，它们都使用 Doctrine ORM 库 从数据库中检索对象，并使用模板组件渲染模板，最后返回 Response 对象。模板文件现在超级简单：

<!-- app/Resources/views/Blog/list.html.php -->
<?php $view->extend('layout.html.php') ?>

<?php $view['slots']->set('title', 'List of Posts') ?>

<h1>文章列表</h1>

 <?php foreach ($posts as $post): ?>

 <a href="<?php echo $view['router']->generate(
 'blog_show',
 array('id' => $post->getId())
) ?>">
 <?php echo $post->getTitle() ?>

 <?php endforeach ?>

布局文件几乎没变：

<!-- app/Resources/views/layout.html.php -->
<!DOCTYPE html>
<html>
 <head>
 <title><?php echo $view['slots']->output(
 'title',
 'Default title'
) ?></title>
 </head>
 <body>
 <?php echo $view['slots']->output('_content') ?>
 </body>
</html>

注解

在这里我们将博文展示页面模板留做练习，实现它相对于实现
博文列表模板来说几乎微不足道。

在 Symfony 引擎（我们称其为 Kernel）启动时，它需要根据一张地图来判断请求信息需要被路由到哪个控制器。所谓的路由表则是一张我们也能读懂的“地图”：

app/config/routing.yml
blog_list:
 path: /blog
 defaults: { _controller: AppBundle:Blog:list }

blog_show:
 path: /blog/show/{id}
 defaults: { _controller: AppBundle:Blog:show }

现在 Symfony 就开始处理所有的简单任务了。前端控制器极其简单，它被创建之后你就无须再去接触它了。（如果你使用 Symfony 的发行版，你都无须去创建它）:

// web/app.php
require_once __DIR__.'/../app/bootstrap.php';
require_once __DIR__.'/../app/AppKernel.php';

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('prod', false);
$kernel->handle(Request::createFromGlobals())->send();

前端控制器的唯一工作就是初始化 Symfony 引擎（内核）并把一个需要处理的 Request 对象传入内核。Symfony 内核再根据路由表来确定调用哪个控制器。和之前一样，控制器方法负责返回最终的 Response 对象。对它来说就真的没有别的可做的了。

至于 Symfony 如何处理请求，请参阅
请求处理流程图。

进入 Symfony 的世界

在接下来的章节中，我们将学到更多关于 Symfony 的各部分的工作原理，以及推荐的项目组织形式。现在，看看我们的博客程序从纯 PHP 迁移到 Symfony 后有什么优势：

	现在我们的应用程序代码 很整洁，组织很好 （虽然
Symfony 并不强制你做到这一点）。这提高了我们代码的 重用率 并且
可以让新加入项目的开发者很快进入角色；

	所写的代码100％是为了 你的 程序，你 不再需要
开发和维护低级的程序了，比如 自动载入、
路由、 或渲染 控制器；

	Symfony 可以让你 使用开源工具 如 Doctrine 、
模板、安全、表单、验证组建（只是
几个例子）；

	感谢路由组件让我们的程序拥有 十分灵活的URL
；

	Symfony 以 HTTP 为中心的架构可以让你使用强大的工具，
例如使用 Symfony 的内建 HTTP 缓存 或更为强大的
Varnish [https://www.varnish-cache.org/] 来实现 HTTP 缓存。这将在稍后的 缓存 一章中进行讲解
。

最值得高兴的是，通过使用 Symfony，你现在可以获得一整套 Symfony 社区开发的高品质开源工具。想获得 Symfony 社区工具请移步 KnpBundles.com [http://knpbundles.com/]。

更好的模板

Symfony 标配的模板引擎叫 Twig [http://twig.sensiolabs.org]，如果你选择使用它，它将让你可以更快地书写更有可读性的模板。这意味着我们的博客程序可以用更少的代码来写。比如，列表模板用 Twig 写的话是下面的样子：

{# app/Resources/views/Blog/list.html.twig #}
{% extends "layout.html.twig" %}

{% block title %}文章列表{% endblock %}

{% block body %}
 <h1>文章列表</h1>

 {% for post in posts %}

 {{ post.title }}

 {% endfor %}

{% endblock %}

同样的， layout.html.twig 也不难写：

{# app/Resources/views/layout.html.twig #}
<!DOCTYPE html>
<html>
 <head>
 <title>{% block title %}默认标题{% endblock %}</title>
 </head>
 <body>
 {% block body %}{% endblock %}
 </body>
</html>

Symfony 很好地支持 Twig。虽然 Symfony 永远支持 PHP 风格模板，但我们将继续讨论 Twig 的更多优势。更多信息请参阅 模板章节。

从技巧书中再学一些

	How to Use PHP instead of Twig for Templates

	How to Define Controllers as Services

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

Installing and Configuring Symfony

The goal of this chapter is to get you up and running with a working application
built on top of Symfony. In order to simplify the process of creating new
applications, Symfony provides an installer that must be installed before
creating the first application.

Installing the Symfony Installer

Using the Symfony Installer is the only recommended way to create new Symfony
applications. This installer is a PHP application that has to be installed
only once and then it can create any number of Symfony applications.

注解

The installer requires PHP 5.4 or higher. If you still use the legacy
PHP 5.3 version, you cannot use the Symfony Installer. Read the
Creating Symfony Applications without the Installer section to learn how
to proceed.

Depending on your operating system, the installer must be installed in different
ways.

Linux and Mac OS X Systems

Open your command console and execute the following three commands:

$ curl -LsS http://symfony.com/installer > symfony.phar
$ sudo mv symfony.phar /usr/local/bin/symfony
$ chmod a+x /usr/local/bin/symfony

This will create a global symfony command in your system that will be used
to create new Symfony applications.

Windows Systems

Open your command console and execute the following command:

c:\> php -r "readfile('http://symfony.com/installer');" > symfony.phar

Then, move the downloaded symfony.phar file to your projects directory and
execute it as follows:

c:\> move symfony.phar c:\projects
c:\projects\> php symfony.phar

Creating the Symfony Application

Once the Symfony Installer is ready, create your first Symfony application with
the new command:

Linux, Mac OS X
$ symfony new my_project_name

Windows
c:\> cd projects/
c:\projects\> php symfony.phar new my_project_name

This command creates a new directory called my_project_name that contains a
fresh new project based on the most recent stable Symfony version available. In
addition, the installer checks if your system meets the technical requirements
to execute Symfony applications. If not, you’ll see the list of changes needed
to meet those requirements.

小技巧

For security reasons, all Symfony versions are digitally signed before
distributing them. If you want to verify the integrity of any Symfony
version, follow the steps explained in this post [http://fabien.potencier.org/article/73/signing-project-releases].

Basing your Project on a Specific Symfony Version

If your project needs to be based on a specific Symfony version, pass the version
number as the second argument of the new command:

Linux, Mac OS X
$ symfony new my_project_name 2.3.23

Windows
c:\projects\> php symfony.phar new my_project_name 2.3.23

Read the Symfony Release process
to better understand why there are several Symfony versions and which one
to use for your projects.

Creating Symfony Applications without the Installer

If you still use PHP 5.3, or if you can’t execute the installer for any reason,
you can create Symfony applications using the alternative installation method
based on Composer [http://getcomposer.org/].

Composer is the dependency manager used by modern PHP applications and it can
also be used to create new applications based on the Symfony framework. If you
don’t have installed it globally, start by reading the next section.

Installing Composer Globally

Start with installing Composer globally.

Creating a Symfony Application with Composer

Once Composer is installed on your computer, execute the create-project
command to create a new Symfony application based on its latest stable version:

$ composer create-project symfony/framework-standard-edition my_project_name

If you need to base your application on a specific Symfony version, provide that
version as the second argument of the create-project command:

$ composer create-project symfony/framework-standard-edition my_project_name "2.3.*"

小技巧

If your Internet connection is slow, you may think that Composer is not
doing anything. If that’s your case, add the -vvv flag to the previous
command to display a detailed output of everything that Composer is doing.

Running the Symfony Application

Symfony leverages the internal web server provided by PHP to run applications
while developing them. Therefore, running a Symfony application is a matter of
browsing the project directory and executing this command:

$ cd my_project_name/
$ php app/console server:run

Then, open your browser and access the http://localhost:8000 URL to see the
Welcome page of Symfony:

[image: Symfony Welcome Page]
Instead of the Welcome Page, you may see a blank page or an error page.
This is caused by a directory permission misconfiguration. There are several
possible solutions depending on your operating system. All of them are
explained in the Setting up Permissions
section.

注解

PHP’s internal web server is available in PHP 5.4 or higher versions. If you
still use the legacy PHP 5.3 version, you’ll have to configure a virtual host
in your web server.

The server:run command is only suitable while developing the application. In
order to run Symfony applications on production servers, you’ll have to configure
your Apache [http://httpd.apache.org/docs/current/mod/core.html#documentroot] or Nginx [http://wiki.nginx.org/Symfony] web server as explained in
Configuring a Web Server.

When you are finished working on your Symfony application, you can stop the
server with the server:stop command:

$ php app/console server:stop

Checking Symfony Application Configuration and Setup

Symfony applications come with a visual server configuration tester to show if
your environment is ready to use Symfony. Access the following URL to check your
configuration:

http://localhost:8000/config.php

If there are any issues, correct them now before moving on.

Setting up Permissions

One common issue when installing Symfony is that the app/cache and
app/logs directories must be writable both by the web server and the
command line user. On a UNIX system, if your web server user is different
from your command line user, you can try one of the following solutions.

1. Use the same user for the CLI and the web server

In development environments, it is a common practice to use the same UNIX
user for the CLI and the web server because it avoids any of these permissions
issues when setting up new projects. This can be done by editing your web server
configuration (e.g. commonly httpd.conf or apache2.conf for Apache) and setting
its user to be the same as your CLI user (e.g. for Apache, update the User
and Group values).

2. Using ACL on a system that supports chmod +a

Many systems allow you to use the chmod +a command. Try this first,
and if you get an error - try the next method. This uses a command to
try to determine your web server user and set it as HTTPDUSER:

$ rm -rf app/cache/*
$ rm -rf app/logs/*

$ HTTPDUSER=`ps aux | grep -E '[a]pache|[h]ttpd|[_]www|[w]ww-data|[n]ginx' | grep -v root | head -1 | cut -d\ -f1`
$ sudo chmod +a "$HTTPDUSER allow delete,write,append,file_inherit,directory_inherit" app/cache app/logs
$ sudo chmod +a "`whoami` allow delete,write,append,file_inherit,directory_inherit" app/cache app/logs

3. Using ACL on a system that does not support chmod +a

Some systems don’t support chmod +a, but do support another utility
called setfacl. You may need to enable ACL support [https://help.ubuntu.com/community/FilePermissionsACLs] on your partition
and install setfacl before using it (as is the case with Ubuntu). This
uses a command to try to determine your web server user and set it as
HTTPDUSER:

$ HTTPDUSER=`ps aux | grep -E '[a]pache|[h]ttpd|[_]www|[w]ww-data|[n]ginx' | grep -v root | head -1 | cut -d\ -f1`
$ sudo setfacl -R -m u:"$HTTPDUSER":rwX -m u:`whoami`:rwX app/cache app/logs
$ sudo setfacl -dR -m u:"$HTTPDUSER":rwX -m u:`whoami`:rwX app/cache app/logs

If this doesn’t work, try adding -n option.

4. Without using ACL

If none of the previous methods work for you, change the umask so that the
cache and log directories will be group-writable or world-writable (depending
if the web server user and the command line user are in the same group or not).
To achieve this, put the following line at the beginning of the app/console,
web/app.php and web/app_dev.php files:

umask(0002); // This will let the permissions be 0775

// or

umask(0000); // This will let the permissions be 0777

Note that using the ACL is recommended when you have access to them
on your server because changing the umask is not thread-safe.

Updating Symfony Applications

At this point, you’ve created a fully-functional Symfony application in which
you’ll start to develop your own project. A Symfony application depends on
a number of external libraries. These are downloaded into the vendor/ directory
and they are managed exclusively by Composer.

Updating those third-party libraries frequently is a good practice to prevent bugs
and security vulnerabilities. Execute the update Composer command to update
them all at once:

$ cd my_project_name/
$ composer update

Depending on the complexity of your project, this update process can take up to
several minutes to complete.

Installing a Symfony Distribution

Symfony project packages “distributions”, which are fully-functional applications
that include the Symfony core libraries, a selection of useful bundles, a
sensible directory structure and some default configuration. In fact, when you
created a Symfony application in the previous sections, you actually downloaded the
default distribution provided by Symfony, which is called Symfony Standard Edition.

The Symfony Standard Edition is by far the most popular distribution and it’s
also the best choice for developers starting with Symfony. However, the Symfony
Community has published other popular distributions that you may use in your
applications:

	The Symfony CMF Standard Edition [https://github.com/symfony-cmf/symfony-cmf-standard] is the best distribution to get started
with the Symfony CMF [http://cmf.symfony.com/] project, which is a project that makes it easier for
developers to add CMS functionality to applications built with the Symfony
framework.

	The Symfony REST Edition [https://github.com/gimler/symfony-rest-edition] shows how to build an application that provides a
RESTful API using the FOSRestBundle and several other related bundles.

Using Source Control

If you’re using a version control system like Git [http://git-scm.com/], you can safely commit all
your project’s code. The reason is that Symfony applications already contain a
.gitignore file specially prepared for Symfony.

For specific instructions on how best to set up your project to be stored
in Git, see How to Create and Store a Symfony Project in Git.

Checking out a versioned Symfony Application

When using Composer to manage application’s dependencies, it’s recommended to
ignore the entire vendor/ directory before committing its code to the
repository. This means that when checking out a Symfony application from a Git
repository, there will be no vendor/ directory and the application won’t
work out-of-the-box.

In order to make it work, check out the Symfony application and then execute the
install Composer command to download and install all the dependencies required
by the application:

$ cd my_project_name/
$ composer install

How does Composer know which specific dependencies to install? Because when a
Symfony application is committed to a repository, the composer.json and
composer.lock files are also committed. These files tell Composer which
dependencies (and which specific versions) to install for the application.

Beginning Development

Now that you have a fully-functional Symfony application, you can begin
development! Your distribution may contain some sample code - check the
README.md file included with the distribution (open it as a text file)
to learn about what sample code was included with your distribution.

If you’re new to Symfony, check out “Creating Pages in Symfony”, where you’ll
learn how to create pages, change configuration, and do everything else you’ll
need in your new application.

Be sure to also check out the Cookbook, which contains
a wide variety of articles about solving specific problems with Symfony.

注解

If you want to remove the sample code from your distribution, take a look
at this cookbook article: “How to Remove the AcmeDemoBundle“

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

Creating Pages in Symfony

Creating a new page in Symfony is a simple two-step process:

	Create a route: A route defines the URL (e.g. /about) to your page
and specifies a controller (which is a PHP function) that Symfony should
execute when the URL of an incoming request matches the route path;

	Create a controller: A controller is a PHP function that takes the incoming
request and transforms it into the Symfony Response object that’s
returned to the user.

This simple approach is beautiful because it matches the way that the Web works.
Every interaction on the Web is initiated by an HTTP request. The job of
your application is simply to interpret the request and return the appropriate
HTTP response.

Symfony follows this philosophy and provides you with tools and conventions
to keep your application organized as it grows in users and complexity.

Environments & Front Controllers

Every Symfony application runs within an environment. An environment
is a specific set of configuration and loaded bundles, represented by a string.
The same application can be run with different configurations by running the
application in different environments. Symfony comes with three environments
defined — dev, test and prod — but you can create your own as well.

Environments are useful by allowing a single application to have a dev environment
built for debugging and a production environment optimized for speed. You might
also load specific bundles based on the selected environment. For example,
Symfony comes with the WebProfilerBundle (described below), enabled only
in the dev and test environments.

Symfony comes with two web-accessible front controllers: app_dev.php
provides the dev environment, and app.php provides the prod environment.
All web accesses to Symfony normally go through one of these front controllers.
(The test environment is normally only used when running unit tests, and so
doesn’t have a dedicated front controller. The console tool also provides a
front controller that can be used with any environment.)

When the front controller initializes the kernel, it provides two parameters:
the environment, and also whether the kernel should run in debug mode.
To make your application respond faster, Symfony maintains a cache under the
app/cache/ directory. When debug mode is enabled (such as app_dev.php
does by default), this cache is flushed automatically whenever you make changes
to any code or configuration. When running in debug mode, Symfony runs
slower, but your changes are reflected without having to manually clear the
cache.

The “Random Number” Page

In this chapter, you’ll develop an application that can generate random numbers.
When you’re finished, the user will be able to get a random number between 1
and the upper limit set by the URL:

http://localhost/app_dev.php/random/100

Actually, you’ll be able to replace 100 with any other number to generate
numbers up to that upper limit. To create the page, follow the simple two-step
process.

注解

The tutorial assumes that you’ve already downloaded Symfony and configured
your webserver. The above URL assumes that localhost points to the
web directory of your new Symfony project. For detailed information
on this process, see the documentation on the web server you are using.
Here are some relevant documentation pages for the web server you might be using:

	For Apache HTTP Server, refer to Apache’s DirectoryIndex documentation [http://httpd.apache.org/docs/current/mod/mod_dir.html]

	For Nginx, refer to Nginx HttpCoreModule location documentation [http://wiki.nginx.org/HttpCoreModule#location]

Before you begin: Create the Bundle

Before you begin, you’ll need to create a bundle. In Symfony, a bundle
is like a plugin, except that all the code in your application will live
inside a bundle.

A bundle is nothing more than a directory that houses everything related
to a specific feature, including PHP classes, configuration, and even stylesheets
and JavaScript files (see The Bundle System).

Depending on the way you installed Symfony, you may already have a bundle called
AcmeDemoBundle. Browse the src/ directory of your project and check
if there is a DemoBundle/ directory inside an Acme/ directory. If those
directories already exist, skip the rest of this section and go directly to
create the route.

To create a bundle called AcmeDemoBundle (a play bundle that you’ll
build in this chapter), run the following command and follow the on-screen
instructions (use all the default options):

$ php app/console generate:bundle --namespace=Acme/DemoBundle --format=yml

Behind the scenes, a directory is created for the bundle at src/Acme/DemoBundle.
A line is also automatically added to the app/AppKernel.php file so that
the bundle is registered with the kernel:

// app/AppKernel.php
public function registerBundles()
{
 $bundles = array(
 // ...
 new Acme\DemoBundle\AcmeDemoBundle(),
);
 // ...

 return $bundles;
}

Now that you have a bundle setup, you can begin building your application
inside the bundle.

Step 1: Create the Route

By default, the routing configuration file in a Symfony application is
located at app/config/routing.yml. Like all configuration in Symfony,
you can also choose to use XML or PHP out of the box to configure routes.

If you look at the main routing file, you’ll see that Symfony already added an
entry when you generated the AcmeDemoBundle:

	YAML# app/config/routing.yml
acme_website:
 resource: "@AcmeDemoBundle/Resources/config/routing.yml"
 prefix: /

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <import
 resource="@AcmeDemoBundle/Resources/config/routing.xml"
 prefix="/" />
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;

$acmeDemo = $loader->import('@AcmeDemoBundle/Resources/config/routing.php');
$acmeDemo->addPrefix('/');

$collection = new RouteCollection();
$collection->addCollection($acmeDemo);

return $collection;

This entry is pretty basic: it tells Symfony to load routing configuration
from the Resources/config/routing.yml (routing.xml or routing.php
in the XML and PHP code example respectively) file that lives inside the
AcmeDemoBundle. This means that you place routing configuration directly in
app/config/routing.yml or organize your routes throughout your application,
and import them from here.

注解

You are not limited to load routing configurations that are of the same
format. For example, you could also load a YAML file in an XML configuration
and vice versa.

Now that the routing.yml file from the bundle is being imported, add
the new route that defines the URL of the page that you’re about to create:

	YAML# src/Acme/DemoBundle/Resources/config/routing.yml
random:
 path: /random/{limit}
 defaults: { _controller: AcmeDemoBundle:Random:index }

	XML<!-- src/Acme/DemoBundle/Resources/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="random" path="/random/{limit}">
 <default key="_controller">AcmeDemoBundle:Random:index</default>
 </route>
</routes>

	PHP// src/Acme/DemoBundle/Resources/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('random', new Route('/random/{limit}', array(
 '_controller' => 'AcmeDemoBundle:Random:index',
)));

return $collection;

The routing consists of two basic pieces: the path, which is the URL
that this route will match, and a defaults array, which specifies the
controller that should be executed. The placeholder syntax in the path
({limit}) is a wildcard. It means that /random/10, /random/327
or any other similar URL will match this route. The {limit} placeholder
parameter will also be passed to the controller so that you can use its value
to generate the proper random number.

注解

The routing system has many more great features for creating flexible
and powerful URL structures in your application. For more details, see
the chapter all about Routing.

Step 2: Create the Controller

When a URL such as /random/10 is handled by the application, the random
route is matched and the AcmeDemoBundle:Random:index controller is executed
by the framework. The second step of the page-creation process is to create
that controller.

The controller - AcmeDemoBundle:Random:index is the logical name of
the controller, and it maps to the indexAction method of a PHP class
called Acme\DemoBundle\Controller\RandomController. Start by creating this
file inside your AcmeDemoBundle:

// src/Acme/DemoBundle/Controller/RandomController.php
namespace Acme\DemoBundle\Controller;

class RandomController
{
}

In reality, the controller is nothing more than a PHP method that you create
and Symfony executes. This is where your code uses information from the request
to build and prepare the resource being requested. Except in some advanced
cases, the end product of a controller is always the same: a Symfony Response
object.

Create the indexAction method that Symfony will execute when the random
route is matched:

// src/Acme/DemoBundle/Controller/RandomController.php
namespace Acme\DemoBundle\Controller;

use Symfony\Component\HttpFoundation\Response;

class RandomController
{
 public function indexAction($limit)
 {
 return new Response(
 '<html><body>Number: '.rand(1, $limit).'</body></html>'
);
 }
}

The controller is simple: it creates a new Response object, whose first
argument is the content that should be used in the response (a small HTML
page in this example).

Congratulations! After creating only a route and a controller, you already
have a fully-functional page! If you’ve setup everything correctly, your
application should generate a random number for you:

http://localhost/app_dev.php/random/10

小技巧

You can also view your app in the “prod” environment
by visiting:

http://localhost/app.php/random/10

If you get an error, it’s likely because you need to clear your cache
by running:

$ php app/console cache:clear --env=prod --no-debug

An optional, but common, third step in the process is to create a template.

注解

Controllers are the main entry point for your code and a key ingredient
when creating pages. Much more information can be found in the
Controller Chapter.

Optional Step 3: Create the Template

Templates allow you to move all the presentation code (e.g. HTML) into
a separate file and reuse different portions of the page layout. Instead
of writing the HTML inside the controller, render a template instead:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	// src/Acme/DemoBundle/Controller/RandomController.php
namespace Acme\DemoBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class RandomController extends Controller
{
 public function indexAction($limit)
 {
 $number = rand(1, $limit);

 return $this->render(
 'AcmeDemoBundle:Random:index.html.twig',
 array('number' => $number)
);

 // render a PHP template instead
 // return $this->render(
 // 'AcmeDemoBundle:Random:index.html.php',
 // array('number' => $number)
 //);
 }
}

注解

In order to use the render() [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_render]
method, your controller must extend the
Controller [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html] class,
which adds shortcuts for tasks that are common inside controllers. This
is done in the above example by adding the use statement on line 4
and then extending Controller on line 6.

The render() method creates a Response object filled with the content
of the given, rendered template. Like any other controller, you will ultimately
return that Response object.

Notice that there are two different examples for rendering the template.
By default, Symfony supports two different templating languages: classic
PHP templates and the succinct but powerful Twig [http://twig.sensiolabs.org] templates. Don’t be
alarmed - you’re free to choose either or even both in the same project.

The controller renders the AcmeDemoBundle:Random:index.html.twig template,
which uses the following naming convention:

BundleName:ControllerName:TemplateName

This is the logical name of the template, which is mapped to a physical
location using the following convention.

/path/to/BundleName/Resources/views/ControllerName/TemplateName

In this case, AcmeDemoBundle is the bundle name, Random is the
controller, and index.html.twig the template:

	Twig	1
2
3
4
5
6

	 {# src/Acme/DemoBundle/Resources/views/Random/index.html.twig #}
 {% extends '::base.html.twig' %}

 {% block body %}
 Number: {{ number }}
 {% endblock %}

	PHP<!-- src/Acme/DemoBundle/Resources/views/Random/index.html.php -->
<?php $view->extend('::base.html.php') ?>

Number: <?php echo $view->escape($number) ?>

Step through the Twig template line-by-line:

	line 2: The extends token defines a parent template. The template
explicitly defines a layout file inside of which it will be placed.

	line 4: The block token says that everything inside should be placed
inside a block called body. As you’ll see, it’s the responsibility
of the parent template (base.html.twig) to ultimately render the
block called body.

The parent template, ::base.html.twig, is missing both the BundleName
and ControllerName portions of its name (hence the double colon (::)
at the beginning). This means that the template lives outside of the bundle
and in the app directory:

	Twig{# app/Resources/views/base.html.twig #}
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>{% block title %}Welcome!{% endblock %}</title>
 {% block stylesheets %}{% endblock %}
 <link rel="shortcut icon" href="{{ asset('favicon.ico') }}" />
 </head>
 <body>
 {% block body %}{% endblock %}
 {% block javascripts %}{% endblock %}
 </body>
</html>

	PHP<!-- app/Resources/views/base.html.php -->
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title><?php $view['slots']->output('title', 'Welcome!') ?></title>
 <?php $view['slots']->output('stylesheets') ?>
 <link rel="shortcut icon"
 href="<?php echo $view['assets']->getUrl('favicon.ico') ?>" />
 </head>
 <body>
 <?php $view['slots']->output('_content') ?>
 <?php $view['slots']->output('javascripts') ?>
 </body>
</html>

The base template file defines the HTML layout and renders the body block
that you defined in the index.html.twig template. It also renders a title
block, which you could choose to define in the index.html.twig template.
Since you did not define the title block in the child template, it defaults
to “Welcome!”.

Templates are a powerful way to render and organize the content for your
page. A template can render anything, from HTML markup, to CSS code, or anything
else that the controller may need to return.

In the lifecycle of handling a request, the templating engine is simply
an optional tool. Recall that the goal of each controller is to return a
Response object. Templates are a powerful, but optional, tool for creating
the content for that Response object.

The Directory Structure

After just a few short sections, you already understand the philosophy behind
creating and rendering pages in Symfony. You’ve also already begun to see
how Symfony projects are structured and organized. By the end of this section,
you’ll know where to find and put different types of files and why.

Though entirely flexible, by default, each Symfony application has
the same basic and recommended directory structure:

	app/

	This directory contains the application configuration.

	src/

	All the project PHP code is stored under this directory.

	vendor/

	Any vendor libraries are placed here by convention.

	web/

	This is the web root directory and contains any publicly accessible files.

参见

You can easily override the default directory structure. See
How to Override Symfony’s default Directory Structure for more
information.

The Web Directory

The web root directory is the home of all public and static files including
images, stylesheets, and JavaScript files. It is also where each
front controller lives:

// web/app.php
require_once __DIR__.'/../app/bootstrap.php.cache';
require_once __DIR__.'/../app/AppKernel.php';

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('prod', false);
$kernel->loadClassCache();
$kernel->handle(Request::createFromGlobals())->send();

The front controller file (app.php in this example) is the actual PHP
file that’s executed when using a Symfony application and its job is to
use a Kernel class, AppKernel, to bootstrap the application.

小技巧

Having a front controller means different and more flexible URLs than
are used in a typical flat PHP application. When using a front controller,
URLs are formatted in the following way:

http://localhost/app.php/random/10

The front controller, app.php, is executed and the “internal:” URL
/random/10 is routed internally using the routing configuration.
By using Apache mod_rewrite rules, you can force the app.php file
to be executed without needing to specify it in the URL:

http://localhost/random/10

Though front controllers are essential in handling every request, you’ll
rarely need to modify or even think about them. They’ll be mentioned again
briefly in the Environments section.

The Application (app) Directory

As you saw in the front controller, the AppKernel class is the main entry
point of the application and is responsible for all configuration. As such,
it is stored in the app/ directory.

This class must implement two methods that define everything that Symfony
needs to know about your application. You don’t even need to worry about
these methods when starting - Symfony fills them in for you with sensible
defaults.

	registerBundles()

	Returns an array of all bundles needed to run the application (see
The Bundle System).

	registerContainerConfiguration()

	Loads the main application configuration resource file (see the
Application Configuration section).

In day-to-day development, you’ll mostly use the app/ directory to modify
configuration and routing files in the app/config/ directory (see
Application Configuration). It also contains the application cache
directory (app/cache), a log directory (app/logs) and a directory
for application-level resource files, such as templates (app/Resources).
You’ll learn more about each of these directories in later chapters.

Autoloading

When Symfony is loading, a special file - vendor/autoload.php - is
included. This file is created by Composer and will autoload all
application files living in the src/ folder as well as all
third-party libraries mentioned in the composer.json file.

Because of the autoloader, you never need to worry about using include
or require statements. Instead, Composer uses the namespace of a class
to determine its location and automatically includes the file on your
behalf the instant you need a class.

The autoloader is already configured to look in the src/ directory
for any of your PHP classes. For autoloading to work, the class name and
path to the file have to follow the same pattern:

Class Name:
 Acme\DemoBundle\Controller\RandomController
Path:
 src/Acme/DemoBundle/Controller/RandomController.php

The Source (src) Directory

Put simply, the src/ directory contains all the actual code (PHP code,
templates, configuration files, stylesheets, etc) that drives your application.
When developing, the vast majority of your work will be done inside one or
more bundles that you create in this directory.

But what exactly is a bundle?

The Bundle System

A bundle is similar to a plugin in other software, but even better. The key
difference is that everything is a bundle in Symfony, including both the
core framework functionality and the code written for your application.
Bundles are first-class citizens in Symfony. This gives you the flexibility
to use pre-built features packaged in third-party bundles [http://knpbundles.com] or to distribute
your own bundles. It makes it easy to pick and choose which features to enable
in your application and to optimize them the way you want.

注解

While you’ll learn the basics here, an entire cookbook entry is devoted
to the organization and best practices of bundles.

A bundle is simply a structured set of files within a directory that implement
a single feature. You might create a BlogBundle, a ForumBundle or
a bundle for user management (many of these exist already as open source
bundles). Each directory contains everything related to that feature, including
PHP files, templates, stylesheets, JavaScripts, tests and anything else.
Every aspect of a feature exists in a bundle and every feature lives in a
bundle.

An application is made up of bundles as defined in the registerBundles()
method of the AppKernel class:

// app/AppKernel.php
public function registerBundles()
{
 $bundles = array(
 new Symfony\Bundle\FrameworkBundle\FrameworkBundle(),
 new Symfony\Bundle\SecurityBundle\SecurityBundle(),
 new Symfony\Bundle\TwigBundle\TwigBundle(),
 new Symfony\Bundle\MonologBundle\MonologBundle(),
 new Symfony\Bundle\SwiftmailerBundle\SwiftmailerBundle(),
 new Symfony\Bundle\DoctrineBundle\DoctrineBundle(),
 new Symfony\Bundle\AsseticBundle\AsseticBundle(),
 new Sensio\Bundle\FrameworkExtraBundle\SensioFrameworkExtraBundle(),
);

 if (in_array($this->getEnvironment(), array('dev', 'test'))) {
 $bundles[] = new Acme\DemoBundle\AcmeDemoBundle();
 $bundles[] = new Symfony\Bundle\WebProfilerBundle\WebProfilerBundle();
 $bundles[] = new Sensio\Bundle\DistributionBundle\SensioDistributionBundle();
 $bundles[] = new Sensio\Bundle\GeneratorBundle\SensioGeneratorBundle();
 }

 return $bundles;
}

With the registerBundles() method, you have total control over which bundles
are used by your application (including the core Symfony bundles).

小技巧

A bundle can live anywhere as long as it can be autoloaded (via the
autoloader configured at app/autoload.php).

Creating a Bundle

The Symfony Standard Edition comes with a handy task that creates a fully-functional
bundle for you. Of course, creating a bundle by hand is pretty easy as well.

To show you how simple the bundle system is, create a new bundle called
AcmeTestBundle and enable it.

小技巧

The Acme portion is just a dummy name that should be replaced by
some “vendor” name that represents you or your organization (e.g.
ABCTestBundle for some company named ABC).

Start by creating a src/Acme/TestBundle/ directory and adding a new file
called AcmeTestBundle.php:

// src/Acme/TestBundle/AcmeTestBundle.php
namespace Acme\TestBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class AcmeTestBundle extends Bundle
{
}

小技巧

The name AcmeTestBundle follows the standard
Bundle naming conventions. You could
also choose to shorten the name of the bundle to simply TestBundle by naming
this class TestBundle (and naming the file TestBundle.php).

This empty class is the only piece you need to create the new bundle. Though
commonly empty, this class is powerful and can be used to customize the behavior
of the bundle.

Now that you’ve created the bundle, enable it via the AppKernel class:

// app/AppKernel.php
public function registerBundles()
{
 $bundles = array(
 // ...
 // register your bundle
 new Acme\TestBundle\AcmeTestBundle(),
);
 // ...

 return $bundles;
}

And while it doesn’t do anything yet, AcmeTestBundle is now ready to be used.

And as easy as this is, Symfony also provides a command-line interface for
generating a basic bundle skeleton:

$ php app/console generate:bundle --namespace=Acme/TestBundle

The bundle skeleton generates with a basic controller, template and routing
resource that can be customized. You’ll learn more about Symfony’s command-line
tools later.

小技巧

Whenever creating a new bundle or using a third-party bundle, always make
sure the bundle has been enabled in registerBundles(). When using
the generate:bundle command, this is done for you.

Bundle Directory Structure

The directory structure of a bundle is simple and flexible. By default, the
bundle system follows a set of conventions that help to keep code consistent
between all Symfony bundles. Take a look at AcmeDemoBundle, as it contains some
of the most common elements of a bundle:

	Controller/

	Contains the controllers of the bundle (e.g. RandomController.php).

	DependencyInjection/

	Holds certain dependency injection extension classes, which may import service
configuration, register compiler passes or more (this directory is not
necessary).

	Resources/config/

	Houses configuration, including routing configuration (e.g. routing.yml).

	Resources/views/

	Holds templates organized by controller name (e.g. Hello/index.html.twig).

	Resources/public/

	Contains web assets (images, stylesheets, etc) and is copied or symbolically
linked into the project web/ directory via the assets:install console
command.

	Tests/

	Holds all tests for the bundle.

A bundle can be as small or large as the feature it implements. It contains
only the files you need and nothing else.

As you move through the book, you’ll learn how to persist objects to a database,
create and validate forms, create translations for your application, write
tests and much more. Each of these has their own place and role within the
bundle.

Application Configuration

An application consists of a collection of bundles representing all the
features and capabilities of your application. Each bundle can be customized
via configuration files written in YAML, XML or PHP. By default, the main
configuration file lives in the app/config/ directory and is called
either config.yml, config.xml or config.php depending on which
format you prefer:

	YAML# app/config/config.yml
imports:
 - { resource: parameters.yml }
 - { resource: security.yml }

framework:
 secret: "%secret%"
 router: { resource: "%kernel.root_dir%/config/routing.yml" }
 # ...

Twig Configuration
twig:
 debug: "%kernel.debug%"
 strict_variables: "%kernel.debug%"

...

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xmlns:twig="http://symfony.com/schema/dic/twig"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd
 http://symfony.com/schema/dic/twig
 http://symfony.com/schema/dic/twig/twig-1.0.xsd">

 <imports>
 <import resource="parameters.yml" />
 <import resource="security.yml" />
 </imports>

 <framework:config secret="%secret%">
 <framework:router resource="%kernel.root_dir%/config/routing.xml" />
 <!-- ... -->
 </framework:config>

 <!-- Twig Configuration -->
 <twig:config debug="%kernel.debug%" strict-variables="%kernel.debug%" />

 <!-- ... -->
</container>

	PHP// app/config/config.php
$this->import('parameters.yml');
$this->import('security.yml');

$container->loadFromExtension('framework', array(
 'secret' => '%secret%',
 'router' => array(
 'resource' => '%kernel.root_dir%/config/routing.php',
),
 // ...
));

// Twig Configuration
$container->loadFromExtension('twig', array(
 'debug' => '%kernel.debug%',
 'strict_variables' => '%kernel.debug%',
));

// ...

注解

You’ll learn exactly how to load each file/format in the next section
Environments.

Each top-level entry like framework or twig defines the configuration
for a particular bundle. For example, the framework key defines the configuration
for the core Symfony FrameworkBundle and includes configuration for the
routing, templating, and other core systems.

For now, don’t worry about the specific configuration options in each section.
The configuration file ships with sensible defaults. As you read more and
explore each part of Symfony, you’ll learn about the specific configuration
options of each feature.

Configuration Formats

Throughout the chapters, all configuration examples will be shown in all
three formats (YAML, XML and PHP). Each has its own advantages and
disadvantages. The choice of which to use is up to you:

	YAML: Simple, clean and readable (learn more about YAML in
“The YAML Format”);

	XML: More powerful than YAML at times and supports IDE autocompletion;

	PHP: Very powerful but less readable than standard configuration formats.

Default Configuration Dump

You can dump the default configuration for a bundle in YAML to the console using
the config:dump-reference command. Here is an example of dumping the default
FrameworkBundle configuration:

$ app/console config:dump-reference FrameworkBundle

The extension alias (configuration key) can also be used:

$ app/console config:dump-reference framework

注解

See the cookbook article: How to Load Service Configuration inside a Bundle for
information on adding configuration for your own bundle.

Environments

An application can run in various environments. The different environments
share the same PHP code (apart from the front controller), but use different
configuration. For instance, a dev environment will log warnings and
errors, while a prod environment will only log errors. Some files are
rebuilt on each request in the dev environment (for the developer’s convenience),
but cached in the prod environment. All environments live together on
the same machine and execute the same application.

A Symfony project generally begins with three environments (dev, test
and prod), though creating new environments is easy. You can view your
application in different environments simply by changing the front controller
in your browser. To see the application in the dev environment, access
the application via the development front controller:

http://localhost/app_dev.php/random/10

If you’d like to see how your application will behave in the production environment,
call the prod front controller instead:

http://localhost/app.php/random/10

Since the prod environment is optimized for speed; the configuration,
routing and Twig templates are compiled into flat PHP classes and cached.
When viewing changes in the prod environment, you’ll need to clear these
cached files and allow them to rebuild:

$ php app/console cache:clear --env=prod --no-debug

注解

If you open the web/app.php file, you’ll find that it’s configured explicitly
to use the prod environment:

$kernel = new AppKernel('prod', false);

You can create a new front controller for a new environment by copying
this file and changing prod to some other value.

注解

The test environment is used when running automated tests and cannot
be accessed directly through the browser. See the testing chapter
for more details.

Environment Configuration

The AppKernel class is responsible for actually loading the configuration
file of your choice:

// app/AppKernel.php
public function registerContainerConfiguration(LoaderInterface $loader)
{
 $loader->load(
 __DIR__.'/config/config_'.$this->getEnvironment().'.yml'
);
}

You already know that the .yml extension can be changed to .xml or
.php if you prefer to use either XML or PHP to write your configuration.
Notice also that each environment loads its own configuration file. Consider
the configuration file for the dev environment.

	YAML# app/config/config_dev.yml
imports:
 - { resource: config.yml }

framework:
 router: { resource: "%kernel.root_dir%/config/routing_dev.yml" }
 profiler: { only_exceptions: false }

...

	XML<!-- app/config/config_dev.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <imports>
 <import resource="config.xml" />
 </imports>

 <framework:config>
 <framework:router resource="%kernel.root_dir%/config/routing_dev.xml" />
 <framework:profiler only-exceptions="false" />
 </framework:config>

 <!-- ... -->
</container>

	PHP// app/config/config_dev.php
$loader->import('config.php');

$container->loadFromExtension('framework', array(
 'router' => array(
 'resource' => '%kernel.root_dir%/config/routing_dev.php',
),
 'profiler' => array('only-exceptions' => false),
));

// ...

The imports key is similar to a PHP include statement and guarantees
that the main configuration file (config.yml) is loaded first. The rest
of the file tweaks the default configuration for increased logging and other
settings conducive to a development environment.

Both the prod and test environments follow the same model: each environment
imports the base configuration file and then modifies its configuration values
to fit the needs of the specific environment. This is just a convention,
but one that allows you to reuse most of your configuration and customize
just pieces of it between environments.

Summary

Congratulations! You’ve now seen every fundamental aspect of Symfony and have
hopefully discovered how easy and flexible it can be. And while there are
a lot of features still to come, be sure to keep the following basic points
in mind:

	Creating a page is a three-step process involving a route, a controller
and (optionally) a template;

	Each project contains just a few main directories: web/ (web assets and
the front controllers), app/ (configuration), src/ (your bundles),
and vendor/ (third-party code) (there’s also a bin/ directory that’s
used to help updated vendor libraries);

	Each feature in Symfony (including the Symfony framework core) is organized
into a bundle, which is a structured set of files for that feature;

	The configuration for each bundle lives in the Resources/config
directory of the bundle and can be specified in YAML, XML or PHP;

	The global application configuration lives in the app/config
directory;

	Each environment is accessible via a different front controller (e.g.
app.php and app_dev.php) and loads a different configuration file.

From here, each chapter will introduce you to more and more powerful tools
and advanced concepts. The more you know about Symfony, the more you’ll
appreciate the flexibility of its architecture and the power it gives you
to rapidly develop applications.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

控制器（Controller）

控制器是一段可以被调用的 PHP 代码，它从 HTTP 请求中获取信息，并且相应地构造和返回一个 HTTP 响应（作为 Symfony 的 Response 对象）。 响应可以是一个 HTML 页面，可以是一个 XML 文件，或是一个序列化了的 JSON 数组，或是一张图片，也可以是一个重定向甚至一个 404 错误，它可以是你能想到的一切！控制器将包含 你的程序 所需的一切渲染页面内容的逻辑。

通过看这个 Symfony 控制器来了解这一切是多么的简单吧！这是一个渲染著名的 Hello world! 页面的控制器:

use Symfony\Component\HttpFoundation\Response;

public function helloAction()
{
 return new Response('Hello world!');
}

控制器的目标永远都是明确的：创建并返回一个 Response 对象。在这个过程中，控制器可能会从请求（Request）中读取一些信息，载入几个数据库资源，发送一封电子邮件，或者在用户会话（Session）中写入一些东西。但不论在哪一种情况下，控制器最终都要返回将要发回客户端的 Response 对象。

这里面没有魔法，也没有需要你担心的其他需求~这儿有一些简单的例子：

	控制器 A 要创建一个 Response 对象来展现
网站主页的内容。

	控制器 B 从用户请求中读取 slug 参数来从数据库中加载
博客的条目然后创建一个 Response 对象来把博客的内容显示
出来。如果数据库中没有 slug ，控制器就创建一个
包含 404 状态码的 Response 对象并把它发送回客户端。

	控制器 C 来处理一个联系表格的表单子任务。它从
用户请求中读取信息，存储在
数据库中并给你发送一封包含联系信息的电子邮件。最后，它创建
一个 Response 对象来把用户的浏览器重定向到
表单的“谢谢您”页面。

请求（Requests）、控制器（Controller）、响应（Response）生命周期

每一个 Symfony 项目处理的请求都经过这个简单的生命周期。框架将接管所有重复的活动，这意味着你只需要把你自己的特有的代码写入控制器的函数即可：

	每个请求都被交给一个单一的前端控制器（Front Controller）处理并引导整个程序（如 app.php
或 app_dev.php）；

	Router（路由器） 从请求中读取信息（比如 URI)，并
寻找一条符合这个信息的路由，然后读取路由信息中的 _controller
参数；

	被命中的路由信息中给出的控制器将被执行，控制器中的代码将
创建并返回一个 Response 对象；

	Response 对象中的 HTTP 头和内容将被送回
客户端。

创建一个页面简单到只需要创建一个控制器（第三步中用到），再添加一条路由将 URL 映射到控制器上（第二步中用到）。

注解

虽然名字很像，但“前端控制器”和本章讨论的“控制器”
不是同一个东西。前端控制器
在你网站目录下的一个短小的 PHP 文件，
所有的请求都被指向它。典型的程序会有一个生产环境
前端控制器（比如 app.php）和一个开发环境前端控制器。
（比如 app_dev.php）。你基本不需要编辑、浏览或者担心
你的程序中前端控制器的代码。

一个简单的控制器

虽然刚才说到控制器可以是任何一段可以被调用的 PHP 代码（比如一个函数、对象中的方法或者一个 Closure（闭包）），但控制器一般都是控制器类中的一个方法。控制器也被叫做 Action（动作）。

// src/AppBundle/Controller/HelloController.php
namespace AppBundle\Controller;

use Symfony\Component\HttpFoundation\Response;

class HelloController
{
 public function indexAction($name)
 {
 return new Response('<html><body>Hello '.$name.'!</body></html>');
 }
}

小技巧

注意这里的 控制器 是在 控制器类*（``HelloController``）的 ``indexAction`` 方法。
别被
*控制器类 这个名字搞糊涂了，这只是一种将几个
控制器（方法）组合在一起的简便方法而已。一般情况下，控制器类
里面会有一些控制器（比如 updateAction、deleteAction
等等）。

这个控制器相当明了：

	第4行： Symfony 使用 PHP 5.3 的命名空间这一很方便的功能来
命名整个控制器类。use 关键字将导入
控制器必须返回的 Response 类。

	第6行：类名是在你给控制器类起的名字
（比如 Hello）后面加上 Controller 这个单词构成的。这个规范
保持控制器的一致性并且将允许你只使用
类名的第一个部分 （在这里是 Hello）来配置路由。

	第8行：控制器类中的每一个动作都要以 Action 结尾
这样你就可以在配置路由时只写动作本身的名字（这里是 index ）了。 在下一节你将创建一条路由将 URL 映射到这个动作上。 你也将学到如何把路由中的占位符（这里是``{name}``）变成
动作的方法的参数（这里是``$name``）。

	第10行：控制器创建并返回一个 Response 对象。

将 URL 映射到控制器上

这个新控制器返回一个简单的 HTML 页面。要想真正地访问这个页面，你需要创建一条将指定 URL 路径映射到对应控制器的路由：

	Annotations// src/AppBundle/Controller/HelloController.php
namespace AppBundle\Controller;

use Symfony\Component\HttpFoundation\Response;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class HelloController
{
 /**
 * @Route("/hello/{name}", name="hello")
 */
 public function indexAction($name)
 {
 return new Response('<html><body>Hello '.$name.'!</body></html>');
 }
}

	YAML# app/config/routing.yml
hello:
 path: /hello/{name}
 # 使用这种特定的表达式来指向控制器 - 参阅下面的注解
 defaults: { _controller: AppBundle:Hello:index }

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="hello" path="/hello/{name}">
 <!-- 使用这种特定的表达式来指向控制器 - 参阅下面的注解 -->
 <default key="_controller">AppBundle:Hello:index</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\Route;
use Symfony\Component\Routing\RouteCollection;

$collection = new RouteCollection();
$collection->add('hello', new Route('/hello/{name}', array(
 // 使用这种特定的表达式来指向控制器 - 参阅下面的注解
 '_controller' => 'AppBundle:Hello:index',
)));

return $collection;

好了，现在如果你访问 /hello/ryan （比如在你使用:doc:built-in web server </cookbook/web_server/built_in> 链接就是 http://localhost:8000/app_dev.php/hello/ryan）时， Symfony 就会执行 HelloController::indexAction() 控制器并将 ryan 传入作为``$name`` 变量的值。创建“页面”的意思只是简单地创建一个控制器的方法和对应的路由。

简单吧？

类似 AppBundle:Hello:index 这样的表达式的语法

如果你用 YML 或者 XML 格式，你就需要使用一种特定的
表达式来定位一个控制器： AppBundle:Hello:index。想要详细了解
控制器定位表达式，请参阅 Controller Naming Pattern。

参见

你可以从 Routing chapter 更详细地学习路由系统。

作为控制器参数的路由占位符

你已经知道了路由指向了 AppBundle 中的 HelloController::indexAction() 方法。更有趣的东西是传入那个方法的参数:

// src/AppBundle/Controller/HelloController.php
// ...
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

/**
 * @Route("/hello/{name}", name="hello")
 */
public function indexAction($name)
{
 // ...
}

控制器有一个与被命中的路由信息中的 {name} 占位符对应的参数 $name``（如果你访问 ``/hello/ryan 就是 ryan）。当你的控制器被执行时，Symfony 会将控制器的参数与路由占位符一一对应。所以 {name} 的值将被传递给 $name。

看一下这个更有趣的例子吧：

	Annotations// src/AppBundle/Controller/HelloController.php
// ...

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class HelloController
{
 /**
 * @Route("/hello/{firstName}/{lastName}", name="hello")
 */
 public function indexAction($firstName, $lastName)
 {
 // ...
 }
}

	YAML# app/config/routing.yml
hello:
 path: /hello/{firstName}/{lastName}
 defaults: { _controller: AppBundle:Hello:index }

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="hello" path="/hello/{firstName}/{lastName}">
 <default key="_controller">AppBundle:Hello:index</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\Route;
use Symfony\Component\Routing\RouteCollection;

$collection = new RouteCollection();
$collection->add('hello', new Route('/hello/{firstName}/{lastName}', array(
 '_controller' => 'AppBundle:Hello:index',
)));

return $collection;

现在，控制器可以有两个参数了:

public function indexAction($firstName, $lastName)
{
 // ...
}

将路由占位符映射到控制器参数是简单且灵活的。在开发时请记住以下几条准则。.

	控制器参数与顺序无关

Symfony 使用路由占位符的 名字 和控制器参数的
名字 来进行映射。控制器参数可以被完全
重新排序而且仍然可以完美运行:

public function indexAction($lastName, $firstName)
{
 // ...
}

	控制器需要的所有参数都必须有一个路由占位符与之对应

下面的代码将抛出一个 RuntimeException（运行时异常） 因为在路由中 foo
这个占位符没有被定义:

public function indexAction($firstName, $lastName, $foo)
{
 // ...
}

但是将 foo 这个参数设为可选参数是可行的。下面这个
例子就不会抛出异常:

public function indexAction($firstName, $lastName, $foo = 'bar')
{
 // ...
}

	并不是所有的路由占位符都需要有一个控制器参数与之对应

如果假设 lastName 在你的控制器中并不是那么重要，
你可以完全忽略掉它:

public function indexAction($firstName)
{
 // ...
}

小技巧

每一个路由也都有一个特殊的 _route 占位符，它等同于
被命中的路由的名字（比如在这里是 hello）。虽然并不经常
用到,，它同样可以被用于一个控制器参数。你也可以
你也可以将其他来自你的路由的变量传入控制器。参阅
How to Pass Extra Information from a Route to a Controller.

将 Request 作为控制器参数

假设你需要读取一个查询参数，抓取一个请求头，或者访问一个被上传上来的文件。所有的这些信息都被存储到了 Symfony 的 Request（请求） 对象中。如果想在你的控制器中使用它，只需要将它添加为参数并 使用Request 类对其进行类型约束（Type-Hint）

use Symfony\Component\HttpFoundation\Request;

public function indexAction($firstName, $lastName, Request $request)
{
 $page = $request->query->get('page', 1);

 // ...
}

参见

想学习关于从请求中获取信息的更多？参阅
Access Request Information.

控制器基类

为了更加方便，Symfony 提供了一个 Controller 基类。如果你将其继承，你就可以访问很多的帮手方法，也可以通过容器来访问你的服务（参阅 访问其他服务）。

把 use 的声明放在 Controller 类的上面，然后修改一下 HelloController 去继承基类:

// src/AppBundle/Controller/HelloController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class HelloController extends Controller
{
 // ...
}

这并不会实际地修改你控制器工作的任何部分：它只是可以让你访问基类提供的帮手方法。这只是一些使用 Symfony 核心功能的快捷方法，这些核心功能无论你是否使用 Controller 基类都可用。查看正在运作的核心功能的方法就是看看 Controller class [https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/FrameworkBundle/Controller/Controller.php] 。

参见

如果你很好奇控制器在 不 继承
这个基类时如何工作，请参阅 Controllers as Services。 这是可选的，但可以让你更精确地控制注入到你控制器中的
类或者依赖。

重定向

如果你想将用户重定向到另一个页面，请使用 redirect() [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_redirect] 方法

public function indexAction()
{
 return $this->redirect($this->generateUrl('homepage'));
}

上面的 generateUrl() 方法只是一个生成给定路由的 URL 的帮手方法。获取更多信息，请参阅 Routing 章节。

在默认情况下， redirect() 方法生成的是 302（暂时）重定向。要想生成 301（永久）重定向，请修改第二个参数

public function indexAction()
{
 return $this->redirect($this->generateUrl('homepage'), 301);
}

小技巧

上面提到的 redirect() 方法只是一个创建专门重定向用户的 Response
类的快捷方式。它等价于:

use Symfony\Component\HttpFoundation\RedirectResponse;

return new RedirectResponse($this->generateUrl('homepage'));

渲染模板

如果你要使用 HTML，你就一定要渲染模板。一个叫做 render() 的方法会渲染一个模板 并且 为你把内容放入 Response 类中:

// 渲染 app/Resources/views/Hello/index.html.twig
return $this->render('Hello/index.html.twig', array('name' => $name));

你也可以将模板文件放入更深的子文件夹中。但还是要避免创建不必要的更深的结构:

// 渲染 app/Resources/views/Hello/Greetings/index.html.twig
return $this->render('Hello/Greetings/index.html.twig', array('name' => $name));

在 Templating 一章详细讲解了 Symfony 模板引擎。

使用储存在包内部的模板

你也可以将模板放入一个包内的 Resources/views 目录下，
并使用
包名:目录名:文件名 这样的表达式来使用它。例如，
AppBundle:Hello:index.html.twig 代表的是
src/AppBundle/Resources/views/Hello/index.html.twig 这个模板文件。参阅 Referencing Templates in a Bundle。

访问其他服务

Symfony 打包了很多有用的类，它们被称为服务。这些服务被用来渲染模板、发送邮件、查询数据库，也可以用来做一些你想让它们“做”的工作。当你安装新的包时，它可能会引入 更多的 服务。

当你继承了控制器基类时，你就可以通过 get() 方法来访问任何的 Symfony 服务。这里有一些你可能会用到的基本服务:

$templating = $this->get('templating');

$router = $this->get('router');

$mailer = $this->get('mailer');

那么别的服务在哪儿呢？你可以用 container:debug 这个控制台命令列出所有的服务：

$ php app/console container:debug

更多信息，请参阅 Service Container 一章。

管理错误和 404 页面

当没有找到一些东西事，你应该用好 HTTP 协议并返回一个 404 响应。为了达到目的，你可以抛出一个特殊的异常。如果你继承了控制器基类，按照下面的来做:

public function indexAction()
{
 // 从数据库中检索目标
 $product = ...;
 if (!$product) {
 throw $this->createNotFoundException('产品不存在');
 }

 return $this->render(...);
}

上面用到的 createNotFoundException() 方法只是一个创建特殊的 NotFoundHttpException [http://api.symfony.com/master/Symfony/Component/HttpKernel/Exception/NotFoundHttpException.html] 对象（一个创建 HTTP 404 响应的 Symfony 类）的快捷方式。

当然，你可以自由的从你的控制器中抛出任何 Exception（异常） 类——Symfony 将会自动的生成 HTTP 500（内部服务器错误）响应。

throw new \Exception('出错了！');

任何情况下，最终用户看到的都是错误页面，开发者看到的都是完整的调试信息 （例如当你使用 app_dev.php 时——参阅 Environments & Front Controllers）。

你一定想自定义终端用户看到的错误页面。为达到目的，请参阅技巧书中的 “How to Customize Error Pages” 这一技巧。

管理会话

Symfony 提供一个很好用的会话类，你可以用它在请求间存储用户（可以是一个使用浏览器的真实的人类，或是一个蜘蛛机器人，或是一个网络服务）的信息。默认情况下，Symfony 使用 PHP 原生的会话管理工具将这些信息储存在 Cookie 中。

不管在哪个控制器中，向会话写入信息和从会话中读取信息都可以轻易实现:

use Symfony\Component\HttpFoundation\Request;

public function indexAction(Request $request)
{
 $session = $request->getSession();

 // 存储一个在处理用户之后的请求时会用到的属性
 $session->set('foo', 'bar');

 // 获取在别的会话中别的控制器设置的属性
 $foobar = $session->get('foobar');

 // 在属性不存在时使用一个默认值
 $filters = $session->get('filters', array());
}

这些属性将持续到用户其余的请求中。

闪电消息

你也可以向用户会话存储一条只在紧接着的下一个请求中可用的短消息。这在处理表格时很有用：你想将用户重定向并在 下一个 页面中显示一条特定的消息。这种消息被称为“闪电”消息。

设想你正在处理一个提交上来的表格:

use Symfony\Component\HttpFoundation\Request;

public function updateAction(Request $request)
{
 $form = $this->createForm(...);

 $form->handleRequest($request);

 if ($form->isValid()) {
 // 做一些处理

 $request->getSession()->getFlashBag()->add(
 'notice',
 '更改已保存！'
);

 return $this->redirect($this->generateUrl(...));
 }

 return $this->render(...);
}

处理完请求后，控制器在会话中设置了一个叫做 notice 的闪电消息并重定向。名字（上面的例子里是``notice``）并没有特殊的意义，只是个你起的名字，方便你在下一步中使用它。

在下一个页面中的模板里（更聪明的方法是写入主模板框架），下面的代码将渲染 notice 这个消息。

	Twig{% for flashMessage in app.session.flashbag.get('notice') %}
 <div class="flash-notice">
 {{ flashMessage }}
 </div>
{% endfor %}

	PHP<?php foreach ($view['session']->getFlash('notice') as $message): ?>
 <div class="flash-notice">
 <?php echo "<div class='flash-error'>$message</div>" ?>
 </div>
<?php endforeach ?>

闪电消息被专门设计为只能在紧接着的请求中使用（它们像闪电一样转瞬即逝）。像刚才这样在重定向时传递消息就可以用到闪电消息。

Response（响应）对象

对控制器的要求只有一个：返回一个 Response 对象。Symfony 中的 Response [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html] 类是对 HTTP 响应的抽象：响应头和内容被填入基于文本的消息中发回客户端:

use Symfony\Component\HttpFoundation\Response;

// 创建一个有 200 状态码（默认）的简单响应
$response = new Response('Hello '.$name, 200);

// 创建一个有 200 状态码（默认）的 JSON 响应
$response = new Response(json_encode(array('name' => $name)));
$response->headers->set('Content-Type', 'application/json');

上面的 headers 属性是一个 HeaderBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/HeaderBag.html] 类，它有一些很棒的读写响应头的方法。响应头的名字是标准化了的，所以用 Content-Type 等价于 content-type 或者 content_type。

也有一些可以简单快速地创建其他类型的响应的类。

	JSON对应的类是 JsonResponse [http://api.symfony.com/master/Symfony/Component/HttpFoundation/JsonResponse.html]。 参阅 Creating a JSON Response。

	文件对应的类是 BinaryFileResponse [http://api.symfony.com/master/Symfony/Component/HttpFoundation/BinaryFileResponse.html]。 参阅 Serving Files。

	流式响应对应的类在 StreamedResponse [http://api.symfony.com/master/Symfony/Component/HttpFoundation/StreamedResponse.html]。 参阅 Streaming a Response。

参见

别担心！在足见的文档里还有很多关于响应对象的
信息。参阅 Response。

请求（Request）对象

除了来自路由占位符的值，控制器还可以访问 Request（请求） 对象。如果一个变量被使用 Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html] 进行类型约束，框架就会将 请求 对象注入控制器中:

use Symfony\Component\HttpFoundation\Request;

public function indexAction(Request $request)
{
 $request->isXmlHttpRequest(); // 是一个Ajax请求吗？

 $request->getPreferredLanguage(array('en', 'fr'));

 $request->query->get('page'); // 获取一个 $_GET 的参数

 $request->request->get('page'); // 获取一个 $_POST 的参数
}

就像 响应 对象一样，请求头被存储在 HeaderBag（请求头包） 对象中，访问起来很容易。

参见

别担心！在足见的文档里还有很多关于请求对象的
信息。参阅 Request。

创建静态页面

你也可以创建一个不需要控制器的静态页面（只需要路由和模板）。

参阅 How to Render a Template without a custom Controller。

重定向到另一个控制器

虽然不是很常用，但你还是可以使用 forward() [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_forward] 这一方法来在内部重定向到别的控制器。这样做并不会重定向用户的浏览器，而会建立一个内部子请求并调用对应的控制器。刚才提到的 forward() 方法会返回一个来自 那个（重定向到的） 控制器的 Response 对象:

public function indexAction($name)
{
 $response = $this->forward('AppBundle:Something:fancy', array(
 'name' => $name,
 'color' => 'green',
));

 // ... 做一些别的更改或者直接返回它

 return $response;
}

请注意 forward() 方法使用一种特殊的控制器定位表达式（参阅 Controller Naming Pattern）。在这个例子中，目标控制器是 AppBundle 中的 SomethingController::fancyAction() 控制器。作为方法的参数的数组将会被作为控制器参数传入目标控制器。在将控制器嵌入模板时也会用到这一方法（参阅 Embedding Controllers）。目标控制器可以像下面这样工作:

public function fancyAction($name, $color)
{
 // ... 创建并返回一个 Response 对象
}

就像在给路由创建控制器时那样， fancyAction 的参数的顺序并不影响运行。Symfony 会将数组的键名（比如 name）与控制器方法的参数名（比如 $name）对应起来。如果你更改了参数的顺序，Symfony 还是会将正确的值传递给各个变量。

结语

不论在什么时候，当你创建一个页面时，你最终都需要写一些包括这个页面的逻辑的代码。在 Symfony 里，这被称为控制器，并且它是一个可以为了返回最终会被返回给用户的 Response 对象而做任何事的 PHP 函数。

简单起见，你可以选择继承 Controller 基类，它包含了很多控制器要做的基本的事情的快捷方式。比如，因为你不想在控制器里写 HTML 代码，你就可以用 render() 方法来从模板中渲染内容并返回。

在别的章节中，你将学到控制器如何将对象持久化到数据库中或从数据库中获取对象、在子任务中处理、处理缓存还有更多更多。

从技巧书中再学一些

	How to Customize Error Pages

	How to Define Controllers as Services

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

Routing

Beautiful URLs are an absolute must for any serious web application. This
means leaving behind ugly URLs like index.php?article_id=57 in favor
of something like /read/intro-to-symfony.

Having flexibility is even more important. What if you need to change the
URL of a page from /blog to /news? How many links should you need to
hunt down and update to make the change? If you’re using Symfony’s router,
the change is simple.

The Symfony router lets you define creative URLs that you map to different
areas of your application. By the end of this chapter, you’ll be able to:

	Create complex routes that map to controllers

	Generate URLs inside templates and controllers

	Load routing resources from bundles (or anywhere else)

	Debug your routes

Routing in Action

A route is a map from a URL path to a controller. For example, suppose
you want to match any URL like /blog/my-post or /blog/all-about-symfony
and send it to a controller that can look up and render that blog entry.
The route is simple:

	Annotations// src/AppBundle/Controller/BlogController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class BlogController extends Controller
{
 /**
 * @Route("/blog/{slug}")
 */
 public function showAction($slug)
 {
 // ...
 }
}

	YAML# app/config/routing.yml
blog_show:
 path: /blog/{slug}
 defaults: { _controller: AppBundle:Blog:show }

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog_show" path="/blog/{slug}">
 <default key="_controller">AppBundle:Blog:show</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog_show', new Route('/blog/{slug}', array(
 '_controller' => 'AppBundle:Blog:show',
)));

return $collection;

2.2 新版功能: The path option was introduced in Symfony 2.2, pattern is used
in older versions.

The path defined by the blog_show route acts like /blog/* where
the wildcard is given the name slug. For the URL /blog/my-blog-post,
the slug variable gets a value of my-blog-post, which is available
for you to use in your controller (keep reading). The blog_show is the
internal name of the route, which doesn’t have any meaning yet and just needs
to be unique. Later, you’ll use it to generate URLs.

If you don’t want to use annotations, because you don’t like them or because
you don’t want to depend on the SensioFrameworkExtraBundle, you can also use
Yaml, XML or PHP. In these formats, the _controller parameter is a special
key that tells Symfony which controller should be executed when a URL matches
this route. The _controller string is called the
logical name. It follows a pattern that
points to a specific PHP class and method, in this case the
AppBundle\Controller\BlogController::showAction method.

Congratulations! You’ve just created your first route and connected it to
a controller. Now, when you visit /blog/my-post, the showAction controller
will be executed and the $slug variable will be equal to my-post.

This is the goal of the Symfony router: to map the URL of a request to a
controller. Along the way, you’ll learn all sorts of tricks that make mapping
even the most complex URLs easy.

Routing: Under the Hood

When a request is made to your application, it contains an address to the
exact “resource” that the client is requesting. This address is called the
URL, (or URI), and could be /contact, /blog/read-me, or anything
else. Take the following HTTP request for example:

GET /blog/my-blog-post

The goal of the Symfony routing system is to parse this URL and determine
which controller should be executed. The whole process looks like this:

	The request is handled by the Symfony front controller (e.g. app.php);

	The Symfony core (i.e. Kernel) asks the router to inspect the request;

	The router matches the incoming URL to a specific route and returns information
about the route, including the controller that should be executed;

	The Symfony Kernel executes the controller, which ultimately returns
a Response object.

[image: Symfony request flow]
The routing layer is a tool that translates the incoming URL into a specific
controller to execute.

Creating Routes

Symfony loads all the routes for your application from a single routing configuration
file. The file is usually app/config/routing.yml, but can be configured
to be anything (including an XML or PHP file) via the application configuration
file:

	YAML# app/config/config.yml
framework:
 # ...
 router: { resource: "%kernel.root_dir%/config/routing.yml" }

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <framework:config>
 <!-- ... -->
 <framework:router resource="%kernel.root_dir%/config/routing.xml" />
 </framework:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 // ...
 'router' => array(
 'resource' => '%kernel.root_dir%/config/routing.php',
),
));

小技巧

Even though all routes are loaded from a single file, it’s common practice
to include additional routing resources. To do so, just point out in the
main routing configuration file which external files should be included.
See the Including External Routing Resources section for more
information.

Basic Route Configuration

Defining a route is easy, and a typical application will have lots of routes.
A basic route consists of just two parts: the path to match and a
defaults array:

	Annotations// src/AppBundle/Controller/MainController.php

// ...
class MainController extends Controller
{
 /**
 * @Route("/")
 */
 public function homepageAction()
 {
 // ...
 }
}

	YAML# app/config/routing.yml
_welcome:
 path: /
 defaults: { _controller: AppBundle:Main:homepage }

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="_welcome" path="/">
 <default key="_controller">AppBundle:Main:homepage</default>
 </route>

</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('_welcome', new Route('/', array(
 '_controller' => 'AppBundle:Main:homepage',
)));

return $collection;

This route matches the homepage (/) and maps it to the
AppBundle:Main:homepage controller. The _controller string is
translated by Symfony into an actual PHP function and executed. That process
will be explained shortly in the Controller Naming Pattern section.

Routing with Placeholders

Of course the routing system supports much more interesting routes. Many
routes will contain one or more named “wildcard” placeholders:

	Annotations// src/AppBundle/Controller/BlogController.php

// ...
class BlogController extends Controller
{
 /**
 * @Route("/blog/{slug}")
 */
 public function showAction($slug)
 {
 // ...
 }
}

	YAML# app/config/routing.yml
blog_show:
 path: /blog/{slug}
 defaults: { _controller: AppBundle:Blog:show }

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog_show" path="/blog/{slug}">
 <default key="_controller">AppBundle:Blog:show</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog_show', new Route('/blog/{slug}', array(
 '_controller' => 'AppBundle:Blog:show',
)));

return $collection;

The path will match anything that looks like /blog/*. Even better,
the value matching the {slug} placeholder will be available inside your
controller. In other words, if the URL is /blog/hello-world, a $slug
variable, with a value of hello-world, will be available in the controller.
This can be used, for example, to load the blog post matching that string.

The path will not, however, match simply /blog. That’s because,
by default, all placeholders are required. This can be changed by adding
a placeholder value to the defaults array.

Required and Optional Placeholders

To make things more exciting, add a new route that displays a list of all
the available blog posts for this imaginary blog application:

	Annotations// src/AppBundle/Controller/BlogController.php

// ...
class BlogController extends Controller
{
 // ...

 /**
 * @Route("/blog")
 */
 public function indexAction()
 {
 // ...
 }
}

	YAML# app/config/routing.yml
blog:
 path: /blog
 defaults: { _controller: AppBundle:Blog:index }

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog" path="/blog">
 <default key="_controller">AppBundle:Blog:index</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog', new Route('/blog', array(
 '_controller' => 'AppBundle:Blog:index',
)));

return $collection;

So far, this route is as simple as possible - it contains no placeholders
and will only match the exact URL /blog. But what if you need this route
to support pagination, where /blog/2 displays the second page of blog
entries? Update the route to have a new {page} placeholder:

	Annotations// src/AppBundle/Controller/BlogController.php

// ...

/**
 * @Route("/blog/{page}")
 */
public function indexAction($page)
{
 // ...
}

	YAML# app/config/routing.yml
blog:
 path: /blog/{page}
 defaults: { _controller: AppBundle:Blog:index }

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog" path="/blog/{page}">
 <default key="_controller">AppBundle:Blog:index</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog', new Route('/blog/{page}', array(
 '_controller' => 'AppBundle:Blog:index',
)));

return $collection;

Like the {slug} placeholder before, the value matching {page} will
be available inside your controller. Its value can be used to determine which
set of blog posts to display for the given page.

But hold on! Since placeholders are required by default, this route will
no longer match on simply /blog. Instead, to see page 1 of the blog,
you’d need to use the URL /blog/1! Since that’s no way for a rich web
app to behave, modify the route to make the {page} parameter optional.
This is done by including it in the defaults collection:

	Annotations// src/AppBundle/Controller/BlogController.php

// ...

/**
 * @Route("/blog/{page}", defaults={"page" = 1})
 */
public function indexAction($page)
{
 // ...
}

	YAML# app/config/routing.yml
blog:
 path: /blog/{page}
 defaults: { _controller: AppBundle:Blog:index, page: 1 }

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog" path="/blog/{page}">
 <default key="_controller">AppBundle:Blog:index</default>
 <default key="page">1</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog', new Route('/blog/{page}', array(
 '_controller' => 'AppBundle:Blog:index',
 'page' => 1,
)));

return $collection;

By adding page to the defaults key, the {page} placeholder is no
longer required. The URL /blog will match this route and the value of
the page parameter will be set to 1. The URL /blog/2 will also
match, giving the page parameter a value of 2. Perfect.

	URL
	Route
	Parameters

	/blog
	blog
	{page} = 1

	/blog/1
	blog
	{page} = 1

	/blog/2
	blog
	{page} = 2

警告

Of course, you can have more than one optional placeholder (e.g.
/blog/{slug}/{page}), but everything after an optional placeholder must
be optional. For example, /{page}/blog is a valid path, but page
will always be required (i.e. simply /blog will not match this route).

小技巧

Routes with optional parameters at the end will not match on requests
with a trailing slash (i.e. /blog/ will not match, /blog will match).

Adding Requirements

Take a quick look at the routes that have been created so far:

	Annotations// src/AppBundle/Controller/BlogController.php

// ...
class BlogController extends Controller
{
 /**
 * @Route("/blog/{page}", defaults={"page" = 1})
 */
 public function indexAction($page)
 {
 // ...
 }

 /**
 * @Route("/blog/{slug}")
 */
 public function showAction($slug)
 {
 // ...
 }
}

	YAML# app/config/routing.yml
blog:
 path: /blog/{page}
 defaults: { _controller: AppBundle:Blog:index, page: 1 }

blog_show:
 path: /blog/{slug}
 defaults: { _controller: AppBundle:Blog:show }

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog" path="/blog/{page}">
 <default key="_controller">AppBundle:Blog:index</default>
 <default key="page">1</default>
 </route>

 <route id="blog_show" path="/blog/{slug}">
 <default key="_controller">AppBundle:Blog:show</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog', new Route('/blog/{page}', array(
 '_controller' => 'AppBundle:Blog:index',
 'page' => 1,
)));

$collection->add('blog_show', new Route('/blog/{show}', array(
 '_controller' => 'AppBundle:Blog:show',
)));

return $collection;

Can you spot the problem? Notice that both routes have patterns that match
URLs that look like /blog/*. The Symfony router will always choose the
first matching route it finds. In other words, the blog_show route
will never be matched. Instead, a URL like /blog/my-blog-post will match
the first route (blog) and return a nonsense value of my-blog-post
to the {page} parameter.

	URL
	Route
	Parameters

	/blog/2
	blog
	{page} = 2

	/blog/my-blog-post
	blog
	{page} = "my-blog-post"

The answer to the problem is to add route requirements. The routes in this
example would work perfectly if the /blog/{page} path only matched
URLs where the {page} portion is an integer. Fortunately, regular expression
requirements can easily be added for each parameter. For example:

	Annotations// src/AppBundle/Controller/BlogController.php

// ...

/**
 * @Route("/blog/{page}", defaults={"page": 1}, requirements={
 * "page": "\d+"
 * })
 */
public function indexAction($page)
{
 // ...
}

	YAML# app/config/routing.yml
blog:
 path: /blog/{page}
 defaults: { _controller: AppBundle:Blog:index, page: 1 }
 requirements:
 page: \d+

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog" path="/blog/{page}">
 <default key="_controller">AppBundle:Blog:index</default>
 <default key="page">1</default>
 <requirement key="page">\d+</requirement>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog', new Route('/blog/{page}', array(
 '_controller' => 'AppBundle:Blog:index',
 'page' => 1,
), array(
 'page' => '\d+',
)));

return $collection;

The \d+ requirement is a regular expression that says that the value of
the {page} parameter must be a digit (i.e. a number). The blog route
will still match on a URL like /blog/2 (because 2 is a number), but it
will no longer match a URL like /blog/my-blog-post (because my-blog-post
is not a number).

As a result, a URL like /blog/my-blog-post will now properly match the
blog_show route.

	URL
	Route
	Parameters

	/blog/2
	blog
	{page} = 2

	/blog/my-blog-post
	blog_show
	{slug} = my-blog-post

	/blog/2-my-blog-post
	blog_show
	{slug} = 2-my-blog-post

Earlier Routes always Win

What this all means is that the order of the routes is very important.
If the blog_show route were placed above the blog route, the
URL /blog/2 would match blog_show instead of blog since the
{slug} parameter of blog_show has no requirements. By using proper
ordering and clever requirements, you can accomplish just about anything.

Since the parameter requirements are regular expressions, the complexity
and flexibility of each requirement is entirely up to you. Suppose the homepage
of your application is available in two different languages, based on the
URL:

	Annotations// src/AppBundle/Controller/MainController.php

// ...
class MainController extends Controller
{
 /**
 * @Route("/{_locale}", defaults={"_locale": "en"}, requirements={
 * "_locale": "en|fr"
 * })
 */
 public function homepageAction($_locale)
 {
 }
}

	YAML# app/config/routing.yml
homepage:
 path: /{_locale}
 defaults: { _controller: AppBundle:Main:homepage, _locale: en }
 requirements:
 _locale: en|fr

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="homepage" path="/{_locale}">
 <default key="_controller">AppBundle:Main:homepage</default>
 <default key="_locale">en</default>
 <requirement key="_locale">en|fr</requirement>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('homepage', new Route('/{_locale}', array(
 '_controller' => 'AppBundle:Main:homepage',
 '_locale' => 'en',
), array(
 '_locale' => 'en|fr',
)));

return $collection;

For incoming requests, the {_locale} portion of the URL is matched against
the regular expression (en|fr).

	Path
	Parameters

	/
	{_locale} = "en"

	/en
	{_locale} = "en"

	/fr
	{_locale} = "fr"

	/es
	won’t match this route

Adding HTTP Method Requirements

In addition to the URL, you can also match on the method of the incoming
request (i.e. GET, HEAD, POST, PUT, DELETE). Suppose you have a contact form
with two controllers - one for displaying the form (on a GET request) and one
for processing the form when it’s submitted (on a POST request). This can
be accomplished with the following route configuration:

	Annotations// src/AppBundle/Controller/MainController.php
namespace AppBundle\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Method;
// ...

class MainController extends Controller
{
 /**
 * @Route("/contact")
 * @Method("GET")
 */
 public function contactAction()
 {
 // ... display contact form
 }

 /**
 * @Route("/contact")
 * @Method("POST")
 */
 public function processContactAction()
 {
 // ... process contact form
 }
}

	YAML# app/config/routing.yml
contact:
 path: /contact
 defaults: { _controller: AppBundle:Main:contact }
 methods: [GET]

contact_process:
 path: /contact
 defaults: { _controller: AppBundle:Main:processContact }
 methods: [POST]

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="contact" path="/contact" methods="GET">
 <default key="_controller">AppBundle:Main:contact</default>
 </route>

 <route id="contact_process" path="/contact" methods="POST">
 <default key="_controller">AppBundle:Main:processContact</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('contact', new Route('/contact', array(
 '_controller' => 'AppBundle:Main:contact',
), array(), array(), '', array(), array('GET')));

$collection->add('contact_process', new Route('/contact', array(
 '_controller' => 'AppBundle:Main:processContact',
), array(), array(), '', array(), array('POST')));

return $collection;

2.2 新版功能: The methods option was introduced in Symfony 2.2. Use the _method
requirement in older versions.

Despite the fact that these two routes have identical paths (/contact),
the first route will match only GET requests and the second route will match
only POST requests. This means that you can display the form and submit the
form via the same URL, while using distinct controllers for the two actions.

注解

If no methods are specified, the route will match on all methods.

Adding a Host Requirement

2.2 新版功能: Host matching support was introduced in Symfony 2.2

You can also match on the HTTP host of the incoming request. For more
information, see How to Match a Route Based on the Host in the Routing
component documentation.

Advanced Routing Example

At this point, you have everything you need to create a powerful routing
structure in Symfony. The following is an example of just how flexible the
routing system can be:

	Annotations// src/AppBundle/Controller/ArticleController.php

// ...
class ArticleController extends Controller
{
 /**
 * @Route(
 * "/articles/{_locale}/{year}/{title}.{_format}",
 * defaults={"_format": "html"},
 * requirements={
 * "_locale": "en|fr",
 * "_format": "html|rss",
 * "year": "\d+"
 * }
 *)
 */
 public function showAction($_locale, $year, $title)
 {
 }
}

	YAML# app/config/routing.yml
article_show:
 path: /articles/{_locale}/{year}/{title}.{_format}
 defaults: { _controller: AppBundle:Article:show, _format: html }
 requirements:
 _locale: en|fr
 _format: html|rss
 year: \d+

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="article_show"
 path="/articles/{_locale}/{year}/{title}.{_format}">

 <default key="_controller">AppBundle:Article:show</default>
 <default key="_format">html</default>
 <requirement key="_locale">en|fr</requirement>
 <requirement key="_format">html|rss</requirement>
 <requirement key="year">\d+</requirement>

 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add(
 'article_show',
 new Route('/articles/{_locale}/{year}/{title}.{_format}', array(
 '_controller' => 'AppBundle:Article:show',
 '_format' => 'html',
), array(
 '_locale' => 'en|fr',
 '_format' => 'html|rss',
 'year' => '\d+',
))
);

return $collection;

As you’ve seen, this route will only match if the {_locale} portion of
the URL is either en or fr and if the {year} is a number. This
route also shows how you can use a dot between placeholders instead of
a slash. URLs matching this route might look like:

	/articles/en/2010/my-post

	/articles/fr/2010/my-post.rss

	/articles/en/2013/my-latest-post.html

The Special _format Routing Parameter

This example also highlights the special _format routing parameter.
When using this parameter, the matched value becomes the “request format”
of the Request object. Ultimately, the request format is used for such
things as setting the Content-Type of the response (e.g. a json
request format translates into a Content-Type of application/json).
It can also be used in the controller to render a different template for
each value of _format. The _format parameter is a very powerful way
to render the same content in different formats.

注解

Sometimes you want to make certain parts of your routes globally configurable.
Symfony provides you with a way to do this by leveraging service container
parameters. Read more about this in “How to Use Service Container Parameters in your Routes”.

Special Routing Parameters

As you’ve seen, each routing parameter or default value is eventually available
as an argument in the controller method. Additionally, there are three parameters
that are special: each adds a unique piece of functionality inside your application:

	_controller

	As you’ve seen, this parameter is used to determine which controller is
executed when the route is matched.

	_format

	Used to set the request format (read more).

	_locale

	Used to set the locale on the request (read more).

Controller Naming Pattern

Every route must have a _controller parameter, which dictates which
controller should be executed when that route is matched. This parameter
uses a simple string pattern called the logical controller name, which
Symfony maps to a specific PHP method and class. The pattern has three parts,
each separated by a colon:

bundle:controller:action

For example, a _controller value of AppBundle:Blog:show means:

	Bundle
	Controller Class
	Method Name

	AppBundle
	BlogController
	showAction

The controller might look like this:

// src/AppBundle/Controller/BlogController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class BlogController extends Controller
{
 public function showAction($slug)
 {
 // ...
 }
}

Notice that Symfony adds the string Controller to the class name (Blog
=> BlogController) and Action to the method name (show => showAction).

You could also refer to this controller using its fully-qualified class name
and method: Acme\BlogBundle\Controller\BlogController::showAction.
But if you follow some simple conventions, the logical name is more concise
and allows more flexibility.

注解

In addition to using the logical name or the fully-qualified class name,
Symfony supports a third way of referring to a controller. This method
uses just one colon separator (e.g. service_name:indexAction) and
refers to the controller as a service (see How to Define Controllers as Services).

Route Parameters and Controller Arguments

The route parameters (e.g. {slug}) are especially important because
each is made available as an argument to the controller method:

public function showAction($slug)
{
 // ...
}

In reality, the entire defaults collection is merged with the parameter
values to form a single array. Each key of that array is available as an
argument on the controller.

In other words, for each argument of your controller method, Symfony looks
for a route parameter of that name and assigns its value to that argument.
In the advanced example above, any combination (in any order) of the following
variables could be used as arguments to the showAction() method:

	$_locale

	$year

	$title

	$_format

	$_controller

	$_route

Since the placeholders and defaults collection are merged together, even
the $_controller variable is available. For a more detailed discussion,
see 作为控制器参数的路由占位符.

小技巧

The special $_route variable is set to the name of the route that was
matched.

You can even add extra information to your route definition and access it
within your controller. For more information on this topic,
see How to Pass Extra Information from a Route to a Controller.

Including External Routing Resources

All routes are loaded via a single configuration file - usually
app/config/routing.yml (see Creating Routes above). However, if you use
routing annotations, you’ll need to point the router to the controllers with
the annotations. This can be done by “importing” directories into the routing
configuration:

	YAML# app/config/routing.yml
app:
 resource: "@AppBundle/Controller/"
 type: annotation # required to enable the Annotation reader for this resource

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <!-- the type is required to enable the annotation reader for this resource -->
 <import resource="@AppBundle/Controller/" type="annotation"/>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;

$collection = new RouteCollection();
$collection->addCollection(
 // second argument is the type, which is required to enable
 // the annotation reader for this resource
 $loader->import("@AppBundle/Controller/", "annotation")
);

return $collection;

注解

When importing resources from YAML, the key (e.g. app) is meaningless.
Just be sure that it’s unique so no other lines override it.

The resource key loads the given routing resource. In this example the
resource is a directory, where the @AppBundle shortcut syntax resolves to
the full path of the AppBundle. When pointing to a directory, all files in that
directory are parsed and put into the routing.

注解

You can also include other routing configuration files, this is often used
to import the routing of third party bundles:

	YAML# app/config/routing.yml
app:
 resource: "@AcmeOtherBundle/Resources/config/routing.yml"

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <import resource="@AcmeOtherBundle/Resources/config/routing.xml" />
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;

$collection = new RouteCollection();
$collection->addCollection(
 $loader->import("@AcmeOtherBundle/Resources/config/routing.php")
);

return $collection;

Prefixing Imported Routes

You can also choose to provide a “prefix” for the imported routes. For example,
suppose you want to prefix all routes in the AppBundle with /site (e.g.
/site/blog/{slug} instead of /blog/{slug}):

	YAML# app/config/routing.yml
app:
 resource: "@AppBundle/Controller/"
 type: annotation
 prefix: /site

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <import
 resource="@AppBundle/Controller/"
 type="annotation"
 prefix="/site" />
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;

$app = $loader->import('@AppBundle/Controller/', 'annotation');
$app->addPrefix('/site');

$collection = new RouteCollection();
$collection->addCollection($app);

return $collection;

The path of each route being loaded from the new routing resource will now
be prefixed with the string /site.

Adding a Host Requirement to Imported Routes

2.2 新版功能: Host matching support was introduced in Symfony 2.2

You can set the host regex on imported routes. For more information, see
Using Host Matching of Imported Routes.

Visualizing & Debugging Routes

While adding and customizing routes, it’s helpful to be able to visualize
and get detailed information about your routes. A great way to see every route
in your application is via the router:debug console command. Execute
the command by running the following from the root of your project.

$ php app/console router:debug

This command will print a helpful list of all the configured routes in
your application:

homepage ANY /
contact GET /contact
contact_process POST /contact
article_show ANY /articles/{_locale}/{year}/{title}.{_format}
blog ANY /blog/{page}
blog_show ANY /blog/{slug}

You can also get very specific information on a single route by including
the route name after the command:

$ php app/console router:debug article_show

Likewise, if you want to test whether a URL matches a given route, you can
use the router:match console command:

$ php app/console router:match /blog/my-latest-post

This command will print which route the URL matches.

Route "blog_show" matches

Generating URLs

The routing system should also be used to generate URLs. In reality, routing
is a bidirectional system: mapping the URL to a controller+parameters and
a route+parameters back to a URL. The
match() [http://api.symfony.com/master/Symfony/Component/Routing/Router.html#method_match] and
generate() [http://api.symfony.com/master/Symfony/Component/Routing/Router.html#method_generate] methods form this bidirectional
system. Take the blog_show example route from earlier:

$params = $this->get('router')->match('/blog/my-blog-post');
// array(
// 'slug' => 'my-blog-post',
// '_controller' => 'AppBundle:Blog:show',
//)

$uri = $this->get('router')->generate('blog_show', array(
 'slug' => 'my-blog-post'
));
// /blog/my-blog-post

To generate a URL, you need to specify the name of the route (e.g. blog_show)
and any wildcards (e.g. slug = my-blog-post) used in the path for that
route. With this information, any URL can easily be generated:

class MainController extends Controller
{
 public function showAction($slug)
 {
 // ...

 $url = $this->generateUrl(
 'blog_show',
 array('slug' => 'my-blog-post')
);
 }
}

注解

In controllers that don’t extend Symfony’s base
Controller [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html],
you can use the router service’s
generate() [http://api.symfony.com/master/Symfony/Component/Routing/Router.html#method_generate] method:

use Symfony\Component\DependencyInjection\ContainerAware;

class MainController extends ContainerAware
{
 public function showAction($slug)
 {
 // ...

 $url = $this->container->get('router')->generate(
 'blog_show',
 array('slug' => 'my-blog-post')
);
 }
}

In an upcoming section, you’ll learn how to generate URLs from inside templates.

小技巧

If the frontend of your application uses Ajax requests, you might want
to be able to generate URLs in JavaScript based on your routing configuration.
By using the FOSJsRoutingBundle [https://github.com/FriendsOfSymfony/FOSJsRoutingBundle], you can do exactly that:

var url = Routing.generate(
 'blog_show',
 {"slug": 'my-blog-post'}
);

For more information, see the documentation for that bundle.

Generating URLs with Query Strings

The generate method takes an array of wildcard values to generate the URI.
But if you pass extra ones, they will be added to the URI as a query string:

$this->get('router')->generate('blog', array(
 'page' => 2,
 'category' => 'Symfony'
));
// /blog/2?category=Symfony

Generating URLs from a Template

The most common place to generate a URL is from within a template when linking
between pages in your application. This is done just as before, but using
a template helper function:

	Twig
 Read this blog post.

	PHP<a href="<?php echo $view['router']->generate('blog_show', array(
 'slug' => 'my-blog-post',
)) ?>">
 Read this blog post.

Generating Absolute URLs

By default, the router will generate relative URLs (e.g. /blog). From
a controller, simply pass true to the third argument of the generateUrl()
method:

$this->generateUrl('blog_show', array('slug' => 'my-blog-post'), true);
// http://www.example.com/blog/my-blog-post

From a template, in Twig, simply use the url() function (which generates an absolute URL)
rather than the path() function (which generates a relative URL). In PHP, pass true
to generate():

	Twig
 Read this blog post.

	PHP<a href="<?php echo $view['router']->generate('blog_show', array(
 'slug' => 'my-blog-post',
), true) ?>">
 Read this blog post.

注解

The host that’s used when generating an absolute URL is automatically
detected using the current Request object. When generating absolute
URLs from outside the web context (for instance in a console command) this
doesn’t work. See How to Generate URLs and Send Emails from the Console to learn how to
solve this problem.

Summary

Routing is a system for mapping the URL of incoming requests to the controller
function that should be called to process the request. It both allows you
to specify beautiful URLs and keeps the functionality of your application
decoupled from those URLs. Routing is a bidirectional mechanism, meaning that it
should also be used to generate URLs.

Learn more from the Cookbook

	How to Force Routes to always Use HTTPS or HTTP

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

Creating and Using Templates

As you know, the controller is responsible for
handling each request that comes into a Symfony application. In reality,
the controller delegates most of the heavy work to other places so that
code can be tested and reused. When a controller needs to generate HTML,
CSS or any other content, it hands the work off to the templating engine.
In this chapter, you’ll learn how to write powerful templates that can be
used to return content to the user, populate email bodies, and more. You’ll
learn shortcuts, clever ways to extend templates and how to reuse template
code.

注解

How to render templates is covered in the
controller page of the book.

Templates

A template is simply a text file that can generate any text-based format
(HTML, XML, CSV, LaTeX ...). The most familiar type of template is a PHP
template - a text file parsed by PHP that contains a mix of text and PHP code:

<!DOCTYPE html>
<html>
 <head>
 <title>Welcome to Symfony!</title>
 </head>
 <body>
 <h1><?php echo $page_title ?></h1>

 <ul id="navigation">
 <?php foreach ($navigation as $item): ?>

 <a href="<?php echo $item->getHref() ?>">
 <?php echo $item->getCaption() ?>

 <?php endforeach ?>

 </body>
</html>

But Symfony packages an even more powerful templating language called Twig [http://twig.sensiolabs.org].
Twig allows you to write concise, readable templates that are more friendly
to web designers and, in several ways, more powerful than PHP templates:

<!DOCTYPE html>
<html>
 <head>
 <title>Welcome to Symfony!</title>
 </head>
 <body>
 <h1>{{ page_title }}</h1>

 <ul id="navigation">
 {% for item in navigation %}
 {{ item.caption }}
 {% endfor %}

 </body>
</html>

Twig defines three types of special syntax:

	{{ ... }}

	“Says something”: prints a variable or the result of an expression to the
template.

	{% ... %}

	“Does something”: a tag that controls the logic of the template; it is
used to execute statements such as for-loops for example.

	{# ... #}

	“Comment something”: it’s the equivalent of the PHP /* comment */ syntax.
It’s used to add single or multi-line comments. The content of the comments
isn’t included in the rendered pages.

Twig also contains filters, which modify content before being rendered.
The following makes the title variable all uppercase before rendering
it:

{{ title|upper }}

Twig comes with a long list of tags [http://twig.sensiolabs.org/doc/tags/index.html] and filters [http://twig.sensiolabs.org/doc/filters/index.html] that are available
by default. You can even add your own extensions [http://twig.sensiolabs.org/doc/advanced.html#creating-an-extension] to Twig as needed.

小技巧

Registering a Twig extension is as easy as creating a new service and tagging
it with twig.extension tag.

As you’ll see throughout the documentation, Twig also supports functions
and new functions can be easily added. For example, the following uses a
standard for tag and the cycle function to print ten div tags, with
alternating odd, even classes:

{% for i in 0..10 %}
 <div class="{{ cycle(['odd', 'even'], i) }}">
 <!-- some HTML here -->
 </div>
{% endfor %}

Throughout this chapter, template examples will be shown in both Twig and PHP.

小技巧

If you do choose to not use Twig and you disable it, you’ll need to implement
your own exception handler via the kernel.exception event.

Why Twig?

Twig templates are meant to be simple and won’t process PHP tags. This
is by design: the Twig template system is meant to express presentation,
not program logic. The more you use Twig, the more you’ll appreciate
and benefit from this distinction. And of course, you’ll be loved by
web designers everywhere.

Twig can also do things that PHP can’t, such as whitespace control,
sandboxing, automatic and contextual output escaping, and the inclusion of
custom functions and filters that only affect templates. Twig contains
little features that make writing templates easier and more concise. Take
the following example, which combines a loop with a logical if
statement:

 {% for user in users if user.active %}
 {{ user.username }}
 {% else %}
 No users found
 {% endfor %}

Twig Template Caching

Twig is fast. Each Twig template is compiled down to a native PHP class
that is rendered at runtime. The compiled classes are located in the
app/cache/{environment}/twig directory (where {environment} is the
environment, such as dev or prod) and in some cases can be useful
while debugging. See Environments for more information on
environments.

When debug mode is enabled (common in the dev environment), a Twig
template will be automatically recompiled when changes are made to it. This
means that during development you can happily make changes to a Twig template
and instantly see the changes without needing to worry about clearing any
cache.

When debug mode is disabled (common in the prod environment), however,
you must clear the Twig cache directory so that the Twig templates will
regenerate. Remember to do this when deploying your application.

Template Inheritance and Layouts

More often than not, templates in a project share common elements, like the
header, footer, sidebar or more. In Symfony, this problem is thought about
differently: a template can be decorated by another one. This works
exactly the same as PHP classes: template inheritance allows you to build
a base “layout” template that contains all the common elements of your site
defined as blocks (think “PHP class with base methods”). A child template
can extend the base layout and override any of its blocks (think “PHP subclass
that overrides certain methods of its parent class”).

First, build a base layout file:

	Twig{# app/Resources/views/base.html.twig #}
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>{% block title %}Test Application{% endblock %}</title>
 </head>
 <body>
 <div id="sidebar">
 {% block sidebar %}

 Home
 Blog

 {% endblock %}
 </div>

 <div id="content">
 {% block body %}{% endblock %}
 </div>
 </body>
</html>

	PHP<!-- app/Resources/views/base.html.php -->
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title><?php $view['slots']->output('title', 'Test Application') ?></title>
 </head>
 <body>
 <div id="sidebar">
 <?php if ($view['slots']->has('sidebar')): ?>
 <?php $view['slots']->output('sidebar') ?>
 <?php else: ?>

 Home
 Blog

 <?php endif ?>
 </div>

 <div id="content">
 <?php $view['slots']->output('body') ?>
 </div>
 </body>
</html>

注解

Though the discussion about template inheritance will be in terms of Twig,
the philosophy is the same between Twig and PHP templates.

This template defines the base HTML skeleton document of a simple two-column
page. In this example, three {% block %} areas are defined (title,
sidebar and body). Each block may be overridden by a child template
or left with its default implementation. This template could also be rendered
directly. In that case the title, sidebar and body blocks would
simply retain the default values used in this template.

A child template might look like this:

	Twig{# app/Resources/views/Blog/index.html.twig #}
{% extends 'base.html.twig' %}

{% block title %}My cool blog posts{% endblock %}

{% block body %}
 {% for entry in blog_entries %}
 <h2>{{ entry.title }}</h2>
 <p>{{ entry.body }}</p>
 {% endfor %}
{% endblock %}

	PHP<!-- app/Resources/views/Blog/index.html.php -->
<?php $view->extend('base.html.php') ?>

<?php $view['slots']->set('title', 'My cool blog posts') ?>

<?php $view['slots']->start('body') ?>
 <?php foreach ($blog_entries as $entry): ?>
 <h2><?php echo $entry->getTitle() ?></h2>
 <p><?php echo $entry->getBody() ?></p>
 <?php endforeach ?>
<?php $view['slots']->stop() ?>

注解

The parent template is identified by a special string syntax
(base.html.twig). This path is relative to the app/Resources/views
directory of the project. You could also use the logical name equivalent:
::base.html.twig. This naming convention is explained fully in
Template Naming and Locations.

The key to template inheritance is the {% extends %} tag. This tells
the templating engine to first evaluate the base template, which sets up
the layout and defines several blocks. The child template is then rendered,
at which point the title and body blocks of the parent are replaced
by those from the child. Depending on the value of blog_entries, the
output might look like this:

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>My cool blog posts</title>
 </head>
 <body>
 <div id="sidebar">

 Home
 Blog

 </div>

 <div id="content">
 <h2>My first post</h2>
 <p>The body of the first post.</p>

 <h2>Another post</h2>
 <p>The body of the second post.</p>
 </div>
 </body>
</html>

Notice that since the child template didn’t define a sidebar block, the
value from the parent template is used instead. Content within a {% block %}
tag in a parent template is always used by default.

You can use as many levels of inheritance as you want. In the next section,
a common three-level inheritance model will be explained along with how templates
are organized inside a Symfony project.

When working with template inheritance, here are some tips to keep in mind:

	If you use {% extends %} in a template, it must be the first tag in
that template;

	The more {% block %} tags you have in your base templates, the better.
Remember, child templates don’t have to define all parent blocks, so create
as many blocks in your base templates as you want and give each a sensible
default. The more blocks your base templates have, the more flexible your
layout will be;

	If you find yourself duplicating content in a number of templates, it probably
means you should move that content to a {% block %} in a parent template.
In some cases, a better solution may be to move the content to a new template
and include it (see Including other Templates);

	If you need to get the content of a block from the parent template, you
can use the {{ parent() }} function. This is useful if you want to add
to the contents of a parent block instead of completely overriding it:

{% block sidebar %}
 <h3>Table of Contents</h3>

 {# ... #}

 {{ parent() }}
{% endblock %}

Template Naming and Locations

2.2 新版功能: Namespaced path support was introduced in 2.2, allowing for template names
like @AcmeDemo/layout.html.twig. See How to Use and Register Namespaced Twig Paths
for more details.

By default, templates can live in two different locations:

	app/Resources/views/

	The applications views directory can contain application-wide base templates
(i.e. your application’s layouts and templates of the application bundle) as
well as templates that override third party bundle templates
(see Overriding Bundle Templates).

	path/to/bundle/Resources/views/

	Each third party bundle houses its templates in its Resources/views/
directory (and subdirectories). When you plan to share your bundle, you should
put the templates in the bundle instead of the app/ directory.

Most of the templates you’ll use live in the app/Resources/views/
directory. The path you’ll use will be relative to this directory. For example,
to render/extend app/Resources/views/base.html.twig, you’ll use the
base.html.twig path and to render/extend
app/Resources/views/Blog/index.html.twig, you’ll use the
Blog/index.html.twig path.

Referencing Templates in a Bundle

Symfony uses a bundle:directory:filename string syntax for
templates that live inside a bundle. This allows for several types of
templates, each which lives in a specific location:

	AcmeBlogBundle:Blog:index.html.twig: This syntax is used to specify a
template for a specific page. The three parts of the string, each separated
by a colon (:), mean the following:

	AcmeBlogBundle: (bundle) the template lives inside the AcmeBlogBundle
(e.g. src/Acme/BlogBundle);

	Blog: (directory) indicates that the template lives inside the
Blog subdirectory of Resources/views;

	index.html.twig: (filename) the actual name of the file is
index.html.twig.

Assuming that the AcmeBlogBundle lives at src/Acme/BlogBundle, the
final path to the layout would be src/Acme/BlogBundle/Resources/views/Blog/index.html.twig.

	AcmeBlogBundle::layout.html.twig: This syntax refers to a base template
that’s specific to the AcmeBlogBundle. Since the middle, “directory”, portion
is missing (e.g. Blog), the template lives at
Resources/views/layout.html.twig inside AcmeBlogBundle. Yes, there are 2
colons in the middle of the string when the “controller” subdirectory part is
missing.

In the Overriding Bundle Templates section, you’ll find out how each
template living inside the AcmeBlogBundle, for example, can be overridden
by placing a template of the same name in the app/Resources/AcmeBlogBundle/views/
directory. This gives the power to override templates from any vendor bundle.

小技巧

Hopefully the template naming syntax looks familiar - it’s similar to
the naming convention used to refer to Controller Naming Pattern.

Template Suffix

Every template name also has two extensions that specify the format and
engine for that template.

	Filename
	Format
	Engine

	Blog/index.html.twig
	HTML
	Twig

	Blog/index.html.php
	HTML
	PHP

	Blog/index.css.twig
	CSS
	Twig

By default, any Symfony template can be written in either Twig or PHP, and
the last part of the extension (e.g. .twig or .php) specifies which
of these two engines should be used. The first part of the extension,
(e.g. .html, .css, etc) is the final format that the template will
generate. Unlike the engine, which determines how Symfony parses the template,
this is simply an organizational tactic used in case the same resource needs
to be rendered as HTML (index.html.twig), XML (index.xml.twig),
or any other format. For more information, read the Template Formats
section.

注解

The available “engines” can be configured and even new engines added.
See Templating Configuration for more details.

Tags and Helpers

You already understand the basics of templates, how they’re named and how
to use template inheritance. The hardest parts are already behind you. In
this section, you’ll learn about a large group of tools available to help
perform the most common template tasks such as including other templates,
linking to pages and including images.

Symfony comes bundled with several specialized Twig tags and functions that
ease the work of the template designer. In PHP, the templating system provides
an extensible helper system that provides useful features in a template
context.

You’ve already seen a few built-in Twig tags ({% block %} & {% extends %})
as well as an example of a PHP helper ($view['slots']). Here you will learn a
few more.

Including other Templates

You’ll often want to include the same template or code fragment on several
pages. For example, in an application with “news articles”, the
template code displaying an article might be used on the article detail page,
on a page displaying the most popular articles, or in a list of the latest
articles.

When you need to reuse a chunk of PHP code, you typically move the code to
a new PHP class or function. The same is true for templates. By moving the
reused template code into its own template, it can be included from any other
template. First, create the template that you’ll need to reuse.

	Twig{# app/Resources/views/Article/articleDetails.html.twig #}
<h2>{{ article.title }}</h2>
<h3 class="byline">by {{ article.authorName }}</h3>

<p>
 {{ article.body }}
</p>

	PHP<!-- app/Resources/views/Article/articleDetails.html.php -->
<h2><?php echo $article->getTitle() ?></h2>
<h3 class="byline">by <?php echo $article->getAuthorName() ?></h3>

<p>
 <?php echo $article->getBody() ?>
</p>

Including this template from any other template is simple:

	Twig{# app/Resources/views/Article/list.html.twig #}
{% extends 'layout.html.twig' %}

{% block body %}
 <h1>Recent Articles<h1>

 {% for article in articles %}
 {{ include('Article/articleDetails.html.twig', { 'article': article }) }}
 {% endfor %}
{% endblock %}

	PHP<!-- app/Resources/Article/list.html.php -->
<?php $view->extend('layout.html.php') ?>

<?php $view['slots']->start('body') ?>
 <h1>Recent Articles</h1>

 <?php foreach ($articles as $article): ?>
 <?php echo $view->render(
 'Article/articleDetails.html.php',
 array('article' => $article)
) ?>
 <?php endforeach ?>
<?php $view['slots']->stop() ?>

The template is included using the {{ include() }} function. Notice that the
template name follows the same typical convention. The articleDetails.html.twig
template uses an article variable, which we pass to it. In this case,
you could avoid doing this entirely, as all of the variables available in
list.html.twig are also available in articleDetails.html.twig (unless
you set with_context [http://twig.sensiolabs.org/doc/functions/include.html] to false).

小技巧

The {'article': article} syntax is the standard Twig syntax for hash
maps (i.e. an array with named keys). If you needed to pass in multiple
elements, it would look like this: {'foo': foo, 'bar': bar}.

2.2 新版功能: The include() function [http://twig.sensiolabs.org/doc/functions/include.html] is a new Twig feature that’s available in Symfony
2.2. Prior, the {% include %} tag [http://twig.sensiolabs.org/doc/tags/include.html] tag was used.

Embedding Controllers

In some cases, you need to do more than include a simple template. Suppose
you have a sidebar in your layout that contains the three most recent articles.
Retrieving the three articles may include querying the database or performing
other heavy logic that can’t be done from within a template.

The solution is to simply embed the result of an entire controller from your
template. First, create a controller that renders a certain number of recent
articles:

// src/AppBundle/Controller/ArticleController.php
namespace AppBundle\Controller;

// ...

class ArticleController extends Controller
{
 public function recentArticlesAction($max = 3)
 {
 // make a database call or other logic
 // to get the "$max" most recent articles
 $articles = ...;

 return $this->render(
 'Article/recentList.html.twig',
 array('articles' => $articles)
);
 }
}

The recentList template is perfectly straightforward:

	Twig{# app/Resources/views/Article/recentList.html.twig #}
{% for article in articles %}

 {{ article.title }}

{% endfor %}

	PHP<!-- app/Resources/views/Article/recentList.html.php -->
<?php foreach ($articles as $article): ?>
 <a href="/article/<?php echo $article->getSlug() ?>">
 <?php echo $article->getTitle() ?>

<?php endforeach ?>

注解

Notice that the article URL is hardcoded in this example
(e.g. /article/*slug*). This is a bad practice. In the next section,
you’ll learn how to do this correctly.

To include the controller, you’ll need to refer to it using the standard
string syntax for controllers (i.e. bundle:controller:action):

	Twig{# app/Resources/views/base.html.twig #}

{# ... #}
<div id="sidebar">
 {{ render(controller(
 'AcmeArticleBundle:Article:recentArticles',
 { 'max': 3 }
)) }}
</div>

	PHP<!-- app/Resources/views/base.html.php -->

<!-- ... -->
<div id="sidebar">
 <?php echo $view['actions']->render(
 new \Symfony\Component\HttpKernel\Controller\ControllerReference(
 'AcmeArticleBundle:Article:recentArticles',
 array('max' => 3)
)
) ?>
</div>

Whenever you find that you need a variable or a piece of information that
you don’t have access to in a template, consider rendering a controller.
Controllers are fast to execute and promote good code organization and reuse.
Of course, like all controllers, they should ideally be “skinny”, meaning
that as much code as possible lives in reusable services.

Asynchronous Content with hinclude.js

2.1 新版功能: hinclude.js support was introduced in Symfony 2.1

Controllers can be embedded asynchronously using the hinclude.js [http://mnot.github.com/hinclude/] JavaScript library.
As the embedded content comes from another page (or controller for that matter),
Symfony uses a version of the standard render function to configure hinclude
tags:

	Twig{{ render_hinclude(controller('...')) }}
{{ render_hinclude(url('...')) }}

	PHP<?php echo $view['actions']->render(
 new ControllerReference('...'),
 array('renderer' => 'hinclude')
) ?>

<?php echo $view['actions']->render(
 $view['router']->generate('...'),
 array('renderer' => 'hinclude')
) ?>

注解

hinclude.js [http://mnot.github.com/hinclude/] needs to be included in your page to work.

注解

When using a controller instead of a URL, you must enable the Symfony
fragments configuration:

	YAML# app/config/config.yml
framework:
 # ...
 fragments: { path: /_fragment }

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <!-- ... -->
 <framework:config>
 <framework:fragments path="/_fragment" />
 </framework:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 // ...
 'fragments' => array('path' => '/_fragment'),
));

Default content (while loading or if JavaScript is disabled) can be set globally
in your application configuration:

	YAML# app/config/config.yml
framework:
 # ...
 templating:
 hinclude_default_template: hinclude.html.twig

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <!-- ... -->
 <framework:config>
 <framework:templating hinclude-default-template="hinclude.html.twig" />
 </framework:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 // ...
 'templating' => array(
 'hinclude_default_template' => array(
 'hinclude.html.twig',
),
),
));

2.2 新版功能: Default templates per render function was introduced in Symfony 2.2

You can define default templates per render function (which will override
any global default template that is defined):

	Twig{{ render_hinclude(controller('...'), {
 'default': 'Default/content.html.twig'
}) }}

	PHP<?php echo $view['actions']->render(
 new ControllerReference('...'),
 array(
 'renderer' => 'hinclude',
 'default' => 'Default/content.html.twig',
)
) ?>

Or you can also specify a string to display as the default content:

	Twig{{ render_hinclude(controller('...'), {'default': 'Loading...'}) }}

	PHP<?php echo $view['actions']->render(
 new ControllerReference('...'),
 array(
 'renderer' => 'hinclude',
 'default' => 'Loading...',
)
) ?>

Linking to Pages

Creating links to other pages in your application is one of the most common
jobs for a template. Instead of hardcoding URLs in templates, use the path
Twig function (or the router helper in PHP) to generate URLs based on
the routing configuration. Later, if you want to modify the URL of a particular
page, all you’ll need to do is change the routing configuration; the templates
will automatically generate the new URL.

First, link to the “_welcome” page, which is accessible via the following routing
configuration:

	YAML# app/config/routing.yml
_welcome:
 path: /
 defaults: { _controller: AppBundle:Welcome:index }

	XML<!-- app/config/routing.yml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="_welcome" path="/">
 <default key="_controller">AppBundle:Welcome:index</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\Route;
use Symfony\Component\Routing\RouteCollection;

$collection = new RouteCollection();
$collection->add('_welcome', new Route('/', array(
 '_controller' => 'AppBundle:Welcome:index',
)));

return $collection;

To link to the page, just use the path Twig function and refer to the route:

	TwigHome

	PHP<a href="<?php echo $view['router']->generate('_welcome') ?>">Home

As expected, this will generate the URL /. Now, for a more complicated
route:

	YAML# app/config/routing.yml
article_show:
 path: /article/{slug}
 defaults: { _controller: AppBundle:Article:show }

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="article_show" path="/article/{slug}">
 <default key="_controller">AppBundle:Article:show</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\Route;
use Symfony\Component\Routing\RouteCollection;

$collection = new RouteCollection();
$collection->add('article_show', new Route('/article/{slug}', array(
 '_controller' => 'AppBundle:Article:show',
)));

return $collection;

In this case, you need to specify both the route name (article_show) and
a value for the {slug} parameter. Using this route, revisit the
recentList template from the previous section and link to the articles
correctly:

	Twig{# app/Resources/views/Article/recentList.html.twig #}
{% for article in articles %}

 {{ article.title }}

{% endfor %}

	PHP<!-- app/Resources/views/Article/recentList.html.php -->
<?php foreach ($articles in $article): ?>
 <a href="<?php echo $view['router']->generate('article_show', array(
 'slug' => $article->getSlug(),
)) ?>">
 <?php echo $article->getTitle() ?>

<?php endforeach ?>

小技巧

You can also generate an absolute URL by using the url Twig function:

Home

The same can be done in PHP templates by passing a third argument to
the generate() method:

<a href="<?php echo $view['router']->generate(
 '_welcome',
 array(),
 true
) ?>">Home

Linking to Assets

Templates also commonly refer to images, JavaScript, stylesheets and other
assets. Of course you could hard-code the path to these assets (e.g. /images/logo.png),
but Symfony provides a more dynamic option via the asset Twig function:

	Twig

<link href="{{ asset('css/blog.css') }}" rel="stylesheet" type="text/css" />

	PHP<img src="<?php echo $view['assets']->getUrl('images/logo.png') ?>" alt="Symfony!" />

<link href="<?php echo $view['assets']->getUrl('css/blog.css') ?>" rel="stylesheet" type="text/css" />

The asset function’s main purpose is to make your application more portable.
If your application lives at the root of your host (e.g. http://example.com),
then the rendered paths should be /images/logo.png. But if your application
lives in a subdirectory (e.g. http://example.com/my_app), each asset path
should render with the subdirectory (e.g. /my_app/images/logo.png). The
asset function takes care of this by determining how your application is
being used and generating the correct paths accordingly.

Additionally, if you use the asset function, Symfony can automatically
append a query string to your asset, in order to guarantee that updated static
assets won’t be cached when deployed. For example, /images/logo.png might
look like /images/logo.png?v2. For more information, see the assets_version
configuration option.

Including Stylesheets and JavaScripts in Twig

No site would be complete without including JavaScript files and stylesheets.
In Symfony, the inclusion of these assets is handled elegantly by taking
advantage of Symfony’s template inheritance.

小技巧

This section will teach you the philosophy behind including stylesheet
and JavaScript assets in Symfony. Symfony also packages another library,
called Assetic, which follows this philosophy but allows you to do much
more interesting things with those assets. For more information on
using Assetic see How to Use Assetic for Asset Management.

Start by adding two blocks to your base template that will hold your assets:
one called stylesheets inside the head tag and another called javascripts
just above the closing body tag. These blocks will contain all of the
stylesheets and JavaScripts that you’ll need throughout your site:

	Twig{# app/Resources/views/base.html.twig #}
<html>
 <head>
 {# ... #}

 {% block stylesheets %}
 <link href="{{ asset('css/main.css') }}" rel="stylesheet" />
 {% endblock %}
 </head>
 <body>
 {# ... #}

 {% block javascripts %}
 <script src="{{ asset('js/main.js') }}"></script>
 {% endblock %}
 </body>
</html>

	PHP// app/Resources/views/base.html.php
<html>
 <head>
 <?php ... ?>

 <?php $view['slots']->start('stylesheets') ?>
 <link href="<?php echo $view['assets']->getUrl('css/main.css') ?>" rel="stylesheet" />
 <?php $view['slots']->stop() ?>
 </head>
 <body>
 <?php ... ?>

 <?php $view['slots']->start('javascripts') ?>
 <script src="<?php echo $view['assets']->getUrl('js/main.js') ?>"></script>
 <?php $view['slots']->stop() ?>
 </body>
</html>

That’s easy enough! But what if you need to include an extra stylesheet or
JavaScript from a child template? For example, suppose you have a contact
page and you need to include a contact.css stylesheet just on that
page. From inside that contact page’s template, do the following:

	Twig{# app/Resources/views/Contact/contact.html.twig #}
{% extends 'base.html.twig' %}

{% block stylesheets %}
 {{ parent() }}

 <link href="{{ asset('css/contact.css') }}" rel="stylesheet" />
{% endblock %}

{# ... #}

	PHP// app/Resources/views/Contact/contact.html.twig
<?php $view->extend('base.html.php') ?>

<?php $view['slots']->start('stylesheets') ?>
 <link href="<?php echo $view['assets']->getUrl('css/contact.css') ?>" rel="stylesheet" />
<?php $view['slots']->stop() ?>

In the child template, you simply override the stylesheets block and
put your new stylesheet tag inside of that block. Of course, since you want
to add to the parent block’s content (and not actually replace it), you
should use the parent() Twig function to include everything from the stylesheets
block of the base template.

You can also include assets located in your bundles’ Resources/public folder.
You will need to run the php app/console assets:install target [--symlink]
command, which moves (or symlinks) files into the correct location. (target
is by default “web”).

<link href="{{ asset('bundles/acmedemo/css/contact.css') }}" rel="stylesheet" />

The end result is a page that includes both the main.css and contact.css
stylesheets.

Global Template Variables

During each request, Symfony will set a global template variable app
in both Twig and PHP template engines by default. The app variable
is a GlobalVariables [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Templating/GlobalVariables.html]
instance which will give you access to some application specific variables
automatically:

	app.security

	The security context.

	app.user

	The current user object.

	app.request

	The request object.

	app.session

	The session object.

	app.environment

	The current environment (dev, prod, etc).

	app.debug

	True if in debug mode. False otherwise.

	Twig<p>Username: {{ app.user.username }}</p>
{% if app.debug %}
 <p>Request method: {{ app.request.method }}</p>
 <p>Application Environment: {{ app.environment }}</p>
{% endif %}

	PHP<p>Username: <?php echo $app->getUser()->getUsername() ?></p>
<?php if ($app->getDebug()): ?>
 <p>Request method: <?php echo $app->getRequest()->getMethod() ?></p>
 <p>Application Environment: <?php echo $app->getEnvironment() ?></p>
<?php endif ?>

小技巧

You can add your own global template variables. See the cookbook example
on Global Variables.

Configuring and Using the templating Service

The heart of the template system in Symfony is the templating Engine.
This special object is responsible for rendering templates and returning
their content. When you render a template in a controller, for example,
you’re actually using the templating engine service. For example:

return $this->render('Article/index.html.twig');

is equivalent to:

use Symfony\Component\HttpFoundation\Response;

$engine = $this->container->get('templating');
$content = $engine->render('Article/index.html.twig');

return $response = new Response($content);

The templating engine (or “service”) is preconfigured to work automatically
inside Symfony. It can, of course, be configured further in the application
configuration file:

	YAML# app/config/config.yml
framework:
 # ...
 templating: { engines: ['twig'] }

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <!-- ... -->
 <framework:config>
 <framework:templating>
 <framework:engine>twig</framework:engine>
 </framework:templating>
 </framework:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 // ...

 'templating' => array(
 'engines' => array('twig'),
),
));

Several configuration options are available and are covered in the
Configuration Appendix.

注解

The twig engine is mandatory to use the webprofiler (as well as many
third-party bundles).

Overriding Bundle Templates

The Symfony community prides itself on creating and maintaining high quality
bundles (see KnpBundles.com [http://knpbundles.com]) for a large number of different features.
Once you use a third-party bundle, you’ll likely need to override and customize
one or more of its templates.

Suppose you’ve installed the imaginary open-source AcmeBlogBundle in your
project. And while you’re really happy with everything, you want to override
the blog “list” page to customize the markup specifically for your application.
By digging into the Blog controller of the AcmeBlogBundle, you find the
following:

public function indexAction()
{
 // some logic to retrieve the blogs
 $blogs = ...;

 $this->render(
 'AcmeBlogBundle:Blog:index.html.twig',
 array('blogs' => $blogs)
);
}

When the AcmeBlogBundle:Blog:index.html.twig is rendered, Symfony actually
looks in two different locations for the template:

	app/Resources/AcmeBlogBundle/views/Blog/index.html.twig

	src/Acme/BlogBundle/Resources/views/Blog/index.html.twig

To override the bundle template, just copy the index.html.twig template
from the bundle to app/Resources/AcmeBlogBundle/views/Blog/index.html.twig
(the app/Resources/AcmeBlogBundle directory won’t exist, so you’ll need
to create it). You’re now free to customize the template.

警告

If you add a template in a new location, you may need to clear your
cache (php app/console cache:clear), even if you are in debug mode.

This logic also applies to base bundle templates. Suppose also that each
template in AcmeBlogBundle inherits from a base template called
AcmeBlogBundle::layout.html.twig. Just as before, Symfony will look in
the following two places for the template:

	app/Resources/AcmeBlogBundle/views/layout.html.twig

	src/Acme/BlogBundle/Resources/views/layout.html.twig

Once again, to override the template, just copy it from the bundle to
app/Resources/AcmeBlogBundle/views/layout.html.twig. You’re now free to
customize this copy as you see fit.

If you take a step back, you’ll see that Symfony always starts by looking in
the app/Resources/{BUNDLE_NAME}/views/ directory for a template. If the
template doesn’t exist there, it continues by checking inside the
Resources/views directory of the bundle itself. This means that all bundle
templates can be overridden by placing them in the correct app/Resources
subdirectory.

注解

You can also override templates from within a bundle by using bundle
inheritance. For more information, see How to Use Bundle Inheritance to Override Parts of a Bundle.

Overriding Core Templates

Since the Symfony framework itself is just a bundle, core templates can be
overridden in the same way. For example, the core TwigBundle contains
a number of different “exception” and “error” templates that can be overridden
by copying each from the Resources/views/Exception directory of the
TwigBundle to, you guessed it, the
app/Resources/TwigBundle/views/Exception directory.

Three-level Inheritance

One common way to use inheritance is to use a three-level approach. This
method works perfectly with the three different types of templates that were just
covered:

	Create a app/Resources/views/base.html.twig file that contains the main
layout for your application (like in the previous example). Internally, this
template is called base.html.twig;

	Create a template for each “section” of your site. For example, the blog
functionality would have a template called Blog/layout.html.twig that
contains only blog section-specific elements;

{# app/Resources/views/Blog/layout.html.twig #}
{% extends 'base.html.twig' %}

{% block body %}
 <h1>Blog Application</h1>

 {% block content %}{% endblock %}
{% endblock %}

	Create individual templates for each page and make each extend the appropriate
section template. For example, the “index” page would be called something
close to Blog/index.html.twig and list the actual blog posts.

{# app/Resources/views/Blog/index.html.twig #}
{% extends 'Blog/layout.html.twig' %}

{% block content %}
 {% for entry in blog_entries %}
 <h2>{{ entry.title }}</h2>
 <p>{{ entry.body }}</p>
 {% endfor %}
{% endblock %}

Notice that this template extends the section template (Blog/layout.html.twig)
which in turn extends the base application layout (base.html.twig). This is
the common three-level inheritance model.

When building your application, you may choose to follow this method or simply
make each page template extend the base application template directly
(e.g. {% extends 'base.html.twig' %}). The three-template model is a
best-practice method used by vendor bundles so that the base template for a
bundle can be easily overridden to properly extend your application’s base
layout.

Output Escaping

When generating HTML from a template, there is always a risk that a template
variable may output unintended HTML or dangerous client-side code. The result
is that dynamic content could break the HTML of the resulting page or allow
a malicious user to perform a Cross Site Scripting [http://en.wikipedia.org/wiki/Cross-site_scripting] (XSS) attack. Consider
this classic example:

	TwigHello {{ name }}

	PHPHello <?php echo $name ?>

Imagine the user enters the following code for their name:

<script>alert('hello!')</script>

Without any output escaping, the resulting template will cause a JavaScript
alert box to pop up:

Hello <script>alert('hello!')</script>

And while this seems harmless, if a user can get this far, that same user
should also be able to write JavaScript that performs malicious actions
inside the secure area of an unknowing, legitimate user.

The answer to the problem is output escaping. With output escaping on, the
same template will render harmlessly, and literally print the script
tag to the screen:

Hello <script>alert('helloe')</script>

The Twig and PHP templating systems approach the problem in different ways.
If you’re using Twig, output escaping is on by default and you’re protected.
In PHP, output escaping is not automatic, meaning you’ll need to manually
escape where necessary.

Output Escaping in Twig

If you’re using Twig templates, then output escaping is on by default. This
means that you’re protected out-of-the-box from the unintentional consequences
of user-submitted code. By default, the output escaping assumes that content
is being escaped for HTML output.

In some cases, you’ll need to disable output escaping when you’re rendering
a variable that is trusted and contains markup that should not be escaped.
Suppose that administrative users are able to write articles that contain
HTML code. By default, Twig will escape the article body.

To render it normally, add the raw filter:

{{ article.body|raw }}

You can also disable output escaping inside a {% block %} area or
for an entire template. For more information, see Output Escaping [http://twig.sensiolabs.org/doc/api.html#escaper-extension] in
the Twig documentation.

Output Escaping in PHP

Output escaping is not automatic when using PHP templates. This means that
unless you explicitly choose to escape a variable, you’re not protected. To
use output escaping, use the special escape() view method:

Hello <?php echo $view->escape($name) ?>

By default, the escape() method assumes that the variable is being rendered
within an HTML context (and thus the variable is escaped to be safe for HTML).
The second argument lets you change the context. For example, to output something
in a JavaScript string, use the js context:

var myMsg = 'Hello <?php echo $view->escape($name, 'js') ?>';

Debugging

When using PHP, you can use var_dump [http://php.net/manual/en/function.var-dump.php] if you need to quickly find
the value of a variable passed. This is useful, for example, inside your
controller. The same can be achieved when using Twig thanks to the Debug
extension.

Template parameters can then be dumped using the dump function:

{# app/Resources/views/Article/recentList.html.twig #}
{{ dump(articles) }}

{% for article in articles %}

 {{ article.title }}

{% endfor %}

The variables will only be dumped if Twig’s debug setting (in config.yml)
is true. By default this means that the variables will be dumped in the
dev environment but not the prod environment.

Syntax Checking

You can check for syntax errors in Twig templates using the twig:lint
console command:

You can check by filename:
$ php app/console twig:lint app/Resources/views/Article/recentList.html.twig

or by directory:
$ php app/console twig:lint app/Resources/views

Template Formats

Templates are a generic way to render content in any format. And while in
most cases you’ll use templates to render HTML content, a template can just
as easily generate JavaScript, CSS, XML or any other format you can dream of.

For example, the same “resource” is often rendered in several formats.
To render an article index page in XML, simply include the format in the
template name:

	XML template name: Article/index.xml.twig

	XML template filename: index.xml.twig

In reality, this is nothing more than a naming convention and the template
isn’t actually rendered differently based on its format.

In many cases, you may want to allow a single controller to render multiple
different formats based on the “request format”. For that reason, a common
pattern is to do the following:

public function indexAction(Request $request)
{
 $format = $request->getRequestFormat();

 return $this->render('Blog/index.'.$format.'.twig');
}

The getRequestFormat on the Request object defaults to html,
but can return any other format based on the format requested by the user.
The request format is most often managed by the routing, where a route can
be configured so that /contact sets the request format to html while
/contact.xml sets the format to xml. For more information, see the
Advanced Example in the Routing chapter.

To create links that include the format parameter, include a _format
key in the parameter hash:

	Twig
 PDF Version

	PHP<a href="<?php echo $view['router']->generate('article_show', array(
 'id' => 123,
 '_format' => 'pdf',
)) ?>">
 PDF Version

Final Thoughts

The templating engine in Symfony is a powerful tool that can be used each time
you need to generate presentational content in HTML, XML or any other format.
And though templates are a common way to generate content in a controller,
their use is not mandatory. The Response object returned by a controller
can be created with or without the use of a template:

// creates a Response object whose content is the rendered template
$response = $this->render('Article/index.html.twig');

// creates a Response object whose content is simple text
$response = new Response('response content');

Symfony’s templating engine is very flexible and two different template
renderers are available by default: the traditional PHP templates and the
sleek and powerful Twig templates. Both support a template hierarchy and
come packaged with a rich set of helper functions capable of performing
the most common tasks.

Overall, the topic of templating should be thought of as a powerful tool
that’s at your disposal. In some cases, you may not need to render a template,
and in Symfony, that’s absolutely fine.

Learn more from the Cookbook

	How to Use PHP instead of Twig for Templates

	How to Customize Error Pages

	How to Write a custom Twig Extension

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

Databases and Doctrine

One of the most common and challenging tasks for any application
involves persisting and reading information to and from a database. Although
the Symfony full-stack framework doesn’t integrate any ORM by default,
the Symfony Standard Edition, which is the most widely used distribution,
comes integrated with Doctrine [http://www.doctrine-project.org/], a library whose sole goal is to give
you powerful tools to make this easy. In this chapter, you’ll learn the
basic philosophy behind Doctrine and see how easy working with a database
can be.

注解

Doctrine is totally decoupled from Symfony and using it is optional.
This chapter is all about the Doctrine ORM, which aims to let you map
objects to a relational database (such as MySQL, PostgreSQL or
Microsoft SQL). If you prefer to use raw database queries, this is
easy, and explained in the “How to Use Doctrine DBAL” cookbook entry.

You can also persist data to MongoDB [http://www.mongodb.org/] using Doctrine ODM library. For
more information, read the “DoctrineMongoDBBundle [http://symfony.com/doc/current/bundles/DoctrineMongoDBBundle/index.html]”
documentation.

A Simple Example: A Product

The easiest way to understand how Doctrine works is to see it in action.
In this section, you’ll configure your database, create a Product object,
persist it to the database and fetch it back out.

Configuring the Database

Before you really begin, you’ll need to configure your database connection
information. By convention, this information is usually configured in an
app/config/parameters.yml file:

app/config/parameters.yml
parameters:
 database_driver: pdo_mysql
 database_host: localhost
 database_name: test_project
 database_user: root
 database_password: password

...

注解

Defining the configuration via parameters.yml is just a convention.
The parameters defined in that file are referenced by the main configuration
file when setting up Doctrine:

	YAML# app/config/config.yml
doctrine:
 dbal:
 driver: "%database_driver%"
 host: "%database_host%"
 dbname: "%database_name%"
 user: "%database_user%"
 password: "%database_password%"

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:doctrine="http://symfony.com/schema/dic/doctrine"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/doctrine
 http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd">

 <doctrine:config>
 <doctrine:dbal
 driver="%database_driver%"
 host="%database_host%"
 dbname="%database_name%"
 user="%database_user%"
 password="%database_password%" />
 </doctrine:config>
</container>

	PHP// app/config/config.php
$configuration->loadFromExtension('doctrine', array(
 'dbal' => array(
 'driver' => '%database_driver%',
 'host' => '%database_host%',
 'dbname' => '%database_name%',
 'user' => '%database_user%',
 'password' => '%database_password%',
),
));

By separating the database information into a separate file, you can
easily keep different versions of the file on each server. You can also
easily store database configuration (or any sensitive information) outside
of your project, like inside your Apache configuration, for example. For
more information, see How to Set external Parameters in the Service Container.

Now that Doctrine knows about your database, you can have it create the database
for you:

$ php app/console doctrine:database:create

Setting up the Database to be UTF8

One mistake even seasoned developers make when starting a Symfony project
is forgetting to set up default charset and collation on their database,
ending up with latin type collations, which are default for most databases.
They might even remember to do it the very first time, but forget that
it’s all gone after running a relatively common command during development:

$ php app/console doctrine:database:drop --force
$ php app/console doctrine:database:create

There’s no way to configure these defaults inside Doctrine, as it tries to be
as agnostic as possible in terms of environment configuration. One way to solve
this problem is to configure server-level defaults.

Setting UTF8 defaults for MySQL is as simple as adding a few lines to
your configuration file (typically my.cnf):

[mysqld]
collation-server = utf8_general_ci
character-set-server = utf8

注解

If you want to use SQLite as your database, you need to set the path
where your database file should be stored:

	YAML# app/config/config.yml
doctrine:
 dbal:
 driver: pdo_sqlite
 path: "%kernel.root_dir%/sqlite.db"
 charset: UTF8

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:doctrine="http://symfony.com/schema/dic/doctrine"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/doctrine
 http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd">

 <doctrine:config>
 <doctrine:dbal
 driver="pdo_sqlite"
 path="%kernel.root_dir%/sqlite.db"
 charset="UTF-8" />
 </doctrine:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('doctrine', array(
 'dbal' => array(
 'driver' => 'pdo_sqlite',
 'path' => '%kernel.root_dir%/sqlite.db',
 'charset' => 'UTF-8',
),
));

Creating an Entity Class

Suppose you’re building an application where products need to be displayed.
Without even thinking about Doctrine or databases, you already know that
you need a Product object to represent those products. Create this class
inside the Entity directory of your AppBundle:

// src/AppBundle/Entity/Product.php
namespace AppBundle\Entity;

class Product
{
 protected $name;
 protected $price;
 protected $description;
}

The class - often called an “entity”, meaning a basic class that holds data -
is simple and helps fulfill the business requirement of needing products
in your application. This class can’t be persisted to a database yet - it’s
just a simple PHP class.

小技巧

Once you learn the concepts behind Doctrine, you can have Doctrine create
simple entity classes for you. This will ask you interactive questions
to help you build any entity:

$ php app/console doctrine:generate:entity

Add Mapping Information

Doctrine allows you to work with databases in a much more interesting way
than just fetching rows of a column-based table into an array. Instead, Doctrine
allows you to persist entire objects to the database and fetch entire objects
out of the database. This works by mapping a PHP class to a database table,
and the properties of that PHP class to columns on the table:

[image: ../_images/doctrine_image_1.png]
For Doctrine to be able to do this, you just have to create “metadata”, or
configuration that tells Doctrine exactly how the Product class and its
properties should be mapped to the database. This metadata can be specified
in a number of different formats including YAML, XML or directly inside the
Product class via annotations:

	Annotations// src/AppBundle/Entity/Product.php
namespace AppBundle\Entity;

use Doctrine\ORM\Mapping as ORM;

/**
 * @ORM\Entity
 * @ORM\Table(name="product")
 */
class Product
{
 /**
 * @ORM\Column(type="integer")
 * @ORM\Id
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 protected $id;

 /**
 * @ORM\Column(type="string", length=100)
 */
 protected $name;

 /**
 * @ORM\Column(type="decimal", scale=2)
 */
 protected $price;

 /**
 * @ORM\Column(type="text")
 */
 protected $description;
}

	YAML# src/AppBundle/Resources/config/doctrine/Product.orm.yml
AppBundle\Entity\Product:
 type: entity
 table: product
 id:
 id:
 type: integer
 generator: { strategy: AUTO }
 fields:
 name:
 type: string
 length: 100
 price:
 type: decimal
 scale: 2
 description:
 type: text

	XML<!-- src/AppBundle/Resources/config/doctrine/Product.orm.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<doctrine-mapping xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping
 http://doctrine-project.org/schemas/orm/doctrine-mapping.xsd">

 <entity name="AppBundle\Entity\Product" table="product">
 <id name="id" type="integer">
 <generator strategy="AUTO" />
 </id>
 <field name="name" type="string" length="100" />
 <field name="price" type="decimal" scale="2" />
 <field name="description" type="text" />
 </entity>
</doctrine-mapping>

注解

A bundle can accept only one metadata definition format. For example, it’s
not possible to mix YAML metadata definitions with annotated PHP entity
class definitions.

小技巧

The table name is optional and if omitted, will be determined automatically
based on the name of the entity class.

Doctrine allows you to choose from a wide variety of different field types,
each with their own options. For information on the available field types,
see the Doctrine Field Types Reference section.

参见

You can also check out Doctrine’s Basic Mapping Documentation [http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html] for
all details about mapping information. If you use annotations, you’ll
need to prepend all annotations with ORM\ (e.g. ORM\Column(...)),
which is not shown in Doctrine’s documentation. You’ll also need to include
the use Doctrine\ORM\Mapping as ORM; statement, which imports the
ORM annotations prefix.

警告

Be careful that your class name and properties aren’t mapped to a protected
SQL keyword (such as group or user). For example, if your entity
class name is Group, then, by default, your table name will be group,
which will cause an SQL error in some engines. See Doctrine’s
Reserved SQL keywords documentation [http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#quoting-reserved-words] on how to properly escape these
names. Alternatively, if you’re free to choose your database schema,
simply map to a different table name or column name. See Doctrine’s
Persistent classes [http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#persistent-classes] and Property Mapping [http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#property-mapping] documentation.

注解

When using another library or program (e.g. Doxygen) that uses annotations,
you should place the @IgnoreAnnotation annotation on the class to
indicate which annotations Symfony should ignore.

For example, to prevent the @fn annotation from throwing an exception,
add the following:

/**
 * @IgnoreAnnotation("fn")
 */
class Product
// ...

Generating Getters and Setters

Even though Doctrine now knows how to persist a Product object to the
database, the class itself isn’t really useful yet. Since Product is just
a regular PHP class, you need to create getter and setter methods (e.g. getName(),
setName()) in order to access its properties (since the properties are
protected). Fortunately, Doctrine can do this for you by running:

$ php app/console doctrine:generate:entities AppBundle/Entity/Product

This command makes sure that all the getters and setters are generated
for the Product class. This is a safe command - you can run it over and
over again: it only generates getters and setters that don’t exist (i.e. it
doesn’t replace your existing methods).

警告

Keep in mind that Doctrine’s entity generator produces simple getters/setters.
You should check generated entities and adjust getter/setter logic to your own
needs.

More about doctrine:generate:entities

With the doctrine:generate:entities command you can:

	generate getters and setters;

	generate repository classes configured with the
@ORM\Entity(repositoryClass="...") annotation;

	generate the appropriate constructor for 1:n and n:m relations.

The doctrine:generate:entities command saves a backup of the original
Product.php named Product.php~. In some cases, the presence of
this file can cause a “Cannot redeclare class” error. It can be safely
removed. You can also use the --no-backup option to prevent generating
these backup files.

Note that you don’t need to use this command. Doctrine doesn’t rely
on code generation. Like with normal PHP classes, you just need to make
sure that your protected/private properties have getter and setter methods.
Since this is a common thing to do when using Doctrine, this command
was created.

You can also generate all known entities (i.e. any PHP class with Doctrine
mapping information) of a bundle or an entire namespace:

generates all entities in the AppBundle
$ php app/console doctrine:generate:entities AppBundle

generates all entities of bundles in the Acme namespace
$ php app/console doctrine:generate:entities Acme

注解

Doctrine doesn’t care whether your properties are protected or private,
or whether you have a getter or setter function for a property.
The getters and setters are generated here only because you’ll need them
to interact with your PHP object.

Creating the Database Tables/Schema

You now have a usable Product class with mapping information so that
Doctrine knows exactly how to persist it. Of course, you don’t yet have the
corresponding product table in your database. Fortunately, Doctrine can
automatically create all the database tables needed for every known entity
in your application. To do this, run:

$ php app/console doctrine:schema:update --force

小技巧

Actually, this command is incredibly powerful. It compares what
your database should look like (based on the mapping information of
your entities) with how it actually looks, and generates the SQL statements
needed to update the database to where it should be. In other words, if you add
a new property with mapping metadata to Product and run this task
again, it will generate the “alter table” statement needed to add that
new column to the existing product table.

An even better way to take advantage of this functionality is via
migrations [http://symfony.com/doc/current/bundles/DoctrineMigrationsBundle/index.html], which allow you to generate these SQL statements and store
them in migration classes that can be run systematically on your production
server in order to track and migrate your database schema safely and
reliably.

Your database now has a fully-functional product table with columns that
match the metadata you’ve specified.

Persisting Objects to the Database

Now that you have a mapped Product entity and corresponding product
table, you’re ready to persist data to the database. From inside a controller,
this is pretty easy. Add the following method to the DefaultController
of the bundle:

// src/AppBundle/Controller/DefaultController.php

// ...
use AppBundle\Entity\Product;
use Symfony\Component\HttpFoundation\Response;

// ...
public function createAction()
{
 $product = new Product();
 $product->setName('A Foo Bar');
 $product->setPrice('19.99');
 $product->setDescription('Lorem ipsum dolor');

 $em = $this->getDoctrine()->getManager();

 $em->persist($product);
 $em->flush();

 return new Response('Created product id '.$product->getId());
}

注解

If you’re following along with this example, you’ll need to create a
route that points to this action to see it work.

小技巧

This article shows working with Doctrine from within a controller by using
the getDoctrine() [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_getDoctrine]
method of the controller. This method is a shortcut to get the
doctrine service. You can work with Doctrine anywhere else
by injecting that service in the service. See
Service Container for more on creating your own services.

Take a look at the previous example in more detail:

	lines 10-13 In this section, you instantiate and work with the $product
object like any other, normal PHP object.

	line 15 This line fetches Doctrine’s entity manager object, which is
responsible for handling the process of persisting and fetching objects
to and from the database.

	line 16 The persist() method tells Doctrine to “manage” the $product
object. This does not actually cause a query to be made to the database (yet).

	line 17 When the flush() method is called, Doctrine looks through
all of the objects that it’s managing to see if they need to be persisted
to the database. In this example, the $product object has not been
persisted yet, so the entity manager executes an INSERT query and a
row is created in the product table.

注解

In fact, since Doctrine is aware of all your managed entities, when you call
the flush() method, it calculates an overall changeset and executes
the queries in the correct order. It utilizes cached prepared statement to
slightly improve the performance. For example, if you persist a total of 100
Product objects and then subsequently call flush(), Doctrine will
execute 100 INSERT queries using a single prepared statement object.

When creating or updating objects, the workflow is always the same. In the
next section, you’ll see how Doctrine is smart enough to automatically issue
an UPDATE query if the record already exists in the database.

小技巧

Doctrine provides a library that allows you to programmatically load testing
data into your project (i.e. “fixture data”). For information, see
the “DoctrineFixturesBundle [http://symfony.com/doc/current/bundles/DoctrineFixturesBundle/index.html]” documentation.

Fetching Objects from the Database

Fetching an object back out of the database is even easier. For example,
suppose you’ve configured a route to display a specific Product based
on its id value:

public function showAction($id)
{
 $product = $this->getDoctrine()
 ->getRepository('AppBundle:Product')
 ->find($id);

 if (!$product) {
 throw $this->createNotFoundException(
 'No product found for id '.$id
);
 }

 // ... do something, like pass the $product object into a template
}

小技巧

You can achieve the equivalent of this without writing any code by using
the @ParamConverter shortcut. See the FrameworkExtraBundle documentation [http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/converters.html]
for more details.

When you query for a particular type of object, you always use what’s known
as its “repository”. You can think of a repository as a PHP class whose only
job is to help you fetch entities of a certain class. You can access the
repository object for an entity class via:

$repository = $this->getDoctrine()
 ->getRepository('AppBundle:Product');

注解

The AppBundle:Product string is a shortcut you can use anywhere
in Doctrine instead of the full class name of the entity (i.e. AppBundle\Entity\Product).
As long as your entity lives under the Entity namespace of your bundle,
this will work.

Once you have your repository, you have access to all sorts of helpful methods:

// query by the primary key (usually "id")
$product = $repository->find($id);

// dynamic method names to find based on a column value
$product = $repository->findOneById($id);
$product = $repository->findOneByName('foo');

// find *all* products
$products = $repository->findAll();

// find a group of products based on an arbitrary column value
$products = $repository->findByPrice(19.99);

注解

Of course, you can also issue complex queries, which you’ll learn more
about in the Querying for Objects section.

You can also take advantage of the useful findBy and findOneBy methods
to easily fetch objects based on multiple conditions:

// query for one product matching by name and price
$product = $repository->findOneBy(
 array('name' => 'foo', 'price' => 19.99)
);

// query for all products matching the name, ordered by price
$products = $repository->findBy(
 array('name' => 'foo'),
 array('price' => 'ASC')
);

小技巧

When you render any page, you can see how many queries were made in the
bottom right corner of the web debug toolbar.

[image: ../_images/doctrine_web_debug_toolbar.png]
If you click the icon, the profiler will open, showing you the exact
queries that were made.

Updating an Object

Once you’ve fetched an object from Doctrine, updating it is easy. Suppose
you have a route that maps a product id to an update action in a controller:

public function updateAction($id)
{
 $em = $this->getDoctrine()->getManager();
 $product = $em->getRepository('AppBundle:Product')->find($id);

 if (!$product) {
 throw $this->createNotFoundException(
 'No product found for id '.$id
);
 }

 $product->setName('New product name!');
 $em->flush();

 return $this->redirect($this->generateUrl('homepage'));
}

Updating an object involves just three steps:

	fetching the object from Doctrine;

	modifying the object;

	calling flush() on the entity manager

Notice that calling $em->persist($product) isn’t necessary. Recall that
this method simply tells Doctrine to manage or “watch” the $product object.
In this case, since you fetched the $product object from Doctrine, it’s
already managed.

Deleting an Object

Deleting an object is very similar, but requires a call to the remove()
method of the entity manager:

$em->remove($product);
$em->flush();

As you might expect, the remove() method notifies Doctrine that you’d
like to remove the given object from the database. The actual DELETE query,
however, isn’t actually executed until the flush() method is called.

Querying for Objects

You’ve already seen how the repository object allows you to run basic queries
without any work:

$repository->find($id);

$repository->findOneByName('Foo');

Of course, Doctrine also allows you to write more complex queries using the
Doctrine Query Language (DQL). DQL is similar to SQL except that you should
imagine that you’re querying for one or more objects of an entity class (e.g. Product)
instead of querying for rows on a table (e.g. product).

When querying in Doctrine, you have two options: writing pure Doctrine queries
or using Doctrine’s Query Builder.

Querying for Objects Using Doctrine’s Query Builder

Imagine that you want to query for products, but only return products that
cost more than 19.99, ordered from cheapest to most expensive. You can use
Doctrine’s QueryBuilder for this:

$repository = $this->getDoctrine()
 ->getRepository('AppBundle:Product');

$query = $repository->createQueryBuilder('p')
 ->where('p.price > :price')
 ->setParameter('price', '19.99')
 ->orderBy('p.price', 'ASC')
 ->getQuery();

$products = $query->getResult();

The QueryBuilder object contains every method necessary to build your
query. By calling the getQuery() method, the query builder returns a
normal Query object, which can be used to get the result of the query.

小技巧

Take note of the setParameter() method. When working with Doctrine,
it’s always a good idea to set any external values as “placeholders”
(:price in the example above) as it prevents SQL injection attacks.

The getResult() method returns an array of results. To get only one
result, you can use getSingleResult() (which throws an exception if there
is no result) or getOneOrNullResult():

$product = $query->getOneOrNullResult();

For more information on Doctrine’s Query Builder, consult Doctrine’s
Query Builder [http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/query-builder.html] documentation.

Querying for Objects with DQL

Instead of using the QueryBuilder, you can alternatively write the queries
directly using DQL:

$em = $this->getDoctrine()->getManager();
$query = $em->createQuery(
 'SELECT p
 FROM AppBundle:Product p
 WHERE p.price > :price
 ORDER BY p.price ASC'
)->setParameter('price', '19.99');

$products = $query->getResult();

If you’re comfortable with SQL, then DQL should feel very natural. The biggest
difference is that you need to think in terms of “objects” instead of rows
in a database. For this reason, you select from the AppBundle:Product
object and then alias it as p (as you see, this is equal to what you
already did in the previous section).

The DQL syntax is incredibly powerful, allowing you to easily join between
entities (the topic of relations will be
covered later), group, etc. For more information, see the official
Doctrine Query Language [http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/dql-doctrine-query-language.html] documentation.

Custom Repository Classes

In the previous sections, you began constructing and using more complex queries
from inside a controller. In order to isolate, test and reuse these queries,
it’s a good practice to create a custom repository class for your entity and
add methods with your query logic there.

To do this, add the name of the repository class to your mapping definition:

	Annotations// src/AppBundle/Entity/Product.php
namespace AppBundle\Entity;

use Doctrine\ORM\Mapping as ORM;

/**
 * @ORM\Entity(repositoryClass="AppBundle\Entity\ProductRepository")
 */
class Product
{
 //...
}

	YAML# src/AppBundle/Resources/config/doctrine/Product.orm.yml
AppBundle\Entity\Product:
 type: entity
 repositoryClass: AppBundle\Entity\ProductRepository
 # ...

	XML<!-- src/AppBundle/Resources/config/doctrine/Product.orm.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<doctrine-mapping xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping
 http://doctrine-project.org/schemas/orm/doctrine-mapping.xsd">

 <entity
 name="AppBundle\Entity\Product"
 repository-class="AppBundle\Entity\ProductRepository">

 <!-- ... -->
 </entity>
</doctrine-mapping>

Doctrine can generate the repository class for you by running the same command
used earlier to generate the missing getter and setter methods:

$ php app/console doctrine:generate:entities AppBundle

Next, add a new method - findAllOrderedByName() - to the newly generated
repository class. This method will query for all the Product entities,
ordered alphabetically.

// src/AppBundle/Entity/ProductRepository.php
namespace AppBundle\Entity;

use Doctrine\ORM\EntityRepository;

class ProductRepository extends EntityRepository
{
 public function findAllOrderedByName()
 {
 return $this->getEntityManager()
 ->createQuery(
 'SELECT p FROM AppBundle:Product p ORDER BY p.name ASC'
)
 ->getResult();
 }
}

小技巧

The entity manager can be accessed via $this->getEntityManager()
from inside the repository.

You can use this new method just like the default finder methods of the repository:

$em = $this->getDoctrine()->getManager();
$products = $em->getRepository('AppBundle:Product')
 ->findAllOrderedByName();

注解

When using a custom repository class, you still have access to the default
finder methods such as find() and findAll().

Entity Relationships/Associations

Suppose that the products in your application all belong to exactly one “category”.
In this case, you’ll need a Category object and a way to relate a Product
object to a Category object. Start by creating the Category entity.
Since you know that you’ll eventually need to persist the class through Doctrine,
you can let Doctrine create the class for you.

$ php app/console doctrine:generate:entity \
 --entity="AppBundle:Category" \
 --fields="name:string(255)"

This task generates the Category entity for you, with an id field,
a name field and the associated getter and setter functions.

Relationship Mapping Metadata

To relate the Category and Product entities, start by creating a
products property on the Category class:

	Annotations// src/AppBundle/Entity/Category.php

// ...
use Doctrine\Common\Collections\ArrayCollection;

class Category
{
 // ...

 /**
 * @ORM\OneToMany(targetEntity="Product", mappedBy="category")
 */
 protected $products;

 public function __construct()
 {
 $this->products = new ArrayCollection();
 }
}

	YAML# src/AppBundle/Resources/config/doctrine/Category.orm.yml
AppBundle\Entity\Category:
 type: entity
 # ...
 oneToMany:
 products:
 targetEntity: Product
 mappedBy: category
 # don't forget to init the collection in the __construct() method
 # of the entity

	XML<!-- src/AppBundle/Resources/config/doctrine/Category.orm.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<doctrine-mapping xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping
 http://doctrine-project.org/schemas/orm/doctrine-mapping.xsd">

 <entity name="AppBundle\Entity\Category">
 <!-- ... -->
 <one-to-many
 field="products"
 target-entity="Product"
 mapped-by="category" />

 <!--
 don't forget to init the collection in
 the __construct() method of the entity
 -->
 </entity>
</doctrine-mapping>

First, since a Category object will relate to many Product objects,
a products array property is added to hold those Product objects.
Again, this isn’t done because Doctrine needs it, but instead because it
makes sense in the application for each Category to hold an array of
Product objects.

注解

The code in the __construct() method is important because Doctrine
requires the $products property to be an ArrayCollection object.
This object looks and acts almost exactly like an array, but has some
added flexibility. If this makes you uncomfortable, don’t worry. Just
imagine that it’s an array and you’ll be in good shape.

小技巧

The targetEntity value in the decorator used above can reference any entity
with a valid namespace, not just entities defined in the same namespace. To
relate to an entity defined in a different class or bundle, enter a full
namespace as the targetEntity.

Next, since each Product class can relate to exactly one Category
object, you’ll want to add a $category property to the Product class:

	Annotations// src/AppBundle/Entity/Product.php

// ...
class Product
{
 // ...

 /**
 * @ORM\ManyToOne(targetEntity="Category", inversedBy="products")
 * @ORM\JoinColumn(name="category_id", referencedColumnName="id")
 */
 protected $category;
}

	YAML# src/AppBundle/Resources/config/doctrine/Product.orm.yml
AppBundle\Entity\Product:
 type: entity
 # ...
 manyToOne:
 category:
 targetEntity: Category
 inversedBy: products
 joinColumn:
 name: category_id
 referencedColumnName: id

	XML<!-- src/AppBundle/Resources/config/doctrine/Product.orm.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<doctrine-mapping xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping
 http://doctrine-project.org/schemas/orm/doctrine-mapping.xsd">

 <entity name="AppBundle\Entity\Product">
 <!-- ... -->
 <many-to-one
 field="category"
 target-entity="Category"
 inversed-by="products"
 join-column="category">

 <join-column name="category_id" referenced-column-name="id" />
 </many-to-one>
 </entity>
</doctrine-mapping>

Finally, now that you’ve added a new property to both the Category and
Product classes, tell Doctrine to generate the missing getter and setter
methods for you:

$ php app/console doctrine:generate:entities AppBundle

Ignore the Doctrine metadata for a moment. You now have two classes - Category
and Product with a natural one-to-many relationship. The Category
class holds an array of Product objects and the Product object can
hold one Category object. In other words - you’ve built your classes
in a way that makes sense for your needs. The fact that the data needs to
be persisted to a database is always secondary.

Now, look at the metadata above the $category property on the Product
class. The information here tells Doctrine that the related class is Category
and that it should store the id of the category record on a category_id
field that lives on the product table. In other words, the related Category
object will be stored on the $category property, but behind the scenes,
Doctrine will persist this relationship by storing the category’s id value
on a category_id column of the product table.

[image: ../_images/doctrine_image_2.png]
The metadata above the $products property of the Category object
is less important, and simply tells Doctrine to look at the Product.category
property to figure out how the relationship is mapped.

Before you continue, be sure to tell Doctrine to add the new category
table, and product.category_id column, and new foreign key:

$ php app/console doctrine:schema:update --force

注解

This task should only be really used during development. For a more robust
method of systematically updating your production database, read about
migrations [http://symfony.com/doc/current/bundles/DoctrineMigrationsBundle/index.html].

Saving Related Entities

Now you can see this new code in action! Imagine you’re inside a controller:

// ...

use AppBundle\Entity\Category;
use AppBundle\Entity\Product;
use Symfony\Component\HttpFoundation\Response;

class DefaultController extends Controller
{
 public function createProductAction()
 {
 $category = new Category();
 $category->setName('Main Products');

 $product = new Product();
 $product->setName('Foo');
 $product->setPrice(19.99);
 $product->setDescription('Lorem ipsum dolor');
 // relate this product to the category
 $product->setCategory($category);

 $em = $this->getDoctrine()->getManager();
 $em->persist($category);
 $em->persist($product);
 $em->flush();

 return new Response(
 'Created product id: '.$product->getId()
 .' and category id: '.$category->getId()
);
 }
}

Now, a single row is added to both the category and product tables.
The product.category_id column for the new product is set to whatever
the id is of the new category. Doctrine manages the persistence of this
relationship for you.

Fetching Related Objects

When you need to fetch associated objects, your workflow looks just like it
did before. First, fetch a $product object and then access its related
Category:

public function showAction($id)
{
 $product = $this->getDoctrine()
 ->getRepository('AppBundle:Product')
 ->find($id);

 $categoryName = $product->getCategory()->getName();

 // ...
}

In this example, you first query for a Product object based on the product’s
id. This issues a query for just the product data and hydrates the
$product object with that data. Later, when you call $product->getCategory()->getName(),
Doctrine silently makes a second query to find the Category that’s related
to this Product. It prepares the $category object and returns it to
you.

[image: ../_images/doctrine_image_3.png]
What’s important is the fact that you have easy access to the product’s related
category, but the category data isn’t actually retrieved until you ask for
the category (i.e. it’s “lazily loaded”).

You can also query in the other direction:

public function showProductsAction($id)
{
 $category = $this->getDoctrine()
 ->getRepository('AppBundle:Category')
 ->find($id);

 $products = $category->getProducts();

 // ...
}

In this case, the same things occurs: you first query out for a single Category
object, and then Doctrine makes a second query to retrieve the related Product
objects, but only once/if you ask for them (i.e. when you call ->getProducts()).
The $products variable is an array of all Product objects that relate
to the given Category object via their category_id value.

Relationships and Proxy Classes

This “lazy loading” is possible because, when necessary, Doctrine returns
a “proxy” object in place of the true object. Look again at the above
example:

$product = $this->getDoctrine()
 ->getRepository('AppBundle:Product')
 ->find($id);

$category = $product->getCategory();

// prints "Proxies\AppBundleEntityCategoryProxy"
echo get_class($category);

This proxy object extends the true Category object, and looks and
acts exactly like it. The difference is that, by using a proxy object,
Doctrine can delay querying for the real Category data until you
actually need that data (e.g. until you call $category->getName()).

The proxy classes are generated by Doctrine and stored in the cache directory.
And though you’ll probably never even notice that your $category
object is actually a proxy object, it’s important to keep it in mind.

In the next section, when you retrieve the product and category data
all at once (via a join), Doctrine will return the true Category
object, since nothing needs to be lazily loaded.

Joining Related Records

In the above examples, two queries were made - one for the original object
(e.g. a Category) and one for the related object(s) (e.g. the Product
objects).

小技巧

Remember that you can see all of the queries made during a request via
the web debug toolbar.

Of course, if you know up front that you’ll need to access both objects, you
can avoid the second query by issuing a join in the original query. Add the
following method to the ProductRepository class:

// src/AppBundle/Entity/ProductRepository.php
public function findOneByIdJoinedToCategory($id)
{
 $query = $this->getEntityManager()
 ->createQuery(
 'SELECT p, c FROM AppBundle:Product p
 JOIN p.category c
 WHERE p.id = :id'
)->setParameter('id', $id);

 try {
 return $query->getSingleResult();
 } catch (\Doctrine\ORM\NoResultException $e) {
 return null;
 }
}

Now, you can use this method in your controller to query for a Product
object and its related Category with just one query:

public function showAction($id)
{
 $product = $this->getDoctrine()
 ->getRepository('AppBundle:Product')
 ->findOneByIdJoinedToCategory($id);

 $category = $product->getCategory();

 // ...
}

More Information on Associations

This section has been an introduction to one common type of entity relationship,
the one-to-many relationship. For more advanced details and examples of how
to use other types of relations (e.g. one-to-one, many-to-many), see
Doctrine’s Association Mapping Documentation [http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/association-mapping.html].

注解

If you’re using annotations, you’ll need to prepend all annotations with
ORM\ (e.g. ORM\OneToMany), which is not reflected in Doctrine’s
documentation. You’ll also need to include the use Doctrine\ORM\Mapping as ORM;
statement, which imports the ORM annotations prefix.

Configuration

Doctrine is highly configurable, though you probably won’t ever need to worry
about most of its options. To find out more about configuring Doctrine, see
the Doctrine section of the config reference.

Lifecycle Callbacks

Sometimes, you need to perform an action right before or after an entity
is inserted, updated, or deleted. These types of actions are known as “lifecycle”
callbacks, as they’re callback methods that you need to execute during different
stages of the lifecycle of an entity (e.g. the entity is inserted, updated,
deleted, etc).

If you’re using annotations for your metadata, start by enabling the lifecycle
callbacks. This is not necessary if you’re using YAML or XML for your mapping.

/**
 * @ORM\Entity()
 * @ORM\HasLifecycleCallbacks()
 */
class Product
{
 // ...
}

Now, you can tell Doctrine to execute a method on any of the available lifecycle
events. For example, suppose you want to set a createdAt date column to
the current date, only when the entity is first persisted (i.e. inserted):

	Annotations// src/AppBundle/Entity/Product.php

/**
 * @ORM\PrePersist
 */
public function setCreatedAtValue()
{
 $this->createdAt = new \DateTime();
}

	YAML# src/AppBundle/Resources/config/doctrine/Product.orm.yml
AppBundle\Entity\Product:
 type: entity
 # ...
 lifecycleCallbacks:
 prePersist: [setCreatedAtValue]

	XML<!-- src/AppBundle/Resources/config/doctrine/Product.orm.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<doctrine-mapping xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping
 http://doctrine-project.org/schemas/orm/doctrine-mapping.xsd">

 <entity name="AppBundle\Entity\Product">
 <!-- ... -->
 <lifecycle-callbacks>
 <lifecycle-callback type="prePersist" method="setCreatedAtValue" />
 </lifecycle-callbacks>
 </entity>
</doctrine-mapping>

注解

The above example assumes that you’ve created and mapped a createdAt
property (not shown here).

Now, right before the entity is first persisted, Doctrine will automatically
call this method and the createdAt field will be set to the current date.

There are several other lifecycle events that you can hook into. For more
information on other lifecycle events and lifecycle callbacks in general, see
Doctrine’s Lifecycle Events documentation [http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html#lifecycle-events].

Lifecycle Callbacks and Event Listeners

Notice that the setCreatedAtValue() method receives no arguments. This
is always the case for lifecycle callbacks and is intentional: lifecycle
callbacks should be simple methods that are concerned with internally
transforming data in the entity (e.g. setting a created/updated field,
generating a slug value).

If you need to do some heavier lifting - like performing logging or sending
an email - you should register an external class as an event listener
or subscriber and give it access to whatever resources you need. For
more information, see How to Register Event Listeners and Subscribers.

Doctrine Field Types Reference

Doctrine comes with numerous field types available. Each of these
maps a PHP data type to a specific column type in whatever database you’re
using. For each field type, the Column can be configured further, setting
the length, nullable behavior, name and other options. To see a
list of all available types and more information, see Doctrine’s
Mapping Types documentation [http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#property-mapping].

Summary

With Doctrine, you can focus on your objects and how they’re used in your
application and worry about database persistence second. This is because
Doctrine allows you to use any PHP object to hold your data and relies on
mapping metadata information to map an object’s data to a particular database
table.

And even though Doctrine revolves around a simple concept, it’s incredibly
powerful, allowing you to create complex queries and subscribe to events
that allow you to take different actions as objects go through their persistence
lifecycle.

Learn more

For more information about Doctrine, see the Doctrine section of the
cookbook. Some useful articles might be:

	How to use Doctrine Extensions: Timestampable, Sluggable, Translatable, etc.

	Console Commands

	DoctrineFixturesBundle [http://symfony.com/doc/current/bundles/DoctrineFixturesBundle/index.html]

	DoctrineMongoDBBundle [http://symfony.com/doc/current/bundles/DoctrineMongoDBBundle/index.html]

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

Databases and Propel

One of the most common and challenging tasks for any application
involves persisting and reading information to and from a database. Symfony
does not come integrated with any ORMs but the Propel integration is easy.
To install Propel, read Working With Symfony2 [http://propelorm.org/Propel/cookbook/symfony2/working-with-symfony2.html#installation] on the Propel documentation.

A Simple Example: A Product

In this section, you’ll configure your database, create a Product object,
persist it to the database and fetch it back out.

Code along with the Example

If you want to follow along with the example in this chapter, create an
AcmeStoreBundle via:

$ php app/console generate:bundle --namespace=Acme/StoreBundle

Configuring the Database

Before you can start, you’ll need to configure your database connection
information. By convention, this information is usually configured in an
app/config/parameters.yml file:

app/config/parameters.yml
parameters:
 database_driver: mysql
 database_host: localhost
 database_name: test_project
 database_user: root
 database_password: password
 database_charset: UTF8

注解

Defining the configuration via parameters.yml is just a convention. The
parameters defined in that file are referenced by the main configuration
file when setting up Propel:

These parameters defined in parameters.yml can now be included in the
configuration file (config.yml):

propel:
 dbal:
 driver: "%database_driver%"
 user: "%database_user%"
 password: "%database_password%"
 dsn: "%database_driver%:host=%database_host%;dbname=%database_name%;charset=%database_charset%"

Now that Propel knows about your database, Symfony can create the database for
you:

$ php app/console propel:database:create

注解

In this example, you have one configured connection, named default. If
you want to configure more than one connection, read the PropelBundle
configuration section [http://propelorm.org/Propel/cookbook/symfony2/working-with-symfony2.html#configuration].

Creating a Model Class

In the Propel world, ActiveRecord classes are known as models because classes
generated by Propel contain some business logic.

注解

For people who use Symfony with Doctrine2, models are equivalent to
entities.

Suppose you’re building an application where products need to be displayed.
First, create a schema.xml file inside the Resources/config directory
of your AcmeStoreBundle:

<?xml version="1.0" encoding="UTF-8" ?>
<database
 name="default"
 namespace="Acme\StoreBundle\Model"
 defaultIdMethod="native">

 <table name="product">
 <column
 name="id"
 type="integer"
 required="true"
 primaryKey="true"
 autoIncrement="true" />

 <column
 name="name"
 type="varchar"
 primaryString="true"
 size="100" />
 <column
 name="price"
 type="decimal" />

 <column
 name="description"
 type="longvarchar" />
 </table>
</database>

Building the Model

After creating your schema.xml, generate your model from it by running:

$ php app/console propel:model:build

This generates each model class to quickly develop your application in the
Model/ directory of the AcmeStoreBundle bundle.

Creating the Database Tables/Schema

Now you have a usable Product class and all you need to persist it. Of
course, you don’t yet have the corresponding product table in your
database. Fortunately, Propel can automatically create all the database tables
needed for every known model in your application. To do this, run:

$ php app/console propel:sql:build
$ php app/console propel:sql:insert --force

Your database now has a fully-functional product table with columns that
match the schema you’ve specified.

小技巧

You can run the last three commands combined by using the following
command: php app/console propel:build --insert-sql.

Persisting Objects to the Database

Now that you have a Product object and corresponding product table,
you’re ready to persist data to the database. From inside a controller, this
is pretty easy. Add the following method to the DefaultController of the
bundle:

// src/Acme/StoreBundle/Controller/DefaultController.php

// ...
use Acme\StoreBundle\Model\Product;
use Symfony\Component\HttpFoundation\Response;

public function createAction()
{
 $product = new Product();
 $product->setName('A Foo Bar');
 $product->setPrice(19.99);
 $product->setDescription('Lorem ipsum dolor');

 $product->save();

 return new Response('Created product id '.$product->getId());
}

In this piece of code, you instantiate and work with the $product object.
When you call the save() method on it, you persist it to the database. No
need to use other services, the object knows how to persist itself.

注解

If you’re following along with this example, you’ll need to create a
route that points to this action to see it in action.

Fetching Objects from the Database

Fetching an object back from the database is even easier. For example, suppose
you’ve configured a route to display a specific Product based on its id
value:

// ...
use Acme\StoreBundle\Model\ProductQuery;

public function showAction($id)
{
 $product = ProductQuery::create()
 ->findPk($id);

 if (!$product) {
 throw $this->createNotFoundException(
 'No product found for id '.$id
);
 }

 // ... do something, like pass the $product object into a template
}

Updating an Object

Once you’ve fetched an object from Propel, updating it is easy. Suppose you
have a route that maps a product id to an update action in a controller:

// ...
use Acme\StoreBundle\Model\ProductQuery;

public function updateAction($id)
{
 $product = ProductQuery::create()
 ->findPk($id);

 if (!$product) {
 throw $this->createNotFoundException(
 'No product found for id '.$id
);
 }

 $product->setName('New product name!');
 $product->save();

 return $this->redirect($this->generateUrl('homepage'));
}

Updating an object involves just three steps:

	fetching the object from Propel (line 6 - 13);

	modifying the object (line 15);

	saving it (line 16).

Deleting an Object

Deleting an object is very similar to updating, but requires a call to the
delete() method on the object:

$product->delete();

Querying for Objects

Propel provides generated Query classes to run both basic and complex queries
without any work:

\Acme\StoreBundle\Model\ProductQuery::create()->findPk($id);

\Acme\StoreBundle\Model\ProductQuery::create()
 ->filterByName('Foo')
 ->findOne();

Imagine that you want to query for products which cost more than 19.99, ordered
from cheapest to most expensive. From inside a controller, do the following:

$products = \Acme\StoreBundle\Model\ProductQuery::create()
 ->filterByPrice(array('min' => 19.99))
 ->orderByPrice()
 ->find();

In one line, you get your products in a powerful oriented object way. No need
to waste your time with SQL or whatever, Symfony offers fully object oriented
programming and Propel respects the same philosophy by providing an awesome
abstraction layer.

If you want to reuse some queries, you can add your own methods to the
ProductQuery class:

// src/Acme/StoreBundle/Model/ProductQuery.php
class ProductQuery extends BaseProductQuery
{
 public function filterByExpensivePrice()
 {
 return $this
 ->filterByPrice(array('min' => 1000));
 }
}

But note that Propel generates a lot of methods for you and a simple
findAllOrderedByName() can be written without any effort:

\Acme\StoreBundle\Model\ProductQuery::create()
 ->orderByName()
 ->find();

Relationships/Associations

Suppose that the products in your application all belong to exactly one
“category”. In this case, you’ll need a Category object and a way to relate
a Product object to a Category object.

Start by adding the category definition in your schema.xml:

<?xml version="1.0" encoding="UTF-8" ?>
<database
 name="default"
 namespace="Acme\StoreBundle\Model"
 defaultIdMethod="native">

 <table name="product">
 <column
 name="id"
 type="integer"
 required="true"
 primaryKey="true"
 autoIncrement="true" />

 <column
 name="name"
 type="varchar"
 primaryString="true"
 size="100" />

 <column
 name="price"
 type="decimal" />

 <column
 name="description"
 type="longvarchar" />

 <column
 name="category_id"
 type="integer" />

 <foreign-key foreignTable="category">
 <reference local="category_id" foreign="id" />
 </foreign-key>
 </table>

 <table name="category">
 <column
 name="id"
 type="integer"
 required="true"
 primaryKey="true"
 autoIncrement="true" />

 <column
 name="name"
 type="varchar"
 primaryString="true"
 size="100" />
 </table>
</database>

Create the classes:

$ php app/console propel:model:build

Assuming you have products in your database, you don’t want to lose them. Thanks to
migrations, Propel will be able to update your database without losing existing
data.

$ php app/console propel:migration:generate-diff
$ php app/console propel:migration:migrate

Your database has been updated, you can continue writing your application.

Saving Related Objects

Now, try the code in action. Imagine you’re inside a controller:

// ...
use Acme\StoreBundle\Model\Category;
use Acme\StoreBundle\Model\Product;
use Symfony\Component\HttpFoundation\Response;

class DefaultController extends Controller
{
 public function createProductAction()
 {
 $category = new Category();
 $category->setName('Main Products');

 $product = new Product();
 $product->setName('Foo');
 $product->setPrice(19.99);
 // relate this product to the category
 $product->setCategory($category);

 // save the whole
 $product->save();

 return new Response(
 'Created product id: '.$product->getId().' and category id: '.$category->getId()
);
 }
}

Now, a single row is added to both the category and product tables. The
product.category_id column for the new product is set to whatever the id is
of the new category. Propel manages the persistence of this relationship for
you.

Fetching Related Objects

When you need to fetch associated objects, your workflow looks just like it did
before. First, fetch a $product object and then access its related
Category:

// ...
use Acme\StoreBundle\Model\ProductQuery;

public function showAction($id)
{
 $product = ProductQuery::create()
 ->joinWithCategory()
 ->findPk($id);

 $categoryName = $product->getCategory()->getName();

 // ...
}

Note, in the above example, only one query was made.

More Information on Associations

You will find more information on relations by reading the dedicated chapter on
Relationships [http://propelorm.org/Propel/documentation/04-relationships.html].

Lifecycle Callbacks

Sometimes, you need to perform an action right before or after an object is
inserted, updated, or deleted. These types of actions are known as “lifecycle”
callbacks or “hooks”, as they’re callback methods that you need to execute
during different stages of the lifecycle of an object (e.g. the object is
inserted, updated, deleted, etc).

To add a hook, just add a new method to the object class:

// src/Acme/StoreBundle/Model/Product.php

// ...
class Product extends BaseProduct
{
 public function preInsert(\PropelPDO $con = null)
 {
 // do something before the object is inserted
 }
}

Propel provides the following hooks:

	preInsert()

	Code executed before insertion of a new object.

	postInsert()

	Code executed after insertion of a new object.

	preUpdate()

	Code executed before update of an existing object.

	postUpdate()

	Code executed after update of an existing object.

	preSave()

	Code executed before saving an object (new or existing).

	postSave()

	Code executed after saving an object (new or existing).

	preDelete()

	Code executed before deleting an object.

	postDelete()

	Code executed after deleting an object.

Behaviors

All bundled behaviors in Propel are working with Symfony. To get more
information about how to use Propel behaviors, look at the Behaviors reference
section [http://propelorm.org/Propel/documentation/#behaviors-reference].

Commands

You should read the dedicated section for Propel commands in Symfony2 [http://propelorm.org/Propel/cookbook/symfony2/working-with-symfony2#the-commands].

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

Testing

Whenever you write a new line of code, you also potentially add new bugs.
To build better and more reliable applications, you should test your code
using both functional and unit tests.

The PHPUnit Testing Framework

Symfony integrates with an independent library - called PHPUnit - to give
you a rich testing framework. This chapter won’t cover PHPUnit itself, but
it has its own excellent documentation [http://phpunit.de/manual/current/en/].

注解

It’s recommended to use the latest stable PHPUnit version (you will have
to use version 4.2 or higher to test the Symfony core code itself).

Each test - whether it’s a unit test or a functional test - is a PHP class
that should live in the Tests/ subdirectory of your bundles. If you follow
this rule, then you can run all of your application’s tests with the following
command:

specify the configuration directory on the command line
$ phpunit -c app/

The -c option tells PHPUnit to look in the app/ directory for a configuration
file. If you’re curious about the PHPUnit options, check out the app/phpunit.xml.dist
file.

小技巧

Code coverage can be generated with the --coverage-html option.

Unit Tests

A unit test is usually a test against a specific PHP class. If you want to
test the overall behavior of your application, see the section about Functional Tests.

Writing Symfony unit tests is no different from writing standard PHPUnit
unit tests. Suppose, for example, that you have an incredibly simple class
called Calculator in the Utility/ directory of your bundle:

// src/Acme/DemoBundle/Utility/Calculator.php
namespace Acme\DemoBundle\Utility;

class Calculator
{
 public function add($a, $b)
 {
 return $a + $b;
 }
}

To test this, create a CalculatorTest file in the Tests/Utility directory
of your bundle:

// src/Acme/DemoBundle/Tests/Utility/CalculatorTest.php
namespace Acme\DemoBundle\Tests\Utility;

use Acme\DemoBundle\Utility\Calculator;

class CalculatorTest extends \PHPUnit_Framework_TestCase
{
 public function testAdd()
 {
 $calc = new Calculator();
 $result = $calc->add(30, 12);

 // assert that your calculator added the numbers correctly!
 $this->assertEquals(42, $result);
 }
}

注解

By convention, the Tests/ sub-directory should replicate the directory
of your bundle. So, if you’re testing a class in your bundle’s Utility/
directory, put the test in the Tests/Utility/ directory.

Just like in your real application - autoloading is automatically enabled
via the bootstrap.php.cache file (as configured by default in the
app/phpunit.xml.dist file).

Running tests for a given file or directory is also very easy:

run all tests in the Utility directory
$ phpunit -c app src/Acme/DemoBundle/Tests/Utility/

run tests for the Calculator class
$ phpunit -c app src/Acme/DemoBundle/Tests/Utility/CalculatorTest.php

run all tests for the entire Bundle
$ phpunit -c app src/Acme/DemoBundle/

Functional Tests

Functional tests check the integration of the different layers of an
application (from the routing to the views). They are no different from unit
tests as far as PHPUnit is concerned, but they have a very specific workflow:

	Make a request;

	Test the response;

	Click on a link or submit a form;

	Test the response;

	Rinse and repeat.

Your First Functional Test

Functional tests are simple PHP files that typically live in the Tests/Controller
directory of your bundle. If you want to test the pages handled by your
DemoController class, start by creating a new DemoControllerTest.php
file that extends a special WebTestCase class.

For example, the Symfony Standard Edition provides a simple functional test
for its DemoController (DemoControllerTest [https://github.com/sensiolabs/SensioDistributionBundle/blob/master/Resources/skeleton/acme-demo-bundle/Acme/DemoBundle/Tests/Controller/DemoControllerTest.php]) that reads as follows:

// src/Acme/DemoBundle/Tests/Controller/DemoControllerTest.php
namespace Acme\DemoBundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class DemoControllerTest extends WebTestCase
{
 public function testIndex()
 {
 $client = static::createClient();

 $crawler = $client->request('GET', '/demo/hello/Fabien');

 $this->assertGreaterThan(
 0,
 $crawler->filter('html:contains("Hello Fabien")')->count()
);
 }
}

小技巧

To run your functional tests, the WebTestCase class bootstraps the
kernel of your application. In most cases, this happens automatically.
However, if your kernel is in a non-standard directory, you’ll need
to modify your phpunit.xml.dist file to set the KERNEL_DIR environment
variable to the directory of your kernel:

<phpunit>
 <!-- ... -->
 <php>
 <server name="KERNEL_DIR" value="/path/to/your/app/" />
 </php>
 <!-- ... -->
</phpunit>

The createClient() method returns a client, which is like a browser that
you’ll use to crawl your site:

$crawler = $client->request('GET', '/demo/hello/Fabien');

The request() method (see more about the request method)
returns a Crawler [http://api.symfony.com/master/Symfony/Component/DomCrawler/Crawler.html] object which can
be used to select elements in the Response, click on links, and submit forms.

小技巧

The Crawler only works when the response is an XML or an HTML document.
To get the raw content response, call $client->getResponse()->getContent().

Click on a link by first selecting it with the Crawler using either an XPath
expression or a CSS selector, then use the Client to click on it. For example,
the following code finds all links with the text Greet, then selects
the second one, and ultimately clicks on it:

$link = $crawler->filter('a:contains("Greet")')->eq(1)->link();

$crawler = $client->click($link);

Submitting a form is very similar; select a form button, optionally override
some form values, and submit the corresponding form:

$form = $crawler->selectButton('submit')->form();

// set some values
$form['name'] = 'Lucas';
$form['form_name[subject]'] = 'Hey there!';

// submit the form
$crawler = $client->submit($form);

小技巧

The form can also handle uploads and contains methods to fill in different types
of form fields (e.g. select() and tick()). For details, see the
Forms section below.

Now that you can easily navigate through an application, use assertions to test
that it actually does what you expect it to. Use the Crawler to make assertions
on the DOM:

// Assert that the response matches a given CSS selector.
$this->assertGreaterThan(0, $crawler->filter('h1')->count());

Or, test against the Response content directly if you just want to assert that
the content contains some text, or if the Response is not an XML/HTML
document:

$this->assertRegExp(
 '/Hello Fabien/',
 $client->getResponse()->getContent()
);

More about the request() Method:

The full signature of the request() method is:

request(
 $method,
 $uri,
 array $parameters = array(),
 array $files = array(),
 array $server = array(),
 $content = null,
 $changeHistory = true
)

The server array is the raw values that you’d expect to normally
find in the PHP $_SERVER [http://php.net/manual/en/reserved.variables.server.php] superglobal. For example, to set the Content-Type,
Referer and X-Requested-With HTTP headers, you’d pass the following (mind
the HTTP_ prefix for non standard headers):

$client->request(
 'GET',
 '/demo/hello/Fabien',
 array(),
 array(),
 array(
 'CONTENT_TYPE' => 'application/json',
 'HTTP_REFERER' => '/foo/bar',
 'HTTP_X-Requested-With' => 'XMLHttpRequest',
)
);

Useful Assertions

To get you started faster, here is a list of the most common and
useful test assertions:

// Assert that there is at least one h2 tag
// with the class "subtitle"
$this->assertGreaterThan(
 0,
 $crawler->filter('h2.subtitle')->count()
);

// Assert that there are exactly 4 h2 tags on the page
$this->assertCount(4, $crawler->filter('h2'));

// Assert that the "Content-Type" header is "application/json"
$this->assertTrue(
 $client->getResponse()->headers->contains(
 'Content-Type',
 'application/json'
)
);

// Assert that the response content matches a regexp.
$this->assertRegExp('/foo/', $client->getResponse()->getContent());

// Assert that the response status code is 2xx
$this->assertTrue($client->getResponse()->isSuccessful());
// Assert that the response status code is 404
$this->assertTrue($client->getResponse()->isNotFound());
// Assert a specific 200 status code
$this->assertEquals(
 200,
 $client->getResponse()->getStatusCode()
);

// Assert that the response is a redirect to /demo/contact
$this->assertTrue(
 $client->getResponse()->isRedirect('/demo/contact')
);
// or simply check that the response is a redirect to any URL
$this->assertTrue($client->getResponse()->isRedirect());

Working with the Test Client

The Test Client simulates an HTTP client like a browser and makes requests
into your Symfony application:

$crawler = $client->request('GET', '/hello/Fabien');

The request() method takes the HTTP method and a URL as arguments and
returns a Crawler instance.

小技巧

Hardcoding the request URLs is a best practice for functional tests. If the
test generates URLs using the Symfony router, it won’t detect any change
made to the application URLs which may impact the end users.

Use the Crawler to find DOM elements in the Response. These elements can then
be used to click on links and submit forms:

$link = $crawler->selectLink('Go elsewhere...')->link();
$crawler = $client->click($link);

$form = $crawler->selectButton('validate')->form();
$crawler = $client->submit($form, array('name' => 'Fabien'));

The click() and submit() methods both return a Crawler object.
These methods are the best way to browse your application as it takes care
of a lot of things for you, like detecting the HTTP method from a form and
giving you a nice API for uploading files.

小技巧

You will learn more about the Link and Form objects in the
Crawler section below.

The request method can also be used to simulate form submissions directly
or perform more complex requests:

// Directly submit a form (but using the Crawler is easier!)
$client->request('POST', '/submit', array('name' => 'Fabien'));

// Submit a raw JSON string in the request body
$client->request(
 'POST',
 '/submit',
 array(),
 array(),
 array('CONTENT_TYPE' => 'application/json'),
 '{"name":"Fabien"}'
);

// Form submission with a file upload
use Symfony\Component\HttpFoundation\File\UploadedFile;

$photo = new UploadedFile(
 '/path/to/photo.jpg',
 'photo.jpg',
 'image/jpeg',
 123
);
$client->request(
 'POST',
 '/submit',
 array('name' => 'Fabien'),
 array('photo' => $photo)
);

// Perform a DELETE requests, and pass HTTP headers
$client->request(
 'DELETE',
 '/post/12',
 array(),
 array(),
 array('PHP_AUTH_USER' => 'username', 'PHP_AUTH_PW' => 'pa$$word')
);

Last but not least, you can force each request to be executed in its own PHP
process to avoid any side-effects when working with several clients in the same
script:

$client->insulate();

Browsing

The Client supports many operations that can be done in a real browser:

$client->back();
$client->forward();
$client->reload();

// Clears all cookies and the history
$client->restart();

Accessing internal Objects

2.3 新版功能: The getInternalRequest() [http://api.symfony.com/master/Symfony/Component/BrowserKit/Client.html#method_getInternalRequest]
and getInternalResponse() [http://api.symfony.com/master/Symfony/Component/BrowserKit/Client.html#method_getInternalResponse]
methods were introduced in Symfony 2.3.

If you use the client to test your application, you might want to access the
client’s internal objects:

$history = $client->getHistory();
$cookieJar = $client->getCookieJar();

You can also get the objects related to the latest request:

// the HttpKernel request instance
$request = $client->getRequest();

// the BrowserKit request instance
$request = $client->getInternalRequest();

// the HttpKernel response instance
$response = $client->getResponse();

// the BrowserKit response instance
$response = $client->getInternalResponse();

$crawler = $client->getCrawler();

If your requests are not insulated, you can also access the Container and
the Kernel:

$container = $client->getContainer();
$kernel = $client->getKernel();

Accessing the Container

It’s highly recommended that a functional test only tests the Response. But
under certain very rare circumstances, you might want to access some internal
objects to write assertions. In such cases, you can access the dependency
injection container:

$container = $client->getContainer();

Be warned that this does not work if you insulate the client or if you use an
HTTP layer. For a list of services available in your application, use the
container:debug console task.

小技巧

If the information you need to check is available from the profiler, use
it instead.

Accessing the Profiler Data

On each request, you can enable the Symfony profiler to collect data about the
internal handling of that request. For example, the profiler could be used to
verify that a given page executes less than a certain number of database
queries when loading.

To get the Profiler for the last request, do the following:

// enable the profiler for the very next request
$client->enableProfiler();

$crawler = $client->request('GET', '/profiler');

// get the profile
$profile = $client->getProfile();

For specific details on using the profiler inside a test, see the
How to Use the Profiler in a Functional Test cookbook entry.

Redirecting

When a request returns a redirect response, the client does not follow
it automatically. You can examine the response and force a redirection
afterwards with the followRedirect() method:

$crawler = $client->followRedirect();

If you want the client to automatically follow all redirects, you can
force him with the followRedirects() method:

$client->followRedirects();

If you pass false to the followRedirects() method, the redirects
will no longer be followed:

$client->followRedirects(false);

The Crawler

A Crawler instance is returned each time you make a request with the Client.
It allows you to traverse HTML documents, select nodes, find links and forms.

Traversing

Like jQuery, the Crawler has methods to traverse the DOM of an HTML/XML
document. For example, the following finds all input[type=submit] elements,
selects the last one on the page, and then selects its immediate parent element:

$newCrawler = $crawler->filter('input[type=submit]')
 ->last()
 ->parents()
 ->first()
;

Many other methods are also available:

	filter('h1.title')

	Nodes that match the CSS selector.

	filterXpath('h1')

	Nodes that match the XPath expression.

	eq(1)

	Node for the specified index.

	first()

	First node.

	last()

	Last node.

	siblings()

	Siblings.

	nextAll()

	All following siblings.

	previousAll()

	All preceding siblings.

	parents()

	Returns the parent nodes.

	children()

	Returns children nodes.

	reduce($lambda)

	Nodes for which the callable does not return false.

Since each of these methods returns a new Crawler instance, you can
narrow down your node selection by chaining the method calls:

$crawler
 ->filter('h1')
 ->reduce(function ($node, $i) {
 if (!$node->getAttribute('class')) {
 return false;
 }
 })
 ->first()
;

小技巧

Use the count() function to get the number of nodes stored in a Crawler:
count($crawler)

Extracting Information

The Crawler can extract information from the nodes:

// Returns the attribute value for the first node
$crawler->attr('class');

// Returns the node value for the first node
$crawler->text();

// Extracts an array of attributes for all nodes
// (_text returns the node value)
// returns an array for each element in crawler,
// each with the value and href
$info = $crawler->extract(array('_text', 'href'));

// Executes a lambda for each node and return an array of results
$data = $crawler->each(function ($node, $i) {
 return $node->attr('href');
});

Links

To select links, you can use the traversing methods above or the convenient
selectLink() shortcut:

$crawler->selectLink('Click here');

This selects all links that contain the given text, or clickable images for
which the alt attribute contains the given text. Like the other filtering
methods, this returns another Crawler object.

Once you’ve selected a link, you have access to a special Link object,
which has helpful methods specific to links (such as getMethod() and
getUri()). To click on the link, use the Client’s click() method
and pass it a Link object:

$link = $crawler->selectLink('Click here')->link();

$client->click($link);

Forms

Just like links, you select forms with the selectButton() method:

$buttonCrawlerNode = $crawler->selectButton('submit');

注解

Notice that you select form buttons and not forms as a form can have several
buttons; if you use the traversing API, keep in mind that you must look for a
button.

The selectButton() method can select button tags and submit input
tags. It uses several parts of the buttons to find them:

	The value attribute value;

	The id or alt attribute value for images;

	The id or name attribute value for button tags.

Once you have a Crawler representing a button, call the form() method
to get a Form instance for the form wrapping the button node:

$form = $buttonCrawlerNode->form();

When calling the form() method, you can also pass an array of field values
that overrides the default ones:

$form = $buttonCrawlerNode->form(array(
 'name' => 'Fabien',
 'my_form[subject]' => 'Symfony rocks!',
));

And if you want to simulate a specific HTTP method for the form, pass it as a
second argument:

$form = $buttonCrawlerNode->form(array(), 'DELETE');

The Client can submit Form instances:

$client->submit($form);

The field values can also be passed as a second argument of the submit()
method:

$client->submit($form, array(
 'name' => 'Fabien',
 'my_form[subject]' => 'Symfony rocks!',
));

For more complex situations, use the Form instance as an array to set the
value of each field individually:

// Change the value of a field
$form['name'] = 'Fabien';
$form['my_form[subject]'] = 'Symfony rocks!';

There is also a nice API to manipulate the values of the fields according to
their type:

// Select an option or a radio
$form['country']->select('France');

// Tick a checkbox
$form['like_symfony']->tick();

// Upload a file
$form['photo']->upload('/path/to/lucas.jpg');

小技巧

You can get the values that will be submitted by calling the getValues()
method on the Form object. The uploaded files are available in a
separate array returned by getFiles(). The getPhpValues() and
getPhpFiles() methods also return the submitted values, but in the
PHP format (it converts the keys with square brackets notation - e.g.
my_form[subject] - to PHP arrays).

Testing Configuration

The Client used by functional tests creates a Kernel that runs in a special
test environment. Since Symfony loads the app/config/config_test.yml
in the test environment, you can tweak any of your application’s settings
specifically for testing.

For example, by default, the Swift Mailer is configured to not actually
deliver emails in the test environment. You can see this under the swiftmailer
configuration option:

	YAML# app/config/config_test.yml

...
swiftmailer:
 disable_delivery: true

	XML<!-- app/config/config_test.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:swiftmailer="http://symfony.com/schema/dic/swiftmailer"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/swiftmailer
 http://symfony.com/schema/dic/swiftmailer/swiftmailer-1.0.xsd">

 <!-- ... -->
 <swiftmailer:config disable-delivery="true" />
</container>

	PHP// app/config/config_test.php

// ...
$container->loadFromExtension('swiftmailer', array(
 'disable_delivery' => true,
));

You can also use a different environment entirely, or override the default
debug mode (true) by passing each as options to the createClient()
method:

$client = static::createClient(array(
 'environment' => 'my_test_env',
 'debug' => false,
));

If your application behaves according to some HTTP headers, pass them as the
second argument of createClient():

$client = static::createClient(array(), array(
 'HTTP_HOST' => 'en.example.com',
 'HTTP_USER_AGENT' => 'MySuperBrowser/1.0',
));

You can also override HTTP headers on a per request basis:

$client->request('GET', '/', array(), array(), array(
 'HTTP_HOST' => 'en.example.com',
 'HTTP_USER_AGENT' => 'MySuperBrowser/1.0',
));

小技巧

The test client is available as a service in the container in the test
environment (or wherever the framework.test
option is enabled). This means you can override the service entirely
if you need to.

PHPUnit Configuration

Each application has its own PHPUnit configuration, stored in the
app/phpunit.xml.dist file. You can edit this file to change the defaults or
create an app/phpunit.xml file to set up a configuration for your local
machine only.

小技巧

Store the app/phpunit.xml.dist file in your code repository and ignore
the app/phpunit.xml file.

By default, only the tests from your own custom bundles stored in the standard
directories src/*/*Bundle/Tests, src/*/Bundle/*Bundle/Tests,
src/*Bundle/Tests are run by the phpunit command, as configured
in the app/phpunit.xml.dist file:

<!-- app/phpunit.xml.dist -->
<phpunit>
 <!-- ... -->
 <testsuites>
 <testsuite name="Project Test Suite">
 <directory>../src/*/*Bundle/Tests</directory>
 <directory>../src/*/Bundle/*Bundle/Tests</directory>
 <directory>../src/*Bundle/Tests</directory>
 </testsuite>
 </testsuites>
 <!-- ... -->
</phpunit>

But you can easily add more directories. For instance, the following
configuration adds tests from a custom lib/tests directory:

<!-- app/phpunit.xml.dist -->
<phpunit>
 <!-- ... -->
 <testsuites>
 <testsuite name="Project Test Suite">
 <!-- ... --->
 <directory>../lib/tests</directory>
 </testsuite>
 </testsuites>
 <!-- ... --->
</phpunit>

To include other directories in the code coverage, also edit the <filter>
section:

<!-- app/phpunit.xml.dist -->
<phpunit>
 <!-- ... -->
 <filter>
 <whitelist>
 <!-- ... -->
 <directory>../lib</directory>
 <exclude>
 <!-- ... -->
 <directory>../lib/tests</directory>
 </exclude>
 </whitelist>
 </filter>
 <!-- ... --->
</phpunit>

Learn more

	The DomCrawler Component

	The CssSelector Component

	How to Simulate HTTP Authentication in a Functional Test

	How to Test the Interaction of several Clients

	How to Use the Profiler in a Functional Test

	How to Customize the Bootstrap Process before Running Tests

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

Validation

Validation is a very common task in web applications. Data entered in forms
needs to be validated. Data also needs to be validated before it is written
into a database or passed to a web service.

Symfony ships with a Validator [https://github.com/symfony/Validator] component that makes this task easy and
transparent. This component is based on the
JSR303 Bean Validation specification [http://jcp.org/en/jsr/detail?id=303].

The Basics of Validation

The best way to understand validation is to see it in action. To start, suppose
you’ve created a plain-old-PHP object that you need to use somewhere in
your application:

// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

class Author
{
 public $name;
}

So far, this is just an ordinary class that serves some purpose inside your
application. The goal of validation is to tell you if the data
of an object is valid. For this to work, you’ll configure a list of rules
(called constraints) that the object must
follow in order to be valid. These rules can be specified via a number of
different formats (YAML, XML, annotations, or PHP).

For example, to guarantee that the $name property is not empty, add the
following:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 name:
 - NotBlank: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\NotBlank()
 */
 public $name;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="name">
 <constraint name="NotBlank" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\NotBlank;

class Author
{
 public $name;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('name', new NotBlank());
 }
}

小技巧

Protected and private properties can also be validated, as well as “getter”
methods (see Constraint Targets).

Using the validator Service

Next, to actually validate an Author object, use the validate method
on the validator service (class Validator [http://api.symfony.com/master/Symfony/Component/Validator/Validator.html]).
The job of the validator is easy: to read the constraints (i.e. rules)
of a class and verify if the data on the object satisfies those
constraints. If validation fails, a non-empty list of errors
(class ConstraintViolationList [http://api.symfony.com/master/Symfony/Component/Validator/ConstraintViolationList.html]) is
returned. Take this simple example from inside a controller:

// ...
use Symfony\Component\HttpFoundation\Response;
use Acme\BlogBundle\Entity\Author;

public function indexAction()
{
 $author = new Author();
 // ... do something to the $author object

 $validator = $this->get('validator');
 $errors = $validator->validate($author);

 if (count($errors) > 0) {
 /*
 * Uses a __toString method on the $errors variable which is a
 * ConstraintViolationList object. This gives us a nice string
 * for debugging
 */
 $errorsString = (string) $errors;

 return new Response($errorsString);
 }

 return new Response('The author is valid! Yes!');
}

If the $name property is empty, you will see the following error
message:

Acme\BlogBundle\Author.name:
 This value should not be blank

If you insert a value into the name property, the happy success message
will appear.

小技巧

Most of the time, you won’t interact directly with the validator
service or need to worry about printing out the errors. Most of the time,
you’ll use validation indirectly when handling submitted form data. For
more information, see the Validation and Forms.

You could also pass the collection of errors into a template.

if (count($errors) > 0) {
 return $this->render('AcmeBlogBundle:Author:validate.html.twig', array(
 'errors' => $errors,
));
}

Inside the template, you can output the list of errors exactly as needed:

	Twig{# src/Acme/BlogBundle/Resources/views/Author/validate.html.twig #}
<h3>The author has the following errors</h3>

{% for error in errors %}
 {{ error.message }}
{% endfor %}

	PHP<!-- src/Acme/BlogBundle/Resources/views/Author/validate.html.php -->
<h3>The author has the following errors</h3>

<?php foreach ($errors as $error): ?>
 <?php echo $error->getMessage() ?>
<?php endforeach ?>

注解

Each validation error (called a “constraint violation”), is represented by
a ConstraintViolation [http://api.symfony.com/master/Symfony/Component/Validator/ConstraintViolation.html] object.

Validation and Forms

The validator service can be used at any time to validate any object.
In reality, however, you’ll usually work with the validator indirectly
when working with forms. Symfony’s form library uses the validator service
internally to validate the underlying object after values have been submitted.
The constraint violations on the object are converted into FieldError
objects that can easily be displayed with your form. The typical form submission
workflow looks like the following from inside a controller:

// ...
use Acme\BlogBundle\Entity\Author;
use Acme\BlogBundle\Form\AuthorType;
use Symfony\Component\HttpFoundation\Request;

public function updateAction(Request $request)
{
 $author = new Author();
 $form = $this->createForm(new AuthorType(), $author);

 $form->handleRequest($request);

 if ($form->isValid()) {
 // the validation passed, do something with the $author object

 return $this->redirect($this->generateUrl(...));
 }

 return $this->render('BlogBundle:Author:form.html.twig', array(
 'form' => $form->createView(),
));
}

注解

This example uses an AuthorType form class, which is not shown here.

For more information, see the Forms chapter.

Configuration

The Symfony validator is enabled by default, but you must explicitly enable
annotations if you’re using the annotation method to specify your constraints:

	YAML# app/config/config.yml
framework:
 validation: { enable_annotations: true }

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <framework:config>
 <framework:validation enable-annotations="true" />
 </framework:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'validation' => array(
 'enable_annotations' => true,
),
));

Constraints

The validator is designed to validate objects against constraints (i.e.
rules). In order to validate an object, simply map one or more constraints
to its class and then pass it to the validator service.

Behind the scenes, a constraint is simply a PHP object that makes an assertive
statement. In real life, a constraint could be: “The cake must not be burned”.
In Symfony, constraints are similar: they are assertions that a condition
is true. Given a value, a constraint will tell you if that value
adheres to the rules of the constraint.

Supported Constraints

Symfony packages many of the most commonly-needed constraints:

Basic Constraints

These are the basic constraints: use them to assert very basic things about
the value of properties or the return value of methods on your object.

	NotBlank

	Blank

	NotNull

	Null

	True

	False

	Type

String Constraints

	Email

	Length

	Url

	Regex

	Ip

Number Constraints

	Range

Comparison Constraints

	EqualTo

	NotEqualTo

	IdenticalTo

	NotIdenticalTo

	LessThan

	LessThanOrEqual

	GreaterThan

	GreaterThanOrEqual

Date Constraints

	Date

	DateTime

	Time

Collection Constraints

	Choice

	Collection

	Count

	UniqueEntity

	Language

	Locale

	Country

File Constraints

	File

	Image

Financial and other Number Constraints

	CardScheme

	Currency

	Luhn

	Iban

	Isbn

	Issn

Other Constraints

	Callback

	All

	UserPassword

	Valid

You can also create your own custom constraints. This topic is covered in
the “How to Create a custom Validation Constraint” article of the cookbook.

Constraint Configuration

Some constraints, like NotBlank,
are simple whereas others, like the Choice
constraint, have several configuration options available. Suppose that the
Author class has another property, gender that can be set to either
“male” or “female”:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 gender:
 - Choice: { choices: [male, female], message: Choose a valid gender. }

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Choice(
 * choices = { "male", "female" },
 * message = "Choose a valid gender."
 *)
 */
 public $gender;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="gender">
 <constraint name="Choice">
 <option name="choices">
 <value>male</value>
 <value>female</value>
 </option>
 <option name="message">Choose a valid gender.</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\Choice;

class Author
{
 public $gender;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('gender', new Choice(array(
 'choices' => array('male', 'female'),
 'message' => 'Choose a valid gender.',
)));
 }
}

The options of a constraint can always be passed in as an array. Some constraints,
however, also allow you to pass the value of one, “default”, option in place
of the array. In the case of the Choice constraint, the choices
options can be specified in this way.

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 gender:
 - Choice: [male, female]

	Annotations// src/Acme/BlogBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Choice({"male", "female"})
 */
 protected $gender;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="gender">
 <constraint name="Choice">
 <value>male</value>
 <value>female</value>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\Choice;

class Author
{
 protected $gender;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint(
 'gender',
 new Choice(array('male', 'female'))
);
 }
}

This is purely meant to make the configuration of the most common option of
a constraint shorter and quicker.

If you’re ever unsure of how to specify an option, either check the API documentation
for the constraint or play it safe by always passing in an array of options
(the first method shown above).

Translation Constraint Messages

For information on translating the constraint messages, see
Translating Constraint Messages.

Constraint Targets

Constraints can be applied to a class property (e.g. name) or a public
getter method (e.g. getFullName). The first is the most common and easy
to use, but the second allows you to specify more complex validation rules.

Properties

Validating class properties is the most basic validation technique. Symfony
allows you to validate private, protected or public properties. The next
listing shows you how to configure the $firstName property of an Author
class to have at least 3 characters.

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 firstName:
 - NotBlank: ~
 - Length:
 min: 3

	Annotations// Acme/BlogBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\NotBlank()
 * @Assert\Length(min = "3")
 */
 private $firstName;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="firstName">
 <constraint name="NotBlank" />
 <constraint name="Length">
 <option name="min">3</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\NotBlank;
use Symfony\Component\Validator\Constraints\Length;

class Author
{
 private $firstName;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('firstName', new NotBlank());
 $metadata->addPropertyConstraint(
 'firstName',
 new Length(array("min" => 3)));
 }
}

Getters

Constraints can also be applied to the return value of a method. Symfony
allows you to add a constraint to any public method whose name starts with
“get” or “is”. In this guide, both of these types of methods are referred
to as “getters”.

The benefit of this technique is that it allows you to validate your object
dynamically. For example, suppose you want to make sure that a password field
doesn’t match the first name of the user (for security reasons). You can
do this by creating an isPasswordLegal method, and then asserting that
this method must return true:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 getters:
 passwordLegal:
 - "True": { message: "The password cannot match your first name" }

	Annotations// src/Acme/BlogBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\True(message = "The password cannot match your first name")
 */
 public function isPasswordLegal()
 {
 // return true or false
 }
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <getter property="passwordLegal">
 <constraint name="True">
 <option name="message">The password cannot match your first name</option>
 </constraint>
 </getter>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\True;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addGetterConstraint('passwordLegal', new True(array(
 'message' => 'The password cannot match your first name',
)));
 }
}

Now, create the isPasswordLegal() method, and include the logic you need:

public function isPasswordLegal()
{
 return $this->firstName != $this->password;
}

注解

The keen-eyed among you will have noticed that the prefix of the getter
(“get” or “is”) is omitted in the mapping. This allows you to move the
constraint to a property with the same name later (or vice versa) without
changing your validation logic.

Classes

Some constraints apply to the entire class being validated. For example,
the Callback constraint is a generic
constraint that’s applied to the class itself. When that class is validated,
methods specified by that constraint are simply executed so that each can
provide more custom validation.

Validation Groups

So far, you’ve been able to add constraints to a class and ask whether or
not that class passes all the defined constraints. In some cases, however,
you’ll need to validate an object against only some constraints
on that class. To do this, you can organize each constraint into one or more
“validation groups”, and then apply validation against just one group of
constraints.

For example, suppose you have a User class, which is used both when a
user registers and when a user updates their contact information later:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\User:
 properties:
 email:
 - Email: { groups: [registration] }
 password:
 - NotBlank: { groups: [registration] }
 - Length: { min: 7, groups: [registration] }
 city:
 - Length:
 min: 2

	Annotations// src/Acme/BlogBundle/Entity/User.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Validator\Constraints as Assert;

class User implements UserInterface
{
 /**
 * @Assert\Email(groups={"registration"})
 */
 private $email;

 /**
 * @Assert\NotBlank(groups={"registration"})
 * @Assert\Length(min=7, groups={"registration"})
 */
 private $password;

 /**
 * @Assert\Length(min = "2")
 */
 private $city;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\User">
 <property name="email">
 <constraint name="Email">
 <option name="groups">
 <value>registration</value>
 </option>
 </constraint>
 </property>
 <property name="password">
 <constraint name="NotBlank">
 <option name="groups">
 <value>registration</value>
 </option>
 </constraint>
 <constraint name="Length">
 <option name="min">7</option>
 <option name="groups">
 <value>registration</value>
 </option>
 </constraint>
 </property>
 <property name="city">
 <constraint name="Length">
 <option name="min">7</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/User.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\Email;
use Symfony\Component\Validator\Constraints\NotBlank;
use Symfony\Component\Validator\Constraints\Length;

class User
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('email', new Email(array(
 'groups' => array('registration'),
)));

 $metadata->addPropertyConstraint('password', new NotBlank(array(
 'groups' => array('registration'),
)));
 $metadata->addPropertyConstraint('password', new Length(array(
 'min' => 7,
 'groups' => array('registration')
)));

 $metadata->addPropertyConstraint(
 'city',
 Length(array("min" => 3)));
 }
}

With this configuration, there are three validation groups:

	Default

	Contains the constraints in the current class and all referenced classes
that belong to no other group.

	User

	Equivalent to all constraints of the User object in the Default
group. This is always the name of the class. The difference between this
and Default is explained below.

	registration

	Contains the constraints on the email and password fields only.

Constraints in the Default group of a class are the constraints that have either no
explicit group configured or that are configured to a group equal to the class name or
the string Default.

警告

When validating just the User object, there is no difference between the Default group
and the User group. But, there is a difference if User has embedded objects. For example,
imagine User has an address property that contains some Address object and that
you’ve added the Valid constraint to this property so that it’s
validated when you validate the User object.

If you validate User using the Default group, then any constraints on the Address
class that are in the Default group will be used. But, if you validate User using the
User validation group, then only constraints on the Address class with the User
group will be validated.

In other words, the Default group and the class name group (e.g. User) are identical,
except when the class is embedded in another object that’s actually the one being validated.

If you have inheritance (e.g. User extends BaseUser) and you validate
with the class name of the subclass (i.e. User), then all constraints
in the User and BaseUser will be validated. However, if you validate
using the base class (i.e. BaseUser), then only the default constraints in
the BaseUser class will be validated.

To tell the validator to use a specific group, pass one or more group names
as the second argument to the validate() method:

$errors = $validator->validate($author, array('registration'));

If no groups are specified, all constraints that belong in group Default
will be applied.

Of course, you’ll usually work with validation indirectly through the form
library. For information on how to use validation groups inside forms, see
Validation Groups.

Group Sequence

In some cases, you want to validate your groups by steps. To do this, you can
use the GroupSequence feature. In this case, an object defines a group
sequence, which determines the order groups should be validated.

For example, suppose you have a User class and want to validate that the
username and the password are different only if all other validation passes
(in order to avoid multiple error messages).

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\User:
 group_sequence:
 - User
 - Strict
 getters:
 passwordLegal:
 - "True":
 message: "The password cannot match your username"
 groups: [Strict]
 properties:
 username:
 - NotBlank: ~
 password:
 - NotBlank: ~

	Annotations// src/Acme/BlogBundle/Entity/User.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Validator\Constraints as Assert;

/**
 * @Assert\GroupSequence({"User", "Strict"})
 */
class User implements UserInterface
{
 /**
 * @Assert\NotBlank
 */
 private $username;

 /**
 * @Assert\NotBlank
 */
 private $password;

 /**
 * @Assert\True(message="The password cannot match your username", groups={"Strict"})
 */
 public function isPasswordLegal()
 {
 return ($this->username !== $this->password);
 }
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\User">
 <property name="username">
 <constraint name="NotBlank" />
 </property>
 <property name="password">
 <constraint name="NotBlank" />
 </property>
 <getter property="passwordLegal">
 <constraint name="True">
 <option name="message">The password cannot match your username</option>
 <option name="groups">
 <value>Strict</value>
 </option>
 </constraint>
 </getter>
 <group-sequence>
 <value>User</value>
 <value>Strict</value>
 </group-sequence>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/User.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class User
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint(
 'username',
 new Assert\NotBlank()
);
 $metadata->addPropertyConstraint(
 'password',
 new Assert\NotBlank()
);

 $metadata->addGetterConstraint(
 'passwordLegal',
 new Assert\True(array(
 'message' => 'The password cannot match your first name',
 'groups' => array('Strict'),
))
);

 $metadata->setGroupSequence(array('User', 'Strict'));
 }
}

In this example, it will first validate all constraints in the group User
(which is the same as the Default group). Only if all constraints in
that group are valid, the second group, Strict, will be validated.

警告

As you have already seen in the previous section, the Default group
and the group containing the class name (e.g. User) were identical.
However, when using Group Sequences, they are no longer identical. The
Default group will now reference the group sequence, instead of all
constraints that do not belong to any group.

This means that you have to use the {ClassName} (e.g. User) group
when specifying a group sequence. When using Default, you get an
infinite recursion (as the Default group references the group
sequence, which will contain the Default group which references the
same group sequence, ...).

Group Sequence Providers

Imagine a User entity which can be a normal user or a premium user. When
it’s a premium user, some extra constraints should be added to the user entity
(e.g. the credit card details). To dynamically determine which groups should
be activated, you can create a Group Sequence Provider. First, create the
entity and a new constraint group called Premium:

	YAML# src/Acme/DemoBundle/Resources/config/validation.yml
Acme\DemoBundle\Entity\User:
 properties:
 name:
 - NotBlank: ~
 creditCard:
 - CardScheme:
 schemes: [VISA]
 groups: [Premium]

	Annotations// src/Acme/DemoBundle/Entity/User.php
namespace Acme\DemoBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class User
{
 // ...

 /**
 * @Assert\NotBlank()
 */
 private $name;

 /**
 * @Assert\CardScheme(
 * schemes={"VISA"},
 * groups={"Premium"},
 *)
 */
 private $creditCard;
}

	XML<!-- src/Acme/DemoBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\DemoBundle\Entity\User">
 <property name="name">
 <constraint name="NotBlank" />
 </property>

 <property name="creditCard">
 <constraint name="CardScheme">
 <option name="schemes">
 <value>VISA</value>
 </option>
 <option name="groups">
 <value>Premium</value>
 </option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/DemoBundle/Entity/User.php
namespace Acme\DemoBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;
use Symfony\Component\Validator\Mapping\ClassMetadata;

class User
{
 private $name;
 private $creditCard;

 // ...

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('name', new Assert\NotBlank());
 $metadata->addPropertyConstraint('creditCard', new Assert\CardScheme(
 'schemes' => array('VISA'),
 'groups' => array('Premium'),
));
 }
}

Now, change the User class to implement
GroupSequenceProviderInterface [http://api.symfony.com/master/Symfony/Component/Validator/GroupSequenceProviderInterface.html] and
add the
getGroupSequence() [http://api.symfony.com/master/Symfony/Component/Validator/GroupSequenceProviderInterface.html#method_getGroupSequence],
which should return an array of groups to use:

// src/Acme/DemoBundle/Entity/User.php
namespace Acme\DemoBundle\Entity;

// ...
use Symfony\Component\Validator\GroupSequenceProviderInterface;

class User implements GroupSequenceProviderInterface
{
 // ...

 public function getGroupSequence()
 {
 $groups = array('User');

 if ($this->isPremium()) {
 $groups[] = 'Premium';
 }

 return $groups;
 }
}

At last, you have to notify the Validator component that your User class
provides a sequence of groups to be validated:

	YAML# src/Acme/DemoBundle/Resources/config/validation.yml
Acme\DemoBundle\Entity\User:
 group_sequence_provider: true

	Annotations// src/Acme/DemoBundle/Entity/User.php
namespace Acme\DemoBundle\Entity;

// ...

/**
 * @Assert\GroupSequenceProvider
 */
class User implements GroupSequenceProviderInterface
{
 // ...
}

	XML<!-- src/Acme/DemoBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping
 http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\DemoBundle\Entity\User">
 <group-sequence-provider />
 <!-- ... -->
 </class>
</constraint-mapping>

	PHP// src/Acme/DemoBundle/Entity/User.php
namespace Acme\DemoBundle\Entity;

// ...
use Symfony\Component\Validator\Mapping\ClassMetadata;

class User implements GroupSequenceProviderInterface
{
 // ...

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->setGroupSequenceProvider(true);
 // ...
 }
}

Validating Values and Arrays

So far, you’ve seen how you can validate entire objects. But sometimes, you
just want to validate a simple value - like to verify that a string is a valid
email address. This is actually pretty easy to do. From inside a controller,
it looks like this:

use Symfony\Component\Validator\Constraints\Email;
// ...

public function addEmailAction($email)
{
 $emailConstraint = new Email();
 // all constraint "options" can be set this way
 $emailConstraint->message = 'Invalid email address';

 // use the validator to validate the value
 $errorList = $this->get('validator')->validateValue(
 $email,
 $emailConstraint
);

 if (count($errorList) == 0) {
 // this IS a valid email address, do something
 } else {
 // this is *not* a valid email address
 $errorMessage = $errorList[0]->getMessage();

 // ... do something with the error
 }

 // ...
}

By calling validateValue on the validator, you can pass in a raw value and
the constraint object that you want to validate that value against. A full
list of the available constraints - as well as the full class name for each
constraint - is available in the constraints reference
section.

The validateValue method returns a ConstraintViolationList [http://api.symfony.com/master/Symfony/Component/Validator/ConstraintViolationList.html]
object, which acts just like an array of errors. Each error in the collection
is a ConstraintViolation [http://api.symfony.com/master/Symfony/Component/Validator/ConstraintViolation.html] object,
which holds the error message on its getMessage method.

Final Thoughts

The Symfony validator is a powerful tool that can be leveraged to
guarantee that the data of any object is “valid”. The power behind validation
lies in “constraints”, which are rules that you can apply to properties or
getter methods of your object. And while you’ll most commonly use the validation
framework indirectly when using forms, remember that it can be used anywhere
to validate any object.

Learn more from the Cookbook

	How to Create a custom Validation Constraint

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

Forms

Dealing with HTML forms is one of the most common - and challenging - tasks for
a web developer. Symfony integrates a Form component that makes dealing with
forms easy. In this chapter, you’ll build a complex form from the ground up,
learning the most important features of the form library along the way.

注解

The Symfony Form component is a standalone library that can be used outside
of Symfony projects. For more information, see the
Form component documentation on
GitHub.

Creating a Simple Form

Suppose you’re building a simple todo list application that will need to
display “tasks”. Because your users will need to edit and create tasks, you’re
going to need to build a form. But before you begin, first focus on the generic
Task class that represents and stores the data for a single task:

// src/AppBundle/Entity/Task.php
namespace AppBundle\Entity;

class Task
{
 protected $task;
 protected $dueDate;

 public function getTask()
 {
 return $this->task;
 }

 public function setTask($task)
 {
 $this->task = $task;
 }

 public function getDueDate()
 {
 return $this->dueDate;
 }

 public function setDueDate(\DateTime $dueDate = null)
 {
 $this->dueDate = $dueDate;
 }
}

This class is a “plain-old-PHP-object” because, so far, it has nothing
to do with Symfony or any other library. It’s quite simply a normal PHP object
that directly solves a problem inside your application (i.e. the need to
represent a task in your application). Of course, by the end of this chapter,
you’ll be able to submit data to a Task instance (via an HTML form), validate
its data, and persist it to the database.

Building the Form

Now that you’ve created a Task class, the next step is to create and
render the actual HTML form. In Symfony, this is done by building a form
object and then rendering it in a template. For now, this can all be done
from inside a controller:

// src/AppBundle/Controller/DefaultController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use AppBundle\Entity\Task;
use Symfony\Component\HttpFoundation\Request;

class DefaultController extends Controller
{
 public function newAction(Request $request)
 {
 // create a task and give it some dummy data for this example
 $task = new Task();
 $task->setTask('Write a blog post');
 $task->setDueDate(new \DateTime('tomorrow'));

 $form = $this->createFormBuilder($task)
 ->add('task', 'text')
 ->add('dueDate', 'date')
 ->add('save', 'submit', array('label' => 'Create Task'))
 ->getForm();

 return $this->render('Default/new.html.twig', array(
 'form' => $form->createView(),
));
 }
}

小技巧

This example shows you how to build your form directly in the controller.
Later, in the “Creating Form Classes” section, you’ll learn
how to build your form in a standalone class, which is recommended as
your form becomes reusable.

Creating a form requires relatively little code because Symfony form objects
are built with a “form builder”. The form builder’s purpose is to allow you
to write simple form “recipes”, and have it do all the heavy-lifting of actually
building the form.

In this example, you’ve added two fields to your form - task and dueDate -
corresponding to the task and dueDate properties of the Task class.
You’ve also assigned each a “type” (e.g. text, date), which, among
other things, determines which HTML form tag(s) is rendered for that field.

Finally, you added a submit button with a custom label for submitting the form to
the server.

2.3 新版功能: Support for submit buttons was introduced in Symfony 2.3. Before that, you had
to add buttons to the form’s HTML manually.

Symfony comes with many built-in types that will be discussed shortly
(see Built-in Field Types).

Rendering the Form

Now that the form has been created, the next step is to render it. This is
done by passing a special form “view” object to your template (notice the
$form->createView() in the controller above) and using a set of form
helper functions:

	Twig{# app/Resources/views/Default/new.html.twig #}
{{ form_start(form) }}
{{ form_widget(form) }}
{{ form_end(form) }}

	PHP<!-- app/Resources/views/Default/new.html.php -->
<?php echo $view['form']->start($form) ?>
<?php echo $view['form']->widget($form) ?>
<?php echo $view['form']->end($form) ?>

[image: ../_images/form-simple.png]

注解

This example assumes that you submit the form in a “POST” request and to
the same URL that it was displayed in. You will learn later how to
change the request method and the target URL of the form.

That’s it! Just three lines are needed to render the complete form:

	form_start(form)

	Renders the start tag of the form, including the correct enctype attribute
when using file uploads.

	form_widget(form)

	Renders all the fields, which includes the field element itself, a label
and any validation error messages for the field.

	form_end(form)

	Renders the end tag of the form and any fields that have not
yet been rendered, in case you rendered each field yourself. This is useful
for rendering hidden fields and taking advantage of the automatic
CSRF Protection.

参见

As easy as this is, it’s not very flexible (yet). Usually, you’ll want to
render each form field individually so you can control how the form looks.
You’ll learn how to do that in the “Rendering a Form in a Template” section.

Before moving on, notice how the rendered task input field has the value
of the task property from the $task object (i.e. “Write a blog post”).
This is the first job of a form: to take data from an object and translate
it into a format that’s suitable for being rendered in an HTML form.

小技巧

The form system is smart enough to access the value of the protected
task property via the getTask() and setTask() methods on the
Task class. Unless a property is public, it must have a “getter” and
“setter” method so that the Form component can get and put data onto the
property. For a Boolean property, you can use an “isser” or “hasser” method
(e.g. isPublished() or hasReminder()) instead of a getter (e.g.
getPublished() or getReminder()).

Handling Form Submissions

The second job of a form is to translate user-submitted data back to the
properties of an object. To make this happen, the submitted data from the
user must be written into the form. Add the following functionality to your
controller:

// ...
use Symfony\Component\HttpFoundation\Request;

public function newAction(Request $request)
{
 // just setup a fresh $task object (remove the dummy data)
 $task = new Task();

 $form = $this->createFormBuilder($task)
 ->add('task', 'text')
 ->add('dueDate', 'date')
 ->add('save', 'submit', array('label' => 'Create Task'))
 ->getForm();

 $form->handleRequest($request);

 if ($form->isValid()) {
 // perform some action, such as saving the task to the database

 return $this->redirect($this->generateUrl('task_success'));
 }

 // ...
}

2.3 新版功能: The handleRequest() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_handleRequest] method
was introduced in Symfony 2.3. Previously, the $request was passed
to the submit method - a strategy which is deprecated and will be
removed in Symfony 3.0. For details on that method, see Passing a Request to Form::submit() (Deprecated).

This controller follows a common pattern for handling forms, and has three
possible paths:

	When initially loading the page in a browser, the form is simply created and
rendered. handleRequest() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_handleRequest]
recognizes that the form was not submitted and does nothing.
isValid() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_isValid] returns false
if the form was not submitted.

	When the user submits the form, handleRequest() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_handleRequest]
recognizes this and immediately writes the submitted data back into the
task and dueDate properties of the $task object. Then this object
is validated. If it is invalid (validation is covered in the next section),
isValid() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_isValid] returns false
again, so the form is rendered together with all validation errors;

注解

You can use the method isSubmitted() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_isSubmitted]
to check whether a form was submitted, regardless of whether or not the
submitted data is actually valid.

	When the user submits the form with valid data, the submitted data is again
written into the form, but this time isValid() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_isValid]
returns true. Now you have the opportunity to perform some actions using
the $task object (e.g. persisting it to the database) before redirecting
the user to some other page (e.g. a “thank you” or “success” page).

注解

Redirecting a user after a successful form submission prevents the user
from being able to hit the “Refresh” button of their browser and re-post
the data.

参见

If you need more control over exactly when your form is submitted or which
data is passed to it, you can use the submit() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_submit]
for this. Read more about it in the cookbook.

Submitting Forms with Multiple Buttons

2.3 新版功能: Support for buttons in forms was introduced in Symfony 2.3.

When your form contains more than one submit button, you will want to check
which of the buttons was clicked to adapt the program flow in your controller.
To do this, add a second button with the caption “Save and add” to your form:

$form = $this->createFormBuilder($task)
 ->add('task', 'text')
 ->add('dueDate', 'date')
 ->add('save', 'submit', array('label' => 'Create Task'))
 ->add('saveAndAdd', 'submit', array('label' => 'Save and Add'))
 ->getForm();

In your controller, use the button’s
isClicked() [http://api.symfony.com/master/Symfony/Component/Form/ClickableInterface.html#method_isClicked] method for
querying if the “Save and add” button was clicked:

if ($form->isValid()) {
 // ... perform some action, such as saving the task to the database

 $nextAction = $form->get('saveAndAdd')->isClicked()
 ? 'task_new'
 : 'task_success';

 return $this->redirect($this->generateUrl($nextAction));
}

Form Validation

In the previous section, you learned how a form can be submitted with valid
or invalid data. In Symfony, validation is applied to the underlying object
(e.g. Task). In other words, the question isn’t whether the “form” is
valid, but whether or not the $task object is valid after the form has
applied the submitted data to it. Calling $form->isValid() is a shortcut
that asks the $task object whether or not it has valid data.

Validation is done by adding a set of rules (called constraints) to a class. To
see this in action, add validation constraints so that the task field cannot
be empty and the dueDate field cannot be empty and must be a valid DateTime
object.

	YAML# AppBundle/Resources/config/validation.yml
AppBundle\Entity\Task:
 properties:
 task:
 - NotBlank: ~
 dueDate:
 - NotBlank: ~
 - Type: \DateTime

	Annotations// AppBundle/Entity/Task.php
use Symfony\Component\Validator\Constraints as Assert;

class Task
{
 /**
 * @Assert\NotBlank()
 */
 public $task;

 /**
 * @Assert\NotBlank()
 * @Assert\Type("\DateTime")
 */
 protected $dueDate;
}

	XML<!-- AppBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping
 http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="AppBundle\Entity\Task">
 <property name="task">
 <constraint name="NotBlank" />
 </property>
 <property name="dueDate">
 <constraint name="NotBlank" />
 <constraint name="Type">\DateTime</constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// AppBundle/Entity/Task.php
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\NotBlank;
use Symfony\Component\Validator\Constraints\Type;

class Task
{
 // ...

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('task', new NotBlank());

 $metadata->addPropertyConstraint('dueDate', new NotBlank());
 $metadata->addPropertyConstraint(
 'dueDate',
 new Type('\DateTime')
);
 }
}

That’s it! If you re-submit the form with invalid data, you’ll see the
corresponding errors printed out with the form.

HTML5 Validation

As of HTML5, many browsers can natively enforce certain validation constraints
on the client side. The most common validation is activated by rendering
a required attribute on fields that are required. For browsers that
support HTML5, this will result in a native browser message being displayed
if the user tries to submit the form with that field blank.

Generated forms take full advantage of this new feature by adding sensible
HTML attributes that trigger the validation. The client-side validation,
however, can be disabled by adding the novalidate attribute to the
form tag or formnovalidate to the submit tag. This is especially
useful when you want to test your server-side validation constraints,
but are being prevented by your browser from, for example, submitting
blank fields.

	Twig{# app/Resources/views/Default/new.html.twig #}
{{ form(form, {'attr': {'novalidate': 'novalidate'}}) }}

	PHP<!-- app/Resources/views/Default/new.html.php -->
<?php echo $view['form']->form($form, array(
 'attr' => array('novalidate' => 'novalidate'),
)) ?>

Validation is a very powerful feature of Symfony and has its own
dedicated chapter.

Validation Groups

If your object takes advantage of validation groups,
you’ll need to specify which validation group(s) your form should use:

$form = $this->createFormBuilder($users, array(
 'validation_groups' => array('registration'),
))->add(...);

If you’re creating form classes (a
good practice), then you’ll need to add the following to the setDefaultOptions()
method:

use Symfony\Component\OptionsResolver\OptionsResolverInterface;

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'validation_groups' => array('registration'),
));
}

In both of these cases, only the registration validation group will
be used to validate the underlying object.

Disabling Validation

2.3 新版功能: The ability to set validation_groups to false was introduced in Symfony 2.3.

Sometimes it is useful to suppress the validation of a form altogether. For
these cases you can set the validation_groups option to false:

use Symfony\Component\OptionsResolver\OptionsResolverInterface;

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'validation_groups' => false,
));
}

Note that when you do that, the form will still run basic integrity checks,
for example whether an uploaded file was too large or whether non-existing
fields were submitted. If you want to suppress validation, you can use the
POST_SUBMIT event.

Groups based on the Submitted Data

If you need some advanced logic to determine the validation groups (e.g.
based on submitted data), you can set the validation_groups option
to an array callback:

use Symfony\Component\OptionsResolver\OptionsResolverInterface;

// ...
public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'validation_groups' => array(
 'AppBundle\Entity\Client',
 'determineValidationGroups',
),
));
}

This will call the static method determineValidationGroups() on the
Client class after the form is submitted, but before validation is executed.
The Form object is passed as an argument to that method (see next example).
You can also define whole logic inline by using a Closure:

use Acme\AcmeBundle\Entity\Client;
use Symfony\Component\Form\FormInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

// ...
public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'validation_groups' => function(FormInterface $form) {
 $data = $form->getData();
 if (Client::TYPE_PERSON == $data->getType()) {
 return array('person');
 }

 return array('company');
 },
));
}

Using the validation_groups option overrides the default validation
group which is being used. If you want to validate the default constraints
of the entity as well you have to adjust the option as follows:

use Acme\AcmeBundle\Entity\Client;
use Symfony\Component\Form\FormInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

// ...
public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'validation_groups' => function(FormInterface $form) {
 $data = $form->getData();
 if (Client::TYPE_PERSON == $data->getType()) {
 return array('Default', 'person');
 }

 return array('Default', 'company');
 },
));
}

You can find more information about how the validation groups and the default constraints
work in the book section about validation groups.

Groups based on the Clicked Button

2.3 新版功能: Support for buttons in forms was introduced in Symfony 2.3.

When your form contains multiple submit buttons, you can change the validation
group depending on which button is used to submit the form. For example,
consider a form in a wizard that lets you advance to the next step or go back
to the previous step. Also assume that when returning to the previous step,
the data of the form should be saved, but not validated.

First, we need to add the two buttons to the form:

$form = $this->createFormBuilder($task)
 // ...
 ->add('nextStep', 'submit')
 ->add('previousStep', 'submit')
 ->getForm();

Then, we configure the button for returning to the previous step to run
specific validation groups. In this example, we want it to suppress validation,
so we set its validation_groups option to false:

$form = $this->createFormBuilder($task)
 // ...
 ->add('previousStep', 'submit', array(
 'validation_groups' => false,
))
 ->getForm();

Now the form will skip your validation constraints. It will still validate
basic integrity constraints, such as checking whether an uploaded file was too
large or whether you tried to submit text in a number field.

Built-in Field Types

Symfony comes standard with a large group of field types that cover all of
the common form fields and data types you’ll encounter:

Text Fields

	text

	textarea

	email

	integer

	money

	number

	password

	percent

	search

	url

Choice Fields

	choice

	entity

	country

	language

	locale

	timezone

	currency

Date and Time Fields

	date

	datetime

	time

	birthday

Other Fields

	checkbox

	file

	radio

Field Groups

	collection

	repeated

Hidden Fields

	hidden

Buttons

	button

	reset

	submit

Base Fields

	form

You can also create your own custom field types. This topic is covered in
the “How to Create a Custom Form Field Type” article of the cookbook.

Field Type Options

Each field type has a number of options that can be used to configure it.
For example, the dueDate field is currently being rendered as 3 select
boxes. However, the date field can be
configured to be rendered as a single text box (where the user would enter
the date as a string in the box):

->add('dueDate', 'date', array('widget' => 'single_text'))

[image: ../_images/form-simple2.png]
Each field type has a number of different options that can be passed to it.
Many of these are specific to the field type and details can be found in
the documentation for each type.

The required Option

The most common option is the required option, which can be applied to
any field. By default, the required option is set to true, meaning
that HTML5-ready browsers will apply client-side validation if the field
is left blank. If you don’t want this behavior, either set the required
option on your field to false or
disable HTML5 validation.

Also note that setting the required option to true will not
result in server-side validation to be applied. In other words, if a
user submits a blank value for the field (either with an old browser
or web service, for example), it will be accepted as a valid value unless
you use Symfony’s NotBlank or NotNull validation constraint.

In other words, the required option is “nice”, but true server-side
validation should always be used.

The label Option

The label for the form field can be set using the label option,
which can be applied to any field:

->add('dueDate', 'date', array(
 'widget' => 'single_text',
 'label' => 'Due Date',
))

The label for a field can also be set in the template rendering the
form, see below. If you don’t need a label associated to your input,
you can disable it by setting its value to false.

Field Type Guessing

Now that you’ve added validation metadata to the Task class, Symfony
already knows a bit about your fields. If you allow it, Symfony can “guess”
the type of your field and set it up for you. In this example, Symfony can
guess from the validation rules that both the task field is a normal
text field and the dueDate field is a date field:

public function newAction()
{
 $task = new Task();

 $form = $this->createFormBuilder($task)
 ->add('task')
 ->add('dueDate', null, array('widget' => 'single_text'))
 ->add('save', 'submit')
 ->getForm();
}

The “guessing” is activated when you omit the second argument to the add()
method (or if you pass null to it). If you pass an options array as the
third argument (done for dueDate above), these options are applied to
the guessed field.

警告

If your form uses a specific validation group, the field type guesser
will still consider all validation constraints when guessing your
field types (including constraints that are not part of the validation
group(s) being used).

Field Type Options Guessing

In addition to guessing the “type” for a field, Symfony can also try to guess
the correct values of a number of field options.

小技巧

When these options are set, the field will be rendered with special HTML
attributes that provide for HTML5 client-side validation. However, it
doesn’t generate the equivalent server-side constraints (e.g. Assert\Length).
And though you’ll need to manually add your server-side validation, these
field type options can then be guessed from that information.

	required

	The required option can be guessed based on the validation rules (i.e. is
the field NotBlank or NotNull) or the Doctrine metadata (i.e. is the
field nullable). This is very useful, as your client-side validation will
automatically match your validation rules.

	max_length

	If the field is some sort of text field, then the max_length option can be
guessed from the validation constraints (if Length or Range is used) or
from the Doctrine metadata (via the field’s length).

注解

These field options are only guessed if you’re using Symfony to guess
the field type (i.e. omit or pass null as the second argument to add()).

If you’d like to change one of the guessed values, you can override it by
passing the option in the options field array:

->add('task', null, array('max_length' => 4))

Rendering a Form in a Template

So far, you’ve seen how an entire form can be rendered with just one line
of code. Of course, you’ll usually need much more flexibility when rendering:

	Twig{# app/Resources/views/Default/new.html.twig #}
{{ form_start(form) }}
 {{ form_errors(form) }}

 {{ form_row(form.task) }}
 {{ form_row(form.dueDate) }}
{{ form_end(form) }}

	PHP<!-- app/Resources/views/Default/newAction.html.php -->
<?php echo $view['form']->start($form) ?>
 <?php echo $view['form']->errors($form) ?>

 <?php echo $view['form']->row($form['task']) ?>
 <?php echo $view['form']->row($form['dueDate']) ?>
<?php echo $view['form']->end($form) ?>

You already know the form_start() and form_end() functions, but what do
the other functions do?

	form_errors(form)

	Renders any errors global to the whole form (field-specific errors are displayed
next to each field).

	form_row(form.dueDate)

	Renders the label, any errors, and the HTML form widget for the given field
(e.g. dueDate) inside, by default, a div element.

The majority of the work is done by the form_row helper, which renders
the label, errors and HTML form widget of each field inside a div tag by
default. In the Form Theming section, you’ll learn how the form_row
output can be customized on many different levels.

小技巧

You can access the current data of your form via form.vars.value:

	Twig{{ form.vars.value.task }}

	PHP<?php echo $form->vars['value']->getTask() ?>

Rendering each Field by Hand

The form_row helper is great because you can very quickly render each
field of your form (and the markup used for the “row” can be customized as
well). But since life isn’t always so simple, you can also render each field
entirely by hand. The end-product of the following is the same as when you
used the form_row helper:

	Twig{{ form_start(form) }}
 {{ form_errors(form) }}

 <div>
 {{ form_label(form.task) }}
 {{ form_errors(form.task) }}
 {{ form_widget(form.task) }}
 </div>

 <div>
 {{ form_label(form.dueDate) }}
 {{ form_errors(form.dueDate) }}
 {{ form_widget(form.dueDate) }}
 </div>

 <div>
 {{ form_widget(form.save) }}
 </div>

{{ form_end(form) }}

	PHP<?php echo $view['form']->start($form) ?>

 <?php echo $view['form']->errors($form) ?>

 <div>
 <?php echo $view['form']->label($form['task']) ?>
 <?php echo $view['form']->errors($form['task']) ?>
 <?php echo $view['form']->widget($form['task']) ?>
 </div>

 <div>
 <?php echo $view['form']->label($form['dueDate']) ?>
 <?php echo $view['form']->errors($form['dueDate']) ?>
 <?php echo $view['form']->widget($form['dueDate']) ?>
 </div>

 <div>
 <?php echo $view['form']->widget($form['save']) ?>
 </div>

<?php echo $view['form']->end($form) ?>

If the auto-generated label for a field isn’t quite right, you can explicitly
specify it:

	Twig{{ form_label(form.task, 'Task Description') }}

	PHP<?php echo $view['form']->label($form['task'], 'Task Description') ?>

Some field types have additional rendering options that can be passed
to the widget. These options are documented with each type, but one common
options is attr, which allows you to modify attributes on the form element.
The following would add the task_field class to the rendered input text
field:

	Twig{{ form_widget(form.task, {'attr': {'class': 'task_field'}}) }}

	PHP<?php echo $view['form']->widget($form['task'], array(
 'attr' => array('class' => 'task_field'),
)) ?>

If you need to render form fields “by hand” then you can access individual
values for fields such as the id, name and label. For example
to get the id:

	Twig{{ form.task.vars.id }}

	PHP<?php echo $form['task']->vars['id']?>

To get the value used for the form field’s name attribute you need to use
the full_name value:

	Twig{{ form.task.vars.full_name }}

	PHP<?php echo $form['task']->vars['full_name'] ?>

Twig Template Function Reference

If you’re using Twig, a full reference of the form rendering functions is
available in the reference manual.
Read this to know everything about the helpers available and the options
that can be used with each.

Changing the Action and Method of a Form

So far, the form_start() helper has been used to render the form’s start
tag and we assumed that each form is submitted to the same URL in a POST request.
Sometimes you want to change these parameters. You can do so in a few different
ways. If you build your form in the controller, you can use setAction() and
setMethod():

$form = $this->createFormBuilder($task)
 ->setAction($this->generateUrl('target_route'))
 ->setMethod('GET')
 ->add('task', 'text')
 ->add('dueDate', 'date')
 ->add('save', 'submit')
 ->getForm();

注解

This example assumes that you’ve created a route called target_route
that points to the controller that processes the form.

In Creating Form Classes you will learn how to move the
form building code into separate classes. When using an external form class
in the controller, you can pass the action and method as form options:

$form = $this->createForm(new TaskType(), $task, array(
 'action' => $this->generateUrl('target_route'),
 'method' => 'GET',
));

Finally, you can override the action and method in the template by passing them
to the form() or the form_start() helper:

	Twig{# app/Resources/views/Default/new.html.twig #}
{{ form_start(form, {'action': path('target_route'), 'method': 'GET'}) }}

	PHP<!-- app/Resources/views/Default/newAction.html.php -->
<?php echo $view['form']->start($form, array(
 'action' => $view['router']->generate('target_route'),
 'method' => 'GET',
)) ?>

注解

If the form’s method is not GET or POST, but PUT, PATCH or DELETE, Symfony
will insert a hidden field with the name _method that stores this method.
The form will be submitted in a normal POST request, but Symfony’s router
is capable of detecting the _method parameter and will interpret it as
a PUT, PATCH or DELETE request. Read the cookbook chapter
“How to Use HTTP Methods beyond GET and POST in Routes” for more information.

Creating Form Classes

As you’ve seen, a form can be created and used directly in a controller.
However, a better practice is to build the form in a separate, standalone PHP
class, which can then be reused anywhere in your application. Create a new class
that will house the logic for building the task form:

// src/AppBundle/Form/Type/TaskType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;

class TaskType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('task')
 ->add('dueDate', null, array('widget' => 'single_text'))
 ->add('save', 'submit');
 }

 public function getName()
 {
 return 'task';
 }
}

This new class contains all the directions needed to create the task form
(note that the getName() method should return a unique identifier for this
form “type”). It can be used to quickly build a form object in the controller:

// src/AppBundle/Controller/DefaultController.php

// add this new use statement at the top of the class
use AppBundle\Form\Type\TaskType;

public function newAction()
{
 $task = ...;
 $form = $this->createForm(new TaskType(), $task);

 // ...
}

Placing the form logic into its own class means that the form can be easily
reused elsewhere in your project. This is the best way to create forms, but
the choice is ultimately up to you.

Setting the data_class

Every form needs to know the name of the class that holds the underlying
data (e.g. AppBundle\Entity\Task). Usually, this is just guessed
based off of the object passed to the second argument to createForm
(i.e. $task). Later, when you begin embedding forms, this will no
longer be sufficient. So, while not always necessary, it’s generally a
good idea to explicitly specify the data_class option by adding the
following to your form type class:

use Symfony\Component\OptionsResolver\OptionsResolverInterface;

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'data_class' => 'AppBundle\Entity\Task',
));
}

小技巧

When mapping forms to objects, all fields are mapped. Any fields on the
form that do not exist on the mapped object will cause an exception to
be thrown.

In cases where you need extra fields in the form (for example: a “do you
agree with these terms” checkbox) that will not be mapped to the underlying
object, you need to set the mapped option to false:

use Symfony\Component\Form\FormBuilderInterface;

public function buildForm(FormBuilderInterface $builder, array $options)
{
 $builder
 ->add('task')
 ->add('dueDate', null, array('mapped' => false))
 ->add('save', 'submit');
}

Additionally, if there are any fields on the form that aren’t included in
the submitted data, those fields will be explicitly set to null.

The field data can be accessed in a controller with:

$form->get('dueDate')->getData();

In addition, the data of an unmapped field can also be modified directly:

$form->get('dueDate')->setData(new \DateTime());

Defining your Forms as Services

Defining your form type as a service is a good practice and makes it really
easy to use in your application.

注解

Services and the service container will be handled
later on in this book. Things will be
more clear after reading that chapter.

	YAML# src/AppBundle/Resources/config/services.yml
services:
 acme_demo.form.type.task:
 class: AppBundle\Form\Type\TaskType
 tags:
 - { name: form.type, alias: task }

	XML<!-- src/AppBundle/Resources/config/services.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service
 id="acme_demo.form.type.task"
 class="AppBundle\Form\Type\TaskType">

 <tag name="form.type" alias="task" />
 </service>
 </services>
</container>

	PHP// src/AppBundle/Resources/config/services.php
$container
 ->register(
 'acme_demo.form.type.task',
 'AppBundle\Form\Type\TaskType'
)
 ->addTag('form.type', array(
 'alias' => 'task',
))
;

That’s it! Now you can use your form type directly in a controller:

// src/AppBundle/Controller/DefaultController.php
// ...

public function newAction()
{
 $task = ...;
 $form = $this->createForm('task', $task);

 // ...
}

or even use from within the form type of another form:

// src/AppBundle/Form/Type/ListType.php
// ...

class ListType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 // ...

 $builder->add('someTask', 'task');
 }
}

Read Creating your Field Type as a Service for more information.

Forms and Doctrine

The goal of a form is to translate data from an object (e.g. Task) to an
HTML form and then translate user-submitted data back to the original object. As
such, the topic of persisting the Task object to the database is entirely
unrelated to the topic of forms. But, if you’ve configured the Task class
to be persisted via Doctrine (i.e. you’ve added
mapping metadata for it), then persisting
it after a form submission can be done when the form is valid:

if ($form->isValid()) {
 $em = $this->getDoctrine()->getManager();
 $em->persist($task);
 $em->flush();

 return $this->redirect($this->generateUrl('task_success'));
}

If, for some reason, you don’t have access to your original $task object,
you can fetch it from the form:

$task = $form->getData();

For more information, see the Doctrine ORM chapter.

The key thing to understand is that when the form is submitted, the submitted
data is transferred to the underlying object immediately. If you want to
persist that data, you simply need to persist the object itself (which already
contains the submitted data).

Embedded Forms

Often, you’ll want to build a form that will include fields from many different
objects. For example, a registration form may contain data belonging to
a User object as well as many Address objects. Fortunately, this
is easy and natural with the Form component.

Embedding a Single Object

Suppose that each Task belongs to a simple Category object. Start,
of course, by creating the Category object:

// src/AppBundle/Entity/Category.php
namespace AppBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Category
{
 /**
 * @Assert\NotBlank()
 */
 public $name;
}

Next, add a new category property to the Task class:

// ...

class Task
{
 // ...

 /**
 * @Assert\Type(type="AppBundle\Entity\Category")
 * @Assert\Valid()
 */
 protected $category;

 // ...

 public function getCategory()
 {
 return $this->category;
 }

 public function setCategory(Category $category = null)
 {
 $this->category = $category;
 }
}

小技巧

The Valid Constraint has been added to the property category. This
cascades the validation to the corresponding entity. If you omit this constraint
the child entity would not be validated.

Now that your application has been updated to reflect the new requirements,
create a form class so that a Category object can be modified by the user:

// src/AppBundle/Form/Type/CategoryType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class CategoryType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder->add('name');
 }

 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $resolver->setDefaults(array(
 'data_class' => 'AppBundle\Entity\Category',
));
 }

 public function getName()
 {
 return 'category';
 }
}

The end goal is to allow the Category of a Task to be modified right
inside the task form itself. To accomplish this, add a category field
to the TaskType object whose type is an instance of the new CategoryType
class:

use Symfony\Component\Form\FormBuilderInterface;

public function buildForm(FormBuilderInterface $builder, array $options)
{
 // ...

 $builder->add('category', new CategoryType());
}

The fields from CategoryType can now be rendered alongside those from
the TaskType class.

Render the Category fields in the same way as the original Task fields:

	Twig{# ... #}

<h3>Category</h3>
<div class="category">
 {{ form_row(form.category.name) }}
</div>

{# ... #}

	PHP<!-- ... -->

<h3>Category</h3>
<div class="category">
 <?php echo $view['form']->row($form['category']['name']) ?>
</div>

<!-- ... -->

When the user submits the form, the submitted data for the Category fields
are used to construct an instance of Category, which is then set on the
category field of the Task instance.

The Category instance is accessible naturally via $task->getCategory()
and can be persisted to the database or used however you need.

Embedding a Collection of Forms

You can also embed a collection of forms into one form (imagine a Category
form with many Product sub-forms). This is done by using the collection
field type.

For more information see the “How to Embed a Collection of Forms” cookbook
entry and the collection field type reference.

Form Theming

Every part of how a form is rendered can be customized. You’re free to change
how each form “row” renders, change the markup used to render errors, or
even customize how a textarea tag should be rendered. Nothing is off-limits,
and different customizations can be used in different places.

Symfony uses templates to render each and every part of a form, such as
label tags, input tags, error messages and everything else.

In Twig, each form “fragment” is represented by a Twig block. To customize
any part of how a form renders, you just need to override the appropriate block.

In PHP, each form “fragment” is rendered via an individual template file.
To customize any part of how a form renders, you just need to override the
existing template by creating a new one.

To understand how this works, customize the form_row fragment and
add a class attribute to the div element that surrounds each row. To
do this, create a new template file that will store the new markup:

	Twig{# app/Resources/views/Form/fields.html.twig #}
{% block form_row %}
{% spaceless %}
 <div class="form_row">
 {{ form_label(form) }}
 {{ form_errors(form) }}
 {{ form_widget(form) }}
 </div>
{% endspaceless %}
{% endblock form_row %}

	PHP<!-- app/Resources/views/Form/form_row.html.php -->
<div class="form_row">
 <?php echo $view['form']->label($form, $label) ?>
 <?php echo $view['form']->errors($form) ?>
 <?php echo $view['form']->widget($form, $parameters) ?>
</div>

The form_row form fragment is used when rendering most fields via the
form_row function. To tell the Form component to use your new form_row
fragment defined above, add the following to the top of the template that
renders the form:

	Twig{# app/Resources/views/Default/new.html.twig #}
{% form_theme form 'Form/fields.html.twig' %}

{% form_theme form 'Form/fields.html.twig' 'Form/fields2.html.twig' %}

{# ... render the form #}

	PHP<!-- app/Resources/views/Default/new.html.php -->
<?php $view['form']->setTheme($form, array('Form')) ?>

<?php $view['form']->setTheme($form, array('Form', 'Form2')) ?>

<!-- ... render the form -->

The form_theme tag (in Twig) “imports” the fragments defined in the given
template and uses them when rendering the form. In other words, when the
form_row function is called later in this template, it will use the form_row
block from your custom theme (instead of the default form_row block
that ships with Symfony).

Your custom theme does not have to override all the blocks. When rendering a block
which is not overridden in your custom theme, the theming engine will fall back
to the global theme (defined at the bundle level).

If several custom themes are provided they will be searched in the listed order
before falling back to the global theme.

To customize any portion of a form, you just need to override the appropriate
fragment. Knowing exactly which block or file to override is the subject of
the next section.

For a more extensive discussion, see How to Customize Form Rendering.

Form Fragment Naming

In Symfony, every part of a form that is rendered - HTML form elements, errors,
labels, etc. - is defined in a base theme, which is a collection of blocks
in Twig and a collection of template files in PHP.

In Twig, every block needed is defined in a single template file (e.g.
form_div_layout.html.twig [https://github.com/symfony/symfony/blob/2.3/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig]) that lives inside the Twig Bridge [https://github.com/symfony/symfony/tree/2.3/src/Symfony/Bridge/Twig]. Inside this
file, you can see every block needed to render a form and every default field
type.

In PHP, the fragments are individual template files. By default they are located in
the Resources/views/Form directory of the framework bundle (view on GitHub [https://github.com/symfony/symfony/tree/2.3/src/Symfony/Bundle/FrameworkBundle/Resources/views/Form]).

Each fragment name follows the same basic pattern and is broken up into two pieces,
separated by a single underscore character (_). A few examples are:

	form_row - used by form_row to render most fields;

	textarea_widget - used by form_widget to render a textarea field
type;

	form_errors - used by form_errors to render errors for a field;

Each fragment follows the same basic pattern: type_part. The type portion
corresponds to the field type being rendered (e.g. textarea, checkbox,
date, etc) whereas the part portion corresponds to what is being
rendered (e.g. label, widget, errors, etc). By default, there
are 4 possible parts of a form that can be rendered:

	label
	(e.g. form_label)
	renders the field’s label

	widget
	(e.g. form_widget)
	renders the field’s HTML representation

	errors
	(e.g. form_errors)
	renders the field’s errors

	row
	(e.g. form_row)
	renders the field’s entire row (label, widget & errors)

注解

There are actually 2 other parts - rows and rest -
but you should rarely if ever need to worry about overriding them.

By knowing the field type (e.g. textarea) and which part you want to
customize (e.g. widget), you can construct the fragment name that needs
to be overridden (e.g. textarea_widget).

Template Fragment Inheritance

In some cases, the fragment you want to customize will appear to be missing.
For example, there is no textarea_errors fragment in the default themes
provided with Symfony. So how are the errors for a textarea field rendered?

The answer is: via the form_errors fragment. When Symfony renders the errors
for a textarea type, it looks first for a textarea_errors fragment before
falling back to the form_errors fragment. Each field type has a parent
type (the parent type of textarea is text, its parent is form),
and Symfony uses the fragment for the parent type if the base fragment doesn’t
exist.

So, to override the errors for only textarea fields, copy the
form_errors fragment, rename it to textarea_errors and customize it. To
override the default error rendering for all fields, copy and customize the
form_errors fragment directly.

小技巧

The “parent” type of each field type is available in the
form type reference for each field type.

Global Form Theming

In the above example, you used the form_theme helper (in Twig) to “import”
the custom form fragments into just that form. You can also tell Symfony
to import form customizations across your entire project.

Twig

To automatically include the customized blocks from the fields.html.twig
template created earlier in all templates, modify your application configuration
file:

	YAML# app/config/config.yml
twig:
 form:
 resources:
 - 'Form/fields.html.twig'
 # ...

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:twig="http://symfony.com/schema/dic/twig"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/twig http://symfony.com/schema/dic/twig/twig-1.0.xsd">

 <twig:config>
 <twig:form>
 <twig:resource>Form/fields.html.twig</twig:resource>
 </twig:form>
 <!-- ... -->
 </twig:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('twig', array(
 'form' => array(
 'resources' => array(
 'Form/fields.html.twig',
),
),
 // ...
));

Any blocks inside the fields.html.twig template are now used globally
to define form output.

Customizing Form Output all in a Single File with Twig

In Twig, you can also customize a form block right inside the template
where that customization is needed:

{% extends 'base.html.twig' %}

{# import "_self" as the form theme #}
{% form_theme form _self %}

{# make the form fragment customization #}
{% block form_row %}
 {# custom field row output #}
{% endblock form_row %}

{% block content %}
 {# ... #}

 {{ form_row(form.task) }}
{% endblock %}

The {% form_theme form _self %} tag allows form blocks to be customized
directly inside the template that will use those customizations. Use
this method to quickly make form output customizations that will only
ever be needed in a single template.

警告

This {% form_theme form _self %} functionality will only work
if your template extends another. If your template does not, you
must point form_theme to a separate template.

PHP

To automatically include the customized templates from the app/Resources/views/Form
directory created earlier in all templates, modify your application configuration
file:

	YAML# app/config/config.yml
framework:
 templating:
 form:
 resources:
 - 'Form'
...

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <framework:config>
 <framework:templating>
 <framework:form>
 <framework:resource>Form</framework:resource>
 </framework:form>
 </framework:templating>
 <!-- ... -->
 </framework:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'templating' => array(
 'form' => array(
 'resources' => array(
 'Form',
),
),
)
 // ...
));

Any fragments inside the app/Resources/views/Form directory are now used
globally to define form output.

CSRF Protection

CSRF - or Cross-site request forgery [http://en.wikipedia.org/wiki/Cross-site_request_forgery] - is a method by which a malicious
user attempts to make your legitimate users unknowingly submit data that
they don’t intend to submit. Fortunately, CSRF attacks can be prevented by
using a CSRF token inside your forms.

The good news is that, by default, Symfony embeds and validates CSRF tokens
automatically for you. This means that you can take advantage of the CSRF
protection without doing anything. In fact, every form in this chapter has
taken advantage of the CSRF protection!

CSRF protection works by adding a hidden field to your form - called _token
by default - that contains a value that only you and your user knows. This
ensures that the user - not some other entity - is submitting the given data.
Symfony automatically validates the presence and accuracy of this token.

The _token field is a hidden field and will be automatically rendered
if you include the form_end() function in your template, which ensures
that all un-rendered fields are output.

The CSRF token can be customized on a form-by-form basis. For example:

use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class TaskType extends AbstractType
{
 // ...

 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $resolver->setDefaults(array(
 'data_class' => 'AppBundle\Entity\Task',
 'csrf_protection' => true,
 'csrf_field_name' => '_token',
 // a unique key to help generate the secret token
 'intention' => 'task_item',
));
 }

 // ...
}

To disable CSRF protection, set the csrf_protection option to false.
Customizations can also be made globally in your project. For more information,
see the form configuration reference
section.

注解

The intention option is optional but greatly enhances the security of
the generated token by making it different for each form.

警告

CSRF tokens are meant to be different for every user. This is why you
need to be cautious if you try to cache pages with forms including this
kind of protection. For more information, see
Caching Pages that Contain CSRF Protected Forms.

Using a Form without a Class

In most cases, a form is tied to an object, and the fields of the form get
and store their data on the properties of that object. This is exactly what
you’ve seen so far in this chapter with the Task class.

But sometimes, you may just want to use a form without a class, and get back
an array of the submitted data. This is actually really easy:

// make sure you've imported the Request namespace above the class
use Symfony\Component\HttpFoundation\Request;
// ...

public function contactAction(Request $request)
{
 $defaultData = array('message' => 'Type your message here');
 $form = $this->createFormBuilder($defaultData)
 ->add('name', 'text')
 ->add('email', 'email')
 ->add('message', 'textarea')
 ->add('send', 'submit')
 ->getForm();

 $form->handleRequest($request);

 if ($form->isValid()) {
 // data is an array with "name", "email", and "message" keys
 $data = $form->getData();
 }

 // ... render the form
}

By default, a form actually assumes that you want to work with arrays of
data, instead of an object. There are exactly two ways that you can change
this behavior and tie the form to an object instead:

	Pass an object when creating the form (as the first argument to createFormBuilder
or the second argument to createForm);

	Declare the data_class option on your form.

If you don’t do either of these, then the form will return the data as
an array. In this example, since $defaultData is not an object (and
no data_class option is set), $form->getData() ultimately returns
an array.

小技巧

You can also access POST values (in this case “name”) directly through
the request object, like so:

$request->request->get('name');

Be advised, however, that in most cases using the getData() method is
a better choice, since it returns the data (usually an object) after
it’s been transformed by the form framework.

Adding Validation

The only missing piece is validation. Usually, when you call $form->isValid(),
the object is validated by reading the constraints that you applied to that
class. If your form is mapped to an object (i.e. you’re using the data_class
option or passing an object to your form), this is almost always the approach
you want to use. See Validation for more details.

But if the form is not mapped to an object and you instead want to retrieve a
simple array of your submitted data, how can you add constraints to the data of
your form?

The answer is to setup the constraints yourself, and attach them to the individual
fields. The overall approach is covered a bit more in the validation chapter,
but here’s a short example:

2.1 新版功能: The constraints option, which accepts a single constraint or an array
of constraints (before 2.1, the option was called validation_constraint,
and only accepted a single constraint) was introduced in Symfony 2.1.

use Symfony\Component\Validator\Constraints\Length;
use Symfony\Component\Validator\Constraints\NotBlank;

$builder
 ->add('firstName', 'text', array(
 'constraints' => new Length(array('min' => 3)),
))
 ->add('lastName', 'text', array(
 'constraints' => array(
 new NotBlank(),
 new Length(array('min' => 3)),
),
))
;

小技巧

If you are using validation groups, you need to either reference the
Default group when creating the form, or set the correct group on
the constraint you are adding.

new NotBlank(array('groups' => array('create', 'update'))

Final Thoughts

You now know all of the building blocks necessary to build complex and
functional forms for your application. When building forms, keep in mind that
the first goal of a form is to translate data from an object (Task) to an
HTML form so that the user can modify that data. The second goal of a form is to
take the data submitted by the user and to re-apply it to the object.

There’s still much more to learn about the powerful world of forms, such as
how to handle
file uploads with Doctrine or how
to create a form where a dynamic number of sub-forms can be added (e.g. a
todo list where you can keep adding more fields via JavaScript before submitting).
See the cookbook for these topics. Also, be sure to lean on the
field type reference documentation, which
includes examples of how to use each field type and its options.

Learn more from the Cookbook

	How to Handle File Uploads with Doctrine

	File Field Reference

	Creating Custom Field Types

	How to Customize Form Rendering

	How to Dynamically Modify Forms Using Form Events

	How to Use Data Transformers

	Using CSRF Protection in the Login Form

	Caching Pages that Contain CSRF Protected Forms

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

Security

Symfony’s security system is incredibly powerful, but it can also be confusing
to set up. In this chapter, you’ll learn how to set up your application’s security
step-by-step, from configuring your firewall and how you load users to denying
access and fetching the User object. Depending on what you need, sometimes
the initial setup can be tough. But once it’s done, Symfony’s security system
is both flexible and (hopefully) fun to work with.

Since there’s a lot to talk about, this chapter is organized into a few big
sections:

	Initial security.yml setup (authentication);

	Denying access to your app (authorization);

	Fetching the current User object

These are followed by a number of small (but still captivating) sections,
like logging out and encoding user passwords.

1) Initial security.yml Setup (Authentication)

The security system is configured in app/config/security.yml. The default
configuration looks like this:

	YAML# app/config/security.yml
security:
 providers:
 in_memory:
 memory: ~

 firewalls:
 dev:
 pattern: ^/(_(profiler|wdt)|css|images|js)/
 security: false

 default:
 anonymous: ~

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <provider name="in_memory">
 <memory />
 </provider>

 <firewall name="dev"
 pattern="^/(_(profiler|wdt)|css|images|js)/"
 security=false />

 <firewall name="default">
 <anonymous />
 </firewall>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'providers' => array(
 'in_memory' => array(
 'memory' => array(),
),
),
 'firewalls' => array(
 'dev' => array(
 'pattern' => '^/(_(profiler|wdt)|css|images|js)/',
 'security' => false,
),
 'default' => array(
 'anonymous' => null,
),
),
));

The firewalls key is the heart of your security configuration. The
dev firewall isn’t important, it just makes sure that Symfony’s development
tools - which live under URLs like /_profiler and /_wdt aren’t blocked
by your security.

All other URLs will be handled by the default firewall (no pattern
key means it matches all URLs). You can think of the firewall like your
security system, and so it usually makes sense to have just one main firewall.
But this does not mean that every URL requires authentication - the anonymous
key takes care of this. In fact, if you go to the homepage right now, you’ll
have access and you’ll see that you’re “authenticated” as anon.. Don’t
be fooled by the “Yes” next to Authenticated, you’re just an anonymous user:

[image: ../_images/security_anonymous_wdt.png]
You’ll learn later how to deny access to certain URLs or controllers.

小技巧

Security is highly configurable and there’s a
Security Configuration Reference
that shows all of the options with some extra explanation.

A) Configuring how your Users will Authenticate

The main job of a firewall is to configure how your users will authenticate.
Will they use a login form? Http Basic? An API token? All of the above?

Let’s start with Http Basic (the old-school pop-up) and work up from there.
To activate this, add the http_basic key under your firewall:

	YAML# app/config/security.yml
security:
 # ...

 firewalls:
 # ...
 default:
 anonymous: ~
 http_basic: ~

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <!-- ... -->

 <firewall name="default">
 <anonymous />
 <http-basic />
 </firewall>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 // ...
 'firewalls' => array(
 // ...
 'default' => array(
 'anonymous' => null,
 'http_basic' => null,
),
),
));

Simple! To try this, you need to require the user to be logged in to see
a page. To make things interesting, create a new page at /admin. For
example, if you use annotations, create something like this:

// src/AppBundle/Controller/DefaultController.php
// ...

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Component\HttpFoundation\Response;

class DefaultController extends Controller
{
 /**
 * @Route("/admin")
 */
 public function adminAction()
 {
 return new Response('Admin page!');
 }
}

Next, add an access_control entry to security.yml that requires the
user to be logged in to access this URL:

	YAML# app/config/security.yml
security:
 # ...
 firewalls:
 # ...

 access_control:
 # require ROLE_ADMIN for /admin*
 - { path: ^/admin, roles: ROLE_ADMIN }

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <!-- ... -->

 <firewall name="default">
 <!-- ... -->
 </firewall>

 <access-control>
 <!-- require ROLE_ADMIN for /admin* -->
 <rule path="^/admin" role="ROLE_ADMIN" />
 </access-control>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 // ...
 'firewalls' => array(
 // ...
 'default' => array(
 // ...
),
),
 'access_control' => array(
 // require ROLE_ADMIN for /admin*
 array('path' => '^/admin', 'role' => 'ROLE_ADMIN'),
),
));

注解

You’ll learn more about this ROLE_ADMIN thing and denying access
later in the 2) Denying Access, Roles and other Authorization section.

Great! Now, if you go to /admin, you’ll see the HTTP Basic popup:

[image: ../_images/security_http_basic_popup.png]
But who can you login as? Where do users come from?

小技巧

Want to use a traditional login form? Great! See How to Build a Traditional Login Form.
What other methods are supported? See the Configuration Reference
or build your own.

B) Configuring how Users are Loaded

When you type in your username, Symfony needs to load that user’s information
from somewhere. This is called a “user provider”, and you’re in charge of
configuring it. Symfony has a built-in way to
load users from the database,
or you can create your own user provider.

The easiest (but most limited) way, is to configure Symfony to load hardcoded
users directly from the security.yml file itself. This is called an “in memory”
provider, but it’s better to think of it as an “in configuration” provider:

	YAML# app/config/security.yml
security:
 providers:
 in_memory:
 memory:
 users:
 ryan:
 password: ryanpass
 roles: 'ROLE_USER'
 admin:
 password: kitten
 roles: 'ROLE_ADMIN'
 # ...

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <provider name="in_memory">
 <memory>
 <user name="ryan" password="ryanpass" roles="ROLE_USER" />
 <user name="admin" password="kitten" roles="ROLE_ADMIN" />
 </memory>
 </provider>
 <!-- ... -->
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'providers' => array(
 'in_memory' => array(
 'memory' => array(
 'users' => array(
 'ryan' => array(
 'password' => 'ryanpass',
 'roles' => 'ROLE_USER',
),
 'admin' => array(
 'password' => 'kitten',
 'roles' => 'ROLE_ADMIN',
),
),
),
),
),
 // ...
));

Like with firewalls, you can have multiple providers, but you’ll
probably only need one. If you do have multiple, you can configure which
one provider to use for your firewall under its provider key (e.g.
provider: in_memory).

Try to login using username admin and password kitten. You should
see an error!

No encoder has been configured for account “SymfonyComponentSecurityCoreUserUser”

To fix this, add an encoders key:

	YAML# app/config/security.yml
security:
 # ...

 encoders:
 Symfony\Component\Security\Core\User\User: plaintext
 # ...

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <!-- ... -->

 <encoder class="Symfony\Component\Security\Core\User\User"
 algorithm="plaintext" />
 <!-- ... -->
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 // ...

 'encoders' => array(
 'Symfony\Component\Security\Core\User\User' => 'plaintext',
),
 // ...
));

User providers load user information and put it into a User object. If
you load users from the database
or some other source, you’ll
use your own custom User class. But when you use the “in memory” provider,
it gives you a Symfony\Component\Security\Core\User\User object.

Whatever your User class is, you need to tell Symfony what algorithm was
used to encode the passwords. In this case, the passwords are just plaintext,
but in a second, you’ll change this to use bcrypt.

If you refresh now, you’ll be logged in! The web debug toolbar even tells
you who you are and what roles you have:

[image: ../_images/symfony_loggedin_wdt.png]
Because this URL requires ROLE_ADMIN, if you had logged in as ryan,
this would deny you access. More on that later (Securing URL patterns (access_control)).

Loading Users from the Database

If you’d like to load your users via the Doctrine ORM, that’s easy! See
How to Load Security Users from the Database (the Entity Provider) for all the details.

C) Encoding the User’s Password

Whether your users are stored in security.yml, in a database or somewhere
else, you’ll want to encode their passwords. The best algorithm to use is
bcrypt:

	YAML# app/config/security.yml
security:
 # ...

 encoders:
 Symfony\Component\Security\Core\User\User:
 algorithm: bcrypt
 cost: 12

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <!-- ... -->

 <encoder class="Symfony\Component\Security\Core\User\User"
 algorithm="bcrypt"
 cost="12" />

 <!-- ... -->
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 // ...

 'encoders' => array(
 'Symfony\Component\Security\Core\User\User' => array(
 'algorithm' => 'plaintext',
 'cost' => 12,
)
),
 // ...
));

警告

If you’re using PHP 5.4 or lower, you’ll need to install the ircmaxell/password-compat
library via Composer in order to be able to use the bcrypt encoder:

{
 "require": {
 ...
 "ircmaxell/password-compat": "~1.0.3"
 }
}

Of course, your user’s passwords now need to be encoded with this exact algorithm.
For hardcoded users, you can use an online tool [https://www.dailycred.com/blog/12/bcrypt-calculator], which will give you something
like this:

	YAML# app/config/security.yml
security:
 # ...

 providers:
 in_memory:
 memory:
 users:
 ryan:
 password: $2a$12$LCY0MefVIEc3TYPHV9SNnuzOfyr2p/AXIGoQJEDs4am4JwhNz/jli
 roles: 'ROLE_USER'
 admin:
 password: $2a$12$cyTWeE9kpq1PjqKFiWUZFuCRPwVyAZwm4XzMZ1qPUFl7/flCM3V0G
 roles: 'ROLE_ADMIN'

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <provider name="in_memory">
 <memory>
 <user name="ryan" password="$2a$12$LCY0MefVIEc3TYPHV9SNnuzOfyr2p/AXIGoQJEDs4am4JwhNz/jli" roles="ROLE_USER" />
 <user name="admin" password="$2a$12$cyTWeE9kpq1PjqKFiWUZFuCRPwVyAZwm4XzMZ1qPUFl7/flCM3V0G" roles="ROLE_ADMIN" />
 </memory>
 </provider>
 <!-- ... -->
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'providers' => array(
 'in_memory' => array(
 'memory' => array(
 'users' => array(
 'ryan' => array(
 'password' => '$2a$12$LCY0MefVIEc3TYPHV9SNnuzOfyr2p/AXIGoQJEDs4am4JwhNz/jli',
 'roles' => 'ROLE_USER',
),
 'admin' => array(
 'password' => '$2a$12$cyTWeE9kpq1PjqKFiWUZFuCRPwVyAZwm4XzMZ1qPUFl7/flCM3V0G',
 'roles' => 'ROLE_ADMIN',
),
),
),
),
),
 // ...
));

Everything will now work exactly like before. But if you have dynamic users
(e.g. from a database), how can you programmatically encode the password
before inserting them into the database? Don’t worry, see
Dynamically Encoding a Password for details.

小技巧

Supported algorithms for this method depend on your PHP version, but
include the algorithms returned by the PHP function hash_algos [http://php.net/manual/en/function.hash-algos.php]
as well as a few others (e.g. bcrypt). See the encoders key in the
Security Reference Section
for examples.

D) Configuration Done!

Congratulations! You now have a working authentication system that uses Http
Basic and loads users right from the security.yml file.

Your next steps depend on your setup:

	Configure a different way for your users to login, like a login form
or something completely custom;

	Load users from a different source, like the database
or some other source;

	Learn how to deny access, load the User object and deal with roles in the
Authorization section.

2) Denying Access, Roles and other Authorization

Users can now login to your app using http_basic or some other method.
Great! Now, you need to learn how to deny access and work with the User object.
This is called authorization, and its job is to decide if a user can
access some resource (a URL, a model object, a method call, ...).

The process of authorization has two different sides:

	The user receives a specific set of roles when logging in (e.g. ROLE_ADMIN).

	You add code so that a resource (e.g. URL, controller) requires a specific
“attribute” (most commonly a role like ROLE_ADMIN) in order to be
accessed.

小技巧

In addition to roles (e.g. ROLE_ADMIN), you can protect a resource
using other attributes/strings (e.g. EDIT) and use voters or Symfony’s
ACL system to give these meaning. This might come in handy if you need
to check if user A can “EDIT” some object B (e.g. a Product with id 5).
See Access Control Lists (ACLs): Securing individual Database Objects.

Roles

When a user logs in, they receive a set of roles (e.g. ROLE_ADMIN). In
the example above, these are hardcoded into security.yml. If you’re
loading users from the database, these are probably stored on a column
in your table.

警告

All roles you assign to a user must begin with the ROLE_ prefix.
Otherwise, they won’t be handled by Symfony’s security system in the
normal way (i.e. unless you’re doing something advanced, assigning a
role like FOO to a user and then checking for FOO as described
below will not work).

Roles are simple, and are basically strings that you invent and use as needed.
For example, if you need to start limiting access to the blog admin section
of your website, you could protect that section using a ROLE_BLOG_ADMIN
role. This role doesn’t need to be defined anywhere - you can just start using
it.

小技巧

Make sure every user has at least one role, or your user will look
like they’re not authenticated. A common convention is to give every
user ROLE_USER.

You can also specify a role hierarchy where
some roles automatically mean that you also have other roles.

Add Code to Deny Access

There are two ways to deny access to something:

	access_control in security.yml
allows you to protect URL patterns (e.g. /admin/*). This is easy,
but less flexible;

	in your code via the security.context service.

Securing URL patterns (access_control)

The most basic way to secure part of your application is to secure an entire
URL pattern. You saw this earlier, where anything matching the regular expression
^/admin requires the ROLE_ADMIN role:

	YAML# app/config/security.yml
security:
 # ...
 firewalls:
 # ...

 access_control:
 # require ROLE_ADMIN for /admin*
 - { path: ^/admin, roles: ROLE_ADMIN }

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <!-- ... -->

 <firewall name="default">
 <!-- ... -->
 </firewall>

 <access-control>
 <!-- require ROLE_ADMIN for /admin* -->
 <rule path="^/admin" role="ROLE_ADMIN" />
 </access-control>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 // ...
 'firewalls' => array(
 // ...
 'default' => array(
 // ...
),
),
 'access_control' => array(
 // require ROLE_ADMIN for /admin*
 array('path' => '^/admin', 'role' => 'ROLE_ADMIN'),
),
));

This is great for securing entire sections, but you’ll also probably want
to secure your individual controllers
as well.

You can define as many URL patterns as you need - each is a regular expression.
BUT, only one will be matched. Symfony will look at each starting
at the top, and stop as soon as it finds one access_control entry that
matches the URL.

	YAML# app/config/security.yml
security:
 # ...
 access_control:
 - { path: ^/admin/users, roles: ROLE_SUPER_ADMIN }
 - { path: ^/admin, roles: ROLE_ADMIN }

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <!-- ... -->
 <access-control>
 <rule path="^/admin/users" role="ROLE_SUPER_ADMIN" />
 <rule path="^/admin" role="ROLE_ADMIN" />
 </access-control>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 // ...
 'access_control' => array(
 array('path' => '^/admin/users', 'role' => 'ROLE_SUPER_ADMIN'),
 array('path' => '^/admin', 'role' => 'ROLE_ADMIN'),
),
));

Prepending the path with ^ means that only URLs beginning with the
pattern are matched. For example, a path of simply /admin (without
the ^) would match /admin/foo but would also match URLs like /foo/admin.

Understanding how access_control Works

The access_control section is very powerful, but it can also be dangerous
(because it involves security) if you don’t understand how it works.
In addition to the URL, the access_control can match on IP address,
host name and HTTP methods. It can also be used to redirect a user to
the https version of a URL pattern.

To learn about all of this, see How Does the Security access_control Work?.

Securing Controllers and other Code

You can easily deny access from inside a controller:

// ...
use Symfony\Component\Security\Core\Exception\AccessDeniedException;

public function helloAction($name)
{
 if (!$this->get('security.context')->isGranted('ROLE_ADMIN')) {
 throw new AccessDeniedException();
 }

 // ...
}

That’s it! If the user isn’t logged in yet, they will be asked to login (e.g.
redirected to the login page). If they are logged in, they’ll be shown
the 403 access denied page (which you can customize).

Access Control in Templates

If you want to check if the current user has a role inside a template, use
the built-in helper function:

	Twig{% if is_granted('ROLE_ADMIN') %}
 Delete
{% endif %}

	PHP<?php if ($view['security']->isGranted('ROLE_ADMIN')): ?>
 Delete
<?php endif ?>

If you use this function and are not behind a firewall, an exception
will be thrown. Again, it’s almost always a good
idea to have a main firewall that covers all URLs (as has been shown
in this chapter).

警告

Be careful with this in your layout or on your error pages! Because of
some internal Symfony details, to avoid broken error pages in the prod
environment, wrap calls in these templates with a check for app.user:

{% if app.user and is_granted('ROLE_ADMIN') %}

Securing other Services

In fact, anything in Symfony can be protected by doing something similar
to this. For example, suppose you have a service (i.e. a PHP class) whose
job is to send emails. You can restrict use of this class - no matter where
it’s being used from - to only certain users.

For more information see How to Secure any Service or Method in your Application.

Checking to see if a User is Logged In (IS_AUTHENTICATED_FULLY)

So far, you’ve checked access based on roles - those strings that start with
ROLE_ and are assigned to users. But if you only want to check if a
user is logged in (you don’t care about roles), then you can see IS_AUTHENTICATED_FULLY:

// ...
use Symfony\Component\Security\Core\Exception\AccessDeniedException;

public function helloAction($name)
{
 if (!$this->get('security.context')->isGranted('IS_AUTHENTICATED_FULLY')) {
 throw new AccessDeniedException();
 }

 // ...
}

小技巧

You can of course also use this in access_control.

IS_AUTHENTICATED_FULLY isn’t a role, but it kind of acts like one, and every
user that has successfully logged in will have this. In fact, there are three
special attributes like this:

	IS_AUTHENTICATED_REMEMBERED: All logged in users have this, even
if they are logged in because of a “remember me cookie”. Even if you don’t
use the remember me functionality,
you can use this to check if the user is logged in.

	IS_AUTHENTICATED_FULLY: This is similar to IS_AUTHENTICATED_REMEMBERED,
but stronger. Users who are logged in only because of a “remember me cookie”
will have IS_AUTHENTICATED_REMEMBERED but will not have IS_AUTHENTICATED_FULLY.

	IS_AUTHENTICATED_ANONYMOUSLY: All users (even anonymous ones) have
this - this is useful when whitelisting URLs to guarantee access - some
details are in How Does the Security access_control Work?.

Access Control Lists (ACLs): Securing individual Database Objects

Imagine you are designing a blog where users can comment on your posts. You
also want a user to be able to edit their own comments, but not those of
other users. Also, as the admin user, you yourself want to be able to edit
all comments.

To accomplish this you have 2 options:

	Voters allow you to
use business logic (e.g. the user can edit this post because they were
the creator) to determine access. You’ll probably want this option - it’s
flexible enough to solve the above situation.

	ACLs allow you to create a database structure
where you can assign any arbitrary user any access (e.g. EDIT, VIEW)
to any object in your system. Use this if you need an admin user to be
able to grant customized access across your system via some admin interface.

In both cases, you’ll still deny access using methods similar to what was
shown above.

Retrieving the User Object

After authentication, the User object of the current user can be accessed
via the security.context service. From inside a controller, this will
look like:

public function indexAction()
{
 if (!$this->get('security.context')->isGranted('IS_AUTHENTICATED_FULLY')) {
 throw new AccessDeniedException();
 }

 $user = $this->getUser();

 // the above is a shortcut for this
 $user = $this->get('security.context')->getToken()->getUser();
}

小技巧

The user will be an object and the class of that object will depend on
your user provider.

Now you can call whatever methods are on your User object. For example,
if your User object has a getFirstName() method, you could use that:

use Symfony\Component\HttpFoundation\Response;

public function indexAction()
{
 // ...

 return new Response('Well hi there '.$user->getFirstName());
}

Always Check if the User is Logged In

It’s important to check if the user is authenticated first. If they’re not,
$user will either be null or the string anon.. Wait, what? Yes,
this is a quirk. If you’re not logged in, the user is technically the string
anon., though the getUser() controller shortcut converts this to
null for convenience.

The point is this: always check to see if the user is logged in before using
the User object, and use the isGranted method (or
access_control) to do this:

// yay! Use this to see if the user is logged in
if (!$this->get('security.context')->isGranted('IS_AUTHENTICATED_FULLY')) {
 throw new AccessDeniedException();
}

// boo :(. Never check for the User object to see if they're logged in
if ($this->getUser()) {

}

Retrieving the User in a Template

In a Twig Template this object can be accessed via the app.user
key:

	Twig{% if is_granted('IS_AUTHENTICATED_FULLY') %}
 <p>Username: {{ app.user.username }}</p>
{% endif %}

	PHP<?php if ($view['security']->isGranted('IS_AUTHENTICATED_FULLY')): ?>
 <p>Username: <?php echo $app->getUser()->getUsername() ?></p>
<?php endif; ?>

Logging Out

Usually, you’ll also want your users to be able to log out. Fortunately,
the firewall can handle this automatically for you when you activate the
logout config parameter:

	YAML# app/config/security.yml
security:
 firewalls:
 secured_area:
 # ...
 logout:
 path: /logout
 target: /
 # ...

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <firewall name="secured_area" pattern="^/">
 <!-- ... -->
 <logout path="/logout" target="/" />
 </firewall>
 <!-- ... -->
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'secured_area' => array(
 // ...
 'logout' => array('path' => 'logout', 'target' => '/'),
),
),
 // ...
));

Next, you’ll need to create a route for this URL (but not a controller):

	YAML# app/config/routing.yml
logout:
 path: /logout

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="logout" path="/logout" />
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('logout', new Route('/logout', array()));

return $collection;

And that’s it! By sending a user to /logout (or whatever you configure
the path to be), Symfony will un-authenticate the current user.

Once the user has been logged out, they will be redirected to whatever path
is defined by the target parameter above (e.g. the homepage).

小技巧

If you need to do something more interesting after logging out, you can
specify a logout success handler by adding a success_handler key
and pointing it to a service id of a class that implements
LogoutSuccessHandlerInterface [http://api.symfony.com/master/Symfony/Component/Security/Http/Logout/LogoutSuccessHandlerInterface.html].
See Security Configuration Reference.

Dynamically Encoding a Password

If, for example, you’re storing users in the database, you’ll need to encode
the users’ passwords before inserting them. No matter what algorithm you
configure for your user object, the hashed password can always be determined
in the following way from a controller:

$factory = $this->get('security.encoder_factory');
// whatever *your* User object is
$user = new AppBundle\Entity\User();

$encoder = $factory->getEncoder($user);
$password = $encoder->encodePassword('ryanpass', $user->getSalt());
$user->setPassword($password);

In order for this to work, just make sure that you have the encoder for your
user class (e.g. AppBundle\Entity\User) configured under the encoders
key in app/config/security.yml.

The $encoder object also has an isPasswordValid method, which takes
the User object as the first argument and the plain password to check
as the second argument.

警告

When you allow a user to submit a plaintext password (e.g. registration
form, change password form), you must have validation that guarantees
that the password is 4096 characters or fewer. Read more details in
How to implement a simple Registration Form.

Hierarchical Roles

Instead of associating many roles to users, you can define role inheritance
rules by creating a role hierarchy:

	YAML# app/config/security.yml
security:
 role_hierarchy:
 ROLE_ADMIN: ROLE_USER
 ROLE_SUPER_ADMIN: [ROLE_ADMIN, ROLE_ALLOWED_TO_SWITCH]

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <role id="ROLE_ADMIN">ROLE_USER</role>
 <role id="ROLE_SUPER_ADMIN">ROLE_ADMIN, ROLE_ALLOWED_TO_SWITCH</role>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'role_hierarchy' => array(
 'ROLE_ADMIN' => 'ROLE_USER',
 'ROLE_SUPER_ADMIN' => array(
 'ROLE_ADMIN',
 'ROLE_ALLOWED_TO_SWITCH',
),
),
));

In the above configuration, users with ROLE_ADMIN role will also have the
ROLE_USER role. The ROLE_SUPER_ADMIN role has ROLE_ADMIN, ROLE_ALLOWED_TO_SWITCH
and ROLE_USER (inherited from ROLE_ADMIN).

Stateless Authentication

By default, Symfony relies on a cookie (the Session) to persist the security
context of the user. But if you use certificates or HTTP authentication for
instance, persistence is not needed as credentials are available for each
request. In that case, and if you don’t need to store anything else between
requests, you can activate the stateless authentication (which means that no
cookie will be ever created by Symfony):

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 http_basic: ~
 stateless: true

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <firewall stateless="true">
 <http-basic />
 </firewall>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array('http_basic' => array(), 'stateless' => true),
),
));

注解

If you use a form login, Symfony will create a cookie even if you set
stateless to true.

Final Words

Woh! Nice work! You now know more than the basics of security. The hardest
parts are when you have custom requirements: like a custom authentication
strategy (e.g. API tokens), complex authorization logic and many other things
(because security is complex!).

Fortunately, there are a lot of Security Cookbook Articles
aimed at describing many of these situations. Also, see the
Security Reference Section. Many
of the options don’t have specific details, but seeing the full possible
configuration tree may be useful.

Good luck!

Learn more from the Cookbook

	Forcing HTTP/HTTPS

	Impersonating a User

	How to Use Voters to Check User Permissions

	Access Control Lists (ACLs)

	How to Add “Remember Me” Login Functionality

	How to Use multiple User Providers

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

HTTP Cache

The nature of rich web applications means that they’re dynamic. No matter
how efficient your application, each request will always contain more overhead
than serving a static file.

And for most Web applications, that’s fine. Symfony is lightning fast, and
unless you’re doing some serious heavy-lifting, each request will come back
quickly without putting too much stress on your server.

But as your site grows, that overhead can become a problem. The processing
that’s normally performed on every request should be done only once. This
is exactly what caching aims to accomplish.

Caching on the Shoulders of Giants

The most effective way to improve performance of an application is to cache
the full output of a page and then bypass the application entirely on each
subsequent request. Of course, this isn’t always possible for highly dynamic
websites, or is it? In this chapter, you’ll see how the Symfony cache
system works and why this is the best possible approach.

The Symfony cache system is different because it relies on the simplicity
and power of the HTTP cache as defined in the HTTP specification.
Instead of reinventing a caching methodology, Symfony embraces the standard
that defines basic communication on the Web. Once you understand the fundamental
HTTP validation and expiration caching models, you’ll be ready to master
the Symfony cache system.

For the purposes of learning how to cache with Symfony, the
subject is covered in four steps:

	A gateway cache, or reverse proxy, is
an independent layer that sits in front of your application. The reverse
proxy caches responses as they’re returned from your application and answers
requests with cached responses before they hit your application. Symfony
provides its own reverse proxy, but any reverse proxy can be used.

	HTTP cache headers are used
to communicate with the gateway cache and any other caches between your
application and the client. Symfony provides sensible defaults and a
powerful interface for interacting with the cache headers.

	HTTP expiration and validation
are the two models used for determining whether cached content is fresh
(can be reused from the cache) or stale (should be regenerated by the
application).

	Edge Side Includes (ESI) allow HTTP
cache to be used to cache page fragments (even nested fragments) independently.
With ESI, you can even cache an entire page for 60 minutes, but an embedded
sidebar for only 5 minutes.

Since caching with HTTP isn’t unique to Symfony, many articles already exist
on the topic. If you’re new to HTTP caching, Ryan
Tomayko’s article Things Caches Do [http://tomayko.com/writings/things-caches-do] is highly recommended . Another in-depth resource is Mark
Nottingham’s Cache Tutorial [http://www.mnot.net/cache_docs/].

Caching with a Gateway Cache

When caching with HTTP, the cache is separated from your application entirely
and sits between your application and the client making the request.

The job of the cache is to accept requests from the client and pass them
back to your application. The cache will also receive responses back from
your application and forward them on to the client. The cache is the “middle-man”
of the request-response communication between the client and your application.

Along the way, the cache will store each response that is deemed “cacheable”
(See Introduction to HTTP Caching). If the same resource is requested again,
the cache sends the cached response to the client, ignoring your application
entirely.

This type of cache is known as a HTTP gateway cache and many exist such
as Varnish [https://www.varnish-cache.org/], Squid in reverse proxy mode [http://wiki.squid-cache.org/SquidFaq/ReverseProxy], and the Symfony reverse proxy.

Types of Caches

But a gateway cache isn’t the only type of cache. In fact, the HTTP cache
headers sent by your application are consumed and interpreted by up to three
different types of caches:

	Browser caches: Every browser comes with its own local cache that is
mainly useful for when you hit “back” or for images and other assets.
The browser cache is a private cache as cached resources aren’t shared
with anyone else;

	Proxy caches: A proxy is a shared cache as many people can be behind a
single one. It’s usually installed by large corporations and ISPs to reduce
latency and network traffic;

	Gateway caches: Like a proxy, it’s also a shared cache but on the server
side. Installed by network administrators, it makes websites more scalable,
reliable and performant.

小技巧

Gateway caches are sometimes referred to as reverse proxy caches,
surrogate caches, or even HTTP accelerators.

注解

The significance of private versus shared caches will become more
obvious when caching responses containing content that is
specific to exactly one user (e.g. account information) is discussed.

Each response from your application will likely go through one or both of
the first two cache types. These caches are outside of your control but follow
the HTTP cache directions set in the response.

Symfony Reverse Proxy

Symfony comes with a reverse proxy (also called a gateway cache) written
in PHP. Enable it and cacheable responses from your application will start
to be cached right away. Installing it is just as easy. Each new Symfony
application comes with a pre-configured caching kernel (AppCache) that
wraps the default one (AppKernel). The caching Kernel is the reverse
proxy.

To enable caching, modify the code of a front controller to use the caching
kernel:

// web/app.php
require_once __DIR__.'/../app/bootstrap.php.cache';
require_once __DIR__.'/../app/AppKernel.php';
require_once __DIR__.'/../app/AppCache.php';

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('prod', false);
$kernel->loadClassCache();
// wrap the default AppKernel with the AppCache one
$kernel = new AppCache($kernel);
$request = Request::createFromGlobals();
$response = $kernel->handle($request);
$response->send();
$kernel->terminate($request, $response);

The caching kernel will immediately act as a reverse proxy - caching responses
from your application and returning them to the client.

小技巧

The cache kernel has a special getLog() method that returns a string
representation of what happened in the cache layer. In the development
environment, use it to debug and validate your cache strategy:

error_log($kernel->getLog());

The AppCache object has a sensible default configuration, but it can be
finely tuned via a set of options you can set by overriding the
getOptions() [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/HttpCache/HttpCache.html#method_getOptions]
method:

// app/AppCache.php
use Symfony\Bundle\FrameworkBundle\HttpCache\HttpCache;

class AppCache extends HttpCache
{
 protected function getOptions()
 {
 return array(
 'debug' => false,
 'default_ttl' => 0,
 'private_headers' => array('Authorization', 'Cookie'),
 'allow_reload' => false,
 'allow_revalidate' => false,
 'stale_while_revalidate' => 2,
 'stale_if_error' => 60,
);
 }
}

小技巧

Unless overridden in getOptions(), the debug option will be set
to automatically be the debug value of the wrapped AppKernel.

Here is a list of the main options:

	default_ttl

	The number of seconds that a cache entry should be considered fresh when no
explicit freshness information is provided in a response. Explicit
Cache-Control or Expires headers override this value (default: 0).

	private_headers

	Set of request headers that trigger “private” Cache-Control behavior on
responses that don’t explicitly state whether the response is public or
private via a Cache-Control directive (default: Authorization
and Cookie).

	allow_reload

	Specifies whether the client can force a cache reload by including a
Cache-Control “no-cache” directive in the request. Set it to true for
compliance with RFC 2616 (default: false).

	allow_revalidate

	Specifies whether the client can force a cache revalidate by including a
Cache-Control “max-age=0” directive in the request. Set it to true for
compliance with RFC 2616 (default: false).

	stale_while_revalidate

	Specifies the default number of seconds (the granularity is the second as the
Response TTL precision is a second) during which the cache can immediately
return a stale response while it revalidates it in the background (default:
2); this setting is overridden by the stale-while-revalidate HTTP
Cache-Control extension (see RFC 5861).

	stale_if_error

	Specifies the default number of seconds (the granularity is the second) during
which the cache can serve a stale response when an error is encountered
(default: 60). This setting is overridden by the stale-if-error HTTP
Cache-Control extension (see RFC 5861).

If debug is true, Symfony automatically adds an X-Symfony-Cache
header to the response containing useful information about cache hits and
misses.

Changing from one Reverse Proxy to another

The Symfony reverse proxy is a great tool to use when developing your
website or when you deploy your website to a shared host where you cannot
install anything beyond PHP code. But being written in PHP, it cannot
be as fast as a proxy written in C. That’s why it is highly recommended you
use Varnish or Squid on your production servers if possible. The good
news is that the switch from one proxy server to another is easy and
transparent as no code modification is needed in your application. Start
easy with the Symfony reverse proxy and upgrade later to Varnish when
your traffic increases.

For more information on using Varnish with Symfony, see the
How to use Varnish cookbook chapter.

注解

The performance of the Symfony reverse proxy is independent of the
complexity of the application. That’s because the application kernel is
only booted when the request needs to be forwarded to it.

Introduction to HTTP Caching

To take advantage of the available cache layers, your application must be
able to communicate which responses are cacheable and the rules that govern
when/how that cache should become stale. This is done by setting HTTP cache
headers on the response.

小技巧

Keep in mind that “HTTP” is nothing more than the language (a simple text
language) that web clients (e.g. browsers) and web servers use to communicate
with each other. HTTP caching is the part of that language that allows clients
and servers to exchange information related to caching.

HTTP specifies four response cache headers that are looked at here:

	Cache-Control

	Expires

	ETag

	Last-Modified

The most important and versatile header is the Cache-Control header,
which is actually a collection of various cache information.

注解

Each of the headers will be explained in full detail in the
HTTP Expiration, Validation and Invalidation section.

The Cache-Control Header

The Cache-Control header is unique in that it contains not one, but various
pieces of information about the cacheability of a response. Each piece of
information is separated by a comma:

Cache-Control: private, max-age=0, must-revalidate

Cache-Control: max-age=3600, must-revalidate

Symfony provides an abstraction around the Cache-Control header to make
its creation more manageable:

// ...

use Symfony\Component\HttpFoundation\Response;

$response = new Response();

// mark the response as either public or private
$response->setPublic();
$response->setPrivate();

// set the private or shared max age
$response->setMaxAge(600);
$response->setSharedMaxAge(600);

// set a custom Cache-Control directive
$response->headers->addCacheControlDirective('must-revalidate', true);

小技巧

If you need to set cache headers for many different controller actions,
you might want to look into the FOSHttpCacheBundle [http://foshttpcachebundle.readthedocs.org/]. It provides a way
to define cache headers based on the URL pattern and other request
properties.

Public vs Private Responses

Both gateway and proxy caches are considered “shared” caches as the cached
content is shared by more than one user. If a user-specific response were
ever mistakenly stored by a shared cache, it might be returned later to any
number of different users. Imagine if your account information were cached
and then returned to every subsequent user who asked for their account page!

To handle this situation, every response may be set to be public or private:

	public

	Indicates that the response may be cached by both private and shared caches.

	private

	Indicates that all or part of the response message is intended for a single
user and must not be cached by a shared cache.

Symfony conservatively defaults each response to be private. To take advantage
of shared caches (like the Symfony reverse proxy), the response will need
to be explicitly set as public.

Safe Methods

HTTP caching only works for “safe” HTTP methods (like GET and HEAD). Being
safe means that you never change the application’s state on the server when
serving the request (you can of course log information, cache data, etc).
This has two very reasonable consequences:

	You should never change the state of your application when responding
to a GET or HEAD request. Even if you don’t use a gateway cache, the presence
of proxy caches mean that any GET or HEAD request may or may not actually
hit your server;

	Don’t expect PUT, POST or DELETE methods to cache. These methods are meant
to be used when mutating the state of your application (e.g. deleting a
blog post). Caching them would prevent certain requests from hitting and
mutating your application.

Caching Rules and Defaults

HTTP 1.1 allows caching anything by default unless there is an explicit
Cache-Control header. In practice, most caches do nothing when requests
have a cookie, an authorization header, use a non-safe method (i.e. PUT, POST,
DELETE), or when responses have a redirect status code.

Symfony automatically sets a sensible and conservative Cache-Control
header when none is set by the developer by following these rules:

	If no cache header is defined (Cache-Control, Expires, ETag
or Last-Modified), Cache-Control is set to no-cache, meaning
that the response will not be cached;

	If Cache-Control is empty (but one of the other cache headers is present),
its value is set to private, must-revalidate;

	But if at least one Cache-Control directive is set, and no public or
private directives have been explicitly added, Symfony adds the
private directive automatically (except when s-maxage is set).

HTTP Expiration, Validation and Invalidation

The HTTP specification defines two caching models:

	With the expiration model [http://tools.ietf.org/html/rfc2616#section-13.2], you simply specify how long a response should
be considered “fresh” by including a Cache-Control and/or an Expires
header. Caches that understand expiration will not make the same request
until the cached version reaches its expiration time and becomes “stale”;

	When pages are really dynamic (i.e. their representation changes often),
the validation model [http://tools.ietf.org/html/rfc2616#section-13.3] is often necessary. With this model, the
cache stores the response, but asks the server on each request whether
or not the cached response is still valid. The application uses a unique
response identifier (the Etag header) and/or a timestamp (the Last-Modified
header) to check if the page has changed since being cached.

The goal of both models is to never generate the same response twice by relying
on a cache to store and return “fresh” responses. To achieve long caching times
but still provide updated content immediately, cache invalidation is
sometimes used.

Reading the HTTP Specification

The HTTP specification defines a simple but powerful language in which
clients and servers can communicate. As a web developer, the request-response
model of the specification dominates your work. Unfortunately, the actual
specification document - RFC 2616 [http://tools.ietf.org/html/rfc2616] - can be difficult to read.

There is an ongoing effort (HTTP Bis [http://tools.ietf.org/wg/httpbis/]) to rewrite the RFC 2616. It does
not describe a new version of HTTP, but mostly clarifies the original HTTP
specification. The organization is also improved as the specification
is split into seven parts; everything related to HTTP caching can be
found in two dedicated parts (P4 - Conditional Requests [http://tools.ietf.org/html/draft-ietf-httpbis-p4-conditional] and P6 -
Caching: Browser and intermediary caches [http://tools.ietf.org/html/draft-ietf-httpbis-p6-cache]).

As a web developer, you are strongly urged to read the specification. Its
clarity and power - even more than ten years after its creation - is
invaluable. Don’t be put-off by the appearance of the spec - its contents
are much more beautiful than its cover.

Expiration

The expiration model is the more efficient and straightforward of the two
caching models and should be used whenever possible. When a response is cached
with an expiration, the cache will store the response and return it directly
without hitting the application until it expires.

The expiration model can be accomplished using one of two, nearly identical,
HTTP headers: Expires or Cache-Control.

Expiration with the Expires Header

According to the HTTP specification, “the Expires header field gives
the date/time after which the response is considered stale.” The Expires
header can be set with the setExpires() Response method. It takes a
DateTime instance as an argument:

$date = new DateTime();
$date->modify('+600 seconds');

$response->setExpires($date);

The resulting HTTP header will look like this:

Expires: Thu, 01 Mar 2011 16:00:00 GMT

注解

The setExpires() method automatically converts the date to the GMT
timezone as required by the specification.

Note that in HTTP versions before 1.1 the origin server wasn’t required to
send the Date header. Consequently, the cache (e.g. the browser) might
need to rely on the local clock to evaluate the Expires header making
the lifetime calculation vulnerable to clock skew. Another limitation
of the Expires header is that the specification states that “HTTP/1.1
servers should not send Expires dates more than one year in the future.”

Expiration with the Cache-Control Header

Because of the Expires header limitations, most of the time, you should
use the Cache-Control header instead. Recall that the Cache-Control
header is used to specify many different cache directives. For expiration,
there are two directives, max-age and s-maxage. The first one is
used by all caches, whereas the second one is only taken into account by
shared caches:

// Sets the number of seconds after which the response
// should no longer be considered fresh
$response->setMaxAge(600);

// Same as above but only for shared caches
$response->setSharedMaxAge(600);

The Cache-Control header would take on the following format (it may have
additional directives):

Cache-Control: max-age=600, s-maxage=600

Validation

When a resource needs to be updated as soon as a change is made to the underlying
data, the expiration model falls short. With the expiration model, the application
won’t be asked to return the updated response until the cache finally becomes
stale.

The validation model addresses this issue. Under this model, the cache continues
to store responses. The difference is that, for each request, the cache asks the
application if the cached response is still valid or if it needs to be regenerated.
If the cache is still valid, your application should return a 304 status code
and no content. This tells the cache that it’s ok to return the cached response.

Under this model, you only save CPU if you’re able to determine that the
cached response is still valid by doing less work than generating the whole
page again (see below for an implementation example).

小技巧

The 304 status code means “Not Modified”. It’s important because with
this status code the response does not contain the actual content being
requested. Instead, the response is simply a light-weight set of directions that
tells the cache that it should use its stored version.

Like with expiration, there are two different HTTP headers that can be used
to implement the validation model: ETag and Last-Modified.

Validation with the ETag Header

The ETag header is a string header (called the “entity-tag”) that uniquely
identifies one representation of the target resource. It’s entirely generated
and set by your application so that you can tell, for example, if the /about
resource that’s stored by the cache is up-to-date with what your application
would return. An ETag is like a fingerprint and is used to quickly compare
if two different versions of a resource are equivalent. Like fingerprints,
each ETag must be unique across all representations of the same resource.

To see a simple implementation, generate the ETag as the md5 of the content:

use Symfony\Component\HttpFoundation\Request;

public function indexAction(Request $request)
{
 $response = $this->render('MyBundle:Main:index.html.twig');
 $response->setETag(md5($response->getContent()));
 $response->setPublic(); // make sure the response is public/cacheable
 $response->isNotModified($request);

 return $response;
}

The isNotModified() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_isNotModified]
method compares the If-None-Match sent with the Request with the
ETag header set on the Response. If the two match, the method
automatically sets the Response status code to 304.

注解

The cache sets the If-None-Match header on the request to the ETag
of the original cached response before sending the request back to the
app. This is how the cache and server communicate with each other and
decide whether or not the resource has been updated since it was cached.

This algorithm is simple enough and very generic, but you need to create the
whole Response before being able to compute the ETag, which is sub-optimal.
In other words, it saves on bandwidth, but not CPU cycles.

In the Optimizing your Code with Validation section, you’ll see how validation
can be used more intelligently to determine the validity of a cache without
doing so much work.

小技巧

Symfony also supports weak ETags by passing true as the second
argument to the
setETag() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_setETag] method.

Validation with the Last-Modified Header

The Last-Modified header is the second form of validation. According
to the HTTP specification, “The Last-Modified header field indicates
the date and time at which the origin server believes the representation
was last modified.” In other words, the application decides whether or not
the cached content has been updated based on whether or not it’s been updated
since the response was cached.

For instance, you can use the latest update date for all the objects needed to
compute the resource representation as the value for the Last-Modified
header value:

use Symfony\Component\HttpFoundation\Request;

public function showAction($articleSlug, Request $request)
{
 // ...

 $articleDate = new \DateTime($article->getUpdatedAt());
 $authorDate = new \DateTime($author->getUpdatedAt());

 $date = $authorDate > $articleDate ? $authorDate : $articleDate;

 $response->setLastModified($date);
 // Set response as public. Otherwise it will be private by default.
 $response->setPublic();

 if ($response->isNotModified($request)) {
 return $response;
 }

 // ... do more work to populate the response with the full content

 return $response;
}

The isNotModified() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_isNotModified]
method compares the If-Modified-Since header sent by the request with
the Last-Modified header set on the response. If they are equivalent,
the Response will be set to a 304 status code.

注解

The cache sets the If-Modified-Since header on the request to the Last-Modified
of the original cached response before sending the request back to the
app. This is how the cache and server communicate with each other and
decide whether or not the resource has been updated since it was cached.

Optimizing your Code with Validation

The main goal of any caching strategy is to lighten the load on the application.
Put another way, the less you do in your application to return a 304 response,
the better. The Response::isNotModified() method does exactly that by
exposing a simple and efficient pattern:

use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpFoundation\Request;

public function showAction($articleSlug, Request $request)
{
 // Get the minimum information to compute
 // the ETag or the Last-Modified value
 // (based on the Request, data is retrieved from
 // a database or a key-value store for instance)
 $article = ...;

 // create a Response with an ETag and/or a Last-Modified header
 $response = new Response();
 $response->setETag($article->computeETag());
 $response->setLastModified($article->getPublishedAt());

 // Set response as public. Otherwise it will be private by default.
 $response->setPublic();

 // Check that the Response is not modified for the given Request
 if ($response->isNotModified($request)) {
 // return the 304 Response immediately
 return $response;
 }

 // do more work here - like retrieving more data
 $comments = ...;

 // or render a template with the $response you've already started
 return $this->render(
 'MyBundle:MyController:article.html.twig',
 array('article' => $article, 'comments' => $comments),
 $response
);
}

When the Response is not modified, the isNotModified() automatically sets
the response status code to 304, removes the content, and removes some
headers that must not be present for 304 responses (see
setNotModified() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_setNotModified]).

Varying the Response

So far, it’s been assumed that each URI has exactly one representation of the
target resource. By default, HTTP caching is done by using the URI of the
resource as the cache key. If two people request the same URI of a cacheable
resource, the second person will receive the cached version.

Sometimes this isn’t enough and different versions of the same URI need to
be cached based on one or more request header values. For instance, if you
compress pages when the client supports it, any given URI has two representations:
one when the client supports compression, and one when it does not. This
determination is done by the value of the Accept-Encoding request header.

In this case, you need the cache to store both a compressed and uncompressed
version of the response for the particular URI and return them based on the
request’s Accept-Encoding value. This is done by using the Vary response
header, which is a comma-separated list of different headers whose values
trigger a different representation of the requested resource:

Vary: Accept-Encoding, User-Agent

小技巧

This particular Vary header would cache different versions of each
resource based on the URI and the value of the Accept-Encoding and
User-Agent request header.

The Response object offers a clean interface for managing the Vary
header:

// set one vary header
$response->setVary('Accept-Encoding');

// set multiple vary headers
$response->setVary(array('Accept-Encoding', 'User-Agent'));

The setVary() method takes a header name or an array of header names for
which the response varies.

Expiration and Validation

You can of course use both validation and expiration within the same Response.
As expiration wins over validation, you can easily benefit from the best of
both worlds. In other words, by using both expiration and validation, you
can instruct the cache to serve the cached content, while checking back
at some interval (the expiration) to verify that the content is still valid.

小技巧

You can also define HTTP caching headers for expiration and validation by using
annotations. See the FrameworkExtraBundle documentation [http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/cache.html].

More Response Methods

The Response class provides many more methods related to the cache. Here are
the most useful ones:

// Marks the Response stale
$response->expire();

// Force the response to return a proper 304 response with no content
$response->setNotModified();

Additionally, most cache-related HTTP headers can be set via the single
setCache() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_setCache] method:

// Set cache settings in one call
$response->setCache(array(
 'etag' => $etag,
 'last_modified' => $date,
 'max_age' => 10,
 's_maxage' => 10,
 'public' => true,
 // 'private' => true,
));

Cache Invalidation

“There are only two hard things in Computer Science: cache invalidation
and naming things.” – Phil Karlton

Once an URL is cached by a gateway cache, the cache will not ask the
application for that content anymore. This allows the cache to provide fast
responses and reduces the load on your application. However, you risk
delivering outdated content. A way out of this dilemma is to use long
cache lifetimes, but to actively notify the gateway cache when content
changes. Reverse proxies usually provide a channel to receive such
notifications, typically through special HTTP requests.

警告

While cache invalidation is powerful, avoid it when possible. If you fail
to invalidate something, outdated caches will be served for a potentially
long time. Instead, use short cache lifetimes or use the validation model,
and adjust your controllers to perform efficient validation checks as
explained in Optimizing your Code with Validation.

Furthermore, since invalidation is a topic specific to each type of reverse
proxy, using this concept will tie you to a specific reverse proxy or need
additional efforts to support different proxies.

Sometimes, however, you need that extra performance you can get when
explicitly invalidating. For invalidation, your application needs to detect
when content changes and tell the cache to remove the URLs which contain
that data from its cache.

小技巧

If you want to use cache invalidation, have a look at the
FOSHttpCacheBundle [http://foshttpcachebundle.readthedocs.org/]. This bundle provides services to help with various
cache invalidation concepts, and also documents the configuration for the
a couple of common caching proxies.

If one content corresponds to one URL, the PURGE model works well.
You send a request to the cache proxy with the HTTP method PURGE (using
the word “PURGE” is a convention, technically this can be any string) instead
of GET and make the cache proxy detect this and remove the data from the
cache instead of going to the application to get a response.

Here is how you can configure the Symfony reverse proxy to support the
PURGE HTTP method:

// app/AppCache.php

// ...
use Symfony\Bundle\FrameworkBundle\HttpCache\HttpCache;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

class AppCache extends HttpCache
{
 protected function invalidate(Request $request, $catch = false)
 {
 if ('PURGE' !== $request->getMethod()) {
 return parent::invalidate($request, $catch);
 }

 if ('127.0.0.1' !== $request->getClientIp()) {
 return new Response(
 'Invalid HTTP method',
 Response::HTTP_BAD_REQUEST
);
 }

 $response = new Response();
 if ($this->getStore()->purge($request->getUri())) {
 $response->setStatusCode(200, 'Purged');
 } else {
 $response->setStatusCode(200, 'Not found');
 }

 return $response;
 }
}

警告

You must protect the PURGE HTTP method somehow to avoid random people
purging your cached data.

Purge instructs the cache to drop a resource in all its variants
(according to the Vary header, see above). An alternative to purging is
refreshing a content. Refreshing means that the caching proxy is
instructed to discard its local cache and fetch the content again. This way,
the new content is already available in the cache. The drawback of refreshing
is that variants are not invalidated.

In many applications, the same content bit is used on various pages with
different URLs. More flexible concepts exist for those cases:

	Banning invalidates responses matching regular expressions on the
URL or other criteria;

	Cache tagging lets you add a tag for each content used in a response
so that you can invalidate all URLs containing a certain content.

Using Edge Side Includes

Gateway caches are a great way to make your website perform better. But they
have one limitation: they can only cache whole pages. If you can’t cache
whole pages or if parts of a page has “more” dynamic parts, you are out of
luck. Fortunately, Symfony provides a solution for these cases, based on a
technology called ESI [http://www.w3.org/TR/esi-lang], or Edge Side Includes. Akamai wrote this specification
almost 10 years ago, and it allows specific parts of a page to have a different
caching strategy than the main page.

The ESI specification describes tags you can embed in your pages to communicate
with the gateway cache. Only one tag is implemented in Symfony, include,
as this is the only useful one outside of Akamai context:

<!DOCTYPE html>
<html>
 <body>
 <!-- ... some content -->

 <!-- Embed the content of another page here -->
 <esi:include src="http://..." />

 <!-- ... more content -->
 </body>
</html>

注解

Notice from the example that each ESI tag has a fully-qualified URL.
An ESI tag represents a page fragment that can be fetched via the given
URL.

When a request is handled, the gateway cache fetches the entire page from
its cache or requests it from the backend application. If the response contains
one or more ESI tags, these are processed in the same way. In other words,
the gateway cache either retrieves the included page fragment from its cache
or requests the page fragment from the backend application again. When all
the ESI tags have been resolved, the gateway cache merges each into the main
page and sends the final content to the client.

All of this happens transparently at the gateway cache level (i.e. outside
of your application). As you’ll see, if you choose to take advantage of ESI
tags, Symfony makes the process of including them almost effortless.

Using ESI in Symfony

First, to use ESI, be sure to enable it in your application configuration:

	YAML# app/config/config.yml
framework:
 # ...
 esi: { enabled: true }

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/symfony"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <framework:config>
 <!-- ... -->
 <framework:esi enabled="true" />
 </framework:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 // ...
 'esi' => array('enabled' => true),
));

Now, suppose you have a page that is relatively static, except for a news
ticker at the bottom of the content. With ESI, you can cache the news ticker
independent of the rest of the page.

public function indexAction()
{
 $response = $this->render('MyBundle:MyController:index.html.twig');
 // set the shared max age - which also marks the response as public
 $response->setSharedMaxAge(600);

 return $response;
}

In this example, the full-page cache has a lifetime of ten minutes.
Next, include the news ticker in the template by embedding an action.
This is done via the render helper (See Embedding Controllers
for more details).

As the embedded content comes from another page (or controller for that
matter), Symfony uses the standard render helper to configure ESI tags:

	Twig{# you can use a controller reference #}
{{ render_esi(controller('...:news', { 'maxPerPage': 5 })) }}

{# ... or a URL #}
{{ render_esi(url('latest_news', { 'maxPerPage': 5 })) }}

	PHP<?php echo $view['actions']->render(
 new \Symfony\Component\HttpKernel\Controller\ControllerReference('...:news', array('maxPerPage' => 5)),
 array('strategy' => 'esi'))
?>

<?php echo $view['actions']->render(
 $view['router']->generate('latest_news', array('maxPerPage' => 5), true),
 array('strategy' => 'esi'),
) ?>

By using the esi renderer (via the render_esi Twig function), you
tell Symfony that the action should be rendered as an ESI tag. You might be
wondering why you would want to use a helper instead of just writing the ESI
tag yourself. That’s because using a helper makes your application work even
if there is no gateway cache installed.

小技巧

As you’ll see below, the maxPerPage variable you pass is available
as an argument to your controller (i.e. $maxPerPage). The variables
passed through render_esi also become part of the cache key so that
you have unique caches for each combination of variables and values.

When using the default render function (or setting the renderer to
inline), Symfony merges the included page content into the main one
before sending the response to the client. But if you use the esi renderer
(i.e. call render_esi), and if Symfony detects that it’s talking to a
gateway cache that supports ESI, it generates an ESI include tag. But if there
is no gateway cache or if it does not support ESI, Symfony will just merge
the included page content within the main one as it would have done if you had
used render.

注解

Symfony detects if a gateway cache supports ESI via another Akamai
specification that is supported out of the box by the Symfony reverse
proxy.

The embedded action can now specify its own caching rules, entirely independent
of the master page.

public function newsAction($maxPerPage)
{
 // ...

 $response->setSharedMaxAge(60);
}

With ESI, the full page cache will be valid for 600 seconds, but the news
component cache will only last for 60 seconds.

When using a controller reference, the ESI tag should reference the embedded
action as an accessible URL so the gateway cache can fetch it independently of
the rest of the page. Symfony takes care of generating a unique URL for any
controller reference and it is able to route them properly thanks to the
FragmentListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/FragmentListener.html]
that must be enabled in your configuration:

	YAML# app/config/config.yml
framework:
 # ...
 fragments: { path: /_fragment }

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:doctrine="http://symfony.com/schema/dic/framework"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <!-- ... -->
 <framework:config>
 <framework:fragments path="/_fragment" />
 </framework:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 // ...
 'fragments' => array('path' => '/_fragment'),
));

One great advantage of the ESI renderer is that you can make your application
as dynamic as needed and at the same time, hit the application as little as
possible.

小技巧

The listener only responds to local IP addresses or
trusted proxies.

注解

Once you start using ESI, remember to always use the s-maxage
directive instead of max-age. As the browser only ever receives the
aggregated resource, it is not aware of the sub-components, and so it will
obey the max-age directive and cache the entire page. And you don’t
want that.

The render_esi helper supports two other useful options:

	alt

	Used as the alt attribute on the ESI tag, which allows you to specify an
alternative URL to be used if the src cannot be found.

	ignore_errors

	If set to true, an onerror attribute will be added to the ESI with a value
of continue indicating that, in the event of a failure, the gateway cache
will simply remove the ESI tag silently.

Summary

Symfony was designed to follow the proven rules of the road: HTTP. Caching
is no exception. Mastering the Symfony cache system means becoming familiar
with the HTTP cache models and using them effectively. This means that, instead
of relying only on Symfony documentation and code examples, you have access
to a world of knowledge related to HTTP caching and gateway caches such as
Varnish.

Learn more from the Cookbook

	How to Use Varnish to Speed up my Website

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

Translations

The term “internationalization” (often abbreviated i18n [http://en.wikipedia.org/wiki/Internationalization_and_localization]) refers to the
process of abstracting strings and other locale-specific pieces out of your
application into a layer where they can be translated and converted based
on the user’s locale (i.e. language and country). For text, this means
wrapping each with a function capable of translating the text (or “message”)
into the language of the user:

// text will *always* print out in English
echo 'Hello World';

// text can be translated into the end-user's language or
// default to English
echo $translator->trans('Hello World');

注解

The term locale refers roughly to the user’s language and country. It
can be any string that your application uses to manage translations and
other format differences (e.g. currency format). The ISO 639-1 [http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes]
language code, an underscore (_), then the ISO 3166-1 alpha-2 [http://en.wikipedia.org/wiki/ISO_3166-1#Current_codes]
country code (e.g. fr_FR for French/France) is recommended.

In this chapter, you’ll learn how to use the Translation component in the
Symfony framework. You can read the
Translation component documentation
to learn even more. Overall, the process has several steps:

	Enable and configure Symfony’s
translation service;

	Abstract strings (i.e. “messages”) by wrapping them in calls to the
Translator (“Basic Translation”);

	Create translation resources/files
for each supported locale that translate each message in the application;

	Determine, set and manage the user’s locale
for the request and optionally
on the user’s entire session.

Configuration

Translations are handled by a translator service that uses the
user’s locale to lookup and return translated messages. Before using it,
enable the translator in your configuration:

	YAML# app/config/config.yml
framework:
 translator: { fallback: en }

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <framework:config>
 <framework:translator fallback="en" />
 </framework:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'translator' => array('fallback' => 'en'),
));

See Fallback Translation Locales for details on the fallback key
and what Symfony does when it doesn’t find a translation.

The locale used in translations is the one stored on the request. This is
typically set via a _locale attribute on your routes (see The Locale and the URL).

Basic Translation

Translation of text is done through the translator service
(Translator [http://api.symfony.com/master/Symfony/Component/Translation/Translator.html]). To translate a block
of text (called a message), use the
trans() [http://api.symfony.com/master/Symfony/Component/Translation/Translator.html#method_trans] method. Suppose,
for example, that you’re translating a simple message from inside a controller:

// ...
use Symfony\Component\HttpFoundation\Response;

public function indexAction()
{
 $translated = $this->get('translator')->trans('Symfony is great');

 return new Response($translated);
}

When this code is executed, Symfony will attempt to translate the message
“Symfony is great” based on the locale of the user. For this to work,
you need to tell Symfony how to translate the message via a “translation
resource”, which is usually a file that contains a collection of translations
for a given locale. This “dictionary” of translations can be created in several
different formats, XLIFF being the recommended format:

	XML<!-- messages.fr.xliff -->
<?xml version="1.0"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
 <file source-language="en" datatype="plaintext" original="file.ext">
 <body>
 <trans-unit id="1">
 <source>Symfony is great</source>
 <target>J'aime Symfony</target>
 </trans-unit>
 </body>
 </file>
</xliff>

	YAML# messages.fr.yml
Symfony is great: J'aime Symfony

	PHP// messages.fr.php
return array(
 'Symfony is great' => 'J\'aime Symfony',
);

For information on where these files should be located, see
Translation Resource/File Names and Locations.

Now, if the language of the user’s locale is French (e.g. fr_FR or fr_BE),
the message will be translated into J'aime Symfony. You can also translate
the message inside your templates.

The Translation Process

To actually translate the message, Symfony uses a simple process:

	The locale of the current user, which is stored on the request is determined;

	A catalog (e.g. big collection) of translated messages is loaded from translation
resources defined for the locale (e.g. fr_FR). Messages from the
fallback locale are also loaded and
added to the catalog if they don’t already exist. The end result is a large
“dictionary” of translations.

	If the message is located in the catalog, the translation is returned. If
not, the translator returns the original message.

When using the trans() method, Symfony looks for the exact string inside
the appropriate message catalog and returns it (if it exists).

Message Placeholders

Sometimes, a message containing a variable needs to be translated:

use Symfony\Component\HttpFoundation\Response;

public function indexAction($name)
{
 $translated = $this->get('translator')->trans('Hello '.$name);

 return new Response($translated);
}

However, creating a translation for this string is impossible since the translator
will try to look up the exact message, including the variable portions
(e.g. “Hello Ryan” or “Hello Fabien”).

For details on how to handle this situation, see Message Placeholders
in the components documentation. For how to do this in templates, see Twig Templates.

Pluralization

Another complication is when you have translations that may or may not be
plural, based on some variable:

There is one apple.
There are 5 apples.

To handle this, use the transChoice() [http://api.symfony.com/master/Symfony/Component/Translation/Translator.html#method_transChoice]
method or the transchoice tag/filter in your template.

For much more information, see Pluralization
in the Translation component documentation.

Translations in Templates

Most of the time, translation occurs in templates. Symfony provides native
support for both Twig and PHP templates.

Twig Templates

Symfony provides specialized Twig tags (trans and transchoice) to
help with message translation of static blocks of text:

{% trans %}Hello %name%{% endtrans %}

{% transchoice count %}
 {0} There are no apples|{1} There is one apple|]1,Inf] There are %count% apples
{% endtranschoice %}

The transchoice tag automatically gets the %count% variable from
the current context and passes it to the translator. This mechanism only
works when you use a placeholder following the %var% pattern.

警告

The %var% notation of placeholders is required when translating in
Twig templates using the tag.

小技巧

If you need to use the percent character (%) in a string, escape it by
doubling it: {% trans %}Percent: %percent%%%{% endtrans %}

You can also specify the message domain and pass some additional variables:

{% trans with {'%name%': 'Fabien'} from "app" %}Hello %name%{% endtrans %}

{% trans with {'%name%': 'Fabien'} from "app" into "fr" %}Hello %name%{% endtrans %}

{% transchoice count with {'%name%': 'Fabien'} from "app" %}
 {0} %name%, there are no apples|{1} %name%, there is one apple|]1,Inf] %name%, there are %count% apples
{% endtranschoice %}

The trans and transchoice filters can be used to translate variable
texts and complex expressions:

{{ message|trans }}

{{ message|transchoice(5) }}

{{ message|trans({'%name%': 'Fabien'}, "app") }}

{{ message|transchoice(5, {'%name%': 'Fabien'}, 'app') }}

小技巧

Using the translation tags or filters have the same effect, but with
one subtle difference: automatic output escaping is only applied to
translations using a filter. In other words, if you need to be sure
that your translated message is not output escaped, you must apply
the raw filter after the translation filter:

{# text translated between tags is never escaped #}
{% trans %}
 <h3>foo</h3>
{% endtrans %}

{% set message = '<h3>foo</h3>' %}

{# strings and variables translated via a filter are escaped by default #}
{{ message|trans|raw }}
{{ '<h3>bar</h3>'|trans|raw }}

小技巧

You can set the translation domain for an entire Twig template with a single tag:

{% trans_default_domain "app" %}

Note that this only influences the current template, not any “included”
template (in order to avoid side effects).

2.1 新版功能: The trans_default_domain tag was introduced in Symfony 2.1.

PHP Templates

The translator service is accessible in PHP templates through the
translator helper:

<?php echo $view['translator']->trans('Symfony is great') ?>

<?php echo $view['translator']->transChoice(
 '{0} There are no apples|{1} There is one apple|]1,Inf[There are %count% apples',
 10,
 array('%count%' => 10)
) ?>

Translation Resource/File Names and Locations

Symfony looks for message files (i.e. translations) in the following locations:

	the app/Resources/translations directory;

	the app/Resources/<bundle name>/translations directory;

	the Resources/translations/ directory inside of any bundle.

The locations are listed here with the highest priority first. That is, you can
override the translation messages of a bundle in any of the top 2 directories.

The override mechanism works at a key level: only the overridden keys need
to be listed in a higher priority message file. When a key is not found
in a message file, the translator will automatically fall back to the lower
priority message files.

The filename of the translation files is also important: each message file
must be named according to the following path: domain.locale.loader:

	domain: An optional way to organize messages into groups (e.g. admin,
navigation or the default messages) - see Using Message Domains;

	locale: The locale that the translations are for (e.g. en_GB, en, etc);

	loader: How Symfony should load and parse the file (e.g. xliff,
php, yml, etc).

The loader can be the name of any registered loader. By default, Symfony
provides many loaders, including:

	xliff: XLIFF file;

	php: PHP file;

	yml: YAML file.

The choice of which loader to use is entirely up to you and is a matter of
taste. The recommended option is to use xliff for translations.
For more options, see Loading Message Catalogs.

注解

You can also store translations in a database, or any other storage by
providing a custom class implementing the
LoaderInterface [http://api.symfony.com/master/Symfony/Component/Translation/Loader/LoaderInterface.html] interface.
See the translation.loader tag for more information.

警告

Each time you create a new translation resource (or install a bundle
that includes a translation resource), be sure to clear your cache so
that Symfony can discover the new translation resources:

$ php app/console cache:clear

Fallback Translation Locales

Imagine that the user’s locale is fr_FR and that you’re translating the
key Symfony is great. To find the French translation, Symfony actually
checks translation resources for several locales:

	First, Symfony looks for the translation in a fr_FR translation resource
(e.g. messages.fr_FR.xliff);

	If it wasn’t found, Symfony looks for the translation in a fr translation
resource (e.g. messages.fr.xliff);

	If the translation still isn’t found, Symfony uses the fallback configuration
parameter, which defaults to en (see Configuration).

Handling the User’s Locale

The locale of the current user is stored in the request and is accessible
via the request object:

use Symfony\Component\HttpFoundation\Request;

public function indexAction(Request $request)
{
 $locale = $request->getLocale();

 $request->setLocale('en_US');
}

小技巧

Read Making the Locale “Sticky” during a User’s Session to learn how to store
the user’s locale in the session.

See the The Locale and the URL section below about setting the
locale via routing.

The Locale and the URL

Since you can store the locale of the user in the session, it may be tempting
to use the same URL to display a resource in different languages based
on the user’s locale. For example, http://www.example.com/contact could
show content in English for one user and French for another user. Unfortunately,
this violates a fundamental rule of the Web: that a particular URL returns
the same resource regardless of the user. To further muddy the problem, which
version of the content would be indexed by search engines?

A better policy is to include the locale in the URL. This is fully-supported
by the routing system using the special _locale parameter:

	YAML# app/config/routing.yml
contact:
 path: /{_locale}/contact
 defaults: { _controller: AppBundle:Contact:index }
 requirements:
 _locale: en|fr|de

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="contact" path="/{_locale}/contact">
 <default key="_controller">AppBundle:Contact:index</default>
 <requirement key="_locale">en|fr|de</requirement>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('contact', new Route(
 '/{_locale}/contact',
 array(
 '_controller' => 'AppBundle:Contact:index',
),
 array(
 '_locale' => 'en|fr|de',
)
));

return $collection;

When using the special _locale parameter in a route, the matched locale
will automatically be set on the Request and can be retrieved via the
getLocale() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_getLocale] method.
In other words, if a user
visits the URI /fr/contact, the locale fr will automatically be set
as the locale for the current request.

You can now use the locale to create routes to other translated pages
in your application.

小技巧

Read How to Use Service Container Parameters in your Routes to learn how to
avoid hardcoding the _locale requirement in all your routes.

Setting a default Locale

What if the user’s locale hasn’t been determined? You can guarantee that a
locale is set on each user’s request by defining a default_locale for
the framework:

	YAML# app/config/config.yml
framework:
 default_locale: en

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <framework:config default-locale="en" />
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'default_locale' => 'en',
));

2.1 新版功能: The default_locale parameter was defined under the session key
originally, however, as of 2.1 this has been moved. This is because the
locale is now set on the request instead of the session.

Translating Constraint Messages

If you’re using validation constraints with the form framework, then translating
the error messages is easy: simply create a translation resource for the
validators domain.

To start, suppose you’ve created a plain-old-PHP object that you need to
use somewhere in your application:

// src/AppBundle/Entity/Author.php
namespace AppBundle\Entity;

class Author
{
 public $name;
}

Add constraints though any of the supported methods. Set the message option to the
translation source text. For example, to guarantee that the $name property is
not empty, add the following:

	Annotations// src/AppBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\NotBlank(message = "author.name.not_blank")
 */
 public $name;
}

	YAML# src/AppBundle/Resources/config/validation.yml
AppBundle\Entity\Author:
 properties:
 name:
 - NotBlank: { message: "author.name.not_blank" }

	XML<!-- src/AppBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping
 http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="AppBundle\Entity\Author">
 <property name="name">
 <constraint name="NotBlank">
 <option name="message">author.name.not_blank</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/AppBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\NotBlank;

class Author
{
 public $name;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('name', new NotBlank(array(
 'message' => 'author.name.not_blank',
)));
 }
}

Create a translation file under the validators catalog for the constraint
messages, typically in the Resources/translations/ directory of the
bundle.

	XML<!-- validators.en.xliff -->
<?xml version="1.0"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
 <file source-language="en" datatype="plaintext" original="file.ext">
 <body>
 <trans-unit id="1">
 <source>author.name.not_blank</source>
 <target>Please enter an author name.</target>
 </trans-unit>
 </body>
 </file>
</xliff>

	YAML# validators.en.yml
author.name.not_blank: Please enter an author name.

	PHP// validators.en.php
return array(
 'author.name.not_blank' => 'Please enter an author name.',
);

Translating Database Content

The translation of database content should be handled by Doctrine through
the Translatable Extension [https://github.com/l3pp4rd/DoctrineExtensions] or the Translatable Behavior [https://github.com/KnpLabs/DoctrineBehaviors] (PHP 5.4+).
For more information, see the documentation for these libraries.

Summary

With the Symfony Translation component, creating an internationalized application
no longer needs to be a painful process and boils down to just a few basic
steps:

	Abstract messages in your application by wrapping each in either the
trans() [http://api.symfony.com/master/Symfony/Component/Translation/Translator.html#method_trans] or
transChoice() [http://api.symfony.com/master/Symfony/Component/Translation/Translator.html#method_transChoice] methods
(learn about this in Using the Translator);

	Translate each message into multiple locales by creating translation message
files. Symfony discovers and processes each file because its name follows
a specific convention;

	Manage the user’s locale, which is stored on the request, but can also
be set on the user’s session.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

Service Container

A modern PHP application is full of objects. One object may facilitate the
delivery of email messages while another may allow you to persist information
into a database. In your application, you may create an object that manages
your product inventory, or another object that processes data from a third-party
API. The point is that a modern application does many things and is organized
into many objects that handle each task.

This chapter is about a special PHP object in Symfony that helps
you instantiate, organize and retrieve the many objects of your application.
This object, called a service container, will allow you to standardize and
centralize the way objects are constructed in your application. The container
makes your life easier, is super fast, and emphasizes an architecture that
promotes reusable and decoupled code. Since all core Symfony classes
use the container, you’ll learn how to extend, configure and use any object
in Symfony. In large part, the service container is the biggest contributor
to the speed and extensibility of Symfony.

Finally, configuring and using the service container is easy. By the end
of this chapter, you’ll be comfortable creating your own objects via the
container and customizing objects from any third-party bundle. You’ll begin
writing code that is more reusable, testable and decoupled, simply because
the service container makes writing good code so easy.

小技巧

If you want to know a lot more after reading this chapter, check out
the DependencyInjection component documentation.

What is a Service?

Put simply, a Service is any PHP object that performs some sort of
“global” task. It’s a purposefully-generic name used in computer science
to describe an object that’s created for a specific purpose (e.g. delivering
emails). Each service is used throughout your application whenever you need
the specific functionality it provides. You don’t have to do anything special
to make a service: simply write a PHP class with some code that accomplishes
a specific task. Congratulations, you’ve just created a service!

注解

As a rule, a PHP object is a service if it is used globally in your
application. A single Mailer service is used globally to send
email messages whereas the many Message objects that it delivers
are not services. Similarly, a Product object is not a service,
but an object that persists Product objects to a database is a service.

So what’s the big deal then? The advantage of thinking about “services” is
that you begin to think about separating each piece of functionality in your
application into a series of services. Since each service does just one job,
you can easily access each service and use its functionality wherever you
need it. Each service can also be more easily tested and configured since
it’s separated from the other functionality in your application. This idea
is called service-oriented architecture [http://wikipedia.org/wiki/Service-oriented_architecture] and is not unique to Symfony
or even PHP. Structuring your application around a set of independent service
classes is a well-known and trusted object-oriented best-practice. These skills
are key to being a good developer in almost any language.

What is a Service Container?

A Service Container (or dependency injection container) is simply
a PHP object that manages the instantiation of services (i.e. objects).

For example, suppose you have a simple PHP class that delivers email messages.
Without a service container, you must manually create the object whenever
you need it:

use Acme\HelloBundle\Mailer;

$mailer = new Mailer('sendmail');
$mailer->send('ryan@example.com', ...);

This is easy enough. The imaginary Mailer class allows you to configure
the method used to deliver the email messages (e.g. sendmail, smtp, etc).
But what if you wanted to use the mailer service somewhere else? You certainly
don’t want to repeat the mailer configuration every time you need to use
the Mailer object. What if you needed to change the transport from
sendmail to smtp everywhere in the application? You’d need to hunt
down every place you create a Mailer service and change it.

Creating/Configuring Services in the Container

A better answer is to let the service container create the Mailer object
for you. In order for this to work, you must teach the container how to
create the Mailer service. This is done via configuration, which can
be specified in YAML, XML or PHP:

	YAML# app/config/config.yml
services:
 my_mailer:
 class: Acme\HelloBundle\Mailer
 arguments: [sendmail]

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="my_mailer" class="Acme\HelloBundle\Mailer">
 <argument>sendmail</argument>
 </service>
 </services>
</container>

	PHP// app/config/config.php
use Symfony\Component\DependencyInjection\Definition;

$container->setDefinition('my_mailer', new Definition(
 'Acme\HelloBundle\Mailer',
 array('sendmail')
));

注解

When Symfony initializes, it builds the service container using the
application configuration (app/config/config.yml by default). The
exact file that’s loaded is dictated by the AppKernel::registerContainerConfiguration()
method, which loads an environment-specific configuration file (e.g.
config_dev.yml for the dev environment or config_prod.yml
for prod).

An instance of the Acme\HelloBundle\Mailer object is now available via
the service container. The container is available in any traditional Symfony
controller where you can access the services of the container via the get()
shortcut method:

class HelloController extends Controller
{
 // ...

 public function sendEmailAction()
 {
 // ...
 $mailer = $this->get('my_mailer');
 $mailer->send('ryan@foobar.net', ...);
 }
}

When you ask for the my_mailer service from the container, the container
constructs the object and returns it. This is another major advantage of
using the service container. Namely, a service is never constructed until
it’s needed. If you define a service and never use it on a request, the service
is never created. This saves memory and increases the speed of your application.
This also means that there’s very little or no performance hit for defining
lots of services. Services that are never used are never constructed.

As a bonus, the Mailer service is only created once and the same
instance is returned each time you ask for the service. This is almost always
the behavior you’ll need (it’s more flexible and powerful), but you’ll learn
later how you can configure a service that has multiple instances in the
“How to Work with Scopes” cookbook article.

注解

In this example, the controller extends Symfony’s base Controller, which
gives you access to the service container itself. You can then use the
get method to locate and retrieve the my_mailer service from
the service container. You can also define your controllers as services.
This is a bit more advanced and not necessary, but it allows you to inject
only the services you need into your controller.

Service Parameters

The creation of new services (i.e. objects) via the container is pretty
straightforward. Parameters make defining services more organized and flexible:

	YAML# app/config/config.yml
parameters:
 my_mailer.transport: sendmail

services:
 my_mailer:
 class: Acme\HelloBundle\Mailer
 arguments: ["%my_mailer.transport%"]

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <parameters>
 <parameter key="my_mailer.transport">sendmail</parameter>
 </parameters>

 <services>
 <service id="my_mailer" class="Acme\HelloBundle\Mailer">
 <argument>%my_mailer.transport%</argument>
 </service>
 </services>
</container>

	PHP// app/config/config.php
use Symfony\Component\DependencyInjection\Definition;

$container->setParameter('my_mailer.transport', 'sendmail');

$container->setDefinition('my_mailer', new Definition(
 'Acme\HelloBundle\Mailer',
 array('%my_mailer.transport%')
));

The end result is exactly the same as before - the difference is only in
how you defined the service. By surrounding the my_mailer.transport
string in percent (%) signs, the container knows to look for a parameter
with that name. When the container is built, it looks up the value of each
parameter and uses it in the service definition.

注解

If you want to use a string that starts with an @ sign as a parameter
value (e.g. a very safe mailer password) in a YAML file, you need to escape
it by adding another @ sign (this only applies to the YAML format):

app/config/parameters.yml
parameters:
 # This will be parsed as string "@securepass"
 mailer_password: "@@securepass"

注解

The percent sign inside a parameter or argument, as part of the string, must
be escaped with another percent sign:

<argument type="string">http://symfony.com/?foo=%%s&bar=%%d</argument>

警告

You may receive a
ScopeWideningInjectionException [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Exception/ScopeWideningInjectionException.html]
when passing the request service as an argument. To understand this
problem better and learn how to solve it, refer to the cookbook article
How to Work with Scopes.

The purpose of parameters is to feed information into services. Of course
there was nothing wrong with defining the service without using any parameters.
Parameters, however, have several advantages:

	separation and organization of all service “options” under a single
parameters key;

	parameter values can be used in multiple service definitions;

	when creating a service in a bundle (this follows shortly), using parameters
allows the service to be easily customized in your application.

The choice of using or not using parameters is up to you. High-quality
third-party bundles will always use parameters as they make the service
stored in the container more configurable. For the services in your application,
however, you may not need the flexibility of parameters.

Array Parameters

Parameters can also contain array values. See Array Parameters.

Importing other Container Configuration Resources

小技巧

In this section, service configuration files are referred to as resources.
This is to highlight the fact that, while most configuration resources
will be files (e.g. YAML, XML, PHP), Symfony is so flexible that configuration
could be loaded from anywhere (e.g. a database or even via an external
web service).

The service container is built using a single configuration resource
(app/config/config.yml by default). All other service configuration
(including the core Symfony and third-party bundle configuration) must
be imported from inside this file in one way or another. This gives you absolute
flexibility over the services in your application.

External service configuration can be imported in two different ways. The
first - and most common method - is via the imports directive. Later, you’ll
learn about the second method, which is the flexible and preferred method
for importing service configuration from third-party bundles.

Importing Configuration with imports

So far, you’ve placed your my_mailer service container definition directly
in the application configuration file (e.g. app/config/config.yml). Of
course, since the Mailer class itself lives inside the AcmeHelloBundle, it
makes more sense to put the my_mailer container definition inside the
bundle as well.

First, move the my_mailer container definition into a new container resource
file inside AcmeHelloBundle. If the Resources or Resources/config
directories don’t exist, create them.

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
parameters:
 my_mailer.transport: sendmail

services:
 my_mailer:
 class: Acme\HelloBundle\Mailer
 arguments: ["%my_mailer.transport%"]

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <parameters>
 <parameter key="my_mailer.transport">sendmail</parameter>
 </parameters>

 <services>
 <service id="my_mailer" class="Acme\HelloBundle\Mailer">
 <argument>%my_mailer.transport%</argument>
 </service>
 </services>
</container>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;

$container->setParameter('my_mailer.transport', 'sendmail');

$container->setDefinition('my_mailer', new Definition(
 'Acme\HelloBundle\Mailer',
 array('%my_mailer.transport%')
));

The definition itself hasn’t changed, only its location. Of course the service
container doesn’t know about the new resource file. Fortunately, you can
easily import the resource file using the imports key in the application
configuration.

	YAML# app/config/config.yml
imports:
 - { resource: "@AcmeHelloBundle/Resources/config/services.yml" }

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <imports>
 <import resource="@AcmeHelloBundle/Resources/config/services.xml"/>
 </imports>
</container>

	PHP// app/config/config.php
$loader->import('@AcmeHelloBundle/Resources/config/services.php');

注解

Due to the way in which parameters are resolved, you cannot use them to
build paths in imports dynamically. This means that something like the
following doesn’t work:

	YAML# app/config/config.yml
imports:
 - { resource: "%kernel.root_dir%/parameters.yml" }

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <imports>
 <import resource="%kernel.root_dir%/parameters.yml" />
 </imports>
</container>

	PHP// app/config/config.php
$loader->import('%kernel.root_dir%/parameters.yml');

The imports directive allows your application to include service container
configuration resources from any other location (most commonly from bundles).
The resource location, for files, is the absolute path to the resource
file. The special @AcmeHelloBundle syntax resolves the directory path
of the AcmeHelloBundle bundle. This helps you specify the path to the resource
without worrying later if you move the AcmeHelloBundle to a different directory.

Importing Configuration via Container Extensions

When developing in Symfony, you’ll most commonly use the imports directive
to import container configuration from the bundles you’ve created specifically
for your application. Third-party bundle container configuration, including
Symfony core services, are usually loaded using another method that’s more
flexible and easy to configure in your application.

Here’s how it works. Internally, each bundle defines its services very much
like you’ve seen so far. Namely, a bundle uses one or more configuration
resource files (usually XML) to specify the parameters and services for that
bundle. However, instead of importing each of these resources directly from
your application configuration using the imports directive, you can simply
invoke a service container extension inside the bundle that does the work for
you. A service container extension is a PHP class created by the bundle author
to accomplish two things:

	import all service container resources needed to configure the services for
the bundle;

	provide semantic, straightforward configuration so that the bundle can
be configured without interacting with the flat parameters of the bundle’s
service container configuration.

In other words, a service container extension configures the services for
a bundle on your behalf. And as you’ll see in a moment, the extension provides
a sensible, high-level interface for configuring the bundle.

Take the FrameworkBundle - the core Symfony framework bundle - as an
example. The presence of the following code in your application configuration
invokes the service container extension inside the FrameworkBundle:

	YAML# app/config/config.yml
framework:
 secret: xxxxxxxxxx
 form: true
 csrf_protection: true
 router: { resource: "%kernel.root_dir%/config/routing.yml" }
 # ...

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <framework:config secret="xxxxxxxxxx">
 <framework:form />
 <framework:csrf-protection />
 <framework:router resource="%kernel.root_dir%/config/routing.xml" />
 <!-- ... -->
 </framework>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'secret' => 'xxxxxxxxxx',
 'form' => array(),
 'csrf-protection' => array(),
 'router' => array(
 'resource' => '%kernel.root_dir%/config/routing.php',
),

 // ...
));

When the configuration is parsed, the container looks for an extension that
can handle the framework configuration directive. The extension in question,
which lives in the FrameworkBundle, is invoked and the service configuration
for the FrameworkBundle is loaded. If you remove the framework key
from your application configuration file entirely, the core Symfony services
won’t be loaded. The point is that you’re in control: the Symfony framework
doesn’t contain any magic or perform any actions that you don’t have control
over.

Of course you can do much more than simply “activate” the service container
extension of the FrameworkBundle. Each extension allows you to easily
customize the bundle, without worrying about how the internal services are
defined.

In this case, the extension allows you to customize the error_handler,
csrf_protection, router configuration and much more. Internally,
the FrameworkBundle uses the options specified here to define and configure
the services specific to it. The bundle takes care of creating all the necessary
parameters and services for the service container, while still allowing
much of the configuration to be easily customized. As a bonus, most
service container extensions are also smart enough to perform validation -
notifying you of options that are missing or the wrong data type.

When installing or configuring a bundle, see the bundle’s documentation for
how the services for the bundle should be installed and configured. The options
available for the core bundles can be found inside the Reference Guide.

注解

Natively, the service container only recognizes the parameters,
services, and imports directives. Any other directives
are handled by a service container extension.

If you want to expose user friendly configuration in your own bundles, read the
“How to Load Service Configuration inside a Bundle” cookbook recipe.

Referencing (Injecting) Services

So far, the original my_mailer service is simple: it takes just one argument
in its constructor, which is easily configurable. As you’ll see, the real
power of the container is realized when you need to create a service that
depends on one or more other services in the container.

As an example, suppose you have a new service, NewsletterManager,
that helps to manage the preparation and delivery of an email message to
a collection of addresses. Of course the my_mailer service is already
really good at delivering email messages, so you’ll use it inside NewsletterManager
to handle the actual delivery of the messages. This pretend class might look
something like this:

// src/Acme/HelloBundle/Newsletter/NewsletterManager.php
namespace Acme\HelloBundle\Newsletter;

use Acme\HelloBundle\Mailer;

class NewsletterManager
{
 protected $mailer;

 public function __construct(Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 // ...
}

Without using the service container, you can create a new NewsletterManager
fairly easily from inside a controller:

use Acme\HelloBundle\Newsletter\NewsletterManager;

// ...

public function sendNewsletterAction()
{
 $mailer = $this->get('my_mailer');
 $newsletter = new NewsletterManager($mailer);
 // ...
}

This approach is fine, but what if you decide later that the NewsletterManager
class needs a second or third constructor argument? What if you decide to
refactor your code and rename the class? In both cases, you’d need to find every
place where the NewsletterManager is instantiated and modify it. Of course,
the service container gives you a much more appealing option:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
services:
 my_mailer:
 # ...

 newsletter_manager:
 class: Acme\HelloBundle\Newsletter\NewsletterManager
 arguments: ["@my_mailer"]

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="my_mailer">
 <!-- ... -->
 </service>

 <service id="newsletter_manager" class="Acme\HelloBundle\Newsletter\NewsletterManager">
 <argument type="service" id="my_mailer"/>
 </service>
 </services>
</container>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$container->setDefinition('my_mailer', ...);

$container->setDefinition('newsletter_manager', new Definition(
 'Acme\HelloBundle\Newsletter\NewsletterManager',
 array(new Reference('my_mailer'))
));

In YAML, the special @my_mailer syntax tells the container to look for
a service named my_mailer and to pass that object into the constructor
of NewsletterManager. In this case, however, the specified service my_mailer
must exist. If it does not, an exception will be thrown. You can mark your
dependencies as optional - this will be discussed in the next section.

Using references is a very powerful tool that allows you to create independent service
classes with well-defined dependencies. In this example, the newsletter_manager
service needs the my_mailer service in order to function. When you define
this dependency in the service container, the container takes care of all
the work of instantiating the classes.

Optional Dependencies: Setter Injection

Injecting dependencies into the constructor in this manner is an excellent
way of ensuring that the dependency is available to use. If you have optional
dependencies for a class, then “setter injection” may be a better option. This
means injecting the dependency using a method call rather than through the
constructor. The class would look like this:

namespace Acme\HelloBundle\Newsletter;

use Acme\HelloBundle\Mailer;

class NewsletterManager
{
 protected $mailer;

 public function setMailer(Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 // ...
}

Injecting the dependency by the setter method just needs a change of syntax:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
services:
 my_mailer:
 # ...

 newsletter_manager:
 class: Acme\HelloBundle\Newsletter\NewsletterManager
 calls:
 - [setMailer, ["@my_mailer"]]

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="my_mailer">
 <!-- ... -->
 </service>

 <service id="newsletter_manager" class="Acme\HelloBundle\Newsletter\NewsletterManager">
 <call method="setMailer">
 <argument type="service" id="my_mailer" />
 </call>
 </service>
 </services>
</container>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$container->setDefinition('my_mailer', ...);

$container->setDefinition('newsletter_manager', new Definition(
 'Acme\HelloBundle\Newsletter\NewsletterManager'
))->addMethodCall('setMailer', array(
 new Reference('my_mailer'),
));

注解

The approaches presented in this section are called “constructor injection”
and “setter injection”. The Symfony service container also supports
“property injection”.

Making References optional

Sometimes, one of your services may have an optional dependency, meaning
that the dependency is not required for your service to work properly. In
the example above, the my_mailer service must exist, otherwise an exception
will be thrown. By modifying the newsletter_manager service definition,
you can make this reference optional. The container will then inject it if
it exists and do nothing if it doesn’t:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
services:
 newsletter_manager:
 class: Acme\HelloBundle\Newsletter\NewsletterManager
 arguments: ["@?my_mailer"]

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="my_mailer">
 <!-- ... -->
 </service>

 <service id="newsletter_manager" class="Acme\HelloBundle\Newsletter\NewsletterManager">
 <argument type="service" id="my_mailer" on-invalid="ignore" />
 </service>
 </services>
</container>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;
use Symfony\Component\DependencyInjection\ContainerInterface;

$container->setDefinition('my_mailer', ...);

$container->setDefinition('newsletter_manager', new Definition(
 'Acme\HelloBundle\Newsletter\NewsletterManager',
 array(
 new Reference(
 'my_mailer',
 ContainerInterface::IGNORE_ON_INVALID_REFERENCE
)
)
));

In YAML, the special @? syntax tells the service container that the dependency
is optional. Of course, the NewsletterManager must also be rewritten to
allow for an optional dependency:

public function __construct(Mailer $mailer = null)
{
 // ...
}

Core Symfony and Third-Party Bundle Services

Since Symfony and all third-party bundles configure and retrieve their services
via the container, you can easily access them or even use them in your own
services. To keep things simple, Symfony by default does not require that
controllers be defined as services. Furthermore, Symfony injects the entire
service container into your controller. For example, to handle the storage of
information on a user’s session, Symfony provides a session service,
which you can access inside a standard controller as follows:

public function indexAction($bar)
{
 $session = $this->get('session');
 $session->set('foo', $bar);

 // ...
}

In Symfony, you’ll constantly use services provided by the Symfony core or
other third-party bundles to perform tasks such as rendering templates (templating),
sending emails (mailer), or accessing information on the request (request).

You can take this a step further by using these services inside services that
you’ve created for your application. Beginning by modifying the NewsletterManager
to use the real Symfony mailer service (instead of the pretend my_mailer).
Also pass the templating engine service to the NewsletterManager
so that it can generate the email content via a template:

namespace Acme\HelloBundle\Newsletter;

use Symfony\Component\Templating\EngineInterface;

class NewsletterManager
{
 protected $mailer;

 protected $templating;

 public function __construct(
 \Swift_Mailer $mailer,
 EngineInterface $templating
) {
 $this->mailer = $mailer;
 $this->templating = $templating;
 }

 // ...
}

Configuring the service container is easy:

	YAML# src/Acme/HelloBundle/Resources/config/services.yml
services:
 newsletter_manager:
 class: Acme\HelloBundle\Newsletter\NewsletterManager
 arguments: ["@mailer", "@templating"]

	XML<!-- src/Acme/HelloBundle/Resources/config/services.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <service id="newsletter_manager" class="Acme\HelloBundle\Newsletter\NewsletterManager">
 <argument type="service" id="mailer"/>
 <argument type="service" id="templating"/>
 </service>
</container>

	PHP// src/Acme/HelloBundle/Resources/config/services.php
$container->setDefinition('newsletter_manager', new Definition(
 'Acme\HelloBundle\Newsletter\NewsletterManager',
 array(
 new Reference('mailer'),
 new Reference('templating'),
)
));

The newsletter_manager service now has access to the core mailer
and templating services. This is a common way to create services specific
to your application that leverage the power of different services within
the framework.

小技巧

Be sure that the swiftmailer entry appears in your application
configuration. As was mentioned in Importing Configuration via Container Extensions,
the swiftmailer key invokes the service extension from the
SwiftmailerBundle, which registers the mailer service.

Tags

In the same way that a blog post on the Web might be tagged with things such
as “Symfony” or “PHP”, services configured in your container can also be
tagged. In the service container, a tag implies that the service is meant
to be used for a specific purpose. Take the following example:

	YAML# app/config/services.yml
services:
 foo.twig.extension:
 class: Acme\HelloBundle\Extension\FooExtension
 public: false
 tags:
 - { name: twig.extension }

	XML<!-- app/config/services.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <service
 id="foo.twig.extension"
 class="Acme\HelloBundle\Extension\FooExtension"
 public="false">

 <tag name="twig.extension" />
 </service>
</container>

	PHP// app/config/services.php
use Symfony\Component\DependencyInjection\Definition;

$definition = new Definition('Acme\HelloBundle\Extension\FooExtension');
$definition->setPublic(false);
$definition->addTag('twig.extension');
$container->setDefinition('foo.twig.extension', $definition);

The twig.extension tag is a special tag that the TwigBundle uses
during configuration. By giving the service this twig.extension tag,
the bundle knows that the foo.twig.extension service should be registered
as a Twig extension with Twig. In other words, Twig finds all services tagged
with twig.extension and automatically registers them as extensions.

Tags, then, are a way to tell Symfony or other third-party bundles that
your service should be registered or used in some special way by the bundle.

For a list of all the tags available in the core Symfony Framework, check
out The Dependency Injection Tags. Each of these has a different effect on your
service and many tags require additional arguments (beyond just the name
parameter).

Debugging Services

You can find out what services are registered with the container using the
console. To show all services and the class for each service, run:

$ php app/console container:debug

By default, only public services are shown, but you can also view private services:

$ php app/console container:debug --show-private

注解

If a private service is only used as an argument to just one other service,
it won’t be displayed by the container:debug command, even when using
the --show-private option. See Inline Private Services
for more details.

You can get more detailed information about a particular service by specifying
its id:

$ php app/console container:debug my_mailer

Learn more

	Introduction to Parameters

	Compiling the Container

	Working with Container Service Definitions

	Using a Factory to Create Services

	Managing common Dependencies with parent Services

	Working with Tagged Services

	How to Define Controllers as Services

	How to Work with Scopes

	How to Work with Compiler Passes in Bundles

	Advanced Container Configuration

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

Performance

Symfony is fast, right out of the box. Of course, if you really need speed,
there are many ways that you can make Symfony even faster. In this chapter,
you’ll explore many of the most common and powerful ways to make your Symfony
application even faster.

Use a Byte Code Cache (e.g. APC)

One of the best (and easiest) things that you should do to improve your performance
is to use a “byte code cache”. The idea of a byte code cache is to remove
the need to constantly recompile the PHP source code. There are a number of
byte code caches [http://en.wikipedia.org/wiki/List_of_PHP_accelerators] available, some of which are open source. The most widely
used byte code cache is probably APC [http://php.net/manual/en/book.apc.php]

Using a byte code cache really has no downside, and Symfony has been architected
to perform really well in this type of environment.

Further Optimizations

Byte code caches usually monitor the source files for changes. This ensures
that if the source of a file changes, the byte code is recompiled automatically.
This is really convenient, but obviously adds overhead.

For this reason, some byte code caches offer an option to disable these checks.
Obviously, when disabling these checks, it will be up to the server admin
to ensure that the cache is cleared whenever any source files change. Otherwise,
the updates you’ve made won’t be seen.

For example, to disable these checks in APC, simply add apc.stat=0 to
your php.ini configuration.

Use Composer’s Class Map Functionality

By default, the Symfony standard edition uses Composer’s autoloader
in the autoload.php [https://github.com/symfony/symfony-standard/blob/master/app/autoload.php] file. This autoloader is easy to use, as it will
automatically find any new classes that you’ve placed in the registered
directories.

Unfortunately, this comes at a cost, as the loader iterates over all configured
namespaces to find a particular file, making file_exists calls until it
finally finds the file it’s looking for.

The simplest solution is to tell Composer to build a “class map” (i.e. a
big array of the locations of all the classes). This can be done from the
command line, and might become part of your deploy process:

$ composer dump-autoload --optimize

Internally, this builds the big class map array in vendor/composer/autoload_classmap.php.

Caching the Autoloader with APC

Another solution is to cache the location of each class after it’s located
the first time. Symfony comes with a class - ApcClassLoader [http://api.symfony.com/master/Symfony/Component/ClassLoader/ApcClassLoader.html] -
that does exactly this. To use it, just adapt your front controller file.
If you’re using the Standard Distribution, this code should already be available
as comments in this file:

// app.php
// ...

$loader = require_once __DIR__.'/../app/bootstrap.php.cache';

// Use APC for autoloading to improve performance
// Change 'sf2' by the prefix you want in order
// to prevent key conflict with another application
/*
$loader = new ApcClassLoader('sf2', $loader);
$loader->register(true);
*/

// ...

For more details, see Cache a Class Loader.

注解

When using the APC autoloader, if you add new classes, they will be found
automatically and everything will work the same as before (i.e. no
reason to “clear” the cache). However, if you change the location of a
particular namespace or prefix, you’ll need to flush your APC cache. Otherwise,
the autoloader will still be looking at the old location for all classes
inside that namespace.

Use Bootstrap Files

To ensure optimal flexibility and code reuse, Symfony applications leverage
a variety of classes and 3rd party components. But loading all of these classes
from separate files on each request can result in some overhead. To reduce
this overhead, the Symfony Standard Edition provides a script to generate
a so-called bootstrap file [https://github.com/sensio/SensioDistributionBundle/blob/master/Composer/ScriptHandler.php], consisting of multiple classes definitions
in a single file. By including this file (which contains a copy of many of
the core classes), Symfony no longer needs to include any of the source files
containing those classes. This will reduce disc IO quite a bit.

If you’re using the Symfony Standard Edition, then you’re probably already
using the bootstrap file. To be sure, open your front controller (usually
app.php) and check to make sure that the following line exists:

require_once __DIR__.'/../app/bootstrap.php.cache';

Note that there are two disadvantages when using a bootstrap file:

	the file needs to be regenerated whenever any of the original sources change
(i.e. when you update the Symfony source or vendor libraries);

	when debugging, one will need to place break points inside the bootstrap file.

If you’re using the Symfony Standard Edition, the bootstrap file is automatically
rebuilt after updating the vendor libraries via the composer install command.

Bootstrap Files and Byte Code Caches

Even when using a byte code cache, performance will improve when using a bootstrap
file since there will be fewer files to monitor for changes. Of course if this
feature is disabled in the byte code cache (e.g. apc.stat=0 in APC), there
is no longer a reason to use a bootstrap file.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Book

Internals

Looks like you want to understand how Symfony works and how to extend it.
That makes me very happy! This section is an in-depth explanation of the
Symfony internals.

注解

You only need to read this section if you want to understand how Symfony
works behind the scenes, or if you want to extend Symfony.

Overview

The Symfony code is made of several independent layers. Each layer is built
on top of the previous one.

小技巧

Autoloading is not managed by the framework directly; it’s done by using
Composer’s autoloader (vendor/autoload.php), which is included in
the app/autoload.php file.

HttpFoundation Component

The deepest level is the HttpFoundation [http://api.symfony.com/master/Symfony/Component/HttpFoundation.html]
component. HttpFoundation provides the main objects needed to deal with HTTP.
It is an object-oriented abstraction of some native PHP functions and
variables:

	The Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html] class abstracts
the main PHP global variables like $_GET, $_POST, $_COOKIE,
$_FILES, and $_SERVER;

	The Response [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html] class abstracts
some PHP functions like header(), setcookie(), and echo;

	The Session [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session.html] class and
SessionStorageInterface [http://api.symfony.com/master/Symfony/Component/HttpFoundation/SessionStorage/SessionStorageInterface.html]
interface abstract session management session_*() functions.

注解

Read more about the HttpFoundation component.

HttpKernel Component

On top of HttpFoundation is the HttpKernel [http://api.symfony.com/master/Symfony/Component/HttpKernel.html]
component. HttpKernel handles the dynamic part of HTTP; it is a thin wrapper
on top of the Request and Response classes to standardize the way requests are
handled. It also provides extension points and tools that makes it the ideal
starting point to create a Web framework without too much overhead.

It also optionally adds configurability and extensibility, thanks to the
DependencyInjection component and a powerful plugin system (bundles).

参见

Read more about the HttpKernel component,
Dependency Injection and
Bundles.

FrameworkBundle

The FrameworkBundle [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle.html] bundle is the bundle that
ties the main components and libraries together to make a lightweight and fast
MVC framework. It comes with a sensible default configuration and conventions
to ease the learning curve.

Kernel

The HttpKernel [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernel.html] class is the central
class of Symfony and is responsible for handling client requests. Its main
goal is to “convert” a Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html]
object to a Response [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html] object.

Every Symfony Kernel implements
HttpKernelInterface [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernelInterface.html]:

function handle(Request $request, $type = self::MASTER_REQUEST, $catch = true)

Controllers

To convert a Request to a Response, the Kernel relies on a “Controller”. A
Controller can be any valid PHP callable.

The Kernel delegates the selection of what Controller should be executed
to an implementation of
ControllerResolverInterface [http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolverInterface.html]:

public function getController(Request $request);

public function getArguments(Request $request, $controller);

The
getController() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolverInterface.html#method_getController]
method returns the Controller (a PHP callable) associated with the given
Request. The default implementation
(ControllerResolver [http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolver.html])
looks for a _controller request attribute that represents the controller
name (a “class::method” string, like Bundle\BlogBundle\PostController:indexAction).

小技巧

The default implementation uses the
RouterListener [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/EventListener/RouterListener.html]
to define the _controller Request attribute (see kernel.request Event).

The
getArguments() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolverInterface.html#method_getArguments]
method returns an array of arguments to pass to the Controller callable. The
default implementation automatically resolves the method arguments, based on
the Request attributes.

Matching Controller Method Arguments from Request Attributes

For each method argument, Symfony tries to get the value of a Request
attribute with the same name. If it is not defined, the argument default
value is used if defined:

// Symfony will look for an 'id' attribute (mandatory)
// and an 'admin' one (optional)
public function showAction($id, $admin = true)
{
 // ...
}

Handling Requests

The handle() [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernel.html#method_handle] method
takes a Request and always returns a Response. To convert the
Request, handle() relies on the Resolver and an ordered chain of
Event notifications (see the next section for more information about each
Event):

	Before doing anything else, the kernel.request event is notified – if
one of the listeners returns a Response, it jumps to step 8 directly;

	The Resolver is called to determine the Controller to execute;

	Listeners of the kernel.controller event can now manipulate the
Controller callable the way they want (change it, wrap it, ...);

	The Kernel checks that the Controller is actually a valid PHP callable;

	The Resolver is called to determine the arguments to pass to the Controller;

	The Kernel calls the Controller;

	If the Controller does not return a Response, listeners of the
kernel.view event can convert the Controller return value to a Response;

	Listeners of the kernel.response event can manipulate the Response
(content and headers);

	The Response is returned;

	Listeners of the kernel.terminate event can perform tasks after the
Response has been served.

If an Exception is thrown during processing, the kernel.exception is
notified and listeners are given a chance to convert the Exception to a
Response. If that works, the kernel.response event is notified; if not, the
Exception is re-thrown.

If you don’t want Exceptions to be caught (for embedded requests for
instance), disable the kernel.exception event by passing false as the
third argument to the handle() method.

Internal Requests

At any time during the handling of a request (the ‘master’ one), a sub-request
can be handled. You can pass the request type to the handle() method (its
second argument):

	HttpKernelInterface::MASTER_REQUEST;

	HttpKernelInterface::SUB_REQUEST.

The type is passed to all events and listeners can act accordingly (some
processing must only occur on the master request).

Events

Each event thrown by the Kernel is a subclass of
KernelEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/KernelEvent.html]. This means that
each event has access to the same basic information:

	getRequestType() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/KernelEvent.html#method_getRequestType]

	Returns the type of the request (HttpKernelInterface::MASTER_REQUEST or
HttpKernelInterface::SUB_REQUEST).

	getKernel() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/KernelEvent.html#method_getKernel]

	Returns the Kernel handling the request.

	getRequest() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/KernelEvent.html#method_getRequest]

	Returns the current Request being handled.

getRequestType()

The getRequestType() method allows listeners to know the type of the
request. For instance, if a listener must only be active for master requests,
add the following code at the beginning of your listener method:

use Symfony\Component\HttpKernel\HttpKernelInterface;

if (HttpKernelInterface::MASTER_REQUEST !== $event->getRequestType()) {
 // return immediately
 return;
}

小技巧

If you are not yet familiar with the Symfony EventDispatcher, read the
EventDispatcher component documentation
section first.

kernel.request Event

Event Class: GetResponseEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseEvent.html]

The goal of this event is to either return a Response object immediately
or setup variables so that a Controller can be called after the event. Any
listener can return a Response object via the setResponse() method on
the event. In this case, all other listeners won’t be called.

This event is used by the FrameworkBundle to populate the _controller
Request attribute, via the
RouterListener [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/EventListener/RouterListener.html]. RequestListener
uses a RouterInterface [http://api.symfony.com/master/Symfony/Component/Routing/RouterInterface.html] object to match
the Request and determine the Controller name (stored in the
_controller Request attribute).

参见

Read more on the kernel.request event.

kernel.controller Event

Event Class: FilterControllerEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/FilterControllerEvent.html]

This event is not used by the FrameworkBundle, but can be an entry point used
to modify the controller that should be executed:

use Symfony\Component\HttpKernel\Event\FilterControllerEvent;

public function onKernelController(FilterControllerEvent $event)
{
 $controller = $event->getController();
 // ...

 // the controller can be changed to any PHP callable
 $event->setController($controller);
}

参见

Read more on the kernel.controller event.

kernel.view Event

Event Class: GetResponseForControllerResultEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseForControllerResultEvent.html]

This event is not used by the FrameworkBundle, but it can be used to implement
a view sub-system. This event is called only if the Controller does not
return a Response object. The purpose of the event is to allow some other
return value to be converted into a Response.

The value returned by the Controller is accessible via the
getControllerResult method:

use Symfony\Component\HttpKernel\Event\GetResponseForControllerResultEvent;
use Symfony\Component\HttpFoundation\Response;

public function onKernelView(GetResponseForControllerResultEvent $event)
{
 $val = $event->getControllerResult();
 $response = new Response();

 // ... some how customize the Response from the return value

 $event->setResponse($response);
}

参见

Read more on the kernel.view event.

kernel.response Event

Event Class: FilterResponseEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/FilterResponseEvent.html]

The purpose of this event is to allow other systems to modify or replace the
Response object after its creation:

public function onKernelResponse(FilterResponseEvent $event)
{
 $response = $event->getResponse();

 // ... modify the response object
}

The FrameworkBundle registers several listeners:

	ProfilerListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ProfilerListener.html]

	Collects data for the current request.

	WebDebugToolbarListener [http://api.symfony.com/master/Symfony/Bundle/WebProfilerBundle/EventListener/WebDebugToolbarListener.html]

	Injects the Web Debug Toolbar.

	ResponseListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ResponseListener.html]

	Fixes the Response Content-Type based on the request format.

	EsiListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/EsiListener.html]

	Adds a Surrogate-Control HTTP header when the Response needs to be parsed
for ESI tags.

参见

Read more on the kernel.response event.

kernel.terminate Event

Event Class: PostResponseEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/PostResponseEvent.html]

The purpose of this event is to perform “heavier” tasks after the response
was already served to the client.

参见

Read more on the kernel.terminate event.

kernel.exception Event

Event Class: GetResponseForExceptionEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseForExceptionEvent.html]

The FrameworkBundle registers an
ExceptionListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ExceptionListener.html] that
forwards the Request to a given Controller (the value of the
exception_listener.controller parameter – must be in the
class::method notation).

A listener on this event can create and set a Response object, create
and set a new Exception object, or do nothing:

use Symfony\Component\HttpKernel\Event\GetResponseForExceptionEvent;
use Symfony\Component\HttpFoundation\Response;

public function onKernelException(GetResponseForExceptionEvent $event)
{
 $exception = $event->getException();
 $response = new Response();
 // setup the Response object based on the caught exception
 $event->setResponse($response);

 // you can alternatively set a new Exception
 // $exception = new \Exception('Some special exception');
 // $event->setException($exception);
}

注解

As Symfony ensures that the Response status code is set to the most
appropriate one depending on the exception, setting the status on the
response won’t work. If you want to overwrite the status code (which you
should not without a good reason), set the X-Status-Code header:

return new Response(
 'Error',
 404 // ignored,
 array('X-Status-Code' => 200)
);

参见

Read more on the kernel.exception event.

The EventDispatcher

The EventDispatcher is a standalone component that is responsible for much
of the underlying logic and flow behind a Symfony request. For more information,
see the EventDispatcher component documentation.

Profiler

When enabled, the Symfony profiler collects useful information about each
request made to your application and store them for later analysis. Use the
profiler in the development environment to help you to debug your code and
enhance performance; use it in the production environment to explore problems
after the fact.

You rarely have to deal with the profiler directly as Symfony provides
visualizer tools like the Web Debug Toolbar and the Web Profiler. If you use
the Symfony Standard Edition, the profiler, the web debug toolbar, and the
web profiler are all already configured with sensible settings.

注解

The profiler collects information for all requests (simple requests,
redirects, exceptions, Ajax requests, ESI requests; and for all HTTP
methods and all formats). It means that for a single URL, you can have
several associated profiling data (one per external request/response
pair).

Visualizing Profiling Data

Using the Web Debug Toolbar

In the development environment, the web debug toolbar is available at the
bottom of all pages. It displays a good summary of the profiling data that
gives you instant access to a lot of useful information when something does
not work as expected.

If the summary provided by the Web Debug Toolbar is not enough, click on the
token link (a string made of 13 random characters) to access the Web Profiler.

注解

If the token is not clickable, it means that the profiler routes are not
registered (see below for configuration information).

Analyzing Profiling Data with the Web Profiler

The Web Profiler is a visualization tool for profiling data that you can use
in development to debug your code and enhance performance; but it can also be
used to explore problems that occur in production. It exposes all information
collected by the profiler in a web interface.

Accessing the Profiling information

You don’t need to use the default visualizer to access the profiling
information. But how can you retrieve profiling information for a specific
request after the fact? When the profiler stores data about a Request, it also
associates a token with it; this token is available in the X-Debug-Token
HTTP header of the Response:

$profile = $container->get('profiler')->loadProfileFromResponse($response);

$profile = $container->get('profiler')->loadProfile($token);

小技巧

When the profiler is enabled but not the web debug toolbar, or when you
want to get the token for an Ajax request, use a tool like Firebug to get
the value of the X-Debug-Token HTTP header.

Use the find() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Profiler/Profiler.html#method_find]
method to access tokens based on some criteria:

// get the latest 10 tokens
$tokens = $container->get('profiler')->find('', '', 10, '', '');

// get the latest 10 tokens for all URL containing /admin/
$tokens = $container->get('profiler')->find('', '/admin/', 10, '', '');

// get the latest 10 tokens for local requests
$tokens = $container->get('profiler')->find('127.0.0.1', '', 10, '', '');

// get the latest 10 tokens for requests that happened between 2 and 4 days ago
$tokens = $container->get('profiler')
 ->find('', '', 10, '4 days ago', '2 days ago');

If you want to manipulate profiling data on a different machine than the one
where the information were generated, use the
export() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Profiler/Profiler.html#method_export] and
import() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Profiler/Profiler.html#method_import] methods:

// on the production machine
$profile = $container->get('profiler')->loadProfile($token);
$data = $profiler->export($profile);

// on the development machine
$profiler->import($data);

Configuration

The default Symfony configuration comes with sensible settings for the
profiler, the web debug toolbar, and the web profiler. Here is for instance
the configuration for the development environment:

	YAML# load the profiler
framework:
 profiler: { only_exceptions: false }

enable the web profiler
web_profiler:
 toolbar: true
 intercept_redirects: true

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:webprofiler="http://symfony.com/schema/dic/webprofiler"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/webprofiler
 http://symfony.com/schema/dic/webprofiler/webprofiler-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <!-- load the profiler -->
 <framework:config>
 <framework:profiler only-exceptions="false" />
 </framework:config>

 <!-- enable the web profiler -->
 <webprofiler:config
 toolbar="true"
 intercept-redirects="true" />
</container>

	PHP// load the profiler
$container->loadFromExtension('framework', array(
 'profiler' => array('only_exceptions' => false),
));

// enable the web profiler
$container->loadFromExtension('web_profiler', array(
 'toolbar' => true,
 'intercept_redirects' => true,
));

When only_exceptions is set to true, the profiler only collects data
when an exception is thrown by the application.

When intercept_redirects is set to true, the web profiler intercepts
the redirects and gives you the opportunity to look at the collected data
before following the redirect.

If you enable the web profiler, you also need to mount the profiler routes:

	YAML_profiler:
 resource: "@WebProfilerBundle/Resources/config/routing/profiler.xml"
 prefix: /_profiler

	XML<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <import
 resource="@WebProfilerBundle/Resources/config/routing/profiler.xml"
 prefix="/_profiler" />
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;

$profiler = $loader->import(
 '@WebProfilerBundle/Resources/config/routing/profiler.xml'
);
$profiler->addPrefix('/_profiler');

$collection = new RouteCollection();
$collection->addCollection($profiler);

As the profiler adds some overhead, you might want to enable it only under
certain circumstances in the production environment. The only_exceptions
settings limits profiling to exceptions, but what if you want to get
information when the client IP comes from a specific address, or for a limited
portion of the website? You can use a Profiler Matcher, learn more about that
in “How to Use Matchers to Enable the Profiler Conditionally”.

Learn more from the Cookbook

	How to Use the Profiler in a Functional Test

	How to Create a custom Data Collector

	How to Extend a Class without Using Inheritance

	How to Customize a Method Behavior without Using Inheritance

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

The Cookbook

	Assetic
	How to Use Assetic for Asset Management

	How to Minify CSS/JS Files (Using UglifyJS and UglifyCSS)

	How to Minify JavaScripts and Stylesheets with YUI Compressor

	How to Use Assetic for Image Optimization with Twig Functions

	How to Apply an Assetic Filter to a specific File Extension

	Bundles
	How to Install 3rd Party Bundles

	Best Practices for Reusable Bundles

	How to Use Bundle Inheritance to Override Parts of a Bundle

	How to Override any Part of a Bundle

	How to Remove the AcmeDemoBundle

	How to Load Service Configuration inside a Bundle

	How to Create Friendly Configuration for a Bundle

	How to Simplify Configuration of multiple Bundles

	Cache
	How to Use Varnish to Speed up my Website

	Caching Pages that Contain CSRF Protected Forms

	Composer
	Installing Composer

	Configuration
	How to Master and Create new Environments

	How to Override Symfony’s default Directory Structure

	Using Parameters within a Dependency Injection Class

	Understanding how the Front Controller, Kernel and Environments Work together

	How to Set external Parameters in the Service Container

	How to Use PdoSessionHandler to Store Sessions in the Database

	How to Use the Apache Router

	Configuring a Web Server

	How to Organize Configuration Files

	Console
	How to Create a Console Command

	How to Use the Console

	How to Generate URLs and Send Emails from the Console

	How to Enable Logging in Console Commands

	Controller
	How to Customize Error Pages

	How to Define Controllers as Services

	Debugging
	How to Optimize your Development Environment for Debugging

	Deployment
	How to Deploy a Symfony Application

	Deploying to Microsoft Azure Website Cloud

	Deploying to Heroku Cloud

	Deploying to Platform.sh

	Doctrine
	How to Handle File Uploads with Doctrine

	How to use Doctrine Extensions: Timestampable, Sluggable, Translatable, etc.

	How to Register Event Listeners and Subscribers

	How to Use Doctrine DBAL

	How to Generate Entities from an Existing Database

	How to Work with multiple Entity Managers and Connections

	How to Register custom DQL Functions

	How to Define Relationships with Abstract Classes and Interfaces

	How to Provide Model Classes for several Doctrine Implementations

	How to Implement a simple Registration Form

	Console Commands

	(configuration) How to Use PdoSessionHandler to Store Sessions in the Database

	Email
	How to Send an Email

	How to Use Gmail to Send Emails

	How to Use the Cloud to Send Emails

	How to Work with Emails during Development

	How to Spool Emails

	How to Test that an Email is Sent in a functional Test

	Event Dispatcher
	How to Setup before and after Filters

	How to Extend a Class without Using Inheritance

	How to Customize a Method Behavior without Using Inheritance

	(service container) How to Create an Event Listener

	Form
	How to Customize Form Rendering

	How to Use Data Transformers

	How to Dynamically Modify Forms Using Form Events

	How to Embed a Collection of Forms

	How to Create a Custom Form Field Type

	How to Create a Form Type Extension

	How to Reduce Code Duplication with “inherit_data”

	How to Unit Test your Forms

	How to Configure empty Data for a Form Class

	How to Use the submit() Function to Handle Form Submissions

	(validation) How to Create a custom Validation Constraint

	(doctrine) How to Handle File Uploads with Doctrine

	Logging
	How to Use Monolog to Write Logs

	How to Configure Monolog to Email Errors

	How to Configure Monolog to Exclude 404 Errors from the Log

	How to Log Messages to different Files

	Profiler
	How to Create a custom Data Collector

	How to Use Matchers to Enable the Profiler Conditionally

	Switching the Profiler Storage

	Request
	How to Configure Symfony to Work behind a Load Balancer or a Reverse Proxy

	How to Register a new Request Format and Mime Type

	(session) Making the Locale “Sticky” during a User’s Session

	Routing
	How to Force Routes to always Use HTTPS or HTTP

	How to Allow a “/” Character in a Route Parameter

	How to Configure a Redirect without a custom Controller

	How to Use HTTP Methods beyond GET and POST in Routes

	How to Use Service Container Parameters in your Routes

	How to Create a custom Route Loader

	Redirect URLs with a Trailing Slash

	How to Pass Extra Information from a Route to a Controller

	Security
	How to Build a Traditional Login Form

	How to Load Security Users from the Database (the Entity Provider)

	How to Add “Remember Me” Login Functionality

	How to Impersonate a User

	How to Implement your own Voter to Blacklist IP Addresses

	How to Use Voters to Check User Permissions

	How to Use Access Control Lists (ACLs)

	How to Use advanced ACL Concepts

	How to Force HTTPS or HTTP for different URLs

	How to Customize your Form Login

	How to Secure any Service or Method in your Application

	How to Create a custom User Provider

	How to Create a custom Authentication Provider

	Using pre Authenticated Security Firewalls

	How to Change the default Target Path Behavior

	Using CSRF Protection in the Login Form

	How Does the Security access_control Work?

	How to Use multiple User Providers

	Serializer
	How to Use the Serializer

	Service Container
	How to Create an Event Listener

	How to Work with Scopes

	How to Work with Compiler Passes in Bundles

	Sessions
	Session Proxy Examples

	Making the Locale “Sticky” during a User’s Session

	Configuring the Directory where Session Files are Saved

	Bridge a legacy Application with Symfony Sessions

	(configuration) How to Use PdoSessionHandler to Store Sessions in the Database

	Avoid Starting Sessions for Anonymous Users

	symfony1
	How Symfony2 Differs from Symfony1

	Templating
	How to Inject Variables into all Templates (i.e. global Variables)

	How to Use and Register Namespaced Twig Paths

	How to Use PHP instead of Twig for Templates

	How to Write a custom Twig Extension

	How to Render a Template without a custom Controller

	Testing
	How to Simulate HTTP Authentication in a Functional Test

	How to Simulate Authentication with a Token in a Functional Test

	How to Test the Interaction of several Clients

	How to Use the Profiler in a Functional Test

	How to Test Code that Interacts with the Database

	How to Test Doctrine Repositories

	How to Customize the Bootstrap Process before Running Tests

	(email) How to Test that an Email is Sent in a functional Test

	(form) How to Unit Test your Forms

	Upgrading
	How to Upgrade Your Symfony Project

	Validation
	How to Create a custom Validation Constraint

	Web Server
	How to Use PHP’s built-in Web Server

	(configuration) Configuring a Web Server

	Web Services
	How to Create a SOAP Web Service in a Symfony Controller

	Workflow
	How to Create and Store a Symfony Project in Git

	How to Create and Store a Symfony Project in Subversion

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Assetic

	How to Use Assetic for Asset Management
	Assets

	Filters

	Controlling the URL Used

	Dumping Asset Files

	How to Minify CSS/JS Files (Using UglifyJS and UglifyCSS)
	Install UglifyJS

	Configure the uglifyjs2 Filter

	Configure the node Binary

	Minify your Assets

	Install, Configure and Use UglifyCSS

	How to Minify JavaScripts and Stylesheets with YUI Compressor
	Download the YUI Compressor JAR

	Configure the YUI Filters

	Minify your Assets

	Disable Minification in Debug Mode

	How to Use Assetic for Image Optimization with Twig Functions
	Using Jpegoptim

	Shorter Syntax: Twig Function

	How to Apply an Assetic Filter to a specific File Extension
	Filter a single File

	Filter multiple Files

	Filtering Based on a File Extension

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Assetic

How to Use Assetic for Asset Management

Assetic combines two major ideas: assets and
filters. The assets are files such as CSS,
JavaScript and image files. The filters are things that can be applied to
these files before they are served to the browser. This allows a separation
between the asset files stored in the application and the files actually presented
to the user.

Without Assetic, you just serve the files that are stored in the application
directly:

	Twig<script src="{{ asset('js/script.js') }}"></script>

	PHP<script src="<?php echo $view['assets']->getUrl('js/script.js') ?>"></script>

But with Assetic, you can manipulate these assets however you want (or
load them from anywhere) before serving them. This means you can:

	Minify and combine all of your CSS and JS files

	Run all (or just some) of your CSS or JS files through some sort of compiler,
such as LESS, SASS or CoffeeScript

	Run image optimizations on your images

Assets

Using Assetic provides many advantages over directly serving the files.
The files do not need to be stored where they are served from and can be
drawn from various sources such as from within a bundle.

You can use Assetic to process CSS stylesheets,
JavaScript files and
images. The philosophy
behind adding either is basically the same, but with a slightly different syntax.

Including JavaScript Files

To include JavaScript files, use the javascripts tag in any template:

	Twig{% javascripts '@AppBundle/Resources/public/js/*' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AppBundle/Resources/public/js/*')
) as $url): ?>
 <script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach ?>

注解

If you’re using the default block names from the Symfony Standard Edition,
the javascripts tag will most commonly live in the javascripts
block:

{# ... #}
{% block javascripts %}
 {% javascripts '@AppBundle/Resources/public/js/*' %}
 <script src="{{ asset_url }}"></script>
 {% endjavascripts %}
{% endblock %}
{# ... #}

小技巧

You can also include CSS Stylesheets: see Including CSS Stylesheets.

In this example, all of the files in the Resources/public/js/ directory
of the AppBundle will be loaded and served from a different location.
The actual rendered tag might simply look like:

<script src="/app_dev.php/js/abcd123.js"></script>

This is a key point: once you let Assetic handle your assets, the files are
served from a different location. This will cause problems with CSS files
that reference images by their relative path. See Fixing CSS Paths with the cssrewrite Filter.

Including CSS Stylesheets

To bring in CSS stylesheets, you can use the same methodologies seen
above, except with the stylesheets tag:

	Twig{% stylesheets 'bundles/app/css/*' filter='cssrewrite' %}
 <link rel="stylesheet" href="{{ asset_url }}" />
{% endstylesheets %}

	PHP<?php foreach ($view['assetic']->stylesheets(
 array('bundles/app/css/*'),
 array('cssrewrite')
) as $url): ?>
 <link rel="stylesheet" href="<?php echo $view->escape($url) ?>" />
<?php endforeach ?>

注解

If you’re using the default block names from the Symfony Standard Edition,
the stylesheets tag will most commonly live in the stylesheets
block:

{# ... #}
{% block stylesheets %}
 {% stylesheets 'bundles/app/css/*' filter='cssrewrite' %}
 <link rel="stylesheet" href="{{ asset_url }}" />
 {% endstylesheets %}
{% endblock %}
{# ... #}

But because Assetic changes the paths to your assets, this will break any
background images (or other paths) that uses relative paths, unless you use
the cssrewrite filter.

注解

Notice that in the original example that included JavaScript files, you
referred to the files using a path like @AppBundle/Resources/public/file.js,
but that in this example, you referred to the CSS files using their actual,
publicly-accessible path: bundles/app/css. You can use either, except
that there is a known issue that causes the cssrewrite filter to fail
when using the @AppBundle syntax for CSS Stylesheets.

Including Images

To include an image you can use the image tag.

	Twig{% image '@AppBundle/Resources/public/images/example.jpg' %}

{% endimage %}

	PHP<?php foreach ($view['assetic']->image(
 array('@AppBundle/Resources/public/images/example.jpg')
) as $url): ?>
 <img src="<?php echo $view->escape($url) ?>" alt="Example" />
<?php endforeach ?>

You can also use Assetic for image optimization. More information in
How to Use Assetic for Image Optimization with Twig Functions.

Fixing CSS Paths with the cssrewrite Filter

Since Assetic generates new URLs for your assets, any relative paths inside
your CSS files will break. To fix this, make sure to use the cssrewrite
filter with your stylesheets tag. This parses your CSS files and corrects
the paths internally to reflect the new location.

You can see an example in the previous section.

警告

When using the cssrewrite filter, don’t refer to your CSS files using
the @AppBundle syntax. See the note in the above section for details.

Combining Assets

One feature of Assetic is that it will combine many files into one. This helps
to reduce the number of HTTP requests, which is great for front end performance.
It also allows you to maintain the files more easily by splitting them into
manageable parts. This can help with re-usability as you can easily split
project-specific files from those which can be used in other applications,
but still serve them as a single file:

	Twig{% javascripts
 '@AppBundle/Resources/public/js/*'
 '@AcmeBarBundle/Resources/public/js/form.js'
 '@AcmeBarBundle/Resources/public/js/calendar.js' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array(
 '@AppBundle/Resources/public/js/*',
 '@AcmeBarBundle/Resources/public/js/form.js',
 '@AcmeBarBundle/Resources/public/js/calendar.js',
)
) as $url): ?>
 <script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach ?>

In the dev environment, each file is still served individually, so that
you can debug problems more easily. However, in the prod environment
(or more specifically, when the debug flag is false), this will be
rendered as a single script tag, which contains the contents of all of
the JavaScript files.

小技巧

If you’re new to Assetic and try to use your application in the prod
environment (by using the app.php controller), you’ll likely see
that all of your CSS and JS breaks. Don’t worry! This is on purpose.
For details on using Assetic in the prod environment, see Dumping Asset Files.

And combining files doesn’t only apply to your files. You can also use Assetic to
combine third party assets, such as jQuery, with your own into a single file:

	Twig{% javascripts
 '@AppBundle/Resources/public/js/thirdparty/jquery.js'
 '@AppBundle/Resources/public/js/*' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array(
 '@AppBundle/Resources/public/js/thirdparty/jquery.js',
 '@AppBundle/Resources/public/js/*',
)
) as $url): ?>
 <script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach ?>

Using Named Assets

AsseticBundle configuration directives allow you to define named asset sets.
You can do so by defining the input files, filters and output files in your
configuration under the assetic section. Read more in the
assetic config reference.

	YAML# app/config/config.yml
assetic:
 assets:
 jquery_and_ui:
 inputs:
 - '@AppBundle/Resources/public/js/thirdparty/jquery.js'
 - '@AppBundle/Resources/public/js/thirdparty/jquery.ui.js'

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:assetic="http://symfony.com/schema/dic/assetic">

 <assetic:config>
 <assetic:asset name="jquery_and_ui">
 <assetic:input>@AppBundle/Resources/public/js/thirdparty/jquery.js</assetic:input>
 <assetic:input>@AppBundle/Resources/public/js/thirdparty/jquery.ui.js</assetic:input>
 </assetic:asset>
 </assetic:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'assets' => array(
 'jquery_and_ui' => array(
 'inputs' => array(
 '@AppBundle/Resources/public/js/thirdparty/jquery.js',
 '@AppBundle/Resources/public/js/thirdparty/jquery.ui.js',
),
),
),
);

After you have defined the named assets, you can reference them in your templates
with the @named_asset notation:

	Twig{% javascripts
 '@jquery_and_ui'
 '@AppBundle/Resources/public/js/*' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array(
 '@jquery_and_ui',
 '@AppBundle/Resources/public/js/*',
)
) as $url): ?>
 <script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach ?>

Filters

Once they’re managed by Assetic, you can apply filters to your assets before
they are served. This includes filters that compress the output of your assets
for smaller file sizes (and better front-end optimization). Other filters
can compile JavaScript file from CoffeeScript files and process SASS into CSS.
In fact, Assetic has a long list of available filters.

Many of the filters do not do the work directly, but use existing third-party
libraries to do the heavy-lifting. This means that you’ll often need to install
a third-party library to use a filter. The great advantage of using Assetic
to invoke these libraries (as opposed to using them directly) is that instead
of having to run them manually after you work on the files, Assetic will
take care of this for you and remove this step altogether from your development
and deployment processes.

To use a filter, you first need to specify it in the Assetic configuration.
Adding a filter here doesn’t mean it’s being used - it just means that it’s
available to use (you’ll use the filter below).

For example to use the UglifyJS JavaScript minifier the following config should
be added:

	YAML# app/config/config.yml
assetic:
 filters:
 uglifyjs2:
 bin: /usr/local/bin/uglifyjs

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="uglifyjs2"
 bin="/usr/local/bin/uglifyjs" />
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'uglifyjs2' => array(
 'bin' => '/usr/local/bin/uglifyjs',
),
),
));

Now, to actually use the filter on a group of JavaScript files, add it
into your template:

	Twig{% javascripts '@AppBundle/Resources/public/js/*' filter='uglifyjs2' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AppBundle/Resources/public/js/*'),
 array('uglifyjs2')
) as $url): ?>
 <script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach ?>

A more detailed guide about configuring and using Assetic filters as well as
details of Assetic’s debug mode can be found in How to Minify CSS/JS Files (Using UglifyJS and UglifyCSS).

Controlling the URL Used

If you wish to, you can control the URLs that Assetic produces. This is
done from the template and is relative to the public document root:

	Twig{% javascripts '@AppBundle/Resources/public/js/*' output='js/compiled/main.js' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AppBundle/Resources/public/js/*'),
 array(),
 array('output' => 'js/compiled/main.js')
) as $url): ?>
 <script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach ?>

注解

Symfony also contains a method for cache busting, where the final URL
generated by Assetic contains a query parameter that can be incremented
via configuration on each deployment. For more information, see the
assets_version configuration option.

Dumping Asset Files

In the dev environment, Assetic generates paths to CSS and JavaScript
files that don’t physically exist on your computer. But they render nonetheless
because an internal Symfony controller opens the files and serves back the
content (after running any filters).

This kind of dynamic serving of processed assets is great because it means
that you can immediately see the new state of any asset files you change.
It’s also bad, because it can be quite slow. If you’re using a lot of filters,
it might be downright frustrating.

Fortunately, Assetic provides a way to dump your assets to real files, instead
of being generated dynamically.

Dumping Asset Files in the prod Environment

In the prod environment, your JS and CSS files are represented by a single
tag each. In other words, instead of seeing each JavaScript file you’re including
in your source, you’ll likely just see something like this:

<script src="/js/abcd123.js"></script>

Moreover, that file does not actually exist, nor is it dynamically rendered
by Symfony (as the asset files are in the dev environment). This is on
purpose - letting Symfony generate these files dynamically in a production
environment is just too slow.

Instead, each time you use your app in the prod environment (and therefore,
each time you deploy), you should run the following task:

$ php app/console assetic:dump --env=prod --no-debug

This will physically generate and write each file that you need (e.g. /js/abcd123.js).
If you update any of your assets, you’ll need to run this again to regenerate
the file.

Dumping Asset Files in the dev Environment

By default, each asset path generated in the dev environment is handled
dynamically by Symfony. This has no disadvantage (you can see your changes
immediately), except that assets can load noticeably slow. If you feel like
your assets are loading too slowly, follow this guide.

First, tell Symfony to stop trying to process these files dynamically. Make
the following change in your config_dev.yml file:

	YAML# app/config/config_dev.yml
assetic:
 use_controller: false

	XML<!-- app/config/config_dev.xml -->
<assetic:config use-controller="false" />

	PHP// app/config/config_dev.php
$container->loadFromExtension('assetic', array(
 'use_controller' => false,
));

Next, since Symfony is no longer generating these assets for you, you’ll
need to dump them manually. To do so, run the following:

$ php app/console assetic:dump

This physically writes all of the asset files you need for your dev
environment. The big disadvantage is that you need to run this each time
you update an asset. Fortunately, by passing the --watch option, the
command will automatically regenerate assets as they change:

$ php app/console assetic:dump --watch

Since running this command in the dev environment may generate a bunch
of files, it’s usually a good idea to point your generated asset files to
some isolated directory (e.g. /js/compiled), to keep things organized:

	Twig{% javascripts '@AppBundle/Resources/public/js/*' output='js/compiled/main.js' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AppBundle/Resources/public/js/*'),
 array(),
 array('output' => 'js/compiled/main.js')
) as $url): ?>
 <script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach ?>

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Assetic

How to Minify CSS/JS Files (Using UglifyJS and UglifyCSS)

UglifyJS [https://github.com/mishoo/UglifyJS] is a JavaScript parser/compressor/beautifier toolkit. It can be used
to combine and minify JavaScript assets so that they require less HTTP requests
and make your site load faster. UglifyCSS [https://github.com/fmarcia/UglifyCSS] is a CSS compressor/beautifier
that is very similar to UglifyJS.

In this cookbook, the installation, configuration and usage of UglifyJS is
shown in detail. UglifyCSS works pretty much the same way and is only
talked about briefly.

Install UglifyJS

UglifyJS is available as an Node.js [http://nodejs.org/] npm module and can be installed using
npm. First, you need to install Node.js [http://nodejs.org/]. Afterwards you can install UglifyJS
using npm:

$ npm install -g uglify-js

This command will install UglifyJS globally and you may need to run it as
a root user.

注解

It’s also possible to install UglifyJS inside your project only. To do
this, install it without the -g option and specify the path where
to put the module:

$ cd /path/to/symfony
$ mkdir app/Resources/node_modules
$ npm install uglify-js --prefix app/Resources

It is recommended that you install UglifyJS in your app/Resources folder
and add the node_modules folder to version control. Alternatively,
you can create an npm package.json [http://package.json.nodejitsu.com/] file and specify your dependencies
there.

Depending on your installation method, you should either be able to execute
the uglifyjs executable globally, or execute the physical file that lives
in the node_modules directory:

$ uglifyjs --help

$./app/Resources/node_modules/.bin/uglifyjs --help

Configure the uglifyjs2 Filter

Now we need to configure Symfony to use the uglifyjs2 filter when processing
your JavaScripts:

	YAML# app/config/config.yml
assetic:
 filters:
 uglifyjs2:
 # the path to the uglifyjs executable
 bin: /usr/local/bin/uglifyjs

	XML<!-- app/config/config.xml -->
<assetic:config>
 <!-- bin: the path to the uglifyjs executable -->
 <assetic:filter
 name="uglifyjs2"
 bin="/usr/local/bin/uglifyjs" />
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'uglifyjs2' => array(
 // the path to the uglifyjs executable
 'bin' => '/usr/local/bin/uglifyjs',
),
),
));

注解

The path where UglifyJS is installed may vary depending on your system.
To find out where npm stores the bin folder, you can use the following
command:

$ npm bin -g

It should output a folder on your system, inside which you should find
the UglifyJS executable.

If you installed UglifyJS locally, you can find the bin folder inside
the node_modules folder. It’s called .bin in this case.

You now have access to the uglifyjs2 filter in your application.

Configure the node Binary

Assetic tries to find the node binary automatically. If it cannot be found, you
can configure its location using the node key:

	YAML# app/config/config.yml
assetic:
 # the path to the node executable
 node: /usr/bin/nodejs
 filters:
 uglifyjs2:
 # the path to the uglifyjs executable
 bin: /usr/local/bin/uglifyjs

	XML<!-- app/config/config.xml -->
<assetic:config
 node="/usr/bin/nodejs" >
 <assetic:filter
 name="uglifyjs2"
 bin="/usr/local/bin/uglifyjs" />
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'node' => '/usr/bin/nodejs',
 'uglifyjs2' => array(
 // the path to the uglifyjs executable
 'bin' => '/usr/local/bin/uglifyjs',
),
));

Minify your Assets

In order to use UglifyJS on your assets, you need to apply it to them. Since
your assets are a part of the view layer, this work is done in your templates:

	Twig{% javascripts '@AppBundle/Resources/public/js/*' filter='uglifyjs2' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AppBundle/Resources/public/js/*'),
 array('uglifyj2s')
) as $url): ?>
 <script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach ?>

注解

The above example assumes that you have a bundle called AppBundle and your
JavaScript files are in the Resources/public/js directory under your
bundle. This isn’t important however - you can include your JavaScript
files no matter where they are.

With the addition of the uglifyjs2 filter to the asset tags above, you
should now see minified JavaScripts coming over the wire much faster.

Disable Minification in Debug Mode

Minified JavaScripts are very difficult to read, let alone debug. Because of
this, Assetic lets you disable a certain filter when your application is in
debug (e.g. app_dev.php) mode. You can do this by prefixing the filter name
in your template with a question mark: ?. This tells Assetic to only
apply this filter when debug mode is off (e.g. app.php):

	Twig{% javascripts '@AppBundle/Resources/public/js/*' filter='?uglifyjs2' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AppBundle/Resources/public/js/*'),
 array('?uglifyjs2')
) as $url): ?>
 <script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach ?>

To try this out, switch to your prod environment (app.php). But before
you do, don’t forget to clear your cache
and dump your assetic assets.

小技巧

Instead of adding the filter to the asset tags, you can also globally
enable it by adding the apply_to attribute to the filter configuration, for
example in the uglifyjs2 filter apply_to: "\.js$". To only have
the filter applied in production, add this to the config_prod file
rather than the common config file. For details on applying filters by
file extension, see Filtering Based on a File Extension.

Install, Configure and Use UglifyCSS

The usage of UglifyCSS works the same way as UglifyJS. First, make sure
the node package is installed:

$ npm install -g uglifycss

Next, add the configuration for this filter:

	YAML# app/config/config.yml
assetic:
 filters:
 uglifycss:
 bin: /usr/local/bin/uglifycss

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="uglifycss"
 bin="/usr/local/bin/uglifycss" />
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'uglifycss' => array(
 'bin' => '/usr/local/bin/uglifycss',
),
),
));

To use the filter for your CSS files, add the filter to the Assetic stylesheets
helper:

	Twig{% stylesheets 'bundles/App/css/*' filter='uglifycss' filter='cssrewrite' %}
 <link rel="stylesheet" href="{{ asset_url }}" />
{% endstylesheets %}

	PHP<?php foreach ($view['assetic']->stylesheets(
 array('bundles/App/css/*'),
 array('uglifycss'),
 array('cssrewrite')
) as $url): ?>
 <link rel="stylesheet" href="<?php echo $view->escape($url) ?>" />
<?php endforeach ?>

Just like with the uglifyjs2 filter, if you prefix the filter name with
? (i.e. ?uglifycss), the minification will only happen when you’re
not in debug mode.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Assetic

How to Minify JavaScripts and Stylesheets with YUI Compressor

Yahoo! provides an excellent utility for minifying JavaScripts and stylesheets
so they travel over the wire faster, the YUI Compressor [http://developer.yahoo.com/yui/compressor/]. Thanks to Assetic,
you can take advantage of this tool very easily.

警告

The YUI Compressor is no longer maintained by Yahoo [http://www.yuiblog.com/blog/2013/01/24/yui-compressor-has-a-new-owner/] but by an independent
volunteer. Moreover, Yahoo has decided to stop all new development on YUI [http://yahooeng.tumblr.com/post/96098168666/important-announcement-regarding-yui]
and to move to other modern alternatives such as Node.js.

That’s why you are strongly advised to avoid using YUI utilities unless
strictly necessary. Read How to Minify CSS/JS Files (Using UglifyJS and UglifyCSS) for a modern and
up-to-date alternative.

Download the YUI Compressor JAR

The YUI Compressor is written in Java and distributed as a JAR. Download the JAR [https://github.com/yui/yuicompressor/releases]
from the Yahoo! site and save it to app/Resources/java/yuicompressor.jar.

Configure the YUI Filters

Now you need to configure two Assetic filters in your application, one for
minifying JavaScripts with the YUI Compressor and one for minifying
stylesheets:

	YAML# app/config/config.yml
assetic:
 # java: "/usr/bin/java"
 filters:
 yui_css:
 jar: "%kernel.root_dir%/Resources/java/yuicompressor.jar"
 yui_js:
 jar: "%kernel.root_dir%/Resources/java/yuicompressor.jar"

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="yui_css"
 jar="%kernel.root_dir%/Resources/java/yuicompressor.jar" />
 <assetic:filter
 name="yui_js"
 jar="%kernel.root_dir%/Resources/java/yuicompressor.jar" />
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 // 'java' => '/usr/bin/java',
 'filters' => array(
 'yui_css' => array(
 'jar' => '%kernel.root_dir%/Resources/java/yuicompressor.jar',
),
 'yui_js' => array(
 'jar' => '%kernel.root_dir%/Resources/java/yuicompressor.jar',
),
),
));

注解

Windows users need to remember to update config to proper Java location.
In Windows7 x64 bit by default it’s C:\Program Files (x86)\Java\jre6\bin\java.exe.

You now have access to two new Assetic filters in your application:
yui_css and yui_js. These will use the YUI Compressor to minify
stylesheets and JavaScripts, respectively.

Minify your Assets

You have YUI Compressor configured now, but nothing is going to happen until
you apply one of these filters to an asset. Since your assets are a part of
the view layer, this work is done in your templates:

	Twig{% javascripts '@AppBundle/Resources/public/js/*' filter='yui_js' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AppBundle/Resources/public/js/*'),
 array('yui_js')
) as $url): ?>
 <script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach ?>

注解

The above example assumes that you have a bundle called AppBundle and your
JavaScript files are in the Resources/public/js directory under your
bundle. This isn’t important however - you can include your JavaScript
files no matter where they are.

With the addition of the yui_js filter to the asset tags above, you should
now see minified JavaScripts coming over the wire much faster. The same process
can be repeated to minify your stylesheets.

	Twig{% stylesheets '@AppBundle/Resources/public/css/*' filter='yui_css' %}
 <link rel="stylesheet" type="text/css" media="screen" href="{{ asset_url }}" />
{% endstylesheets %}

	PHP<?php foreach ($view['assetic']->stylesheets(
 array('@AppBundle/Resources/public/css/*'),
 array('yui_css')
) as $url): ?>
 <link rel="stylesheet" type="text/css" media="screen" href="<?php echo $view->escape($url) ?>" />
<?php endforeach ?>

Disable Minification in Debug Mode

Minified JavaScripts and Stylesheets are very difficult to read, let alone
debug. Because of this, Assetic lets you disable a certain filter when your
application is in debug mode. You can do this by prefixing the filter name
in your template with a question mark: ?. This tells Assetic to only
apply this filter when debug mode is off.

	Twig{% javascripts '@AppBundle/Resources/public/js/*' filter='?yui_js' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AppBundle/Resources/public/js/*'),
 array('?yui_js')
) as $url): ?>
 <script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach ?>

小技巧

Instead of adding the filter to the asset tags, you can also globally
enable it by adding the apply_to attribute to the filter configuration, for
example in the yui_js filter apply_to: "\.js$". To only have the filter
applied in production, add this to the config_prod file rather than the
common config file. For details on applying filters by file extension,
see Filtering Based on a File Extension.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Assetic

How to Use Assetic for Image Optimization with Twig Functions

Amongst its many filters, Assetic has four filters which can be used for on-the-fly
image optimization. This allows you to get the benefits of smaller file sizes
without having to use an image editor to process each image. The results
are cached and can be dumped for production so there is no performance hit
for your end users.

Using Jpegoptim

Jpegoptim [http://www.kokkonen.net/tjko/projects.html] is a utility for optimizing JPEG files. To use it with Assetic,
add the following to the Assetic config:

	YAML# app/config/config.yml
assetic:
 filters:
 jpegoptim:
 bin: path/to/jpegoptim

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="jpegoptim"
 bin="path/to/jpegoptim" />
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'jpegoptim' => array(
 'bin' => 'path/to/jpegoptim',
),
),
));

注解

Notice that to use jpegoptim, you must have it already installed on your
system. The bin option points to the location of the compiled binary.

It can now be used from a template:

	Twig{% image '@AppBundle/Resources/public/images/example.jpg'
 filter='jpegoptim' output='/images/example.jpg' %}

{% endimage %}

	PHP<?php foreach ($view['assetic']->image(
 array('@AppBundle/Resources/public/images/example.jpg'),
 array('jpegoptim')
) as $url): ?>
 <img src="<?php echo $view->escape($url) ?>" alt="Example"/>
<?php endforeach ?>

Removing all EXIF Data

By default, running this filter only removes some of the meta information
stored in the file. Any EXIF data and comments are not removed, but you can
remove these by using the strip_all option:

	YAML# app/config/config.yml
assetic:
 filters:
 jpegoptim:
 bin: path/to/jpegoptim
 strip_all: true

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="jpegoptim"
 bin="path/to/jpegoptim"
 strip_all="true" />
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'jpegoptim' => array(
 'bin' => 'path/to/jpegoptim',
 'strip_all' => 'true',
),
),
));

Lowering maximum Quality

The quality level of the JPEG is not affected by default. You can gain
further file size reductions by setting the max quality setting lower than
the current level of the images. This will of course be at the expense of
image quality:

	YAML# app/config/config.yml
assetic:
 filters:
 jpegoptim:
 bin: path/to/jpegoptim
 max: 70

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="jpegoptim"
 bin="path/to/jpegoptim"
 max="70" />
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'jpegoptim' => array(
 'bin' => 'path/to/jpegoptim',
 'max' => '70',
),
),
));

Shorter Syntax: Twig Function

If you’re using Twig, it’s possible to achieve all of this with a shorter
syntax by enabling and using a special Twig function. Start by adding the
following config:

	YAML# app/config/config.yml
assetic:
 filters:
 jpegoptim:
 bin: path/to/jpegoptim
 twig:
 functions:
 jpegoptim: ~

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="jpegoptim"
 bin="path/to/jpegoptim" />
 <assetic:twig>
 <assetic:twig_function
 name="jpegoptim" />
 </assetic:twig>
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'jpegoptim' => array(
 'bin' => 'path/to/jpegoptim',
),
),
 'twig' => array(
 'functions' => array('jpegoptim'),
),
),
));

The Twig template can now be changed to the following:

You can specify the output directory in the config in the following way:

	YAML# app/config/config.yml
assetic:
 filters:
 jpegoptim:
 bin: path/to/jpegoptim
 twig:
 functions:
 jpegoptim: { output: images/*.jpg }

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="jpegoptim"
 bin="path/to/jpegoptim" />
 <assetic:twig>
 <assetic:twig_function
 name="jpegoptim"
 output="images/*.jpg" />
 </assetic:twig>
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'jpegoptim' => array(
 'bin' => 'path/to/jpegoptim',
),
),
 'twig' => array(
 'functions' => array(
 'jpegoptim' => array(
 output => 'images/*.jpg'
),
),
),
));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Assetic

How to Apply an Assetic Filter to a specific File Extension

Assetic filters can be applied to individual files, groups of files or even,
as you’ll see here, files that have a specific extension. To show you how
to handle each option, suppose that you want to use Assetic’s CoffeeScript
filter, which compiles CoffeeScript files into JavaScript.

The main configuration is just the paths to coffee, node and node_modules.
An example configuration might look like this:

	YAML# app/config/config.yml
assetic:
 filters:
 coffee:
 bin: /usr/bin/coffee
 node: /usr/bin/node
 node_paths: [/usr/lib/node_modules/]

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="coffee"
 bin="/usr/bin/coffee/"
 node="/usr/bin/node/">
 <assetic:node-path>/usr/lib/node_modules/</assetic:node-path>
 </assetic:filter>
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'coffee' => array(
 'bin' => '/usr/bin/coffee',
 'node' => '/usr/bin/node',
 'node_paths' => array('/usr/lib/node_modules/'),
),
),
));

Filter a single File

You can now serve up a single CoffeeScript file as JavaScript from within your
templates:

	Twig{% javascripts '@AppBundle/Resources/public/js/example.coffee' filter='coffee' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array('@AppBundle/Resources/public/js/example.coffee'),
 array('coffee')
) as $url): ?>
 <script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach ?>

This is all that’s needed to compile this CoffeeScript file and serve it
as the compiled JavaScript.

Filter multiple Files

You can also combine multiple CoffeeScript files into a single output file:

	Twig{% javascripts '@AppBundle/Resources/public/js/example.coffee'
 '@AppBundle/Resources/public/js/another.coffee'
 filter='coffee' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array(
 '@AppBundle/Resources/public/js/example.coffee',
 '@AppBundle/Resources/public/js/another.coffee',
),
 array('coffee')
) as $url): ?>
 <script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach ?>

Both the files will now be served up as a single file compiled into regular
JavaScript.

Filtering Based on a File Extension

One of the great advantages of using Assetic is reducing the number of asset
files to lower HTTP requests. In order to make full use of this, it would
be good to combine all your JavaScript and CoffeeScript files together
since they will ultimately all be served as JavaScript. Unfortunately just
adding the JavaScript files to the files to be combined as above will not
work as the regular JavaScript files will not survive the CoffeeScript compilation.

This problem can be avoided by using the apply_to option in the config,
which allows you to specify which filter should always be applied to particular
file extensions. In this case you can specify that the coffee filter is
applied to all .coffee files:

	YAML# app/config/config.yml
assetic:
 filters:
 coffee:
 bin: /usr/bin/coffee
 node: /usr/bin/node
 node_paths: [/usr/lib/node_modules/]
 apply_to: "\.coffee$"

	XML<!-- app/config/config.xml -->
<assetic:config>
 <assetic:filter
 name="coffee"
 bin="/usr/bin/coffee"
 node="/usr/bin/node"
 apply_to="\.coffee$" />
 <assetic:node-paths>/usr/lib/node_modules/</assetic:node-path>
</assetic:config>

	PHP// app/config/config.php
$container->loadFromExtension('assetic', array(
 'filters' => array(
 'coffee' => array(
 'bin' => '/usr/bin/coffee',
 'node' => '/usr/bin/node',
 'node_paths' => array('/usr/lib/node_modules/'),
 'apply_to' => '\.coffee$',
),
),
));

With this, you no longer need to specify the coffee filter in the template.
You can also list regular JavaScript files, all of which will be combined
and rendered as a single JavaScript file (with only the .coffee files
being run through the CoffeeScript filter):

	Twig{% javascripts '@AppBundle/Resources/public/js/example.coffee'
 '@AppBundle/Resources/public/js/another.coffee'
 '@AppBundle/Resources/public/js/regular.js' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

	PHP<?php foreach ($view['assetic']->javascripts(
 array(
 '@AppBundle/Resources/public/js/example.coffee',
 '@AppBundle/Resources/public/js/another.coffee',
 '@AppBundle/Resources/public/js/regular.js',
)
) as $url): ?>
 <script src="<?php echo $view->escape($url) ?>"></script>
<?php endforeach ?>

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Bundles

	How to Install 3rd Party Bundles
	A) Add Composer Dependencies

	B) Enable the Bundle

	C) Configure the Bundle

	Other Setup

	Best Practices for Reusable Bundles
	Bundle Name

	Directory Structure

	Classes

	Vendors

	Tests

	Documentation

	Routing

	Templates

	Translation Files

	Configuration

	Learn more from the Cookbook

	How to Use Bundle Inheritance to Override Parts of a Bundle
	Overriding Controllers

	Overriding Resources: Templates, Routing, etc

	How to Override any Part of a Bundle
	Templates

	Routing

	Controllers

	Services & Configuration

	Entities & Entity Mapping

	Forms

	Validation Metadata

	Translations

	How to Remove the AcmeDemoBundle
	1. Unregister the Bundle in the AppKernel

	2. Remove Bundle Configuration

	3. Remove the Bundle from the Filesystem

	4. Remove Integration in other Bundles

	How to Load Service Configuration inside a Bundle
	Creating an Extension Class

	Using the load() Method

	How to Create Friendly Configuration for a Bundle
	Using the Bundle Extension

	Modifying the Configuration of Another Bundle

	Dump the Configuration

	Supporting XML

	How to Simplify Configuration of multiple Bundles

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Bundles

How to Install 3rd Party Bundles

Most bundles provide their own installation instructions. However, the
basic steps for installing a bundle are the same:

	A) Add Composer Dependencies

	B) Enable the Bundle

	C) Configure the Bundle

A) Add Composer Dependencies

Dependencies are managed with Composer, so if Composer is new to you, learn
some basics in their documentation [http://getcomposer.org/doc/00-intro.md]. This has 2 steps:

1) Find out the Name of the Bundle on Packagist

The README for a bundle (e.g. FOSUserBundle [https://github.com/FriendsOfSymfony/FOSUserBundle]) usually tells you its name
(e.g. friendsofsymfony/user-bundle). If it doesn’t, you can search for
the library on the Packagist.org [https://packagist.org] site.

注解

Looking for bundles? Try searching at KnpBundles.com [http://knpbundles.com/]: the unofficial
archive of Symfony Bundles.

2) Install the Bundle via Composer

Now that you know the package name, you can install it via Composer:

$ composer require friendsofsymfony/user-bundle

This will choose the best version for your project, add it to composer.json
and download the library into the vendor/ directory. If you need a specific
version, add a : and the version right after the library name (see
composer require [https://getcomposer.org/doc/03-cli.md#require]).

B) Enable the Bundle

At this point, the bundle is installed in your Symfony project (in
vendor/friendsofsymfony/) and the autoloader recognizes its classes.
The only thing you need to do now is register the bundle in AppKernel:

// app/AppKernel.php

// ...
class AppKernel extends Kernel
{
 // ...

 public function registerBundles()
 {
 $bundles = array(
 // ...,
 new FOS\UserBundle\FOSUserBundle(),
);

 // ...
 }
}

C) Configure the Bundle

It’s pretty common for a bundle to need some additional setup or configuration
in app/config/config.yml. The bundle’s documentation will tell you about
the configuration, but you can also get a reference of the bundle’s config
via the config:dump-reference command.

For instance, in order to look the reference of the assetic config you
can use this:

$ app/console config:dump-reference AsseticBundle

or this:

$ app/console config:dump-reference assetic

The output will look like this:

assetic:
 debug: %kernel.debug%
 use_controller:
 enabled: %kernel.debug%
 profiler: false
 read_from: %kernel.root_dir%/../web
 write_to: %assetic.read_from%
 java: /usr/bin/java
 node: /usr/local/bin/node
 node_paths: []
 # ...

Other Setup

At this point, check the README file of your brand new bundle to see
what to do next. Have fun!

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Bundles

Best Practices for Reusable Bundles

There are 2 types of bundles:

	Application-specific bundles: only used to build your application;

	Reusable bundles: meant to be shared across many projects.

This article is all about how to structure your reusable bundles so that
they’re easy to configure and extend. Many of these recommendations do not
apply to application bundles because you’ll want to keep those as simple
as possible. For application bundles, just follow the practices shown throughout
the book and cookbook.

参见

The best practices for application-specific bundles are discussed in
The Symfony Framework Best Practices.

Bundle Name

A bundle is also a PHP namespace. The namespace must follow the technical
interoperability standards [http://www.php-fig.org/psr/psr-0/] for PHP 5.3 namespaces and class names: it
starts with a vendor segment, followed by zero or more category segments, and
it ends with the namespace short name, which must end with a Bundle
suffix.

A namespace becomes a bundle as soon as you add a bundle class to it. The
bundle class name must follow these simple rules:

	Use only alphanumeric characters and underscores;

	Use a CamelCased name;

	Use a descriptive and short name (no more than 2 words);

	Prefix the name with the concatenation of the vendor (and optionally the
category namespaces);

	Suffix the name with Bundle.

Here are some valid bundle namespaces and class names:

	Namespace
	Bundle Class Name

	Acme\Bundle\BlogBundle
	AcmeBlogBundle

	Acme\Bundle\Social\BlogBundle
	AcmeSocialBlogBundle

	Acme\BlogBundle
	AcmeBlogBundle

By convention, the getName() method of the bundle class should return the
class name.

注解

If you share your bundle publicly, you must use the bundle class name as
the name of the repository (AcmeBlogBundle and not BlogBundle
for instance).

注解

Symfony core Bundles do not prefix the Bundle class with Symfony
and always add a Bundle sub-namespace; for example:
FrameworkBundle [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/FrameworkBundle.html].

Each bundle has an alias, which is the lower-cased short version of the bundle
name using underscores (acme_hello for AcmeHelloBundle, or
acme_social_blog for Acme\Social\BlogBundle for instance). This alias
is used to enforce uniqueness within a bundle (see below for some usage
examples).

Directory Structure

The basic directory structure of a HelloBundle must read as follows:

XXX/...
 HelloBundle/
 HelloBundle.php
 Controller/
 Resources/
 meta/
 LICENSE
 config/
 doc/
 index.rst
 translations/
 views/
 public/
 Tests/

The XXX directory(ies) reflects the namespace structure of the bundle.

The following files are mandatory:

	HelloBundle.php;

	Resources/meta/LICENSE: The full license for the code;

	Resources/doc/index.rst: The root file for the Bundle documentation.

注解

These conventions ensure that automated tools can rely on this default
structure to work.

The depth of sub-directories should be kept to the minimal for most used
classes and files (2 levels at a maximum). More levels can be defined for
non-strategic, less-used files.

The bundle directory is read-only. If you need to write temporary files, store
them under the cache/ or log/ directory of the host application. Tools
can generate files in the bundle directory structure, but only if the generated
files are going to be part of the repository.

The following classes and files have specific emplacements:

	Type
	Directory

	Commands
	Command/

	Controllers
	Controller/

	Service Container Extensions
	DependencyInjection/

	Event Listeners
	EventListener/

	Configuration
	Resources/config/

	Web Resources
	Resources/public/

	Translation files
	Resources/translations/

	Templates
	Resources/views/

	Unit and Functional Tests
	Tests/

注解

When building a reusable bundle, model classes should be placed in the
Model namespace. See How to Provide Model Classes for several Doctrine Implementations for
how to handle the mapping with a compiler pass.

Classes

The bundle directory structure is used as the namespace hierarchy. For
instance, a HelloController controller is stored in
Bundle/HelloBundle/Controller/HelloController.php and the fully qualified
class name is Bundle\HelloBundle\Controller\HelloController.

All classes and files must follow the Symfony coding standards.

Some classes should be seen as facades and should be as short as possible, like
Commands, Helpers, Listeners, and Controllers.

Classes that connect to the event dispatcher should be suffixed with
Listener.

Exceptions classes should be stored in an Exception sub-namespace.

Vendors

A bundle must not embed third-party PHP libraries. It should rely on the
standard Symfony autoloading instead.

A bundle should not embed third-party libraries written in JavaScript, CSS, or
any other language.

Tests

A bundle should come with a test suite written with PHPUnit and stored under
the Tests/ directory. Tests should follow the following principles:

	The test suite must be executable with a simple phpunit command run from
a sample application;

	The functional tests should only be used to test the response output and
some profiling information if you have some;

	The tests should cover at least 95% of the code base.

注解

A test suite must not contain AllTests.php scripts, but must rely on the
existence of a phpunit.xml.dist file.

Documentation

All classes and functions must come with full PHPDoc.

Extensive documentation should also be provided in the
reStructuredText format, under
the Resources/doc/ directory; the Resources/doc/index.rst file is
the only mandatory file and must be the entry point for the documentation.

Installation Instructions

In order to ease the installation of third-party bundles, consider using the
following standardized instructions in your README.md file.

Installation
============

Step 1: Download the Bundle

Open a command console, enter your project directory and execute the
following command to download the latest stable version of this bundle:

```bash
$ composer require <package-name> "~1"
```

This command requires you to have Composer installed globally, as explained
in the [installation chapter](https://getcomposer.org/doc/00-intro.md)
of the Composer documentation.

Step 2: Enable the Bundle

Then, enable the bundle by adding the following line in the `app/AppKernel.php`
file of your project:

```php
<?php
// app/AppKernel.php

// ...
class AppKernel extends Kernel
{
    public function registerBundles()
    {
        $bundles = array(
            // ...

            new <vendor>\<bundle-name>\<bundle-long-name>(),
        );

        // ...
    }

    // ...
}
```


This template assumes that your bundle is in its 1.x version. If not, change
the "~1" installation version accordingly ("~2", "~3", etc.)

Optionally, you can add more installation steps (Step 3, Step 4, etc.) to
explain other required installation tasks, such as registering routes or
dumping assets.

Routing

If the bundle provides routes, they must be prefixed with the bundle alias.
For an AcmeBlogBundle for instance, all routes must be prefixed with
acme_blog_.

Templates

If a bundle provides templates, they must use Twig. A bundle must not provide
a main layout, except if it provides a full working application.

Translation Files

If a bundle provides message translations, they must be defined in the XLIFF
format; the domain should be named after the bundle name (bundle.hello).

A bundle must not override existing messages from another bundle.

Configuration

To provide more flexibility, a bundle can provide configurable settings by
using the Symfony built-in mechanisms.

For simple configuration settings, rely on the default parameters entry of
the Symfony configuration. Symfony parameters are simple key/value pairs; a
value being any valid PHP value. Each parameter name should start with the
bundle alias, though this is just a best-practice suggestion. The rest of the
parameter name will use a period (.) to separate different parts (e.g.
acme_hello.email.from).

The end user can provide values in any configuration file:

	YAML# app/config/config.yml
parameters:
 acme_hello.email.from: fabien@example.com

	XML<!-- app/config/config.xml -->
<parameters>
 <parameter key="acme_hello.email.from">fabien@example.com</parameter>
</parameters>

	PHP// app/config/config.php
$container->setParameter('acme_hello.email.from', 'fabien@example.com');

	INI; app/config/config.ini
[parameters]
acme_hello.email.from = fabien@example.com

Retrieve the configuration parameters in your code from the container:

$container->getParameter('acme_hello.email.from');

Even if this mechanism is simple enough, you are highly encouraged to use the
semantic configuration described in the cookbook.

注解

If you are defining services, they should also be prefixed with the bundle
alias.

Learn more from the Cookbook

	How to Load Service Configuration inside a Bundle

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Bundles

How to Use Bundle Inheritance to Override Parts of a Bundle

When working with third-party bundles, you’ll probably come across a situation
where you want to override a file in that third-party bundle with a file
in one of your own bundles. Symfony gives you a very convenient way to override
things like controllers, templates, and other files in a bundle’s
Resources/ directory.

For example, suppose that you’re installing the FOSUserBundle [https://github.com/friendsofsymfony/fosuserbundle], but you
want to override its base layout.html.twig template, as well as one of
its controllers. Suppose also that you have your own AcmeUserBundle
where you want the overridden files to live. Start by registering the FOSUserBundle
as the “parent” of your bundle:

// src/Acme/UserBundle/AcmeUserBundle.php
namespace Acme\UserBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class AcmeUserBundle extends Bundle
{
 public function getParent()
 {
 return 'FOSUserBundle';
 }
}

By making this simple change, you can now override several parts of the FOSUserBundle
simply by creating a file with the same name.

注解

Despite the method name, there is no parent/child relationship between
the bundles, it is just a way to extend and override an existing bundle.

Overriding Controllers

Suppose you want to add some functionality to the registerAction of a
RegistrationController that lives inside FOSUserBundle. To do so,
just create your own RegistrationController.php file, override the bundle’s
original method, and change its functionality:

// src/Acme/UserBundle/Controller/RegistrationController.php
namespace Acme\UserBundle\Controller;

use FOS\UserBundle\Controller\RegistrationController as BaseController;

class RegistrationController extends BaseController
{
 public function registerAction()
 {
 $response = parent::registerAction();

 // ... do custom stuff
 return $response;
 }
}

小技巧

Depending on how severely you need to change the behavior, you might
call parent::registerAction() or completely replace its logic with
your own.

注解

Overriding controllers in this way only works if the bundle refers to
the controller using the standard FOSUserBundle:Registration:register
syntax in routes and templates. This is the best practice.

Overriding Resources: Templates, Routing, etc

Most resources can also be overridden, simply by creating a file in the same
location as your parent bundle.

For example, it’s very common to need to override the FOSUserBundle’s
layout.html.twig template so that it uses your application’s base layout.
Since the file lives at Resources/views/layout.html.twig in the FOSUserBundle,
you can create your own file in the same location of AcmeUserBundle.
Symfony will ignore the file that lives inside the FOSUserBundle entirely,
and use your file instead.

The same goes for routing files and some other resources.

注解

The overriding of resources only works when you refer to resources with
the @FOSUserBundle/Resources/config/routing/security.xml method.
If you refer to resources without using the @BundleName shortcut, they
can’t be overridden in this way.

警告

Translation and validation files do not work in the same way as described
above. Read “Translations” if you want to learn how to
override translations and see “Validation Metadata” for tricks to
override the validation.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Bundles

How to Override any Part of a Bundle

This document is a quick reference for how to override different parts of
third-party bundles.

Templates

For information on overriding templates, see

	Overriding Bundle Templates.

	How to Use Bundle Inheritance to Override Parts of a Bundle

Routing

Routing is never automatically imported in Symfony. If you want to include
the routes from any bundle, then they must be manually imported from somewhere
in your application (e.g. app/config/routing.yml).

The easiest way to “override” a bundle’s routing is to never import it at
all. Instead of importing a third-party bundle’s routing, simply copy
that routing file into your application, modify it, and import it instead.

Controllers

Assuming the third-party bundle involved uses non-service controllers (which
is almost always the case), you can easily override controllers via bundle
inheritance. For more information, see How to Use Bundle Inheritance to Override Parts of a Bundle.
If the controller is a service, see the next section on how to override it.

Services & Configuration

In order to override/extend a service, there are two options. First, you can
set the parameter holding the service’s class name to your own class by setting
it in app/config/config.yml. This of course is only possible if the class name is
defined as a parameter in the service config of the bundle containing the
service. For example, to override the class used for Symfony’s translator
service, you would override the translator.class parameter. Knowing exactly
which parameter to override may take some research. For the translator, the
parameter is defined and used in the Resources/config/translation.xml file
in the core FrameworkBundle:

	YAML# app/config/config.yml
parameters:
 translator.class: Acme\HelloBundle\Translation\Translator

	XML<!-- app/config/config.xml -->
<parameters>
 <parameter key="translator.class">Acme\HelloBundle\Translation\Translator</parameter>
</parameters>

	PHP// app/config/config.php
$container->setParameter('translator.class', 'Acme\HelloBundle\Translation\Translator');

Secondly, if the class is not available as a parameter, you want to make sure the
class is always overridden when your bundle is used or if you need to modify
something beyond just the class name, you should use a compiler pass:

// src/Acme/DemoBundle/DependencyInjection/Compiler/OverrideServiceCompilerPass.php
namespace Acme\DemoBundle\DependencyInjection\Compiler;

use Symfony\Component\DependencyInjection\Compiler\CompilerPassInterface;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class OverrideServiceCompilerPass implements CompilerPassInterface
{
 public function process(ContainerBuilder $container)
 {
 $definition = $container->getDefinition('original-service-id');
 $definition->setClass('Acme\DemoBundle\YourService');
 }
}

In this example you fetch the service definition of the original service, and set
its class name to your own class.

See How to Work with Compiler Passes in Bundles for information on how to use
compiler passes. If you want to do something beyond just overriding the class -
like adding a method call - you can only use the compiler pass method.

Entities & Entity Mapping

Due to the way Doctrine works, it is not possible to override entity mapping
of a bundle. However, if a bundle provides a mapped superclass (such as the
User entity in the FOSUserBundle) one can override attributes and
associations. Learn more about this feature and its limitations in
the Doctrine documentation [http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/inheritance-mapping.html#overrides].

Forms

In order to override a form type, it has to be registered as a service (meaning
it is tagged as form.type). You can then override it as you would override any
service as explained in Services & Configuration. This, of course, will only
work if the type is referred to by its alias rather than being instantiated,
e.g.:

$builder->add('name', 'custom_type');

rather than:

$builder->add('name', new CustomType());

Validation Metadata

Symfony loads all validation configuration files from every bundle and
combines them into one validation metadata tree. This means you are able to
add new constraints to a property, but you cannot override them.

To override this, the 3rd party bundle needs to have configuration for
validation groups. For instance,
the FOSUserBundle has this configuration. To create your own validation, add
the constraints to a new validation group:

	YAML# src/Acme/UserBundle/Resources/config/validation.yml
FOS\UserBundle\Model\User:
 properties:
 plainPassword:
 - NotBlank:
 groups: [AcmeValidation]
 - Length:
 min: 6
 minMessage: fos_user.password.short
 groups: [AcmeValidation]

	XML<!-- src/Acme/UserBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping
 http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="FOS\UserBundle\Model\User">
 <property name="plainPassword">
 <constraint name="NotBlank">
 <option name="groups">
 <value>AcmeValidation</value>
 </option>
 </constraint>

 <constraint name="Length">
 <option name="min">6</option>
 <option name="minMessage">fos_user.password.short</option>
 <option name="groups">
 <value>AcmeValidation</value>
 </option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

Now, update the FOSUserBundle configuration, so it uses your validation groups
instead of the original ones.

Translations

Translations are not related to bundles, but to domains. That means that you
can override the translations from any translation file, as long as it is in
the correct domain.

警告

The last translation file always wins. That means that you need to make
sure that the bundle containing your translations is loaded after any
bundle whose translations you’re overriding. This is done in AppKernel.

The file that always wins is the one that is placed in
app/Resources/translations, as those files are always loaded last.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Bundles

How to Remove the AcmeDemoBundle

The Symfony Standard Edition comes with a complete demo that lives inside a
bundle called AcmeDemoBundle. It is a great boilerplate to refer to while
starting a project, but you’ll probably want to eventually remove it.

小技巧

This article uses the AcmeDemoBundle as an example, but you can use
these steps to remove any bundle.

1. Unregister the Bundle in the AppKernel

To disconnect the bundle from the framework, you should remove the bundle from
the AppKernel::registerBundles() method. The bundle is normally found in
the $bundles array but the AcmeDemoBundle is only registered in the
development environment and you can find it inside the if statement below:

// app/AppKernel.php

// ...
class AppKernel extends Kernel
{
 public function registerBundles()
 {
 $bundles = array(...);

 if (in_array($this->getEnvironment(), array('dev', 'test'))) {
 // comment or remove this line:
 // $bundles[] = new Acme\DemoBundle\AcmeDemoBundle();
 // ...
 }
 }
}

2. Remove Bundle Configuration

Now that Symfony doesn’t know about the bundle, you need to remove any
configuration and routing configuration inside the app/config directory
that refers to the bundle.

2.1 Remove Bundle Routing

The routing for the AcmeDemoBundle can be found in app/config/routing_dev.yml.
Remove the _acme_demo entry at the bottom of this file.

2.2 Remove Bundle Configuration

Some bundles contain configuration in one of the app/config/config*.yml
files. Be sure to remove the related configuration from these files. You can
quickly spot bundle configuration by looking for a acme_demo (or whatever
the name of the bundle is, e.g. fos_user for the FOSUserBundle) string in
the configuration files.

The AcmeDemoBundle doesn’t have configuration. However, the bundle is
used in the configuration for the app/config/security.yml file. You can
use it as a boilerplate for your own security, but you can also remove
everything: it doesn’t matter to Symfony if you remove it or not.

3. Remove the Bundle from the Filesystem

Now you have removed every reference to the bundle in your application, you
should remove the bundle from the filesystem. The bundle is located in the
src/Acme/DemoBundle directory. You should remove this directory and you
can remove the Acme directory as well.

小技巧

If you don’t know the location of a bundle, you can use the
getPath() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Bundle/BundleInterface.html#method_getPath] method
to get the path of the bundle:

echo $this->container->get('kernel')->getBundle('AcmeDemoBundle')->getPath();

3.1 Remove Bundle Assets

Remove the assets of the bundle in the web/ directory (e.g.
web/bundles/acmedemo for the AcmeDemoBundle).

4. Remove Integration in other Bundles

注解

This doesn’t apply to the AcmeDemoBundle - no other bundles depend
on it, so you can skip this step.

Some bundles rely on other bundles, if you remove one of the two, the other
will probably not work. Be sure that no other bundles, third party or self-made,
rely on the bundle you are about to remove.

小技巧

If one bundle relies on another, in most cases it means that it uses
some services from the bundle. Searching for the bundle alias string may
help you spot them (e.g. acme_demo for bundles depending on AcmeDemoBundle).

小技巧

If a third party bundle relies on another bundle, you can find that bundle
mentioned in the composer.json file included in the bundle directory.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Bundles

How to Load Service Configuration inside a Bundle

In Symfony, you’ll find yourself using many services. These services can be
registered in the app/config directory of your application. But when you
want to decouple the bundle for use in other projects, you want to include the
service configuration in the bundle itself. This article will teach you how to
do that.

Creating an Extension Class

In order to load service configuration, you have to create a Dependency
Injection Extension for your bundle. This class has some conventions in order
to be detected automatically. But you’ll later see how you can change it to
your own preferences. By default, the Extension has to comply with the
following conventions:

	It has to live in the DependencyInjection namespace of the bundle;

	The name is equal to the bundle name with the Bundle suffix replaced by
Extension (e.g. the Extension class of the AppBundle would be called
AppExtension and the one for AcmeHelloBundle would be called
AcmeHelloExtension).

The Extension class should implement the
ExtensionInterface [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Extension/ExtensionInterface.html],
but usually you would simply extend the
Extension [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Extension/Extension.html] class:

// src/Acme/HelloBundle/DependencyInjection/AcmeHelloExtension.php
namespace Acme\HelloBundle\DependencyInjection;

use Symfony\Component\HttpKernel\DependencyInjection\Extension;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class AcmeHelloExtension extends Extension
{
 public function load(array $configs, ContainerBuilder $container)
 {
 // ... you'll load the files here later
 }
}

Manually Registering an Extension Class

When not following the conventions, you will have to manually register your
extension. To do this, you should override the
Bundle::getContainerExtension() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Bundle/Bundle.html#method_build]
method to return the instance of the extension:

// ...
use Acme\HelloBundle\DependencyInjection\UnconventionalExtensionClass;

class AcmeHelloBundle extends Bundle
{
 public function getContainerExtension()
 {
 return new UnconventionalExtensionClass();
 }
}

Since the new Extension class name doesn’t follow the naming conventions, you
should also override
Extension::getAlias() [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Extension/Extension.html#method_getAlias]
to return the correct DI alias. The DI alias is the name used to refer to the
bundle in the container (e.g. in the app/config/config.yml file). By
default, this is done by removing the Extension prefix and converting the
class name to underscores (e.g. AcmeHelloExtension‘s DI alias is
acme_hello).

Using the load() Method

In the load() method, all services and parameters related to this extension
will be loaded. This method doesn’t get the actual container instance, but a
copy. This container only has the parameters from the actual container. After
loading the services and parameters, the copy will be merged into the actual
container, to ensure all services and parameters are also added to the actual
container.

In the load() method, you can use PHP code to register service definitions,
but it is more common if you put these definitions in a configuration file
(using the Yaml, XML or PHP format). Luckily, you can use the file loaders in
the extension!

For instance, assume you have a file called services.xml in the
Resources/config directory of your bundle, your load method looks like:

use Symfony\Component\DependencyInjection\Loader\XmlFileLoader;
use Symfony\Component\Config\FileLocator;

// ...
public function load(array $configs, ContainerBuilder $container)
{
 $loader = new XmlFileLoader(
 $container,
 new FileLocator(__DIR__.'/../Resources/config')
);
 $loader->load('services.xml');
}

Other available loaders are the YamlFileLoader, PhpFileLoader and
IniFileLoader.

注解

The IniFileLoader can only be used to load parameters and it can only
load them as strings.

Using Configuration to Change the Services

The Extension is also the class that handles the configuration for that
particular bundle (e.g. the configuration in app/config/config.yml). To
read more about it, see the “How to Create Friendly Configuration for a Bundle” article.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Bundles

How to Create Friendly Configuration for a Bundle

If you open your application configuration file (usually app/config/config.yml),
you’ll see a number of different configuration “namespaces”, such as framework,
twig and doctrine. Each of these configures a specific bundle, allowing
you to configure things at a high level and then let the bundle make all the
low-level, complex changes based on your settings.

For example, the following tells the FrameworkBundle to enable the form
integration, which involves the definition of quite a few services as well
as integration of other related components:

	YAMLframework:
 form: true

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <framework:config>
 <framework:form />
 </framework:config>
</container>

	PHP$container->loadFromExtension('framework', array(
 'form' => true,
));

Using Parameters to Configure your Bundle

If you don’t have plans to share your bundle between projects, it doesn’t
make sense to use this more advanced way of configuration. Since you use
the bundle only in one project, you can just change the service
configuration each time.

If you do want to be able to configure something from within
config.yml, you can always create a parameter there and use that
parameter somewhere else.

Using the Bundle Extension

The basic idea is that instead of having the user override individual
parameters, you let the user configure just a few, specifically created,
options. As the bundle developer, you then parse through that configuration and
load correct services and parameters inside an “Extension” class.

As an example, imagine you are creating a social bundle, which provides
integration with Twitter and such. To be able to reuse your bundle, you have to
make the client_id and client_secret variables configurable. Your
bundle configuration would look like:

	YAML# app/config/config.yml
acme_social:
 twitter:
 client_id: 123
 client_secret: $ecret

	XML<!-- app/config/config.xml -->
<?xml version="1.0" ?>

<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:acme-social="http://example.org/dic/schema/acme_social"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <acme-social:config>
 <twitter client-id="123" client-secret="$ecret" />
 </acme-social:config>

 <!-- ... -->
</container>

	PHP// app/config/config.php
$container->loadFromExtension('acme_social', array(
 'client_id' => 123,
 'client_secret' => '$ecret',
));

参见

Read more about the extension in How to Load Service Configuration inside a Bundle.

小技巧

If a bundle provides an Extension class, then you should not generally
override any service container parameters from that bundle. The idea
is that if an Extension class is present, every setting that should be
configurable should be present in the configuration made available by
that class. In other words, the extension class defines all the public
configuration settings for which backward compatibility will be maintained.

参见

For parameter handling within a Dependency Injection class see
Using Parameters within a Dependency Injection Class.

Processing the $configs Array

First things first, you have to create an extension class as explained in
How to Load Service Configuration inside a Bundle.

Whenever a user includes the acme_social key (which is the DI alias) in a
configuration file, the configuration under it is added to an array of
configurations and passed to the load() method of your extension (Symfony
automatically converts XML and YAML to an array).

For the configuration example in the previous section, the array passed to your
load() method will look like this:

array(
 array(
 'twitter' => array(
 'client_id' => 123,
 'client_secret' => '$ecret',
),
),
)

Notice that this is an array of arrays, not just a single flat array of the
configuration values. This is intentional, as it allows Symfony to parse
several configuration resources. For example, if acme_social appears in
another configuration file - say config_dev.yml - with different values
beneath it, the incoming array might look like this:

array(
 // values from config.yml
 array(
 'twitter' => array(
 'client_id' => 123,
 'client_secret' => '$secret',
),
),
 // values from config_dev.yml
 array(
 'twitter' => array(
 'client_id' => 456,
),
),
)

The order of the two arrays depends on which one is set first.

But don’t worry! Symfony’s Config component will help you merge these values,
provide defaults and give the user validation errors on bad configuration.
Here’s how it works. Create a Configuration class in the
DependencyInjection directory and build a tree that defines the structure
of your bundle’s configuration.

The Configuration class to handle the sample configuration looks like:

// src/Acme/SocialBundle/DependencyInjection/Configuration.php
namespace Acme\SocialBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\TreeBuilder;
use Symfony\Component\Config\Definition\ConfigurationInterface;

class Configuration implements ConfigurationInterface
{
 public function getConfigTreeBuilder()
 {
 $treeBuilder = new TreeBuilder();
 $rootNode = $treeBuilder->root('acme_social');

 $rootNode
 ->children()
 ->arrayNode('twitter')
 ->children()
 ->integerNode('client_id')->end()
 ->scalarNode('client_secret')->end()
 ->end()
 ->end() // twitter
 ->end()
 ;

 return $treeBuilder;
 }
}

参见

The Configuration class can be much more complicated than shown here,
supporting “prototype” nodes, advanced validation, XML-specific normalization
and advanced merging. You can read more about this in
the Config component documentation. You
can also see it in action by checking out some of the core Configuration
classes, such as the one from the FrameworkBundle Configuration [https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/FrameworkBundle/DependencyInjection/Configuration.php] or the
TwigBundle Configuration [https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/TwigBundle/DependencyInjection/Configuration.php].

This class can now be used in your load() method to merge configurations and
force validation (e.g. if an additional option was passed, an exception will be
thrown):

public function load(array $configs, ContainerBuilder $container)
{
 $configuration = new Configuration();

 $config = $this->processConfiguration($configuration, $configs);
 // ...
}

The processConfiguration() method uses the configuration tree you’ve defined
in the Configuration class to validate, normalize and merge all of the
configuration arrays together.

小技巧

Instead of calling processConfiguration() in your extension each time you
provide some configuration options, you might want to use the
ConfigurableExtension [http://api.symfony.com/master/Symfony/Component/HttpKernel/DependencyInjection/ConfigurableExtension.html]
to do this automatically for you:

// src/Acme/HelloBundle/DependencyInjection/AcmeHelloExtension.php
namespace Acme\HelloBundle\DependencyInjection;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\HttpKernel\DependencyInjection\ConfigurableExtension;

class AcmeHelloExtension extends ConfigurableExtension
{
 // note that this method is called loadInternal and not load
 protected function loadInternal(array $mergedConfig, ContainerBuilder $container)
 {
 // ...
 }
}

This class uses the getConfiguration() method to get the Configuration
instance, you should override it if your Configuration class is not called
Configuration or if it is not placed in the same namespace as the
extension.

Processing the Configuration yourself

Using the Config component is fully optional. The load() method gets an
array of configuration values. You can simply parse these arrays yourself
(e.g. by overriding configurations and using isset [http://php.net/manual/en/function.isset.php] to check
for the existence of a value). Be aware that it’ll be very hard to support XML.

public function load(array $configs, ContainerBuilder $container)
{
 $config = array();
 // let resources override the previous set value
 foreach ($configs as $subConfig) {
 $config = array_merge($config, $subConfig);
 }

 // ... now use the flat $config array
}

Modifying the Configuration of Another Bundle

If you have multiple bundles that depend on each other, it may be useful
to allow one Extension class to modify the configuration passed to another
bundle’s Extension class, as if the end-developer has actually placed that
configuration in their app/config/config.yml file. This can be achieved
using a prepend extension. For more details, see
How to Simplify Configuration of multiple Bundles.

Dump the Configuration

The config:dump-reference command dumps the default configuration of a
bundle in the console using the Yaml format.

As long as your bundle’s configuration is located in the standard location
(YourBundle\DependencyInjection\Configuration) and does not require
arguments to be passed to the constructor it will work automatically. If you
have something different, your Extension class must override the
Extension::getConfiguration() [http://api.symfony.com/master/Symfony/Component/HttpKernel/DependencyInjection/Extension.html#method_getConfiguration]
method and return an instance of your Configuration.

Supporting XML

Symfony allows people to provide the configuration in three different formats:
Yaml, XML and PHP. Both Yaml and PHP use the same syntax and are supported by
default when using the Config component. Supporting XML requires you to do some
more things. But when sharing your bundle with others, it is recommended that
you follow these steps.

Make your Config Tree ready for XML

The Config component provides some methods by default to allow it to correctly
process XML configuration. See “Normalization” of the
component documentation. However, you can do some optional things as well, this
will improve the experience of using XML configuration:

Choosing an XML Namespace

In XML, the XML namespace [http://en.wikipedia.org/wiki/XML_namespace] is used to determine which elements belong to the
configuration of a specific bundle. The namespace is returned from the
Extension::getNamespace() [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Extension/Extension.html#method_getNamespace]
method. By convention, the namespace is a URL (it doesn’t have to be a valid
URL nor does it need to exists). By default, the namespace for a bundle is
http://example.org/dic/schema/DI_ALIAS, where DI_ALIAS is the DI alias of
the extension. You might want to change this to a more professional URL:

// src/Acme/HelloBundle/DependencyInjection/AcmeHelloExtension.php

// ...
class AcmeHelloExtension extends Extension
{
 // ...

 public function getNamespace()
 {
 return 'http://acme_company.com/schema/dic/hello';
 }
}

Providing an XML Schema

XML has a very useful feature called XML schema [http://en.wikipedia.org/wiki/XML_schema]. This allows you to
describe all possible elements and attributes and their values in an XML Schema
Definition (an xsd file). This XSD file is used by IDEs for auto completion and
it is used by the Config component to validate the elements.

In order to use the schema, the XML configuration file must provide an
xsi:schemaLocation attribute pointing to the XSD file for a certain XML
namespace. This location always starts with the XML namespace. This XML
namespace is then replaced with the XSD validation base path returned from
Extension::getXsdValidationBasePath() [http://api.symfony.com/master/Symfony/Component/DependencyInjection/ExtensionInterface.html#method_getXsdValidationBasePath]
method. This namespace is then followed by the rest of the path from the base
path to the file itself.

By convention, the XSD file lives in the Resources/config/schema, but you
can place it anywhere you like. You should return this path as the base path:

// src/Acme/HelloBundle/DependencyInjection/AcmeHelloExtension.php

// ...
class AcmeHelloExtension extends Extension
{
 // ...

 public function getXsdValidationBasePath()
 {
 return __DIR__.'/../Resources/config/schema';
 }
}

Assume the XSD file is called hello-1.0.xsd, the schema location will be
http://acme_company.com/schema/dic/hello/hello-1.0.xsd:

<!-- app/config/config.xml -->
<?xml version="1.0" ?>

<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:acme-hello="http://acme_company.com/schema/dic/hello"
 xsi:schemaLocation="http://acme_company.com/schema/dic/hello
 http://acme_company.com/schema/dic/hello/hello-1.0.xsd">

 <acme-hello:config>
 <!-- ... -->
 </acme-hello:config>

 <!-- ... -->
</container>

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Bundles

How to Simplify Configuration of multiple Bundles

When building reusable and extensible applications, developers are often
faced with a choice: either create a single large bundle or multiple smaller
bundles. Creating a single bundle has the drawback that it’s impossible for
users to choose to remove functionality they are not using. Creating multiple
bundles has the drawback that configuration becomes more tedious and settings
often need to be repeated for various bundles.

Using the below approach, it is possible to remove the disadvantage of the
multiple bundle approach by enabling a single Extension to prepend the settings
for any bundle. It can use the settings defined in the app/config/config.yml
to prepend settings just as if they would have been written explicitly by
the user in the application configuration.

For example, this could be used to configure the entity manager name to use in
multiple bundles. Or it can be used to enable an optional feature that depends
on another bundle being loaded as well.

To give an Extension the power to do this, it needs to implement
PrependExtensionInterface [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Extension/PrependExtensionInterface.html]:

// src/Acme/HelloBundle/DependencyInjection/AcmeHelloExtension.php
namespace Acme\HelloBundle\DependencyInjection;

use Symfony\Component\HttpKernel\DependencyInjection\Extension;
use Symfony\Component\DependencyInjection\Extension\PrependExtensionInterface;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class AcmeHelloExtension extends Extension implements PrependExtensionInterface
{
 // ...

 public function prepend(ContainerBuilder $container)
 {
 // ...
 }
}

Inside the prepend() [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Extension/PrependExtensionInterface.html#method_prepend]
method, developers have full access to the ContainerBuilder [http://api.symfony.com/master/Symfony/Component/DependencyInjection/ContainerBuilder.html]
instance just before the load() [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Extension/ExtensionInterface.html#method_load]
method is called on each of the registered bundle Extensions. In order to
prepend settings to a bundle extension developers can use the
prependExtensionConfig() [http://api.symfony.com/master/Symfony/Component/DependencyInjection/ContainerBuilder.html#method_prependExtensionConfig]
method on the ContainerBuilder [http://api.symfony.com/master/Symfony/Component/DependencyInjection/ContainerBuilder.html]
instance. As this method only prepends settings, any other settings done explicitly
inside the app/config/config.yml would override these prepended settings.

The following example illustrates how to prepend
a configuration setting in multiple bundles as well as disable a flag in multiple bundles
in case a specific other bundle is not registered:

public function prepend(ContainerBuilder $container)
{
 // get all bundles
 $bundles = $container->getParameter('kernel.bundles');
 // determine if AcmeGoodbyeBundle is registered
 if (!isset($bundles['AcmeGoodbyeBundle'])) {
 // disable AcmeGoodbyeBundle in bundles
 $config = array('use_acme_goodbye' => false);
 foreach ($container->getExtensions() as $name => $extension) {
 switch ($name) {
 case 'acme_something':
 case 'acme_other':
 // set use_acme_goodbye to false in the config of
 // acme_something and acme_other note that if the user manually
 // configured use_acme_goodbye to true in the app/config/config.yml
 // then the setting would in the end be true and not false
 $container->prependExtensionConfig($name, $config);
 break;
 }
 }
 }

 // process the configuration of AcmeHelloExtension
 $configs = $container->getExtensionConfig($this->getAlias());
 // use the Configuration class to generate a config array with
 // the settings "acme_hello"
 $config = $this->processConfiguration(new Configuration(), $configs);

 // check if entity_manager_name is set in the "acme_hello" configuration
 if (isset($config['entity_manager_name'])) {
 // prepend the acme_something settings with the entity_manager_name
 $config = array('entity_manager_name' => $config['entity_manager_name']);
 $container->prependExtensionConfig('acme_something', $config);
 }
}

The above would be the equivalent of writing the following into the
app/config/config.yml in case AcmeGoodbyeBundle is not registered and the
entity_manager_name setting for acme_hello is set to non_default:

	YAML# app/config/config.yml
acme_something:
 # ...
 use_acme_goodbye: false
 entity_manager_name: non_default

acme_other:
 # ...
 use_acme_goodbye: false

	XML<!-- app/config/config.xml -->
<acme-something:config use-acme-goodbye="false">
 <acme-something:entity-manager-name>non_default</acme-something:entity-manager-name>
</acme-something:config>

<acme-other:config use-acme-goodbye="false" />

	PHP// app/config/config.php
$container->loadFromExtension('acme_something', array(
 // ...
 'use_acme_goodbye' => false,
 'entity_manager_name' => 'non_default',
));
$container->loadFromExtension('acme_other', array(
 // ...
 'use_acme_goodbye' => false,
));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Cache

	How to Use Varnish to Speed up my Website
	Make Symfony Trust the Reverse Proxy

	Routing and X-FORWARDED Headers

	Cookies and Caching

	Ensure Consistent Caching Behaviour

	Enable Edge Side Includes (ESI)

	Cache Invalidation

	Caching Pages that Contain CSRF Protected Forms
	Why Caching Pages with a CSRF token is Problematic

	How to Cache Most of the Page and still be able to Use CSRF Protection

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Cache

How to Use Varnish to Speed up my Website

Because Symfony’s cache uses the standard HTTP cache headers, the
Symfony Reverse Proxy can easily be replaced with any other reverse
proxy. Varnish [https://www.varnish-cache.org] is a powerful, open-source, HTTP accelerator capable of serving
cached content fast and including support for Edge Side Includes.

Make Symfony Trust the Reverse Proxy

For ESI to work correctly and for the X-FORWARDED
headers to be used, you need to configure Varnish as a
trusted proxy.

Routing and X-FORWARDED Headers

To ensure that the Symfony Router generates URLs correctly with Varnish,
a X-Forwarded-Port header must be present for Symfony to use the
correct port number.

This port depends on your setup. Lets say that external connections come in
on the default HTTP port 80. For HTTPS connections, there is another proxy
(as Varnish does not do HTTPS itself) on the default HTTPS port 443 that
handles the SSL termination and forwards the requests as HTTP requests to
Varnish with a X-Forwarded-Proto header. In this case, you need to add
the following configuration snippet:

sub vcl_recv {
 if (req.http.X-Forwarded-Proto == "https") {
 set req.http.X-Forwarded-Port = "443";
 } else {
 set req.http.X-Forwarded-Port = "80";
 }
}

注解

Remember to configure framework.trusted_proxies
in the Symfony configuration so that Varnish is seen as a trusted proxy
and the X-Forwarded-* headers are used.

Varnish automatically forwards the IP as X-Forwarded-For and leaves
the X-Forwarded-Proto header in the request. If you do not configure
Varnish as trusted proxy, Symfony will see all requests as coming through
insecure HTTP connections from the Varnish host instead of the real client.

If the X-Forwarded-Port header is not set correctly, Symfony will append
the port where the PHP application is running when generating absolute URLs,
e.g. http://example.com:8080/my/path.

Cookies and Caching

By default, a sane caching proxy does not cache anything when a request is sent
with cookies or a basic authentication header.
This is because the content of the page is supposed to depend on the cookie
value or authentication header.

If you know for sure that the backend never uses sessions or basic
authentication, have varnish remove the corresponding header from requests to
prevent clients from bypassing the cache. In practice, you will need sessions
at least for some parts of the site, e.g. when using forms with
CSRF Protection. In this situation, make sure to
only start a session when actually needed
and clear the session when it is no longer needed. Alternatively, you can look
into Caching Pages that Contain CSRF Protected Forms.

Cookies created in Javascript and used only in the frontend, e.g. when using
Google analytics are nonetheless sent to the server. These cookies are not
relevant for the backend and should not affect the caching decision. Configure
your Varnish cache to clean the cookies header [https://www.varnish-cache.org/trac/wiki/VCLExampleRemovingSomeCookies]. You want to keep the
session cookie, if there is one, and get rid of all other cookies so that pages
are cached if there is no active session. Unless you changed the default
configuration of PHP, your session cookie has the name PHPSESSID:

sub vcl_recv {
 // Remove all cookies except the session ID.
 if (req.http.Cookie) {
 set req.http.Cookie = ";" + req.http.Cookie;
 set req.http.Cookie = regsuball(req.http.Cookie, "; +", ";");
 set req.http.Cookie = regsuball(req.http.Cookie, ";(PHPSESSID)=", "; \1=");
 set req.http.Cookie = regsuball(req.http.Cookie, ";[^][^;]*", "");
 set req.http.Cookie = regsuball(req.http.Cookie, "^[;]+|[;]+$", "");

 if (req.http.Cookie == "") {
 // If there are no more cookies, remove the header to get page cached.
 remove req.http.Cookie;
 }
 }
}

小技巧

If content is not different for every user, but depends on the roles of a
user, a solution is to separate the cache per group. This pattern is
implemented and explained by the FOSHttpCacheBundle [http://foshttpcachebundle.readthedocs.org/] under the name
User Context [http://foshttpcachebundle.readthedocs.org/en/latest/features/user-context.html].

Ensure Consistent Caching Behaviour

Varnish uses the cache headers sent by your application to determine how
to cache content. However, versions prior to Varnish 4 did not respect
Cache-Control: no-cache, no-store and private. To ensure
consistent behavior, use the following configuration if you are still
using Varnish 3:

	Varnish 3sub vcl_fetch {
 /* By default, Varnish3 ignores Cache-Control: no-cache and private
 https://www.varnish-cache.org/docs/3.0/tutorial/increasing_your_hitrate.html#cache-control
 */
 if (beresp.http.Cache-Control ~ "private" ||
 beresp.http.Cache-Control ~ "no-cache" ||
 beresp.http.Cache-Control ~ "no-store"
) {
 return (hit_for_pass);
 }
}

小技巧

You can see the default behavior of Varnish in the form of a VCL file:
default.vcl [https://www.varnish-cache.org/trac/browser/bin/varnishd/default.vcl?rev=3.0] for Varnish 3, builtin.vcl [https://www.varnish-cache.org/trac/browser/bin/varnishd/builtin.vcl?rev=4.0] for Varnish 4.

Enable Edge Side Includes (ESI)

As explained in the Edge Side Includes section,
Symfony detects whether it talks to a reverse proxy that understands ESI or
not. When you use the Symfony reverse proxy, you don’t need to do anything.
But to make Varnish instead of Symfony resolve the ESI tags, you need some
configuration in Varnish. Symfony uses the Surrogate-Capability header
from the Edge Architecture [http://www.w3.org/TR/edge-arch] described by Akamai.

注解

Varnish only supports the src attribute for ESI tags (onerror and
alt attributes are ignored).

First, configure Varnish so that it advertises its ESI support by adding a
Surrogate-Capability header to requests forwarded to the backend
application:

sub vcl_recv {
 // Add a Surrogate-Capability header to announce ESI support.
 set req.http.Surrogate-Capability = "abc=ESI/1.0";
}

注解

The abc part of the header isn’t important unless you have multiple “surrogates”
that need to advertise their capabilities. See Surrogate-Capability Header [http://www.w3.org/TR/edge-arch] for details.

Then, optimize Varnish so that it only parses the Response contents when there
is at least one ESI tag by checking the Surrogate-Control header that
Symfony adds automatically:

	Varnish 4sub vcl_backend_response {
 // Check for ESI acknowledgement and remove Surrogate-Control header
 if (beresp.http.Surrogate-Control ~ "ESI/1.0") {
 unset beresp.http.Surrogate-Control;
 set beresp.do_esi = true;
 }
}

	Varnish 3sub vcl_fetch {
 // Check for ESI acknowledgement and remove Surrogate-Control header
 if (beresp.http.Surrogate-Control ~ "ESI/1.0") {
 unset beresp.http.Surrogate-Control;
 set beresp.do_esi = true;
 }
}

小技巧

If you followed the advice about ensuring a consistent caching
behavior, those vcl functions already exist. Just append the code
to the end of the function, they won’t interfere with each other.

Cache Invalidation

If you want to cache content that changes frequently and still serve
the most recent version to users, you need to invalidate that content.
While cache invalidation [http://tools.ietf.org/html/rfc2616#section-13.10] allows you to purge content from your
proxy before it has expired, it adds complexity to your caching setup.

小技巧

The open source FOSHttpCacheBundle [http://foshttpcachebundle.readthedocs.org/] takes the pain out of cache
invalidation by helping you to organize your caching and
invalidation setup.

The documentation of the FOSHttpCacheBundle [http://foshttpcachebundle.readthedocs.org/] explains how to configure
Varnish and other reverse proxies for cache invalidation.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Cache

Caching Pages that Contain CSRF Protected Forms

CSRF tokens are meant to be different for every user. This is why you
need to be cautious if you try to cache pages with forms including them.

For more information about how CSRF protection works in Symfony, please
check CSRF Protection.

Why Caching Pages with a CSRF token is Problematic

Typically, each user is assigned a unique CSRF token, which is stored in
the session for validation. This means that if you do cache a page with
a form containing a CSRF token, you’ll cache the CSRF token of the first
user only. When a user submits the form, the token won’t match the token
stored in the session and all users (except for the first) will fail CSRF
validation when submitting the form.

In fact, many reverse proxies (like Varnish) will refuse to cache a page
with a CSRF token. This is because a cookie is sent in order to preserve
the PHP session open and Varnish’s default behaviour is to not cache HTTP
requests with cookies.

How to Cache Most of the Page and still be able to Use CSRF Protection

To cache a page that contains a CSRF token, you can use more advanced caching
techniques like ESI fragments, where you cache
the full page and embedding the form inside an ESI tag with no cache at all.

Another option would be to load the form via an uncached AJAX request, but
cache the rest of the HTML response.

Or you can even load just the CSRF token with an AJAX request and replace the
form field value with it.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Installing Composer

Composer [https://getcomposer.org/] is the package manager used by modern PHP applications and the
recommended way to install Symfony2.

Install Composer on Linux and Mac OS X

To install Composer on Linux or Mac OS X, execute the following two commands:

$ curl -sS https://getcomposer.org/installer | php
$ sudo mv composer.phar /usr/local/bin/composer

注解

If you don’t have curl installed, you can also just download the
installer file manually at http://getcomposer.org/installer and
then run:

$ php installer
$ sudo mv composer.phar /usr/local/bin/composer

Install Composer on Windows

Download the installer from getcomposer.org/download [https://getcomposer.org/download], execute it and follow
the instructions.

Learn more

You can read more about Composer in its documentation [https://getcomposer.org/doc/00-intro.md].

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Configuration

	How to Master and Create new Environments
	Different Environments, different Configuration Files

	Executing an Application in different Environments

	Creating a new Environment

	Environments and the Cache Directory

	Going further

	How to Override Symfony’s default Directory Structure
	Override the cache Directory

	Override the logs Directory

	Override the web Directory

	Override the vendor Directory

	Using Parameters within a Dependency Injection Class

	Understanding how the Front Controller, Kernel and Environments Work together
	The Front Controller

	The Kernel Class

	The Environments

	How to Set external Parameters in the Service Container
	Environment Variables

	Constants

	Miscellaneous Configuration

	How to Use PdoSessionHandler to Store Sessions in the Database
	Sharing your Database Connection Information

	Example SQL Statements

	How to Use the Apache Router
	Change Router Configuration Parameters

	Generating mod_rewrite Rules

	Additional Tweaks

	Configuring a Web Server
	Apache2 with mod_php/PHP-CGI

	Apache2 with PHP-FPM

	Nginx

	How to Organize Configuration Files
	Different Directories per Environment

	Semantic Configuration Files

	Advanced Techniques

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Configuration

How to Master and Create new Environments

Every application is the combination of code and a set of configuration that
dictates how that code should function. The configuration may define the
database being used, whether or not something should be cached, or how verbose
logging should be. In Symfony, the idea of “environments” is the idea that
the same codebase can be run using multiple different configurations. For
example, the dev environment should use configuration that makes development
easy and friendly, while the prod environment should use a set of configuration
optimized for speed.

Different Environments, different Configuration Files

A typical Symfony application begins with three environments: dev,
prod, and test. As discussed, each “environment” simply represents
a way to execute the same codebase with different configuration. It should
be no surprise then that each environment loads its own individual configuration
file. If you’re using the YAML configuration format, the following files
are used:

	for the dev environment: app/config/config_dev.yml

	for the prod environment: app/config/config_prod.yml

	for the test environment: app/config/config_test.yml

This works via a simple standard that’s used by default inside the AppKernel
class:

// app/AppKernel.php

// ...

class AppKernel extends Kernel
{
 // ...

 public function registerContainerConfiguration(LoaderInterface $loader)
 {
 $loader->load(__DIR__.'/config/config_'.$this->getEnvironment().'.yml');
 }
}

As you can see, when Symfony is loaded, it uses the given environment to
determine which configuration file to load. This accomplishes the goal of
multiple environments in an elegant, powerful and transparent way.

Of course, in reality, each environment differs only somewhat from others.
Generally, all environments will share a large base of common configuration.
Opening the “dev” configuration file, you can see how this is accomplished
easily and transparently:

	YAMLimports:
 - { resource: config.yml }

...

	XML<imports>
 <import resource="config.xml" />
</imports>

<!-- ... -->

	PHP$loader->import('config.php');

// ...

To share common configuration, each environment’s configuration file
simply first imports from a central configuration file (config.yml).
The remainder of the file can then deviate from the default configuration
by overriding individual parameters. For example, by default, the web_profiler
toolbar is disabled. However, in the dev environment, the toolbar is
activated by modifying the default value in the dev configuration file:

	YAML# app/config/config_dev.yml
imports:
 - { resource: config.yml }

web_profiler:
 toolbar: true
 # ...

	XML<!-- app/config/config_dev.xml -->
<imports>
 <import resource="config.xml" />
</imports>

<webprofiler:config toolbar="true" />

	PHP// app/config/config_dev.php
$loader->import('config.php');

$container->loadFromExtension('web_profiler', array(
 'toolbar' => true,

 // ...
));

Executing an Application in different Environments

To execute the application in each environment, load up the application using
either the app.php (for the prod environment) or the app_dev.php
(for the dev environment) front controller:

http://localhost/app.php -> *prod* environment
http://localhost/app_dev.php -> *dev* environment

注解

The given URLs assume that your web server is configured to use the web/
directory of the application as its root. Read more in
Installing Symfony.

If you open up one of these files, you’ll quickly see that the environment
used by each is explicitly set:

// web/app.php
// ...

$kernel = new AppKernel('prod', false);

// ...

As you can see, the prod key specifies that this application will run
in the prod environment. A Symfony application can be executed in any
environment by using this code and changing the environment string.

注解

The test environment is used when writing functional tests and is
not accessible in the browser directly via a front controller. In other
words, unlike the other environments, there is no app_test.php front
controller file.

Debug Mode

Important, but unrelated to the topic of environments is the false
argument as the second argument to the AppKernel constructor. This
specifies whether or not the application should run in “debug mode”. Regardless
of the environment, a Symfony application can be run with debug mode
set to true or false. This affects many things in the application,
such as whether or not errors should be displayed or if cache files are
dynamically rebuilt on each request. Though not a requirement, debug mode
is generally set to true for the dev and test environments
and false for the prod environment.

Internally, the value of the debug mode becomes the kernel.debug
parameter used inside the service container.
If you look inside the application configuration file, you’ll see the
parameter used, for example, to turn logging on or off when using the
Doctrine DBAL:

	YAMLdoctrine:
 dbal:
 logging: "%kernel.debug%"
 # ...

	XML<doctrine:dbal logging="%kernel.debug%" />

	PHP$container->loadFromExtension('doctrine', array(
 'dbal' => array(
 'logging' => '%kernel.debug%',
 // ...
),
 // ...
));

As of Symfony 2.3, showing errors or not no longer depends on the debug
mode. You’ll need to enable that in your front controller by calling
enable() [http://api.symfony.com/master/Symfony/Component/Debug/Debug.html#method_enable].

Selecting the Environment for Console Commands

By default, Symfony commands are executed in the dev environment and with the
debug mode enabled. Use the --env and --no-debug options to modify this
behavior:

'dev' environment and debug enabled
$ php app/console command_name

'prod' environment (debug is always disabled for 'prod')
$ php app/console command_name --env=prod

'test' environment and debug disabled
$ php app/console command_name --env=test --no-debug

In addition to the --env and --debug options, the behavior of Symfony
commands can also be controlled with environment variables. The Symfony console
application checks the existence and value of these environment variables before
executing any command:

	SYMFONY_ENV

	Sets the execution environment of the command to the value of this variable
(dev, prod, test, etc.);

	SYMFONY_DEBUG

	If 0, debug mode is disabled. Otherwise, debug mode is enabled.

These environment variables are very useful for production servers because they
allow you to ensure that commands always run in the prod environment without
having to add any command option.

Creating a new Environment

By default, a Symfony application has three environments that handle most
cases. Of course, since an environment is nothing more than a string that
corresponds to a set of configuration, creating a new environment is quite
easy.

Suppose, for example, that before deployment, you need to benchmark your
application. One way to benchmark the application is to use near-production
settings, but with Symfony’s web_profiler enabled. This allows Symfony
to record information about your application while benchmarking.

The best way to accomplish this is via a new environment called, for example,
benchmark. Start by creating a new configuration file:

	YAML# app/config/config_benchmark.yml
imports:
 - { resource: config_prod.yml }

framework:
 profiler: { only_exceptions: false }

	XML<!-- app/config/config_benchmark.xml -->
<imports>
 <import resource="config_prod.xml" />
</imports>

<framework:config>
 <framework:profiler only-exceptions="false" />
</framework:config>

	PHP// app/config/config_benchmark.php
$loader->import('config_prod.php')

$container->loadFromExtension('framework', array(
 'profiler' => array('only-exceptions' => false),
));

注解

Due to the way in which parameters are resolved, you cannot use them to
build paths in imports dynamically. This means that something like the
following doesn’t work:

	YAML# app/config/config.yml
imports:
 - { resource: "%kernel.root_dir%/parameters.yml" }

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <imports>
 <import resource="%kernel.root_dir%/parameters.yml" />
 </imports>
</container>

	PHP// app/config/config.php
$loader->import('%kernel.root_dir%/parameters.yml');

And with this simple addition, the application now supports a new environment
called benchmark.

This new configuration file imports the configuration from the prod environment
and modifies it. This guarantees that the new environment is identical to
the prod environment, except for any changes explicitly made here.

Because you’ll want this environment to be accessible via a browser, you
should also create a front controller for it. Copy the web/app.php file
to web/app_benchmark.php and edit the environment to be benchmark:

// web/app_benchmark.php
// ...

// change just this line
$kernel = new AppKernel('benchmark', false);

// ...

The new environment is now accessible via:

http://localhost/app_benchmark.php

注解

Some environments, like the dev environment, are never meant to be
accessed on any deployed server by the general public. This is because
certain environments, for debugging purposes, may give too much information
about the application or underlying infrastructure. To be sure these environments
aren’t accessible, the front controller is usually protected from external
IP addresses via the following code at the top of the controller:

if (!in_array(@$_SERVER['REMOTE_ADDR'], array('127.0.0.1', '::1'))) {
 die('You are not allowed to access this file. Check '.basename(__FILE__).' for more information.');
}

Environments and the Cache Directory

Symfony takes advantage of caching in many ways: the application configuration,
routing configuration, Twig templates and more are cached to PHP objects
stored in files on the filesystem.

By default, these cached files are largely stored in the app/cache directory.
However, each environment caches its own set of files:

<your-project>/
├─ app/
│ ├─ cache/
│ │ ├─ dev/ # cache directory for the *dev* environment
│ │ └─ prod/ # cache directory for the *prod* environment
│ ├─ ...

Sometimes, when debugging, it may be helpful to inspect a cached file to
understand how something is working. When doing so, remember to look in
the directory of the environment you’re using (most commonly dev while
developing and debugging). While it can vary, the app/cache/dev directory
includes the following:

	appDevDebugProjectContainer.php - the cached “service container” that
represents the cached application configuration;

	appDevUrlGenerator.php - the PHP class generated from the routing
configuration and used when generating URLs;

	appDevUrlMatcher.php - the PHP class used for route matching - look
here to see the compiled regular expression logic used to match incoming
URLs to different routes;

	twig/ - this directory contains all the cached Twig templates.

注解

You can easily change the directory location and name. For more information
read the article How to Override Symfony’s default Directory Structure.

Going further

Read the article on How to Set external Parameters in the Service Container.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Configuration

How to Override Symfony’s default Directory Structure

Symfony automatically ships with a default directory structure. You can
easily override this directory structure to create your own. The default
directory structure is:

your-project/
├─ app/
│ ├─ cache/
│ ├─ config/
│ ├─ logs/
│ └─ ...
├─ src/
│ └─ ...
├─ vendor/
│ └─ ...
└─ web/
 ├─ app.php
 └─ ...

Override the cache Directory

You can override the cache directory by overriding the getCacheDir method
in the AppKernel class of you application:

// app/AppKernel.php

// ...
class AppKernel extends Kernel
{
 // ...

 public function getCacheDir()
 {
 return $this->rootDir.'/'.$this->environment.'/cache';
 }
}

$this->rootDir is the absolute path to the app directory and $this->environment
is the current environment (i.e. dev). In this case you have changed
the location of the cache directory to app/{environment}/cache.

警告

You should keep the cache directory different for each environment,
otherwise some unexpected behavior may happen. Each environment generates
its own cached config files, and so each needs its own directory to store
those cache files.

Override the logs Directory

Overriding the logs directory is the same as overriding the cache
directory, the only difference is that you need to override the getLogDir
method:

// app/AppKernel.php

// ...
class AppKernel extends Kernel
{
 // ...

 public function getLogDir()
 {
 return $this->rootDir.'/'.$this->environment.'/logs';
 }
}

Here you have changed the location of the directory to app/{environment}/logs.

Override the web Directory

If you need to rename or move your web directory, the only thing you
need to guarantee is that the path to the app directory is still correct
in your app.php and app_dev.php front controllers. If you simply
renamed the directory, you’re fine. But if you moved it in some way, you
may need to modify the paths inside these files:

require_once __DIR__.'/../Symfony/app/bootstrap.php.cache';
require_once __DIR__.'/../Symfony/app/AppKernel.php';

Since Symfony 2.1 (in which Composer is introduced), you also need to change
the extra.symfony-web-dir option in the composer.json file:

{
 ...
 "extra": {
 ...
 "symfony-web-dir": "my_new_web_dir"
 }
}

小技巧

Some shared hosts have a public_html web directory root. Renaming
your web directory from web to public_html is one way to make
your Symfony project work on your shared host. Another way is to deploy
your application to a directory outside of your web root, delete your
public_html directory, and then replace it with a symbolic link to
the web in your project.

注解

If you use the AsseticBundle you need to configure this, so it can use
the correct web directory:

	YAML# app/config/config.yml

...
assetic:
 # ...
 read_from: "%kernel.root_dir%/../../public_html"

	XML<!-- app/config/config.xml -->

<!-- ... -->
<assetic:config read-from="%kernel.root_dir%/../../public_html" />

	PHP// app/config/config.php

// ...
$container->loadFromExtension('assetic', array(
 // ...
 'read_from' => '%kernel.root_dir%/../../public_html',
));

Now you just need to clear the cache and dump the assets again and your application should
work:

$ php app/console cache:clear --env=prod
$ php app/console assetic:dump --env=prod --no-debug

Override the vendor Directory

To override the vendor directory, you need to introduce changes in the
following files:

	app/autoload.php

	composer.json

The change in the composer.json will look like this:

{
 ...
 "config": {
 "bin-dir": "bin",
 "vendor-dir": "/some/dir/vendor"
 },
 ...
}

In app/autoload.php, you need to modify the path leading to the vendor/autoload.php
file:

// app/autoload.php
// ...
$loader = require '/some/dir/vendor/autoload.php';

小技巧

This modification can be of interest if you are working in a virtual environment
and cannot use NFS - for example, if you’re running a Symfony app using
Vagrant/VirtualBox in a guest operating system.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Configuration

Using Parameters within a Dependency Injection Class

You have seen how to use configuration parameters within
Symfony service containers.
There are special cases such as when you want, for instance, to use the
%kernel.debug% parameter to make the services in your bundle enter
debug mode. For this case there is more work to do in order
to make the system understand the parameter value. By default
your parameter %kernel.debug% will be treated as a
simple string. Consider this example with the AcmeDemoBundle:

// Inside Configuration class
$rootNode
 ->children()
 ->booleanNode('logging')->defaultValue('%kernel.debug%')->end()
 // ...
 ->end()
;

// Inside the Extension class
$config = $this->processConfiguration($configuration, $configs);
var_dump($config['logging']);

Now, examine the results to see this closely:

	YAMLmy_bundle:
 logging: true
 # true, as expected

my_bundle:
 logging: "%kernel.debug%"
 # true/false (depends on 2nd parameter of AppKernel),
 # as expected, because %kernel.debug% inside configuration
 # gets evaluated before being passed to the extension

my_bundle: ~
passes the string "%kernel.debug%".
Which is always considered as true.
The Configurator does not know anything about
"%kernel.debug%" being a parameter.

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:my-bundle="http://example.org/schema/dic/my_bundle">

 <my-bundle:config logging="true" />
 <!-- true, as expected -->

 <my-bundle:config logging="%kernel.debug%" />
 <!-- true/false (depends on 2nd parameter of AppKernel),
 as expected, because %kernel.debug% inside configuration
 gets evaluated before being passed to the extension -->

 <my-bundle:config />
 <!-- passes the string "%kernel.debug%".
 Which is always considered as true.
 The Configurator does not know anything about
 "%kernel.debug%" being a parameter. -->
</container>

	PHP$container->loadFromExtension('my_bundle', array(
 'logging' => true,
 // true, as expected
)
);

$container->loadFromExtension('my_bundle', array(
 'logging' => "%kernel.debug%",
 // true/false (depends on 2nd parameter of AppKernel),
 // as expected, because %kernel.debug% inside configuration
 // gets evaluated before being passed to the extension
)
);

$container->loadFromExtension('my_bundle');
// passes the string "%kernel.debug%".
// Which is always considered as true.
// The Configurator does not know anything about
// "%kernel.debug%" being a parameter.

In order to support this use case, the Configuration class has to
be injected with this parameter via the extension as follows:

namespace Acme\DemoBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\ArrayNodeDefinition;
use Symfony\Component\Config\Definition\Builder\TreeBuilder;
use Symfony\Component\Config\Definition\ConfigurationInterface;

class Configuration implements ConfigurationInterface
{
 private $debug;

 public function __construct($debug)
 {
 $this->debug = (Boolean) $debug;
 }

 public function getConfigTreeBuilder()
 {
 $treeBuilder = new TreeBuilder();
 $rootNode = $treeBuilder->root('acme_demo');

 $rootNode
 ->children()
 // ...
 ->booleanNode('logging')->defaultValue($this->debug)->end()
 // ...
 ->end()
 ;

 return $treeBuilder;
 }
}

And set it in the constructor of Configuration via the Extension class:

namespace Acme\DemoBundle\DependencyInjection;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Loader\XmlFileLoader;
use Symfony\Component\HttpKernel\DependencyInjection\Extension;
use Symfony\Component\Config\FileLocator;

class AcmeDemoExtension extends Extension
{
 // ...

 public function getConfiguration(array $config, ContainerBuilder $container)
 {
 return new Configuration($container->getParameter('kernel.debug'));
 }
}

Setting the Default in the Extension

There are some instances of %kernel.debug% usage within a Configurator
class in TwigBundle and AsseticBundle, however this is because the default
parameter value is set by the Extension class. For example in AsseticBundle,
you can find:

$container->setParameter('assetic.debug', $config['debug']);

The string %kernel.debug% passed here as an argument handles the
interpreting job to the container which in turn does the evaluation.
Both ways accomplish similar goals. AsseticBundle will not use
%kernel.debug% but rather the new %assetic.debug% parameter.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Configuration

Understanding how the Front Controller, Kernel and Environments Work together

The section How to Master and Create new Environments explained the basics
on how Symfony uses environments to run your application with different configuration
settings. This section will explain a bit more in-depth what happens when
your application is bootstrapped. To hook into this process, you need to understand
three parts that work together:

	The Front Controller

	The Kernel Class

	The Environments

注解

Usually, you will not need to define your own front controller or
AppKernel class as the Symfony Standard Edition [https://github.com/symfony/symfony-standard] provides
sensible default implementations.

This documentation section is provided to explain what is going on behind
the scenes.

The Front Controller

The front controller [http://en.wikipedia.org/wiki/Front_Controller_pattern] is a well-known design pattern; it is a section of
code that all requests served by an application run through.

In the Symfony Standard Edition [https://github.com/symfony/symfony-standard], this role is taken by the app.php [https://github.com/symfony/symfony-standard/blob/master/web/app.php]
and app_dev.php [https://github.com/symfony/symfony-standard/blob/master/web/app_dev.php] files in the web/ directory. These are the very
first PHP scripts executed when a request is processed.

The main purpose of the front controller is to create an instance of the
AppKernel (more on that in a second), make it handle the request
and return the resulting response to the browser.

Because every request is routed through it, the front controller can be
used to perform global initializations prior to setting up the kernel or
to decorate [http://en.wikipedia.org/wiki/Decorator_pattern] the kernel with additional features. Examples include:

	Configuring the autoloader or adding additional autoloading mechanisms;

	Adding HTTP level caching by wrapping the kernel with an instance of
AppCache;

	Enabling (or skipping) the ClassCache

	Enabling the Debug component.

The front controller can be chosen by requesting URLs like:

http://localhost/app_dev.php/some/path/...

As you can see, this URL contains the PHP script to be used as the front
controller. You can use that to easily switch the front controller or use
a custom one by placing it in the web/ directory (e.g. app_cache.php).

When using Apache and the RewriteRule shipped with the Standard Edition [https://github.com/symfony/symfony-standard/blob/master/web/.htaccess],
you can omit the filename from the URL and the RewriteRule will use app.php
as the default one.

注解

Pretty much every other web server should be able to achieve a
behavior similar to that of the RewriteRule described above.
Check your server documentation for details or see
Configuring a Web Server.

注解

Make sure you appropriately secure your front controllers against unauthorized
access. For example, you don’t want to make a debugging environment
available to arbitrary users in your production environment.

Technically, the app/console [https://github.com/symfony/symfony-standard/blob/master/app/console] script used when running Symfony on the command
line is also a front controller, only that is not used for web, but for command
line requests.

The Kernel Class

The Kernel [http://api.symfony.com/master/Symfony/Component/HttpKernel/Kernel.html] is the core of
Symfony. It is responsible for setting up all the bundles that make up
your application and providing them with the application’s configuration.
It then creates the service container before serving requests in its
handle() [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernelInterface.html#method_handle]
method.

There are two methods declared in the
KernelInterface [http://api.symfony.com/master/Symfony/Component/HttpKernel/KernelInterface.html] that are
left unimplemented in Kernel [http://api.symfony.com/master/Symfony/Component/HttpKernel/Kernel.html]
and thus serve as template methods [http://en.wikipedia.org/wiki/Template_method_pattern]:

	registerBundles() [http://api.symfony.com/master/Symfony/Component/HttpKernel/KernelInterface.html#method_registerBundles],
which must return an array of all bundles needed to run the
application;

	registerContainerConfiguration() [http://api.symfony.com/master/Symfony/Component/HttpKernel/KernelInterface.html#method_registerContainerConfiguration],
which loads the application configuration.

To fill these (small) blanks, your application needs to subclass the
Kernel and implement these methods. The resulting class is conventionally
called the AppKernel.

Again, the Symfony Standard Edition provides an AppKernel [https://github.com/symfony/symfony-standard/blob/master/app/AppKernel.php] in the app/
directory. This class uses the name of the environment - which is passed to
the Kernel’s constructor [http://api.symfony.com/master/Symfony/Component/HttpKernel/Kernel.html#method___construct]
method and is available via getEnvironment() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Kernel.html#method_getEnvironment] -
to decide which bundles to create. The logic for that is in registerBundles(),
a method meant to be extended by you when you start adding bundles to your
application.

You are, of course, free to create your own, alternative or additional
AppKernel variants. All you need is to adapt your (or add a new) front
controller to make use of the new kernel.

注解

The name and location of the AppKernel is not fixed. When
putting multiple Kernels into a single application,
it might therefore make sense to add additional sub-directories,
for example app/admin/AdminKernel.php and
app/api/ApiKernel.php. All that matters is that your front
controller is able to create an instance of the appropriate
kernel.

Having different AppKernels might be useful to enable different front
controllers (on potentially different servers) to run parts of your application
independently (for example, the admin UI, the frontend UI and database migrations).

注解

There’s a lot more the AppKernel can be used for, for example
overriding the default directory structure.
But odds are high that you don’t need to change things like this on the
fly by having several AppKernel implementations.

The Environments

As just mentioned, the AppKernel has to implement another method -
registerContainerConfiguration() [http://api.symfony.com/master/Symfony/Component/HttpKernel/KernelInterface.html#method_registerContainerConfiguration].
This method is responsible for loading the application’s
configuration from the right environment.

Environments have been covered extensively
in the previous chapter,
and you probably remember that the Standard Edition comes with three
of them - dev, prod and test.

More technically, these names are nothing more than strings passed from the
front controller to the AppKernel‘s constructor. This name can then be
used in the registerContainerConfiguration() [http://api.symfony.com/master/Symfony/Component/HttpKernel/KernelInterface.html#method_registerContainerConfiguration]
method to decide which configuration files to load.

The Standard Edition’s AppKernel [https://github.com/symfony/symfony-standard/blob/master/app/AppKernel.php] class implements this method by simply
loading the app/config/config_*environment*.yml file. You are, of course,
free to implement this method differently if you need a more sophisticated
way of loading your configuration.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Configuration

How to Set external Parameters in the Service Container

In the chapter How to Master and Create new Environments, you learned how
to manage your application configuration. At times, it may benefit your application
to store certain credentials outside of your project code. Database configuration
is one such example. The flexibility of the Symfony service container allows
you to easily do this.

Environment Variables

Symfony will grab any environment variable prefixed with SYMFONY__ and
set it as a parameter in the service container. Some transformations are
applied to the resulting parameter name:

	SYMFONY__ prefix is removed;

	Parameter name is lowercased;

	Double underscores are replaced with a period, as a period is not
a valid character in an environment variable name.

For example, if you’re using Apache, environment variables can be set using
the following VirtualHost configuration:

<VirtualHost *:80>
 ServerName Symfony
 DocumentRoot "/path/to/symfony_2_app/web"
 DirectoryIndex index.php index.html
 SetEnv SYMFONY__DATABASE__USER user
 SetEnv SYMFONY__DATABASE__PASSWORD secret

 <Directory "/path/to/symfony_2_app/web">
 AllowOverride All
 Allow from All
 </Directory>
</VirtualHost>

注解

The example above is for an Apache configuration, using the SetEnv [http://httpd.apache.org/docs/current/env.html]
directive. However, this will work for any web server which supports
the setting of environment variables.

Also, in order for your console to work (which does not use Apache),
you must export these as shell variables. On a Unix system, you can run
the following:

$ export SYMFONY__DATABASE__USER=user
$ export SYMFONY__DATABASE__PASSWORD=secret

Now that you have declared an environment variable, it will be present
in the PHP $_SERVER global variable. Symfony then automatically sets all
$_SERVER variables prefixed with SYMFONY__ as parameters in the service
container.

You can now reference these parameters wherever you need them.

	YAMLdoctrine:
 dbal:
 driver pdo_mysql
 dbname: symfony_project
 user: "%database.user%"
 password: "%database.password%"

	XML<!-- xmlns:doctrine="http://symfony.com/schema/dic/doctrine" -->
<!-- xsi:schemaLocation="http://symfony.com/schema/dic/doctrine http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd"> -->

<doctrine:config>
 <doctrine:dbal
 driver="pdo_mysql"
 dbname="symfony_project"
 user="%database.user%"
 password="%database.password%"
 />
</doctrine:config>

	PHP$container->loadFromExtension('doctrine', array(
 'dbal' => array(
 'driver' => 'pdo_mysql',
 'dbname' => 'symfony_project',
 'user' => '%database.user%',
 'password' => '%database.password%',
)
));

Constants

The container also has support for setting PHP constants as parameters.
See Constants as Parameters for more details.

Miscellaneous Configuration

The imports directive can be used to pull in parameters stored elsewhere.
Importing a PHP file gives you the flexibility to add whatever is needed
in the container. The following imports a file named parameters.php.

	YAML# app/config/config.yml
imports:
 - { resource: parameters.php }

	XML<!-- app/config/config.xml -->
<imports>
 <import resource="parameters.php" />
</imports>

	PHP// app/config/config.php
$loader->import('parameters.php');

注解

A resource file can be one of many types. PHP, XML, YAML, INI, and
closure resources are all supported by the imports directive.

In parameters.php, tell the service container the parameters that you wish
to set. This is useful when important configuration is in a non-standard
format. The example below includes a Drupal database configuration in
the Symfony service container.

// app/config/parameters.php
include_once('/path/to/drupal/sites/default/settings.php');
$container->setParameter('drupal.database.url', $db_url);

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Configuration

How to Use PdoSessionHandler to Store Sessions in the Database

The default Symfony session storage writes the session information to
file(s). Most medium to large websites use a database to store the session
values instead of files, because databases are easier to use and scale in a
multi-webserver environment.

Symfony has a built-in solution for database session storage called
PdoSessionHandler [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/PdoSessionHandler.html].
To use it, you just need to change some parameters in config.yml (or the
configuration format of your choice):

2.1 新版功能: In Symfony 2.1 the class and namespace are slightly modified. You can now
find the session storage classes in the Session\Storage namespace:
Symfony\Component\HttpFoundation\Session\Storage. Also
note that in Symfony 2.1 you should configure handler_id not storage_id like in Symfony 2.0.
Below, you’ll notice that %session.storage.options% is not used anymore.

	YAML# app/config/config.yml
framework:
 session:
 # ...
 handler_id: session.handler.pdo

parameters:
 pdo.db_options:
 db_table: session
 db_id_col: session_id
 db_data_col: session_value
 db_time_col: session_time

services:
 pdo:
 class: PDO
 arguments:
 dsn: "mysql:dbname=mydatabase"
 user: myuser
 password: mypassword
 calls:
 - [setAttribute, [3, 2]] # \PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION

 session.handler.pdo:
 class: Symfony\Component\HttpFoundation\Session\Storage\Handler\PdoSessionHandler
 arguments: ["@pdo", "%pdo.db_options%"]

	XML<!-- app/config/config.xml -->
<framework:config>
 <framework:session handler-id="session.handler.pdo" cookie-lifetime="3600" auto-start="true"/>
</framework:config>

<parameters>
 <parameter key="pdo.db_options" type="collection">
 <parameter key="db_table">session</parameter>
 <parameter key="db_id_col">session_id</parameter>
 <parameter key="db_data_col">session_value</parameter>
 <parameter key="db_time_col">session_time</parameter>
 </parameter>
</parameters>

<services>
 <service id="pdo" class="PDO">
 <argument>mysql:dbname=mydatabase</argument>
 <argument>myuser</argument>
 <argument>mypassword</argument>
 <call method="setAttribute">
 <argument type="constant">PDO::ATTR_ERRMODE</argument>
 <argument type="constant">PDO::ERRMODE_EXCEPTION</argument>
 </call>
 </service>

 <service id="session.handler.pdo" class="Symfony\Component\HttpFoundation\Session\Storage\Handler\PdoSessionHandler">
 <argument type="service" id="pdo" />
 <argument>%pdo.db_options%</argument>
 </service>
</services>

	PHP// app/config/config.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$container->loadFromExtension('framework', array(
 ...,
 'session' => array(
 // ...,
 'handler_id' => 'session.handler.pdo',
),
));

$container->setParameter('pdo.db_options', array(
 'db_table' => 'session',
 'db_id_col' => 'session_id',
 'db_data_col' => 'session_value',
 'db_time_col' => 'session_time',
));

$pdoDefinition = new Definition('PDO', array(
 'mysql:dbname=mydatabase',
 'myuser',
 'mypassword',
));
$pdoDefinition->addMethodCall('setAttribute', array(\PDO::ATTR_ERRMODE, \PDO::ERRMODE_EXCEPTION));
$container->setDefinition('pdo', $pdoDefinition);

$storageDefinition = new Definition('Symfony\Component\HttpFoundation\Session\Storage\Handler\PdoSessionHandler', array(
 new Reference('pdo'),
 '%pdo.db_options%',
));
$container->setDefinition('session.handler.pdo', $storageDefinition);

	db_table: The name of the session table in your database

	db_id_col: The name of the id column in your session table (VARCHAR(255) or larger)

	db_data_col: The name of the value column in your session table (TEXT or CLOB)

	db_time_col: The name of the time column in your session table (INTEGER)

Sharing your Database Connection Information

With the given configuration, the database connection settings are defined for
the session storage connection only. This is OK when you use a separate
database for the session data.

But if you’d like to store the session data in the same database as the rest
of your project’s data, you can use the connection settings from the
parameters.yml file by referencing the database-related parameters defined there:

	YAMLservices:
 pdo:
 class: PDO
 arguments:
 - "mysql:host=%database_host%;port=%database_port%;dbname=%database_name%"
 - "%database_user%"
 - "%database_password%"

	XML<service id="pdo" class="PDO">
 <argument>mysql:host=%database_host%;port=%database_port%;dbname=%database_name%</argument>
 <argument>%database_user%</argument>
 <argument>%database_password%</argument>
</service>

	PHP$pdoDefinition = new Definition('PDO', array(
 'mysql:host=%database_host%;port=%database_port%;dbname=%database_name%',
 '%database_user%',
 '%database_password%',
));

Example SQL Statements

MySQL

The SQL statement for creating the needed database table might look like the
following (MySQL):

CREATE TABLE `session` (
 `session_id` varchar(255) NOT NULL,
 `session_value` text NOT NULL,
 `session_time` int(11) NOT NULL,
 PRIMARY KEY (`session_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

PostgreSQL

For PostgreSQL, the statement should look like this:

CREATE TABLE session (
 session_id character varying(255) NOT NULL,
 session_value text NOT NULL,
 session_time integer NOT NULL,
 CONSTRAINT session_pkey PRIMARY KEY (session_id)
);

Microsoft SQL Server

For MSSQL, the statement might look like the following:

CREATE TABLE [dbo].[session](
 [session_id] [nvarchar](255) NOT NULL,
 [session_value] [ntext] NOT NULL,
 [session_time] [int] NOT NULL,
 PRIMARY KEY CLUSTERED(
 [session_id] ASC
) WITH (
 PAD_INDEX = OFF,
 STATISTICS_NORECOMPUTE = OFF,
 IGNORE_DUP_KEY = OFF,
 ALLOW_ROW_LOCKS = ON,
 ALLOW_PAGE_LOCKS = ON
) ON [PRIMARY]
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Configuration

How to Use the Apache Router

Symfony, while fast out of the box, also provides various ways to increase that speed with a little bit of tweaking.
One of these ways is by letting Apache handle routes directly, rather than using Symfony for this task.

Change Router Configuration Parameters

To dump Apache routes you must first tweak some configuration parameters to tell
Symfony to use the ApacheUrlMatcher instead of the default one:

	YAML# app/config/config_prod.yml
parameters:
 router.options.matcher.cache_class: ~ # disable router cache
 router.options.matcher_class: Symfony\Component\Routing\Matcher\ApacheUrlMatcher

	XML<!-- app/config/config_prod.xml -->
<parameters>
 <parameter key="router.options.matcher.cache_class">null</parameter> <!-- disable router cache -->
 <parameter key="router.options.matcher_class">
 Symfony\Component\Routing\Matcher\ApacheUrlMatcher
 </parameter>
</parameters>

	PHP// app/config/config_prod.php
$container->setParameter('router.options.matcher.cache_class', null); // disable router cache
$container->setParameter(
 'router.options.matcher_class',
 'Symfony\Component\Routing\Matcher\ApacheUrlMatcher'
);

小技巧

Note that ApacheUrlMatcher [http://api.symfony.com/master/Symfony/Component/Routing/Matcher/ApacheUrlMatcher.html]
extends UrlMatcher [http://api.symfony.com/master/Symfony/Component/Routing/Matcher/UrlMatcher.html] so even
if you don’t regenerate the mod_rewrite rules, everything will work (because
at the end of ApacheUrlMatcher::match() a call to parent::match()
is done).

Generating mod_rewrite Rules

To test that it’s working, create a very basic route for the AppBundle:

	YAML# app/config/routing.yml
hello:
 path: /hello/{name}
 defaults: { _controller: AppBundle:Demo:hello }

	XML<!-- app/config/routing.xml -->
<route id="hello" path="/hello/{name}">
 <default key="_controller">AppBundle:Demo:hello</default>
</route>

	PHP// app/config/routing.php
$collection->add('hello', new Route('/hello/{name}', array(
 '_controller' => 'AppBundle:Demo:hello',
)));

Now generate the mod_rewrite rules:

$ php app/console router:dump-apache -e=prod --no-debug

Which should roughly output the following:

skip "real" requests
RewriteCond %{REQUEST_FILENAME} -f
RewriteRule .* - [QSA,L]

hello
RewriteCond %{REQUEST_URI} ^/hello/([^/]+?)$
RewriteRule .* app.php [QSA,L,E=_ROUTING__route:hello,E=_ROUTING_name:%1,E=_ROUTING__controller:AppBundle\:Demo\:hello]

You can now rewrite web/.htaccess to use the new rules, so with this example
it should look like this:

<IfModule mod_rewrite.c>
 RewriteEngine On

 # skip "real" requests
 RewriteCond %{REQUEST_FILENAME} -f
 RewriteRule .* - [QSA,L]

 # hello
 RewriteCond %{REQUEST_URI} ^/hello/([^/]+?)$
 RewriteRule .* app.php [QSA,L,E=_ROUTING__route:hello,E=_ROUTING_name:%1,E=_ROUTING__controller:AppBundle\:Demo\:hello]
</IfModule>

注解

The procedure above should be done each time you add/change a route if you want to take full advantage of this setup.

That’s it!
You’re now all set to use Apache routes.

Additional Tweaks

To save a little bit of processing time, change occurrences of Request
to ApacheRequest in web/app.php:

// web/app.php

require_once __DIR__.'/../app/bootstrap.php.cache';
require_once __DIR__.'/../app/AppKernel.php';
// require_once __DIR__.'/../app/AppCache.php';

use Symfony\Component\HttpFoundation\ApacheRequest;

$kernel = new AppKernel('prod', false);
$kernel->loadClassCache();
// $kernel = new AppCache($kernel);
$kernel->handle(ApacheRequest::createFromGlobals())->send();

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Configuration

Configuring a Web Server

The preferred way to develop your Symfony application is to use
PHP’s internal web server. However,
when using an older PHP version or when running the application in the production
environment, you’ll need to use a fully-featured web server. This article
describes several ways to use Symfony with Apache2 or Nginx.

When using Apache2, you can configure PHP as an
Apache module or with FastCGI using
PHP FPM. FastCGI also is the preferred way
to use PHP with Nginx.

The Web Directory

The web directory is the home of all of your application’s public and
static files, including images, stylesheets and JavaScript files. It is
also where the front controllers live. For more details, see the The Web Directory.

The web directory services as the document root when configuring your
web server. In the examples below, the web/ directory will be the
document root. This directory is /var/www/project/web/.

Apache2 with mod_php/PHP-CGI

For advanced Apache configuration options, see the official Apache [http://httpd.apache.org/docs/current/mod/core.html#documentroot]
documentation. The minimum basics to get your application running under Apache2
are:

<VirtualHost *:80>
 ServerName domain.tld
 ServerAlias www.domain.tld

 DocumentRoot /var/www/project/web
 <Directory /var/www/project/web>
 # enable the .htaccess rewrites
 AllowOverride All
 Order allow,deny
 Allow from All
 </Directory>

 ErrorLog /var/log/apache2/project_error.log
 CustomLog /var/log/apache2/project_access.log combined
</VirtualHost>

注解

If your system supports the APACHE_LOG_DIR variable, you may want
to use ${APACHE_LOG_DIR}/ instead of /var/log/apache2/.

注解

For performance reasons, you will probably want to set
AllowOverride None and implement the rewrite rules in the web/.htaccess
into the VirtualHost config.

If you are using php-cgi, Apache does not pass HTTP basic username and
password to PHP by default. To work around this limitation, you should use the
following configuration snippet:

RewriteRule .* - [E=HTTP_AUTHORIZATION:%{HTTP:Authorization}]

警告

In Apache 2.4, Order allow,deny has been replaced by Require all granted,
and hence you need to modify your Directory permission settings as follows:

<Directory /var/www/project/web>
 # enable the .htaccess rewrites
 AllowOverride All
 Require all granted
</Directory>

Apache2 with PHP-FPM

To make use of PHP5-FPM with Apache, you first have to ensure that you have
the FastCGI process manager php-fpm binary and Apache’s FastCGI module
installed (for example, on a Debian based system you have to install the
libapache2-mod-fastcgi and php5-fpm packages).

PHP-FPM uses so-called pools to handle incoming FastCGI requests. You can
configure an arbitrary number of pools in the FPM configuration. In a pool
you configure either a TCP socket (IP and port) or a unix domain socket to
listen on. Each pool can also be run under a different UID and GID:

; a pool called www
[www]
user = www-data
group = www-data

; use a unix domain socket
listen = /var/run/php5-fpm.sock

; or listen on a TCP socket
listen = 127.0.0.1:9000

Using mod_proxy_fcgi with Apache 2.4

If you are running Apache 2.4, you can easily use mod_proxy_fcgi to pass
incoming requests to PHP-FPM. Configure PHP-FPM to listen on a TCP socket
(mod_proxy currently does not support unix sockets [https://issues.apache.org/bugzilla/show_bug.cgi?id=54101]), enable mod_proxy
and mod_proxy_fcgi in your Apache configuration and use the SetHandler
directive to pass requests for PHP files to PHP FPM:

<VirtualHost *:80>
 ServerName domain.tld
 ServerAlias www.domain.tld

 # Uncomment the following line to force Apache to pass the Authorization
 # header to PHP: required for "basic_auth" under PHP-FPM and FastCGI
 #
 # SetEnvIfNoCase ^Authorization$ "(.+)" HTTP_AUTHORIZATION=$1

 # For Apache 2.4.9 or higher
 # Using SetHandler avoids issues with using ProxyPassMatch in combination
 # with mod_rewrite or mod_autoindex
 <FilesMatch \.php$>
 SetHandler proxy:fcgi://127.0.0.1:9000
 </FilesMatch>
 # If you use Apache version below 2.4.9 you must consider update or use this instead
 # ProxyPassMatch ^/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/var/www/project/web/$1
 # If you run your Symfony application on a subpath of your document root, the
 # regular expression must be changed accordingly:
 # ProxyPassMatch ^/path-to-app/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/var/www/project/web/$1

 DocumentRoot /var/www/project/web
 <Directory /var/www/project/web>
 # enable the .htaccess rewrites
 AllowOverride All
 Require all granted
 </Directory>

 ErrorLog /var/log/apache2/project_error.log
 CustomLog /var/log/apache2/project_access.log combined
</VirtualHost>

PHP-FPM with Apache 2.2

On Apache 2.2 or lower, you cannot use mod_proxy_fcgi. You have to use
the FastCgiExternalServer [http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html#FastCgiExternalServer] directive instead. Therefore, your Apache configuration
should look something like this:

<VirtualHost *:80>
 ServerName domain.tld
 ServerAlias www.domain.tld

 AddHandler php5-fcgi .php
 Action php5-fcgi /php5-fcgi
 Alias /php5-fcgi /usr/lib/cgi-bin/php5-fcgi
 FastCgiExternalServer /usr/lib/cgi-bin/php5-fcgi -host 127.0.0.1:9000 -pass-header Authorization

 DocumentRoot /var/www/project/web
 <Directory /var/www/project/web>
 # enable the .htaccess rewrites
 AllowOverride All
 Order allow,deny
 Allow from all
 </Directory>

 ErrorLog /var/log/apache2/project_error.log
 CustomLog /var/log/apache2/project_access.log combined
</VirtualHost>

If you prefer to use a unix socket, you have to use the -socket option
instead:

FastCgiExternalServer /usr/lib/cgi-bin/php5-fcgi -socket /var/run/php5-fpm.sock -pass-header Authorization

Nginx

For advanced Nginx configuration options, see the official Nginx [http://wiki.nginx.org/Symfony]
documentation. The minimum basics to get your application running under Nginx
are:

server {
 server_name domain.tld www.domain.tld;
 root /var/www/project/web;

 location / {
 # try to serve file directly, fallback to app.php
 try_files $uri /app.php$is_args$args;
 }
 # DEV
 # This rule should only be placed on your development environment
 # In production, don't include this and don't deploy app_dev.php or config.php
 location ~ ^/(app_dev|config)\.php(/|$) {
 fastcgi_pass unix:/var/run/php5-fpm.sock;
 fastcgi_split_path_info ^(.+\.php)(/.*)$;
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_param HTTPS off;
 }
 # PROD
 location ~ ^/app\.php(/|$) {
 fastcgi_pass unix:/var/run/php5-fpm.sock;
 fastcgi_split_path_info ^(.+\.php)(/.*)$;
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_param HTTPS off;
 # Prevents URIs that include the front controller. This will 404:
 # http://domain.tld/app.php/some-path
 # Remove the internal directive to allow URIs like this
 internal;
 }

 error_log /var/log/nginx/project_error.log;
 access_log /var/log/nginx/project_access.log;
}

注解

Depending on your PHP-FPM config, the fastcgi_pass can also be
fastcgi_pass 127.0.0.1:9000.

小技巧

This executes only app.php, app_dev.php and config.php in
the web directory. All other files will be served as text. You must
also make sure that if you do deploy app_dev.php or config.php
that these files are secured and not available to any outside user (the
IP checking code at the top of each file does this by default).

If you have other PHP files in your web directory that need to be executed,
be sure to include them in the location block above.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Configuration

How to Organize Configuration Files

The default Symfony Standard Edition defines three
execution environments called
dev, prod and test. An environment simply represents a way to
execute the same codebase with different configurations.

In order to select the configuration file to load for each environment, Symfony
executes the registerContainerConfiguration() method of the AppKernel
class:

// app/AppKernel.php
use Symfony\Component\HttpKernel\Kernel;
use Symfony\Component\Config\Loader\LoaderInterface;

class AppKernel extends Kernel
{
 // ...

 public function registerContainerConfiguration(LoaderInterface $loader)
 {
 $loader->load(__DIR__.'/config/config_'.$this->getEnvironment().'.yml');
 }
}

This method loads the app/config/config_dev.yml file for the dev
environment and so on. In turn, this file loads the common configuration file
located at app/config/config.yml. Therefore, the configuration files of the
default Symfony Standard Edition follow this structure:

<your-project>/
├─ app/
│ └─ config/
│ ├─ config.yml
│ ├─ config_dev.yml
│ ├─ config_prod.yml
│ ├─ config_test.yml
│ ├─ parameters.yml
│ ├─ parameters.yml.dist
│ ├─ routing.yml
│ ├─ routing_dev.yml
│ └─ security.yml
├─ src/
├─ vendor/
└─ web/

This default structure was chosen for its simplicity — one file per environment.
But as any other Symfony feature, you can customize it to better suit your needs.
The following sections explain different ways to organize your configuration
files. In order to simplify the examples, only the dev and prod
environments are taken into account.

Different Directories per Environment

Instead of suffixing the files with _dev and _prod, this technique
groups all the related configuration files under a directory with the same
name as the environment:

<your-project>/
├─ app/
│ └─ config/
│ ├─ common/
│ │ ├─ config.yml
│ │ ├─ parameters.yml
│ │ ├─ routing.yml
│ │ └─ security.yml
│ ├─ dev/
│ │ ├─ config.yml
│ │ ├─ parameters.yml
│ │ ├─ routing.yml
│ │ └─ security.yml
│ └─ prod/
│ ├─ config.yml
│ ├─ parameters.yml
│ ├─ routing.yml
│ └─ security.yml
├─ src/
├─ vendor/
└─ web/

To make this work, change the code of the
registerContainerConfiguration() [http://api.symfony.com/master/Symfony/Component/HttpKernel/KernelInterface.html#method_registerContainerConfiguration]
method:

// app/AppKernel.php
use Symfony\Component\HttpKernel\Kernel;
use Symfony\Component\Config\Loader\LoaderInterface;

class AppKernel extends Kernel
{
 // ...

 public function registerContainerConfiguration(LoaderInterface $loader)
 {
 $loader->load(__DIR__.'/config/'.$this->getEnvironment().'/config.yml');
 }
}

Then, make sure that each config.yml file loads the rest of the configuration
files, including the common files. For instance, this would be the imports
needed for the app/config/dev/config.yml file:

	YAML# app/config/dev/config.yml
imports:
 - { resource: '../common/config.yml' }
 - { resource: 'parameters.yml' }
 - { resource: 'security.yml' }

...

	XML<!-- app/config/dev/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <imports>
 <import resource="../common/config.xml" />
 <import resource="parameters.xml" />
 <import resource="security.xml" />
 </imports>

 <!-- ... -->
</container>

	PHP// app/config/dev/config.php
$loader->import('../common/config.php');
$loader->import('parameters.php');
$loader->import('security.php');

// ...

注解

Due to the way in which parameters are resolved, you cannot use them to
build paths in imports dynamically. This means that something like the
following doesn’t work:

	YAML# app/config/config.yml
imports:
 - { resource: "%kernel.root_dir%/parameters.yml" }

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <imports>
 <import resource="%kernel.root_dir%/parameters.yml" />
 </imports>
</container>

	PHP// app/config/config.php
$loader->import('%kernel.root_dir%/parameters.yml');

Semantic Configuration Files

A different organization strategy may be needed for complex applications with
large configuration files. For instance, you could create one file per bundle
and several files to define all application services:

<your-project>/
├─ app/
│ └─ config/
│ ├─ bundles/
│ │ ├─ bundle1.yml
│ │ ├─ bundle2.yml
│ │ ├─ ...
│ │ └─ bundleN.yml
│ ├─ environments/
│ │ ├─ common.yml
│ │ ├─ dev.yml
│ │ └─ prod.yml
│ ├─ routing/
│ │ ├─ common.yml
│ │ ├─ dev.yml
│ │ └─ prod.yml
│ └─ services/
│ ├─ frontend.yml
│ ├─ backend.yml
│ ├─ ...
│ └─ security.yml
├─ src/
├─ vendor/
└─ web/

Again, change the code of the registerContainerConfiguration() method to
make Symfony aware of the new file organization:

// app/AppKernel.php
use Symfony\Component\HttpKernel\Kernel;
use Symfony\Component\Config\Loader\LoaderInterface;

class AppKernel extends Kernel
{
 // ...

 public function registerContainerConfiguration(LoaderInterface $loader)
 {
 $loader->load(__DIR__.'/config/environments/'.$this->getEnvironment().'.yml');
 }
}

Following the same technique explained in the previous section, make sure to
import the appropriate configuration files from each main file (common.yml,
dev.yml and prod.yml).

Advanced Techniques

Symfony loads configuration files using the
Config component, which provides some
advanced features.

Mix and Match Configuration Formats

Configuration files can import files defined with any other built-in configuration
format (.yml, .xml, .php, .ini):

	YAML# app/config/config.yml
imports:
 - { resource: 'parameters.yml' }
 - { resource: 'services.xml' }
 - { resource: 'security.yml' }
 - { resource: 'legacy.php' }

...

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <imports>
 <import resource="parameters.yml" />
 <import resource="services.xml" />
 <import resource="security.yml" />
 <import resource="legacy.php" />
 </imports>

 <!-- ... -->
</container>

	PHP// app/config/config.php
$loader->import('parameters.yml');
$loader->import('services.xml');
$loader->import('security.yml');
$loader->import('legacy.php');

// ...

警告

The IniFileLoader parses the file contents using the
parse_ini_file [http://php.net/manual/en/function.parse-ini-file.php] function. Therefore, you can only set
parameters to string values. Use one of the other loaders if you want
to use other data types (e.g. boolean, integer, etc.).

If you use any other configuration format, you have to define your own loader
class extending it from FileLoader [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Loader/FileLoader.html].
When the configuration values are dynamic, you can use the PHP configuration
file to execute your own logic. In addition, you can define your own services
to load configurations from databases or web services.

Global Configuration Files

Some system administrators may prefer to store sensitive parameters in files
outside the project directory. Imagine that the database credentials for your
website are stored in the /etc/sites/mysite.com/parameters.yml file. Loading
this file is as simple as indicating the full file path when importing it from
any other configuration file:

	YAML# app/config/config.yml
imports:
 - { resource: 'parameters.yml' }
 - { resource: '/etc/sites/mysite.com/parameters.yml' }

...

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <imports>
 <import resource="parameters.yml" />
 <import resource="/etc/sites/mysite.com/parameters.yml" />
 </imports>

 <!-- ... -->
</container>

	PHP// app/config/config.php
$loader->import('parameters.yml');
$loader->import('/etc/sites/mysite.com/parameters.yml');

// ...

Most of the time, local developers won’t have the same files that exist on the
production servers. For that reason, the Config component provides the
ignore_errors option to silently discard errors when the loaded file
doesn’t exist:

	YAML# app/config/config.yml
imports:
 - { resource: 'parameters.yml' }
 - { resource: '/etc/sites/mysite.com/parameters.yml', ignore_errors: true }

...

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <imports>
 <import resource="parameters.yml" />
 <import resource="/etc/sites/mysite.com/parameters.yml" ignore-errors="true" />
 </imports>

 <!-- ... -->
</container>

	PHP// app/config/config.php
$loader->import('parameters.yml');
$loader->import('/etc/sites/mysite.com/parameters.yml', null, true);

// ...

As you’ve seen, there are lots of ways to organize your configuration files. You
can choose one of these or even create your own custom way of organizing the
files. Don’t feel limited by the Standard Edition that comes with Symfony. For even
more customization, see “How to Override Symfony’s default Directory Structure”.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Console

	How to Create a Console Command
	Automatically Registering Commands

	Getting Services from the Service Container

	Testing Commands

	How to Use the Console

	How to Generate URLs and Send Emails from the Console
	Configuring the Request Context globally

	Configuring the Request Context per Command

	Using Memory Spooling

	How to Enable Logging in Console Commands
	Manually Logging from a Console Command

	Enabling automatic Exceptions Logging

	Logging non-0 Exit Statuses

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Console

How to Create a Console Command

The Console page of the Components section (The Console Component) covers
how to create a console command. This cookbook article covers the differences
when creating console commands within the Symfony framework.

Automatically Registering Commands

To make the console commands available automatically with Symfony, create a
Command directory inside your bundle and create a PHP file suffixed with
Command.php for each command that you want to provide. For example, if you
want to extend the AppBundle to greet you from the command line, create
GreetCommand.php and add the following to it:

// src/AppBundle/Command/GreetCommand.php
namespace AppBundle\Command;

use Symfony\Bundle\FrameworkBundle\Command\ContainerAwareCommand;
use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Output\OutputInterface;

class GreetCommand extends ContainerAwareCommand
{
 protected function configure()
 {
 $this
 ->setName('demo:greet')
 ->setDescription('Greet someone')
 ->addArgument(
 'name',
 InputArgument::OPTIONAL,
 'Who do you want to greet?'
)
 ->addOption(
 'yell',
 null,
 InputOption::VALUE_NONE,
 'If set, the task will yell in uppercase letters'
)
 ;
 }

 protected function execute(InputInterface $input, OutputInterface $output)
 {
 $name = $input->getArgument('name');
 if ($name) {
 $text = 'Hello '.$name;
 } else {
 $text = 'Hello';
 }

 if ($input->getOption('yell')) {
 $text = strtoupper($text);
 }

 $output->writeln($text);
 }
}

This command will now automatically be available to run:

$ php app/console demo:greet Fabien

Getting Services from the Service Container

By using ContainerAwareCommand [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Command/ContainerAwareCommand.html]
as the base class for the command (instead of the more basic
Command [http://api.symfony.com/master/Symfony/Component/Console/Command/Command.html]), you have access to the
service container. In other words, you have access to any configured service:

protected function execute(InputInterface $input, OutputInterface $output)
{
 $name = $input->getArgument('name');
 $logger = $this->getContainer()->get('logger');

 $logger->info('Executing command for '.$name);
 // ...
}

However, due to the container scopes this
code doesn’t work for some services. For instance, if you try to get the request
service or any other service related to it, you’ll get the following error:

You cannot create a service ("request") of an inactive scope ("request").

Consider the following example that uses the translator service to
translate some contents using a console command:

protected function execute(InputInterface $input, OutputInterface $output)
{
 $name = $input->getArgument('name');
 $translator = $this->getContainer()->get('translator');
 if ($name) {
 $output->writeln(
 $translator->trans('Hello %name%!', array('%name%' => $name))
);
 } else {
 $output->writeln($translator->trans('Hello!'));
 }
}

If you dig into the Translator component classes, you’ll see that the request
service is required to get the locale into which the contents are translated:

// vendor/symfony/symfony/src/Symfony/Bundle/FrameworkBundle/Translation/Translator.php
public function getLocale()
{
 if (null === $this->locale && $this->container->isScopeActive('request')
 && $this->container->has('request')) {
 $this->locale = $this->container->get('request')->getLocale();
 }

 return $this->locale;
}

Therefore, when using the translator service inside a command, you’ll get the
previous “You cannot create a service of an inactive scope” error message.
The solution in this case is as easy as setting the locale value explicitly
before translating contents:

protected function execute(InputInterface $input, OutputInterface $output)
{
 $name = $input->getArgument('name');
 $locale = $input->getArgument('locale');

 $translator = $this->getContainer()->get('translator');
 $translator->setLocale($locale);

 if ($name) {
 $output->writeln(
 $translator->trans('Hello %name%!', array('%name%' => $name))
);
 } else {
 $output->writeln($translator->trans('Hello!'));
 }
}

However for other services the solution might be more complex. For more details,
see How to Work with Scopes.

Testing Commands

When testing commands used as part of the full framework
Symfony\Bundle\FrameworkBundle\Console\Application [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Console/Application.html] should be used
instead of
Symfony\Component\Console\Application [http://api.symfony.com/master/Symfony/Component/Console/Application.html]:

use Symfony\Component\Console\Tester\CommandTester;
use Symfony\Bundle\FrameworkBundle\Console\Application;
use AppBundle\Command\GreetCommand;

class ListCommandTest extends \PHPUnit_Framework_TestCase
{
 public function testExecute()
 {
 // mock the Kernel or create one depending on your needs
 $application = new Application($kernel);
 $application->add(new GreetCommand());

 $command = $application->find('demo:greet');
 $commandTester = new CommandTester($command);
 $commandTester->execute(
 array(
 'command' => $command->getName(),
 'name' => 'Fabien',
 '--yell' => true,
)
);

 $this->assertRegExp('/.../', $commandTester->getDisplay());

 // ...
 }
}

注解

In the specific case above, the name parameter and the --yell option
are not mandatory for the command to work, but are shown so you can see
how to customize them when calling the command.

To be able to use the fully set up service container for your console tests
you can extend your test from
WebTestCase [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Test/WebTestCase.html]:

use Symfony\Component\Console\Tester\CommandTester;
use Symfony\Bundle\FrameworkBundle\Console\Application;
use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;
use AppBundle\Command\GreetCommand;

class ListCommandTest extends WebTestCase
{
 public function testExecute()
 {
 $kernel = $this->createKernel();
 $kernel->boot();

 $application = new Application($kernel);
 $application->add(new GreetCommand());

 $command = $application->find('demo:greet');
 $commandTester = new CommandTester($command);
 $commandTester->execute(
 array(
 'command' => $command->getName(),
 'name' => 'Fabien',
 '--yell' => true,
)
);

 $this->assertRegExp('/.../', $commandTester->getDisplay());

 // ...
 }
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Console

How to Use the Console

The Using Console Commands, Shortcuts and Built-in Commands page of the components documentation looks
at the global console options. When you use the console as part of the full
stack framework, some additional global options are available as well.

By default, console commands run in the dev environment and you may want
to change this for some commands. For example, you may want to run some commands
in the prod environment for performance reasons. Also, the result of some commands
will be different depending on the environment. For example, the cache:clear
command will clear and warm the cache for the specified environment only. To
clear and warm the prod cache you need to run:

$ php app/console cache:clear --env=prod

or the equivalent:

$ php app/console cache:clear -e prod

In addition to changing the environment, you can also choose to disable debug mode.
This can be useful where you want to run commands in the dev environment
but avoid the performance hit of collecting debug data:

$ php app/console list --no-debug

There is an interactive shell which allows you to enter commands without having to
specify php app/console each time, which is useful if you need to run several
commands. To enter the shell run:

$ php app/console --shell
$ php app/console -s

You can now just run commands with the command name:

Symfony > list

When using the shell you can choose to run each command in a separate process:

$ php app/console --shell --process-isolation
$ php app/console -s --process-isolation

When you do this, the output will not be colorized and interactivity is not
supported so you will need to pass all command params explicitly.

注解

Unless you are using isolated processes, clearing the cache in the shell
will not have an effect on subsequent commands you run. This is because
the original cached files are still being used.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Console

How to Generate URLs and Send Emails from the Console

Unfortunately, the command line context does not know about your VirtualHost
or domain name. This means that if you generate absolute URLs within a
Console Command you’ll probably end up with something like http://localhost/foo/bar
which is not very useful.

To fix this, you need to configure the “request context”, which is a fancy
way of saying that you need to configure your environment so that it knows
what URL it should use when generating URLs.

There are two ways of configuring the request context: at the application level
and per Command.

Configuring the Request Context globally

2.2 新版功能: The base_url parameter was introduced in Symfony 2.2.

To configure the Request Context - which is used by the URL Generator - you can
redefine the parameters it uses as default values to change the default host
(localhost) and scheme (http). Starting with Symfony 2.2 you can also configure
the base path if Symfony is not running in the root directory.

Note that this does not impact URLs generated via normal web requests, since those
will override the defaults.

	YAML# app/config/parameters.yml
parameters:
 router.request_context.host: example.org
 router.request_context.scheme: https
 router.request_context.base_url: my/path

	XML<!-- app/config/parameters.xml -->
<?xml version="1.0" encoding="UTF-8"?>

<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <parameters>
 <parameter key="router.request_context.host">example.org</parameter>
 <parameter key="router.request_context.scheme">https</parameter>
 <parameter key="router.request_context.base_url">my/path</parameter>
 </parameters>
</container>

	PHP// app/config/config_test.php
$container->setParameter('router.request_context.host', 'example.org');
$container->setParameter('router.request_context.scheme', 'https');
$container->setParameter('router.request_context.base_url', 'my/path');

Configuring the Request Context per Command

To change it only in one command you can simply fetch the Request Context
from the router service and override its settings:

// src/AppBundle/Command/DemoCommand.php

// ...
class DemoCommand extends ContainerAwareCommand
{
 protected function execute(InputInterface $input, OutputInterface $output)
 {
 $context = $this->getContainer()->get('router')->getContext();
 $context->setHost('example.com');
 $context->setScheme('https');
 $context->setBaseUrl('my/path');

 // ... your code here
 }
}

Using Memory Spooling

2.3 新版功能: When using Symfony 2.3+ and SwiftmailerBundle 2.3.5+, the memory spool is now
handled automatically in the CLI and the code below is not necessary anymore.

Sending emails in a console command works the same way as described in the
How to Send an Email cookbook except if memory spooling is used.

When using memory spooling (see the How to Spool Emails cookbook for more
information), you must be aware that because of how Symfony handles console
commands, emails are not sent automatically. You must take care of flushing
the queue yourself. Use the following code to send emails inside your
console command:

$message = new \Swift_Message();

// ... prepare the message

$container = $this->getContainer();
$mailer = $container->get('mailer');

$mailer->send($message);

// now manually flush the queue
$spool = $mailer->getTransport()->getSpool();
$transport = $container->get('swiftmailer.transport.real');

$spool->flushQueue($transport);

Another option is to create an environment which is only used by console
commands and uses a different spooling method.

注解

Taking care of the spooling is only needed when memory spooling is used.
If you are using file spooling (or no spooling at all), there is no need
to flush the queue manually within the command.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Console

How to Enable Logging in Console Commands

The Console component doesn’t provide any logging capabilities out of the box.
Normally, you run console commands manually and observe the output, which is
why logging is not provided. However, there are cases when you might need
logging. For example, if you are running console commands unattended, such
as from cron jobs or deployment scripts, it may be easier to use Symfony’s
logging capabilities instead of configuring other tools to gather console
output and process it. This can be especially handful if you already have
some existing setup for aggregating and analyzing Symfony logs.

	There are basically two logging cases you would need:

	
	Manually logging some information from your command;

	Logging uncaught Exceptions.

Manually Logging from a Console Command

This one is really simple. When you create a console command within the full
framework as described in “How to Create a Console Command”, your command
extends ContainerAwareCommand [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Command/ContainerAwareCommand.html].
This means that you can simply access the standard logger service through the
container and use it to do the logging:

// src/AppBundle/Command/GreetCommand.php
namespace AppBundle\Command;

use Symfony\Bundle\FrameworkBundle\Command\ContainerAwareCommand;
use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Output\OutputInterface;
use Psr\Log\LoggerInterface;

class GreetCommand extends ContainerAwareCommand
{
 // ...

 protected function execute(InputInterface $input, OutputInterface $output)
 {
 /** @var $logger LoggerInterface */
 $logger = $this->getContainer()->get('logger');

 $name = $input->getArgument('name');
 if ($name) {
 $text = 'Hello '.$name;
 } else {
 $text = 'Hello';
 }

 if ($input->getOption('yell')) {
 $text = strtoupper($text);
 $logger->warning('Yelled: '.$text);
 } else {
 $logger->info('Greeted: '.$text);
 }

 $output->writeln($text);
 }
}

Depending on the environment in which you run your command (and your logging
setup), you should see the logged entries in app/logs/dev.log or app/logs/prod.log.

Enabling automatic Exceptions Logging

To get your console application to automatically log uncaught exceptions for
all of your commands, you can use console events.

2.3 新版功能: Console events were introduced in Symfony 2.3.

First configure a listener for console exception events in the service container:

	YAML# app/config/services.yml
services:
 kernel.listener.command_dispatch:
 class: AppBundle\EventListener\ConsoleExceptionListener
 arguments:
 logger: "@logger"
 tags:
 - { name: kernel.event_listener, event: console.exception }

	XML<!-- app/config/services.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="kernel.listener.command_dispatch" class="AppBundle\EventListener\ConsoleExceptionListener">
 <argument type="service" id="logger"/>
 <tag name="kernel.event_listener" event="console.exception" />
 </service>
 </services>
</container>

	PHP// app/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$definitionConsoleExceptionListener = new Definition(
 'AppBundle\EventListener\ConsoleExceptionListener',
 array(new Reference('logger'))
);
$definitionConsoleExceptionListener->addTag(
 'kernel.event_listener',
 array('event' => 'console.exception')
);
$container->setDefinition(
 'kernel.listener.command_dispatch',
 $definitionConsoleExceptionListener
);

Then implement the actual listener:

// src/AppBundle/EventListener/ConsoleExceptionListener.php
namespace AppBundle\EventListener;

use Symfony\Component\Console\Event\ConsoleExceptionEvent;
use Psr\Log\LoggerInterface;

class ConsoleExceptionListener
{
 private $logger;

 public function __construct(LoggerInterface $logger)
 {
 $this->logger = $logger;
 }

 public function onConsoleException(ConsoleExceptionEvent $event)
 {
 $command = $event->getCommand();
 $exception = $event->getException();

 $message = sprintf(
 '%s: %s (uncaught exception) at %s line %s while running console command `%s`',
 get_class($exception),
 $exception->getMessage(),
 $exception->getFile(),
 $exception->getLine(),
 $command->getName()
);

 $this->logger->error($message, array('exception' => $exception));
 }
}

In the code above, when any command throws an exception, the listener will
receive an event. You can simply log it by passing the logger service via the
service configuration. Your method receives a
ConsoleExceptionEvent [http://api.symfony.com/master/Symfony/Component/Console/Event/ConsoleExceptionEvent.html] object,
which has methods to get information about the event and the exception.

Logging non-0 Exit Statuses

The logging capabilities of the console can be further extended by logging
non-0 exit statuses. This way you will know if a command had any errors, even
if no exceptions were thrown.

First configure a listener for console terminate events in the service container:

	YAML# app/config/services.yml
services:
 kernel.listener.command_dispatch:
 class: AppBundle\EventListener\ErrorLoggerListener
 arguments:
 logger: "@logger"
 tags:
 - { name: kernel.event_listener, event: console.terminate }

	XML<!-- app/config/services.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="kernel.listener.command_dispatch" class="AppBundle\EventListener\ErrorLoggerListener">
 <argument type="service" id="logger"/>
 <tag name="kernel.event_listener" event="console.terminate" />
 </service>
 </services>
</container>

	PHP// app/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$definitionErrorLoggerListener = new Definition(
 'AppBundle\EventListener\ErrorLoggerListener',
 array(new Reference('logger'))
);
$definitionErrorLoggerListener->addTag(
 'kernel.event_listener',
 array('event' => 'console.terminate')
);
$container->setDefinition(
 'kernel.listener.command_dispatch',
 $definitionErrorLoggerListener
);

Then implement the actual listener:

// src/AppBundle/EventListener/ErrorLoggerListener.php
namespace AppBundle\EventListener;

use Symfony\Component\Console\Event\ConsoleTerminateEvent;
use Psr\Log\LoggerInterface;

class ErrorLoggerListener
{
 private $logger;

 public function __construct(LoggerInterface $logger)
 {
 $this->logger = $logger;
 }

 public function onConsoleTerminate(ConsoleTerminateEvent $event)
 {
 $statusCode = $event->getExitCode();
 $command = $event->getCommand();

 if ($statusCode === 0) {
 return;
 }

 if ($statusCode > 255) {
 $statusCode = 255;
 $event->setExitCode($statusCode);
 }

 $this->logger->warning(sprintf(
 'Command `%s` exited with status code %d',
 $command->getName(),
 $statusCode
));
 }
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Controller

	How to Customize Error Pages
	Using the Default ExceptionController

	Replacing the Default ExceptionController

	Working with the kernel.exception Event

	How to Define Controllers as Services
	Defining the Controller as a Service

	Referring to the Service

	Alternatives to base Controller Methods

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Controller

How to Customize Error Pages

When an exception is thrown, the core HttpKernel class catches it and
dispatches a kernel.exception event. This gives you the power to convert
the exception into a Response in a few different ways.

The core TwigBundle sets up a listener for this event which will run
a configurable (but otherwise arbitrary) controller to generate the
response. The default controller used has a sensible way of
picking one out of the available set of error templates.

Thus, error pages can be customized in different ways, depending on how
much control you need:

	Use the default ExceptionController and create a few
templates that allow you to customize how your different error
pages look (easy);

	Replace the default exception controller with your own
(intermediate).

	Use the kernel.exception event to come up with your own
handling (advanced).

Using the Default ExceptionController

By default, the showAction() method of the
ExceptionController [http://api.symfony.com/master/Symfony/Bundle/TwigBundle/Controller/ExceptionController.html]
will be called when an exception occurs.

This controller will either display an
exception or error page, depending on the setting of the kernel.debug
flag. While exception pages give you a lot of helpful
information during development, error pages are meant to be
shown to the user in production.

Testing Error Pages during Development

You should not set kernel.debug to false in order to see your
error pages during development. This will also stop
Symfony from recompiling your twig templates, among other things.

The third-party WebfactoryExceptionsBundle [https://github.com/webfactory/exceptions-bundle] provides a special
test controller that allows you to display your custom error
pages for arbitrary HTTP status codes even with
kernel.debug set to true.

How the Template for the Error and Exception Pages Is Selected

The TwigBundle contains some default templates for error and
exception pages in its Resources/views/Exception directory.

小技巧

In a standard Symfony installation, the TwigBundle can be found at
vendor/symfony/symfony/src/Symfony/Bundle/TwigBundle. In addition
to the standard HTML error page, it also provides a default
error page for many of the most common response formats, including
JSON (error.json.twig), XML (error.xml.twig) and even
JavaScript (error.js.twig), to name a few.

Here is how the ExceptionController will pick one of the
available templates based on the HTTP status code and request format:

	For error pages, it first looks for a template for the given format
and status code (like error404.json.twig);

	If that does not exist or apply, it looks for a general template for
the given format (like error.json.twig or
exception.json.twig);

	Finally, it ignores the format and falls back to the HTML template
(like error.html.twig or exception.html.twig).

小技巧

If the exception being handled implements the
HttpExceptionInterface [http://api.symfony.com/master/Symfony/Component/HttpKernel/Exception/HttpExceptionInterface.html],
the getStatusCode() method will be
called to obtain the HTTP status code to use. Otherwise,
the status code will be “500”.

Overriding or Adding Templates

To override these templates, simply rely on the standard method for
overriding templates that live inside a bundle. For more information,
see Overriding Bundle Templates.

For example, to override the default error template, create a new
template located at
app/Resources/TwigBundle/views/Exception/error.html.twig:

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>An Error Occurred: {{ status_text }}</title>
</head>
<body>
 <h1>Oops! An Error Occurred</h1>
 <h2>The server returned a "{{ status_code }} {{ status_text }}".</h2>
</body>
</html>

警告

You must not use is_granted in your error pages (or layout used
by your error pages), because the router runs before the firewall. If
the router throws an exception (for instance, when the route does not
match), then using is_granted will throw a further exception. You
can use is_granted safely by saying {% if app.user and is_granted('...') %}.

小技巧

If you’re not familiar with Twig, don’t worry. Twig is a simple,
powerful and optional templating engine that integrates with
Symfony. For more information about Twig see Creating and Using Templates.

This works not only to replace the default templates, but also to add
new ones.

For instance, create an app/Resources/TwigBundle/views/Exception/error404.html.twig
template to display a special page for 404 (page not found) errors.
Refer to the previous section for the order in which the
ExceptionController tries different template names.

小技巧

Often, the easiest way to customize an error page is to copy it from
the TwigBundle into app/Resources/TwigBundle/views/Exception and
then modify it.

注解

The debug-friendly exception pages shown to the developer can even be
customized in the same way by creating templates such as
exception.html.twig for the standard HTML exception page or
exception.json.twig for the JSON exception page.

Replacing the Default ExceptionController

If you need a little more flexibility beyond just overriding the
template, then you can change the controller that renders the error
page. For example, you might need to pass some additional variables into
your template.

警告

Make sure you don’t lose the exception pages that render the helpful
error messages during development.

To do this, simply create a new controller and set the
twig.exception_controller option
to point to it.

	YAML# app/config/config.yml
twig:
 exception_controller: AppBundle:Exception:showException

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:twig="http://symfony.com/schema/dic/twig"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/twig
 http://symfony.com/schema/dic/twig/twig-1.0.xsd">

 <twig:config>
 <twig:exception-controller>AppBundle:Exception:showException</twig:exception-controller>
 </twig:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('twig', array(
 'exception_controller' => 'AppBundle:Exception:showException',
 // ...
));

小技巧

You can also set up your controller as a service.

The default value of twig.controller.exception:showAction refers
to the showAction method of the ExceptionController
described previously, which is registered in the DIC as the
twig.controller.exception service.

Your controller will be passed two parameters: exception,
which is a FlattenException [http://api.symfony.com/master//Symfony/Component/Debug/Exception/FlattenException.html]
instance created from the exception being handled, and logger,
an instance of DebugLoggerInterface [http://api.symfony.com/master//Symfony/Component/HttpKernel/Log/DebugLoggerInterface.html]
(which may be null).

小技巧

The Request that will be dispatched to your controller is created
in the ExceptionListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ExceptionListener.html].
This event listener is set up by the TwigBundle.

You can, of course, also extend the previously described
ExceptionController [http://api.symfony.com/master/Symfony/Bundle/TwigBundle/Controller/ExceptionController.html].
In that case, you might want to override one or both of the
showAction and findTemplate methods. The latter one locates the
template to be used.

警告

As of writing, the ExceptionController is not part of the
Symfony API, so be aware that it might change in following releases.

Working with the kernel.exception Event

As mentioned in the beginning, the kernel.exception event is
dispatched whenever the Symfony Kernel needs to
handle an exception. For more information on that, see kernel.exception Event.

Working with this event is actually much more powerful than what has
been explained before but also requires a thorough understanding of
Symfony internals.

To give one example, assume your application throws
specialized exceptions with a particular meaning to your domain.

In that case, all the default ExceptionListener and
ExceptionController could do for you was trying to figure out the
right HTTP status code and display your nice-looking error page.

Writing your own event listener
for the kernel.exception event allows you to have a closer look
at the exception and take different actions depending on it. Those
actions might include logging the exception, redirecting the user to
another page or rendering specialized error pages.

注解

If your listener calls setResponse() on the
GetResponseForExceptionEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseForExceptionEvent.html],
event propagation will be stopped and the response will be sent to
the client.

This approach allows you to create centralized and layered error
handling: Instead of catching (and handling) the same exceptions
in various controllers again and again, you can have just one (or
several) listeners deal with them.

小技巧

To see an example, have a look at the ExceptionListener [https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Security/Http/Firewall/ExceptionListener.php] in the
Security Component.

It handles various security-related exceptions that are thrown in
your application (like AccessDeniedException [http://api.symfony.com/master/Symfony/Component/Security/Core/Exception/AccessDeniedException.html])
and takes measures like redirecting the user to the login page,
logging them out and other things.

Good luck!

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Controller

How to Define Controllers as Services

In the book, you’ve learned how easily a controller can be used when it
extends the base
Controller [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html] class. While
this works fine, controllers can also be specified as services.

注解

Specifying a controller as a service takes a little bit more work. The
primary advantage is that the entire controller or any services passed to
the controller can be modified via the service container configuration.
This is especially useful when developing an open-source bundle or any
bundle that will be used in many different projects.

A second advantage is that your controllers are more “sandboxed”. By
looking at the constructor arguments, it’s easy to see what types of things
this controller may or may not do. And because each dependency needs
to be injected manually, it’s more obvious (i.e. if you have many constructor
arguments) when your controller has become too big, and may need to be
split into multiple controllers.

So, even if you don’t specify your controllers as services, you’ll likely
see this done in some open-source Symfony bundles. It’s also important
to understand the pros and cons of both approaches.

Defining the Controller as a Service

A controller can be defined as a service in the same way as any other class.
For example, if you have the following simple controller:

// src/AppBundle/Controller/HelloController.php
namespace AppBundle\Controller;

use Symfony\Component\HttpFoundation\Response;

class HelloController
{
 public function indexAction($name)
 {
 return new Response('<html><body>Hello '.$name.'!</body></html>');
 }
}

Then you can define it as a service as follows:

	YAML# app/config/services.yml
services:
 app.hello_controller:
 class: AppBundle\Controller\HelloController

	XML<!-- app/config/services.xml -->
<services>
 <service id="app.hello_controller" class="AppBundle\Controller\HelloController" />
</services>

	PHP// app/config/services.php
use Symfony\Component\DependencyInjection\Definition;

$container->setDefinition('app.hello_controller', new Definition(
 'AppBundle\Controller\HelloController'
));

Referring to the Service

To refer to a controller that’s defined as a service, use the single colon (:)
notation. For example, to forward to the indexAction() method of the service
defined above with the id app.hello_controller:

$this->forward('app.hello_controller:indexAction', array('name' => $name));

注解

You cannot drop the Action part of the method name when using this
syntax.

You can also route to the service by using the same notation when defining
the route _controller value:

	YAML# app/config/routing.yml
hello:
 path: /hello
 defaults: { _controller: app.hello_controller:indexAction }

	XML<!-- app/config/routing.xml -->
<route id="hello" path="/hello">
 <default key="_controller">app.hello_controller:indexAction</default>
</route>

	PHP// app/config/routing.php
$collection->add('hello', new Route('/hello', array(
 '_controller' => 'app.hello_controller:indexAction',
)));

小技巧

You can also use annotations to configure routing using a controller
defined as a service. See the FrameworkExtraBundle documentation [http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/routing.html] for
details.

Alternatives to base Controller Methods

When using a controller defined as a service, it will most likely not extend
the base Controller class. Instead of relying on its shortcut methods,
you’ll interact directly with the services that you need. Fortunately, this is
usually pretty easy and the base Controller class source code [https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/FrameworkBundle/Controller/Controller.php] is a great
source on how to perform many common tasks.

For example, if you want to render a template instead of creating the Response
object directly, then your code would look like this if you were extending
Symfony’s base controller:

// src/AppBundle/Controller/HelloController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class HelloController extends Controller
{
 public function indexAction($name)
 {
 return $this->render(
 'AppBundle:Hello:index.html.twig',
 array('name' => $name)
);
 }
}

If you look at the source code for the render function in Symfony’s
base Controller class [https://github.com/symfony/symfony/blob/master/src/Symfony/Bundle/FrameworkBundle/Controller/Controller.php], you’ll see that this method actually uses the
templating service:

public function render($view, array $parameters = array(), Response $response = null)
{
 return $this->container->get('templating')->renderResponse($view, $parameters, $response);
}

In a controller that’s defined as a service, you can instead inject the templating
service and use it directly:

// src/AppBundle/Controller/HelloController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Templating\EngineInterface;
use Symfony\Component\HttpFoundation\Response;

class HelloController
{
 private $templating;

 public function __construct(EngineInterface $templating)
 {
 $this->templating = $templating;
 }

 public function indexAction($name)
 {
 return $this->templating->renderResponse(
 'AppBundle:Hello:index.html.twig',
 array('name' => $name)
);
 }
}

The service definition also needs modifying to specify the constructor
argument:

	YAML# app/config/services.yml
services:
 app.hello_controller:
 class: AppBundle\Controller\HelloController
 arguments: ["@templating"]

	XML<!-- app/config/services.xml -->
<services>
 <service id="app.hello_controller" class="AppBundle\Controller\HelloController">
 <argument type="service" id="templating"/>
 </service>
</services>

	PHP// app/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$container->setDefinition('app.hello_controller', new Definition(
 'AppBundle\Controller\HelloController',
 array(new Reference('templating'))
));

Rather than fetching the templating service from the container, you can
inject only the exact service(s) that you need directly into the controller.

注解

This does not mean that you cannot extend these controllers from your own
base controller. The move away from the standard base controller is because
its helper methods rely on having the container available which is not
the case for controllers that are defined as services. It may be a good
idea to extract common code into a service that’s injected rather than
place that code into a base controller that you extend. Both approaches
are valid, exactly how you want to organize your reusable code is up to
you.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

How to Optimize your Development Environment for Debugging

When you work on a Symfony project on your local machine, you should use the
dev environment (app_dev.php front controller). This environment
configuration is optimized for two main purposes:

	Give the developer accurate feedback whenever something goes wrong (web
debug toolbar, nice exception pages, profiler, ...);

	Be as similar as possible as the production environment to avoid problems
when deploying the project.

Disabling the Bootstrap File and Class Caching

And to make the production environment as fast as possible, Symfony creates
big PHP files in your cache containing the aggregation of PHP classes your
project needs for every request. However, this behavior can confuse your IDE
or your debugger. This recipe shows you how you can tweak this caching
mechanism to make it friendlier when you need to debug code that involves
Symfony classes.

The app_dev.php front controller reads as follows by default:

// ...

$loader = require_once __DIR__.'/../app/bootstrap.php.cache';
require_once __DIR__.'/../app/AppKernel.php';

$kernel = new AppKernel('dev', true);
$kernel->loadClassCache();
$request = Request::createFromGlobals();

To make your debugger happier, disable all PHP class caches by removing the
call to loadClassCache() and by replacing the require statements like
below:

// ...

// $loader = require_once __DIR__.'/../app/bootstrap.php.cache';
$loader = require_once __DIR__.'/../app/autoload.php';
require_once __DIR__.'/../app/AppKernel.php';

$kernel = new AppKernel('dev', true);
// $kernel->loadClassCache();
$request = Request::createFromGlobals();

小技巧

If you disable the PHP caches, don’t forget to revert after your debugging
session.

Some IDEs do not like the fact that some classes are stored in different
locations. To avoid problems, you can either tell your IDE to ignore the PHP
cache files, or you can change the extension used by Symfony for these files:

$kernel->loadClassCache('classes', '.php.cache');

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Deployment

	How to Deploy a Symfony Application
	Symfony Deployment Basics

	How to Deploy a Symfony Application

	Common Post-Deployment Tasks

	Application Lifecycle: Continuous Integration, QA, etc

	The Tools

	Deploying to Microsoft Azure Website Cloud
	Setting up the Azure Website

	Configuring the Azure Website for Symfony

	Conclusion

	Deploying to Heroku Cloud
	Setting up

	Creating a new Application on Heroku

	Deploying your Application on Heroku

	Deploying to Platform.sh
	Deploy an Existing Site

	Deploy a new Site

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Deployment

How to Deploy a Symfony Application

注解

Deploying can be a complex and varied task depending on your setup and needs.
This entry doesn’t try to explain everything, but rather offers the most
common requirements and ideas for deployment.

Symfony Deployment Basics

The typical steps taken while deploying a Symfony application include:

	Upload your modified code to the live server;

	Update your vendor dependencies (typically done via Composer, and may
be done before uploading);

	Running database migrations or similar tasks to update any changed data structures;

	Clearing (and perhaps more importantly, warming up) your cache.

A deployment may also include other things, such as:

	Tagging a particular version of your code as a release in your source control repository;

	Creating a temporary staging area to build your updated setup “offline”;

	Running any tests available to ensure code and/or server stability;

	Removal of any unnecessary files from web to keep your production environment clean;

	Clearing of external cache systems (like Memcached [http://memcached.org/] or Redis [http://redis.io/]).

How to Deploy a Symfony Application

There are several ways you can deploy a Symfony application.

Start with a few basic deployment strategies and build up from there.

Basic File Transfer

The most basic way of deploying an application is copying the files manually
via ftp/scp (or similar method). This has its disadvantages as you lack control
over the system as the upgrade progresses. This method also requires you
to take some manual steps after transferring the files (see Common Post-Deployment Tasks)

Using Source Control

If you’re using source control (e.g. Git or SVN), you can simplify by having
your live installation also be a copy of your repository. When you’re ready
to upgrade it is as simple as fetching the latest updates from your source
control system.

This makes updating your files easier, but you still need to worry about
manually taking other steps (see Common Post-Deployment Tasks).

Using Build Scripts and other Tools

There are also high-quality tools to help ease the pain of deployment. There
are even a few tools which have been specifically tailored to the requirements of
Symfony, and which take special care to ensure that everything before, during,
and after a deployment has gone correctly.

See The Tools for a list of tools that can help with deployment.

Common Post-Deployment Tasks

After deploying your actual source code, there are a number of common things
you’ll need to do:

A) Check Requirements

Check if your server meets the requirements by running:

$ php app/check.php

B) Configure your app/config/parameters.yml File

This file should be customized on each system. The method you use to
deploy your source code should not deploy this file. Instead, you should
set it up manually (or via some build process) on your server(s).

C) Update your Vendors

Your vendors can be updated before transferring your source code (i.e.
update the vendor/ directory, then transfer that with your source
code) or afterwards on the server. Either way, just update your vendors
as you normally do:

$ composer install --no-dev --optimize-autoloader

小技巧

The --optimize-autoloader flag makes Composer’s autoloader more
performant by building a “class map”. The --no-dev flag
ensures that development packages are not installed in the production
environment.

警告

If you get a “class not found” error during this step, you may need to
run export SYMFONY_ENV=prod before running this command so that
the post-install-cmd scripts run in the prod environment.

D) Clear your Symfony Cache

Make sure you clear (and warm-up) your Symfony cache:

$ php app/console cache:clear --env=prod --no-debug

E) Dump your Assetic Assets

If you’re using Assetic, you’ll also want to dump your assets:

$ php app/console assetic:dump --env=prod --no-debug

F) Other Things!

There may be lots of other things that you need to do, depending on your
setup:

	Running any database migrations

	Clearing your APC cache

	Running assets:install (already taken care of in composer install)

	Add/edit CRON jobs

	Pushing assets to a CDN

	...

Application Lifecycle: Continuous Integration, QA, etc

While this entry covers the technical details of deploying, the full lifecycle
of taking code from development up to production may have a lot more steps
(think deploying to staging, QA, running tests, etc).

The use of staging, testing, QA, continuous integration, database migrations
and the capability to roll back in case of failure are all strongly advised. There
are simple and more complex tools and one can make the deployment as easy
(or sophisticated) as your environment requires.

Don’t forget that deploying your application also involves updating any dependency
(typically via Composer), migrating your database, clearing your cache and
other potential things like pushing assets to a CDN (see Common Post-Deployment Tasks).

The Tools

Capifony [http://capifony.org/]:

This tool provides a specialized set of tools on top of Capistrano, tailored
specifically to symfony and Symfony projects.

sf2debpkg [https://github.com/liip/sf2debpkg]:

This tool helps you build a native Debian package for your Symfony project.

Magallanes [https://github.com/andres-montanez/Magallanes]:

This Capistrano-like deployment tool is built in PHP, and may be easier
for PHP developers to extend for their needs.

Bundles:

There are many bundles that add deployment features [http://knpbundles.com/search?q=deploy] directly into your
Symfony console.

Basic scripting:

You can of course use shell, Ant [http://blog.sznapka.pl/deploying-symfony2-applications-with-ant], or any other build tool to script
the deploying of your project.

Platform as a Service Providers:

PaaS is a relatively new way to deploy your application. Typically a PaaS
will use a single configuration file in your project’s root directory to
determine how to build an environment on the fly that supports your software.
One provider with confirmed Symfony support is PagodaBox [https://github.com/jmather/pagoda-symfony-sonata-distribution/blob/master/Boxfile].

小技巧

Looking for more? Talk to the community on the Symfony IRC channel [http://webchat.freenode.net/?channels=symfony] #symfony
(on freenode) for more information.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Deployment

Deploying to Microsoft Azure Website Cloud

This step by step cookbook describes how to deploy a small Symfony web
application to the Microsoft Azure Website cloud platform. It will explain how
to setup a new Azure website including configuring the right PHP version and
global environment variables. The document also shows how to you can leverage
Git and Composer to deploy your Symfony application to the cloud.

Setting up the Azure Website

To setup a new Microsoft Azure Website, first signup with Azure [https://signup.live.com/signup.aspx] or sign in
with your credentials. Once you’re connected to your Azure Portal [https://manage.windowsazure.com] interface,
scroll down to the bottom and select the New panel. On this panel, click
Web Site and choose Custom Create:

[image: Create a new custom Azure Website]

Step 1: Create Web Site

Here, you will be prompted to fill in some basic information.

[image: Setup the Azure Website]
For the URL, enter the URL that you would like to use for your Symfony application,
then pick Create new web hosting plan in the region you want. By default, a
free 20 MB SQL database is selected in the database dropdown list. In this
tutorial, the Symfony app will connect to a MySQL database. Pick the
Create a new MySQL database option in the dropdown list. You can keep
the DefaultConnection string name. Finally, check the box
Publish from source control to enable a Git repository and go to the
next step.

Step 2: New MySQL Database

On this step, you will be prompted to setup your MySQL database storage with a
database name and a region. The MySQL database storage is provided by Microsoft
in partnership with ClearDB. Choose the same region you selected for the hosting
plan configuration in the previous step.

[image: Setup the MySQL database]
Agree to the terms and conditions and click on the right arrow to continue.

Step 3: Where Is your Source Code

Now, on the third step, select a Local Git repository item and click
on the right arrow to configure your Azure Website credentials.

[image: Setup a local Git repository]

Step 4: New Username and Password

Great! You’re now on the final step. Create a username and a secure password:
these will become essential identifiers to connect to the FTP server and
also to push your application code to the Git repository.

[image: Configure Azure Website credentials]
Congratulations! Your Azure Website is now up and running. You can check
it by browsing to the Website url you configured in the first step. You should
see the following display in your web browser:

[image: Azure Website is running]
The Microsoft Azure portal also provides a complete control panel for the Azure
Website.

[image: Azure Website Control Panel]
Your Azure Website is ready! But to run a Symfony site, you need to configure
just a few additional things.

Configuring the Azure Website for Symfony

This section of the tutorial details how to configure the correct version of PHP
to run Symfony. It also shows you how to enable some mandatory PHP extensions
and how to properly configure PHP for a production environment.

Configuring the latest PHP Runtime

Even though Symfony only requires PHP 5.3.3 to run, it’s always recommended
to use the most recent PHP version whenever possible. PHP 5.3 is no longer
supported by the PHP core team, but you can update it easily in Azure.

To update your PHP version on Azure, go to the Configure tab of the control
panel and select the version you want.

[image: Enabling the most recent PHP runtime from Azure Website Control Panel]
Click the Save button in the bottom bar to save your changes and restart
the web server.

注解

Choosing a more recent PHP version can greatly improve runtime performance.
PHP 5.5 ships with a new built-in PHP accelerator called OPCache that
replaces APC. On an Azure Website, OPCache is already enabled and there
is no need to install and setup APC.

The following screenshot shows the output of a phpinfo [http://php.net/manual/en/function.phpinfo.php] script
run from an Azure Website to verify that PHP 5.5 is running with
OPCache enabled.

[image: OPCache Configuration]

Tweaking php.ini Configuration Settings

Microsoft Azure allows you to override the php.ini global configuration
settings by creating a custom .user.ini file under the project root
directory (site/wwwroot).

; .user.ini
expose_php = Off
memory_limit = 256M
upload_max_filesize = 10M

None of these settings needs to be overridden. The default PHP configuration
is already pretty good, so this is just an example to show how you can easily
tweak PHP internal settings by uploading your custom .ini file.

You can either manually create this file on your Azure Website FTP server under
the site/wwwroot directory or deploy it with Git. You can get your FTP
server credentials from the Azure Website Control panel under the Dashboard
tab on the right sidebar. If you want to use Git, simply put your .user.ini
file at the root of your local repository and push your commits to your Azure
Website repository.

注解

This cookbook has a section dedicated to explaining how to configure your
Azure Website Git repository and how to push the commits to be deployed. See
Deploying from Git. You can also learn more about configuring PHP
internal settings on the official PHP MSDN documentation [http://blogs.msdn.com/b/silverlining/archive/2012/07/10/configuring-php-in-windows-azure-websites-with-user-ini-files.aspx] page.

Enabling the PHP intl Extension

This is the tricky part of the guide! At the time of writing this cookbook,
Microsoft Azure Website provided the intl extension, but it’s not enabled
by default. To enable the intl extension, there is no need to upload
any DLL files as the php_intl.dll file already exists on Azure. In fact,
this file just needs to be moved into the custom website extension directory.

注解

The Microsoft Azure team is currently working on enabling the intl PHP
extension by default. In the near future, the following steps will no
longer be necessary.

To get the php_intl.dll file under your site/wwwroot directory, simply
access the online Kudu tool by browsing to the following url:

https://[your-website-name].scm.azurewebsites.net

Kudu is a set of tools to manage your application. It comes with a file
explorer, a command line prompt, a log stream and a configuration settings summary
page. Of course, this section can only be accessed if you’re logged in to
your main Azure Website account.

[image: The Kudu Panel]
From the Kudu front page, click on the Debug Console navigation item in the
main menu and choose CMD. This should open the Debug Console page
that shows a file explorer and a console prompt below.

In the console prompt, type the following three commands to copy the original
php_intl.dll extension file into a custom website ext/ directory. This
new directory must be created under the main directory site/wwwroot.

$ cd site\wwwroot
$ mkdir ext
$ copy "D:\Program Files (x86)\PHP\v5.5\ext\php_intl.dll" ext

The whole process and output should look like this:

[image: Executing commands in the online Kudu Console prompt]
To complete the activation of the php_intl.dll extension, you must tell
Azure Website to load it from the newly created ext directory. This can be
done by registering a global PHP_EXTENSIONS environment variable from
the Configure tab of the main Azure Website Control panel.

In the app settings section, register the PHP_EXTENSIONS environment
variable with the value ext\php_intl.dll as shown in the screenshot below:

[image: Registering custom PHP extensions]
Hit “save” to confirm your changes and restart the web server. The PHP Intl
extension should now be available in your web server environment. The following
screenshot of a phpinfo [http://php.net/manual/en/function.phpinfo.php] page verifies the intl extension is
properly enabled:

[image: Intl extension is enabled]
Great! The PHP environment setup is now complete. Next, you’ll learn how
to configure the Git repository and push code to production. You’ll also
learn how to install and configure the Symfony app after it’s deployed.

Deploying from Git

First, make sure Git is correctly installed on your local machine using the
following command in your terminal:

$ git --version

注解

Get your Git from the git-scm.com [http://git-scm.com/download] website and follow the instructions
to install and configure it on your local machine.

In the Azure Website Control panel, browse the Deployment tab to get the
Git repository URL where you should push your code:

[image: Git deployment panel]
Now, you’ll want to connect your local Symfony application with this remote
Git repository on Azure Website. If your Symfony application is not yet stored
with Git, you must first create a Git repository in your Symfony application
directory with the git init command and commit to it with the git commit
command.

Also, make sure your Symfony repository has a .gitignore file at its root
directory with at least the following contents:

/app/bootstrap.php.cache
/app/cache/*
/app/config/parameters.yml
/app/logs/*
!app/cache/.gitkeep
!app/logs/.gitkeep
/app/SymfonyRequirements.php
/build/
/vendor/
/bin/
/composer.phar
/web/app_dev.php
/web/bundles/
/web/config.php

The .gitignore file asks Git not to track any of the files and directories
that match these patterns. This means these files won’t be deployed to the Azure
Website.

Now, from the command line on your local machine, type the following at the
root of your Symfony project:

$ git remote add azure https://<username>@<your-website-name>.scm.azurewebsites.net:443/<your-website-name>.git
$ git push azure master

Don’t forget to replace the values enclosed by < and > with your custom
settings displayed in the Deployment tab of your Azure Website panel. The
git remote command connects the Azure Website remote Git repository and
assigns an alias to it with the name azure. The second git push command
pushes all your commits to the remote master branch of your remote azure
Git repository.

The deployment with Git should produce an output similar to the screenshot
below:

[image: Deploying files to the Git Azure Website repository]
The code of the Symfony application has now been deployed to the Azure Website
which you can browse from the file explorer of the Kudu application. You should
see the app/, src/ and web/ directories under your site/wwwroot
directory on the Azure Website filesystem.

Configure the Symfony Application

PHP has been configured and your code has been pushed with Git. The last
step is to configure the application and install the third party dependencies
it requires that aren’t tracked by Git. Switch back to the online Console
of the Kudu application and execute the following commands in it:

$ cd site\wwwroot
$ curl -sS https://getcomposer.org/installer | php
$ php -d extension=php_intl.dll composer.phar install

The curl command retrieves and downloads the Composer command line tool and
installs it at the root of the site/wwwroot directory. Then, running
the Composer install command downloads and installs all necessary third-party
libraries.

This may take a while depending on the number of third-party dependencies
you’ve configured in your composer.json file.

注解

The -d switch allows you to quickly override/add any php.ini settings.
In this command, we are forcing PHP to use the intl extension, because
it is not enabled by default in Azure Website at the moment. Soon, this
-d option will no longer be needed since Microsoft will enable the
intl extension by default.

At the end of the composer install command, you will be prompted to fill in
the values of some Symfony settings like database credentials, locale, mailer
credentials, CSRF token protection, etc. These parameters come from the
app/config/parameters.yml.dist file.

[image: Configuring Symfony global parameters]
The most important thing in this cookbook is to correctly setup your database
settings. You can get your MySQL database settings on the right sidebar of the
Azure Website Dashboard panel. Simply click on the
View Connection Strings link to make them appear in a pop-in.

[image: MySQL database settings]
The displayed MySQL database settings should be something similar to the code
below. Of course, each value depends on what you’ve already configured.

Database=mysymfonyMySQL;Data Source=eu-cdbr-azure-north-c.cloudapp.net;User Id=bff2481a5b6074;Password=bdf50b42

Switch back to the console and answer the prompted questions and provide the
following answers. Don’t forget to adapt the values below with your real values
from the MySQL connection string.

database_driver: pdo_mysql
database_host: u-cdbr-azure-north-c.cloudapp.net
database_port: null
database_name: mysymfonyMySQL
database_user: bff2481a5b6074
database_password: bdf50b42
// ...

Don’t forget to answer all the questions. It’s important to set a unique random
string for the secret variable. For the mailer configuration, Azure Website
doesn’t provide a built-in mailer service. You should consider configuring
the host-name and credentials of some other third-party mailing service if
your application needs to send emails.

[image: Configuring Symfony]
Your Symfony application is now configured and should be almost operational. The
final step is to build the database schema. This can easily be done with the
command line interface if you’re using Doctrine. In the online Console tool
of the Kudu application, run the following command to mount the tables into your
MySQL database.

$ php app/console doctrine:schema:update --force

This command builds the tables and indexes for your MySQL database. If your
Symfony application is more complex than a basic Symfony Standard Edition, you
may have additional commands to execute for setup (see How to Deploy a Symfony Application).

Make sure that your application is running by browsing the app.php front
controller with your web browser and the following url:

http://<your-website-name>.azurewebsites.net/web/app.php

If Symfony is correctly installed, you should see the front page of your Symfony
application showing.

Configure the Web Server

At this point, the Symfony application has been deployed and works perfectly on
the Azure Website. However, the web folder is still part of the url, which
you definitely don’t want. But don’t worry! You can easily configure the web
server to point to the web folder and remove the web in the URL (and
guarantee that nobody can access files outside of the web directory.)

To do this, create and deploy (see previous section about Git) the following
web.config file. This file must be located at the root of your project
next to the composer.json file. This file is the Microsoft IIS Server
equivalent to the well-known .htaccess file from Apache. For a Symfony
application, configure it with the following content:

<!-- web.config -->
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <system.webServer>
 <rewrite>
 <rules>
 <clear />
 <rule name="BlockAccessToPublic" patternSyntax="Wildcard" stopProcessing="true">
 <match url="*" />
 <conditions logicalGrouping="MatchAll" trackAllCaptures="false">
 <add input="{URL}" pattern="/web/*" />
 </conditions>
 <action type="CustomResponse" statusCode="403" statusReason="Forbidden: Access is denied." statusDescription="You do not have permission to view this directory or page using the credentials that you supplied." />
 </rule>
 <rule name="RewriteAssetsToPublic" stopProcessing="true">
 <match url="^(.*)(\.css|\.js|\.jpg|\.png|\.gif)$" />
 <conditions logicalGrouping="MatchAll" trackAllCaptures="false">
 </conditions>
 <action type="Rewrite" url="web/{R:0}" />
 </rule>
 <rule name="RewriteRequestsToPublic" stopProcessing="true">
 <match url="^(.*)$" />
 <conditions logicalGrouping="MatchAll" trackAllCaptures="false">
 </conditions>
 <action type="Rewrite" url="web/app.php/{R:0}" />
 </rule>
 </rules>
 </rewrite>
 </system.webServer>
</configuration>

As you can see, the latest rule RewriteRequestsToPublic is responsible for
rewriting any urls to the web/app.php front controller which allows you to
skip the web/ folder in the URL. The first rule called BlockAccessToPublic
matches all url patterns that contain the web/ folder and serves a
403 Forbidden HTTP response instead. This example is based on Benjamin
Eberlei’s sample you can find on GitHub in the SymfonyAzureEdition [https://github.com/beberlei/symfony-azure-edition/] bundle.

Deploy this file under the site/wwwroot directory of the Azure Website and
browse to your application without the web/app.php segment in the URL.

Conclusion

Nice work! You’ve now deployed your Symfony application to the Microsoft
Azure Website Cloud platform. You also saw that Symfony can be easily configured
and executed on a Microsoft IIS web server. The process is simple and easy
to implement. And as a bonus, Microsoft is continuing to reduce the number
of steps needed so that deployment becomes even easier.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Deployment

Deploying to Heroku Cloud

This step by step cookbook describes how to deploy a Symfony web application to
the Heroku cloud platform. Its contents are based on the original article [https://devcenter.heroku.com/articles/getting-started-with-symfony2]
published by Heroku.

Setting up

To setup a new Heroku website, first signup with Heroku [https://signup.heroku.com/signup/dc] or sign in
with your credentials. Then download and install the Heroku Toolbelt [https://devcenter.heroku.com/articles/getting-started-with-php#local-workstation-setup] on your
local computer.

You can also check out the getting Started with PHP on Heroku [https://devcenter.heroku.com/articles/getting-started-with-php] guide to gain
more familiarity with the specifics of working with PHP applications on Heroku.

Preparing your Application

Deploying a Symfony application to Heroku doesn’t require any change in its
code, but it requires some minor tweaks to its configuration.

By default, the Symfony app will log into your application’s app/log/
directory. This is not ideal as Heroku uses an ephemeral file system [https://devcenter.heroku.com/articles/dynos#ephemeral-filesystem]. On
Heroku, the best way to handle logging is using Logplex [https://devcenter.heroku.com/articles/logplex]. And the best way to
send log data to Logplex is by writing to STDERR or STDOUT. Luckily,
Symfony uses the excellent Monolog library for logging. So, a new log
destination is just a change to a config file away.

Open the app/config/config_prod.yml file, locate the
monolog/handlers/nested section (or create it if it doesn’t exist yet) and
change the value of path from
"%kernel.logs_dir%/%kernel.environment%.log" to "php://stderr":

app/config/config_prod.yml
monolog:
 # ...
 handlers:
 # ...
 nested:
 # ...
 path: "php://stderr"

Once the application is deployed, run heroku logs --tail to keep the
stream of logs from Heroku open in your terminal.

Creating a new Application on Heroku

To create a new Heroku application that you can push to, use the CLI create
command:

$ heroku create

Creating mighty-hamlet-1981 in organization heroku... done, stack is cedar
http://mighty-hamlet-1981.herokuapp.com/ | git@heroku.com:mighty-hamlet-1981.git
Git remote heroku added

You are now ready to deploy the application as explained in the next section.

Deploying your Application on Heroku

To deploy your application to Heroku, you must first create a Procfile,
which tells Heroku what command to use to launch the web server with the
correct document root. After that, you will ensure that your Symfony application
runs the prod environment, and then you’ll be ready to git push to
Heroku for your first deploy!

Creating a Procfile

By default, Heroku will launch an Apache web server together with PHP to serve
applications. However, two special circumstances apply to Symfony applications:

	The document root is in the web/ directory and not in the root directory
of the application;

	The Composer bin-dir, where vendor binaries (and thus Heroku’s own boot
scripts) are placed, is bin/ , and not the default vendor/bin.

注解

Vendor binaries are usually installed to vendor/bin by Composer, but
sometimes (e.g. when running a Symfony Standard Edition project!), the
location will be different. If in doubt, you can always run
composer config bin-dir to figure out the right location.

Create a new file called Procfile (without any extension) at the root
directory of the application and add just the following content:

web: bin/heroku-php-apache2 web/

If you prefer working on the command console, execute the following commands to
create the Procfile file and to add it to the repository:

$ echo "web: bin/heroku-php-apache2 web/" > Procfile
$ git add .
$ git commit -m "Procfile for Apache and PHP"
[master 35075db] Procfile for Apache and PHP
 1 file changed, 1 insertion(+)

Setting the prod Environment

During a deploy, Heroku runs composer install --no-dev to install all of the
dependencies your application requires. However, typical post-install-commands [https://getcomposer.org/doc/articles/scripts.md]
in composer.json, e.g. to install assets or clear (or pre-warm) caches, run
using Symfony’s dev environment by default.

This is clearly not what you want - the app runs in “production” (even if you
use it just for an experiment, or as a staging environment), and so any build
steps should use the same prod environment as well.

Thankfully, the solution to this problem is very simple: Symfony will pick up an
environment variable named SYMFONY_ENV and use that environment if nothing
else is explicitly set. As Heroku exposes all config vars [https://devcenter.heroku.com/articles/config-vars] as environment
variables, you can issue a single command to prepare your app for a deployment:

$ heroku config:set SYMFONY_ENV=prod

Pushing to Heroku

Next up, it’s finally time to deploy your application to Heroku. If you are
doing this for the very first time, you may see a message such as the following:

The authenticity of host 'heroku.com (50.19.85.132)' can't be established.
RSA key fingerprint is 8b:48:5e:67:0e:c9:16:47:32:f2:87:0c:1f:c8:60:ad.
Are you sure you want to continue connecting (yes/no)?

In this case, you need to confirm by typing yes and hitting <Enter> key
- ideally after you’ve verified that the RSA key fingerprint is correct [https://devcenter.heroku.com/articles/git-repository-ssh-fingerprints].

Then, deploy your application executing this command:

$ git push heroku master

Initializing repository, done.
Counting objects: 130, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (107/107), done.
Writing objects: 100% (130/130), 70.88 KiB | 0 bytes/s, done.
Total 130 (delta 17), reused 0 (delta 0)

-----> PHP app detected

-----> Setting up runtime environment...
 - PHP 5.5.12
 - Apache 2.4.9
 - Nginx 1.4.6

-----> Installing PHP extensions:
 - opcache (automatic; bundled, using 'ext-opcache.ini')

-----> Installing dependencies...
 Composer version 64ac32fca9e64eb38e50abfadc6eb6f2d0470039 2014-05-24 20:57:50
 Loading composer repositories with package information
 Installing dependencies from lock file
 - ...

 Generating optimized autoload files
 Creating the "app/config/parameters.yml" file
 Clearing the cache for the dev environment with debug true
 Installing assets using the hard copy option
 Installing assets for Symfony\Bundle\FrameworkBundle into web/bundles/framework
 Installing assets for Acme\DemoBundle into web/bundles/acmedemo
 Installing assets for Sensio\Bundle\DistributionBundle into web/bundles/sensiodistribution

-----> Building runtime environment...

-----> Discovering process types
 Procfile declares types -> web

-----> Compressing... done, 61.5MB

-----> Launching... done, v3
 http://mighty-hamlet-1981.herokuapp.com/ deployed to Heroku

To git@heroku.com:mighty-hamlet-1981.git
 * [new branch] master -> master

And that’s it! If you now open your browser, either by manually pointing
it to the URL heroku create gave you, or by using the Heroku Toolbelt, the
application will respond:

$ heroku open
Opening mighty-hamlet-1981... done

You should be seeing your Symfony application in your browser.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Deployment

Deploying to Platform.sh

This step-by-step cookbook describes how to deploy a Symfony web application to
Platform.sh [https://platform.sh]. You can read more about using Symfony with Platform.sh on the
official Platform.sh documentation [https://docs.platform.sh/toolstacks/symfony/symfony-getting-started].

Deploy an Existing Site

In this guide, it is assumed your codebase is already versioned with Git.

Get a Project on Platform.sh

You need to subscribe to a Platform.sh project [https://marketplace.commerceguys.com/platform/buy-now]. Choose the development plan
and go through the checkout process. Once your project is ready, give it a name
and choose: Import an existing site.

Prepare Your Application

To deploy your Symfony application on Platform.sh, you simply need to add a
.platform.app.yaml at the root of your Git repository which will tell
Platform.sh how to deploy your application (read more about
Platform.sh configuration files [https://docs.platform.sh/reference/configuration-files]).

.platform.app.yaml

This file describes an application. You can have multiple applications
in the same project.

The name of this app. Must be unique within a project.
name: myphpproject

The toolstack used to build the application.
toolstack: "php:symfony"

The relationships of the application with services or other applications.
The left-hand side is the name of the relationship as it will be exposed
to the application in the PLATFORM_RELATIONSHIPS variable. The right-hand
side is in the form `<service name>:<endpoint name>`.
relationships:
 database: "mysql:mysql"

The configuration of app when it is exposed to the web.
web:
 # The public directory of the app, relative to its root.
 document_root: "/web"
 # The front-controller script to send non-static requests to.
 passthru: "/app.php"

The size of the persistent disk of the application (in MB).
disk: 2048

The mounts that will be performed when the package is deployed.
mounts:
 "/app/cache": "shared:files/cache"
 "/app/logs": "shared:files/logs"

The hooks that will be performed when the package is deployed.
hooks:
 build: |
 rm web/app_dev.php
 app/console --env=prod assetic:dump --no-debug
 deploy: |
 app/console --env=prod cache:clear

For best practices, you should also add a .platform folder at the root of
your Git repository which contains the following files:

.platform/routes.yaml
"http://{default}/":
 type: upstream
 upstream: "php:php"

.platform/services.yaml
mysql:
 type: mysql
 disk: 2048

An example of these configurations can be found on GitHub [https://github.com/platformsh/platformsh-examples]. The list of
available services can be found on the Platform.sh documentation.

Configure Database Access

Platform.sh overrides your database specific configuration via importing the
following file:

// app/config/parameters_platform.php
<?php
$relationships = getenv("PLATFORM_RELATIONSHIPS");
 if (!$relationships) {
 return;
}

$relationships = json_decode(base64_decode($relationships), true);

foreach ($relationships['database'] as $endpoint) {
 if (empty($endpoint['query']['is_master'])) {
 continue;
 }

 $container->setParameter('database_driver', 'pdo_' . $endpoint['scheme']);
 $container->setParameter('database_host', $endpoint['host']);
 $container->setParameter('database_port', $endpoint['port']);
 $container->setParameter('database_name', $endpoint['path']);
 $container->setParameter('database_user', $endpoint['username']);
 $container->setParameter('database_password', $endpoint['password']);
 $container->setParameter('database_path', '');
}

Store session into /tmp.
ini_set('session.save_path', '/tmp/sessions');

Make sure this file is listed in your imports:

app/config/config.yml
imports:
 - { resource: parameters_platform.php }

Deploy your Application

Now you need to add a remote to Platform.sh in your Git repository (copy the
command that you see on the Platform.sh web UI):

$ git remote add platform [PROJECT-ID]@git.[CLUSTER].platform.sh:[PROJECT-ID].git

	PROJECT-ID

	Unique identifier of your project. Something like kjh43kbobssae

	CLUSTER

	Server location where your project is deployed. It can be eu or us

Commit the Platform.sh specific files created in the previous section:

$ git add .platform.app.yaml .platform/*
$ git add app/config/config.yml app/config/parameters_platform.php
$ git commit -m "Adding Platform.sh configuration files."

Push your code base to the newly added remote:

$ git push platform master

That’s it! Your application is being deployed on Platform.sh and you’ll soon be
able to access it in your browser.

Every code change that you do from now on will be pushed to Git in order to
redeploy your environment on Platform.sh.

More information about migrating your database and files can be found on the
Platform.sh documentation.

Deploy a new Site

You can start a new Platform.sh project [https://marketplace.commerceguys.com/platform/buy-now]. Choose the development plan and go
through the checkout process.

Once your project is ready, give it a name and choose: Create a new site.
Choose the Symfony stack and a starting point such as Standard.

That’s it! Your Symfony application will be bootstrapped and deployed. You’ll
soon be able to see it in your browser.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Doctrine

	How to Handle File Uploads with Doctrine
	Basic Setup

	Using Lifecycle Callbacks

	Using the id as the Filename

	How to use Doctrine Extensions: Timestampable, Sluggable, Translatable, etc.

	How to Register Event Listeners and Subscribers
	Configuring the Listener/Subscriber

	Creating the Listener Class

	Creating the Subscriber Class

	How to Use Doctrine DBAL
	Registering custom Mapping Types

	Registering custom Mapping Types in the SchemaTool

	How to Generate Entities from an Existing Database

	How to Work with multiple Entity Managers and Connections

	How to Register custom DQL Functions

	How to Define Relationships with Abstract Classes and Interfaces
	Background

	Set up

	Final Thoughts

	How to Provide Model Classes for several Doctrine Implementations

	How to Implement a simple Registration Form
	The simple User Model

	Create a Form for the Model

	Embedding the User Form into a Registration Form

	Handling the Form Submission

	Add new Routes

	Update your Database Schema

	Console Commands

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Doctrine

How to Handle File Uploads with Doctrine

Handling file uploads with Doctrine entities is no different than handling
any other file upload. In other words, you’re free to move the file in your
controller after handling a form submission. For examples of how to do this,
see the file type reference page.

If you choose to, you can also integrate the file upload into your entity
lifecycle (i.e. creation, update and removal). In this case, as your entity
is created, updated, and removed from Doctrine, the file uploading and removal
processing will take place automatically (without needing to do anything in
your controller).

To make this work, you’ll need to take care of a number of details, which
will be covered in this cookbook entry.

Basic Setup

First, create a simple Doctrine entity class to work with:

// src/AppBundle/Entity/Document.php
namespace AppBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Symfony\Component\Validator\Constraints as Assert;

/**
 * @ORM\Entity
 */
class Document
{
 /**
 * @ORM\Id
 * @ORM\Column(type="integer")
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 public $id;

 /**
 * @ORM\Column(type="string", length=255)
 * @Assert\NotBlank
 */
 public $name;

 /**
 * @ORM\Column(type="string", length=255, nullable=true)
 */
 public $path;

 public function getAbsolutePath()
 {
 return null === $this->path
 ? null
 : $this->getUploadRootDir().'/'.$this->path;
 }

 public function getWebPath()
 {
 return null === $this->path
 ? null
 : $this->getUploadDir().'/'.$this->path;
 }

 protected function getUploadRootDir()
 {
 // the absolute directory path where uploaded
 // documents should be saved
 return __DIR__.'/../../../../web/'.$this->getUploadDir();
 }

 protected function getUploadDir()
 {
 // get rid of the __DIR__ so it doesn't screw up
 // when displaying uploaded doc/image in the view.
 return 'uploads/documents';
 }
}

The Document entity has a name and it is associated with a file. The path
property stores the relative path to the file and is persisted to the database.
The getAbsolutePath() is a convenience method that returns the absolute
path to the file while the getWebPath() is a convenience method that
returns the web path, which can be used in a template to link to the uploaded
file.

小技巧

If you have not done so already, you should probably read the
file type documentation first to
understand how the basic upload process works.

注解

If you’re using annotations to specify your validation rules (as shown
in this example), be sure that you’ve enabled validation by annotation
(see validation configuration).

To handle the actual file upload in the form, use a “virtual” file field.
For example, if you’re building your form directly in a controller, it might
look like this:

public function uploadAction()
{
 // ...

 $form = $this->createFormBuilder($document)
 ->add('name')
 ->add('file')
 ->getForm();

 // ...
}

Next, create this property on your Document class and add some validation
rules:

use Symfony\Component\HttpFoundation\File\UploadedFile;

// ...
class Document
{
 /**
 * @Assert\File(maxSize="6000000")
 */
 private $file;

 /**
 * Sets file.
 *
 * @param UploadedFile $file
 */
 public function setFile(UploadedFile $file = null)
 {
 $this->file = $file;
 }

 /**
 * Get file.
 *
 * @return UploadedFile
 */
 public function getFile()
 {
 return $this->file;
 }
}

	YAML# src/AppBundle/Resources/config/validation.yml
AppBundle\Entity\Document:
 properties:
 file:
 - File:
 maxSize: 6000000

	Annotations// src/AppBundle/Entity/Document.php
namespace AppBundle\Entity;

// ...
use Symfony\Component\Validator\Constraints as Assert;

class Document
{
 /**
 * @Assert\File(maxSize="6000000")
 */
 private $file;

 // ...
}

	XML<!-- src/AppBundle/Resources/config/validation.xml -->
<class name="AppBundle\Entity\Document">
 <property name="file">
 <constraint name="File">
 <option name="maxSize">6000000</option>
 </constraint>
 </property>
</class>

	PHP// src/AppBundle/Entity/Document.php
namespace Acme\DemoBundle\Entity;

// ...
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Document
{
 // ...

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('file', new Assert\File(array(
 'maxSize' => 6000000,
)));
 }
}

注解

As you are using the File constraint, Symfony will automatically guess
that the form field is a file upload input. That’s why you did not have
to set it explicitly when creating the form above (->add('file')).

The following controller shows you how to handle the entire process:

// ...
use AppBundle\Entity\Document;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;
use Symfony\Component\HttpFoundation\Request;
// ...

/**
 * @Template()
 */
public function uploadAction(Request $request)
{
 $document = new Document();
 $form = $this->createFormBuilder($document)
 ->add('name')
 ->add('file')
 ->getForm();

 $form->handleRequest($request);

 if ($form->isValid()) {
 $em = $this->getDoctrine()->getManager();

 $em->persist($document);
 $em->flush();

 return $this->redirect($this->generateUrl(...));
 }

 return array('form' => $form->createView());
}

The previous controller will automatically persist the Document entity
with the submitted name, but it will do nothing about the file and the path
property will be blank.

An easy way to handle the file upload is to move it just before the entity is
persisted and then set the path property accordingly. Start by calling
a new upload() method on the Document class, which you’ll create
in a moment to handle the file upload:

if ($form->isValid()) {
 $em = $this->getDoctrine()->getManager();

 $document->upload();

 $em->persist($document);
 $em->flush();

 return $this->redirect(...);
}

The upload() method will take advantage of the UploadedFile [http://api.symfony.com/master/Symfony/Component/HttpFoundation/File/UploadedFile.html]
object, which is what’s returned after a file field is submitted:

public function upload()
{
 // the file property can be empty if the field is not required
 if (null === $this->getFile()) {
 return;
 }

 // use the original file name here but you should
 // sanitize it at least to avoid any security issues

 // move takes the target directory and then the
 // target filename to move to
 $this->getFile()->move(
 $this->getUploadRootDir(),
 $this->getFile()->getClientOriginalName()
);

 // set the path property to the filename where you've saved the file
 $this->path = $this->getFile()->getClientOriginalName();

 // clean up the file property as you won't need it anymore
 $this->file = null;
}

Using Lifecycle Callbacks

警告

Using lifecycle callbacks is a limited technique that has some drawbacks.
If you want to remove the hardcoded __DIR__ reference inside
the Document::getUploadRootDir() method, the best way is to start
using explicit doctrine listeners.
There you will be able to inject kernel parameters such as kernel.root_dir
to be able to build absolute paths.

Even if this implementation works, it suffers from a major flaw: What if there
is a problem when the entity is persisted? The file would have already moved
to its final location even though the entity’s path property didn’t
persist correctly.

To avoid these issues, you should change the implementation so that the database
operation and the moving of the file become atomic: if there is a problem
persisting the entity or if the file cannot be moved, then nothing should
happen.

To do this, you need to move the file right as Doctrine persists the entity
to the database. This can be accomplished by hooking into an entity lifecycle
callback:

/**
 * @ORM\Entity
 * @ORM\HasLifecycleCallbacks
 */
class Document
{
}

Next, refactor the Document class to take advantage of these callbacks:

use Symfony\Component\HttpFoundation\File\UploadedFile;

/**
 * @ORM\Entity
 * @ORM\HasLifecycleCallbacks
 */
class Document
{
 private $temp;

 /**
 * Sets file.
 *
 * @param UploadedFile $file
 */
 public function setFile(UploadedFile $file = null)
 {
 $this->file = $file;
 // check if we have an old image path
 if (isset($this->path)) {
 // store the old name to delete after the update
 $this->temp = $this->path;
 $this->path = null;
 } else {
 $this->path = 'initial';
 }
 }

 /**
 * @ORM\PrePersist()
 * @ORM\PreUpdate()
 */
 public function preUpload()
 {
 if (null !== $this->getFile()) {
 // do whatever you want to generate a unique name
 $filename = sha1(uniqid(mt_rand(), true));
 $this->path = $filename.'.'.$this->getFile()->guessExtension();
 }
 }

 /**
 * @ORM\PostPersist()
 * @ORM\PostUpdate()
 */
 public function upload()
 {
 if (null === $this->getFile()) {
 return;
 }

 // if there is an error when moving the file, an exception will
 // be automatically thrown by move(). This will properly prevent
 // the entity from being persisted to the database on error
 $this->getFile()->move($this->getUploadRootDir(), $this->path);

 // check if we have an old image
 if (isset($this->temp)) {
 // delete the old image
 unlink($this->getUploadRootDir().'/'.$this->temp);
 // clear the temp image path
 $this->temp = null;
 }
 $this->file = null;
 }

 /**
 * @ORM\PostRemove()
 */
 public function removeUpload()
 {
 $file = $this->getAbsolutePath();
 if ($file) {
 unlink($file);
 }
 }
}

警告

If changes to your entity are handled by a Doctrine event listener or event
subscriber, the preUpdate() callback must notify Doctrine about the changes
being done.
For full reference on preUpdate event restrictions, see preUpdate [http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html#preupdate] in the
Doctrine Events documentation.

The class now does everything you need: it generates a unique filename before
persisting, moves the file after persisting, and removes the file if the
entity is ever deleted.

Now that the moving of the file is handled atomically by the entity, the
call to $document->upload() should be removed from the controller:

if ($form->isValid()) {
 $em = $this->getDoctrine()->getManager();

 $em->persist($document);
 $em->flush();

 return $this->redirect(...);
}

注解

The @ORM\PrePersist() and @ORM\PostPersist() event callbacks are
triggered before and after the entity is persisted to the database. On the
other hand, the @ORM\PreUpdate() and @ORM\PostUpdate() event
callbacks are called when the entity is updated.

警告

The PreUpdate and PostUpdate callbacks are only triggered if there
is a change in one of the entity’s fields that are persisted. This means
that, by default, if you modify only the $file property, these events
will not be triggered, as the property itself is not directly persisted
via Doctrine. One solution would be to use an updated field that’s
persisted to Doctrine, and to modify it manually when changing the file.

Using the id as the Filename

If you want to use the id as the name of the file, the implementation is
slightly different as you need to save the extension under the path
property, instead of the actual filename:

use Symfony\Component\HttpFoundation\File\UploadedFile;

/**
 * @ORM\Entity
 * @ORM\HasLifecycleCallbacks
 */
class Document
{
 private $temp;

 /**
 * Sets file.
 *
 * @param UploadedFile $file
 */
 public function setFile(UploadedFile $file = null)
 {
 $this->file = $file;
 // check if we have an old image path
 if (is_file($this->getAbsolutePath())) {
 // store the old name to delete after the update
 $this->temp = $this->getAbsolutePath();
 } else {
 $this->path = 'initial';
 }
 }

 /**
 * @ORM\PrePersist()
 * @ORM\PreUpdate()
 */
 public function preUpload()
 {
 if (null !== $this->getFile()) {
 $this->path = $this->getFile()->guessExtension();
 }
 }

 /**
 * @ORM\PostPersist()
 * @ORM\PostUpdate()
 */
 public function upload()
 {
 if (null === $this->getFile()) {
 return;
 }

 // check if we have an old image
 if (isset($this->temp)) {
 // delete the old image
 unlink($this->temp);
 // clear the temp image path
 $this->temp = null;
 }

 // you must throw an exception here if the file cannot be moved
 // so that the entity is not persisted to the database
 // which the UploadedFile move() method does
 $this->getFile()->move(
 $this->getUploadRootDir(),
 $this->id.'.'.$this->getFile()->guessExtension()
);

 $this->setFile(null);
 }

 /**
 * @ORM\PreRemove()
 */
 public function storeFilenameForRemove()
 {
 $this->temp = $this->getAbsolutePath();
 }

 /**
 * @ORM\PostRemove()
 */
 public function removeUpload()
 {
 if (isset($this->temp)) {
 unlink($this->temp);
 }
 }

 public function getAbsolutePath()
 {
 return null === $this->path
 ? null
 : $this->getUploadRootDir().'/'.$this->id.'.'.$this->path;
 }
}

You’ll notice in this case that you need to do a little bit more work in
order to remove the file. Before it’s removed, you must store the file path
(since it depends on the id). Then, once the object has been fully removed
from the database, you can safely delete the file (in PostRemove).

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Doctrine

How to use Doctrine Extensions: Timestampable, Sluggable, Translatable, etc.

Doctrine2 is very flexible, and the community has already created a series
of useful Doctrine extensions to help you with common entity-related tasks.

One library in particular - the DoctrineExtensions [https://github.com/Atlantic18/DoctrineExtensions] library - provides integration
functionality for Sluggable [https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/sluggable.md], Translatable [https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/translatable.md], Timestampable [https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/timestampable.md], Loggable [https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/loggable.md],
Tree [https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/tree.md] and Sortable [https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/sortable.md] behaviors.

The usage for each of these extensions is explained in that repository.

However, to install/activate each extension you must register and activate an
Event Listener.
To do this, you have two options:

	Use the StofDoctrineExtensionsBundle [https://github.com/stof/StofDoctrineExtensionsBundle], which integrates the above library.

	Implement this services directly by following the documentation for integration
with Symfony: Install Gedmo Doctrine2 extensions in Symfony2 [https://github.com/Atlantic18/DoctrineExtensions/blob/master/doc/symfony2.md]

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Doctrine

How to Register Event Listeners and Subscribers

Doctrine packages a rich event system that fires events when almost anything
happens inside the system. For you, this means that you can create arbitrary
services and tell Doctrine to notify those
objects whenever a certain action (e.g. prePersist) happens within Doctrine.
This could be useful, for example, to create an independent search index
whenever an object in your database is saved.

Doctrine defines two types of objects that can listen to Doctrine events:
listeners and subscribers. Both are very similar, but listeners are a bit
more straightforward. For more, see The Event System [http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html] on Doctrine’s website.

The Doctrine website also explains all existing events that can be listened to.

Configuring the Listener/Subscriber

To register a service to act as an event listener or subscriber you just have
to tag it with the appropriate name. Depending
on your use-case, you can hook a listener into every DBAL connection and ORM
entity manager or just into one specific DBAL connection and all the entity
managers that use this connection.

	YAMLdoctrine:
 dbal:
 default_connection: default
 connections:
 default:
 driver: pdo_sqlite
 memory: true

services:
 my.listener:
 class: Acme\SearchBundle\EventListener\SearchIndexer
 tags:
 - { name: doctrine.event_listener, event: postPersist }
 my.listener2:
 class: Acme\SearchBundle\EventListener\SearchIndexer2
 tags:
 - { name: doctrine.event_listener, event: postPersist, connection: default }
 my.subscriber:
 class: Acme\SearchBundle\EventListener\SearchIndexerSubscriber
 tags:
 - { name: doctrine.event_subscriber, connection: default }

	XML<?xml version="1.0" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:doctrine="http://symfony.com/schema/dic/doctrine">

 <doctrine:config>
 <doctrine:dbal default-connection="default">
 <doctrine:connection driver="pdo_sqlite" memory="true" />
 </doctrine:dbal>
 </doctrine:config>

 <services>
 <service id="my.listener" class="Acme\SearchBundle\EventListener\SearchIndexer">
 <tag name="doctrine.event_listener" event="postPersist" />
 </service>
 <service id="my.listener2" class="Acme\SearchBundle\EventListener\SearchIndexer2">
 <tag name="doctrine.event_listener" event="postPersist" connection="default" />
 </service>
 <service id="my.subscriber" class="Acme\SearchBundle\EventListener\SearchIndexerSubscriber">
 <tag name="doctrine.event_subscriber" connection="default" />
 </service>
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;

$container->loadFromExtension('doctrine', array(
 'dbal' => array(
 'default_connection' => 'default',
 'connections' => array(
 'default' => array(
 'driver' => 'pdo_sqlite',
 'memory' => true,
),
),
),
));

$container
 ->setDefinition(
 'my.listener',
 new Definition('Acme\SearchBundle\EventListener\SearchIndexer')
)
 ->addTag('doctrine.event_listener', array('event' => 'postPersist'))
;
$container
 ->setDefinition(
 'my.listener2',
 new Definition('Acme\SearchBundle\EventListener\SearchIndexer2')
)
 ->addTag('doctrine.event_listener', array('event' => 'postPersist', 'connection' => 'default'))
;
$container
 ->setDefinition(
 'my.subscriber',
 new Definition('Acme\SearchBundle\EventListener\SearchIndexerSubscriber')
)
 ->addTag('doctrine.event_subscriber', array('connection' => 'default'))
;

Creating the Listener Class

In the previous example, a service my.listener was configured as a Doctrine
listener on the event postPersist. The class behind that service must have
a postPersist method, which will be called when the event is dispatched:

// src/Acme/SearchBundle/EventListener/SearchIndexer.php
namespace Acme\SearchBundle\EventListener;

use Doctrine\ORM\Event\LifecycleEventArgs;
use Acme\StoreBundle\Entity\Product;

class SearchIndexer
{
 public function postPersist(LifecycleEventArgs $args)
 {
 $entity = $args->getEntity();
 $entityManager = $args->getEntityManager();

 // perhaps you only want to act on some "Product" entity
 if ($entity instanceof Product) {
 // ... do something with the Product
 }
 }
}

In each event, you have access to a LifecycleEventArgs object, which
gives you access to both the entity object of the event and the entity manager
itself.

One important thing to notice is that a listener will be listening for all
entities in your application. So, if you’re interested in only handling a
specific type of entity (e.g. a Product entity but not a BlogPost
entity), you should check for the entity’s class type in your method
(as shown above).

Creating the Subscriber Class

A Doctrine event subscriber must implement the Doctrine\Common\EventSubscriber
interface and have an event method for each event it subscribes to:

// src/Acme/SearchBundle/EventListener/SearchIndexerSubscriber.php
namespace Acme\SearchBundle\EventListener;

use Doctrine\Common\EventSubscriber;
use Doctrine\ORM\Event\LifecycleEventArgs;
// for Doctrine 2.4: Doctrine\Common\Persistence\Event\LifecycleEventArgs;
use Acme\StoreBundle\Entity\Product;

class SearchIndexerSubscriber implements EventSubscriber
{
 public function getSubscribedEvents()
 {
 return array(
 'postPersist',
 'postUpdate',
);
 }

 public function postUpdate(LifecycleEventArgs $args)
 {
 $this->index($args);
 }

 public function postPersist(LifecycleEventArgs $args)
 {
 $this->index($args);
 }

 public function index(LifecycleEventArgs $args)
 {
 $entity = $args->getEntity();
 $entityManager = $args->getEntityManager();

 // perhaps you only want to act on some "Product" entity
 if ($entity instanceof Product) {
 // ... do something with the Product
 }
 }
}

小技巧

Doctrine event subscribers can not return a flexible array of methods to
call for the events like the Symfony event subscriber
can. Doctrine event subscribers must return a simple array of the event
names they subscribe to. Doctrine will then expect methods on the subscriber
with the same name as each subscribed event, just as when using an event listener.

For a full reference, see chapter The Event System [http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html] in the Doctrine documentation.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Doctrine

How to Use Doctrine DBAL

注解

This article is about the Doctrine DBAL. Typically, you’ll work with
the higher level Doctrine ORM layer, which simply uses the DBAL behind
the scenes to actually communicate with the database. To read more about
the Doctrine ORM, see “Databases and Doctrine”.

The Doctrine [http://www.doctrine-project.org] Database Abstraction Layer (DBAL) is an abstraction layer that
sits on top of PDO [http://www.php.net/pdo] and offers an intuitive and flexible API for communicating
with the most popular relational databases. In other words, the DBAL library
makes it easy to execute queries and perform other database actions.

小技巧

Read the official Doctrine DBAL Documentation [http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/index.html] to learn all the details
and capabilities of Doctrine’s DBAL library.

To get started, configure the database connection parameters:

	YAML# app/config/config.yml
doctrine:
 dbal:
 driver: pdo_mysql
 dbname: Symfony
 user: root
 password: null
 charset: UTF8

	XML<!-- app/config/config.xml -->
<doctrine:config>
 <doctrine:dbal
 name="default"
 dbname="Symfony"
 user="root"
 password="null"
 driver="pdo_mysql"
 />
</doctrine:config>

	PHP// app/config/config.php
$container->loadFromExtension('doctrine', array(
 'dbal' => array(
 'driver' => 'pdo_mysql',
 'dbname' => 'Symfony',
 'user' => 'root',
 'password' => null,
),
));

For full DBAL configuration options, or to learn how to configure multiple
connections, see Doctrine DBAL Configuration.

You can then access the Doctrine DBAL connection by accessing the
database_connection service:

class UserController extends Controller
{
 public function indexAction()
 {
 $conn = $this->get('database_connection');
 $users = $conn->fetchAll('SELECT * FROM users');

 // ...
 }
}

Registering custom Mapping Types

You can register custom mapping types through Symfony’s configuration. They
will be added to all configured connections. For more information on custom
mapping types, read Doctrine’s Custom Mapping Types [http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/types.html#custom-mapping-types] section of their documentation.

	YAML# app/config/config.yml
doctrine:
 dbal:
 types:
 custom_first: AppBundle\Type\CustomFirst
 custom_second: AppBundle\Type\CustomSecond

	XML<!-- app/config/config.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:doctrine="http://symfony.com/schema/dic/doctrine"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/doctrine http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd">

 <doctrine:config>
 <doctrine:dbal>
 <doctrine:type name="custom_first" class="AppBundle\Type\CustomFirst" />
 <doctrine:type name="custom_second" class="AppBundle\Type\CustomSecond" />
 </doctrine:dbal>
 </doctrine:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('doctrine', array(
 'dbal' => array(
 'types' => array(
 'custom_first' => 'AppBundle\Type\CustomFirst',
 'custom_second' => 'AppBundle\Type\CustomSecond',
),
),
));

Registering custom Mapping Types in the SchemaTool

The SchemaTool is used to inspect the database to compare the schema. To
achieve this task, it needs to know which mapping type needs to be used
for each database types. Registering new ones can be done through the configuration.

Now, map the ENUM type (not supported by DBAL by default) to the string
mapping type:

	YAML# app/config/config.yml
doctrine:
 dbal:
 mapping_types:
 enum: string

	XML<!-- app/config/config.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:doctrine="http://symfony.com/schema/dic/doctrine"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/doctrine http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd">

 <doctrine:config>
 <doctrine:dbal>
 <doctrine:mapping-type name="enum">string</doctrine:mapping-type>
 </doctrine:dbal>
 </doctrine:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('doctrine', array(
 'dbal' => array(
 'mapping_types' => array(
 'enum' => 'string',
),
),
));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Doctrine

How to Generate Entities from an Existing Database

When starting work on a brand new project that uses a database, two different
situations comes naturally. In most cases, the database model is designed
and built from scratch. Sometimes, however, you’ll start with an existing and
probably unchangeable database model. Fortunately, Doctrine comes with a bunch
of tools to help generate model classes from your existing database.

注解

As the Doctrine tools documentation [http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/tools.html#reverse-engineering] says, reverse engineering is a
one-time process to get started on a project. Doctrine is able to convert
approximately 70-80% of the necessary mapping information based on fields,
indexes and foreign key constraints. Doctrine can’t discover inverse
associations, inheritance types, entities with foreign keys as primary keys
or semantical operations on associations such as cascade or lifecycle
events. Some additional work on the generated entities will be necessary
afterwards to design each to fit your domain model specificities.

This tutorial assumes you’re using a simple blog application with the following
two tables: blog_post and blog_comment. A comment record is linked
to a post record thanks to a foreign key constraint.

CREATE TABLE `blog_post` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT,
 `title` varchar(100) COLLATE utf8_unicode_ci NOT NULL,
 `content` longtext COLLATE utf8_unicode_ci NOT NULL,
 `created_at` datetime NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

CREATE TABLE `blog_comment` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT,
 `post_id` bigint(20) NOT NULL,
 `author` varchar(20) COLLATE utf8_unicode_ci NOT NULL,
 `content` longtext COLLATE utf8_unicode_ci NOT NULL,
 `created_at` datetime NOT NULL,
 PRIMARY KEY (`id`),
 KEY `blog_comment_post_id_idx` (`post_id`),
 CONSTRAINT `blog_post_id` FOREIGN KEY (`post_id`) REFERENCES `blog_post` (`id`) ON DELETE CASCADE
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

Before diving into the recipe, be sure your database connection parameters are
correctly setup in the app/config/parameters.yml file (or wherever your
database configuration is kept) and that you have initialized a bundle that
will host your future entity class. In this tutorial it’s assumed that an
AcmeBlogBundle exists and is located under the src/Acme/BlogBundle folder.

The first step towards building entity classes from an existing database
is to ask Doctrine to introspect the database and generate the corresponding
metadata files. Metadata files describe the entity class to generate based on
table fields.

$ php app/console doctrine:mapping:import --force AcmeBlogBundle xml

This command line tool asks Doctrine to introspect the database and generate
the XML metadata files under the src/Acme/BlogBundle/Resources/config/doctrine
folder of your bundle. This generates two files: BlogPost.orm.xml and
BlogComment.orm.xml.

小技巧

It’s also possible to generate the metadata files in YAML format by changing
the last argument to yml.

The generated BlogPost.orm.xml metadata file looks as follows:

<?xml version="1.0" encoding="utf-8"?>
<doctrine-mapping xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping http://doctrine-project.org/schemas/orm/doctrine-mapping.xsd">
 <entity name="Acme\BlogBundle\Entity\BlogPost" table="blog_post">
 <id name="id" type="bigint" column="id">
 <generator strategy="IDENTITY"/>
 </id>
 <field name="title" type="string" column="title" length="100" nullable="false"/>
 <field name="content" type="text" column="content" nullable="false"/>
 <field name="createdAt" type="datetime" column="created_at" nullable="false"/>
 </entity>
</doctrine-mapping>

Once the metadata files are generated, you can ask Doctrine to build related
entity classes by executing the following two commands.

$ php app/console doctrine:mapping:convert annotation ./src
$ php app/console doctrine:generate:entities AcmeBlogBundle

The first command generates entity classes with annotation mappings. But
if you want to use YAML or XML mapping instead of annotations, you should
execute the second command only.

小技巧

If you want to use annotations, you can safely delete the XML (or YAML) files
after running these two commands.

For example, the newly created BlogComment entity class looks as follow:

// src/Acme/BlogBundle/Entity/BlogComment.php
namespace Acme\BlogBundle\Entity;

use Doctrine\ORM\Mapping as ORM;

/**
 * Acme\BlogBundle\Entity\BlogComment
 *
 * @ORM\Table(name="blog_comment")
 * @ORM\Entity
 */
class BlogComment
{
 /**
 * @var integer $id
 *
 * @ORM\Column(name="id", type="bigint")
 * @ORM\Id
 * @ORM\GeneratedValue(strategy="IDENTITY")
 */
 private $id;

 /**
 * @var string $author
 *
 * @ORM\Column(name="author", type="string", length=100, nullable=false)
 */
 private $author;

 /**
 * @var text $content
 *
 * @ORM\Column(name="content", type="text", nullable=false)
 */
 private $content;

 /**
 * @var datetime $createdAt
 *
 * @ORM\Column(name="created_at", type="datetime", nullable=false)
 */
 private $createdAt;

 /**
 * @var BlogPost
 *
 * @ORM\ManyToOne(targetEntity="BlogPost")
 * @ORM\JoinColumn(name="post_id", referencedColumnName="id")
 */
 private $post;
}

As you can see, Doctrine converts all table fields to pure private and annotated
class properties. The most impressive thing is that it also discovered the
relationship with the BlogPost entity class based on the foreign key constraint.
Consequently, you can find a private $post property mapped with a BlogPost
entity in the BlogComment entity class.

注解

If you want to have a one-to-many relationship, you will need to add
it manually into the entity or to the generated XML or YAML files.
Add a section on the specific entities for one-to-many defining the
inversedBy and the mappedBy pieces.

The generated entities are now ready to be used. Have fun!

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Doctrine

How to Work with multiple Entity Managers and Connections

You can use multiple Doctrine entity managers or connections in a Symfony
application. This is necessary if you are using different databases or even
vendors with entirely different sets of entities. In other words, one entity
manager that connects to one database will handle some entities while another
entity manager that connects to another database might handle the rest.

注解

Using multiple entity managers is pretty easy, but more advanced and not
usually required. Be sure you actually need multiple entity managers before
adding in this layer of complexity.

The following configuration code shows how you can configure two entity managers:

	YAMLdoctrine:
 dbal:
 default_connection: default
 connections:
 default:
 driver: "%database_driver%"
 host: "%database_host%"
 port: "%database_port%"
 dbname: "%database_name%"
 user: "%database_user%"
 password: "%database_password%"
 charset: UTF8
 customer:
 driver: "%database_driver2%"
 host: "%database_host2%"
 port: "%database_port2%"
 dbname: "%database_name2%"
 user: "%database_user2%"
 password: "%database_password2%"
 charset: UTF8

 orm:
 default_entity_manager: default
 entity_managers:
 default:
 connection: default
 mappings:
 AppBundle: ~
 AcmeStoreBundle: ~
 customer:
 connection: customer
 mappings:
 AcmeCustomerBundle: ~

	XML<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/doctrine"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/doctrine http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd">

 <config>
 <dbal default-connection="default">
 <connection name="default"
 driver="%database_driver%"
 host="%database_host%"
 port="%database_port%"
 dbname="%database_name%"
 user="%database_user%"
 password="%database_password%"
 charset="UTF8"
 />

 <connection name="customer"
 driver="%database_driver2%"
 host="%database_host2%"
 port="%database_port2%"
 dbname="%database_name2%"
 user="%database_user2%"
 password="%database_password2%"
 charset="UTF8"
 />
 </dbal>

 <orm default-entity-manager="default">
 <entity-manager name="default" connection="default">
 <mapping name="AppBundle" />
 <mapping name="AcmeStoreBundle" />
 </entity-manager>

 <entity-manager name="customer" connection="customer">
 <mapping name="AcmeCustomerBundle" />
 </entity-manager>
 </orm>
 </config>
</srv:container>

	PHP$container->loadFromExtension('doctrine', array(
 'dbal' => array(
 'default_connection' => 'default',
 'connections' => array(
 'default' => array(
 'driver' => '%database_driver%',
 'host' => '%database_host%',
 'port' => '%database_port%',
 'dbname' => '%database_name%',
 'user' => '%database_user%',
 'password' => '%database_password%',
 'charset' => 'UTF8',
),
 'customer' => array(
 'driver' => '%database_driver2%',
 'host' => '%database_host2%',
 'port' => '%database_port2%',
 'dbname' => '%database_name2%',
 'user' => '%database_user2%',
 'password' => '%database_password2%',
 'charset' => 'UTF8',
),
),
),

 'orm' => array(
 'default_entity_manager' => 'default',
 'entity_managers' => array(
 'default' => array(
 'connection' => 'default',
 'mappings' => array(
 'AppBundle' => null,
 'AcmeStoreBundle' => null,
),
),
 'customer' => array(
 'connection' => 'customer',
 'mappings' => array(
 'AcmeCustomerBundle' => null,
),
),
),
),
));

In this case, you’ve defined two entity managers and called them default
and customer. The default entity manager manages entities in the
AppBundle and AcmeStoreBundle, while the customer entity manager manages
entities in the AcmeCustomerBundle. You’ve also defined two connections, one
for each entity manager.

注解

When working with multiple connections and entity managers, you should be
explicit about which configuration you want. If you do omit the name of
the connection or entity manager, the default (i.e. default) is used.

When working with multiple connections to create your databases:

Play only with "default" connection
$ php app/console doctrine:database:create

Play only with "customer" connection
$ php app/console doctrine:database:create --connection=customer

When working with multiple entity managers to update your schema:

Play only with "default" mappings
$ php app/console doctrine:schema:update --force

Play only with "customer" mappings
$ php app/console doctrine:schema:update --force --em=customer

If you do omit the entity manager’s name when asking for it,
the default entity manager (i.e. default) is returned:

class UserController extends Controller
{
 public function indexAction()
 {
 // All three return the "default" entity manager
 $em = $this->get('doctrine')->getManager();
 $em = $this->get('doctrine')->getManager('default');
 $em = $this->get('doctrine.orm.default_entity_manager');

 // Both of these return the "customer" entity manager
 $customerEm = $this->get('doctrine')->getManager('customer');
 $customerEm = $this->get('doctrine.orm.customer_entity_manager');
 }
}

You can now use Doctrine just as you did before - using the default entity
manager to persist and fetch entities that it manages and the customer
entity manager to persist and fetch its entities.

The same applies to repository calls:

class UserController extends Controller
{
 public function indexAction()
 {
 // Retrieves a repository managed by the "default" em
 $products = $this->get('doctrine')
 ->getRepository('AcmeStoreBundle:Product')
 ->findAll()
 ;

 // Explicit way to deal with the "default" em
 $products = $this->get('doctrine')
 ->getRepository('AcmeStoreBundle:Product', 'default')
 ->findAll()
 ;

 // Retrieves a repository managed by the "customer" em
 $customers = $this->get('doctrine')
 ->getRepository('AcmeCustomerBundle:Customer', 'customer')
 ->findAll()
 ;
 }
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Doctrine

How to Register custom DQL Functions

Doctrine allows you to specify custom DQL functions. For more information
on this topic, read Doctrine’s cookbook article “DQL User Defined Functions [http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/cookbook/dql-user-defined-functions.html]”.

In Symfony, you can register your custom DQL functions as follows:

	YAML# app/config/config.yml
doctrine:
 orm:
 # ...
 dql:
 string_functions:
 test_string: AppBundle\DQL\StringFunction
 second_string: AppBundle\DQL\SecondStringFunction
 numeric_functions:
 test_numeric: AppBundle\DQL\NumericFunction
 datetime_functions:
 test_datetime: AppBundle\DQL\DatetimeFunction

	XML<!-- app/config/config.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:doctrine="http://symfony.com/schema/dic/doctrine"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/doctrine http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd">

 <doctrine:config>
 <doctrine:orm>
 <!-- ... -->
 <doctrine:dql>
 <doctrine:string-function name="test_string">AppBundle\DQL\StringFunction</doctrine:string-function>
 <doctrine:string-function name="second_string">AppBundle\DQL\SecondStringFunction</doctrine:string-function>
 <doctrine:numeric-function name="test_numeric">AppBundle\DQL\NumericFunction</doctrine:numeric-function>
 <doctrine:datetime-function name="test_datetime">AppBundle\DQL\DatetimeFunction</doctrine:datetime-function>
 </doctrine:dql>
 </doctrine:orm>
 </doctrine:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('doctrine', array(
 'orm' => array(
 // ...
 'dql' => array(
 'string_functions' => array(
 'test_string' => 'AppBundle\DQL\StringFunction',
 'second_string' => 'AppBundle\DQL\SecondStringFunction',
),
 'numeric_functions' => array(
 'test_numeric' => 'AppBundle\DQL\NumericFunction',
),
 'datetime_functions' => array(
 'test_datetime' => 'AppBundle\DQL\DatetimeFunction',
),
),
),
));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Doctrine

How to Define Relationships with Abstract Classes and Interfaces

One of the goals of bundles is to create discreet bundles of functionality
that do not have many (if any) dependencies, allowing you to use that
functionality in other applications without including unnecessary items.

Doctrine 2.2 includes a new utility called the ResolveTargetEntityListener,
that functions by intercepting certain calls inside Doctrine and rewriting
targetEntity parameters in your metadata mapping at runtime. It means that
in your bundle you are able to use an interface or abstract class in your
mappings and expect correct mapping to a concrete entity at runtime.

This functionality allows you to define relationships between different entities
without making them hard dependencies.

Background

Suppose you have an InvoiceBundle which provides invoicing functionality
and a CustomerBundle that contains customer management tools. You want
to keep these separated, because they can be used in other systems without
each other, but for your application you want to use them together.

In this case, you have an Invoice entity with a relationship to a
non-existent object, an InvoiceSubjectInterface. The goal is to get
the ResolveTargetEntityListener to replace any mention of the interface
with a real object that implements that interface.

Set up

This article uses the following two basic entities (which are incomplete for
brevity) to explain how to set up and use the ResolveTargetEntityListener.

A Customer entity:

// src/Acme/AppBundle/Entity/Customer.php

namespace Acme\AppBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Acme\CustomerBundle\Entity\Customer as BaseCustomer;
use Acme\InvoiceBundle\Model\InvoiceSubjectInterface;

/**
 * @ORM\Entity
 * @ORM\Table(name="customer")
 */
class Customer extends BaseCustomer implements InvoiceSubjectInterface
{
 // In this example, any methods defined in the InvoiceSubjectInterface
 // are already implemented in the BaseCustomer
}

An Invoice entity:

// src/Acme/InvoiceBundle/Entity/Invoice.php

namespace Acme\InvoiceBundle\Entity;

use Doctrine\ORM\Mapping AS ORM;
use Acme\InvoiceBundle\Model\InvoiceSubjectInterface;

/**
 * Represents an Invoice.
 *
 * @ORM\Entity
 * @ORM\Table(name="invoice")
 */
class Invoice
{
 /**
 * @ORM\ManyToOne(targetEntity="Acme\InvoiceBundle\Model\InvoiceSubjectInterface")
 * @var InvoiceSubjectInterface
 */
 protected $subject;
}

An InvoiceSubjectInterface:

// src/Acme/InvoiceBundle/Model/InvoiceSubjectInterface.php

namespace Acme\InvoiceBundle\Model;

/**
 * An interface that the invoice Subject object should implement.
 * In most circumstances, only a single object should implement
 * this interface as the ResolveTargetEntityListener can only
 * change the target to a single object.
 */
interface InvoiceSubjectInterface
{
 // List any additional methods that your InvoiceBundle
 // will need to access on the subject so that you can
 // be sure that you have access to those methods.

 /**
 * @return string
 */
 public function getName();
}

Next, you need to configure the listener, which tells the DoctrineBundle
about the replacement:

	YAML# app/config/config.yml
doctrine:
 # ...
 orm:
 # ...
 resolve_target_entities:
 Acme\InvoiceBundle\Model\InvoiceSubjectInterface: Acme\AppBundle\Entity\Customer

	XML<!-- app/config/config.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:doctrine="http://symfony.com/schema/dic/doctrine"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/doctrine http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd">

 <doctrine:config>
 <doctrine:orm>
 <!-- ... -->
 <doctrine:resolve-target-entity interface="Acme\InvoiceBundle\Model\InvoiceSubjectInterface">Acme\AppBundle\Entity\Customer</doctrine:resolve-target-entity>
 </doctrine:orm>
 </doctrine:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('doctrine', array(
 'orm' => array(
 // ...
 'resolve_target_entities' => array(
 'Acme\InvoiceBundle\Model\InvoiceSubjectInterface' => 'Acme\AppBundle\Entity\Customer',
),
),
));

Final Thoughts

With the ResolveTargetEntityListener, you are able to decouple your
bundles, keeping them usable by themselves, but still being able to
define relationships between different objects. By using this method,
your bundles will end up being easier to maintain independently.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Doctrine

How to Provide Model Classes for several Doctrine Implementations

When building a bundle that could be used not only with Doctrine ORM but
also the CouchDB ODM, MongoDB ODM or PHPCR ODM, you should still only
write one model class. The Doctrine bundles provide a compiler pass to
register the mappings for your model classes.

注解

For non-reusable bundles, the easiest option is to put your model classes
in the default locations: Entity for the Doctrine ORM or Document
for one of the ODMs. For reusable bundles, rather than duplicate model classes
just to get the auto mapping, use the compiler pass.

2.3 新版功能: The base mapping compiler pass was introduced in Symfony 2.3. The Doctrine bundles
support it from DoctrineBundle >= 1.3.0, MongoDBBundle >= 3.0.0,
PHPCRBundle >= 1.0.0-alpha2 and the (unversioned) CouchDBBundle supports the
compiler pass since the CouchDB Mapping Compiler Pass pull request [https://github.com/doctrine/DoctrineCouchDBBundle/pull/27]
was merged.

If you want your bundle to support older versions of Symfony and
Doctrine, you can provide a copy of the compiler pass in your bundle.
See for example the FOSUserBundle mapping configuration [https://github.com/FriendsOfSymfony/FOSUserBundle/blob/master/FOSUserBundle.php]
addRegisterMappingsPass.

In your bundle class, write the following code to register the compiler pass.
This one is written for the FOSUserBundle, so parts of it will need to
be adapted for your case:

use Doctrine\Bundle\DoctrineBundle\DependencyInjection\Compiler\DoctrineOrmMappingsPass;
use Doctrine\Bundle\MongoDBBundle\DependencyInjection\Compiler\DoctrineMongoDBMappingsPass;
use Doctrine\Bundle\CouchDBBundle\DependencyInjection\Compiler\DoctrineCouchDBMappingsPass;
use Doctrine\Bundle\PHPCRBundle\DependencyInjection\Compiler\DoctrinePhpcrMappingsPass;

class FOSUserBundle extends Bundle
{
 public function build(ContainerBuilder $container)
 {
 parent::build($container);
 // ...

 $modelDir = realpath(__DIR__.'/Resources/config/doctrine/model');
 $mappings = array(
 $modelDir => 'FOS\UserBundle\Model',
);

 $ormCompilerClass = 'Doctrine\Bundle\DoctrineBundle\DependencyInjection\Compiler\DoctrineOrmMappingsPass';
 if (class_exists($ormCompilerClass)) {
 $container->addCompilerPass(
 DoctrineOrmMappingsPass::createXmlMappingDriver(
 $mappings,
 array('fos_user.model_manager_name'),
 'fos_user.backend_type_orm'
));
 }

 $mongoCompilerClass = 'Doctrine\Bundle\MongoDBBundle\DependencyInjection\Compiler\DoctrineMongoDBMappingsPass';
 if (class_exists($mongoCompilerClass)) {
 $container->addCompilerPass(
 DoctrineMongoDBMappingsPass::createXmlMappingDriver(
 $mappings,
 array('fos_user.model_manager_name'),
 'fos_user.backend_type_mongodb'
));
 }

 $couchCompilerClass = 'Doctrine\Bundle\CouchDBBundle\DependencyInjection\Compiler\DoctrineCouchDBMappingsPass';
 if (class_exists($couchCompilerClass)) {
 $container->addCompilerPass(
 DoctrineCouchDBMappingsPass::createXmlMappingDriver(
 $mappings,
 array('fos_user.model_manager_name'),
 'fos_user.backend_type_couchdb'
));
 }

 $phpcrCompilerClass = 'Doctrine\Bundle\PHPCRBundle\DependencyInjection\Compiler\DoctrinePhpcrMappingsPass';
 if (class_exists($phpcrCompilerClass)) {
 $container->addCompilerPass(
 DoctrinePhpcrMappingsPass::createXmlMappingDriver(
 $mappings,
 array('fos_user.model_manager_name'),
 'fos_user.backend_type_phpcr'
));
 }
 }
}

Note the class_exists [http://php.net/manual/en/function.class-exists.php] check. This is crucial, as you do not want your
bundle to have a hard dependency on all Doctrine bundles but let the user
decide which to use.

The compiler pass provides factory methods for all drivers provided by Doctrine:
Annotations, XML, Yaml, PHP and StaticPHP. The arguments are:

	a map/hash of absolute directory path to namespace;

	an array of container parameters that your bundle uses to specify the name of
the Doctrine manager that it is using. In the above example, the FOSUserBundle
stores the manager name that’s being used under the fos_user.model_manager_name
parameter. The compiler pass will append the parameter Doctrine is using
to specify the name of the default manager. The first parameter found is
used and the mappings are registered with that manager;

	an optional container parameter name that will be used by the compiler
pass to determine if this Doctrine type is used at all. This is relevant if
your user has more than one type of Doctrine bundle installed, but your
bundle is only used with one type of Doctrine.

注解

The factory method is using the SymfonyFileLocator of Doctrine, meaning
it will only see XML and YML mapping files if they do not contain the
full namespace as the filename. This is by design: the SymfonyFileLocator
simplifies things by assuming the files are just the “short” version
of the class as their filename (e.g. BlogPost.orm.xml)

If you also need to map a base class, you can register a compiler pass
with the DefaultFileLocator like this. This code is simply taken from the
DoctrineOrmMappingsPass and adapted to use the DefaultFileLocator
instead of the SymfonyFileLocator:

private function buildMappingCompilerPass()
{
 $arguments = array(array(realpath(__DIR__ . '/Resources/config/doctrine-base')), '.orm.xml');
 $locator = new Definition('Doctrine\Common\Persistence\Mapping\Driver\DefaultFileLocator', $arguments);
 $driver = new Definition('Doctrine\ORM\Mapping\Driver\XmlDriver', array($locator));

 return new DoctrineOrmMappingsPass(
 $driver,
 array('Full\Namespace'),
 array('your_bundle.manager_name'),
 'your_bundle.orm_enabled'
);
}

Now place your mapping file into /Resources/config/doctrine-base with the
fully qualified class name, separated by . instead of \, for example
Other.Namespace.Model.Name.orm.xml. You may not mix the two as otherwise
the SymfonyFileLocator will get confused.

Adjust accordingly for the other Doctrine implementations.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Doctrine

How to Implement a simple Registration Form

Some forms have extra fields whose values don’t need to be stored in the
database. For example, you may want to create a registration form with some
extra fields (like a “terms accepted” checkbox field) and embed the form
that actually stores the account information.

The simple User Model

You have a simple User entity mapped to the database:

// src/Acme/AccountBundle/Entity/User.php
namespace Acme\AccountBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Symfony\Component\Validator\Constraints as Assert;
use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;

/**
 * @ORM\Entity
 * @UniqueEntity(fields="email", message="Email already taken")
 */
class User
{
 /**
 * @ORM\Id
 * @ORM\Column(type="integer")
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 protected $id;

 /**
 * @ORM\Column(type="string", length=255)
 * @Assert\NotBlank()
 * @Assert\Email()
 */
 protected $email;

 /**
 * @ORM\Column(type="string", length=255)
 * @Assert\NotBlank()
 * @Assert\Length(max = 4096)
 */
 protected $plainPassword;

 public function getId()
 {
 return $this->id;
 }

 public function getEmail()
 {
 return $this->email;
 }

 public function setEmail($email)
 {
 $this->email = $email;
 }

 public function getPlainPassword()
 {
 return $this->plainPassword;
 }

 public function setPlainPassword($password)
 {
 $this->plainPassword = $password;
 }
}

This User entity contains three fields and two of them (email and
plainPassword) should display on the form. The email property must be unique
in the database, this is enforced by adding this validation at the top of
the class.

注解

If you want to integrate this User within the security system, you need
to implement the UserInterface of the
Security component.

Why the 4096 Password Limit?

Notice that the plainPassword field has a max length of 4096 characters.
For security purposes (CVE-2013-5750 [http://symfony.com/blog/cve-2013-5750-security-issue-in-fosuserbundle-login-form]), Symfony limits the plain password
length to 4096 characters when encoding it. Adding this constraint makes
sure that your form will give a validation error if anyone tries a super-long
password.

You’ll need to add this constraint anywhere in your application where
your user submits a plaintext password (e.g. change password form). The
only place where you don’t need to worry about this is your login form,
since Symfony’s Security component handles this for you.

Create a Form for the Model

Next, create the form for the User model:

// src/Acme/AccountBundle/Form/Type/UserType.php
namespace Acme\AccountBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class UserType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder->add('email', 'email');
 $builder->add('plainPassword', 'repeated', array(
 'first_name' => 'password',
 'second_name' => 'confirm',
 'type' => 'password',
));
 }

 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $resolver->setDefaults(array(
 'data_class' => 'Acme\AccountBundle\Entity\User'
));
 }

 public function getName()
 {
 return 'user';
 }
}

There are just two fields: email and plainPassword (repeated to confirm
the entered password). The data_class option tells the form the name of the
underlying data class (i.e. your User entity).

小技巧

To explore more things about the Form component, read Forms.

Embedding the User Form into a Registration Form

The form that you’ll use for the registration page is not the same as the
form used to simply modify the User (i.e. UserType). The registration
form will contain further fields like “accept the terms”, whose value won’t
be stored in the database.

Start by creating a simple class which represents the “registration”:

// src/Acme/AccountBundle/Form/Model/Registration.php
namespace Acme\AccountBundle\Form\Model;

use Symfony\Component\Validator\Constraints as Assert;

use Acme\AccountBundle\Entity\User;

class Registration
{
 /**
 * @Assert\Type(type="Acme\AccountBundle\Entity\User")
 * @Assert\Valid()
 */
 protected $user;

 /**
 * @Assert\NotBlank()
 * @Assert\True()
 */
 protected $termsAccepted;

 public function setUser(User $user)
 {
 $this->user = $user;
 }

 public function getUser()
 {
 return $this->user;
 }

 public function getTermsAccepted()
 {
 return $this->termsAccepted;
 }

 public function setTermsAccepted($termsAccepted)
 {
 $this->termsAccepted = (Boolean) $termsAccepted;
 }
}

Next, create the form for this Registration model:

// src/Acme/AccountBundle/Form/Type/RegistrationType.php
namespace Acme\AccountBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;

class RegistrationType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder->add('user', new UserType());
 $builder->add(
 'terms',
 'checkbox',
 array('property_path' => 'termsAccepted')
);
 $builder->add('Register', 'submit');
 }

 public function getName()
 {
 return 'registration';
 }
}

You don’t need to use a special method for embedding the UserType form.
A form is a field, too - so you can add this like any other field, with the
expectation that the Registration.user property will hold an instance
of the User class.

Handling the Form Submission

Next, you need a controller to handle the form. Start by creating a simple
controller for displaying the registration form:

// src/Acme/AccountBundle/Controller/AccountController.php
namespace Acme\AccountBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

use Acme\AccountBundle\Form\Type\RegistrationType;
use Acme\AccountBundle\Form\Model\Registration;

class AccountController extends Controller
{
 public function registerAction()
 {
 $registration = new Registration();
 $form = $this->createForm(new RegistrationType(), $registration, array(
 'action' => $this->generateUrl('account_create'),
));

 return $this->render(
 'AcmeAccountBundle:Account:register.html.twig',
 array('form' => $form->createView())
);
 }
}

And its template:

{# src/Acme/AccountBundle/Resources/views/Account/register.html.twig #}
{{ form(form) }}

Next, create the controller which handles the form submission. This performs
the validation and saves the data into the database:

use Symfony\Component\HttpFoundation\Request;
// ...

public function createAction(Request $request)
{
 $em = $this->getDoctrine()->getManager();

 $form = $this->createForm(new RegistrationType(), new Registration());

 $form->handleRequest($request);

 if ($form->isValid()) {
 $registration = $form->getData();

 $em->persist($registration->getUser());
 $em->flush();

 return $this->redirect(...);
 }

 return $this->render(
 'AcmeAccountBundle:Account:register.html.twig',
 array('form' => $form->createView())
);
}

Add new Routes

Next, update your routes. If you’re placing your routes inside your bundle
(as shown here), don’t forget to make sure that the routing file is being
imported.

	YAML# src/Acme/AccountBundle/Resources/config/routing.yml
account_register:
 path: /register
 defaults: { _controller: AcmeAccountBundle:Account:register }

account_create:
 path: /register/create
 defaults: { _controller: AcmeAccountBundle:Account:create }

	XML<!-- src/Acme/AccountBundle/Resources/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="account_register" path="/register">
 <default key="_controller">AcmeAccountBundle:Account:register</default>
 </route>

 <route id="account_create" path="/register/create">
 <default key="_controller">AcmeAccountBundle:Account:create</default>
 </route>
</routes>

	PHP// src/Acme/AccountBundle/Resources/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('account_register', new Route('/register', array(
 '_controller' => 'AcmeAccountBundle:Account:register',
)));
$collection->add('account_create', new Route('/register/create', array(
 '_controller' => 'AcmeAccountBundle:Account:create',
)));

return $collection;

Update your Database Schema

Of course, since you’ve added a User entity during this tutorial, make
sure that your database schema has been updated properly:

$ php app/console doctrine:schema:update --force

That’s it! Your form now validates, and allows you to save the User
object to the database. The extra terms checkbox on the Registration
model class is used during validation, but not actually used afterwards when
saving the User to the database.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Doctrine

Console Commands

The Doctrine2 ORM integration offers several console commands under the
doctrine namespace. To view the command list you can use the list
command:

$ php app/console list doctrine

A list of available commands will print out. You can find out more information
about any of these commands (or any Symfony command) by running the help
command. For example, to get details about the doctrine:database:create
task, run:

$ php app/console help doctrine:database:create

Some notable or interesting tasks include:

	doctrine:ensure-production-settings - checks to see if the current
environment is configured efficiently for production. This should always
be run in the prod environment:

$ php app/console doctrine:ensure-production-settings --env=prod

	doctrine:mapping:import - allows Doctrine to introspect an existing
database and create mapping information. For more information, see
How to Generate Entities from an Existing Database.

	doctrine:mapping:info - tells you all of the entities that Doctrine
is aware of and whether or not there are any basic errors with the mapping.

	doctrine:query:dql and doctrine:query:sql - allow you to execute
DQL or SQL queries directly from the command line.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Email

	How to Send an Email
	Configuration

	Sending Emails

	How to Use Gmail to Send Emails

	How to Use the Cloud to Send Emails

	How to Work with Emails during Development
	Disabling Sending

	Sending to a Specified Address

	Viewing from the Web Debug Toolbar

	How to Spool Emails
	Spool Using Memory

	Spool Using a File

	How to Test that an Email is Sent in a functional Test

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Email

How to Send an Email

Sending emails is a classic task for any web application and one that has
special complications and potential pitfalls. Instead of recreating the wheel,
one solution to send emails is to use the SwiftmailerBundle, which leverages
the power of the Swift Mailer [http://swiftmailer.org/] library. This bundle comes with the Symfony
Standard Edition.

Configuration

To use Swift Mailer, you’ll need to configure it for your mail server.

小技巧

Instead of setting up/using your own mail server, you may want to use
a hosted mail provider such as Mandrill [https://mandrill.com/], SendGrid [https://sendgrid.com/], Amazon SES [http://aws.amazon.com/ses/]
or others. These give you an SMTP server, username and password (sometimes
called keys) that can be used with the Swift Mailer configuration.

In a standard Symfony installation, some swiftmailer configuration is
already included:

	YAML# app/config/config.yml
swiftmailer:
 transport: "%mailer_transport%"
 host: "%mailer_host%"
 username: "%mailer_user%"
 password: "%mailer_password%"

	XML<!-- app/config/config.xml -->

<!--
 xmlns:swiftmailer="http://symfony.com/schema/dic/swiftmailer"
 http://symfony.com/schema/dic/swiftmailer http://symfony.com/schema/dic/swiftmailer/swiftmailer-1.0.xsd
-->

<swiftmailer:config
 transport="%mailer_transport%"
 host="%mailer_host%"
 username="%mailer_user%"
 password="%mailer_password%" />

	PHP// app/config/config.php
$container->loadFromExtension('swiftmailer', array(
 'transport' => "%mailer_transport%",
 'host' => "%mailer_host%",
 'username' => "%mailer_user%",
 'password' => "%mailer_password%",
));

These values (e.g. %mailer_transport%), are reading from the parameters
that are set in the parameters.yml file. You
can modify the values in that file, or set the values directly here.

The following configuration attributes are available:

	transport (smtp, mail, sendmail, or gmail)

	username

	password

	host

	port

	encryption (tls, or ssl)

	auth_mode (plain, login, or cram-md5)

	spool
	type (how to queue the messages, file or memory is supported, see How to Spool Emails)

	path (where to store the messages)

	delivery_address (an email address where to send ALL emails)

	disable_delivery (set to true to disable delivery completely)

Sending Emails

The Swift Mailer library works by creating, configuring and then sending
Swift_Message objects. The “mailer” is responsible for the actual delivery
of the message and is accessible via the mailer service. Overall, sending
an email is pretty straightforward:

public function indexAction($name)
{
 $mailer = $this->get('mailer');
 $message = $mailer->createMessage()
 ->setSubject('You have Completed Registration!')
 ->setFrom('send@example.com')
 ->setTo('recipient@example.com')
 ->setBody(
 $this->renderView(
 // app/Resources/views/Emails/registration.html.twig
 'Emails/registration.html.twig',
 array('name' => $name)
),
 'text/html'
)
 /*
 * If you also want to include a plaintext version of the message
 ->addPart(
 $this->renderView(
 'Emails/registration.txt.twig',
 array('name' => $name)
),
 'text/plain'
)
 */
 ;
 $mailer->send($message);

 return $this->render(...);
}

To keep things decoupled, the email body has been stored in a template and
rendered with the renderView() method.

The $message object supports many more options, such as including attachments,
adding HTML content, and much more. Fortunately, Swift Mailer covers the topic
of Creating Messages [http://swiftmailer.org/docs/messages.html] in great detail in its documentation.

小技巧

Several other cookbook articles are available related to sending emails
in Symfony:

	How to Use Gmail to Send Emails

	How to Work with Emails during Development

	How to Spool Emails

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Email

How to Use Gmail to Send Emails

During development, instead of using a regular SMTP server to send emails, you
might find using Gmail easier and more practical. The SwiftmailerBundle makes
it really easy.

小技巧

Instead of using your regular Gmail account, it’s of course recommended
that you create a special account.

In the development configuration file, change the transport setting to
gmail and set the username and password to the Google credentials:

	YAML# app/config/config_dev.yml
swiftmailer:
 transport: gmail
 username: your_gmail_username
 password: your_gmail_password

	XML<!-- app/config/config_dev.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:swiftmailer="http://symfony.com/schema/dic/swiftmailer"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/swiftmailer
 http://symfony.com/schema/dic/swiftmailer/swiftmailer-1.0.xsd">

 <!-- ... -->
 <swiftmailer:config
 transport="gmail"
 username="your_gmail_username"
 password="your_gmail_password"
 />
</container>

	PHP// app/config/config_dev.php
$container->loadFromExtension('swiftmailer', array(
 'transport' => 'gmail',
 'username' => 'your_gmail_username',
 'password' => 'your_gmail_password',
));

You’re done!

小技巧

If you are using the Symfony Standard Edition, configure the parameters in parameters.yml:

app/config/parameters.yml
parameters:
 # ...
 mailer_transport: gmail
 mailer_host: ~
 mailer_user: your_gmail_username
 mailer_password: your_gmail_password

注解

The gmail transport is simply a shortcut that uses the smtp transport
and sets encryption, auth_mode and host to work with Gmail.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Email

How to Use the Cloud to Send Emails

Requirements for sending emails from a production system differ from your
development setup as you don’t want to be limited in the number of emails,
the sending rate or the sender address. Thus,
using Gmail or similar services is not an
option. If setting up and maintaining your own reliable mail server causes
you a headache there’s a simple solution: Leverage the cloud to send your
emails.

This cookbook shows how easy it is to integrate
Amazon’s Simple Email Service (SES) [http://aws.amazon.com/ses] into Symfony.

注解

You can use the same technique for other mail services, as most of the
time there is nothing more to it than configuring an SMTP endpoint for
Swift Mailer.

In the Symfony configuration, change the Swift Mailer settings transport,
host, port and encryption according to the information provided in
the SES console [https://console.aws.amazon.com/ses]. Create your individual SMTP credentials in the SES console
and complete the configuration with the provided username and password:

	YAML# app/config/config.yml
swiftmailer:
 transport: smtp
 host: email-smtp.us-east-1.amazonaws.com
 port: 465 # different ports are available, see SES console
 encryption: tls # TLS encryption is required
 username: AWS_ACCESS_KEY # to be created in the SES console
 password: AWS_SECRET_KEY # to be created in the SES console

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:swiftmailer="http://symfony.com/schema/dic/swiftmailer"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/swiftmailer
 http://symfony.com/schema/dic/swiftmailer/swiftmailer-1.0.xsd">

 <!-- ... -->
 <swiftmailer:config
 transport="smtp"
 host="email-smtp.us-east-1.amazonaws.com"
 port="465"
 encryption="tls"
 username="AWS_ACCESS_KEY"
 password="AWS_SECRET_KEY"
 />
</container>

	PHP// app/config/config.php
$container->loadFromExtension('swiftmailer', array(
 'transport' => 'smtp',
 'host' => 'email-smtp.us-east-1.amazonaws.com',
 'port' => 465,
 'encryption' => 'tls',
 'username' => 'AWS_ACCESS_KEY',
 'password' => 'AWS_SECRET_KEY',
));

The port and encryption keys are not present in the Symfony Standard
Edition configuration by default, but you can simply add them as needed.

And that’s it, you’re ready to start sending emails through the cloud!

小技巧

If you are using the Symfony Standard Edition, configure the parameters in
parameters.yml and use them in your configuration files. This allows
for different Swift Mailer configurations for each installation of your
application. For instance, use Gmail during development and the cloud in
production.

app/config/parameters.yml
parameters:
 # ...
 mailer_transport: smtp
 mailer_host: email-smtp.us-east-1.amazonaws.com
 mailer_port: 465 # different ports are available, see SES console
 mailer_encryption: tls # TLS encryption is required
 mailer_user: AWS_ACCESS_KEY # to be created in the SES console
 mailer_password: AWS_SECRET_KEY # to be created in the SES console

注解

If you intend to use Amazon SES, please note the following:

	You have to sign up to Amazon Web Services (AWS) [http://aws.amazon.com];

	Every sender address used in the From or Return-Path (bounce
address) header needs to be confirmed by the owner. You can also
confirm an entire domain;

	Initially you are in a restricted sandbox mode. You need to request
production access before being allowed to send to arbitrary
recipients;

	SES may be subject to a charge.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Email

How to Work with Emails during Development

When developing an application which sends email, you will often
not want to actually send the email to the specified recipient during
development. If you are using the SwiftmailerBundle with Symfony, you
can easily achieve this through configuration settings without having to
make any changes to your application’s code at all. There are two main
choices when it comes to handling email during development: (a) disabling the
sending of email altogether or (b) sending all email to a specific
address.

Disabling Sending

You can disable sending email by setting the disable_delivery option
to true. This is the default in the test environment in the Standard
distribution. If you do this in the test specific config then email
will not be sent when you run tests, but will continue to be sent in the
prod and dev environments:

	YAML# app/config/config_test.yml
swiftmailer:
 disable_delivery: true

	XML<!-- app/config/config_test.xml -->

<!--
 xmlns:swiftmailer="http://symfony.com/schema/dic/swiftmailer"
 http://symfony.com/schema/dic/swiftmailer http://symfony.com/schema/dic/swiftmailer/swiftmailer-1.0.xsd
-->

<swiftmailer:config
 disable-delivery="true" />

	PHP// app/config/config_test.php
$container->loadFromExtension('swiftmailer', array(
 'disable_delivery' => "true",
));

If you’d also like to disable deliver in the dev environment, simply
add this same configuration to the config_dev.yml file.

Sending to a Specified Address

You can also choose to have all email sent to a specific address, instead
of the address actually specified when sending the message. This can be done
via the delivery_address option:

	YAML# app/config/config_dev.yml
swiftmailer:
 delivery_address: dev@example.com

	XML<!-- app/config/config_dev.xml -->

<!--
 xmlns:swiftmailer="http://symfony.com/schema/dic/swiftmailer"
 http://symfony.com/schema/dic/swiftmailer http://symfony.com/schema/dic/swiftmailer/swiftmailer-1.0.xsd
-->

<swiftmailer:config delivery-address="dev@example.com" />

	PHP// app/config/config_dev.php
$container->loadFromExtension('swiftmailer', array(
 'delivery_address' => "dev@example.com",
));

Now, suppose you’re sending an email to recipient@example.com.

public function indexAction($name)
{
 $message = \Swift_Message::newInstance()
 ->setSubject('Hello Email')
 ->setFrom('send@example.com')
 ->setTo('recipient@example.com')
 ->setBody(
 $this->renderView(
 'HelloBundle:Hello:email.txt.twig',
 array('name' => $name)
)
)
 ;
 $this->get('mailer')->send($message);

 return $this->render(...);
}

In the dev environment, the email will instead be sent to dev@example.com.
Swift Mailer will add an extra header to the email, X-Swift-To, containing
the replaced address, so you can still see who it would have been sent to.

注解

In addition to the to addresses, this will also stop the email being
sent to any CC and BCC addresses set for it. Swift Mailer will add
additional headers to the email with the overridden addresses in them.
These are X-Swift-Cc and X-Swift-Bcc for the CC and BCC
addresses respectively.

Viewing from the Web Debug Toolbar

You can view any email sent during a single response when you are in the
dev environment using the Web Debug Toolbar. The email icon in the toolbar
will show how many emails were sent. If you click it, a report will open
showing the details of the sent emails.

If you’re sending an email and then immediately redirecting to another page,
the web debug toolbar will not display an email icon or a report on the next
page.

Instead, you can set the intercept_redirects option to true in the
config_dev.yml file, which will cause the redirect to stop and allow
you to open the report with details of the sent emails.

	YAML# app/config/config_dev.yml
web_profiler:
 intercept_redirects: true

	XML<!-- app/config/config_dev.xml -->

<!--
 xmlns:webprofiler="http://symfony.com/schema/dic/webprofiler"
 xsi:schemaLocation="http://symfony.com/schema/dic/webprofiler
 http://symfony.com/schema/dic/webprofiler/webprofiler-1.0.xsd">
-->

<webprofiler:config
 intercept-redirects="true"
/>

	PHP// app/config/config_dev.php
$container->loadFromExtension('web_profiler', array(
 'intercept_redirects' => 'true',
));

小技巧

Alternatively, you can open the profiler after the redirect and search
by the submit URL used on the previous request (e.g. /contact/handle).
The profiler’s search feature allows you to load the profiler information
for any past requests.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Email

How to Spool Emails

When you are using the SwiftmailerBundle to send an email from a Symfony
application, it will default to sending the email immediately. You may, however,
want to avoid the performance hit of the communication between Swift Mailer
and the email transport, which could cause the user to wait for the next
page to load while the email is sending. This can be avoided by choosing
to “spool” the emails instead of sending them directly. This means that Swift Mailer
does not attempt to send the email but instead saves the message to somewhere
such as a file. Another process can then read from the spool and take care
of sending the emails in the spool. Currently only spooling to file or memory is supported
by Swift Mailer.

Spool Using Memory

When you use spooling to store the emails to memory, they will get sent right
before the kernel terminates. This means the email only gets sent if the whole
request got executed without any unhandled Exception or any errors. To configure
swiftmailer with the memory option, use the following configuration:

	YAML# app/config/config.yml
swiftmailer:
 # ...
 spool: { type: memory }

	XML<!-- app/config/config.xml -->

<!--
 xmlns:swiftmailer="http://symfony.com/schema/dic/swiftmailer"
 http://symfony.com/schema/dic/swiftmailer
 http://symfony.com/schema/dic/swiftmailer/swiftmailer-1.0.xsd
-->

<swiftmailer:config>
 <swiftmailer:spool type="memory" />
</swiftmailer:config>

	PHP// app/config/config.php
$container->loadFromExtension('swiftmailer', array(
 // ...
 'spool' => array('type' => 'memory')
));

Spool Using a File

In order to use the spool with a file, use the following configuration:

	YAML# app/config/config.yml
swiftmailer:
 # ...
 spool:
 type: file
 path: /path/to/spool

	XML<!-- app/config/config.xml -->

<!--
 xmlns:swiftmailer="http://symfony.com/schema/dic/swiftmailer"
 http://symfony.com/schema/dic/swiftmailer
 http://symfony.com/schema/dic/swiftmailer/swiftmailer-1.0.xsd
-->

<swiftmailer:config>
 <swiftmailer:spool
 type="file"
 path="/path/to/spool" />
</swiftmailer:config>

	PHP// app/config/config.php
$container->loadFromExtension('swiftmailer', array(
 // ...

 'spool' => array(
 'type' => 'file',
 'path' => '/path/to/spool',
),
));

小技巧

If you want to store the spool somewhere with your project directory,
remember that you can use the %kernel.root_dir% parameter to reference
the project’s root:

path: "%kernel.root_dir%/spool"

Now, when your app sends an email, it will not actually be sent but instead
added to the spool. Sending the messages from the spool is done separately.
There is a console command to send the messages in the spool:

$ php app/console swiftmailer:spool:send --env=prod

It has an option to limit the number of messages to be sent:

$ php app/console swiftmailer:spool:send --message-limit=10 --env=prod

You can also set the time limit in seconds:

$ php app/console swiftmailer:spool:send --time-limit=10 --env=prod

Of course you will not want to run this manually in reality. Instead, the
console command should be triggered by a cron job or scheduled task and run
at a regular interval.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Email

How to Test that an Email is Sent in a functional Test

Sending e-mails with Symfony is pretty straightforward thanks to the
SwiftmailerBundle, which leverages the power of the Swift Mailer [http://swiftmailer.org/] library.

To functionally test that an email was sent, and even assert the email subject,
content or any other headers, you can use the Symfony Profiler.

Start with an easy controller action that sends an e-mail:

public function sendEmailAction($name)
{
 $message = \Swift_Message::newInstance()
 ->setSubject('Hello Email')
 ->setFrom('send@example.com')
 ->setTo('recipient@example.com')
 ->setBody('You should see me from the profiler!')
 ;

 $this->get('mailer')->send($message);

 return $this->render(...);
}

注解

Don’t forget to enable the profiler as explained in How to Use the Profiler in a Functional Test.

In your functional test, use the swiftmailer collector on the profiler
to get information about the messages send on the previous request:

// src/AppBundle/Tests/Controller/MailControllerTest.php
use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class MailControllerTest extends WebTestCase
{
 public function testMailIsSentAndContentIsOk()
 {
 $client = static::createClient();

 // Enable the profiler for the next request (it does nothing if the profiler is not available)
 $client->enableProfiler();

 $crawler = $client->request('POST', '/path/to/above/action');

 $mailCollector = $client->getProfile()->getCollector('swiftmailer');

 // Check that an e-mail was sent
 $this->assertEquals(1, $mailCollector->getMessageCount());

 $collectedMessages = $mailCollector->getMessages();
 $message = $collectedMessages[0];

 // Asserting e-mail data
 $this->assertInstanceOf('Swift_Message', $message);
 $this->assertEquals('Hello Email', $message->getSubject());
 $this->assertEquals('send@example.com', key($message->getFrom()));
 $this->assertEquals('recipient@example.com', key($message->getTo()));
 $this->assertEquals(
 'You should see me from the profiler!',
 $message->getBody()
);
 }
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Event Dispatcher

	How to Setup before and after Filters
	Token Validation Example

	Before Filters with the kernel.controller Event

	After Filters with the kernel.response Event

	How to Extend a Class without Using Inheritance

	How to Customize a Method Behavior without Using Inheritance
	Doing something before or after a Method Call

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Event Dispatcher

How to Setup before and after Filters

It is quite common in web application development to need some logic to be
executed just before or just after your controller actions acting as filters
or hooks.

In symfony1, this was achieved with the preExecute and postExecute methods.
Most major frameworks have similar methods but there is no such thing in Symfony.
The good news is that there is a much better way to interfere with the
Request -> Response process using the EventDispatcher component.

Token Validation Example

Imagine that you need to develop an API where some controllers are public
but some others are restricted to one or some clients. For these private features,
you might provide a token to your clients to identify themselves.

So, before executing your controller action, you need to check if the action
is restricted or not. If it is restricted, you need to validate the provided
token.

注解

Please note that for simplicity in this recipe, tokens will be defined
in config and neither database setup nor authentication via the Security
component will be used.

Before Filters with the kernel.controller Event

First, store some basic token configuration using config.yml and the
parameters key:

	YAML# app/config/config.yml
parameters:
 tokens:
 client1: pass1
 client2: pass2

	XML<!-- app/config/config.xml -->
<parameters>
 <parameter key="tokens" type="collection">
 <parameter key="client1">pass1</parameter>
 <parameter key="client2">pass2</parameter>
 </parameter>
</parameters>

	PHP// app/config/config.php
$container->setParameter('tokens', array(
 'client1' => 'pass1',
 'client2' => 'pass2',
));

Tag Controllers to Be Checked

A kernel.controller listener gets notified on every request, right before
the controller is executed. So, first, you need some way to identify if the
controller that matches the request needs token validation.

A clean and easy way is to create an empty interface and make the controllers
implement it:

namespace AppBundle\Controller;

interface TokenAuthenticatedController
{
 // ...
}

A controller that implements this interface simply looks like this:

namespace AppBundle\Controller;

use AppBundle\Controller\TokenAuthenticatedController;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class FooController extends Controller implements TokenAuthenticatedController
{
 // An action that needs authentication
 public function barAction()
 {
 // ...
 }
}

Creating an Event Listener

Next, you’ll need to create an event listener, which will hold the logic
that you want executed before your controllers. If you’re not familiar with
event listeners, you can learn more about them at How to Create an Event Listener:

// src/AppBundle/EventListener/TokenListener.php
namespace AppBundle\EventListener;

use AppBundle\Controller\TokenAuthenticatedController;
use Symfony\Component\HttpKernel\Exception\AccessDeniedHttpException;
use Symfony\Component\HttpKernel\Event\FilterControllerEvent;

class TokenListener
{
 private $tokens;

 public function __construct($tokens)
 {
 $this->tokens = $tokens;
 }

 public function onKernelController(FilterControllerEvent $event)
 {
 $controller = $event->getController();

 /*
 * $controller passed can be either a class or a Closure.
 * This is not usual in Symfony but it may happen.
 * If it is a class, it comes in array format
 */
 if (!is_array($controller)) {
 return;
 }

 if ($controller[0] instanceof TokenAuthenticatedController) {
 $token = $event->getRequest()->query->get('token');
 if (!in_array($token, $this->tokens)) {
 throw new AccessDeniedHttpException('This action needs a valid token!');
 }
 }
 }
}

Registering the Listener

Finally, register your listener as a service and tag it as an event listener.
By listening on kernel.controller, you’re telling Symfony that you want
your listener to be called just before any controller is executed.

	YAML# app/config/services.yml
services:
 app.tokens.action_listener:
 class: AppBundle\EventListener\TokenListener
 arguments: ["%tokens%"]
 tags:
 - { name: kernel.event_listener, event: kernel.controller, method: onKernelController }

	XML<!-- app/config/services.xml -->
<service id="app.tokens.action_listener" class="AppBundle\EventListener\TokenListener">
 <argument>%tokens%</argument>
 <tag name="kernel.event_listener" event="kernel.controller" method="onKernelController" />
</service>

	PHP// app/config/services.php
use Symfony\Component\DependencyInjection\Definition;

$listener = new Definition('AppBundle\EventListener\TokenListener', array('%tokens%'));
$listener->addTag('kernel.event_listener', array(
 'event' => 'kernel.controller',
 'method' => 'onKernelController'
));
$container->setDefinition('app.tokens.action_listener', $listener);

With this configuration, your TokenListener onKernelController method
will be executed on each request. If the controller that is about to be executed
implements TokenAuthenticatedController, token authentication is
applied. This lets you have a “before” filter on any controller that you
want.

After Filters with the kernel.response Event

In addition to having a “hook” that’s executed before your controller, you
can also add a hook that’s executed after your controller. For this example,
imagine that you want to add a sha1 hash (with a salt using that token) to
all responses that have passed this token authentication.

Another core Symfony event - called kernel.response - is notified on
every request, but after the controller returns a Response object. Creating
an “after” listener is as easy as creating a listener class and registering
it as a service on this event.

For example, take the TokenListener from the previous example and first
record the authentication token inside the request attributes. This will
serve as a basic flag that this request underwent token authentication:

public function onKernelController(FilterControllerEvent $event)
{
 // ...

 if ($controller[0] instanceof TokenAuthenticatedController) {
 $token = $event->getRequest()->query->get('token');
 if (!in_array($token, $this->tokens)) {
 throw new AccessDeniedHttpException('This action needs a valid token!');
 }

 // mark the request as having passed token authentication
 $event->getRequest()->attributes->set('auth_token', $token);
 }
}

Now, add another method to this class - onKernelResponse - that looks
for this flag on the request object and sets a custom header on the response
if it’s found:

// add the new use statement at the top of your file
use Symfony\Component\HttpKernel\Event\FilterResponseEvent;

public function onKernelResponse(FilterResponseEvent $event)
{
 // check to see if onKernelController marked this as a token "auth'ed" request
 if (!$token = $event->getRequest()->attributes->get('auth_token')) {
 return;
 }

 $response = $event->getResponse();

 // create a hash and set it as a response header
 $hash = sha1($response->getContent().$token);
 $response->headers->set('X-CONTENT-HASH', $hash);
}

Finally, a second “tag” is needed in the service definition to notify Symfony
that the onKernelResponse event should be notified for the kernel.response
event:

	YAML# app/config/services.yml
services:
 app.tokens.action_listener:
 class: AppBundle\EventListener\TokenListener
 arguments: ["%tokens%"]
 tags:
 - { name: kernel.event_listener, event: kernel.controller, method: onKernelController }
 - { name: kernel.event_listener, event: kernel.response, method: onKernelResponse }

	XML<!-- app/config/services.xml -->
<service id="app.tokens.action_listener" class="AppBundle\EventListener\TokenListener">
 <argument>%tokens%</argument>
 <tag name="kernel.event_listener" event="kernel.controller" method="onKernelController" />
 <tag name="kernel.event_listener" event="kernel.response" method="onKernelResponse" />
</service>

	PHP// app/config/services.php
use Symfony\Component\DependencyInjection\Definition;

$listener = new Definition('AppBundle\EventListener\TokenListener', array('%tokens%'));
$listener->addTag('kernel.event_listener', array(
 'event' => 'kernel.controller',
 'method' => 'onKernelController'
));
$listener->addTag('kernel.event_listener', array(
 'event' => 'kernel.response',
 'method' => 'onKernelResponse'
));
$container->setDefinition('app.tokens.action_listener', $listener);

That’s it! The TokenListener is now notified before every controller is
executed (onKernelController) and after every controller returns a response
(onKernelResponse). By making specific controllers implement the TokenAuthenticatedController
interface, your listener knows which controllers it should take action on.
And by storing a value in the request’s “attributes” bag, the onKernelResponse
method knows to add the extra header. Have fun!

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Event Dispatcher

How to Extend a Class without Using Inheritance

To allow multiple classes to add methods to another one, you can define the
magic __call() method in the class you want to be extended like this:

class Foo
{
 // ...

 public function __call($method, $arguments)
 {
 // create an event named 'foo.method_is_not_found'
 $event = new HandleUndefinedMethodEvent($this, $method, $arguments);
 $this->dispatcher->dispatch('foo.method_is_not_found', $event);

 // no listener was able to process the event? The method does not exist
 if (!$event->isProcessed()) {
 throw new \Exception(sprintf('Call to undefined method %s::%s.', get_class($this), $method));
 }

 // return the listener returned value
 return $event->getReturnValue();
 }
}

This uses a special HandleUndefinedMethodEvent that should also be
created. This is a generic class that could be reused each time you need to
use this pattern of class extension:

use Symfony\Component\EventDispatcher\Event;

class HandleUndefinedMethodEvent extends Event
{
 protected $subject;
 protected $method;
 protected $arguments;
 protected $returnValue;
 protected $isProcessed = false;

 public function __construct($subject, $method, $arguments)
 {
 $this->subject = $subject;
 $this->method = $method;
 $this->arguments = $arguments;
 }

 public function getSubject()
 {
 return $this->subject;
 }

 public function getMethod()
 {
 return $this->method;
 }

 public function getArguments()
 {
 return $this->arguments;
 }

 /**
 * Sets the value to return and stops other listeners from being notified
 */
 public function setReturnValue($val)
 {
 $this->returnValue = $val;
 $this->isProcessed = true;
 $this->stopPropagation();
 }

 public function getReturnValue()
 {
 return $this->returnValue;
 }

 public function isProcessed()
 {
 return $this->isProcessed;
 }
}

Next, create a class that will listen to the foo.method_is_not_found event
and add the method bar():

class Bar
{
 public function onFooMethodIsNotFound(HandleUndefinedMethodEvent $event)
 {
 // only respond to the calls to the 'bar' method
 if ('bar' != $event->getMethod()) {
 // allow another listener to take care of this unknown method
 return;
 }

 // the subject object (the foo instance)
 $foo = $event->getSubject();

 // the bar method arguments
 $arguments = $event->getArguments();

 // ... do something

 // set the return value
 $event->setReturnValue($someValue);
 }
}

Finally, add the new bar method to the Foo class by registering an
instance of Bar with the foo.method_is_not_found event:

$bar = new Bar();
$dispatcher->addListener('foo.method_is_not_found', array($bar, 'onFooMethodIsNotFound'));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Event Dispatcher

How to Customize a Method Behavior without Using Inheritance

Doing something before or after a Method Call

If you want to do something just before, or just after a method is called, you
can dispatch an event respectively at the beginning or at the end of the
method:

class Foo
{
 // ...

 public function send($foo, $bar)
 {
 // do something before the method
 $event = new FilterBeforeSendEvent($foo, $bar);
 $this->dispatcher->dispatch('foo.pre_send', $event);

 // get $foo and $bar from the event, they may have been modified
 $foo = $event->getFoo();
 $bar = $event->getBar();

 // the real method implementation is here
 $ret = ...;

 // do something after the method
 $event = new FilterSendReturnValue($ret);
 $this->dispatcher->dispatch('foo.post_send', $event);

 return $event->getReturnValue();
 }
}

In this example, two events are thrown: foo.pre_send, before the method is
executed, and foo.post_send after the method is executed. Each uses a
custom Event class to communicate information to the listeners of the two
events. These event classes would need to be created by you and should allow,
in this example, the variables $foo, $bar and $ret to be retrieved
and set by the listeners.

For example, assuming the FilterSendReturnValue has a setReturnValue
method, one listener might look like this:

public function onFooPostSend(FilterSendReturnValue $event)
{
 $ret = $event->getReturnValue();
 // modify the original ``$ret`` value

 $event->setReturnValue($ret);
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Form

	How to Customize Form Rendering
	Form Rendering Basics

	What are Form Themes?

	Form Theming

	Form Theming in Twig

	Form Theming in PHP

	Referencing base Form Blocks (Twig specific)

	Making Application-wide Customizations

	How to Customize an individual Field

	Other common Customizations

	Using Form Variables

	How to Use Data Transformers
	Creating the Transformer

	Using the Transformer

	So why Use the Model Transformer?

	Using Transformers in a custom Field Type

	How to Dynamically Modify Forms Using Form Events
	Customizing your Form Based on the Underlying Data

	How to dynamically Generate Forms Based on user Data

	Dynamic Generation for Submitted Forms

	Suppressing Form Validation

	How to Embed a Collection of Forms
	Allowing “new” Tags with the “Prototype”

	Allowing Tags to be Removed

	How to Create a Custom Form Field Type
	Defining the Field Type

	Creating a Template for the Field

	Using the Field Type

	Creating your Field Type as a Service

	How to Create a Form Type Extension
	Defining the Form Type Extension

	Registering your Form Type Extension as a Service

	Adding the extension Business Logic

	Override the File Widget Template Fragment

	Using the Form Type Extension

	How to Reduce Code Duplication with “inherit_data”

	How to Unit Test your Forms
	The Basics

	Adding a Type your Form Depends on

	Adding custom Extensions

	Testing against different Sets of Data

	How to Configure empty Data for a Form Class
	Option 1: Instantiate a new Class

	Option 2: Provide a Closure

	How to Use the submit() Function to Handle Form Submissions
	Calling Form::submit() manually

	Passing a Request to Form::submit() (Deprecated)

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Form

How to Customize Form Rendering

Symfony gives you a wide variety of ways to customize how a form is rendered.
In this guide, you’ll learn how to customize every possible part of your
form with as little effort as possible whether you use Twig or PHP as your
templating engine.

Form Rendering Basics

Recall that the label, error and HTML widget of a form field can easily
be rendered by using the form_row Twig function or the row PHP helper
method:

	Twig{{ form_row(form.age) }}

	PHP<?php echo $view['form']->row($form['age']); ?>

You can also render each of the three parts of the field individually:

	Twig<div>
 {{ form_label(form.age) }}
 {{ form_errors(form.age) }}
 {{ form_widget(form.age) }}
</div>

	PHP<div>
 <?php echo $view['form']->label($form['age']); ?>
 <?php echo $view['form']->errors($form['age']); ?>
 <?php echo $view['form']->widget($form['age']); ?>
</div>

In both cases, the form label, errors and HTML widget are rendered by using
a set of markup that ships standard with Symfony. For example, both of the
above templates would render:

<div>
 <label for="form_age">Age</label>

 This field is required

 <input type="number" id="form_age" name="form[age]" />
</div>

To quickly prototype and test a form, you can render the entire form with
just one line:

	Twig{# renders all fields #}
{{ form_widget(form) }}

{# renders all fields *and* the form start and end tags #}
{{ form(form) }}

	PHP<!-- renders all fields -->
<?php echo $view['form']->widget($form) ?>

<!-- renders all fields *and* the form start and end tags -->
<?php echo $view['form']->form($form) ?>

The remainder of this recipe will explain how every part of the form’s markup
can be modified at several different levels. For more information about form
rendering in general, see Rendering a Form in a Template.

What are Form Themes?

Symfony uses form fragments - a small piece of a template that renders just
one part of a form - to render each part of a form - field labels, errors,
input text fields, select tags, etc.

The fragments are defined as blocks in Twig and as template files in PHP.

A theme is nothing more than a set of fragments that you want to use when
rendering a form. In other words, if you want to customize one portion of
how a form is rendered, you’ll import a theme which contains a customization
of the appropriate form fragments.

Symfony comes with a default theme (form_div_layout.html.twig [https://github.com/symfony/symfony/blob/2.3/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig] in Twig and
FrameworkBundle:Form in PHP) that defines each and every fragment needed
to render every part of a form.

In the next section you will learn how to customize a theme by overriding
some or all of its fragments.

For example, when the widget of an integer type field is rendered, an input
number field is generated

	Twig{{ form_widget(form.age) }}

	PHP<?php echo $view['form']->widget($form['age']) ?>

renders:

<input type="number" id="form_age" name="form[age]" required="required" value="33" />

Internally, Symfony uses the integer_widget fragment to render the field.
This is because the field type is integer and you’re rendering its widget
(as opposed to its label or errors).

In Twig that would default to the block integer_widget from the form_div_layout.html.twig [https://github.com/symfony/symfony/blob/2.3/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig]
template.

In PHP it would rather be the integer_widget.html.php file located in
the FrameworkBundle/Resources/views/Form folder.

The default implementation of the integer_widget fragment looks like this:

	Twig{# form_div_layout.html.twig #}
{% block integer_widget %}
 {% set type = type|default('number') %}
 {{ block('form_widget_simple') }}
{% endblock integer_widget %}

	PHP<!-- integer_widget.html.php -->
<?php echo $view['form']->block($form, 'form_widget_simple', array('type' => isset($type) ? $type : "number")) ?>

As you can see, this fragment itself renders another fragment - form_widget_simple:

	Twig{# form_div_layout.html.twig #}
{% block form_widget_simple %}
 {% set type = type|default('text') %}
 <input type="{{ type }}" {{ block('widget_attributes') }} {% if value is not empty %}value="{{ value }}" {% endif %}/>
{% endblock form_widget_simple %}

	PHP<!-- FrameworkBundle/Resources/views/Form/form_widget_simple.html.php -->
<input
 type="<?php echo isset($type) ? $view->escape($type) : 'text' ?>"
 <?php if (!empty($value)): ?>value="<?php echo $view->escape($value) ?>"<?php endif ?>
 <?php echo $view['form']->block($form, 'widget_attributes') ?>
/>

The point is, the fragments dictate the HTML output of each part of a form. To
customize the form output, you just need to identify and override the correct
fragment. A set of these form fragment customizations is known as a form “theme”.
When rendering a form, you can choose which form theme(s) you want to apply.

In Twig a theme is a single template file and the fragments are the blocks defined
in this file.

In PHP a theme is a folder and the fragments are individual template files in
this folder.

Knowing which Block to Customize

In this example, the customized fragment name is integer_widget because
you want to override the HTML widget for all integer field types. If
you need to customize textarea fields, you would customize textarea_widget.

As you can see, the fragment name is a combination of the field type and
which part of the field is being rendered (e.g. widget, label,
errors, row). As such, to customize how errors are rendered for
just input text fields, you should customize the text_errors fragment.

More commonly, however, you’ll want to customize how errors are displayed
across all fields. You can do this by customizing the form_errors
fragment. This takes advantage of field type inheritance. Specifically,
since the text type extends from the form type, the Form component
will first look for the type-specific fragment (e.g. text_errors) before
falling back to its parent fragment name if it doesn’t exist (e.g. form_errors).

For more information on this topic, see Form Fragment Naming.

Form Theming

To see the power of form theming, suppose you want to wrap every input number
field with a div tag. The key to doing this is to customize the
integer_widget fragment.

Form Theming in Twig

When customizing the form field block in Twig, you have two options on where
the customized form block can live:

	Method
	Pros
	Cons

	Inside the same template as the form
	Quick and easy
	Can’t be reused in other templates

	Inside a separate template
	Can be reused by many templates
	Requires an extra template to be created

Both methods have the same effect but are better in different situations.

Method 1: Inside the same Template as the Form

The easiest way to customize the integer_widget block is to customize it
directly in the template that’s actually rendering the form.

{% extends '::base.html.twig' %}

{% form_theme form _self %}

{% block integer_widget %}
 <div class="integer_widget">
 {% set type = type|default('number') %}
 {{ block('form_widget_simple') }}
 </div>
{% endblock %}

{% block content %}
 {# ... render the form #}

 {{ form_row(form.age) }}
{% endblock %}

By using the special {% form_theme form _self %} tag, Twig looks inside
the same template for any overridden form blocks. Assuming the form.age
field is an integer type field, when its widget is rendered, the customized
integer_widget block will be used.

The disadvantage of this method is that the customized form block can’t be
reused when rendering other forms in other templates. In other words, this method
is most useful when making form customizations that are specific to a single
form in your application. If you want to reuse a form customization across
several (or all) forms in your application, read on to the next section.

Method 2: Inside a separate Template

You can also choose to put the customized integer_widget form block in a
separate template entirely. The code and end-result are the same, but you
can now re-use the form customization across many templates:

{# src/AppBundle/Resources/views/Form/fields.html.twig #}
{% block integer_widget %}
 <div class="integer_widget">
 {% set type = type|default('number') %}
 {{ block('form_widget_simple') }}
 </div>
{% endblock %}

Now that you’ve created the customized form block, you need to tell Symfony
to use it. Inside the template where you’re actually rendering your form,
tell Symfony to use the template via the form_theme tag:

{% form_theme form 'AppBundle:Form:fields.html.twig' %}

{{ form_widget(form.age) }}

When the form.age widget is rendered, Symfony will use the integer_widget
block from the new template and the input tag will be wrapped in the
div element specified in the customized block.

Multiple Templates

A form can also be customized by applying several templates. To do this, pass the
name of all the templates as an array using the with keyword:

{% form_theme form with ['::common.html.twig', ':Form:fields.html.twig',
 'AppBundle:Form:fields.html.twig'] %}

{# ... #}

The templates can be located at different bundles and they can even be stored
at the global app/Resources/views/ directory.

Child Forms

You can also apply a form theme to a specific child of your form:

{% form_theme form.child 'AppBundle:Form:fields.html.twig' %}

This is useful when you want to have a custom theme for a nested form that’s
different than the one of your main form. Just specify both your themes:

{% form_theme form 'AppBundle:Form:fields.html.twig' %}

{% form_theme form.child 'AppBundle:Form:fields_child.html.twig' %}

Form Theming in PHP

When using PHP as a templating engine, the only method to customize a fragment
is to create a new template file - this is similar to the second method used by
Twig.

The template file must be named after the fragment. You must create a integer_widget.html.php
file in order to customize the integer_widget fragment.

<!-- src/AppBundle/Resources/views/Form/integer_widget.html.php -->
<div class="integer_widget">
 <?php echo $view['form']->block($form, 'form_widget_simple', array('type' => isset($type) ? $type : "number")) ?>
</div>

Now that you’ve created the customized form template, you need to tell Symfony
to use it. Inside the template where you’re actually rendering your form,
tell Symfony to use the theme via the setTheme helper method:

<?php $view['form']->setTheme($form, array('AppBundle:Form')); ?>

<?php $view['form']->widget($form['age']) ?>

When the form.age widget is rendered, Symfony will use the customized
integer_widget.html.php template and the input tag will be wrapped in
the div element.

If you want to apply a theme to a specific child form, pass it to the setTheme
method:

<?php $view['form']->setTheme($form['child'], 'AppBundle:Form/Child'); ?>

Referencing base Form Blocks (Twig specific)

So far, to override a particular form block, the best method is to copy
the default block from form_div_layout.html.twig [https://github.com/symfony/symfony/blob/2.3/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig], paste it into a different template,
and then customize it. In many cases, you can avoid doing this by referencing
the base block when customizing it.

This is easy to do, but varies slightly depending on if your form block customizations
are in the same template as the form or a separate template.

Referencing Blocks from inside the same Template as the Form

Import the blocks by adding a use tag in the template where you’re rendering
the form:

{% use 'form_div_layout.html.twig' with integer_widget as base_integer_widget %}

Now, when the blocks from form_div_layout.html.twig [https://github.com/symfony/symfony/blob/2.3/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig] are imported, the
integer_widget block is called base_integer_widget. This means that when
you redefine the integer_widget block, you can reference the default markup
via base_integer_widget:

{% block integer_widget %}
 <div class="integer_widget">
 {{ block('base_integer_widget') }}
 </div>
{% endblock %}

Referencing base Blocks from an external Template

If your form customizations live inside an external template, you can reference
the base block by using the parent() Twig function:

{# src/AppBundle/Resources/views/Form/fields.html.twig #}
{% extends 'form_div_layout.html.twig' %}

{% block integer_widget %}
 <div class="integer_widget">
 {{ parent() }}
 </div>
{% endblock %}

注解

It is not possible to reference the base block when using PHP as the
templating engine. You have to manually copy the content from the base block
to your new template file.

Making Application-wide Customizations

If you’d like a certain form customization to be global to your application,
you can accomplish this by making the form customizations in an external
template and then importing it inside your application configuration.

Twig

By using the following configuration, any customized form blocks inside the
AppBundle:Form:fields.html.twig template will be used globally when a
form is rendered.

	YAML# app/config/config.yml
twig:
 form:
 resources:
 - 'AppBundle:Form:fields.html.twig'
 # ...

	XML<!-- app/config/config.xml -->
<twig:config>
 <twig:form>
 <resource>AppBundle:Form:fields.html.twig</resource>
 </twig:form>
 <!-- ... -->
</twig:config>

	PHP// app/config/config.php
$container->loadFromExtension('twig', array(
 'form' => array(
 'resources' => array(
 'AppBundle:Form:fields.html.twig',
),
),

 // ...
));

By default, Twig uses a div layout when rendering forms. Some people, however,
may prefer to render forms in a table layout. Use the form_table_layout.html.twig
resource to use such a layout:

	YAML# app/config/config.yml
twig:
 form:
 resources:
 - 'form_table_layout.html.twig'
 # ...

	XML<!-- app/config/config.xml -->
<twig:config>
 <twig:form>
 <resource>form_table_layout.html.twig</resource>
 </twig:form>
 <!-- ... -->
</twig:config>

	PHP// app/config/config.php
$container->loadFromExtension('twig', array(
 'form' => array(
 'resources' => array(
 'form_table_layout.html.twig',
),
),

 // ...
));

If you only want to make the change in one template, add the following line to
your template file rather than adding the template as a resource:

{% form_theme form 'form_table_layout.html.twig' %}

Note that the form variable in the above code is the form view variable
that you passed to your template.

PHP

By using the following configuration, any customized form fragments inside the
src/AppBundle/Resources/views/Form folder will be used globally when a
form is rendered.

	YAML# app/config/config.yml
framework:
 templating:
 form:
 resources:
 - 'AppBundle:Form'
 # ...

	XML<!-- app/config/config.xml -->
<framework:config>
 <framework:templating>
 <framework:form>
 <resource>AppBundle:Form</resource>
 </framework:form>
 </framework:templating>
 <!-- ... -->
</framework:config>

	PHP// app/config/config.php
// PHP
$container->loadFromExtension('framework', array(
 'templating' => array(
 'form' => array(
 'resources' => array(
 'AppBundle:Form',
),
),
),

 // ...
));

By default, the PHP engine uses a div layout when rendering forms. Some people,
however, may prefer to render forms in a table layout. Use the FrameworkBundle:FormTable
resource to use such a layout:

	YAML# app/config/config.yml
framework:
 templating:
 form:
 resources:
 - 'FrameworkBundle:FormTable'

	XML<!-- app/config/config.xml -->
<framework:config>
 <framework:templating>
 <framework:form>
 <resource>FrameworkBundle:FormTable</resource>
 </framework:form>
 </framework:templating>
 <!-- ... -->
</framework:config>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'templating' => array(
 'form' => array(
 'resources' => array(
 'FrameworkBundle:FormTable',
),
),
),

 // ...
));

If you only want to make the change in one template, add the following line to
your template file rather than adding the template as a resource:

<?php $view['form']->setTheme($form, array('FrameworkBundle:FormTable')); ?>

Note that the $form variable in the above code is the form view variable
that you passed to your template.

How to Customize an individual Field

So far, you’ve seen the different ways you can customize the widget output
of all text field types. You can also customize individual fields. For example,
suppose you have two text fields in a product form - name and
description - but you only want to customize one of the fields. This can be
accomplished by customizing a fragment whose name is a combination of the field’s
id attribute and which part of the field is being customized. For example, to
customize the name field only:

	Twig{% form_theme form _self %}

{% block _product_name_widget %}
 <div class="text_widget">
 {{ block('form_widget_simple') }}
 </div>
{% endblock %}

{{ form_widget(form.name) }}

	PHP<!-- Main template -->
<?php echo $view['form']->setTheme($form, array('AppBundle:Form')); ?>

<?php echo $view['form']->widget($form['name']); ?>

<!-- src/AppBundle/Resources/views/Form/_product_name_widget.html.php -->
<div class="text_widget">
 echo $view['form']->block('form_widget_simple') ?>
</div>

Here, the _product_name_widget fragment defines the template to use for the
field whose id is product_name (and name is product[name]).

小技巧

The product portion of the field is the form name, which may be set
manually or generated automatically based on your form type name (e.g.
ProductType equates to product). If you’re not sure what your
form name is, just view the source of your generated form.

If you want to change the product or name portion of the block
name _product_name_widget you can set the block_name option in your
form type:

use Symfony\Component\Form\FormBuilderInterface;

public function buildForm(FormBuilderInterface $builder, array $options)
{
 // ...

 $builder->add('name', 'text', array(
 'block_name' => 'custom_name',
));
}

Then the block name will be _product_custom_name_widget.

You can also override the markup for an entire field row using the same method:

	Twig{% form_theme form _self %}

{% block _product_name_row %}
 <div class="name_row">
 {{ form_label(form) }}
 {{ form_errors(form) }}
 {{ form_widget(form) }}
 </div>
{% endblock %}

{{ form_row(form.name) }}

	PHP<!-- Main template -->
<?php echo $view['form']->setTheme($form, array('AppBundle:Form')); ?>

<?php echo $view['form']->row($form['name']); ?>

<!-- src/AppBundle/Resources/views/Form/_product_name_row.html.php -->
<div class="name_row">
 <?php echo $view['form']->label($form) ?>
 <?php echo $view['form']->errors($form) ?>
 <?php echo $view['form']->widget($form) ?>
</div>

Other common Customizations

So far, this recipe has shown you several different ways to customize a single
piece of how a form is rendered. The key is to customize a specific fragment that
corresponds to the portion of the form you want to control (see
naming form blocks).

In the next sections, you’ll see how you can make several common form customizations.
To apply these customizations, use one of the methods described in the
Form Theming section.

Customizing Error Output

注解

The Form component only handles how the validation errors are rendered,
and not the actual validation error messages. The error messages themselves
are determined by the validation constraints you apply to your objects.
For more information, see the chapter on validation.

There are many different ways to customize how errors are rendered when a
form is submitted with errors. The error messages for a field are rendered
when you use the form_errors helper:

	Twig{{ form_errors(form.age) }}

	PHP<?php echo $view['form']->errors($form['age']); ?>

By default, the errors are rendered inside an unordered list:

 This field is required

To override how errors are rendered for all fields, simply copy, paste
and customize the form_errors fragment.

	Twig{# form_errors.html.twig #}
{% block form_errors %}
 {% spaceless %}
 {% if errors|length > 0 %}

 {% for error in errors %}
 {{ error.message }}
 {% endfor %}

 {% endif %}
 {% endspaceless %}
{% endblock form_errors %}

	PHP<!-- form_errors.html.php -->
<?php if ($errors): ?>

 <?php foreach ($errors as $error): ?>
 <?php echo $error->getMessage() ?>
 <?php endforeach ?>

<?php endif ?>

小技巧

See Form Theming for how to apply this customization.

You can also customize the error output for just one specific field type.
To customize only the markup used for these errors, follow the same directions
as above but put the contents in a relative _errors block (or file in case
of PHP templates). For example: text_errors (or text_errors.html.php).

小技巧

See Form Fragment Naming to find out which specific block or file you
have to customize.

Certain errors that are more global to your form (i.e. not specific to just one
field) are rendered separately, usually at the top of your form:

	Twig{{ form_errors(form) }}

	PHP<?php echo $view['form']->render($form); ?>

To customize only the markup used for these errors, follow the same directions
as above, but now check if the compound variable is set to true. If it
is true, it means that what’s being currently rendered is a collection of
fields (e.g. a whole form), and not just an individual field.

	Twig{# form_errors.html.twig #}
{% block form_errors %}
 {% spaceless %}
 {% if errors|length > 0 %}
 {% if compound %}

 {% for error in errors %}
 {{ error.message }}
 {% endfor %}

 {% else %}
 {# ... display the errors for a single field #}
 {% endif %}
 {% endif %}
 {% endspaceless %}
{% endblock form_errors %}

	PHP<!-- form_errors.html.php -->
<?php if ($errors): ?>
 <?php if ($compound): ?>

 <?php foreach ($errors as $error): ?>
 <?php echo $error->getMessage() ?>
 <?php endforeach ?>

 <?php else: ?>
 <!-- ... render the errors for a single field -->
 <?php endif ?>
<?php endif ?>

Customizing the “Form Row”

When you can manage it, the easiest way to render a form field is via the
form_row function, which renders the label, errors and HTML widget of
a field. To customize the markup used for rendering all form field rows,
override the form_row fragment. For example, suppose you want to add a
class to the div element around each row:

	Twig{# form_row.html.twig #}
{% block form_row %}
 <div class="form_row">
 {{ form_label(form) }}
 {{ form_errors(form) }}
 {{ form_widget(form) }}
 </div>
{% endblock form_row %}

	PHP<!-- form_row.html.php -->
<div class="form_row">
 <?php echo $view['form']->label($form) ?>
 <?php echo $view['form']->errors($form) ?>
 <?php echo $view['form']->widget($form) ?>
</div>

小技巧

See Form Theming for how to apply this customization.

Adding a “Required” Asterisk to Field Labels

If you want to denote all of your required fields with a required asterisk (*),
you can do this by customizing the form_label fragment.

In Twig, if you’re making the form customization inside the same template as your
form, modify the use tag and add the following:

{% use 'form_div_layout.html.twig' with form_label as base_form_label %}

{% block form_label %}
 {{ block('base_form_label') }}

 {% if required %}
 *
 {% endif %}
{% endblock %}

In Twig, if you’re making the form customization inside a separate template, use
the following:

{% extends 'form_div_layout.html.twig' %}

{% block form_label %}
 {{ parent() }}

 {% if required %}
 *
 {% endif %}
{% endblock %}

When using PHP as a templating engine you have to copy the content from the
original template:

<!-- form_label.html.php -->

<!-- original content -->
<?php if ($required) { $label_attr['class'] = trim((isset($label_attr['class']) ? $label_attr['class'] : '').' required'); } ?>
<?php if (!$compound) { $label_attr['for'] = $id; } ?>
<?php if (!$label) { $label = $view['form']->humanize($name); } ?>
<label <?php foreach ($label_attr as $k => $v) { printf('%s="%s" ', $view->escape($k), $view->escape($v)); } ?>><?php echo $view->escape($view['translator']->trans($label, array(), $translation_domain)) ?></label>

<!-- customization -->
<?php if ($required) : ?>
 *
<?php endif ?>

小技巧

See Form Theming for how to apply this customization.

Using CSS only

By default, label tags of required fields are rendered with a
required CSS class. Thus, you can also add an asterisk using CSS only:

label.required:before {
 content: "* ";
}

Adding “help” Messages

You can also customize your form widgets to have an optional “help” message.

In Twig, if you’re making the form customization inside the same template as your
form, modify the use tag and add the following:

{% use 'form_div_layout.html.twig' with form_widget_simple as base_form_widget_simple %}

{% block form_widget_simple %}
 {{ block('base_form_widget_simple') }}

 {% if help is defined %}
 {{ help }}
 {% endif %}
{% endblock %}

In Twig, if you’re making the form customization inside a separate template, use
the following:

{% extends 'form_div_layout.html.twig' %}

{% block form_widget_simple %}
 {{ parent() }}

 {% if help is defined %}
 {{ help }}
 {% endif %}
{% endblock %}

When using PHP as a templating engine you have to copy the content from the
original template:

<!-- form_widget_simple.html.php -->

<!-- Original content -->
<input
 type="<?php echo isset($type) ? $view->escape($type) : 'text' ?>"
 <?php if (!empty($value)): ?>value="<?php echo $view->escape($value) ?>"<?php endif ?>
 <?php echo $view['form']->block($form, 'widget_attributes') ?>
/>

<!-- Customization -->
<?php if (isset($help)) : ?>
 <?php echo $view->escape($help) ?>
<?php endif ?>

To render a help message below a field, pass in a help variable:

	Twig{{ form_widget(form.title, {'help': 'foobar'}) }}

	PHP<?php echo $view['form']->widget($form['title'], array('help' => 'foobar')) ?>

小技巧

See Form Theming for how to apply this customization.

Using Form Variables

Most of the functions available for rendering different parts of a form (e.g.
the form widget, form label, form errors, etc.) also allow you to make certain
customizations directly. Look at the following example:

	Twig{# render a widget, but add a "foo" class to it #}
{{ form_widget(form.name, { 'attr': {'class': 'foo'} }) }}

	PHP<!-- render a widget, but add a "foo" class to it -->
<?php echo $view['form']->widget($form['name'], array(
 'attr' => array(
 'class' => 'foo',
),
)) ?>

The array passed as the second argument contains form “variables”. For
more details about this concept in Twig, see More about Form Variables.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Form

How to Use Data Transformers

You’ll often find the need to transform the data the user entered in a form into
something else for use in your program. You could easily do this manually in your
controller, but what if you want to use this specific form in different places?

Say you have a one-to-one relation of Task to Issue, e.g. a Task optionally has an
issue linked to it. Adding a listbox with all possible issues can eventually lead to
a really long listbox in which it is impossible to find something. You might
want to add a textbox instead, where the user can simply enter the issue number.

You could try to do this in your controller, but it’s not the best solution.
It would be better if this issue were automatically converted to an Issue object.
This is where Data Transformers come into play.

Creating the Transformer

First, create an IssueToNumberTransformer class - this class will be responsible
for converting to and from the issue number and the Issue object:

// src/Acme/TaskBundle/Form/DataTransformer/IssueToNumberTransformer.php
namespace Acme\TaskBundle\Form\DataTransformer;

use Symfony\Component\Form\DataTransformerInterface;
use Symfony\Component\Form\Exception\TransformationFailedException;
use Doctrine\Common\Persistence\ObjectManager;
use Acme\TaskBundle\Entity\Issue;

class IssueToNumberTransformer implements DataTransformerInterface
{
 /**
 * @var ObjectManager
 */
 private $om;

 /**
 * @param ObjectManager $om
 */
 public function __construct(ObjectManager $om)
 {
 $this->om = $om;
 }

 /**
 * Transforms an object (issue) to a string (number).
 *
 * @param Issue|null $issue
 * @return string
 */
 public function transform($issue)
 {
 if (null === $issue) {
 return "";
 }

 return $issue->getNumber();
 }

 /**
 * Transforms a string (number) to an object (issue).
 *
 * @param string $number
 *
 * @return Issue|null
 *
 * @throws TransformationFailedException if object (issue) is not found.
 */
 public function reverseTransform($number)
 {
 if (!$number) {
 return null;
 }

 $issue = $this->om
 ->getRepository('AcmeTaskBundle:Issue')
 ->findOneBy(array('number' => $number))
 ;

 if (null === $issue) {
 throw new TransformationFailedException(sprintf(
 'An issue with number "%s" does not exist!',
 $number
));
 }

 return $issue;
 }
}

小技巧

If you want a new issue to be created when an unknown number is entered, you
can instantiate it rather than throwing the TransformationFailedException.

注解

When null is passed to the transform() method, your transformer
should return an equivalent value of the type it is transforming to (e.g.
an empty string, 0 for integers or 0.0 for floats).

Using the Transformer

Now that you have the transformer built, you just need to add it to your
issue field in some form.

You can also use transformers without creating a new custom form type
by calling addModelTransformer (or addViewTransformer - see
Model and View Transformers) on any field builder:

use Symfony\Component\Form\FormBuilderInterface;
use Acme\TaskBundle\Form\DataTransformer\IssueToNumberTransformer;

class TaskType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 // ...

 // this assumes that the entity manager was passed in as an option
 $entityManager = $options['em'];
 $transformer = new IssueToNumberTransformer($entityManager);

 // add a normal text field, but add your transformer to it
 $builder->add(
 $builder->create('issue', 'text')
 ->addModelTransformer($transformer)
);
 }

 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $resolver
 ->setDefaults(array(
 'data_class' => 'Acme\TaskBundle\Entity\Task',
))
 ->setRequired(array(
 'em',
))
 ->setAllowedTypes(array(
 'em' => 'Doctrine\Common\Persistence\ObjectManager',
));

 // ...
 }

 // ...
}

This example requires that you pass in the entity manager as an option
when creating your form. Later, you’ll learn how you could create a custom
issue field type to avoid needing to do this in your controller:

$taskForm = $this->createForm(new TaskType(), $task, array(
 'em' => $this->getDoctrine()->getManager(),
));

Cool, you’re done! Your user will be able to enter an issue number into the
text field and it will be transformed back into an Issue object. This means
that, after a successful submission, the Form framework will pass a real Issue
object to Task::setIssue() instead of the issue number.

If the issue isn’t found, a form error will be created for that field and
its error message can be controlled with the invalid_message field option.

警告

Notice that adding a transformer requires using a slightly more complicated
syntax when adding the field. The following is wrong, as the transformer
would be applied to the entire form, instead of just this field:

// THIS IS WRONG - TRANSFORMER WILL BE APPLIED TO THE ENTIRE FORM
// see above example for correct code
$builder->add('issue', 'text')
 ->addModelTransformer($transformer);

Model and View Transformers

In the above example, the transformer was used as a “model” transformer.
In fact, there are two different types of transformers and three different
types of underlying data.

[image: ../../_images/DataTransformersTypes.png]
In any form, the three different types of data are:

	Model data - This is the data in the format used in your application
(e.g. an Issue object). If you call Form::getData or Form::setData,
you’re dealing with the “model” data.

	Norm Data - This is a normalized version of your data, and is commonly
the same as your “model” data (though not in our example). It’s not commonly
used directly.

	View Data - This is the format that’s used to fill in the form fields
themselves. It’s also the format in which the user will submit the data. When
you call Form::submit($data), the $data is in the “view” data format.

The two different types of transformers help convert to and from each of these
types of data:

	Model transformers:

	
	transform: “model data” => “norm data”

	reverseTransform: “norm data” => “model data”

	View transformers:

	
	transform: “norm data” => “view data”

	reverseTransform: “view data” => “norm data”

Which transformer you need depends on your situation.

To use the view transformer, call addViewTransformer.

So why Use the Model Transformer?

In this example, the field is a text field, and a text field is always
expected to be a simple, scalar format in the “norm” and “view” formats. For
this reason, the most appropriate transformer was the “model” transformer
(which converts to/from the norm format - string issue number - to the model
format - Issue object).

The difference between the transformers is subtle and you should always think
about what the “norm” data for a field should really be. For example, the
“norm” data for a text field is a string, but is a DateTime object
for a date field.

Using Transformers in a custom Field Type

In the above example, you applied the transformer to a normal text field.
This was easy, but has two downsides:

1) You need to always remember to apply the transformer whenever you’re adding
a field for issue numbers.

2) You need to worry about passing in the em option whenever you’re creating
a form that uses the transformer.

Because of these, you may choose to create a custom field type.
First, create the custom field type class:

// src/Acme/TaskBundle/Form/Type/IssueSelectorType.php
namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Acme\TaskBundle\Form\DataTransformer\IssueToNumberTransformer;
use Doctrine\Common\Persistence\ObjectManager;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class IssueSelectorType extends AbstractType
{
 /**
 * @var ObjectManager
 */
 private $om;

 /**
 * @param ObjectManager $om
 */
 public function __construct(ObjectManager $om)
 {
 $this->om = $om;
 }

 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $transformer = new IssueToNumberTransformer($this->om);
 $builder->addModelTransformer($transformer);
 }

 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $resolver->setDefaults(array(
 'invalid_message' => 'The selected issue does not exist',
));
 }

 public function getParent()
 {
 return 'text';
 }

 public function getName()
 {
 return 'issue_selector';
 }
}

Next, register your type as a service and tag it with form.type so that
it’s recognized as a custom field type:

	YAMLservices:
 acme_demo.type.issue_selector:
 class: Acme\TaskBundle\Form\Type\IssueSelectorType
 arguments: ["@doctrine.orm.entity_manager"]
 tags:
 - { name: form.type, alias: issue_selector }

	XML<service id="acme_demo.type.issue_selector" class="Acme\TaskBundle\Form\Type\IssueSelectorType">
 <argument type="service" id="doctrine.orm.entity_manager"/>
 <tag name="form.type" alias="issue_selector" />
</service>

	PHP$container
 ->setDefinition('acme_demo.type.issue_selector', array(
 new Reference('doctrine.orm.entity_manager'),
))
 ->addTag('form.type', array(
 'alias' => 'issue_selector',
))
;

Now, whenever you need to use your special issue_selector field type,
it’s quite easy:

// src/Acme/TaskBundle/Form/Type/TaskType.php
namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;

class TaskType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('task')
 ->add('dueDate', null, array('widget' => 'single_text'))
 ->add('issue', 'issue_selector');
 }

 public function getName()
 {
 return 'task';
 }
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Form

How to Dynamically Modify Forms Using Form Events

Often times, a form can’t be created statically. In this entry, you’ll learn
how to customize your form based on three common use-cases:

	Customizing your Form Based on the Underlying Data

	Example: you have a “Product” form and need to modify/add/remove a field

	based on the data on the underlying Product being edited.

	How to dynamically Generate Forms Based on user Data

Example: you create a “Friend Message” form and need to build a drop-down
that contains only users that are friends with the current authenticated
user.

	Dynamic Generation for Submitted Forms

Example: on a registration form, you have a “country” field and a “state”
field which should populate dynamically based on the value in the “country”
field.

If you wish to learn more about the basics behind form events, you can
take a look at the Form Events
documentation.

Customizing your Form Based on the Underlying Data

Before jumping right into dynamic form generation, hold on and recall what
a bare form class looks like:

// src/AppBundle/Form/Type/ProductType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class ProductType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder->add('name');
 $builder->add('price');
 }

 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $resolver->setDefaults(array(
 'data_class' => 'AppBundle\Entity\Product'
));
 }

 public function getName()
 {
 return 'product';
 }
}

注解

If this particular section of code isn’t already familiar to you, you
probably need to take a step back and first review the Forms chapter
before proceeding.

Assume for a moment that this form utilizes an imaginary “Product” class
that has only two properties (“name” and “price”). The form generated from
this class will look the exact same regardless if a new Product is being created
or if an existing product is being edited (e.g. a product fetched from the database).

Suppose now, that you don’t want the user to be able to change the name value
once the object has been created. To do this, you can rely on Symfony’s
EventDispatcher
system to analyze the data on the object and modify the form based on the
Product object’s data. In this entry, you’ll learn how to add this level of
flexibility to your forms.

Adding an Event Listener to a Form Class

So, instead of directly adding that name widget, the responsibility of
creating that particular field is delegated to an event listener:

// src/AppBundle/Form/Type/ProductType.php
namespace AppBundle\Form\Type;

// ...
use Symfony\Component\Form\FormEvent;
use Symfony\Component\Form\FormEvents;

class ProductType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder->add('price');

 $builder->addEventListener(FormEvents::PRE_SET_DATA, function (FormEvent $event) {
 // ... adding the name field if needed
 });
 }

 // ...
}

The goal is to create a name field only if the underlying Product
object is new (e.g. hasn’t been persisted to the database). Based on that,
the event listener might look like the following:

// ...
public function buildForm(FormBuilderInterface $builder, array $options)
{
 // ...
 $builder->addEventListener(FormEvents::PRE_SET_DATA, function (FormEvent $event) {
 $product = $event->getData();
 $form = $event->getForm();

 // check if the Product object is "new"
 // If no data is passed to the form, the data is "null".
 // This should be considered a new "Product"
 if (!$product || null === $product->getId()) {
 $form->add('name', 'text');
 }
 });
}

2.2 新版功能: The ability to pass a string into
FormInterface::add [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_add]
was introduced in Symfony 2.2.

注解

The FormEvents::PRE_SET_DATA line actually resolves to the string
form.pre_set_data. FormEvents [http://api.symfony.com/master/Symfony/Component/Form/FormEvents.html]
serves an organizational purpose. It is a centralized location in which
you can find all of the various form events available. You can view the
full list of form events via the
FormEvents [http://api.symfony.com/master/Symfony/Component/Form/FormEvents.html] class.

Adding an Event Subscriber to a Form Class

For better reusability or if there is some heavy logic in your event listener,
you can also move the logic for creating the name field to an
event subscriber:

// src/AppBundle/Form/Type/ProductType.php
namespace AppBundle\Form\Type;

// ...
use AppBundle\Form\EventListener\AddNameFieldSubscriber;

class ProductType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder->add('price');

 $builder->addEventSubscriber(new AddNameFieldSubscriber());
 }

 // ...
}

Now the logic for creating the name field resides in it own subscriber
class:

// src/AppBundle/Form/EventListener/AddNameFieldSubscriber.php
namespace AppBundle\Form\EventListener;

use Symfony\Component\Form\FormEvent;
use Symfony\Component\Form\FormEvents;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;

class AddNameFieldSubscriber implements EventSubscriberInterface
{
 public static function getSubscribedEvents()
 {
 // Tells the dispatcher that you want to listen on the form.pre_set_data
 // event and that the preSetData method should be called.
 return array(FormEvents::PRE_SET_DATA => 'preSetData');
 }

 public function preSetData(FormEvent $event)
 {
 $product = $event->getData();
 $form = $event->getForm();

 if (!$product || null === $product->getId()) {
 $form->add('name', 'text');
 }
 }
}

How to dynamically Generate Forms Based on user Data

Sometimes you want a form to be generated dynamically based not only on data
from the form but also on something else - like some data from the current user.
Suppose you have a social website where a user can only message people marked
as friends on the website. In this case, a “choice list” of whom to message
should only contain users that are the current user’s friends.

Creating the Form Type

Using an event listener, your form might look like this:

// src/AppBundle/Form/Type/FriendMessageFormType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\Form\FormEvents;
use Symfony\Component\Form\FormEvent;
use Symfony\Component\Security\Core\SecurityContext;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class FriendMessageFormType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('subject', 'text')
 ->add('body', 'textarea')
 ;
 $builder->addEventListener(FormEvents::PRE_SET_DATA, function (FormEvent $event) {
 // ... add a choice list of friends of the current application user
 });
 }

 public function getName()
 {
 return 'friend_message';
 }

 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 }
}

The problem is now to get the current user and create a choice field that
contains only this user’s friends.

Luckily it is pretty easy to inject a service inside of the form. This can be
done in the constructor:

private $securityContext;

public function __construct(SecurityContext $securityContext)
{
 $this->securityContext = $securityContext;
}

注解

You might wonder, now that you have access to the User (through the security
context), why not just use it directly in buildForm and omit the
event listener? This is because doing so in the buildForm method
would result in the whole form type being modified and not just this
one form instance. This may not usually be a problem, but technically
a single form type could be used on a single request to create many forms
or fields.

Customizing the Form Type

Now that you have all the basics in place you can take advantage of the SecurityContext
and fill in the listener logic:

// src/AppBundle/FormType/FriendMessageFormType.php

use Symfony\Component\Security\Core\SecurityContext;
use Doctrine\ORM\EntityRepository;
// ...

class FriendMessageFormType extends AbstractType
{
 private $securityContext;

 public function __construct(SecurityContext $securityContext)
 {
 $this->securityContext = $securityContext;
 }

 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('subject', 'text')
 ->add('body', 'textarea')
 ;

 // grab the user, do a quick sanity check that one exists
 $user = $this->securityContext->getToken()->getUser();
 if (!$user) {
 throw new \LogicException(
 'The FriendMessageFormType cannot be used without an authenticated user!'
);
 }

 $builder->addEventListener(
 FormEvents::PRE_SET_DATA,
 function (FormEvent $event) use ($user) {
 $form = $event->getForm();

 $formOptions = array(
 'class' => 'AppBundle\Entity\User',
 'property' => 'fullName',
 'query_builder' => function (EntityRepository $er) use ($user) {
 // build a custom query
 // return $er->createQueryBuilder('u')->addOrderBy('fullName', 'DESC');

 // or call a method on your repository that returns the query builder
 // the $er is an instance of your UserRepository
 // return $er->createOrderByFullNameQueryBuilder();
 },
);

 // create the field, this is similar the $builder->add()
 // field name, field type, data, options
 $form->add('friend', 'entity', $formOptions);
 }
);
 }

 // ...
}

注解

The multiple and expanded form options will default to false
because the type of the friend field is entity.

Using the Form

Our form is now ready to use and there are two possible ways to use it inside
of a controller:

	create it manually and remember to pass the security context to it;

or

	define it as a service.

a) Creating the Form manually

This is very simple, and is probably the better approach unless you’re using
your new form type in many places or embedding it into other forms:

class FriendMessageController extends Controller
{
 public function newAction(Request $request)
 {
 $securityContext = $this->container->get('security.context');
 $form = $this->createForm(
 new FriendMessageFormType($securityContext)
);

 // ...
 }
}

b) Defining the Form as a Service

To define your form as a service, just create a normal service and then tag
it with form.type.

	YAML# app/config/config.yml
services:
 app.form.friend_message:
 class: AppBundle\Form\Type\FriendMessageFormType
 arguments: ["@security.context"]
 tags:
 - { name: form.type, alias: friend_message }

	XML<!-- app/config/config.xml -->
<services>
 <service id="app.form.friend_message" class="AppBundle\Form\Type\FriendMessageFormType">
 <argument type="service" id="security.context" />
 <tag name="form.type" alias="friend_message" />
 </service>
</services>

	PHP// app/config/config.php
$definition = new Definition('AppBundle\Form\Type\FriendMessageFormType');
$definition->addTag('form.type', array('alias' => 'friend_message'));
$container->setDefinition(
 'app.form.friend_message',
 $definition,
 array('security.context')
);

If you wish to create it from within a controller or any other service that has
access to the form factory, you then use:

use Symfony\Component\DependencyInjection\ContainerAware;

class FriendMessageController extends ContainerAware
{
 public function newAction(Request $request)
 {
 $form = $this->get('form.factory')->create('friend_message');

 // ...
 }
}

If you extend the Symfony\Bundle\FrameworkBundle\Controller\Controller class, you can simply call:

$form = $this->createForm('friend_message');

You can also easily embed the form type into another form:

// inside some other "form type" class
public function buildForm(FormBuilderInterface $builder, array $options)
{
 $builder->add('message', 'friend_message');
}

Dynamic Generation for Submitted Forms

Another case that can appear is that you want to customize the form specific to
the data that was submitted by the user. For example, imagine you have a registration
form for sports gatherings. Some events will allow you to specify your preferred
position on the field. This would be a choice field for example. However the
possible choices will depend on each sport. Football will have attack, defense,
goalkeeper etc... Baseball will have a pitcher but will not have a goalkeeper. You
will need the correct options in order for validation to pass.

The meetup is passed as an entity field to the form. So we can access each
sport like this:

// src/AppBundle/Form/Type/SportMeetupType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\Form\FormEvent;
use Symfony\Component\Form\FormEvents;
// ...

class SportMeetupType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('sport', 'entity', array(
 'class' => 'AppBundle:Sport',
 'empty_value' => '',
))
 ;

 $builder->addEventListener(
 FormEvents::PRE_SET_DATA,
 function (FormEvent $event) {
 $form = $event->getForm();

 // this would be your entity, i.e. SportMeetup
 $data = $event->getData();

 $sport = $data->getSport();
 $positions = null === $sport ? array() : $sport->getAvailablePositions();

 $form->add('position', 'entity', array(
 'class' => 'AppBundle:Position',
 'empty_value' => '',
 'choices' => $positions,
));
 }
);
 }

 // ...
}

When you’re building this form to display to the user for the first time,
then this example works perfectly.

However, things get more difficult when you handle the form submission. This
is because the PRE_SET_DATA event tells us the data that you’re starting
with (e.g. an empty SportMeetup object), not the submitted data.

On a form, we can usually listen to the following events:

	PRE_SET_DATA

	POST_SET_DATA

	PRE_SUBMIT

	SUBMIT

	POST_SUBMIT

2.3 新版功能: The events PRE_SUBMIT, SUBMIT and POST_SUBMIT were introduced
in Symfony 2.3. Before, they were named PRE_BIND, BIND and POST_BIND.

2.2.6 新版功能: The behavior of the POST_SUBMIT event changed slightly in 2.2.6, which the
below example uses.

The key is to add a POST_SUBMIT listener to the field that your new field
depends on. If you add a POST_SUBMIT listener to a form child (e.g. sport),
and add new children to the parent form, the Form component will detect the
new field automatically and map it to the submitted client data.

The type would now look like:

// src/AppBundle/Form/Type/SportMeetupType.php
namespace AppBundle\Form\Type;

// ...
use Symfony\Component\Form\FormInterface;
use AppBundle\Entity\Sport;

class SportMeetupType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('sport', 'entity', array(
 'class' => 'AppBundle:Sport',
 'empty_value' => '',
));
 ;

 $formModifier = function (FormInterface $form, Sport $sport = null) {
 $positions = null === $sport ? array() : $sport->getAvailablePositions();

 $form->add('position', 'entity', array(
 'class' => 'AppBundle:Position',
 'empty_value' => '',
 'choices' => $positions,
));
 };

 $builder->addEventListener(
 FormEvents::PRE_SET_DATA,
 function (FormEvent $event) use ($formModifier) {
 // this would be your entity, i.e. SportMeetup
 $data = $event->getData();

 $formModifier($event->getForm(), $data->getSport());
 }
);

 $builder->get('sport')->addEventListener(
 FormEvents::POST_SUBMIT,
 function (FormEvent $event) use ($formModifier) {
 // It's important here to fetch $event->getForm()->getData(), as
 // $event->getData() will get you the client data (that is, the ID)
 $sport = $event->getForm()->getData();

 // since we've added the listener to the child, we'll have to pass on
 // the parent to the callback functions!
 $formModifier($event->getForm()->getParent(), $sport);
 }
);
 }

 // ...
}

You can see that you need to listen on these two events and have different
callbacks only because in two different scenarios, the data that you can use is
available in different events. Other than that, the listeners always perform
exactly the same things on a given form.

One piece that is still missing is the client-side updating of your form after
the sport is selected. This should be handled by making an AJAX call back to
your application. Assume that you have a sport meetup creation controller:

// src/AppBundle/Controller/MeetupController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Request;
use AppBundle\Entity\SportMeetup;
use AppBundle\Form\Type\SportMeetupType;
// ...

class MeetupController extends Controller
{
 public function createAction(Request $request)
 {
 $meetup = new SportMeetup();
 $form = $this->createForm(new SportMeetupType(), $meetup);
 $form->handleRequest($request);
 if ($form->isValid()) {
 // ... save the meetup, redirect etc.
 }

 return $this->render(
 'AppBundle:Meetup:create.html.twig',
 array('form' => $form->createView())
);
 }

 // ...
}

The associated template uses some JavaScript to update the position form
field according to the current selection in the sport field:

	Twig{# src/AppBundle/Resources/views/Meetup/create.html.twig #}
{{ form_start(form) }}
 {{ form_row(form.sport) }} {# <select id="meetup_sport" ... #}
 {{ form_row(form.position) }} {# <select id="meetup_position" ... #}
 {# ... #}
{{ form_end(form) }}

<script>
var $sport = $('#meetup_sport');
// When sport gets selected ...
$sport.change(function() {
 // ... retrieve the corresponding form.
 var $form = $(this).closest('form');
 // Simulate form data, but only include the selected sport value.
 var data = {};
 data[$sport.attr('name')] = $sport.val();
 // Submit data via AJAX to the form's action path.
 $.ajax({
 url : $form.attr('action'),
 type: $form.attr('method'),
 data : data,
 success: function(html) {
 // Replace current position field ...
 $('#meetup_position').replaceWith(
 // ... with the returned one from the AJAX response.
 $(html).find('#meetup_position')
);
 // Position field now displays the appropriate positions.
 }
 });
});
</script>

	PHP<!-- src/AppBundle/Resources/views/Meetup/create.html.php -->
<?php echo $view['form']->start($form) ?>
 <?php echo $view['form']->row($form['sport']) ?> <!-- <select id="meetup_sport" ... -->
 <?php echo $view['form']->row($form['position']) ?> <!-- <select id="meetup_position" ... -->
 <!-- ... -->
<?php echo $view['form']->end($form) ?>

<script>
var $sport = $('#meetup_sport');
// When sport gets selected ...
$sport.change(function() {
 // ... retrieve the corresponding form.
 var $form = $(this).closest('form');
 // Simulate form data, but only include the selected sport value.
 var data = {};
 data[$sport.attr('name')] = $sport.val();
 // Submit data via AJAX to the form's action path.
 $.ajax({
 url : $form.attr('action'),
 type: $form.attr('method'),
 data : data,
 success: function(html) {
 // Replace current position field ...
 $('#meetup_position').replaceWith(
 // ... with the returned one from the AJAX response.
 $(html).find('#meetup_position')
);
 // Position field now displays the appropriate positions.
 }
 });
});
</script>

The major benefit of submitting the whole form to just extract the updated
position field is that no additional server-side code is needed; all the
code from above to generate the submitted form can be reused.

Suppressing Form Validation

To suppress form validation you can use the POST_SUBMIT event and prevent
the ValidationListener [http://api.symfony.com/master/Symfony/Component/Form/Extension/Validator/EventListener/ValidationListener.html]
from being called.

The reason for needing to do this is that even if you set group_validation
to false there are still some integrity checks executed. For example
an uploaded file will still be checked to see if it is too large and the form
will still check to see if non-existing fields were submitted. To disable
all of this, use a listener:

use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\Form\FormEvents;
use Symfony\Component\Form\FormEvent;

public function buildForm(FormBuilderInterface $builder, array $options)
{
 $builder->addEventListener(FormEvents::POST_SUBMIT, function (FormEvent $event) {
 $event->stopPropagation();
 }, 900); // Always set a higher priority than ValidationListener

 // ...
}

警告

By doing this, you may accidentally disable something more than just form
validation, since the POST_SUBMIT event may have other listeners.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Form

How to Embed a Collection of Forms

In this entry, you’ll learn how to create a form that embeds a collection
of many other forms. This could be useful, for example, if you had a Task
class and you wanted to edit/create/remove many Tag objects related to
that Task, right inside the same form.

注解

In this entry, it’s loosely assumed that you’re using Doctrine as your
database store. But if you’re not using Doctrine (e.g. Propel or just
a database connection), it’s all very similar. There are only a few parts
of this tutorial that really care about “persistence”.

If you are using Doctrine, you’ll need to add the Doctrine metadata,
including the ManyToMany association mapping definition on the Task’s
tags property.

First, suppose that each Task belongs to multiple Tag objects. Start
by creating a simple Task class:

// src/Acme/TaskBundle/Entity/Task.php
namespace Acme\TaskBundle\Entity;

use Doctrine\Common\Collections\ArrayCollection;

class Task
{
 protected $description;

 protected $tags;

 public function __construct()
 {
 $this->tags = new ArrayCollection();
 }

 public function getDescription()
 {
 return $this->description;
 }

 public function setDescription($description)
 {
 $this->description = $description;
 }

 public function getTags()
 {
 return $this->tags;
 }
}

注解

The ArrayCollection is specific to Doctrine and is basically the
same as using an array (but it must be an ArrayCollection if
you’re using Doctrine).

Now, create a Tag class. As you saw above, a Task can have many Tag
objects:

// src/Acme/TaskBundle/Entity/Tag.php
namespace Acme\TaskBundle\Entity;

class Tag
{
 public $name;
}

小技巧

The name property is public here, but it can just as easily be protected
or private (but then it would need getName and setName methods).

Then, create a form class so that a Tag object can be modified by the user:

// src/Acme/TaskBundle/Form/Type/TagType.php
namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class TagType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder->add('name');
 }

 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $resolver->setDefaults(array(
 'data_class' => 'Acme\TaskBundle\Entity\Tag',
));
 }

 public function getName()
 {
 return 'tag';
 }
}

With this, you have enough to render a tag form by itself. But since the end
goal is to allow the tags of a Task to be modified right inside the task
form itself, create a form for the Task class.

Notice that you embed a collection of TagType forms using the
collection field type:

// src/Acme/TaskBundle/Form/Type/TaskType.php
namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class TaskType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder->add('description');

 $builder->add('tags', 'collection', array('type' => new TagType()));
 }

 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $resolver->setDefaults(array(
 'data_class' => 'Acme\TaskBundle\Entity\Task',
));
 }

 public function getName()
 {
 return 'task';
 }
}

In your controller, you’ll now initialize a new instance of TaskType:

// src/Acme/TaskBundle/Controller/TaskController.php
namespace Acme\TaskBundle\Controller;

use Acme\TaskBundle\Entity\Task;
use Acme\TaskBundle\Entity\Tag;
use Acme\TaskBundle\Form\Type\TaskType;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class TaskController extends Controller
{
 public function newAction(Request $request)
 {
 $task = new Task();

 // dummy code - this is here just so that the Task has some tags
 // otherwise, this isn't an interesting example
 $tag1 = new Tag();
 $tag1->name = 'tag1';
 $task->getTags()->add($tag1);
 $tag2 = new Tag();
 $tag2->name = 'tag2';
 $task->getTags()->add($tag2);
 // end dummy code

 $form = $this->createForm(new TaskType(), $task);

 $form->handleRequest($request);

 if ($form->isValid()) {
 // ... maybe do some form processing, like saving the Task and Tag objects
 }

 return $this->render('AcmeTaskBundle:Task:new.html.twig', array(
 'form' => $form->createView(),
));
 }
}

The corresponding template is now able to render both the description
field for the task form as well as all the TagType forms for any tags
that are already related to this Task. In the above controller, I added
some dummy code so that you can see this in action (since a Task has
zero tags when first created).

	Twig{# src/Acme/TaskBundle/Resources/views/Task/new.html.twig #}

{# ... #}

{{ form_start(form) }}
 {# render the task's only field: description #}
 {{ form_row(form.description) }}

 <h3>Tags</h3>
 <ul class="tags">
 {# iterate over each existing tag and render its only field: name #}
 {% for tag in form.tags %}
 {{ form_row(tag.name) }}
 {% endfor %}

{{ form_end(form) }}

{# ... #}

	PHP<!-- src/Acme/TaskBundle/Resources/views/Task/new.html.php -->

<!-- ... -->

<?php echo $view['form']->start($form) ?>
 <!-- render the task's only field: description -->
 <?php echo $view['form']->row($form['description']) ?>

 <h3>Tags</h3>
 <ul class="tags">
 <?php foreach($form['tags'] as $tag): ?>
 <?php echo $view['form']->row($tag['name']) ?>
 <?php endforeach ?>

<?php echo $view['form']->end($form) ?>

<!-- ... -->

When the user submits the form, the submitted data for the tags field are
used to construct an ArrayCollection of Tag objects, which is then set
on the tag field of the Task instance.

The tags collection is accessible naturally via $task->getTags()
and can be persisted to the database or used however you need.

So far, this works great, but this doesn’t allow you to dynamically add new
tags or delete existing tags. So, while editing existing tags will work
great, your user can’t actually add any new tags yet.

警告

In this entry, you embed only one collection, but you are not limited
to this. You can also embed nested collection as many level down as you
like. But if you use Xdebug in your development setup, you may receive
a Maximum function nesting level of '100' reached, aborting! error.
This is due to the xdebug.max_nesting_level PHP setting, which defaults
to 100.

This directive limits recursion to 100 calls which may not be enough for
rendering the form in the template if you render the whole form at
once (e.g form_widget(form)). To fix this you can set this directive
to a higher value (either via a php.ini file or via ini_set [http://php.net/manual/en/function.ini-set.php],
for example in app/autoload.php) or render each form field by hand
using form_row.

Allowing “new” Tags with the “Prototype”

Allowing the user to dynamically add new tags means that you’ll need to
use some JavaScript. Previously you added two tags to your form in the controller.
Now let the user add as many tag forms as they need directly in the browser.
This will be done through a bit of JavaScript.

The first thing you need to do is to let the form collection know that it will
receive an unknown number of tags. So far you’ve added two tags and the form
type expects to receive exactly two, otherwise an error will be thrown:
This form should not contain extra fields. To make this flexible,
add the allow_add option to your collection field:

// src/Acme/TaskBundle/Form/Type/TaskType.php

// ...
use Symfony\Component\Form\FormBuilderInterface;

public function buildForm(FormBuilderInterface $builder, array $options)
{
 $builder->add('description');

 $builder->add('tags', 'collection', array(
 'type' => new TagType(),
 'allow_add' => true,
));
}

In addition to telling the field to accept any number of submitted objects, the
allow_add also makes a “prototype” variable available to you. This “prototype”
is a little “template” that contains all the HTML to be able to render any
new “tag” forms. To render it, make the following change to your template:

	Twig<ul class="tags" data-prototype="{{ form_widget(form.tags.vars.prototype)|e }}">
 ...

	PHP<ul class="tags" data-prototype="<?php
 echo $view->escape($view['form']->row($form['tags']->vars['prototype']))
?>">
 ...

注解

If you render your whole “tags” sub-form at once (e.g. form_row(form.tags)),
then the prototype is automatically available on the outer div as
the data-prototype attribute, similar to what you see above.

小技巧

The form.tags.vars.prototype is a form element that looks and feels just
like the individual form_widget(tag) elements inside your for loop.
This means that you can call form_widget, form_row or form_label
on it. You could even choose to render only one of its fields (e.g. the
name field):

{{ form_widget(form.tags.vars.prototype.name)|e }}

On the rendered page, the result will look something like this:

<ul class="tags" data-prototype="<div><label class=" required">__name__</label><div id="task_tags___name__"><div><label for="task_tags___name___name" class=" required">Name</label><input type="text" id="task_tags___name___name" name="task[tags][__name__][name]" required="required" maxlength="255" /></div></div></div>">

The goal of this section will be to use JavaScript to read this attribute
and dynamically add new tag forms when the user clicks a “Add a tag” link.
To make things simple, this example uses jQuery and assumes you have it included
somewhere on your page.

Add a script tag somewhere on your page so you can start writing some JavaScript.

First, add a link to the bottom of the “tags” list via JavaScript. Second,
bind to the “click” event of that link so you can add a new tag form (addTagForm
will be show next):

var $collectionHolder;

// setup an "add a tag" link
var $addTagLink = $('Add a tag');
var $newLinkLi = $('').append($addTagLink);

jQuery(document).ready(function() {
 // Get the ul that holds the collection of tags
 $collectionHolder = $('ul.tags');

 // add the "add a tag" anchor and li to the tags ul
 $collectionHolder.append($newLinkLi);

 // count the current form inputs we have (e.g. 2), use that as the new
 // index when inserting a new item (e.g. 2)
 $collectionHolder.data('index', $collectionHolder.find(':input').length);

 $addTagLink.on('click', function(e) {
 // prevent the link from creating a "#" on the URL
 e.preventDefault();

 // add a new tag form (see next code block)
 addTagForm($collectionHolder, $newLinkLi);
 });
});

The addTagForm function’s job will be to use the data-prototype attribute
to dynamically add a new form when this link is clicked. The data-prototype
HTML contains the tag text input element with a name of task[tags][__name__][name]
and id of task_tags___name___name. The __name__ is a little “placeholder”,
which you’ll replace with a unique, incrementing number (e.g. task[tags][3][name]).

The actual code needed to make this all work can vary quite a bit, but here’s
one example:

function addTagForm($collectionHolder, $newLinkLi) {
 // Get the data-prototype explained earlier
 var prototype = $collectionHolder.data('prototype');

 // get the new index
 var index = $collectionHolder.data('index');

 // Replace '__name__' in the prototype's HTML to
 // instead be a number based on how many items we have
 var newForm = prototype.replace(/__name__/g, index);

 // increase the index with one for the next item
 $collectionHolder.data('index', index + 1);

 // Display the form in the page in an li, before the "Add a tag" link li
 var $newFormLi = $('').append(newForm);
 $newLinkLi.before($newFormLi);
}

注解

It is better to separate your JavaScript in real JavaScript files than
to write it inside the HTML as is done here.

Now, each time a user clicks the Add a tag link, a new sub form will
appear on the page. When the form is submitted, any new tag forms will be converted
into new Tag objects and added to the tags property of the Task object.

参见

You can find a working example in this JSFiddle [http://jsfiddle.net/847Kf/4/].

To make handling these new tags easier, add an “adder” and a “remover” method
for the tags in the Task class:

// src/Acme/TaskBundle/Entity/Task.php
namespace Acme\TaskBundle\Entity;

// ...
class Task
{
 // ...

 public function addTag(Tag $tag)
 {
 $this->tags->add($tag);
 }

 public function removeTag(Tag $tag)
 {
 // ...
 }
}

Next, add a by_reference option to the tags field and set it to false:

// src/Acme/TaskBundle/Form/Type/TaskType.php

// ...
public function buildForm(FormBuilderInterface $builder, array $options)
{
 // ...

 $builder->add('tags', 'collection', array(
 // ...
 'by_reference' => false,
));
}

With these two changes, when the form is submitted, each new Tag object
is added to the Task class by calling the addTag method. Before this
change, they were added internally by the form by calling $task->getTags()->add($tag).
That was just fine, but forcing the use of the “adder” method makes handling
these new Tag objects easier (especially if you’re using Doctrine, which
we talk about next!).

警告

You have to create both addTag and removeTag methods,
otherwise the form will still use setTag even if by_reference is false.
You’ll learn more about the removeTag method later in this article.

Doctrine: Cascading Relations and saving the “Inverse” side

To save the new tags with Doctrine, you need to consider a couple more
things. First, unless you iterate over all of the new Tag objects and
call $em->persist($tag) on each, you’ll receive an error from
Doctrine:

A new entity was found through the relationship
Acme\TaskBundle\Entity\Task#tags that was not configured to
cascade persist operations for entity...

To fix this, you may choose to “cascade” the persist operation automatically
from the Task object to any related tags. To do this, add the cascade
option to your ManyToMany metadata:

	Annotations// src/Acme/TaskBundle/Entity/Task.php

// ...

/**
 * @ORM\ManyToMany(targetEntity="Tag", cascade={"persist"})
 */
protected $tags;

	YAML# src/Acme/TaskBundle/Resources/config/doctrine/Task.orm.yml
Acme\TaskBundle\Entity\Task:
 type: entity
 # ...
 oneToMany:
 tags:
 targetEntity: Tag
 cascade: [persist]

	XML<!-- src/Acme/TaskBundle/Resources/config/doctrine/Task.orm.xml -->
<doctrine-mapping xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://doctrine-project.org/schemas/orm/doctrine-mapping
 http://doctrine-project.org/schemas/orm/doctrine-mapping.xsd">

 <entity name="Acme\TaskBundle\Entity\Task">
 <!-- ... -->
 <one-to-many field="tags" target-entity="Tag">
 <cascade>
 <cascade-persist />
 </cascade>
 </one-to-many>
 </entity>
</doctrine-mapping>

A second potential issue deals with the Owning Side and Inverse Side [http://docs.doctrine-project.org/en/latest/reference/unitofwork-associations.html]
of Doctrine relationships. In this example, if the “owning” side of the
relationship is “Task”, then persistence will work fine as the tags are
properly added to the Task. However, if the owning side is on “Tag”, then
you’ll need to do a little bit more work to ensure that the correct side
of the relationship is modified.

The trick is to make sure that the single “Task” is set on each “Tag”.
One easy way to do this is to add some extra logic to addTag(),
which is called by the form type since by_reference is set to
false:

// src/Acme/TaskBundle/Entity/Task.php

// ...
public function addTag(Tag $tag)
{
 $tag->addTask($this);

 $this->tags->add($tag);
}

Inside Tag, just make sure you have an addTask method:

// src/Acme/TaskBundle/Entity/Tag.php

// ...
public function addTask(Task $task)
{
 if (!$this->tasks->contains($task)) {
 $this->tasks->add($task);
 }
}

If you have a one-to-many relationship, then the workaround is similar,
except that you can simply call setTask from inside addTag.

Allowing Tags to be Removed

The next step is to allow the deletion of a particular item in the collection.
The solution is similar to allowing tags to be added.

Start by adding the allow_delete option in the form Type:

// src/Acme/TaskBundle/Form/Type/TaskType.php

// ...
public function buildForm(FormBuilderInterface $builder, array $options)
{
 // ...

 $builder->add('tags', 'collection', array(
 // ...
 'allow_delete' => true,
));
}

Now, you need to put some code into the removeTag method of Task:

// src/Acme/TaskBundle/Entity/Task.php

// ...
class Task
{
 // ...

 public function removeTag(Tag $tag)
 {
 $this->tags->removeElement($tag);
 }
}

Template Modifications

The allow_delete option has one consequence: if an item of a collection
isn’t sent on submission, the related data is removed from the collection
on the server. The solution is thus to remove the form element from the DOM.

First, add a “delete this tag” link to each tag form:

jQuery(document).ready(function() {
 // Get the ul that holds the collection of tags
 $collectionHolder = $('ul.tags');

 // add a delete link to all of the existing tag form li elements
 $collectionHolder.find('li').each(function() {
 addTagFormDeleteLink($(this));
 });

 // ... the rest of the block from above
});

function addTagForm() {
 // ...

 // add a delete link to the new form
 addTagFormDeleteLink($newFormLi);
}

The addTagFormDeleteLink function will look something like this:

function addTagFormDeleteLink($tagFormLi) {
 var $removeFormA = $('delete this tag');
 $tagFormLi.append($removeFormA);

 $removeFormA.on('click', function(e) {
 // prevent the link from creating a "#" on the URL
 e.preventDefault();

 // remove the li for the tag form
 $tagFormLi.remove();
 });
}

When a tag form is removed from the DOM and submitted, the removed Tag object
will not be included in the collection passed to setTags. Depending on
your persistence layer, this may or may not be enough to actually remove
the relationship between the removed Tag and Task object.

Doctrine: Ensuring the database persistence

When removing objects in this way, you may need to do a little bit more
work to ensure that the relationship between the Task and the removed
Tag is properly removed.

In Doctrine, you have two sides of the relationship: the owning side and the
inverse side. Normally in this case you’ll have a many-to-many relationship
and the deleted tags will disappear and persist correctly (adding new
tags also works effortlessly).

But if you have a one-to-many relationship or a many-to-many relationship with a
mappedBy on the Task entity (meaning Task is the “inverse” side),
you’ll need to do more work for the removed tags to persist correctly.

In this case, you can modify the controller to remove the relationship
on the removed tag. This assumes that you have some editAction which
is handling the “update” of your Task:

// src/Acme/TaskBundle/Controller/TaskController.php

use Doctrine\Common\Collections\ArrayCollection;

// ...
public function editAction($id, Request $request)
{
 $em = $this->getDoctrine()->getManager();
 $task = $em->getRepository('AcmeTaskBundle:Task')->find($id);

 if (!$task) {
 throw $this->createNotFoundException('No task found for is '.$id);
 }

 $originalTags = new ArrayCollection();

 // Create an ArrayCollection of the current Tag objects in the database
 foreach ($task->getTags() as $tag) {
 $originalTags->add($tag);
 }

 $editForm = $this->createForm(new TaskType(), $task);

 $editForm->handleRequest($request);

 if ($editForm->isValid()) {

 // remove the relationship between the tag and the Task
 foreach ($originalTags as $tag) {
 if (false === $task->getTags()->contains($tag)) {
 // remove the Task from the Tag
 $tag->getTasks()->removeElement($task);

 // if it was a many-to-one relationship, remove the relationship like this
 // $tag->setTask(null);

 $em->persist($tag);

 // if you wanted to delete the Tag entirely, you can also do that
 // $em->remove($tag);
 }
 }

 $em->persist($task);
 $em->flush();

 // redirect back to some edit page
 return $this->redirect($this->generateUrl('task_edit', array('id' => $id)));
 }

 // render some form template
}

As you can see, adding and removing the elements correctly can be tricky.
Unless you have a many-to-many relationship where Task is the “owning” side,
you’ll need to do extra work to make sure that the relationship is properly
updated (whether you’re adding new tags or removing existing tags) on
each Tag object itself.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Form

How to Create a Custom Form Field Type

Symfony comes with a bunch of core field types available for building forms.
However there are situations where you may want to create a custom form field
type for a specific purpose. This recipe assumes you need a field definition
that holds a person’s gender, based on the existing choice field. This section
explains how the field is defined, how you can customize its layout and finally,
how you can register it for use in your application.

Defining the Field Type

In order to create the custom field type, first you have to create the class
representing the field. In this situation the class holding the field type
will be called GenderType and the file will be stored in the default location
for form fields, which is <BundleName>\Form\Type. Make sure the field extends
AbstractType [http://api.symfony.com/master/Symfony/Component/Form/AbstractType.html]:

// src/AppBundle/Form/Type/GenderType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class GenderType extends AbstractType
{
 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $resolver->setDefaults(array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female',
)
));
 }

 public function getParent()
 {
 return 'choice';
 }

 public function getName()
 {
 return 'gender';
 }
}

小技巧

The location of this file is not important - the Form\Type directory
is just a convention.

Here, the return value of the getParent function indicates that you’re
extending the choice field type. This means that, by default, you inherit
all of the logic and rendering of that field type. To see some of the logic,
check out the ChoiceType [https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Form/Extension/Core/Type/ChoiceType.php] class. There are three methods that are particularly
important:

	buildForm()

	Each field type has a buildForm method, which is where
you configure and build any field(s). Notice that this is the same method
you use to setup your forms, and it works the same here.

	buildView()

	This method is used to set any extra variables you’ll
need when rendering your field in a template. For example, in ChoiceType [https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Form/Extension/Core/Type/ChoiceType.php],
a multiple variable is set and used in the template to set (or not
set) the multiple attribute on the select field. See Creating a Template for the Field
for more details.

	setDefaultOptions()

	This defines options for your form type that
can be used in buildForm() and buildView(). There are a lot of
options common to all fields (see form Field Type),
but you can create any others that you need here.

小技巧

If you’re creating a field that consists of many fields, then be sure
to set your “parent” type as form or something that extends form.
Also, if you need to modify the “view” of any of your child types from
your parent type, use the finishView() method.

The getName() method returns an identifier which should be unique in
your application. This is used in various places, such as when customizing
how your form type will be rendered.

The goal of this field was to extend the choice type to enable selection of
a gender. This is achieved by fixing the choices to a list of possible
genders.

Creating a Template for the Field

Each field type is rendered by a template fragment, which is determined in
part by the value of your getName() method. For more information, see
What are Form Themes?.

In this case, since the parent field is choice, you don’t need to do
any work as the custom field type will automatically be rendered like a choice
type. But for the sake of this example, suppose that when your field is “expanded”
(i.e. radio buttons or checkboxes, instead of a select field), you want to
always render it in a ul element. In your form theme template (see above
link for details), create a gender_widget block to handle this:

	Twig{# src/AppBundle/Resources/views/Form/fields.html.twig #}
{% block gender_widget %}
 {% spaceless %}
 {% if expanded %}
 <ul {{ block('widget_container_attributes') }}>
 {% for child in form %}

 {{ form_widget(child) }}
 {{ form_label(child) }}

 {% endfor %}

 {% else %}
 {# just let the choice widget render the select tag #}
 {{ block('choice_widget') }}
 {% endif %}
 {% endspaceless %}
{% endblock %}

	PHP<!-- src/AppBundle/Resources/views/Form/gender_widget.html.php -->
<?php if ($expanded) : ?>
 <ul <?php $view['form']->block($form, 'widget_container_attributes') ?>>
 <?php foreach ($form as $child) : ?>

 <?php echo $view['form']->widget($child) ?>
 <?php echo $view['form']->label($child) ?>

 <?php endforeach ?>

<?php else : ?>
 <!-- just let the choice widget render the select tag -->
 <?php echo $view['form']->renderBlock('choice_widget') ?>
<?php endif ?>

注解

Make sure the correct widget prefix is used. In this example the name should
be gender_widget, according to the value returned by getName.
Further, the main config file should point to the custom form template
so that it’s used when rendering all forms.

When using Twig this is:

	YAML# app/config/config.yml
twig:
 form:
 resources:
 - 'AppBundle:Form:fields.html.twig'

	XML<!-- app/config/config.xml -->
<twig:config>
 <twig:form>
 <twig:resource>AppBundle:Form:fields.html.twig</twig:resource>
 </twig:form>
</twig:config>

	PHP// app/config/config.php
$container->loadFromExtension('twig', array(
 'form' => array(
 'resources' => array(
 'AppBundle:Form:fields.html.twig',
),
),
));

For the PHP templating engine, your configuration should look like this:

	YAML# app/config/config.yml
framework:
 templating:
 form:
 resources:
 - 'AppBundle:Form'

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <framework:config>
 <framework:templating>
 <framework:form>
 <framework:resource>AppBundle:Form</twig:resource>
 </framework:form>
 </framework:templating>
 </framework:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'templating' => array(
 'form' => array(
 'resources' => array(
 'AppBundle:Form',
),
),
),
));

Using the Field Type

You can now use your custom field type immediately, simply by creating a
new instance of the type in one of your forms:

// src/AppBundle/Form/Type/AuthorType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;

class AuthorType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder->add('gender_code', new GenderType(), array(
 'empty_value' => 'Choose a gender',
));
 }
}

But this only works because the GenderType() is very simple. What if
the gender codes were stored in configuration or in a database? The next
section explains how more complex field types solve this problem.

Creating your Field Type as a Service

So far, this entry has assumed that you have a very simple custom field type.
But if you need access to configuration, a database connection, or some other
service, then you’ll want to register your custom type as a service. For
example, suppose that you’re storing the gender parameters in configuration:

	YAML# app/config/config.yml
parameters:
 genders:
 m: Male
 f: Female

	XML<!-- app/config/config.xml -->
<parameters>
 <parameter key="genders" type="collection">
 <parameter key="m">Male</parameter>
 <parameter key="f">Female</parameter>
 </parameter>
</parameters>

	PHP// app/config/config.php
$container->setParameter('genders.m', 'Male');
$container->setParameter('genders.f', 'Female');

To use the parameter, define your custom field type as a service, injecting
the genders parameter value as the first argument to its to-be-created
__construct function:

	YAML# src/AppBundle/Resources/config/services.yml
services:
 acme_demo.form.type.gender:
 class: AppBundle\Form\Type\GenderType
 arguments:
 - "%genders%"
 tags:
 - { name: form.type, alias: gender }

	XML<!-- src/AppBundle/Resources/config/services.xml -->
<service id="acme_demo.form.type.gender" class="AppBundle\Form\Type\GenderType">
 <argument>%genders%</argument>
 <tag name="form.type" alias="gender" />
</service>

	PHP// src/AppBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;

$container
 ->setDefinition('acme_demo.form.type.gender', new Definition(
 'AppBundle\Form\Type\GenderType',
 array('%genders%')
))
 ->addTag('form.type', array(
 'alias' => 'gender',
))
;

小技巧

Make sure the services file is being imported. See Importing Configuration with imports
for details.

Be sure that the alias attribute of the tag corresponds with the value
returned by the getName method defined earlier. You’ll see the importance
of this in a moment when you use the custom field type. But first, add a __construct
method to GenderType, which receives the gender configuration:

// src/AppBundle/Form/Type/GenderType.php
namespace AppBundle\Form\Type;

use Symfony\Component\OptionsResolver\OptionsResolverInterface;

// ...

// ...
class GenderType extends AbstractType
{
 private $genderChoices;

 public function __construct(array $genderChoices)
 {
 $this->genderChoices = $genderChoices;
 }

 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $resolver->setDefaults(array(
 'choices' => $this->genderChoices,
));
 }

 // ...
}

Great! The GenderType is now fueled by the configuration parameters and
registered as a service. Additionally, because you used the form.type alias in its
configuration, using the field is now much easier:

// src/AppBundle/Form/Type/AuthorType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\FormBuilderInterface;

// ...

class AuthorType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder->add('gender_code', 'gender', array(
 'empty_value' => 'Choose a gender',
));
 }
}

Notice that instead of instantiating a new instance, you can just refer to
it by the alias used in your service configuration, gender. Have fun!

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Form

How to Create a Form Type Extension

Custom form field types are great when
you need field types with a specific purpose, such as a gender selector,
or a VAT number input.

But sometimes, you don’t really need to add new field types - you want
to add features on top of existing types. This is where form type
extensions come in.

Form type extensions have 2 main use-cases:

	You want to add a generic feature to several types (such as
adding a “help” text to every field type);

	You want to add a specific feature to a single type (such
as adding a “download” feature to the “file” field type).

In both those cases, it might be possible to achieve your goal with custom
form rendering, or custom form field types. But using form type extensions
can be cleaner (by limiting the amount of business logic in templates)
and more flexible (you can add several type extensions to a single form
type).

Form type extensions can achieve most of what custom field types can do,
but instead of being field types of their own, they plug into existing types.

Imagine that you manage a Media entity, and that each media is associated
to a file. Your Media form uses a file type, but when editing the entity,
you would like to see its image automatically rendered next to the file
input.

You could of course do this by customizing how this field is rendered in a
template. But field type extensions allow you to do this in a nice DRY fashion.

Defining the Form Type Extension

Your first task will be to create the form type extension class (called ImageTypeExtension
in this article). By standard, form extensions usually live in the Form\Extension
directory of one of your bundles.

When creating a form type extension, you can either implement the
FormTypeExtensionInterface [http://api.symfony.com/master/Symfony/Component/Form/FormTypeExtensionInterface.html] interface
or extend the AbstractTypeExtension [http://api.symfony.com/master/Symfony/Component/Form/AbstractTypeExtension.html]
class. In most cases, it’s easier to extend the abstract class:

// src/Acme/DemoBundle/Form/Extension/ImageTypeExtension.php
namespace Acme\DemoBundle\Form\Extension;

use Symfony\Component\Form\AbstractTypeExtension;

class ImageTypeExtension extends AbstractTypeExtension
{
 /**
 * Returns the name of the type being extended.
 *
 * @return string The name of the type being extended
 */
 public function getExtendedType()
 {
 return 'file';
 }
}

The only method you must implement is the getExtendedType function.
It is used to indicate the name of the form type that will be extended
by your extension.

小技巧

The value you return in the getExtendedType method corresponds
to the value returned by the getName method in the form type class
you wish to extend.

In addition to the getExtendedType function, you will probably want
to override one of the following methods:

	buildForm()

	buildView()

	setDefaultOptions()

	finishView()

For more information on what those methods do, you can refer to the
Creating Custom Field Types
cookbook article.

Registering your Form Type Extension as a Service

The next step is to make Symfony aware of your extension. All you
need to do is to declare it as a service by using the form.type_extension
tag:

	YAMLservices:
 acme_demo_bundle.image_type_extension:
 class: Acme\DemoBundle\Form\Extension\ImageTypeExtension
 tags:
 - { name: form.type_extension, alias: file }

	XML<service id="acme_demo_bundle.image_type_extension"
 class="Acme\DemoBundle\Form\Extension\ImageTypeExtension"
>
 <tag name="form.type_extension" alias="file" />
</service>

	PHP$container
 ->register(
 'acme_demo_bundle.image_type_extension',
 'Acme\DemoBundle\Form\Extension\ImageTypeExtension'
)
 ->addTag('form.type_extension', array('alias' => 'file'));

The alias key of the tag is the type of field that this extension should
be applied to. In your case, as you want to extend the file field type,
you will use file as an alias.

Adding the extension Business Logic

The goal of your extension is to display nice images next to file inputs
(when the underlying model contains images). For that purpose, suppose that
you use an approach similar to the one described in
How to handle File Uploads with Doctrine:
you have a Media model with a file property (corresponding to the file field
in the form) and a path property (corresponding to the image path in the
database):

// src/Acme/DemoBundle/Entity/Media.php
namespace Acme\DemoBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Media
{
 // ...

 /**
 * @var string The path - typically stored in the database
 */
 private $path;

 /**
 * @var \Symfony\Component\HttpFoundation\File\UploadedFile
 * @Assert\File(maxSize="2M")
 */
 public $file;

 // ...

 /**
 * Get the image URL
 *
 * @return null|string
 */
 public function getWebPath()
 {
 // ... $webPath being the full image URL, to be used in templates

 return $webPath;
 }
}

Your form type extension class will need to do two things in order to extend
the file form type:

	Override the setDefaultOptions method in order to add an image_path
option;

	Override the buildForm and buildView methods in order to pass the image
URL to the view.

The logic is the following: when adding a form field of type file,
you will be able to specify a new option: image_path. This option will
tell the file field how to get the actual image URL in order to display
it in the view:

// src/Acme/DemoBundle/Form/Extension/ImageTypeExtension.php
namespace Acme\DemoBundle\Form\Extension;

use Symfony\Component\Form\AbstractTypeExtension;
use Symfony\Component\Form\FormView;
use Symfony\Component\Form\FormInterface;
use Symfony\Component\PropertyAccess\PropertyAccess;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class ImageTypeExtension extends AbstractTypeExtension
{
 /**
 * Returns the name of the type being extended.
 *
 * @return string The name of the type being extended
 */
 public function getExtendedType()
 {
 return 'file';
 }

 /**
 * Add the image_path option
 *
 * @param OptionsResolverInterface $resolver
 */
 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $resolver->setOptional(array('image_path'));
 }

 /**
 * Pass the image URL to the view
 *
 * @param FormView $view
 * @param FormInterface $form
 * @param array $options
 */
 public function buildView(FormView $view, FormInterface $form, array $options)
 {
 if (array_key_exists('image_path', $options)) {
 $parentData = $form->getParent()->getData();

 if (null !== $parentData) {
 $accessor = PropertyAccess::createPropertyAccessor();
 $imageUrl = $accessor->getValue($parentData, $options['image_path']);
 } else {
 $imageUrl = null;
 }

 // set an "image_url" variable that will be available when rendering this field
 $view->vars['image_url'] = $imageUrl;
 }
 }

}

Override the File Widget Template Fragment

Each field type is rendered by a template fragment. Those template fragments
can be overridden in order to customize form rendering. For more information,
you can refer to the What are Form Themes? article.

In your extension class, you have added a new variable (image_url), but
you still need to take advantage of this new variable in your templates.
Specifically, you need to override the file_widget block:

	Twig{# src/Acme/DemoBundle/Resources/views/Form/fields.html.twig #}
{% extends 'form_div_layout.html.twig' %}

{% block file_widget %}
 {% spaceless %}

 {{ block('form_widget') }}
 {% if image_url is not null %}

 {% endif %}

 {% endspaceless %}
{% endblock %}

	PHP<!-- src/Acme/DemoBundle/Resources/views/Form/file_widget.html.php -->
<?php echo $view['form']->widget($form) ?>
<?php if (null !== $image_url): ?>
 <img src="<?php echo $view['assets']->getUrl($image_url) ?>"/>
<?php endif ?>

注解

You will need to change your config file or explicitly specify how
you want your form to be themed in order for Symfony to use your overridden
block. See What are Form Themes? for more
information.

Using the Form Type Extension

From now on, when adding a field of type file in your form, you can
specify an image_path option that will be used to display an image
next to the file field. For example:

// src/Acme/DemoBundle/Form/Type/MediaType.php
namespace Acme\DemoBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;

class MediaType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('name', 'text')
 ->add('file', 'file', array('image_path' => 'webPath'));
 }

 public function getName()
 {
 return 'media';
 }
}

When displaying the form, if the underlying model has already been associated
with an image, you will see it displayed next to the file input.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Form

How to Reduce Code Duplication with “inherit_data”

2.3 新版功能: This inherit_data option was introduced in Symfony 2.3. Before, it
was known as virtual.

The inherit_data form field option can be very useful when you have some
duplicated fields in different entities. For example, imagine you have two
entities, a Company and a Customer:

// src/AppBundle/Entity/Company.php
namespace AppBundle\Entity;

class Company
{
 private $name;
 private $website;

 private $address;
 private $zipcode;
 private $city;
 private $country;
}

// src/AppBundle/Entity/Customer.php
namespace AppBundle\Entity;

class Customer
{
 private $firstName;
 private $lastName;

 private $address;
 private $zipcode;
 private $city;
 private $country;
}

As you can see, each entity shares a few of the same fields: address,
zipcode, city, country.

Start with building two forms for these entities, CompanyType and CustomerType:

// src/AppBundle/Form/Type/CompanyType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;

class CompanyType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('name', 'text')
 ->add('website', 'text');
 }
}

// src/AppBundle/Form/Type/CustomerType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\Form\AbstractType;

class CustomerType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('firstName', 'text')
 ->add('lastName', 'text');
 }
}

Instead of including the duplicated fields address, zipcode, city
and country in both of these forms, create a third form called LocationType
for that:

// src/AppBundle/Form/Type/LocationType.php
namespace AppBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class LocationType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('address', 'textarea')
 ->add('zipcode', 'text')
 ->add('city', 'text')
 ->add('country', 'text');
 }

 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $resolver->setDefaults(array(
 'inherit_data' => true
));
 }

 public function getName()
 {
 return 'location';
 }
}

The location form has an interesting option set, namely inherit_data. This
option lets the form inherit its data from its parent form. If embedded in
the company form, the fields of the location form will access the properties of
the Company instance. If embedded in the customer form, the fields will
access the properties of the Customer instance instead. Easy, eh?

注解

Instead of setting the inherit_data option inside LocationType, you
can also (just like with any option) pass it in the third argument of
$builder->add().

Finally, make this work by adding the location form to your two original forms:

// src/AppBundle/Form/Type/CompanyType.php
public function buildForm(FormBuilderInterface $builder, array $options)
{
 // ...

 $builder->add('foo', new LocationType(), array(
 'data_class' => 'AppBundle\Entity\Company'
));
}

// src/AppBundle/Form/Type/CustomerType.php
public function buildForm(FormBuilderInterface $builder, array $options)
{
 // ...

 $builder->add('bar', new LocationType(), array(
 'data_class' => 'AppBundle\Entity\Customer'
));
}

That’s it! You have extracted duplicated field definitions to a separate
location form that you can reuse wherever you need it.

警告

Forms with the inherit_data option set cannot have *_SET_DATA event listeners.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Form

How to Unit Test your Forms

The Form component consists of 3 core objects: a form type (implementing
FormTypeInterface [http://api.symfony.com/master/Symfony/Component/Form/FormTypeInterface.html]), the
Form [http://api.symfony.com/master/Symfony/Component/Form/Form.html] and the
FormView [http://api.symfony.com/master/Symfony/Component/Form/FormView.html].

The only class that is usually manipulated by programmers is the form type class
which serves as a form blueprint. It is used to generate the Form and the
FormView. You could test it directly by mocking its interactions with the
factory but it would be complex. It is better to pass it to FormFactory like it
is done in a real application. It is simple to bootstrap and you can trust
the Symfony components enough to use them as a testing base.

There is already a class that you can benefit from for simple FormTypes
testing: TypeTestCase [http://api.symfony.com/master/Symfony/Component/Form/Test/TypeTestCase.html]. It is used to
test the core types and you can use it to test your types too.

2.3 新版功能: The TypeTestCase has moved to the Symfony\Component\Form\Test
namespace in 2.3. Previously, the class was located in
Symfony\Component\Form\Tests\Extension\Core\Type.

注解

Depending on the way you installed your Symfony or Symfony Form component
the tests may not be downloaded. Use the --prefer-source option with
Composer if this is the case.

The Basics

The simplest TypeTestCase implementation looks like the following:

// src/Acme/TestBundle/Tests/Form/Type/TestedTypeTest.php
namespace Acme\TestBundle\Tests\Form\Type;

use Acme\TestBundle\Form\Type\TestedType;
use Acme\TestBundle\Model\TestObject;
use Symfony\Component\Form\Test\TypeTestCase;

class TestedTypeTest extends TypeTestCase
{
 public function testSubmitValidData()
 {
 $formData = array(
 'test' => 'test',
 'test2' => 'test2',
);

 $type = new TestedType();
 $form = $this->factory->create($type);

 $object = new TestObject();
 $object->fromArray($formData);

 // submit the data to the form directly
 $form->submit($formData);

 $this->assertTrue($form->isSynchronized());
 $this->assertEquals($object, $form->getData());

 $view = $form->createView();
 $children = $view->children;

 foreach (array_keys($formData) as $key) {
 $this->assertArrayHasKey($key, $children);
 }
 }
}

So, what does it test? Here comes a detailed explanation.

First you verify if the FormType compiles. This includes basic class
inheritance, the buildForm function and options resolution. This should
be the first test you write:

$type = new TestedType();
$form = $this->factory->create($type);

This test checks that none of your data transformers used by the form
failed. The isSynchronized() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_isSynchronized]
method is only set to false if a data transformer throws an exception:

$form->submit($formData);
$this->assertTrue($form->isSynchronized());

注解

Don’t test the validation: it is applied by a listener that is not
active in the test case and it relies on validation configuration.
Instead, unit test your custom constraints directly.

Next, verify the submission and mapping of the form. The test below
checks if all the fields are correctly specified:

$this->assertEquals($object, $form->getData());

Finally, check the creation of the FormView. You should check if all
widgets you want to display are available in the children property:

$view = $form->createView();
$children = $view->children;

foreach (array_keys($formData) as $key) {
 $this->assertArrayHasKey($key, $children);
}

Adding a Type your Form Depends on

Your form may depend on other types that are defined as services. It
might look like this:

// src/Acme/TestBundle/Form/Type/TestedType.php

// ... the buildForm method
$builder->add('acme_test_child_type');

To create your form correctly, you need to make the type available to the
form factory in your test. The easiest way is to register it manually
before creating the parent form using the PreloadedExtension class:

// src/Acme/TestBundle/Tests/Form/Type/TestedTypeTests.php
namespace Acme\TestBundle\Tests\Form\Type;

use Acme\TestBundle\Form\Type\TestedType;
use Acme\TestBundle\Model\TestObject;
use Symfony\Component\Form\Test\TypeTestCase;
use Symfony\Component\Form\PreloadedExtension;

class TestedTypeTest extends TypeTestCase
{
 protected function getExtensions()
 {
 $childType = new TestChildType();
 return array(new PreloadedExtension(array(
 $childType->getName() => $childType,
), array()));
 }

 public function testSubmitValidData()
 {
 $type = new TestedType();
 $form = $this->factory->create($type);

 // ... your test
 }
}

警告

Make sure the child type you add is well tested. Otherwise you may
be getting errors that are not related to the form you are currently
testing but to its children.

Adding custom Extensions

It often happens that you use some options that are added by
form extensions. One of the
cases may be the ValidatorExtension with its invalid_message option.
The TypeTestCase loads only the core form extension so an “Invalid option”
exception will be raised if you try to use it for testing a class that depends
on other extensions. You need add those extensions to the factory object:

// src/Acme/TestBundle/Tests/Form/Type/TestedTypeTests.php
namespace Acme\TestBundle\Tests\Form\Type;

use Acme\TestBundle\Form\Type\TestedType;
use Acme\TestBundle\Model\TestObject;
use Symfony\Component\Form\Test\TypeTestCase;
use Symfony\Component\Form\Forms;
use Symfony\Component\Form\FormBuilder;
use Symfony\Component\Form\Extension\Validator\Type\FormTypeValidatorExtension;
use Symfony\Component\Validator\ConstraintViolationList;

class TestedTypeTest extends TypeTestCase
{
 protected function setUp()
 {
 parent::setUp();

 $validator = $this->getMock('\Symfony\Component\Validator\ValidatorInterface');
 $validator->method('validate')->will($this->returnValue(new ConstraintViolationList()));

 $this->factory = Forms::createFormFactoryBuilder()
 ->addExtensions($this->getExtensions())
 ->addTypeExtension(
 new FormTypeValidatorExtension(
 $validator
)
)
 ->addTypeGuesser(
 $this->getMockBuilder(
 'Symfony\Component\Form\Extension\Validator\ValidatorTypeGuesser'
)
 ->disableOriginalConstructor()
 ->getMock()
)
 ->getFormFactory();

 $this->dispatcher = $this->getMock('Symfony\Component\EventDispatcher\EventDispatcherInterface');
 $this->builder = new FormBuilder(null, null, $this->dispatcher, $this->factory);
 }

 // ... your tests
}

Testing against different Sets of Data

If you are not familiar yet with PHPUnit’s data providers [http://www.phpunit.de/manual/current/en/writing-tests-for-phpunit.html#writing-tests-for-phpunit.data-providers], this might be
a good opportunity to use them:

// src/Acme/TestBundle/Tests/Form/Type/TestedTypeTests.php
namespace Acme\TestBundle\Tests\Form\Type;

use Acme\TestBundle\Form\Type\TestedType;
use Acme\TestBundle\Model\TestObject;
use Symfony\Component\Form\Test\TypeTestCase;

class TestedTypeTest extends TypeTestCase
{

 /**
 * @dataProvider getValidTestData
 */
 public function testForm($data)
 {
 // ... your test
 }

 public function getValidTestData()
 {
 return array(
 array(
 'data' => array(
 'test' => 'test',
 'test2' => 'test2',
),
),
 array(
 'data' => array(),
),
 array(
 'data' => array(
 'test' => null,
 'test2' => null,
),
),
);
 }
}

The code above will run your test three times with 3 different sets of
data. This allows for decoupling the test fixtures from the tests and
easily testing against multiple sets of data.

You can also pass another argument, such as a boolean if the form has to
be synchronized with the given set of data or not etc.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Form

How to Configure empty Data for a Form Class

The empty_data option allows you to specify an empty data set for your
form class. This empty data set would be used if you submit your form, but
haven’t called setData() on your form or passed in data when you created
your form. For example:

public function indexAction()
{
 $blog = ...;

 // $blog is passed in as the data, so the empty_data
 // option is not needed
 $form = $this->createForm(new BlogType(), $blog);

 // no data is passed in, so empty_data is
 // used to get the "starting data"
 $form = $this->createForm(new BlogType());
}

By default, empty_data is set to null. Or, if you have specified
a data_class option for your form class, it will default to a new instance
of that class. That instance will be created by calling the constructor
with no arguments.

If you want to override this default behavior, there are two ways to do this.

Option 1: Instantiate a new Class

One reason you might use this option is if you want to use a constructor
that takes arguments. Remember, the default data_class option calls
that constructor with no arguments:

// src/AppBundle/Form/Type/BlogType.php

// ...
use Symfony\Component\Form\AbstractType;
use AppBundle\Entity\Blog;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class BlogType extends AbstractType
{
 private $someDependency;

 public function __construct($someDependency)
 {
 $this->someDependency = $someDependency;
 }
 // ...

 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $resolver->setDefaults(array(
 'empty_data' => new Blog($this->someDependency),
));
 }
}

You can instantiate your class however you want. In this example, we pass
some dependency into the BlogType when we instantiate it, then use that
to instantiate the Blog class. The point is, you can set empty_data
to the exact “new” object that you want to use.

Option 2: Provide a Closure

Using a closure is the preferred method, since it will only create the object
if it is needed.

The closure must accept a FormInterface instance as the first argument:

use Symfony\Component\OptionsResolver\OptionsResolverInterface;
use Symfony\Component\Form\FormInterface;
// ...

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'empty_data' => function (FormInterface $form) {
 return new Blog($form->get('title')->getData());
 },
));
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Form

How to Use the submit() Function to Handle Form Submissions

2.3 新版功能: The handleRequest() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_handleRequest]
method was introduced in Symfony 2.3.

With the handleRequest() method, it is really easy to handle form
submissions:

use Symfony\Component\HttpFoundation\Request;
// ...

public function newAction(Request $request)
{
 $form = $this->createFormBuilder()
 // ...
 ->getForm();

 $form->handleRequest($request);

 if ($form->isValid()) {
 // perform some action...

 return $this->redirect($this->generateUrl('task_success'));
 }

 return $this->render('AcmeTaskBundle:Default:new.html.twig', array(
 'form' => $form->createView(),
));
}

小技巧

To see more about this method, read Handling Form Submissions.

Calling Form::submit() manually

2.3 新版功能: Before Symfony 2.3, the submit() method was known as bind().

In some cases, you want better control over when exactly your form is submitted
and what data is passed to it. Instead of using the
handleRequest() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_handleRequest]
method, pass the submitted data directly to
submit() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_submit]:

use Symfony\Component\HttpFoundation\Request;
// ...

public function newAction(Request $request)
{
 $form = $this->createFormBuilder()
 // ...
 ->getForm();

 if ($request->isMethod('POST')) {
 $form->submit($request->request->get($form->getName()));

 if ($form->isValid()) {
 // perform some action...

 return $this->redirect($this->generateUrl('task_success'));
 }
 }

 return $this->render('AcmeTaskBundle:Default:new.html.twig', array(
 'form' => $form->createView(),
));
}

小技巧

Forms consisting of nested fields expect an array in
submit() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_submit]. You can also submit
individual fields by calling submit() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_submit]
directly on the field:

$form->get('firstName')->submit('Fabien');

Passing a Request to Form::submit() (Deprecated)

2.3 新版功能: Before Symfony 2.3, the submit method was known as bind.

Before Symfony 2.3, the submit() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_submit]
method accepted a Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html] object as
a convenient shortcut to the previous example:

use Symfony\Component\HttpFoundation\Request;
// ...

public function newAction(Request $request)
{
 $form = $this->createFormBuilder()
 // ...
 ->getForm();

 if ($request->isMethod('POST')) {
 $form->submit($request);

 if ($form->isValid()) {
 // perform some action...

 return $this->redirect($this->generateUrl('task_success'));
 }
 }

 return $this->render('AcmeTaskBundle:Default:new.html.twig', array(
 'form' => $form->createView(),
));
}

Passing the Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html] directly to
submit() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_submit] still works, but is
deprecated and will be removed in Symfony 3.0. You should use the method
handleRequest() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_handleRequest] instead.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Form

How to Use the virtual Form Field Option

As of Symfony 2.3, the virtual option is renamed to inherit_data. You
can read everything about the new option in “How to Reduce Code Duplication with “inherit_data””.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Logging

	How to Use Monolog to Write Logs
	Usage

	Handlers and Channels: Writing Logs to different Locations

	Adding some extra Data in the Log Messages

	Registering Processors per Handler

	Registering Processors per Channel

	How to Configure Monolog to Email Errors

	How to Configure Monolog to Exclude 404 Errors from the Log

	How to Log Messages to different Files
	Switching a Channel to a different Handler

	YAML Specification

	Creating your own Channel

	Learn more from the Cookbook

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Logging

How to Use Monolog to Write Logs

Monolog [https://github.com/Seldaek/monolog] is a logging library for PHP 5.3 used by Symfony. It is
inspired by the Python LogBook library.

Usage

To log a message simply get the logger service from the container in
your controller:

public function indexAction()
{
 $logger = $this->get('logger');
 $logger->info('I just got the logger');
 $logger->error('An error occurred');

 // ...
}

The logger service has different methods for different logging levels.
See LoggerInterface [http://api.symfony.com/master/Symfony/Component/HttpKernel/Log/LoggerInterface.html] for details
on which methods are available.

Handlers and Channels: Writing Logs to different Locations

In Monolog each logger defines a logging channel, which organizes your log
messages into different “categories”. Then, each channel has a stack of handlers
to write the logs (the handlers can be shared).

小技巧

When injecting the logger in a service you can
use a custom channel control which “channel”
the logger will log to.

The basic handler is the StreamHandler which writes logs in a stream
(by default in the app/logs/prod.log in the prod environment and
app/logs/dev.log in the dev environment).

Monolog comes also with a powerful built-in handler for the logging in
prod environment: FingersCrossedHandler. It allows you to store the
messages in a buffer and to log them only if a message reaches the
action level (error in the configuration provided in the Standard
Edition) by forwarding the messages to another handler.

Using several Handlers

The logger uses a stack of handlers which are called successively. This
allows you to log the messages in several ways easily.

	YAML# app/config/config.yml
monolog:
 handlers:
 applog:
 type: stream
 path: /var/log/symfony.log
 level: error
 main:
 type: fingers_crossed
 action_level: warning
 handler: file
 file:
 type: stream
 level: debug
 syslog:
 type: syslog
 level: error

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog
 http://symfony.com/schema/dic/monolog/monolog-1.0.xsd">

 <monolog:config>
 <monolog:handler
 name="applog"
 type="stream"
 path="/var/log/symfony.log"
 level="error"
 />
 <monolog:handler
 name="main"
 type="fingers_crossed"
 action-level="warning"
 handler="file"
 />
 <monolog:handler
 name="file"
 type="stream"
 level="debug"
 />
 <monolog:handler
 name="syslog"
 type="syslog"
 level="error"
 />
 </monolog:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('monolog', array(
 'handlers' => array(
 'applog' => array(
 'type' => 'stream',
 'path' => '/var/log/symfony.log',
 'level' => 'error',
),
 'main' => array(
 'type' => 'fingers_crossed',
 'action_level' => 'warning',
 'handler' => 'file',
),
 'file' => array(
 'type' => 'stream',
 'level' => 'debug',
),
 'syslog' => array(
 'type' => 'syslog',
 'level' => 'error',
),
),
));

The above configuration defines a stack of handlers which will be called
in the order they are defined.

小技巧

The handler named “file” will not be included in the stack itself as
it is used as a nested handler of the fingers_crossed handler.

注解

If you want to change the config of MonologBundle in another config
file you need to redefine the whole stack. It cannot be merged
because the order matters and a merge does not allow to control the
order.

Changing the Formatter

The handler uses a Formatter to format the record before logging
it. All Monolog handlers use an instance of
Monolog\Formatter\LineFormatter by default but you can replace it
easily. Your formatter must implement
Monolog\Formatter\FormatterInterface.

	YAML# app/config/config.yml
services:
 my_formatter:
 class: Monolog\Formatter\JsonFormatter
monolog:
 handlers:
 file:
 type: stream
 level: debug
 formatter: my_formatter

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog
 http://symfony.com/schema/dic/monolog/monolog-1.0.xsd">

 <services>
 <service id="my_formatter" class="Monolog\Formatter\JsonFormatter" />
 </services>

 <monolog:config>
 <monolog:handler
 name="file"
 type="stream"
 level="debug"
 formatter="my_formatter"
 />
 </monolog:config>
</container>

	PHP// app/config/config.php
$container
 ->register('my_formatter', 'Monolog\Formatter\JsonFormatter');

$container->loadFromExtension('monolog', array(
 'handlers' => array(
 'file' => array(
 'type' => 'stream',
 'level' => 'debug',
 'formatter' => 'my_formatter',
),
),
));

Adding some extra Data in the Log Messages

Monolog allows you to process the record before logging it to add some
extra data. A processor can be applied for the whole handler stack or
only for a specific handler.

A processor is simply a callable receiving the record as its first argument.

Processors are configured using the monolog.processor DIC tag. See the
reference about it.

Adding a Session/Request Token

Sometimes it is hard to tell which entries in the log belong to which session
and/or request. The following example will add a unique token for each request
using a processor.

namespace Acme\MyBundle;

use Symfony\Component\HttpFoundation\Session\Session;

class SessionRequestProcessor
{
 private $session;
 private $token;

 public function __construct(Session $session)
 {
 $this->session = $session;
 }

 public function processRecord(array $record)
 {
 if (null === $this->token) {
 try {
 $this->token = substr($this->session->getId(), 0, 8);
 } catch (\RuntimeException $e) {
 $this->token = '????????';
 }
 $this->token .= '-' . substr(uniqid(), -8);
 }
 $record['extra']['token'] = $this->token;

 return $record;
 }
}

	YAML# app/config/config.yml
services:
 monolog.formatter.session_request:
 class: Monolog\Formatter\LineFormatter
 arguments:
 - "[%%datetime%%] [%%extra.token%%] %%channel%%.%%level_name%%: %%message%%\n"

 monolog.processor.session_request:
 class: Acme\MyBundle\SessionRequestProcessor
 arguments: ["@session"]
 tags:
 - { name: monolog.processor, method: processRecord }

monolog:
 handlers:
 main:
 type: stream
 path: "%kernel.logs_dir%/%kernel.environment%.log"
 level: debug
 formatter: monolog.formatter.session_request

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog
 http://symfony.com/schema/dic/monolog/monolog-1.0.xsd">

 <services>
 <service id="monolog.formatter.session_request"
 class="Monolog\Formatter\LineFormatter">

 <argument>[%%datetime%%] [%%extra.token%%] %%channel%%.%%level_name%%: %%message%%
</argument>
 </service>

 <service id="monolog.processor.session_request"
 class="Acme\MyBundle\SessionRequestProcessor">

 <argument type="service" id="session" />
 <tag name="monolog.processor" method="processRecord" />
 </service>
 </services>

 <monolog:config>
 <monolog:handler
 name="main"
 type="stream"
 path="%kernel.logs_dir%/%kernel.environment%.log"
 level="debug"
 formatter="monolog.formatter.session_request"
 />
 </monolog:config>
</container>

	PHP// app/config/config.php
$container
 ->register(
 'monolog.formatter.session_request',
 'Monolog\Formatter\LineFormatter'
)
 ->addArgument('[%%datetime%%] [%%extra.token%%] %%channel%%.%%level_name%%: %%message%%\n');

$container
 ->register(
 'monolog.processor.session_request',
 'Acme\MyBundle\SessionRequestProcessor'
)
 ->addArgument(new Reference('session'))
 ->addTag('monolog.processor', array('method' => 'processRecord'));

$container->loadFromExtension('monolog', array(
 'handlers' => array(
 'main' => array(
 'type' => 'stream',
 'path' => '%kernel.logs_dir%/%kernel.environment%.log',
 'level' => 'debug',
 'formatter' => 'monolog.formatter.session_request',
),
),
));

注解

If you use several handlers, you can also register a processor at the
handler level or at the channel level instead of registering it globally
(see the following sections).

Registering Processors per Handler

You can register a processor per handler using the handler option of
the monolog.processor tag:

	YAML# app/config/config.yml
services:
 monolog.processor.session_request:
 class: Acme\MyBundle\SessionRequestProcessor
 arguments: ["@session"]
 tags:
 - { name: monolog.processor, method: processRecord, handler: main }

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog
 http://symfony.com/schema/dic/monolog/monolog-1.0.xsd">

 <services>
 <service id="monolog.processor.session_request"
 class="Acme\MyBundle\SessionRequestProcessor">

 <argument type="service" id="session" />
 <tag name="monolog.processor" method="processRecord" handler="main" />
 </service>
 </services>
</container>

	PHP// app/config/config.php
$container
 ->register(
 'monolog.processor.session_request',
 'Acme\MyBundle\SessionRequestProcessor'
)
 ->addArgument(new Reference('session'))
 ->addTag('monolog.processor', array('method' => 'processRecord', 'handler' => 'main'));

Registering Processors per Channel

You can register a processor per channel using the channel option of
the monolog.processor tag:

	YAML# app/config/config.yml
services:
 monolog.processor.session_request:
 class: Acme\MyBundle\SessionRequestProcessor
 arguments: ["@session"]
 tags:
 - { name: monolog.processor, method: processRecord, channel: main }

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog
 http://symfony.com/schema/dic/monolog/monolog-1.0.xsd">

 <services>
 <service id="monolog.processor.session_request"
 class="Acme\MyBundle\SessionRequestProcessor">

 <argument type="service" id="session" />
 <tag name="monolog.processor" method="processRecord" channel="main" />
 </service>
 </services>
</container>

	PHP// app/config/config.php
$container
 ->register(
 'monolog.processor.session_request',
 'Acme\MyBundle\SessionRequestProcessor'
)
 ->addArgument(new Reference('session'))
 ->addTag('monolog.processor', array('method' => 'processRecord', 'channel' => 'main'));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Logging

How to Configure Monolog to Email Errors

Monolog [https://github.com/Seldaek/monolog] can be configured to send an email when an error occurs with an
application. The configuration for this requires a few nested handlers
in order to avoid receiving too many emails. This configuration looks
complicated at first but each handler is fairly straight forward when
it is broken down.

	YAML# app/config/config_prod.yml
monolog:
 handlers:
 mail:
 type: fingers_crossed
 # 500 errors are logged at the critical level
 action_level: critical
 # to also log 400 level errors (but not 404's):
 # action_level: error
 # excluded_404s:
 # - ^/
 handler: buffered
 buffered:
 type: buffer
 handler: swift
 swift:
 type: swift_mailer
 from_email: error@example.com
 to_email: error@example.com
 # or list of recipients
 # to_email: [dev1@example.com, dev2@example.com, ...]
 subject: An Error Occurred!
 level: debug

	XML<!-- app/config/config_prod.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog http://symfony.com/schema/dic/monolog/monolog-1.0.xsd">

 <monolog:config>
 <monolog:handler
 name="mail"
 type="fingers_crossed"
 action-level="critical"
 handler="buffered"
 <!--
 To also log 400 level errors (but not 404's):
 action-level="error"
 And add this child inside this monolog:handler
 <monolog:excluded-404>^/</monolog:excluded-404>
 -->
 />
 <monolog:handler
 name="buffered"
 type="buffer"
 handler="swift"
 />
 <monolog:handler
 name="swift"
 type="swift_mailer"
 from-email="error@example.com"
 subject="An Error Occurred!"
 level="debug">

 <monolog:to-email>error@example.com</monolog:to-email>

 <!-- or multiple to-email elements -->
 <!--
 <monolog:to-email>dev1@example.com</monolog:to-email>
 <monolog:to-email>dev2@example.com</monolog:to-email>
 ...
 -->
 </monolog:handler>
 </monolog:config>
</container>

	PHP// app/config/config_prod.php
$container->loadFromExtension('monolog', array(
 'handlers' => array(
 'mail' => array(
 'type' => 'fingers_crossed',
 'action_level' => 'critical',
 // to also log 400 level errors (but not 404's):
 // 'action_level' => 'error',
 // 'excluded_404s' => array(
 // '^/',
 //),
 'handler' => 'buffered',
),
 'buffered' => array(
 'type' => 'buffer',
 'handler' => 'swift',
),
 'swift' => array(
 'type' => 'swift_mailer',
 'from_email' => 'error@example.com',
 'to_email' => 'error@example.com',
 // or a list of recipients
 // 'to_email' => array('dev1@example.com', 'dev2@example.com', ...),
 'subject' => 'An Error Occurred!',
 'level' => 'debug',
),
),
));

The mail handler is a fingers_crossed handler which means that
it is only triggered when the action level, in this case critical is reached.
It then logs everything including messages below the action level. The
critical level is only triggered for 5xx HTTP code errors. The handler
setting means that the output is then passed onto the buffered handler.

小技巧

If you want both 400 level and 500 level errors to trigger an email,
set the action_level to error instead of critical. See the
code above for an example.

The buffered handler simply keeps all the messages for a request and
then passes them onto the nested handler in one go. If you do not use this
handler then each message will be emailed separately. This is then passed
to the swift handler. This is the handler that actually deals with
emailing you the error. The settings for this are straightforward, the
to and from addresses and the subject.

You can combine these handlers with other handlers so that the errors still
get logged on the server as well as the emails being sent:

警告

The default spool setting for swiftmailer is set to memory, which
means that emails are sent at the very end of the request. However, this
does not work with buffered logs at the moment. In order to enable emailing
logs per the example below, you must comment out the spool: { type: memory }
line in the config.yml file.

	YAML# app/config/config_prod.yml
monolog:
 handlers:
 main:
 type: fingers_crossed
 action_level: critical
 handler: grouped
 grouped:
 type: group
 members: [streamed, buffered]
 streamed:
 type: stream
 path: "%kernel.logs_dir%/%kernel.environment%.log"
 level: debug
 buffered:
 type: buffer
 handler: swift
 swift:
 type: swift_mailer
 from_email: error@example.com
 to_email: error@example.com
 subject: An Error Occurred!
 level: debug

	XML<!-- app/config/config_prod.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog http://symfony.com/schema/dic/monolog/monolog-1.0.xsd">

 <monolog:config>
 <monolog:handler
 name="main"
 type="fingers_crossed"
 action_level="critical"
 handler="grouped"
 />
 <monolog:handler
 name="grouped"
 type="group"
 >
 <member type="stream"/>
 <member type="buffered"/>
 </monolog:handler>
 <monolog:handler
 name="stream"
 path="%kernel.logs_dir%/%kernel.environment%.log"
 level="debug"
 />
 <monolog:handler
 name="buffered"
 type="buffer"
 handler="swift"
 />
 <monolog:handler
 name="swift"
 from-email="error@example.com"
 to-email="error@example.com"
 subject="An Error Occurred!"
 level="debug"
 />
 </monolog:config>
</container>

	PHP// app/config/config_prod.php
$container->loadFromExtension('monolog', array(
 'handlers' => array(
 'main' => array(
 'type' => 'fingers_crossed',
 'action_level' => 'critical',
 'handler' => 'grouped',
),
 'grouped' => array(
 'type' => 'group',
 'members' => array('streamed', 'buffered'),
),
 'streamed' => array(
 'type' => 'stream',
 'path' => '%kernel.logs_dir%/%kernel.environment%.log',
 'level' => 'debug',
),
 'buffered' => array(
 'type' => 'buffer',
 'handler' => 'swift',
),
 'swift' => array(
 'type' => 'swift_mailer',
 'from_email' => 'error@example.com',
 'to_email' => 'error@example.com',
 'subject' => 'An Error Occurred!',
 'level' => 'debug',
),
),
));

This uses the group handler to send the messages to the two
group members, the buffered and the stream handlers. The messages will
now be both written to the log file and emailed.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Logging

How to Configure Monolog to Exclude 404 Errors from the Log

2.3 新版功能: This feature was introduced to the MonologBundle in version 2.4. This
version is compatible with Symfony 2.3, but only MonologBundle 2.3 is
installed by default. To use this feature, upgrade your bundle manually.

Sometimes your logs become flooded with unwanted 404 HTTP errors, for example,
when an attacker scans your app for some well-known application paths (e.g.
/phpmyadmin). When using a fingers_crossed handler, you can exclude
logging these 404 errors based on a regular expression in the MonologBundle
configuration:

	YAML# app/config/config.yml
monolog:
 handlers:
 main:
 # ...
 type: fingers_crossed
 handler: ...
 excluded_404s:
 - ^/phpmyadmin

	XML<!-- app/config/config.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog
 http://symfony.com/schema/dic/monolog/monolog-1.0.xsd"
>
 <monolog:config>
 <monolog:handler type="fingers_crossed" name="main" handler="...">
 <!-- ... -->
 <monolog:excluded-404>^/phpmyadmin</monolog:excluded-404>
 </monolog:handler>
 </monolog:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('monolog', array(
 'handlers' => array(
 'main' => array(
 // ...
 'type' => 'fingers_crossed',
 'handler' => ...,
 'excluded_404s' => array(
 '^/phpmyadmin',
),
),
),
));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Logging

How to Log Messages to different Files

The Symfony Standard Edition contains a bunch of channels for logging: doctrine,
event, security and request. Each channel corresponds to a logger
service (monolog.logger.XXX) in the container and is injected to the
concerned service. The purpose of channels is to be able to organize different
types of log messages.

By default, Symfony logs every message into a single file (regardless of
the channel).

Switching a Channel to a different Handler

Now, suppose you want to log the doctrine channel to a different file.

To do so, just create a new handler and configure it like this:

	YAML# app/config/config.yml
monolog:
 handlers:
 main:
 type: stream
 path: /var/log/symfony.log
 channels: ["!doctrine"]
 doctrine:
 type: stream
 path: /var/log/doctrine.log
 channels: [doctrine]

	XML<!-- app/config/config.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog
 http://symfony.com/schema/dic/monolog/monolog-1.0.xsd"
>
 <monolog:config>
 <monolog:handler name="main" type="stream" path="/var/log/symfony.log">
 <monolog:channels>
 <monolog:channel>!doctrine</monolog:channel>
 </monolog:channels>
 </monolog:handler>

 <monolog:handler name="doctrine" type="stream" path="/var/log/doctrine.log">
 <monolog:channels>
 <monolog:channel>doctrine</monolog:channel>
 </monolog:channels>
 </monolog:handler>
 </monolog:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('monolog', array(
 'handlers' => array(
 'main' => array(
 'type' => 'stream',
 'path' => '/var/log/symfony.log',
 'channels' => array(
 '!doctrine',
),
),
 'doctrine' => array(
 'type' => 'stream',
 'path' => '/var/log/doctrine.log',
 'channels' => array(
 'doctrine',
),
),
),
));

YAML Specification

You can specify the configuration by many forms:

channels: ~ # Include all the channels

channels: foo # Include only channel "foo"
channels: "!foo" # Include all channels, except "foo"

channels: [foo, bar] # Include only channels "foo" and "bar"
channels: ["!foo", "!bar"] # Include all channels, except "foo" and "bar"

Creating your own Channel

You can change the channel monolog logs to one service at a time. This is done
either via the configuration below
or by tagging your service with monolog.logger and
specifying which channel the service should log to. With the tag, the logger
that is injected into that service is preconfigured to use the channel you’ve
specified.

Configure Additional Channels without Tagged Services

2.3 新版功能: This feature was introduced to the MonologBundle in version 2.4. This
version is compatible with Symfony 2.3, but only MonologBundle 2.3 is
installed by default. To use this feature, upgrade your bundle manually.

With MonologBundle 2.4 you can configure additional channels without the
need to tag your services:

	YAML# app/config/config.yml
monolog:
 channels: ["foo", "bar"]

	XML<!-- app/config/config.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog
 http://symfony.com/schema/dic/monolog/monolog-1.0.xsd"
>
 <monolog:config>
 <monolog:channel>foo</monolog:channel>
 <monolog:channel>bar</monolog:channel>
 </monolog:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('monolog', array(
 'channels' => array(
 'foo',
 'bar',
),
));

With this, you can now send log messages to the foo channel by using
the automatically registered logger service monolog.logger.foo.

Learn more from the Cookbook

	How to Use Monolog to Write Logs

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Profiler

	How to Create a custom Data Collector
	Creating a custom Data Collector

	Enabling custom Data Collectors

	Adding Web Profiler Templates

	How to Use Matchers to Enable the Profiler Conditionally
	Using the built-in Matcher

	Creating a custom Matcher

	Switching the Profiler Storage

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Profiler

How to Create a custom Data Collector

The Symfony Profiler delegates data collecting to
data collectors. Symfony comes bundled with a few of them, but you can easily
create your own.

Creating a custom Data Collector

Creating a custom data collector is as simple as implementing the
DataCollectorInterface [http://api.symfony.com/master/Symfony/Component/HttpKernel/DataCollector/DataCollectorInterface.html]:

interface DataCollectorInterface
{
 /**
 * Collects data for the given Request and Response.
 *
 * @param Request $request A Request instance
 * @param Response $response A Response instance
 * @param \Exception $exception An Exception instance
 */
 function collect(Request $request, Response $response, \Exception $exception = null);

 /**
 * Returns the name of the collector.
 *
 * @return string The collector name
 */
 function getName();
}

The getName() method must return a unique name. This is used to access the
information later on (see How to Use the Profiler in a Functional Test for
instance).

The collect() method is responsible for storing the data it wants to give
access to in local properties.

警告

As the profiler serializes data collector instances, you should not
store objects that cannot be serialized (like PDO objects), or you need
to provide your own serialize() method.

Most of the time, it is convenient to extend
DataCollector [http://api.symfony.com/master/Symfony/Component/HttpKernel/DataCollector/DataCollector.html] and
populate the $this->data property (it takes care of serializing the
$this->data property):

class MemoryDataCollector extends DataCollector
{
 public function collect(Request $request, Response $response, \Exception $exception = null)
 {
 $this->data = array(
 'memory' => memory_get_peak_usage(true),
);
 }

 public function getMemory()
 {
 return $this->data['memory'];
 }

 public function getName()
 {
 return 'memory';
 }
}

Enabling custom Data Collectors

To enable a data collector, add it as a regular service in one of your
configuration, and tag it with data_collector:

	YAMLservices:
 data_collector.your_collector_name:
 class: Fully\Qualified\Collector\Class\Name
 tags:
 - { name: data_collector }

	XML<service id="data_collector.your_collector_name" class="Fully\Qualified\Collector\Class\Name">
 <tag name="data_collector" />
</service>

	PHP$container
 ->register('data_collector.your_collector_name', 'Fully\Qualified\Collector\Class\Name')
 ->addTag('data_collector')
;

Adding Web Profiler Templates

When you want to display the data collected by your data collector in the web
debug toolbar or the web profiler, create a Twig template following this
skeleton:

{% extends 'WebProfilerBundle:Profiler:layout.html.twig' %}

{% block toolbar %}
 {# the web debug toolbar content #}
{% endblock %}

{% block head %}
 {# if the web profiler panel needs some specific JS or CSS files #}
{% endblock %}

{% block menu %}
 {# the menu content #}
{% endblock %}

{% block panel %}
 {# the panel content #}
{% endblock %}

Each block is optional. The toolbar block is used for the web debug
toolbar and menu and panel are used to add a panel to the web
profiler.

All blocks have access to the collector object.

小技巧

Built-in templates use a base64 encoded image for the toolbar:

You can easily calculate the base64 value for an image with this
little script:

#!/usr/bin/env php
<?php
echo base64_encode(file_get_contents($_SERVER['argv'][1]));

To enable the template, add a template attribute to the data_collector
tag in your configuration. For example, assuming your template is in some
AcmeDebugBundle:

	YAMLservices:
 data_collector.your_collector_name:
 class: Acme\DebugBundle\Collector\Class\Name
 tags:
 - { name: data_collector, template: "AcmeDebugBundle:Collector:templatename", id: "your_collector_name" }

	XML<service id="data_collector.your_collector_name" class="Acme\DebugBundle\Collector\Class\Name">
 <tag name="data_collector" template="AcmeDebugBundle:Collector:templatename" id="your_collector_name" />
</service>

	PHP$container
 ->register('data_collector.your_collector_name', 'Acme\DebugBundle\Collector\Class\Name')
 ->addTag('data_collector', array(
 'template' => 'AcmeDebugBundle:Collector:templatename',
 'id' => 'your_collector_name',
))
;

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Profiler

How to Use Matchers to Enable the Profiler Conditionally

By default, the profiler is only activated in the development environment. But
it’s imaginable that a developer may want to see the profiler even in
production. Another situation may be that you want to show the profiler only
when an admin has logged in. You can enable the profiler in these situations
by using matchers.

Using the built-in Matcher

Symfony provides a
built-in matcher [http://api.symfony.com/master/Symfony/Component/HttpFoundation/RequestMatcher.html]
which can match paths and IPs. For example, if you want to only show the
profiler when accessing the page with the 168.0.0.1 IP, then you can
use this configuration:

	YAML# app/config/config.yml
framework:
 # ...
 profiler:
 matcher:
 ip: 168.0.0.1

	XML<!-- app/config/config.xml -->
<framework:config>
 <framework:profiler
 ip="168.0.0.1"
 />
</framework:config>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'profiler' => array(
 'ip' => '168.0.0.1',
),
));

You can also set a path option to define the path on which the profiler
should be enabled. For instance, setting it to ^/admin/ will enable the
profiler only for the /admin/ URLs.

Creating a custom Matcher

You can also create a custom matcher. This is a service that checks whether
the profiler should be enabled or not. To create that service, create a class
which implements
RequestMatcherInterface [http://api.symfony.com/master/Symfony/Component/HttpFoundation/RequestMatcherInterface.html]. This
interface requires one method:
matches() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/RequestMatcherInterface.html#method_matches].
This method returns false to disable the profiler and true to enable the
profiler.

To enable the profiler when a ROLE_SUPER_ADMIN is logged in, you can use
something like:

// src/AppBundle/Profiler/SuperAdminMatcher.php
namespace AppBundle\Profiler;

use Symfony\Component\Security\Core\SecurityContext;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\RequestMatcherInterface;

class SuperAdminMatcher implements RequestMatcherInterface
{
 protected $securityContext;

 public function __construct(SecurityContext $securityContext)
 {
 $this->securityContext = $securityContext;
 }

 public function matches(Request $request)
 {
 return $this->securityContext->isGranted('ROLE_SUPER_ADMIN');
 }
}

Then, you need to configure the service:

	YAML# app/config/services.yml
services:
 app.profiler.matcher.super_admin:
 class: AppBundle\Profiler\SuperAdminMatcher
 arguments: ["@security.context"]

	XML<!-- app/config/services.xml -->
<services>
 <service id="app.profiler.matcher.super_admin"
 class="AppBundle\Profiler\SuperAdminMatcher">
 <argument type="service" id="security.context" />
</services>

	PHP// app/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$container->setDefinition('app.profiler.matcher.super_admin', new Definition(
 'AppBundle\Profiler\SuperAdminMatcher',
 array(new Reference('security.context'))
);

Now the service is registered, the only thing left to do is configure the
profiler to use this service as the matcher:

	YAML# app/config/config.yml
framework:
 # ...
 profiler:
 matcher:
 service: app.profiler.matcher.super_admin

	XML<!-- app/config/config.xml -->
<framework:config>
 <!-- ... -->
 <framework:profiler
 service="app.profiler.matcher.super_admin"
 />
</framework:config>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 // ...
 'profiler' => array(
 'service' => 'app.profiler.matcher.super_admin',
),
));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Profiler

Switching the Profiler Storage

By default the profile stores the collected data in files in the cache directory.
You can control the storage being used through the dsn, username,
password and lifetime options. For example, the following configuration
uses MySQL as the storage for the profiler with a lifetime of one hour:

	YAML# app/config/config.yml
framework:
 profiler:
 dsn: "mysql:host=localhost;dbname=%database_name%"
 username: "%database_user%"
 password: "%database_password%"
 lifetime: 3600

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd"
>
 <framework:config>
 <framework:profiler
 dsn="mysql:host=localhost;dbname=%database_name%"
 username="%database_user%"
 password="%database_password%"
 lifetime="3600"
 />
 </framework:config>
</container>

	PHP// app/config/config.php

// ...
$container->loadFromExtension('framework', array(
 'profiler' => array(
 'dsn' => 'mysql:host=localhost;dbname=%database_name%',
 'username' => '%database_user',
 'password' => '%database_password%',
 'lifetime' => 3600,
),
));

The HttpKernel component currently
supports the following profiler storage implementations:

	FileProfilerStorage [http://api.symfony.com/master/Symfony/Component/HttpKernel/Profiler/FileProfilerStorage.html]

	MemcachedProfilerStorage [http://api.symfony.com/master/Symfony/Component/HttpKernel/Profiler/MemcachedProfilerStorage.html]

	MemcacheProfilerStorage [http://api.symfony.com/master/Symfony/Component/HttpKernel/Profiler/MemcacheProfilerStorage.html]

	MongoDbProfilerStorage [http://api.symfony.com/master/Symfony/Component/HttpKernel/Profiler/MongoDbProfilerStorage.html]

	MysqlProfilerStorage [http://api.symfony.com/master/Symfony/Component/HttpKernel/Profiler/MysqlProfilerStorage.html]

	RedisProfilerStorage [http://api.symfony.com/master/Symfony/Component/HttpKernel/Profiler/RedisProfilerStorage.html]

	SqliteProfilerStorage [http://api.symfony.com/master/Symfony/Component/HttpKernel/Profiler/SqliteProfilerStorage.html]

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Request

	How to Configure Symfony to Work behind a Load Balancer or a Reverse Proxy
	Solution: trusted_proxies

	But what if the IP of my Reverse Proxy Changes Constantly!

	My Reverse Proxy Uses Non-Standard (not X-Forwarded) Headers

	How to Register a new Request Format and Mime Type
	Create a kernel.request Listener

	Registering your Listener

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Request

How to Configure Symfony to Work behind a Load Balancer or a Reverse Proxy

When you deploy your application, you may be behind a load balancer (e.g.
an AWS Elastic Load Balancer) or a reverse proxy (e.g. Varnish for
caching).

For the most part, this doesn’t cause any problems with Symfony. But, when
a request passes through a proxy, certain request information is sent using
special X-Forwarded-* headers. For example, instead of reading the REMOTE_ADDR
header (which will now be the IP address of your reverse proxy), the user’s
true IP will be stored in an X-Forwarded-For header.

If you don’t configure Symfony to look for these headers, you’ll get incorrect
information about the client’s IP address, whether or not the client is connecting
via HTTPS, the client’s port and the hostname being requested.

Solution: trusted_proxies

This is no problem, but you do need to tell Symfony that this is happening
and which reverse proxy IP addresses will be doing this type of thing:

	YAML# app/config/config.yml
...
framework:
 trusted_proxies: [192.0.0.1, 10.0.0.0/8]

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <framework:config trusted-proxies="192.0.0.1, 10.0.0.0/8">
 <!-- ... -->
 </framework>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'trusted_proxies' => array('192.0.0.1', '10.0.0.0/8'),
));

In this example, you’re saying that your reverse proxy (or proxies) has
the IP address 192.0.0.1 or matches the range of IP addresses that use
the CIDR notation 10.0.0.0/8. For more details, see the
framework.trusted_proxies option.

That’s it! Symfony will now look for the correct X-Forwarded-* headers
to get information like the client’s IP address, host, port and whether or
not the request is using HTTPS.

But what if the IP of my Reverse Proxy Changes Constantly!

Some reverse proxies (like Amazon’s Elastic Load Balancers) don’t have a
static IP address or even a range that you can target with the CIDR notation.
In this case, you’ll need to - very carefully - trust all proxies.

	Configure your web server(s) to not respond to traffic from any clients
other than your load balancers. For AWS, this can be done with security groups [http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/using-elb-security-groups.html].

	Once you’ve guaranteed that traffic will only come from your trusted reverse
proxies, configure Symfony to always trust incoming request. This is
done inside of your front controller:

// web/app.php

// ...
Request::setTrustedProxies(array($request->server->get('REMOTE_ADDR')));

$response = $kernel->handle($request);
// ...

That’s it! It’s critical that you prevent traffic from all non-trusted sources.
If you allow outside traffic, they could “spoof” their true IP address and
other information.

My Reverse Proxy Uses Non-Standard (not X-Forwarded) Headers

Most reverse proxies store information on specific X-Forwarded-* headers.
But if your reverse proxy uses non-standard header names, you can configure
these (see “Trusting Proxies”).
The code for doing this will need to live in your front controller (e.g. web/app.php).

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Request

How to Register a new Request Format and Mime Type

Every Request has a “format” (e.g. html, json), which is used
to determine what type of content to return in the Response. In fact,
the request format, accessible via
getRequestFormat() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_getRequestFormat],
is used to set the MIME type of the Content-Type header on the Response
object. Internally, Symfony contains a map of the most common formats (e.g.
html, json) and their associated MIME types (e.g. text/html,
application/json). Of course, additional format-MIME type entries can
easily be added. This document will show how you can add the jsonp format
and corresponding MIME type.

Create a kernel.request Listener

The key to defining a new MIME type is to create a class that will “listen” to
the kernel.request event dispatched by the Symfony kernel. The
kernel.request event is dispatched early in Symfony’s request handling
process and allows you to modify the request object.

Create the following class, replacing the path with a path to a bundle in your
project:

// src/AppBundle/EventListener/RequestListener.php
namespace AppBundle\EventListener;

use Symfony\Component\HttpKernel\HttpKernelInterface;
use Symfony\Component\HttpKernel\Event\GetResponseEvent;

class RequestListener
{
 public function onKernelRequest(GetResponseEvent $event)
 {
 $event->getRequest()->setFormat('jsonp', 'application/javascript');
 }
}

Registering your Listener

As with any other listener, you need to add it in one of your configuration
files and register it as a listener by adding the kernel.event_listener tag:

	YAML# app/config/services.yml
services:
 app.listener.request:
 class: AppBundle\EventListener\RequestListener
 tags:
 - { name: kernel.event_listener, event: kernel.request, method: onKernelRequest }

	XML<!-- app/config/services.xml -->
<?xml version="1.0" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">
 <services>
 <service id="app.listener.request"
 class="AppBundle\EventListener\RequestListener">
 <tag name="kernel.event_listener"
 event="kernel.request"
 method="onKernelRequest"
 />
 </service>
 </services>
</container>

	PHP# app/config/services.php
$definition = new Definition('AppBundle\EventListener\RequestListener');
$definition->addTag('kernel.event_listener', array(
 'event' => 'kernel.request',
 'method' => 'onKernelRequest',
));
$container->setDefinition('app.listener.request', $definition);

At this point, the app.listener.request service has been
configured and will be notified when the Symfony kernel dispatches the
kernel.request event.

小技巧

You can also register the listener in a configuration extension class (see
Importing Configuration via Container Extensions for more information).

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Routing

	How to Force Routes to always Use HTTPS or HTTP

	How to Allow a “/” Character in a Route Parameter
	Configure the Route

	How to Configure a Redirect without a custom Controller
	Redirecting Using a Path

	Redirecting Using a Route

	How to Use HTTP Methods beyond GET and POST in Routes
	Faking the Method with _method

	How to Use Service Container Parameters in your Routes

	How to Create a custom Route Loader
	Loading Routes

	Creating a custom Loader

	More advanced Loaders

	Redirect URLs with a Trailing Slash

	How to Pass Extra Information from a Route to a Controller

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Routing

How to Force Routes to always Use HTTPS or HTTP

Sometimes, you want to secure some routes and be sure that they are always
accessed via the HTTPS protocol. The Routing component allows you to enforce
the URI scheme via schemes:

	YAMLsecure:
 path: /secure
 defaults: { _controller: AppBundle:Main:secure }
 schemes: [https]

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="secure" path="/secure" schemes="https">
 <default key="_controller">AppBundle:Main:secure</default>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('secure', new Route('/secure', array(
 '_controller' => 'AppBundle:Main:secure',
), array(), array(), '', array('https')));

return $collection;

The above configuration forces the secure route to always use HTTPS.

When generating the secure URL, and if the current scheme is HTTP, Symfony
will automatically generate an absolute URL with HTTPS as the scheme:

{# If the current scheme is HTTPS #}
{{ path('secure') }}
{# generates /secure #}

{# If the current scheme is HTTP #}
{{ path('secure') }}
{# generates https://example.com/secure #}

The requirement is also enforced for incoming requests. If you try to access
the /secure path with HTTP, you will automatically be redirected to the
same URL, but with the HTTPS scheme.

The above example uses https for the scheme, but you can also force a URL
to always use http.

注解

The Security component provides another way to enforce HTTP or HTTPS via
the requires_channel setting. This alternative method is better suited
to secure an “area” of your website (all URLs under /admin) or when
you want to secure URLs defined in a third party bundle (see
How to Force HTTPS or HTTP for different URLs for more details).

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Routing

How to Allow a “/” Character in a Route Parameter

Sometimes, you need to compose URLs with parameters that can contain a slash
/. For example, take the classic /hello/{username} route. By default,
/hello/Fabien will match this route but not /hello/Fabien/Kris. This
is because Symfony uses this character as separator between route parts.

This guide covers how you can modify a route so that /hello/Fabien/Kris
matches the /hello/{username} route, where {username} equals Fabien/Kris.

Configure the Route

By default, the Symfony Routing component requires that the parameters
match the following regex path: [^/]+. This means that all characters
are allowed except /.

You must explicitly allow / to be part of your parameter by specifying
a more permissive regex path.

	Annotationsuse Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class DemoController
{
 /**
 * @Route("/hello/{name}", name="_hello", requirements={"name"=".+"})
 */
 public function helloAction($name)
 {
 // ...
 }
}

	YAML_hello:
 path: /hello/{username}
 defaults: { _controller: AppBundle:Demo:hello }
 requirements:
 username: .+

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="_hello" path="/hello/{username}">
 <default key="_controller">AppBundle:Demo:hello</default>
 <requirement key="username">.+</requirement>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('_hello', new Route('/hello/{username}', array(
 '_controller' => 'AppBundle:Demo:hello',
), array(
 'username' => '.+',
)));

return $collection;

That’s it! Now, the {username} parameter can contain the / character.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Routing

How to Configure a Redirect without a custom Controller

Sometimes, a URL needs to redirect to another URL. You can do that by creating
a new controller action whose only task is to redirect, but using the
RedirectController [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/RedirectController.html] of
the FrameworkBundle is even easier.

You can redirect to a specific path (e.g. /about) or to a specific route
using its name (e.g. homepage).

Redirecting Using a Path

Assume there is no default controller for the / path of your application
and you want to redirect these requests to /app. You will need to use the
urlRedirect() [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/RedirectController.html#method_urlRedirect]
action to redirect to this new url:

	YAML# app/config/routing.yml

load some routes - one should ultimately have the path "/app"
AppBundle:
 resource: "@AppBundle/Controller/"
 type: annotation
 prefix: /app

redirecting the root
root:
 path: /
 defaults:
 _controller: FrameworkBundle:Redirect:urlRedirect
 path: /app
 permanent: true

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <!-- load some routes - one should ultimately have the path "/app" -->
 <import resource="@AppBundle/Controller/"
 type="annotation"
 prefix="/app"
 />

 <!-- redirecting the root -->
 <route id="root" path="/">
 <default key="_controller">FrameworkBundle:Redirect:urlRedirect</default>
 <default key="path">/app</default>
 <default key="permanent">true</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();

// load some routes - one should ultimately have the path "/app"
$appRoutes = $loader->import("@AppBundle/Controller/", "annotation");
$appRoutes->setPrefix('/app');

$collection->addCollection($appRoutes);

// redirecting the root
$collection->add('root', new Route('/', array(
 '_controller' => 'FrameworkBundle:Redirect:urlRedirect',
 'path' => '/app',
 'permanent' => true,
)));

return $collection;

In this example, you configured a route for the / path and let the
RedirectController redirect it to /app. The permanent switch
tells the action to issue a 301 HTTP status code instead of the default
302 HTTP status code.

Redirecting Using a Route

Assume you are migrating your website from WordPress to Symfony, you want to
redirect /wp-admin to the route sonata_admin_dashboard. You don’t know
the path, only the route name. This can be achieved using the
redirect() [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/RedirectController.html#method_redirect]
action:

	YAML# app/config/routing.yml

...

redirecting the admin home
root:
 path: /wp-admin
 defaults:
 _controller: FrameworkBundle:Redirect:redirect
 route: sonata_admin_dashboard
 permanent: true

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <!-- ... -->

 <!-- redirecting the admin home -->
 <route id="root" path="/wp-admin">
 <default key="_controller">FrameworkBundle:Redirect:redirect</default>
 <default key="route">sonata_admin_dashboard</default>
 <default key="permanent">true</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
// ...

// redirecting the root
$collection->add('root', new Route('/wp-admin', array(
 '_controller' => 'FrameworkBundle:Redirect:redirect',
 'route' => 'sonata_admin_dashboard',
 'permanent' => true,
)));

return $collection;

警告

Because you are redirecting to a route instead of a path, the required
option is called route in the redirect action, instead of path
in the urlRedirect action.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Routing

How to Use HTTP Methods beyond GET and POST in Routes

The HTTP method of a request is one of the requirements that can be checked
when seeing if it matches a route. This is introduced in the routing chapter
of the book “Routing” with examples using GET and POST. You can
also use other HTTP verbs in this way. For example, if you have a blog post
entry then you could use the same URL path to show it, make changes to it and
delete it by matching on GET, PUT and DELETE.

	YAMLblog_show:
 path: /blog/{slug}
 defaults: { _controller: AppBundle:Blog:show }
 methods: [GET]

blog_update:
 path: /blog/{slug}
 defaults: { _controller: AppBundle:Blog:update }
 methods: [PUT]

blog_delete:
 path: /blog/{slug}
 defaults: { _controller: AppBundle:Blog:delete }
 methods: [DELETE]

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog_show" path="/blog/{slug}" methods="GET">
 <default key="_controller">AppBundle:Blog:show</default>
 </route>

 <route id="blog_update" path="/blog/{slug}" methods="PUT">
 <default key="_controller">AppBundle:Blog:update</default>
 </route>

 <route id="blog_delete" path="/blog/{slug}" methods="DELETE">
 <default key="_controller">AppBundle:Blog:delete</default>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog_show', new Route('/blog/{slug}', array(
 '_controller' => 'AppBundle:Blog:show',
), array(), array(), '', array(), array('GET')));

$collection->add('blog_update', new Route('/blog/{slug}', array(
 '_controller' => 'AppBundle:Blog:update',
), array(), array(), '', array(), array('PUT')));

$collection->add('blog_delete', new Route('/blog/{slug}', array(
 '_controller' => 'AppBundle:Blog:delete',
), array(), array(), '', array('DELETE')));

return $collection;

Faking the Method with _method

注解

The _method functionality shown here is disabled by default in Symfony 2.2
and enabled by default in Symfony 2.3. To control it in Symfony 2.2, you
must call Request::enableHttpMethodParameterOverride [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_enableHttpMethodParameterOverride]
before you handle the request (e.g. in your front controller). In Symfony
2.3, use the http_method_override option.

Unfortunately, life isn’t quite this simple, since most browsers do not
support sending PUT and DELETE requests. Fortunately, Symfony provides you
with a simple way of working around this limitation. By including a _method
parameter in the query string or parameters of an HTTP request, Symfony will
use this as the method when matching routes. Forms automatically include a
hidden field for this parameter if their submission method is not GET or POST.
See the related chapter in the forms documentation
for more information.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Routing

How to Use Service Container Parameters in your Routes

Sometimes you may find it useful to make some parts of your routes
globally configurable. For instance, if you build an internationalized
site, you’ll probably start with one or two locales. Surely you’ll
add a requirement to your routes to prevent a user from matching a locale
other than the locales you support.

You could hardcode your _locale requirement in all your routes, but
a better solution is to use a configurable service container parameter right
inside your routing configuration:

	YAML# app/config/routing.yml
contact:
 path: /{_locale}/contact
 defaults: { _controller: AppBundle:Main:contact }
 requirements:
 _locale: "%app.locales%"

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="contact" path="/{_locale}/contact">
 <default key="_controller">AppBundle:Main:contact</default>
 <requirement key="_locale">%app.locales%</requirement>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('contact', new Route('/{_locale}/contact', array(
 '_controller' => 'AppBundle:Main:contact',
), array(
 '_locale' => '%app.locales%',
)));

return $collection;

You can now control and set the app.locales parameter somewhere
in your container:

	YAML# app/config/config.yml
parameters:
 app.locales: en|es

	XML<!-- app/config/config.xml -->
<parameters>
 <parameter key="app.locales">en|es</parameter>
</parameters>

	PHP// app/config/config.php
$container->setParameter('app.locales', 'en|es');

You can also use a parameter to define your route path (or part of your
path):

	YAML# app/config/routing.yml
some_route:
 path: /%app.route_prefix%/contact
 defaults: { _controller: AppBundle:Main:contact }

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="some_route" path="/%app.route_prefix%/contact">
 <default key="_controller">AppBundle:Main:contact</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('some_route', new Route('/%app.route_prefix%/contact', array(
 '_controller' => 'AppBundle:Main:contact',
)));

return $collection;

注解

Just like in normal service container configuration files, if you actually
need a % in your route, you can escape the percent sign by doubling
it, e.g. /score-50%%, which would resolve to /score-50%.

However, as the % characters included in any URL are automatically encoded,
the resulting URL of this example would be /score-50%25 (%25 is the
result of encoding the % character).

参见

For parameter handling within a Dependency Injection class see
Using Parameters within a Dependency Injection Class.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Routing

How to Create a custom Route Loader

A custom route loader allows you to add routes to an application without
including them, for example, in a YAML file. This comes in handy when
you have a bundle but don’t want to manually add the routes for the bundle
to app/config/routing.yml. This may be especially important when you want
to make the bundle reusable, or when you have open-sourced it as this would
slow down the installation process and make it error-prone.

Alternatively, you could also use a custom route loader when you want your
routes to be automatically generated or located based on some convention or
pattern. One example is the FOSRestBundle [https://github.com/FriendsOfSymfony/FOSRestBundle] where routing is generated based
off the names of the action methods in a controller.

注解

There are many bundles out there that use their own route loaders to
accomplish cases like those described above, for instance
FOSRestBundle [https://github.com/FriendsOfSymfony/FOSRestBundle], JMSI18nRoutingBundle [https://github.com/schmittjoh/JMSI18nRoutingBundle], KnpRadBundle [https://github.com/KnpLabs/KnpRadBundle] and SonataAdminBundle [https://github.com/sonata-project/SonataAdminBundle].

Loading Routes

The routes in a Symfony application are loaded by the
DelegatingLoader [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Routing/DelegatingLoader.html].
This loader uses several other loaders (delegates) to load resources of
different types, for instance YAML files or @Route and @Method annotations
in controller files. The specialized loaders implement
LoaderInterface [http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderInterface.html]
and therefore have two important methods:
supports() [http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderInterface.html#method_supports]
and load() [http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderInterface.html#method_load].

Take these lines from the routing.yml in the AcmeDemoBundle of the Standard
Edition:

src/Acme/DemoBundle/Resources/config/routing.yml
_demo:
 resource: "@AcmeDemoBundle/Controller/DemoController.php"
 type: annotation
 prefix: /demo

When the main loader parses this, it tries all the delegate loaders and calls
their supports() [http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderInterface.html#method_supports]
method with the given resource (@AcmeDemoBundle/Controller/DemoController.php)
and type (annotation) as arguments. When one of the loader returns true,
its load() [http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderInterface.html#method_load] method
will be called, which should return a RouteCollection [http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html]
containing Route [http://api.symfony.com/master/Symfony/Component/Routing/Route.html] objects.

Creating a custom Loader

To load routes from some custom source (i.e. from something other than annotations,
YAML or XML files), you need to create a custom route loader. This loader
should implement LoaderInterface [http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderInterface.html].

The sample loader below supports loading routing resources with a type of
extra. The type extra isn’t important - you can just invent any resource
type you want. The resource name itself is not actually used in the example:

namespace Acme\DemoBundle\Routing;

use Symfony\Component\Config\Loader\LoaderInterface;
use Symfony\Component\Config\Loader\LoaderResolverInterface;
use Symfony\Component\Routing\Route;
use Symfony\Component\Routing\RouteCollection;

class ExtraLoader implements LoaderInterface
{
 private $loaded = false;

 public function load($resource, $type = null)
 {
 if (true === $this->loaded) {
 throw new \RuntimeException('Do not add the "extra" loader twice');
 }

 $routes = new RouteCollection();

 // prepare a new route
 $path = '/extra/{parameter}';
 $defaults = array(
 '_controller' => 'AcmeDemoBundle:Demo:extra',
);
 $requirements = array(
 'parameter' => '\d+',
);
 $route = new Route($path, $defaults, $requirements);

 // add the new route to the route collection:
 $routeName = 'extraRoute';
 $routes->add($routeName, $route);

 $this->loaded = true;

 return $routes;
 }

 public function supports($resource, $type = null)
 {
 return 'extra' === $type;
 }

 public function getResolver()
 {
 // needed, but can be blank, unless you want to load other resources
 // and if you do, using the Loader base class is easier (see below)
 }

 public function setResolver(LoaderResolverInterface $resolver)
 {
 // same as above
 }
}

注解

Make sure the controller you specify really exists.

Now define a service for the ExtraLoader:

	YAMLservices:
 acme_demo.routing_loader:
 class: Acme\DemoBundle\Routing\ExtraLoader
 tags:
 - { name: routing.loader }

	XML<?xml version="1.0" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="acme_demo.routing_loader" class="Acme\DemoBundle\Routing\ExtraLoader">
 <tag name="routing.loader" />
 </service>
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;

$container
 ->setDefinition(
 'acme_demo.routing_loader',
 new Definition('Acme\DemoBundle\Routing\ExtraLoader')
)
 ->addTag('routing.loader')
;

Notice the tag routing.loader. All services with this tag will be marked
as potential route loaders and added as specialized routers to the
DelegatingLoader [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Routing/DelegatingLoader.html].

Using the custom Loader

If you did nothing else, your custom routing loader would not be called.
Instead, you only need to add a few extra lines to the routing configuration:

	YAML# app/config/routing.yml
AcmeDemoBundle_Extra:
 resource: .
 type: extra

	XML<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <import resource="." type="extra" />
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;

$collection = new RouteCollection();
$collection->addCollection($loader->import('.', 'extra'));

return $collection;

The important part here is the type key. Its value should be “extra”.
This is the type which the ExtraLoader supports and this will make sure
its load() method gets called. The resource key is insignificant
for the ExtraLoader, so it is set to ”.”.

注解

The routes defined using custom route loaders will be automatically
cached by the framework. So whenever you change something in the loader
class itself, don’t forget to clear the cache.

More advanced Loaders

In most cases it’s better not to implement
LoaderInterface [http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderInterface.html]
yourself, but extend from Loader [http://api.symfony.com/master/Symfony/Component/Config/Loader/Loader.html].
This class knows how to use a LoaderResolver [http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderResolver.html]
to load secondary routing resources.

Of course you still need to implement
supports() [http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderInterface.html#method_supports]
and load() [http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderInterface.html#method_load].
Whenever you want to load another resource - for instance a YAML routing
configuration file - you can call the
import() [http://api.symfony.com/master/Symfony/Component/Config/Loader/Loader.html#method_import] method:

namespace Acme\DemoBundle\Routing;

use Symfony\Component\Config\Loader\Loader;
use Symfony\Component\Routing\RouteCollection;

class AdvancedLoader extends Loader
{
 public function load($resource, $type = null)
 {
 $collection = new RouteCollection();

 $resource = '@AcmeDemoBundle/Resources/config/import_routing.yml';
 $type = 'yaml';

 $importedRoutes = $this->import($resource, $type);

 $collection->addCollection($importedRoutes);

 return $collection;
 }

 public function supports($resource, $type = null)
 {
 return $type === 'advanced_extra';
 }
}

注解

The resource name and type of the imported routing configuration can
be anything that would normally be supported by the routing configuration
loader (YAML, XML, PHP, annotation, etc.).

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Routing

Redirect URLs with a Trailing Slash

The goal of this cookbook is to demonstrate how to redirect URLs with a
trailing slash to the same URL without a trailing slash
(for example /en/blog/ to /en/blog).

Create a controller that will match any URL with a trailing slash, remove
the trailing slash (keeping query parameters if any) and redirect to the
new URL with a 301 response status code:

// src/AppBundle/Controller/RedirectingController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Request;

class RedirectingController extends Controller
{
 public function removeTrailingSlashAction(Request $request)
 {
 $pathInfo = $request->getPathInfo();
 $requestUri = $request->getRequestUri();

 $url = str_replace($pathInfo, rtrim($pathInfo, ' /'), $requestUri);

 return $this->redirect($url, 301);
 }
}

After that, create a route to this controller that’s matched whenever a URL
with a trailing slash is requested. Be sure to put this route last in your
system, as explained below:

	YAMLremove_trailing_slash:
 path: /{url}
 defaults: { _controller: AppBundle:Redirecting:removeTrailingSlash }
 requirements:
 url: .*/$
 methods: [GET]

	XML<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing">
 <route id="remove_trailing_slash" path="/{url}" methods="GET">
 <default key="_controller">AppBundle:Redirecting:removeTrailingSlash</default>
 <requirement key="url">.*/$</requirement>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add(
 'remove_trailing_slash',
 new Route(
 '/{url}',
 array(
 '_controller' => 'AppBundle:Redirecting:removeTrailingSlash',
),
 array(
 'url' => '.*/$',
),
 array(),
 '',
 array(),
 array('GET')
)
);

注解

Redirecting a POST request does not work well in old browsers. A 302
on a POST request would send a GET request after the redirection for legacy
reasons. For that reason, the route here only matches GET requests.

警告

Make sure to include this route in your routing configuration at the
very end of your route listing. Otherwise, you risk redirecting real
routes (including Symfony core routes) that actually do have a trailing
slash in their path.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Routing

How to Pass Extra Information from a Route to a Controller

Parameters inside the defaults collection don’t necessarily have to
match a placeholder in the route path. In fact, you can use the
defaults array to specify extra parameters that will then be accessible as
arguments to your controller:

	YAML# app/config/routing.yml
blog:
 path: /blog/{page}
 defaults:
 _controller: AppBundle:Blog:index
 page: 1
 title: "Hello world!"

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="blog" path="/blog/{page}">
 <default key="_controller">AppBundle:Blog:index</default>
 <default key="page">1</default>
 <default key="title">Hello world!</default>
 </route>
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('blog', new Route('/blog/{page}', array(
 '_controller' => 'AppBundle:Blog:index',
 'page' => 1,
 'title' => 'Hello world!',
)));

return $collection;

Now, you can access this extra parameter in your controller:

public function indexAction($page, $title)
{
 // ...
}

As you can see, the $title variable was never defined inside the route path,
but you can still access its value from inside your controller.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Security

	How to Build a Traditional Login Form
	Redirecting after Success

	Avoid common Pitfalls

	How to Load Security Users from the Database (the Entity Provider)
	Introduction

	The Data Model

	Authenticating Someone against a Database

	Forbid inactive Users

	Authenticating Someone with a Custom Entity Provider

	Managing Roles in the Database

	Understanding serialize and how a User is Saved in the Session

	How to Add “Remember Me” Login Functionality
	Forcing the User to Re-authenticate before Accessing certain Resources

	How to Impersonate a User

	How to Implement your own Voter to Blacklist IP Addresses
	The Voter Interface

	Creating a custom Voter

	Declaring the Voter as a Service

	Changing the Access Decision Strategy

	How to Use Voters to Check User Permissions
	How Symfony Uses Voters

	The Voter Interface

	Creating the custom Voter

	Declaring the Voter as a Service

	How to Use the Voter in a Controller

	How to Use Access Control Lists (ACLs)
	Bootstrapping

	Getting Started

	Cumulative Permissions

	How to Use advanced ACL Concepts
	Design Concepts

	Database Table Structure

	Scope of Access Control Entries

	Pre-Authorization Decisions

	Post Authorization Decisions

	Process for Reaching Authorization Decisions

	How to Force HTTPS or HTTP for different URLs

	How to Customize your Form Login
	Form Login Configuration Reference

	Redirecting after Success

	How to Secure any Service or Method in your Application
	Securing Methods Using Annotations

	How to Create a custom User Provider
	Create a User Class

	Create a User Provider

	Create a Service for the User Provider

	Modify security.yml

	How to Create a custom Authentication Provider
	Meet WSSE

	The Token

	The Listener

	The Authentication Provider

	The Factory

	Configuration

	A little Extra

	Using pre Authenticated Security Firewalls
	X.509 Client Certificate Authentication

	How to Change the default Target Path Behavior

	Using CSRF Protection in the Login Form
	Configuring CSRF Protection

	Rendering the CSRF field

	How Does the Security access_control Work?
	1. Matching Options

	2. Access Enforcement

	Matching access_control By IP

	Forcing a Channel (http, https)

	How to Use multiple User Providers

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How to Build a Traditional Login Form

小技巧

If you need a login form and are storing users in some sort of a database,
then you should consider using FOSUserBundle [https://github.com/FriendsOfSymfony/FOSUserBundle], which helps you build
your User object and gives you many routes and controllers for common
tasks like login, registration and forgot password.

In this entry, you’ll build a traditional login form. Of course, when the
user logs in, you can load your users from anywhere - like the database.
See B) Configuring how Users are Loaded for details.

This chapter assumes that you’ve followed the beginning of the
security chapter and have http_basic authentication
working properly.

First, enable form login under your firewall:

	YAML# app/config/security.yml
security:
 # ...

 firewalls:
 default:
 anonymous: ~
 http_basic: ~
 form_login:
 login_path: /login
 check_path: /login_check

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <firewall name="main">
 <anonymous />
 <form-login login-path="/login" check-path="/login_check" />
 </firewall>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array(
 'anonymous' => array(),
 'form_login' => array(
 'login_path' => '/login',
 'check_path' => '/login_check',
),
),
),
));

小技巧

The login_path and check_path can also be route names (but cannot
have mandatory wildcards - e.g. /login/{foo} where foo has no
default value).

Now, when the security system initiates the authentication process, it will
redirect the user to the login form /login. Implementing this login form
visually is your job. First, create a new SecurityController inside a
bundle with an empty loginAction:

// src/AppBundle/Controller/SecurityController.php
namespace AppBundle\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class SecurityController extends Controller
{
 public function loginAction(Request $request)
 {
 // todo...
 }
}

Next, create two routes: one for each of the paths your configured earlier
under your form_login configuration (/login and /login_check):

	Annotations// src/AppBundle/Controller/SecurityController.php
// ...
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class SecurityController extends Controller
{
 /**
 * @Route("/login", name="login_route")
 */
 public function loginAction(Request $request)
 {
 // todo ...
 }

 /**
 * @Route("/login_check", name="login_check")
 */
 public function loginCheckAction()
 {
 }
}

	YAML# app/config/routing.yml
login_route:
 path: /login
 defaults: { _controller: AppBundle:Security:login }
login_check:
 path: /login_check

	XML<!-- app/config/routing.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="login_route" path="/login">
 <default key="_controller">AppBundle:Security:login</default>
 </route>

 <route id="login_check" path="/login_check" />
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('login_route', new Route('/login', array(
 '_controller' => 'AppBundle:Security:login',
)));
$collection->add('login_check', new Route('/login_check', array()));

return $collection;

Great! Next, add the logic to loginAction that will display the login
form:

// src/AppBundle/Controller/SecurityController.php
// ...

// ADD THIS use STATEMENT above your class
use Symfony\Component\Security\Core\SecurityContextInterface;

public function loginAction(Request $request)
{
 $session = $request->getSession();

 // get the login error if there is one
 if ($request->attributes->has(SecurityContextInterface::AUTHENTICATION_ERROR)) {
 $error = $request->attributes->get(
 SecurityContextInterface::AUTHENTICATION_ERROR
);
 } elseif (null !== $session && $session->has(SecurityContextInterface::AUTHENTICATION_ERROR)) {
 $error = $session->get(SecurityContextInterface::AUTHENTICATION_ERROR);
 $session->remove(SecurityContextInterface::AUTHENTICATION_ERROR);
 } else {
 $error = null;
 }

 // last username entered by the user
 $lastUsername = (null === $session) ? '' : $session->get(SecurityContextInterface::LAST_USERNAME);

 return $this->render(
 'security/login.html.twig',
 array(
 // last username entered by the user
 'last_username' => $lastUsername,
 'error' => $error,
)
);
}

Don’t let this controller confuse you. As you’ll see in a moment, when the
user submits the form, the security system automatically handles the form
submission for you. If the user had submitted an invalid username or password,
this controller reads the form submission error from the security system so
that it can be displayed back to the user.

In other words, your job is to display the login form and any login errors
that may have occurred, but the security system itself takes care of checking
the submitted username and password and authenticating the user.

Finally, create the template:

	Twig{# app/Resources/views/security/login.html.twig #}
{# ... you will probably extends your base template, like base.html.twig #}

{% if error %}
 <div>{{ error.messageKey|trans(error.messageData) }}</div>
{% endif %}

<form action="{{ path('login_check') }}" method="post">
 <label for="username">Username:</label>
 <input type="text" id="username" name="_username" value="{{ last_username }}" />

 <label for="password">Password:</label>
 <input type="password" id="password" name="_password" />

 {#
 If you want to control the URL the user
 is redirected to on success (more details below)
 <input type="hidden" name="_target_path" value="/account" />
 #}

 <button type="submit">login</button>
</form>

	PHP<!-- src/Acme/SecurityBundle/Resources/views/Security/login.html.php -->
<?php if ($error): ?>
 <div><?php echo $error->getMessage() ?></div>
<?php endif ?>

<form action="<?php echo $view['router']->generate('login_check') ?>" method="post">
 <label for="username">Username:</label>
 <input type="text" id="username" name="_username" value="<?php echo $last_username ?>" />

 <label for="password">Password:</label>
 <input type="password" id="password" name="_password" />

 <!--
 If you want to control the URL the user
 is redirected to on success (more details below)
 <input type="hidden" name="_target_path" value="/account" />
 -->

 <button type="submit">login</button>
</form>

小技巧

The error variable passed into the template is an instance of
AuthenticationException [http://api.symfony.com/master/Symfony/Component/Security/Core/Exception/AuthenticationException.html].
It may contain more information - or even sensitive information - about
the authentication failure, so use it wisely!

The form can look like anything, but has a few requirements:

	The form must POST to /login_check, since that’s what you configured
under the form_login key in security.yml.

	The username must have the name _username and the password must have
the name _password.

小技巧

Actually, all of this can be configured under the form_login key. See
Form Login Configuration for more details.

警告

This login form is currently not protected against CSRF attacks. Read
Using CSRF Protection in the Login Form on how to protect your login
form.

And that’s it! When you submit the form, the security system will automatically
check the user’s credentials and either authenticate the user or send the
user back to the login form where the error can be displayed.

To review the whole process:

	The user tries to access a resource that is protected;

	The firewall initiates the authentication process by redirecting the
user to the login form (/login);

	The /login page renders login form via the route and controller created
in this example;

	The user submits the login form to /login_check;

	The security system intercepts the request, checks the user’s submitted
credentials, authenticates the user if they are correct, and sends the
user back to the login form if they are not.

Redirecting after Success

If the submitted credentials are correct, the user will be redirected to
the original page that was requested (e.g. /admin/foo). If the user originally
went straight to the login page, they’ll be redirected to the homepage. This
can all be customized, allowing you to, for example, redirect the user to
a specific URL.

For more details on this and how to customize the form login process in general,
see How to Customize your Form Login.

Avoid common Pitfalls

When setting up your login form, watch out for a few common pitfalls.

1. Create the correct routes

First, be sure that you’ve defined the /login and /login_check
routes correctly and that they correspond to the login_path and
check_path config values. A misconfiguration here can mean that you’re
redirected to a 404 page instead of the login page, or that submitting
the login form does nothing (you just see the login form over and over
again).

2. Be sure the login page isn’t secure (redirect loop!)

Also, be sure that the login page is accessible by anonymous users. For example,
the following configuration - which requires the ROLE_ADMIN role for
all URLs (including the /login URL), will cause a redirect loop:

	YAML# app/config/security.yml

...
access_control:
 - { path: ^/, roles: ROLE_ADMIN }

	XML<!-- app/config/security.xml -->

<!-- ... -->
<access-control>
 <rule path="^/" role="ROLE_ADMIN" />
</access-control>

	PHP// app/config/security.php

// ...
'access_control' => array(
 array('path' => '^/', 'role' => 'ROLE_ADMIN'),
),

Adding an access control that matches /login/* and requires no authentication
fixes the problem:

	YAML# app/config/security.yml

...
access_control:
 - { path: ^/login, roles: IS_AUTHENTICATED_ANONYMOUSLY }
 - { path: ^/, roles: ROLE_ADMIN }

	XML<!-- app/config/security.xml -->

<!-- ... -->
<access-control>
 <rule path="^/login" role="IS_AUTHENTICATED_ANONYMOUSLY" />
 <rule path="^/" role="ROLE_ADMIN" />
</access-control>

	PHP// app/config/security.php

// ...
'access_control' => array(
 array('path' => '^/login', 'role' => 'IS_AUTHENTICATED_ANONYMOUSLY'),
 array('path' => '^/', 'role' => 'ROLE_ADMIN'),
),

Also, if your firewall does not allow for anonymous users (no anonymous
key), you’ll need to create a special firewall that allows anonymous users
for the login page:

	YAML# app/config/security.yml

...
firewalls:
 # order matters! This must be before the ^/ firewall
 login_firewall:
 pattern: ^/login$
 anonymous: ~
 secured_area:
 pattern: ^/
 form_login: ~

	XML<!-- app/config/security.xml -->

<!-- ... -->
<firewall name="login_firewall" pattern="^/login$">
 <anonymous />
</firewall>
<firewall name="secured_area" pattern="^/">
 <form-login />
</firewall>

	PHP// app/config/security.php

// ...
'firewalls' => array(
 'login_firewall' => array(
 'pattern' => '^/login$',
 'anonymous' => array(),
),
 'secured_area' => array(
 'pattern' => '^/',
 'form_login' => array(),
),
),

3. Be sure /login_check is behind a firewall

Next, make sure that your check_path URL (e.g. /login_check) is behind
the firewall you’re using for your form login (in this example, the single
firewall matches all URLs, including /login_check). If /login_check
doesn’t match any firewall, you’ll receive a Unable to find the controller
for path "/login_check" exception.

4. Multiple firewalls don’t share security context

If you’re using multiple firewalls and you authenticate against one firewall,
you will not be authenticated against any other firewalls automatically.
Different firewalls are like different security systems. To do this you have
to explicitly specify the same Firewall Context
for different firewalls. But usually for most applications, having one
main firewall is enough.

5. Routing error pages are not covered by firewalls

As routing is done before security, 404 error pages are not covered by
any firewall. This means you can’t check for security or even access the
user object on these pages. See How to Customize Error Pages
for more details.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How to Load Security Users from the Database (the Entity Provider)

The security layer is one of the smartest tools of Symfony. It handles two
things: the authentication and the authorization processes. Although it may
seem difficult to understand how it works internally, the security system
is very flexible and allows you to integrate your application with any authentication
backend, like Active Directory, an OAuth server or a database.

Introduction

This article focuses on how to authenticate users against a database table
managed by a Doctrine entity class. The content of this cookbook entry is split
in three parts. The first part is about designing a Doctrine User entity
class and making it usable in the security layer of Symfony. The second part
describes how to easily authenticate a user with the Doctrine
EntityUserProvider [http://api.symfony.com/master/Symfony/Bridge/Doctrine/Security/User/EntityUserProvider.html] object
bundled with the framework and some configuration.
Finally, the tutorial will demonstrate how to create a custom
EntityUserProvider [http://api.symfony.com/master/Symfony/Bridge/Doctrine/Security/User/EntityUserProvider.html] object to
retrieve users from a database with custom conditions.

Code along with the Example

If you want to follow along with the example in this chapter, create
an AcmeUserBundle via:

$ php app/console generate:bundle --namespace=Acme/UserBundle

The Data Model

For the purpose of this cookbook, the AcmeUserBundle bundle contains a User
entity class with the following fields: id, username, password,
email and isActive. The isActive field tells whether or not the
user account is active.

To make it shorter, the getter and setter methods for each have been removed to
focus on the most important methods that come from the
UserInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html].

小技巧

You can generate the missing getter and setters
by running:

$ php app/console doctrine:generate:entities Acme/UserBundle/Entity/User

// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Symfony\Component\Security\Core\User\UserInterface;

/**
 * Acme\UserBundle\Entity\User
 *
 * @ORM\Table(name="acme_users")
 * @ORM\Entity(repositoryClass="Acme\UserBundle\Entity\UserRepository")
 */
class User implements UserInterface, \Serializable
{
 /**
 * @ORM\Column(type="integer")
 * @ORM\Id
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 private $id;

 /**
 * @ORM\Column(type="string", length=25, unique=true)
 */
 private $username;

 /**
 * @ORM\Column(type="string", length=64)
 */
 private $password;

 /**
 * @ORM\Column(type="string", length=60, unique=true)
 */
 private $email;

 /**
 * @ORM\Column(name="is_active", type="boolean")
 */
 private $isActive;

 public function __construct()
 {
 $this->isActive = true;
 // may not be needed, see section on salt below
 // $this->salt = md5(uniqid(null, true));
 }

 /**
 * @inheritDoc
 */
 public function getUsername()
 {
 return $this->username;
 }

 /**
 * @inheritDoc
 */
 public function getSalt()
 {
 // you *may* need a real salt depending on your encoder
 // see section on salt below
 return null;
 }

 /**
 * @inheritDoc
 */
 public function getPassword()
 {
 return $this->password;
 }

 /**
 * @inheritDoc
 */
 public function getRoles()
 {
 return array('ROLE_USER');
 }

 /**
 * @inheritDoc
 */
 public function eraseCredentials()
 {
 }

 /**
 * @see \Serializable::serialize()
 */
 public function serialize()
 {
 return serialize(array(
 $this->id,
 $this->username,
 $this->password,
 // see section on salt below
 // $this->salt,
));
 }

 /**
 * @see \Serializable::unserialize()
 */
 public function unserialize($serialized)
 {
 list (
 $this->id,
 $this->username,
 $this->password,
 // see section on salt below
 // $this->salt
) = unserialize($serialized);
 }
}

注解

If you choose to implement
EquatableInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/EquatableInterface.html],
you determine yourself which properties need to be compared to distinguish
your user objects.

小技巧

Generate the database table
for your User entity by running:

$ php app/console doctrine:schema:update --force

In order to use an instance of the AcmeUserBundle:User class in the Symfony
security layer, the entity class must implement the
UserInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html]. This
interface forces the class to implement the five following methods:

	getRoles() [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html#method_getRoles]

	getPassword() [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html#method_getPassword]

	getSalt() [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html#method_getSalt]

	getUsername() [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html#method_getUsername]

	eraseCredentials() [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html#method_eraseCredentials]

For more details on each of these, see UserInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html].

What is the importance of serialize and unserialize?

The Serializable [http://php.net/manual/en/class.serializable.php] interface and its serialize and unserialize
methods have been added to allow the User class to be serialized
to the session. This may or may not be needed depending on your setup,
but it’s probably a good idea. The id is the most important value
that needs to be serialized because the
refreshUser() [http://api.symfony.com/master/Symfony/Bridge/Doctrine/Security/User/EntityUserProvider.html#method_refreshUser]
method reloads the user on each request by using the id. In practice,
this means that the User object is reloaded from the database on each
request using the id from the serialized object. This makes sure
all of the User’s data is fresh.

Symfony also uses the username, salt, and password to verify
that the User has not changed between requests. Failing to serialize
these may cause you to be logged out on each request. If your User implements
EquatableInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/EquatableInterface.html],
then instead of these properties being checked, your isEqualTo method
is simply called, and you can check whatever properties you want. Unless
you understand this, you probably won’t need to implement this interface
or worry about it.

Below is an export of the User table from MySQL with user admin and
password admin (which has been encoded). For details on how to create
user records and encode their password, see C) Encoding the User’s Password.

$ mysql> SELECT * FROM acme_users;
+----+----------+--+--------------------+-----------+
| id | username | password | email | is_active |
+----+----------+--+--------------------+-----------+
| 1 | admin | d033e22ae348aeb5660fc2140aec35850c4da997 | admin@example.com | 1 |
+----+----------+--+--------------------+-----------+

The next part will focus on how to authenticate one of these users
thanks to the Doctrine entity user provider and a couple of lines of
configuration.

Do you need to use a Salt?

Yes. Hashing a password with a salt is a necessary step so that encoded
passwords can’t be decoded. However, some encoders - like Bcrypt - have
a built-in salt mechanism. If you configure bcrypt as your encoder
in security.yml (see the next section), then getSalt() should
return null, so that Bcrypt generates the salt itself.

However, if you use an encoder that does not have a built-in salting
ability (e.g. sha512), you must (from a security perspective) generate
your own, random salt, store it on a salt property that is saved to
the database, and return it from getSalt(). Some of the code needed
is commented out in the above example.

Authenticating Someone against a Database

Authenticating a Doctrine user against the database with the Symfony security
layer is a piece of cake. Everything resides in the configuration of the
SecurityBundle stored in the
app/config/security.yml file.

Below is an example of configuration where the user will enter their
username and password via HTTP basic authentication. That information will
then be checked against your User entity records in the database:

	YAML# app/config/security.yml
security:
 encoders:
 Acme\UserBundle\Entity\User:
 algorithm: bcrypt

 role_hierarchy:
 ROLE_ADMIN: ROLE_USER
 ROLE_SUPER_ADMIN: [ROLE_ADMIN, ROLE_ALLOWED_TO_SWITCH]

 providers:
 administrators:
 entity: { class: AcmeUserBundle:User, property: username }

 firewalls:
 admin_area:
 pattern: ^/admin
 http_basic: ~

 access_control:
 - { path: ^/admin, roles: ROLE_ADMIN }

	XML<!-- app/config/security.xml -->
<config>
 <encoder class="Acme\UserBundle\Entity\User"
 algorithm="bcrypt"
 />

 <role id="ROLE_ADMIN">ROLE_USER</role>
 <role id="ROLE_SUPER_ADMIN">ROLE_USER, ROLE_ADMIN, ROLE_ALLOWED_TO_SWITCH</role>

 <provider name="administrators">
 <entity class="AcmeUserBundle:User" property="username" />
 </provider>

 <firewall name="admin_area" pattern="^/admin">
 <http-basic />
 </firewall>

 <rule path="^/admin" role="ROLE_ADMIN" />
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'encoders' => array(
 'Acme\UserBundle\Entity\User' => array(
 'algorithm' => 'bcrypt',
),
),
 'role_hierarchy' => array(
 'ROLE_ADMIN' => 'ROLE_USER',
 'ROLE_SUPER_ADMIN' => array('ROLE_USER', 'ROLE_ADMIN', 'ROLE_ALLOWED_TO_SWITCH'),
),
 'providers' => array(
 'administrator' => array(
 'entity' => array(
 'class' => 'AcmeUserBundle:User',
 'property' => 'username',
),
),
),
 'firewalls' => array(
 'admin_area' => array(
 'pattern' => '^/admin',
 'http_basic' => null,
),
),
 'access_control' => array(
 array('path' => '^/admin', 'role' => 'ROLE_ADMIN'),
),
));

The encoders section associates the bcrypt password encoder to the entity
class. This means that Symfony will expect the password that’s stored in
the database to be encoded using this encoder. For details on how to create
a new User object with a properly encoded password, see the
C) Encoding the User’s Password section of the security chapter.

警告

If you’re using PHP 5.4 or lower, you’ll need to install the ircmaxell/password-compat
library via Composer in order to be able to use the bcrypt encoder:

{
 "require": {
 ...
 "ircmaxell/password-compat": "~1.0.3"
 }
}

The providers section defines an administrators user provider. A
user provider is a “source” of where users are loaded during authentication.
In this case, the entity keyword means that Symfony will use the Doctrine
entity user provider to load User entity objects from the database by using
the username unique field. In other words, this tells Symfony how to
fetch the user from the database before checking the password validity.

注解

By default, the entity provider uses the default entity manager to fetch
user information from the database. If you
use multiple entity managers,
you can specify which manager to use with the manager_name option:

	YAML# app/config/config.yml
security:
 # ...

 providers:
 administrators:
 entity:
 class: AcmeUserBundle:User
 property: username
 manager_name: customer

 # ...

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">
 <config>
 <!-- ... -->

 <provider name="administrators">
 <entity class="AcmeUserBundle:User"
 property="username"
 manager-name="customer" />
 </provider>

 <!-- ... -->
 </config>
</srv:container>

	PHP// app/config/config.php
$container->loadFromExtension('security', array(
 // ...
 'providers' => array(
 'administrator' => array(
 'entity' => array(
 'class' => 'AcmeUserBundle:User',
 'property' => 'username',
 'manager_name' => 'customer',
),
),
),
 // ...
));

Forbid inactive Users

If a User’s isActive property is set to false (i.e. is_active
is 0 in the database), the user will still be able to login access the site
normally. To prevent “inactive” users from logging in, you’ll need to do a
little more work.

The easiest way to exclude inactive users is to implement the
AdvancedUserInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/AdvancedUserInterface.html]
interface that takes care of checking the user’s account status.
The AdvancedUserInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/AdvancedUserInterface.html]
extends the UserInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html]
interface, so you just need to switch to the new interface in the AcmeUserBundle:User
entity class to benefit from simple and advanced authentication behaviors.

The AdvancedUserInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/AdvancedUserInterface.html]
interface adds four extra methods to validate the account status:

	isAccountNonExpired() [http://api.symfony.com/master/Symfony/Component/Security/Core/User/AdvancedUserInterface.html#method_isAccountNonExpired]
checks whether the user’s account has expired;

	isAccountNonLocked() [http://api.symfony.com/master/Symfony/Component/Security/Core/User/AdvancedUserInterface.html#method_isAccountNonLocked]
checks whether the user is locked;

	isCredentialsNonExpired() [http://api.symfony.com/master/Symfony/Component/Security/Core/User/AdvancedUserInterface.html#method_isCredentialsNonExpired]
checks whether the user’s credentials (password) has expired;

	isEnabled() [http://api.symfony.com/master/Symfony/Component/Security/Core/User/AdvancedUserInterface.html#method_isEnabled]
checks whether the user is enabled.

For this example, the first three methods will return true whereas the
isEnabled() method will return the boolean value in the isActive field.

// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Symfony\Component\Security\Core\User\AdvancedUserInterface;

class User implements AdvancedUserInterface, \Serializable
{
 // ...

 public function isAccountNonExpired()
 {
 return true;
 }

 public function isAccountNonLocked()
 {
 return true;
 }

 public function isCredentialsNonExpired()
 {
 return true;
 }

 public function isEnabled()
 {
 return $this->isActive;
 }
}

Now, if you try to authenticate as a user who’s is_active database field
is set to 0, you won’t be allowed.

注解

When using the AdvancedUserInterface, you should also add any of
the properties used by these methods (like isActive()) to the serialize()
method. If you don’t do this, your user may not be deserialized correctly
from the session on each request.

The next session will focus on how to write a custom entity provider
to authenticate a user with their username or email address.

Authenticating Someone with a Custom Entity Provider

The next step is to allow a user to authenticate with their username or email
address as they are both unique in the database. Unfortunately, the native
entity provider is only able to handle a single property to fetch the user from
the database.

To accomplish this, create a custom entity provider that looks for a user
whose username or email field matches the submitted login username.
The good news is that a Doctrine repository object can act as an entity user
provider if it implements the
UserProviderInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserProviderInterface.html]. This
interface comes with three methods to implement: loadUserByUsername($username),
refreshUser(UserInterface $user), and supportsClass($class). For
more details, see UserProviderInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserProviderInterface.html].

The code below shows the implementation of the
UserProviderInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserProviderInterface.html] in the
UserRepository class:

// src/Acme/UserBundle/Entity/UserRepository.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Security\Core\User\UserProviderInterface;
use Symfony\Component\Security\Core\Exception\UsernameNotFoundException;
use Symfony\Component\Security\Core\Exception\UnsupportedUserException;
use Doctrine\ORM\EntityRepository;
use Doctrine\ORM\NoResultException;

class UserRepository extends EntityRepository implements UserProviderInterface
{
 public function loadUserByUsername($username)
 {
 $q = $this
 ->createQueryBuilder('u')
 ->where('u.username = :username OR u.email = :email')
 ->setParameter('username', $username)
 ->setParameter('email', $username)
 ->getQuery();

 try {
 // The Query::getSingleResult() method throws an exception
 // if there is no record matching the criteria.
 $user = $q->getSingleResult();
 } catch (NoResultException $e) {
 $message = sprintf(
 'Unable to find an active admin AcmeUserBundle:User object identified by "%s".',
 $username
);
 throw new UsernameNotFoundException($message, 0, $e);
 }

 return $user;
 }

 public function refreshUser(UserInterface $user)
 {
 $class = get_class($user);
 if (!$this->supportsClass($class)) {
 throw new UnsupportedUserException(
 sprintf(
 'Instances of "%s" are not supported.',
 $class
)
);
 }

 return $this->find($user->getId());
 }

 public function supportsClass($class)
 {
 return $this->getEntityName() === $class
 || is_subclass_of($class, $this->getEntityName());
 }
}

To finish the implementation, the configuration of the security layer must be
changed to tell Symfony to use the new custom entity provider instead of the
generic Doctrine entity provider. It’s trivial to achieve by removing the
property field in the security.providers.administrators.entity section
of the security.yml file.

	YAML# app/config/security.yml
security:
 # ...
 providers:
 administrators:
 entity: { class: AcmeUserBundle:User }
 # ...

	XML<!-- app/config/security.xml -->
<config>
 <!-- ... -->

 <provider name="administrator">
 <entity class="AcmeUserBundle:User" />
 </provider>

 <!-- ... -->
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 ...,
 'providers' => array(
 'administrator' => array(
 'entity' => array(
 'class' => 'AcmeUserBundle:User',
),
),
),
 ...,
));

By doing this, the security layer will use an instance of UserRepository and
call its loadUserByUsername() method to fetch a user from the database
whether they filled in their username or email address.

Managing Roles in the Database

The end of this tutorial focuses on how to store and retrieve a list of roles
from the database. As mentioned previously, when your user is loaded, its
getRoles() method returns the array of security roles that should be
assigned to the user. You can load this data from anywhere - a hardcoded
list used for all users (e.g. array('ROLE_USER')), a Doctrine array
property called roles, or via a Doctrine relationship, as you’ll learn
about in this section.

警告

In a typical setup, you should always return at least 1 role from the getRoles()
method. By convention, a role called ROLE_USER is usually returned.
If you fail to return any roles, it may appear as if your user isn’t
authenticated at all.

警告

In order to work with the security configuration examples on this page
all roles must be prefixed with ROLE_ (see
the section about roles in the book). For
example, your roles will be ROLE_ADMIN or ROLE_USER instead of
ADMIN or USER.

In this example, the AcmeUserBundle:User entity class defines a
many-to-many relationship with a AcmeUserBundle:Role entity class.
A user can be related to several roles and a role can be composed of
one or more users. The previous getRoles() method now returns
the list of related roles. Notice that __construct() and getRoles()
methods have changed:

// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Doctrine\Common\Collections\ArrayCollection;
// ...

class User implements AdvancedUserInterface, \Serializable
{
 // ...

 /**
 * @ORM\ManyToMany(targetEntity="Role", inversedBy="users")
 *
 */
 private $roles;

 public function __construct()
 {
 $this->roles = new ArrayCollection();
 }

 public function getRoles()
 {
 return $this->roles->toArray();
 }

 // ...

}

The AcmeUserBundle:Role entity class defines three fields (id,
name and role). The unique role field contains the role name
(e.g. ROLE_ADMIN) used by the Symfony security layer to secure parts
of the application:

// src/Acme/Bundle/UserBundle/Entity/Role.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Security\Core\Role\RoleInterface;
use Doctrine\Common\Collections\ArrayCollection;
use Doctrine\ORM\Mapping as ORM;

/**
 * @ORM\Table(name="acme_role")
 * @ORM\Entity()
 */
class Role implements RoleInterface
{
 /**
 * @ORM\Column(name="id", type="integer")
 * @ORM\Id()
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 private $id;

 /**
 * @ORM\Column(name="name", type="string", length=30)
 */
 private $name;

 /**
 * @ORM\Column(name="role", type="string", length=20, unique=true)
 */
 private $role;

 /**
 * @ORM\ManyToMany(targetEntity="User", mappedBy="roles")
 */
 private $users;

 public function __construct()
 {
 $this->users = new ArrayCollection();
 }

 /**
 * @see RoleInterface
 */
 public function getRole()
 {
 return $this->role;
 }

 // ... getters and setters for each property
}

For brevity, the getter and setter methods are hidden, but you can
generate them:

$ php app/console doctrine:generate:entities Acme/UserBundle/Entity/User

Don’t forget also to update your database schema:

$ php app/console doctrine:schema:update --force

This will create the acme_role table and a user_role that stores
the many-to-many relationship between acme_user and acme_role. If
you had one user linked to one role, your database might look something like
this:

$ mysql> SELECT * FROM acme_role;
+----+-------+------------+
| id | name | role |
+----+-------+------------+
| 1 | admin | ROLE_ADMIN |
+----+-------+------------+

$ mysql> SELECT * FROM user_role;
+---------+---------+
| user_id | role_id |
+---------+---------+
| 1 | 1 |
+---------+---------+

And that’s it! When the user logs in, Symfony security system will call the
User::getRoles method. This will return an array of Role objects
that Symfony will use to determine if the user should have access to certain
parts of the system.

What’s the purpose of the RoleInterface?

Notice that the Role class implements
RoleInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Role/RoleInterface.html]. This is
because Symfony’s security system requires that the User::getRoles method
returns an array of either role strings or objects that implement this interface.
If Role didn’t implement this interface, then User::getRoles
would need to iterate over all the Role objects, call getRole
on each, and create an array of strings to return. Both approaches are
valid and equivalent.

Improving Performance with a Join

To improve performance and avoid lazy loading of roles when retrieving a user
from the custom entity provider, you can use a Doctrine join to the roles
relationship in the UserRepository::loadUserByUsername() method. This will
fetch the user and their associated roles with a single query:

// src/Acme/UserBundle/Entity/UserRepository.php
namespace Acme\UserBundle\Entity;

// ...

class UserRepository extends EntityRepository implements UserProviderInterface
{
 public function loadUserByUsername($username)
 {
 $q = $this
 ->createQueryBuilder('u')
 ->select('u, r')
 ->leftJoin('u.roles', 'r')
 ->where('u.username = :username OR u.email = :email')
 ->setParameter('username', $username)
 ->setParameter('email', $username)
 ->getQuery();

 // ...
 }

 // ...
}

The QueryBuilder::leftJoin() method joins and fetches related roles from
the AcmeUserBundle:User model class when a user is retrieved by their email
address or username.

Understanding serialize and how a User is Saved in the Session

If you’re curious about the importance of the serialize() method inside
the User class or how the User object is serialized or deserialized, then
this section is for you. If not, feel free to skip this.

Once the user is logged in, the entire User object is serialized into the
session. On the next request, the User object is deserialized. Then, value
of the id property is used to re-query for a fresh User object from the
database. Finally, the fresh User object is compared in some way to the deserialized
User object to make sure that they represent the same user. For example, if
the username on the 2 User objects doesn’t match for some reason, then
the user will be logged out for security reasons.

Even though this all happens automatically, there are a few important side-effects.

First, the Serializable [http://php.net/manual/en/class.serializable.php] interface and its serialize and unserialize
methods have been added to allow the User class to be serialized
to the session. This may or may not be needed depending on your setup,
but it’s probably a good idea. In theory, only the id needs to be serialized,
because the refreshUser() [http://api.symfony.com/master/Symfony/Bridge/Doctrine/Security/User/EntityUserProvider.html#method_refreshUser]
method refreshes the user on each request by using the id (as explained
above). However in practice, this means that the User object is reloaded from
the database on each request using the id from the serialized object.
This makes sure all of the User’s data is fresh.

Symfony also uses the username, salt, and password to verify
that the User has not changed between requests. Failing to serialize
these may cause you to be logged out on each request. If your User implements
the EquatableInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/EquatableInterface.html],
then instead of these properties being checked, your isEqualTo method
is simply called, and you can check whatever properties you want. Unless
you understand this, you probably won’t need to implement this interface
or worry about it.

2.1 新版功能: In Symfony 2.1, the equals method was removed from UserInterface
and the EquatableInterface was introduced in its place.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How to Add “Remember Me” Login Functionality

Once a user is authenticated, their credentials are typically stored in the
session. This means that when the session ends they will be logged out and
have to provide their login details again next time they wish to access the
application. You can allow users to choose to stay logged in for longer than
the session lasts using a cookie with the remember_me firewall option.
The firewall needs to have a secret key configured, which is used to encrypt
the cookie’s content. It also has several options with default values which
are shown here:

	YAML# app/config/security.yml
firewalls:
 main:
 remember_me:
 key: "%secret%"
 lifetime: 31536000 # 365 days in seconds
 path: /
 domain: ~ # Defaults to the current domain from $_SERVER

	XML<!-- app/config/security.xml -->
<config>
 <firewall>
 <remember-me
 key = "%secret%"
 lifetime = "31536000" <!-- 365 days in seconds -->
 path = "/"
 domain = "" <!-- Defaults to the current domain from $_SERVER -->
 />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array(
 'remember_me' => array(
 'key' => '%secret%',
 'lifetime' => 31536000, // 365 days in seconds
 'path' => '/',
 'domain' => '', // Defaults to the current domain from $_SERVER
),
),
),
));

It’s a good idea to provide the user with the option to use or not use the
remember me functionality, as it will not always be appropriate. The usual
way of doing this is to add a checkbox to the login form. By giving the checkbox
the name _remember_me, the cookie will automatically be set when the checkbox
is checked and the user successfully logs in. So, your specific login form
might ultimately look like this:

	Twig{# src/Acme/SecurityBundle/Resources/views/Security/login.html.twig #}
{% if error %}
 <div>{{ error.message }}</div>
{% endif %}

<form action="{{ path('login_check') }}" method="post">
 <label for="username">Username:</label>
 <input type="text" id="username" name="_username" value="{{ last_username }}" />

 <label for="password">Password:</label>
 <input type="password" id="password" name="_password" />

 <input type="checkbox" id="remember_me" name="_remember_me" checked />
 <label for="remember_me">Keep me logged in</label>

 <input type="submit" name="login" />
</form>

	PHP<!-- src/Acme/SecurityBundle/Resources/views/Security/login.html.php -->
<?php if ($error): ?>
 <div><?php echo $error->getMessage() ?></div>
<?php endif ?>

<form action="<?php echo $view['router']->generate('login_check') ?>" method="post">
 <label for="username">Username:</label>
 <input type="text" id="username"
 name="_username" value="<?php echo $last_username ?>" />

 <label for="password">Password:</label>
 <input type="password" id="password" name="_password" />

 <input type="checkbox" id="remember_me" name="_remember_me" checked />
 <label for="remember_me">Keep me logged in</label>

 <input type="submit" name="login" />
</form>

The user will then automatically be logged in on subsequent visits while
the cookie remains valid.

Forcing the User to Re-authenticate before Accessing certain Resources

When the user returns to your site, they are authenticated automatically based
on the information stored in the remember me cookie. This allows the user
to access protected resources as if the user had actually authenticated upon
visiting the site.

In some cases, however, you may want to force the user to actually re-authenticate
before accessing certain resources. For example, you might allow “remember me”
users to see basic account information, but then require them to actually
re-authenticate before modifying that information.

The Security component provides an easy way to do this. In addition to roles
explicitly assigned to them, users are automatically given one of the following
roles depending on how they are authenticated:

	IS_AUTHENTICATED_ANONYMOUSLY - automatically assigned to a user who is
in a firewall protected part of the site but who has not actually logged in.
This is only possible if anonymous access has been allowed.

	IS_AUTHENTICATED_REMEMBERED - automatically assigned to a user who
was authenticated via a remember me cookie.

	IS_AUTHENTICATED_FULLY - automatically assigned to a user that has
provided their login details during the current session.

You can use these to control access beyond the explicitly assigned roles.

注解

If you have the IS_AUTHENTICATED_REMEMBERED role, then you also
have the IS_AUTHENTICATED_ANONYMOUSLY role. If you have the IS_AUTHENTICATED_FULLY
role, then you also have the other two roles. In other words, these roles
represent three levels of increasing “strength” of authentication.

You can use these additional roles for finer grained control over access to
parts of a site. For example, you may want your user to be able to view their
account at /account when authenticated by cookie but to have to provide
their login details to be able to edit the account details. You can do this
by securing specific controller actions using these roles. The edit action
in the controller could be secured using the service context.

In the following example, the action is only allowed if the user has the
IS_AUTHENTICATED_FULLY role.

// ...
use Symfony\Component\Security\Core\Exception\AccessDeniedException

public function editAction()
{
 if (false === $this->get('security.context')->isGranted(
 'IS_AUTHENTICATED_FULLY'
)) {
 throw new AccessDeniedException();
 }

 // ...
}

You can also choose to install and use the optional JMSSecurityExtraBundle [https://github.com/schmittjoh/JMSSecurityExtraBundle],
which can secure your controller using annotations:

use JMS\SecurityExtraBundle\Annotation\Secure;

/**
 * @Secure(roles="IS_AUTHENTICATED_FULLY")
 */
public function editAction($name)
{
 // ...
}

小技巧

If you also had an access control in your security configuration that
required the user to have a ROLE_USER role in order to access any
of the account area, then you’d have the following situation:

	If a non-authenticated (or anonymously authenticated user) tries to
access the account area, the user will be asked to authenticate.

	Once the user has entered their username and password, assuming the
user receives the ROLE_USER role per your configuration, the user
will have the IS_AUTHENTICATED_FULLY role and be able to access
any page in the account section, including the editAction controller.

	If the user’s session ends, when the user returns to the site, they will
be able to access every account page - except for the edit page - without
being forced to re-authenticate. However, when they try to access the
editAction controller, they will be forced to re-authenticate, since
they are not, yet, fully authenticated.

For more information on securing services or methods in this way,
see How to Secure any Service or Method in your Application.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How to Impersonate a User

Sometimes, it’s useful to be able to switch from one user to another without
having to log out and log in again (for instance when you are debugging or trying
to understand a bug a user sees that you can’t reproduce). This can be easily
done by activating the switch_user firewall listener:

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 # ...
 switch_user: true

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">
 <config>
 <firewall>
 <!-- ... -->
 <switch-user />
 </firewall>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main'=> array(
 // ...
 'switch_user' => true
),
),
));

To switch to another user, just add a query string with the _switch_user
parameter and the username as the value to the current URL:

http://example.com/somewhere?_switch_user=thomas

To switch back to the original user, use the special _exit username:

http://example.com/somewhere?_switch_user=_exit

During impersonation, the user is provided with a special role called
ROLE_PREVIOUS_ADMIN. In a template, for instance, this role can be used
to show a link to exit impersonation:

	Twig{% if is_granted('ROLE_PREVIOUS_ADMIN') %}
 Exit impersonation
{% endif %}

	PHP<?php if ($view['security']->isGranted('ROLE_PREVIOUS_ADMIN')): ?>
 <a
 href="<?php echo $view['router']->generate('homepage', array(
 '_switch_user' => '_exit',
) ?>"
 >
 Exit impersonation

<?php endif ?>

Of course, this feature needs to be made available to a small group of users.
By default, access is restricted to users having the ROLE_ALLOWED_TO_SWITCH
role. The name of this role can be modified via the role setting. For
extra security, you can also change the query parameter name via the parameter
setting:

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 # ...
 switch_user: { role: ROLE_ADMIN, parameter: _want_to_be_this_user }

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">
 <config>
 <firewall>
 <!-- ... -->
 <switch-user role="ROLE_ADMIN" parameter="_want_to_be_this_user" />
 </firewall>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main'=> array(
 // ...
 'switch_user' => array(
 'role' => 'ROLE_ADMIN',
 'parameter' => '_want_to_be_this_user',
),
),
),
));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How to Implement your own Voter to Blacklist IP Addresses

The Symfony Security component provides several layers to authorize users.
One of the layers is called a “voter”. A voter is a dedicated class that checks
if the user has the rights to connect to the application or access a specific
resource/URL. For instance, Symfony provides a layer that checks if the user
is fully authorized or if it has some expected roles.

It is sometimes useful to create a custom voter to handle a specific case not
handled by the framework. In this section, you’ll learn how to create a voter
that will allow you to blacklist users by their IP.

The Voter Interface

A custom voter must implement
VoterInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html],
which requires the following three methods:

interface VoterInterface
{
 public function supportsAttribute($attribute);
 public function supportsClass($class);
 public function vote(TokenInterface $token, $object, array $attributes);
}

The supportsAttribute() [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#method_supportsAttribute]
method is used to check if the voter supports the given user attribute (i.e:
a role like ROLE_USER, an ACL EDIT, etc.).

The supportsClass() [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#method_supportsClass]
method is used to check if the voter supports the class of the object whose
access is being checked.

The vote() [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#method_vote]
method must implement the business logic that verifies whether or not the
user has access. This method must return one of the following values:

	VoterInterface::ACCESS_GRANTED: The authorization will be granted by this voter;

	VoterInterface::ACCESS_ABSTAIN: The voter cannot decide if authorization should be granted;

	VoterInterface::ACCESS_DENIED: The authorization will be denied by this voter.

In this example, you’ll check if the user’s IP address matches against a list of
blacklisted addresses and “something” will be the application. If the user’s IP is blacklisted, you’ll return
VoterInterface::ACCESS_DENIED, otherwise you’ll return
VoterInterface::ACCESS_ABSTAIN as this voter’s purpose is only to deny
access, not to grant access.

Creating a custom Voter

To blacklist a user based on its IP, you can use the request service
and compare the IP address against a set of blacklisted IP addresses:

// src/AppBundle/Security/Authorization/Voter/ClientIpVoter.php
namespace AppBundle\Security\Authorization\Voter;

use Symfony\Component\DependencyInjection\ContainerInterface;
use Symfony\Component\Security\Core\Authorization\Voter\VoterInterface;
use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;

class ClientIpVoter implements VoterInterface
{
 private $container;

 private $blacklistedIp;

 public function __construct(ContainerInterface $container, array $blacklistedIp = array())
 {
 $this->container = $container;
 $this->blacklistedIp = $blacklistedIp;
 }

 public function supportsAttribute($attribute)
 {
 // you won't check against a user attribute, so return true
 return true;
 }

 public function supportsClass($class)
 {
 // your voter supports all type of token classes, so return true
 return true;
 }

 public function vote(TokenInterface $token, $object, array $attributes)
 {
 $request = $this->container->get('request');
 if (in_array($request->getClientIp(), $this->blacklistedIp)) {
 return VoterInterface::ACCESS_DENIED;
 }

 return VoterInterface::ACCESS_ABSTAIN;
 }
}

That’s it! The voter is done. The next step is to inject the voter into
the security layer. This can be done easily through the service container.

小技巧

Your implementation of the methods
supportsAttribute() [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#method_supportsAttribute]
and supportsClass() [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#method_supportsClass]
are not being called internally by the framework. Once you have registered your
voter the vote() method will always be called, regardless of whether
or not these two methods return true. Therefore you need to call those
methods in your implementation of the vote() method and return ACCESS_ABSTAIN
if your voter does not support the class or attribute.

Declaring the Voter as a Service

To inject the voter into the security layer, you must declare it as a service,
and tag it as a security.voter:

	YAML# src/Acme/AcmeBundle/Resources/config/services.yml
services:
 security.access.blacklist_voter:
 class: AppBundle\Security\Authorization\Voter\ClientIpVoter
 arguments: ["@service_container", [123.123.123.123, 171.171.171.171]]
 public: false
 tags:
 - { name: security.voter }

	XML<!-- src/Acme/AcmeBundle/Resources/config/services.xml -->
<service id="security.access.blacklist_voter"
 class="AppBundle\Security\Authorization\Voter\ClientIpVoter" public="false">
 <argument type="service" id="service_container" strict="false" />
 <argument type="collection">
 <argument>123.123.123.123</argument>
 <argument>171.171.171.171</argument>
 </argument>
 <tag name="security.voter" />
</service>

	PHP// src/Acme/AcmeBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$definition = new Definition(
 'AppBundle\Security\Authorization\Voter\ClientIpVoter',
 array(
 new Reference('service_container'),
 array('123.123.123.123', '171.171.171.171'),
),
);
$definition->addTag('security.voter');
$definition->setPublic(false);

$container->setDefinition('security.access.blacklist_voter', $definition);

小技巧

Be sure to import this configuration file from your main application
configuration file (e.g. app/config/config.yml). For more information
see Importing Configuration with imports. To read more about defining
services in general, see the Service Container chapter.

Changing the Access Decision Strategy

In order for the new voter to take effect, you need to change the default access
decision strategy, which, by default, grants access if any voter grants
access.

In this case, choose the unanimous strategy. Unlike the affirmative
strategy (the default), with the unanimous strategy, if only one voter
denies access (e.g. the ClientIpVoter), access is not granted to the
end user.

To do that, override the default access_decision_manager section of your
application configuration file with the following code.

	YAML# app/config/security.yml
security:
 access_decision_manager:
 # strategy can be: affirmative, unanimous or consensus
 strategy: unanimous

	XML<!-- app/config/security.xml -->
<config>
 <!-- strategy can be: affirmative, unanimous or consensus -->
 <access-decision-manager strategy="unanimous">
</config>

	PHP// app/config/security.xml
$container->loadFromExtension('security', array(
 // strategy can be: affirmative, unanimous or consensus
 'access_decision_manager' => array(
 'strategy' => 'unanimous',
),
));

That’s it! Now, when deciding whether or not a user should have access,
the new voter will deny access to any user in the list of blacklisted IPs.

参见

For a more advanced usage see
Access Decision Manager.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How to Use Voters to Check User Permissions

In Symfony, you can check the permission to access data by using the
ACL module, which is a bit overwhelming
for many applications. A much easier solution is to work with custom voters,
which are like simple conditional statements.

参见

Voters can also be used in other ways, like, for example, blacklisting IP
addresses from the entire application: How to Implement your own Voter to Blacklist IP Addresses.

小技巧

Take a look at the
authorization
chapter for an even deeper understanding on voters.

How Symfony Uses Voters

In order to use voters, you have to understand how Symfony works with them.
All voters are called each time you use the isGranted() method on Symfony’s
security context (i.e. the security.context service). Each one decides
if the current user should have access to some resource.

Ultimately, Symfony uses one of three different approaches on what to do
with the feedback from all voters: affirmative, consensus and unanimous.

For more information take a look at
the section about access decision managers.

The Voter Interface

A custom voter must implement
VoterInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html],
which has this structure:

interface VoterInterface
{
 public function supportsAttribute($attribute);
 public function supportsClass($class);
 public function vote(TokenInterface $token, $object, array $attributes);
}

The supportsAttribute() [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#method_supportsAttribute]
method is used to check if the voter supports the given user attribute (i.e:
a role like ROLE_USER, an ACL EDIT, etc.).

The supportsClass() [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#method_supportsClass]
method is used to check if the voter supports the class of the object whose
access is being checked.

The vote() [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html#method_vote]
method must implement the business logic that verifies whether or not the
user has access. This method must return one of the following values:

	VoterInterface::ACCESS_GRANTED: The authorization will be granted by this voter;

	VoterInterface::ACCESS_ABSTAIN: The voter cannot decide if authorization should be granted;

	VoterInterface::ACCESS_DENIED: The authorization will be denied by this voter.

In this example, the voter will check if the user has access to a specific
object according to your custom conditions (e.g. they must be the owner of
the object). If the condition fails, you’ll return
VoterInterface::ACCESS_DENIED, otherwise you’ll return
VoterInterface::ACCESS_GRANTED. In case the responsibility for this decision
does not belong to this voter, it will return VoterInterface::ACCESS_ABSTAIN.

Creating the custom Voter

The goal is to create a voter that checks if a user has access to view or
edit a particular object. Here’s an example implementation:

// src/AppBundle/Security/Authorization/Voter/PostVoter.php
namespace AppBundle\Security\Authorization\Voter;

use Symfony\Component\Security\Core\Authorization\Voter\VoterInterface;
use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;
use Symfony\Component\Security\Core\User\UserInterface;

class PostVoter implements VoterInterface
{
 const VIEW = 'view';
 const EDIT = 'edit';

 public function supportsAttribute($attribute)
 {
 return in_array($attribute, array(
 self::VIEW,
 self::EDIT,
));
 }

 public function supportsClass($class)
 {
 $supportedClass = 'AppBundle\Entity\Post';

 return $supportedClass === $class || is_subclass_of($class, $supportedClass);
 }

 /**
 * @var \AppBundle\Entity\Post $post
 */
 public function vote(TokenInterface $token, $post, array $attributes)
 {
 // check if class of this object is supported by this voter
 if (!$this->supportsClass(get_class($post))) {
 return VoterInterface::ACCESS_ABSTAIN;
 }

 // check if the voter is used correct, only allow one attribute
 // this isn't a requirement, it's just one easy way for you to
 // design your voter
 if (1 !== count($attributes)) {
 throw new \InvalidArgumentException(
 'Only one attribute is allowed for VIEW or EDIT'
);
 }

 // set the attribute to check against
 $attribute = $attributes[0];

 // check if the given attribute is covered by this voter
 if (!$this->supportsAttribute($attribute)) {
 return VoterInterface::ACCESS_ABSTAIN;
 }

 // get current logged in user
 $user = $token->getUser();

 // make sure there is a user object (i.e. that the user is logged in)
 if (!$user instanceof UserInterface) {
 return VoterInterface::ACCESS_DENIED;
 }

 switch($attribute) {
 case self::VIEW:
 // the data object could have for example a method isPrivate()
 // which checks the Boolean attribute $private
 if (!$post->isPrivate()) {
 return VoterInterface::ACCESS_GRANTED;
 }
 break;

 case self::EDIT:
 // we assume that our data object has a method getOwner() to
 // get the current owner user entity for this data object
 if ($user->getId() === $post->getOwner()->getId()) {
 return VoterInterface::ACCESS_GRANTED;
 }
 break;
 }

 return VoterInterface::ACCESS_DENIED;
 }
}

That’s it! The voter is done. The next step is to inject the voter into
the security layer.

Declaring the Voter as a Service

To inject the voter into the security layer, you must declare it as a service
and tag it with security.voter:

	YAML# src/AppBundle/Resources/config/services.yml
services:
 security.access.post_voter:
 class: AppBundle\Security\Authorization\Voter\PostVoter
 public: false
 tags:
 - { name: security.voter }

	XML<!-- src/AppBundle/Resources/config/services.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">
 <services>
 <service id="security.access.post_document_voter"
 class="AppBundle\Security\Authorization\Voter\PostVoter"
 public="false">
 <tag name="security.voter" />
 </service>
 </services>
</container>

	PHP// src/AppBundle/Resources/config/services.php
$container
 ->register(
 'security.access.post_document_voter',
 'AppBundle\Security\Authorization\Voter\PostVoter'
)
 ->addTag('security.voter')
;

How to Use the Voter in a Controller

The registered voter will then always be asked as soon as the method isGranted()
from the security context is called.

// src/AppBundle/Controller/PostController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Security\Core\Exception\AccessDeniedException;

class PostController extends Controller
{
 public function showAction($id)
 {
 // get a Post instance
 $post = ...;

 // keep in mind, this will call all registered security voters
 if (false === $this->get('security.context')->isGranted('view', $post)) {
 throw new AccessDeniedException('Unauthorised access!');
 }

 return new Response('<h1>'.$post->getName().'</h1>');
 }
}

It’s that easy!

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How to Use Access Control Lists (ACLs)

In complex applications, you will often face the problem that access decisions
cannot only be based on the person (Token) who is requesting access, but
also involve a domain object that access is being requested for. This is where
the ACL system comes in.

Alternatives to ACLs

Using ACL’s isn’t trivial, and for simpler use cases, it may be overkill.
If your permission logic could be described by just writing some code (e.g.
to check if a Blog is owned by the current User), then consider using
voters. A voter is passed the object
being voted on, which you can use to make complex decisions and effectively
implement your own ACL. Enforcing authorization (e.g. the isGranted
part) will look similar to what you see in this entry, but your voter
class will handle the logic behind the scenes, instead of the ACL system.

Imagine you are designing a blog system where your users can comment on your
posts. Now, you want a user to be able to edit their own comments, but not those
of other users; besides, you yourself want to be able to edit all comments. In
this scenario, Comment would be the domain object that you want to
restrict access to. You could take several approaches to accomplish this using
Symfony, two basic approaches are (non-exhaustive):

	Enforce security in your business methods: Basically, that means keeping a
reference inside each Comment to all users who have access, and then
compare these users to the provided Token.

	Enforce security with roles: In this approach, you would add a role for
each Comment object, i.e. ROLE_COMMENT_1, ROLE_COMMENT_2, etc.

Both approaches are perfectly valid. However, they couple your authorization
logic to your business code which makes it less reusable elsewhere, and also
increases the difficulty of unit testing. Besides, you could run into
performance issues if many users would have access to a single domain object.

Fortunately, there is a better way, which you will find out about now.

Bootstrapping

Now, before you can finally get into action, you need to do some bootstrapping.
First, you need to configure the connection the ACL system is supposed to use:

	YAML# app/config/security.yml
security:
 acl:
 connection: default

	XML<!-- app/config/security.xml -->
<acl>
 <connection>default</connection>
</acl>

	PHP// app/config/security.php
$container->loadFromExtension('security', 'acl', array(
 'connection' => 'default',
));

注解

The ACL system requires a connection from either Doctrine DBAL (usable by
default) or Doctrine MongoDB (usable with MongoDBAclBundle [https://github.com/IamPersistent/MongoDBAclBundle]). However,
that does not mean that you have to use Doctrine ORM or ODM for mapping your
domain objects. You can use whatever mapper you like for your objects, be it
Doctrine ORM, MongoDB ODM, Propel, raw SQL, etc. The choice is yours.

After the connection is configured, you have to import the database structure.
Fortunately, there is a task for this. Simply run the following command:

$ php app/console init:acl

Getting Started

Coming back to the small example from the beginning, you can now implement
ACL for it.

Once the ACL is created, you can grant access to objects by creating an
Access Control Entry (ACE) to solidify the relationship between the entity
and your user.

Creating an ACL and Adding an ACE

// src/AppBundle/Controller/BlogController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\Security\Core\Exception\AccessDeniedException;
use Symfony\Component\Security\Acl\Domain\ObjectIdentity;
use Symfony\Component\Security\Acl\Domain\UserSecurityIdentity;
use Symfony\Component\Security\Acl\Permission\MaskBuilder;

class BlogController extends Controller
{
 // ...

 public function addCommentAction(Post $post)
 {
 $comment = new Comment();

 // ... setup $form, and submit data

 if ($form->isValid()) {
 $entityManager = $this->getDoctrine()->getManager();
 $entityManager->persist($comment);
 $entityManager->flush();

 // creating the ACL
 $aclProvider = $this->get('security.acl.provider');
 $objectIdentity = ObjectIdentity::fromDomainObject($comment);
 $acl = $aclProvider->createAcl($objectIdentity);

 // retrieving the security identity of the currently logged-in user
 $securityContext = $this->get('security.context');
 $user = $securityContext->getToken()->getUser();
 $securityIdentity = UserSecurityIdentity::fromAccount($user);

 // grant owner access
 $acl->insertObjectAce($securityIdentity, MaskBuilder::MASK_OWNER);
 $aclProvider->updateAcl($acl);
 }
 }
}

There are a couple of important implementation decisions in this code snippet.
For now, I only want to highlight two:

First, you may have noticed that ->createAcl() does not accept domain
objects directly, but only implementations of the ObjectIdentityInterface.
This additional step of indirection allows you to work with ACLs even when you
have no actual domain object instance at hand. This will be extremely helpful
if you want to check permissions for a large number of objects without
actually hydrating these objects.

The other interesting part is the ->insertObjectAce() call. In the
example, you are granting the user who is currently logged in owner access to
the Comment. The MaskBuilder::MASK_OWNER is a pre-defined integer bitmask;
don’t worry the mask builder will abstract away most of the technical details,
but using this technique you can store many different permissions in one
database row which gives a considerable boost in performance.

小技巧

The order in which ACEs are checked is significant. As a general rule, you
should place more specific entries at the beginning.

Checking Access

// src/AppBundle/Controller/BlogController.php

// ...

class BlogController
{
 // ...

 public function editCommentAction(Comment $comment)
 {
 $securityContext = $this->get('security.context');

 // check for edit access
 if (false === $securityContext->isGranted('EDIT', $comment)) {
 throw new AccessDeniedException();
 }

 // ... retrieve actual comment object, and do your editing here
 }
}

In this example, you check whether the user has the EDIT permission.
Internally, Symfony maps the permission to several integer bitmasks, and
checks whether the user has any of them.

注解

You can define up to 32 base permissions (depending on your OS PHP might
vary between 30 to 32). In addition, you can also define cumulative
permissions.

Cumulative Permissions

In the first example above, you only granted the user the OWNER base
permission. While this effectively also allows the user to perform any
operation such as view, edit, etc. on the domain object, there are cases where
you may want to grant these permissions explicitly.

The MaskBuilder can be used for creating bit masks easily by combining
several base permissions:

$builder = new MaskBuilder();
$builder
 ->add('view')
 ->add('edit')
 ->add('delete')
 ->add('undelete')
;
$mask = $builder->get(); // int(29)

This integer bitmask can then be used to grant a user the base permissions you
added above:

$identity = new UserSecurityIdentity('johannes', 'Acme\UserBundle\Entity\User');
$acl->insertObjectAce($identity, $mask);

The user is now allowed to view, edit, delete, and un-delete objects.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How to Use advanced ACL Concepts

The aim of this chapter is to give a more in-depth view of the ACL system, and
also explain some of the design decisions behind it.

Design Concepts

Symfony’s object instance security capabilities are based on the concept of
an Access Control List. Every domain object instance has its own ACL. The
ACL instance holds a detailed list of Access Control Entries (ACEs) which are
used to make access decisions. Symfony’s ACL system focuses on two main
objectives:

	providing a way to efficiently retrieve a large amount of ACLs/ACEs for your
domain objects, and to modify them;

	providing a way to easily make decisions of whether a person is allowed to
perform an action on a domain object or not.

As indicated by the first point, one of the main capabilities of Symfony’s
ACL system is a high-performance way of retrieving ACLs/ACEs. This is
extremely important since each ACL might have several ACEs, and inherit from
another ACL in a tree-like fashion. Therefore, no ORM is leveraged, instead
the default implementation interacts with your connection directly using Doctrine’s
DBAL.

Object Identities

The ACL system is completely decoupled from your domain objects. They don’t
even have to be stored in the same database, or on the same server. In order
to achieve this decoupling, in the ACL system your objects are represented
through object identity objects. Every time you want to retrieve the ACL for a
domain object, the ACL system will first create an object identity from your
domain object, and then pass this object identity to the ACL provider for
further processing.

Security Identities

This is analog to the object identity, but represents a user, or a role in
your application. Each role, or user has its own security identity.

Database Table Structure

The default implementation uses five database tables as listed below. The
tables are ordered from least rows to most rows in a typical application:

	acl_security_identities: This table records all security identities (SID)
which hold ACEs. The default implementation ships with two security
identities:
RoleSecurityIdentity [http://api.symfony.com/master/Symfony/Component/Security/Acl/Domain/RoleSecurityIdentity.html] and
UserSecurityIdentity [http://api.symfony.com/master/Symfony/Component/Security/Acl/Domain/UserSecurityIdentity.html].

	acl_classes: This table maps class names to a unique ID which can be
referenced from other tables.

	acl_object_identities: Each row in this table represents a single domain
object instance.

	acl_object_identity_ancestors: This table allows all the ancestors of
an ACL to be determined in a very efficient way.

	acl_entries: This table contains all ACEs. This is typically the table
with the most rows. It can contain tens of millions without significantly
impacting performance.

Scope of Access Control Entries

Access control entries can have different scopes in which they apply. In
Symfony, there are basically two different scopes:

	Class-Scope: These entries apply to all objects with the same class.

	Object-Scope: This was the scope solely used in the previous chapter, and
it only applies to one specific object.

Sometimes, you will find the need to apply an ACE only to a specific field of
the object. Suppose you want the ID only to be viewable by an administrator,
but not by your customer service. To solve this common problem, two more sub-scopes
have been added:

	Class-Field-Scope: These entries apply to all objects with the same class,
but only to a specific field of the objects.

	Object-Field-Scope: These entries apply to a specific object, and only to a
specific field of that object.

Pre-Authorization Decisions

For pre-authorization decisions, that is decisions made before any secure method (or
secure action) is invoked, the proven AccessDecisionManager service is used.
The AccessDecisionManager is also used for reaching authorization decisions based
on roles. Just like roles, the ACL system adds several new attributes which may be
used to check for different permissions.

Built-in Permission Map

	Attribute
	Intended Meaning
	Integer Bitmasks

	VIEW
	Whether someone is allowed
to view the domain object.
	VIEW, EDIT, OPERATOR,
MASTER, or OWNER

	EDIT
	Whether someone is allowed
to make changes to the
domain object.
	EDIT, OPERATOR, MASTER,
or OWNER

	CREATE
	Whether someone is allowed
to create the domain
object.
	CREATE, OPERATOR, MASTER,
or OWNER

	DELETE
	Whether someone is allowed
to delete the domain
object.
	DELETE, OPERATOR, MASTER,
or OWNER

	UNDELETE
	Whether someone is allowed
to restore a previously
deleted domain object.
	UNDELETE, OPERATOR, MASTER,
or OWNER

	OPERATOR
	Whether someone is allowed
to perform all of the above
actions.
	OPERATOR, MASTER, or OWNER

	MASTER
	Whether someone is allowed
to perform all of the above
actions, and in addition is
allowed to grant
any of the above
permissions to others.
	MASTER, or OWNER

	OWNER
	Whether someone owns the
domain object. An owner can
perform any of the above
actions and grant master
and owner permissions.
	OWNER

Permission Attributes vs. Permission Bitmasks

Attributes are used by the AccessDecisionManager, just like roles. Often, these
attributes represent in fact an aggregate of integer bitmasks. Integer bitmasks on
the other hand, are used by the ACL system internally to efficiently store your
users’ permissions in the database, and perform access checks using extremely
fast bitmask operations.

Extensibility

The above permission map is by no means static, and theoretically could be
completely replaced at will. However, it should cover most problems you
encounter, and for interoperability with other bundles, you are encouraged to
stick to the meaning envisaged for them.

Post Authorization Decisions

Post authorization decisions are made after a secure method has been invoked,
and typically involve the domain object which is returned by such a method.
After invocation providers also allow to modify, or filter the domain object
before it is returned.

Due to current limitations of the PHP language, there are no
post-authorization capabilities build into the core Security component.
However, there is an experimental JMSSecurityExtraBundle [https://github.com/schmittjoh/JMSSecurityExtraBundle] which adds these
capabilities. See its documentation for further information on how this is
accomplished.

Process for Reaching Authorization Decisions

The ACL class provides two methods for determining whether a security identity
has the required bitmasks, isGranted and isFieldGranted. When the ACL
receives an authorization request through one of these methods, it delegates
this request to an implementation of
PermissionGrantingStrategy [http://api.symfony.com/master/Symfony/Component/Security/Acl/Domain/PermissionGrantingStrategy.html].
This allows you to replace the way access decisions are reached without actually
modifying the ACL class itself.

The PermissionGrantingStrategy first checks all your object-scope ACEs. If none
is applicable, the class-scope ACEs will be checked. If none is applicable,
then the process will be repeated with the ACEs of the parent ACL. If no
parent ACL exists, an exception will be thrown.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How to Force HTTPS or HTTP for different URLs

You can force areas of your site to use the HTTPS protocol in the security
config. This is done through the access_control rules using the requires_channel
option. For example, if you want to force all URLs starting with /secure
to use HTTPS then you could use the following configuration:

	YAMLaccess_control:
 - { path: ^/secure, roles: ROLE_ADMIN, requires_channel: https }

	XML<access-control>
 <rule path="^/secure" role="ROLE_ADMIN" requires_channel="https" />
</access-control>

	PHP'access_control' => array(
 array(
 'path' => '^/secure',
 'role' => 'ROLE_ADMIN',
 'requires_channel' => 'https',
),
),

The login form itself needs to allow anonymous access, otherwise users will
be unable to authenticate. To force it to use HTTPS you can still use
access_control rules by using the IS_AUTHENTICATED_ANONYMOUSLY
role:

	YAMLaccess_control:
 - { path: ^/login, roles: IS_AUTHENTICATED_ANONYMOUSLY, requires_channel: https }

	XML<access-control>
 <rule path="^/login"
 role="IS_AUTHENTICATED_ANONYMOUSLY"
 requires_channel="https" />
</access-control>

	PHP'access_control' => array(
 array(
 'path' => '^/login',
 'role' => 'IS_AUTHENTICATED_ANONYMOUSLY',
 'requires_channel' => 'https',
),
),

It is also possible to specify using HTTPS in the routing configuration,
see How to Force Routes to always Use HTTPS or HTTP for more details.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How to Customize your Form Login

Using a form login for authentication
is a common, and flexible, method for handling authentication in Symfony.
Pretty much every aspect of the form login can be customized. The full, default
configuration is shown in the next section.

Form Login Configuration Reference

To see the full form login configuration reference, see
SecurityBundle Configuration (“security”). Some of the more interesting options
are explained below.

Redirecting after Success

You can change where the login form redirects after a successful login using
the various config options. By default the form will redirect to the URL the
user requested (i.e. the URL which triggered the login form being shown).
For example, if the user requested http://www.example.com/admin/post/18/edit,
then after they successfully log in, they will eventually be sent back to
http://www.example.com/admin/post/18/edit.
This is done by storing the requested URL in the session.
If no URL is present in the session (perhaps the user went
directly to the login page), then the user is redirected to the default page,
which is / (i.e. the homepage) by default. You can change this behavior
in several ways.

注解

As mentioned, by default the user is redirected back to the page originally
requested. Sometimes, this can cause problems, like if a background Ajax
request “appears” to be the last visited URL, causing the user to be
redirected there. For information on controlling this behavior, see
How to Change the default Target Path Behavior.

Changing the default Page

First, the default page can be set (i.e. the page the user is redirected to
if no previous page was stored in the session). To set it to the
default_security_target route use the following config:

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 form_login:
 # ...
 default_target_path: default_security_target

	XML<!-- app/config/security.xml -->
<config>
 <firewall>
 <form-login
 default_target_path="default_security_target"
 />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array(
 // ...

 'form_login' => array(
 // ...
 'default_target_path' => 'default_security_target',
),
),
),
));

Now, when no URL is set in the session, users will be sent to the
default_security_target route.

Always Redirect to the default Page

You can make it so that users are always redirected to the default page regardless
of what URL they had requested previously by setting the
always_use_default_target_path option to true:

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 form_login:
 # ...
 always_use_default_target_path: true

	XML<!-- app/config/security.xml -->
<config>
 <firewall>
 <form-login
 always_use_default_target_path="true"
 />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array(
 // ...

 'form_login' => array(
 // ...
 'always_use_default_target_path' => true,
),
),
),
));

Using the Referring URL

In case no previous URL was stored in the session, you may wish to try using
the HTTP_REFERER instead, as this will often be the same. You can do
this by setting use_referer to true (it defaults to false):

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 form_login:
 # ...
 use_referer: true

	XML<!-- app/config/security.xml -->
<config>
 <firewall>
 <form-login
 use_referer="true"
 />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array(
 // ...

 'form_login' => array(
 // ...
 'use_referer' => true,
),
),
),
));

Control the Redirect URL from inside the Form

You can also override where the user is redirected to via the form itself by
including a hidden field with the name _target_path. For example, to
redirect to the URL defined by some account route, use the following:

	Twig{# src/Acme/SecurityBundle/Resources/views/Security/login.html.twig #}
{% if error %}
 <div>{{ error.message }}</div>
{% endif %}

<form action="{{ path('login_check') }}" method="post">
 <label for="username">Username:</label>
 <input type="text" id="username" name="_username" value="{{ last_username }}" />

 <label for="password">Password:</label>
 <input type="password" id="password" name="_password" />

 <input type="hidden" name="_target_path" value="account" />

 <input type="submit" name="login" />
</form>

	PHP<!-- src/Acme/SecurityBundle/Resources/views/Security/login.html.php -->
<?php if ($error): ?>
 <div><?php echo $error->getMessage() ?></div>
<?php endif ?>

<form action="<?php echo $view['router']->generate('login_check') ?>" method="post">
 <label for="username">Username:</label>
 <input type="text" id="username" name="_username" value="<?php echo $last_username ?>" />

 <label for="password">Password:</label>
 <input type="password" id="password" name="_password" />

 <input type="hidden" name="_target_path" value="account" />

 <input type="submit" name="login" />
</form>

Now, the user will be redirected to the value of the hidden form field. The
value attribute can be a relative path, absolute URL, or a route name. You
can even change the name of the hidden form field by changing the target_path_parameter
option to another value.

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 form_login:
 target_path_parameter: redirect_url

	XML<!-- app/config/security.xml -->
<config>
 <firewall>
 <form-login
 target_path_parameter="redirect_url"
 />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array(
 'form_login' => array(
 'target_path_parameter' => redirect_url,
),
),
),
));

Redirecting on Login Failure

In addition to redirecting the user after a successful login, you can also set
the URL that the user should be redirected to after a failed login (e.g. an
invalid username or password was submitted). By default, the user is redirected
back to the login form itself. You can set this to a different route (e.g.
login_failure) with the following config:

	YAML# app/config/security.yml
security:
 firewalls:
 main:
 form_login:
 # ...
 failure_path: login_failure

	XML<!-- app/config/security.xml -->
<config>
 <firewall>
 <form-login
 failure_path="login_failure"
 />
 </firewall>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'main' => array(
 // ...

 'form_login' => array(
 // ...
 'failure_path' => 'login_failure',
),
),
),
));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How to Secure any Service or Method in your Application

In the security chapter, you can see how to secure a controller
by requesting the security.context service from the Service Container
and checking the current user’s role:

// ...
use Symfony\Component\Security\Core\Exception\AccessDeniedException;

public function helloAction($name)
{
 if (false === $this->get('security.context')->isGranted('ROLE_ADMIN')) {
 throw new AccessDeniedException();
 }

 // ...
}

You can also secure any service in a similar way by injecting the security.context
service into it. For a general introduction to injecting dependencies into
services see the Service Container chapter of the book. For
example, suppose you have a NewsletterManager class that sends out emails
and you want to restrict its use to only users who have some ROLE_NEWSLETTER_ADMIN
role. Before you add security, the class looks something like this:

// src/AppBundle/Newsletter/NewsletterManager.php
namespace AppBundle\Newsletter;

class NewsletterManager
{

 public function sendNewsletter()
 {
 // ... where you actually do the work
 }

 // ...
}

Your goal is to check the user’s role when the sendNewsletter() method is
called. The first step towards this is to inject the security.context
service into the object. Since it won’t make sense not to perform the security
check, this is an ideal candidate for constructor injection, which guarantees
that the security context object will be available inside the NewsletterManager
class:

namespace AppBundle\Newsletter;

use Symfony\Component\Security\Core\SecurityContextInterface;

class NewsletterManager
{
 protected $securityContext;

 public function __construct(SecurityContextInterface $securityContext)
 {
 $this->securityContext = $securityContext;
 }

 // ...
}

Then in your service configuration, you can inject the service:

	YAML# app/config/services.yml
services:
 newsletter_manager:
 class: AppBundle\Newsletter\NewsletterManager
 arguments: ["@security.context"]

	XML<!-- app/config/services.xml -->
<services>
 <service id="newsletter_manager" class="AppBundle\Newsletter\NewsletterManager">
 <argument type="service" id="security.context"/>
 </service>
</services>

	PHP// app/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$container->setDefinition('newsletter_manager', new Definition(
 'AppBundle\Newsletter\NewsletterManager',
 array(new Reference('security.context'))
));

The injected service can then be used to perform the security check when the
sendNewsletter() method is called:

namespace AppBundle\Newsletter;

use Symfony\Component\Security\Core\Exception\AccessDeniedException;
use Symfony\Component\Security\Core\SecurityContextInterface;
// ...

class NewsletterManager
{
 protected $securityContext;

 public function __construct(SecurityContextInterface $securityContext)
 {
 $this->securityContext = $securityContext;
 }

 public function sendNewsletter()
 {
 if (false === $this->securityContext->isGranted('ROLE_NEWSLETTER_ADMIN')) {
 throw new AccessDeniedException();
 }

 // ...
 }

 // ...
}

If the current user does not have the ROLE_NEWSLETTER_ADMIN, they will
be prompted to log in.

Securing Methods Using Annotations

You can also secure method calls in any service with annotations by using the
optional JMSSecurityExtraBundle [https://github.com/schmittjoh/JMSSecurityExtraBundle] bundle. This bundle is not included in the
Symfony Standard Distribution, but you can choose to install it.

To enable the annotations functionality, tag
the service you want to secure with the security.secure_service tag
(you can also automatically enable this functionality for all services, see
the sidebar below):

	YAML# app/services.yml

...
services:
 newsletter_manager:
 # ...
 tags:
 - { name: security.secure_service }

	XML<!-- app/services.xml -->
<!-- ... -->

<services>
 <service id="newsletter_manager" class="AppBundle\Newsletter\NewsletterManager">
 <!-- ... -->
 <tag name="security.secure_service" />
 </service>
</services>

	PHP// app/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$definition = new Definition(
 'AppBundle\Newsletter\NewsletterManager',
 array(new Reference('security.context'))
));
$definition->addTag('security.secure_service');
$container->setDefinition('newsletter_manager', $definition);

You can then achieve the same results as above using an annotation:

namespace AppBundle\Newsletter;

use JMS\SecurityExtraBundle\Annotation\Secure;
// ...

class NewsletterManager
{

 /**
 * @Secure(roles="ROLE_NEWSLETTER_ADMIN")
 */
 public function sendNewsletter()
 {
 // ...
 }

 // ...
}

注解

The annotations work because a proxy class is created for your class
which performs the security checks. This means that, whilst you can use
annotations on public and protected methods, you cannot use them with
private methods or methods marked final.

The JMSSecurityExtraBundle also allows you to secure the parameters and return
values of methods. For more information, see the JMSSecurityExtraBundle [https://github.com/schmittjoh/JMSSecurityExtraBundle]
documentation.

Activating the Annotations Functionality for all Services

When securing the method of a service (as shown above), you can either
tag each service individually, or activate the functionality for all
services at once. To do so, set the secure_all_services configuration
option to true:

	YAML# app/config/config.yml
jms_security_extra:
 # ...
 secure_all_services: true

	XML<!-- app/config/config.xml -->
<?xml version="1.0" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jms-security-extra="http://example.org/schema/dic/jms_security_extra"
 xsi:schemaLocation="http://www.example.com/symfony/schema/ http://www.example.com/symfony/schema/hello-1.0.xsd">

 <!-- ... -->
 <jms-security-extra:config secure-controllers="true" secure-all-services="true" />

</srv:container>

	PHP// app/config/config.php
$container->loadFromExtension('jms_security_extra', array(
 // ...
 'secure_all_services' => true,
));

The disadvantage of this method is that, if activated, the initial page
load may be very slow depending on how many services you have defined.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How to Create a custom User Provider

Part of Symfony’s standard authentication process depends on “user providers”.
When a user submits a username and password, the authentication layer asks
the configured user provider to return a user object for a given username.
Symfony then checks whether the password of this user is correct and generates
a security token so the user stays authenticated during the current session.
Out of the box, Symfony has an “in_memory” and an “entity” user provider.
In this entry you’ll see how you can create your own user provider, which
could be useful if your users are accessed via a custom database, a file,
or - as shown in this example - a web service.

Create a User Class

First, regardless of where your user data is coming from, you’ll need to
create a User class that represents that data. The User can look
however you want and contain any data. The only requirement is that the
class implements UserInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html].
The methods in this interface should therefore be defined in the custom user
class: getRoles() [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html#method_getRoles],
getPassword() [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html#method_getPassword],
getSalt() [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html#method_getSalt],
getUsername() [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html#method_getUsername],
eraseCredentials() [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html#method_eraseCredentials].
It may also be useful to implement the
EquatableInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/EquatableInterface.html] interface,
which defines a method to check if the user is equal to the current user. This
interface requires an isEqualTo() [http://api.symfony.com/master/Symfony/Component/Security/Core/User/EquatableInterface.html#method_isEqualTo]
method.

This is how your WebserviceUser class looks in action:

// src/Acme/WebserviceUserBundle/Security/User/WebserviceUser.php
namespace Acme\WebserviceUserBundle\Security\User;

use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Security\Core\User\EquatableInterface;

class WebserviceUser implements UserInterface, EquatableInterface
{
 private $username;
 private $password;
 private $salt;
 private $roles;

 public function __construct($username, $password, $salt, array $roles)
 {
 $this->username = $username;
 $this->password = $password;
 $this->salt = $salt;
 $this->roles = $roles;
 }

 public function getRoles()
 {
 return $this->roles;
 }

 public function getPassword()
 {
 return $this->password;
 }

 public function getSalt()
 {
 return $this->salt;
 }

 public function getUsername()
 {
 return $this->username;
 }

 public function eraseCredentials()
 {
 }

 public function isEqualTo(UserInterface $user)
 {
 if (!$user instanceof WebserviceUser) {
 return false;
 }

 if ($this->password !== $user->getPassword()) {
 return false;
 }

 if ($this->salt !== $user->getSalt()) {
 return false;
 }

 if ($this->username !== $user->getUsername()) {
 return false;
 }

 return true;
 }
}

If you have more information about your users - like a “first name” - then
you can add a firstName field to hold that data.

Create a User Provider

Now that you have a User class, you’ll create a user provider, which will
grab user information from some web service, create a WebserviceUser object,
and populate it with data.

The user provider is just a plain PHP class that has to implement the
UserProviderInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserProviderInterface.html],
which requires three methods to be defined: loadUserByUsername($username),
refreshUser(UserInterface $user), and supportsClass($class). For
more details, see UserProviderInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserProviderInterface.html].

Here’s an example of how this might look:

// src/Acme/WebserviceUserBundle/Security/User/WebserviceUserProvider.php
namespace Acme\WebserviceUserBundle\Security\User;

use Symfony\Component\Security\Core\User\UserProviderInterface;
use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Security\Core\Exception\UsernameNotFoundException;
use Symfony\Component\Security\Core\Exception\UnsupportedUserException;

class WebserviceUserProvider implements UserProviderInterface
{
 public function loadUserByUsername($username)
 {
 // make a call to your webservice here
 $userData = ...
 // pretend it returns an array on success, false if there is no user

 if ($userData) {
 $password = '...';

 // ...

 return new WebserviceUser($username, $password, $salt, $roles);
 }

 throw new UsernameNotFoundException(
 sprintf('Username "%s" does not exist.', $username)
);
 }

 public function refreshUser(UserInterface $user)
 {
 if (!$user instanceof WebserviceUser) {
 throw new UnsupportedUserException(
 sprintf('Instances of "%s" are not supported.', get_class($user))
);
 }

 return $this->loadUserByUsername($user->getUsername());
 }

 public function supportsClass($class)
 {
 return $class === 'Acme\WebserviceUserBundle\Security\User\WebserviceUser';
 }
}

Create a Service for the User Provider

Now you make the user provider available as a service:

	YAML# src/Acme/WebserviceUserBundle/Resources/config/services.yml
services:
 webservice_user_provider:
 class: Acme\WebserviceUserBundle\Security\User\WebserviceUserProvider

	XML<!-- src/Acme/WebserviceUserBundle/Resources/config/services.xml -->
<services>
 <service id="webservice_user_provider" class="Acme\WebserviceUserBundle\Security\User\WebserviceUserProvider" />
</services>

	PHP// src/Acme/WebserviceUserBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;

$container->setDefinition(
 'webservice_user_provider',
 new Definition('Acme\WebserviceUserBundle\Security\User\WebserviceUserProvider')
);

小技巧

The real implementation of the user provider will probably have some
dependencies or configuration options or other services. Add these as
arguments in the service definition.

注解

Make sure the services file is being imported. See Importing Configuration with imports
for details.

Modify security.yml

Everything comes together in your security configuration. Add the user provider
to the list of providers in the “security” section. Choose a name for the user provider
(e.g. “webservice”) and mention the id of the service you just defined.

	YAML# app/config/security.yml
security:
 providers:
 webservice:
 id: webservice_user_provider

	XML<!-- app/config/security.xml -->
<config>
 <provider name="webservice" id="webservice_user_provider" />
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'providers' => array(
 'webservice' => array(
 'id' => 'webservice_user_provider',
),
),
));

Symfony also needs to know how to encode passwords that are supplied by website
users, e.g. by filling in a login form. You can do this by adding a line to the
“encoders” section in your security configuration:

	YAML# app/config/security.yml
security:
 encoders:
 Acme\WebserviceUserBundle\Security\User\WebserviceUser: sha512

	XML<!-- app/config/security.xml -->
<config>
 <encoder class="Acme\WebserviceUserBundle\Security\User\WebserviceUser">sha512</encoder>
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'encoders' => array(
 'Acme\WebserviceUserBundle\Security\User\WebserviceUser' => 'sha512',
),
));

The value here should correspond with however the passwords were originally
encoded when creating your users (however those users were created). When
a user submits their password, the salt value is appended to the password and
then encoded using this algorithm before being compared to the hashed password
returned by your getPassword() method. Additionally, depending on your
options, the password may be encoded multiple times and encoded to base64.

Specifics on how Passwords are Encoded

Symfony uses a specific method to combine the salt and encode the password
before comparing it to your encoded password. If getSalt() returns
nothing, then the submitted password is simply encoded using the algorithm
you specify in security.yml. If a salt is specified, then the following
value is created and then hashed via the algorithm:

$password.'{'.$salt.'}';

If your external users have their passwords salted via a different method,
then you’ll need to do a bit more work so that Symfony properly encodes
the password. That is beyond the scope of this entry, but would include
sub-classing MessageDigestPasswordEncoder and overriding the mergePasswordAndSalt
method.

Additionally, the hash, by default, is encoded multiple times and encoded
to base64. For specific details, see MessageDigestPasswordEncoder [https://github.com/symfony/symfony/blob/master/src/Symfony/Component/Security/Core/Encoder/MessageDigestPasswordEncoder.php].
To prevent this, configure it in your configuration file:

	YAML# app/config/security.yml
security:
 encoders:
 Acme\WebserviceUserBundle\Security\User\WebserviceUser:
 algorithm: sha512
 encode_as_base64: false
 iterations: 1

	XML<!-- app/config/security.xml -->
<config>
 <encoder class="Acme\WebserviceUserBundle\Security\User\WebserviceUser"
 algorithm="sha512"
 encode-as-base64="false"
 iterations="1"
 />
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'encoders' => array(
 'Acme\WebserviceUserBundle\Security\User\WebserviceUser' => array(
 'algorithm' => 'sha512',
 'encode_as_base64' => false,
 'iterations' => 1,
),
),
));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How to Create a custom Authentication Provider

If you have read the chapter on Security, you understand the
distinction Symfony makes between authentication and authorization in the
implementation of security. This chapter discusses the core classes involved
in the authentication process, and how to implement a custom authentication
provider. Because authentication and authorization are separate concepts,
this extension will be user-provider agnostic, and will function with your
application’s user providers, may they be based in memory, a database, or
wherever else you choose to store them.

Meet WSSE

The following chapter demonstrates how to create a custom authentication
provider for WSSE authentication. The security protocol for WSSE provides
several security benefits:

	Username / Password encryption

	Safe guarding against replay attacks

	No web server configuration required

WSSE is very useful for the securing of web services, may they be SOAP or
REST.

There is plenty of great documentation on WSSE [http://www.xml.com/pub/a/2003/12/17/dive.html], but this article will
focus not on the security protocol, but rather the manner in which a custom
protocol can be added to your Symfony application. The basis of WSSE is
that a request header is checked for encrypted credentials, verified using
a timestamp and nonce [http://en.wikipedia.org/wiki/Cryptographic_nonce], and authenticated for the requested user using a
password digest.

注解

WSSE also supports application key validation, which is useful for web
services, but is outside the scope of this chapter.

The Token

The role of the token in the Symfony security context is an important one.
A token represents the user authentication data present in the request. Once
a request is authenticated, the token retains the user’s data, and delivers
this data across the security context. First, you’ll create your token class.
This will allow the passing of all relevant information to your authentication
provider.

// src/AppBundle/Security/Authentication/Token/WsseUserToken.php
namespace AppBundle\Security\Authentication\Token;

use Symfony\Component\Security\Core\Authentication\Token\AbstractToken;

class WsseUserToken extends AbstractToken
{
 public $created;
 public $digest;
 public $nonce;

 public function __construct(array $roles = array())
 {
 parent::__construct($roles);

 // If the user has roles, consider it authenticated
 $this->setAuthenticated(count($roles) > 0);
 }

 public function getCredentials()
 {
 return '';
 }
}

注解

The WsseUserToken class extends the Security component’s
AbstractToken [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Token/AbstractToken.html]
class, which provides basic token functionality. Implement the
TokenInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Token/TokenInterface.html]
on any class to use as a token.

The Listener

Next, you need a listener to listen on the security context. The listener
is responsible for fielding requests to the firewall and calling the authentication
provider. A listener must be an instance of
ListenerInterface [http://api.symfony.com/master/Symfony/Component/Security/Http/Firewall/ListenerInterface.html].
A security listener should handle the
GetResponseEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseEvent.html] event, and
set an authenticated token in the security context if successful.

// src/AppBundle/Security/Firewall/WsseListener.php
namespace AppBundle\Security\Firewall;

use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpKernel\Event\GetResponseEvent;
use Symfony\Component\Security\Http\Firewall\ListenerInterface;
use Symfony\Component\Security\Core\Exception\AuthenticationException;
use Symfony\Component\Security\Core\SecurityContextInterface;
use Symfony\Component\Security\Core\Authentication\AuthenticationManagerInterface;
use AppBundle\Security\Authentication\Token\WsseUserToken;

class WsseListener implements ListenerInterface
{
 protected $securityContext;
 protected $authenticationManager;

 public function __construct(SecurityContextInterface $securityContext, AuthenticationManagerInterface $authenticationManager)
 {
 $this->securityContext = $securityContext;
 $this->authenticationManager = $authenticationManager;
 }

 public function handle(GetResponseEvent $event)
 {
 $request = $event->getRequest();

 $wsseRegex = '/UsernameToken Username="([^"]+)", PasswordDigest="([^"]+)", Nonce="([^"]+)", Created="([^"]+)"/';
 if (!$request->headers->has('x-wsse') || 1 !== preg_match($wsseRegex, $request->headers->get('x-wsse'), $matches)) {
 return;
 }

 $token = new WsseUserToken();
 $token->setUser($matches[1]);

 $token->digest = $matches[2];
 $token->nonce = $matches[3];
 $token->created = $matches[4];

 try {
 $authToken = $this->authenticationManager->authenticate($token);
 $this->securityContext->setToken($authToken);

 return;
 } catch (AuthenticationException $failed) {
 // ... you might log something here

 // To deny the authentication clear the token. This will redirect to the login page.
 // Make sure to only clear your token, not those of other authentication listeners.
 // $token = $this->securityContext->getToken();
 // if ($token instanceof WsseUserToken && $this->providerKey === $token->getProviderKey()) {
 // $this->securityContext->setToken(null);
 // }
 // return;
 }

 // By default deny authorization
 $response = new Response();
 $response->setStatusCode(403);
 $event->setResponse($response);
 }
}

This listener checks the request for the expected X-WSSE header, matches
the value returned for the expected WSSE information, creates a token using
that information, and passes the token on to the authentication manager. If
the proper information is not provided, or the authentication manager throws
an AuthenticationException [http://api.symfony.com/master/Symfony/Component/Security/Core/Exception/AuthenticationException.html],
a 403 Response is returned.

注解

A class not used above, the
AbstractAuthenticationListener [http://api.symfony.com/master/Symfony/Component/Security/Http/Firewall/AbstractAuthenticationListener.html]
class, is a very useful base class which provides commonly needed functionality
for security extensions. This includes maintaining the token in the session,
providing success / failure handlers, login form URLs, and more. As WSSE
does not require maintaining authentication sessions or login forms, it
won’t be used for this example.

注解

Returning prematurely from the listener is relevant only if you want to chain
authentication providers (for example to allow anonymous users). If you want
to forbid access to anonymous users and have a nice 403 error, you should set
the status code of the response before returning.

The Authentication Provider

The authentication provider will do the verification of the WsseUserToken.
Namely, the provider will verify the Created header value is valid within
five minutes, the Nonce header value is unique within five minutes, and
the PasswordDigest header value matches with the user’s password.

// src/AppBundle/Security/Authentication/Provider/WsseProvider.php
namespace AppBundle\Security\Authentication\Provider;

use Symfony\Component\Security\Core\Authentication\Provider\AuthenticationProviderInterface;
use Symfony\Component\Security\Core\User\UserProviderInterface;
use Symfony\Component\Security\Core\Exception\AuthenticationException;
use Symfony\Component\Security\Core\Exception\NonceExpiredException;
use Symfony\Component\Security\Core\Authentication\Token\TokenInterface;
use AppBundle\Security\Authentication\Token\WsseUserToken;

class WsseProvider implements AuthenticationProviderInterface
{
 private $userProvider;
 private $cacheDir;

 public function __construct(UserProviderInterface $userProvider, $cacheDir)
 {
 $this->userProvider = $userProvider;
 $this->cacheDir = $cacheDir;
 }

 public function authenticate(TokenInterface $token)
 {
 $user = $this->userProvider->loadUserByUsername($token->getUsername());

 if ($user && $this->validateDigest($token->digest, $token->nonce, $token->created, $user->getPassword())) {
 $authenticatedToken = new WsseUserToken($user->getRoles());
 $authenticatedToken->setUser($user);

 return $authenticatedToken;
 }

 throw new AuthenticationException('The WSSE authentication failed.');
 }

 /**
 * This function is specific to Wsse authentication and is only used to help this example
 *
 * For more information specific to the logic here, see
 * https://github.com/symfony/symfony-docs/pull/3134#issuecomment-27699129
 */
 protected function validateDigest($digest, $nonce, $created, $secret)
 {
 // Check created time is not in the future
 if (strtotime($created) > time()) {
 return false;
 }

 // Expire timestamp after 5 minutes
 if (time() - strtotime($created) > 300) {
 return false;
 }

 // Validate that the nonce is *not* used in the last 5 minutes
 // if it has, this could be a replay attack
 if (file_exists($this->cacheDir.'/'.$nonce) && file_get_contents($this->cacheDir.'/'.$nonce) + 300 > time()) {
 throw new NonceExpiredException('Previously used nonce detected');
 }
 // If cache directory does not exist we create it
 if (!is_dir($this->cacheDir)) {
 mkdir($this->cacheDir, 0777, true);
 }
 file_put_contents($this->cacheDir.'/'.$nonce, time());

 // Validate Secret
 $expected = base64_encode(sha1(base64_decode($nonce).$created.$secret, true));

 return $digest === $expected;
 }

 public function supports(TokenInterface $token)
 {
 return $token instanceof WsseUserToken;
 }
}

注解

The AuthenticationProviderInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Provider/AuthenticationProviderInterface.html]
requires an authenticate method on the user token, and a supports
method, which tells the authentication manager whether or not to use this
provider for the given token. In the case of multiple providers, the
authentication manager will then move to the next provider in the list.

The Factory

You have created a custom token, custom listener, and custom provider. Now
you need to tie them all together. How do you make a unique provider available
for every firewall? The answer is by using a factory. A factory
is where you hook into the Security component, telling it the name of your
provider and any configuration options available for it. First, you must
create a class which implements
SecurityFactoryInterface [http://api.symfony.com/master/Symfony/Bundle/SecurityBundle/DependencyInjection/Security/Factory/SecurityFactoryInterface.html].

// src/AppBundle/DependencyInjection/Security/Factory/WsseFactory.php
namespace AppBundle\DependencyInjection\Security\Factory;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Reference;
use Symfony\Component\DependencyInjection\DefinitionDecorator;
use Symfony\Component\Config\Definition\Builder\NodeDefinition;
use Symfony\Bundle\SecurityBundle\DependencyInjection\Security\Factory\SecurityFactoryInterface;

class WsseFactory implements SecurityFactoryInterface
{
 public function create(ContainerBuilder $container, $id, $config, $userProvider, $defaultEntryPoint)
 {
 $providerId = 'security.authentication.provider.wsse.'.$id;
 $container
 ->setDefinition($providerId, new DefinitionDecorator('wsse.security.authentication.provider'))
 ->replaceArgument(0, new Reference($userProvider))
 ;

 $listenerId = 'security.authentication.listener.wsse.'.$id;
 $listener = $container->setDefinition($listenerId, new DefinitionDecorator('wsse.security.authentication.listener'));

 return array($providerId, $listenerId, $defaultEntryPoint);
 }

 public function getPosition()
 {
 return 'pre_auth';
 }

 public function getKey()
 {
 return 'wsse';
 }

 public function addConfiguration(NodeDefinition $node)
 {
 }
}

The SecurityFactoryInterface [http://api.symfony.com/master/Symfony/Bundle/SecurityBundle/DependencyInjection/Security/Factory/SecurityFactoryInterface.html]
requires the following methods:

	create

	Method which adds the listener and authentication provider
to the DI container for the appropriate security context.

	getPosition

	Method which must be of type pre_auth, form, http,
and remember_me and defines the position at which the provider is called.

	getKey

	Method which defines the configuration key used to reference
the provider in the firewall configuration.

	addConfiguration

	Method which is used to define the configuration
options underneath the configuration key in your security configuration.
Setting configuration options are explained later in this chapter.

注解

A class not used in this example,
AbstractFactory [http://api.symfony.com/master/Symfony/Bundle/SecurityBundle/DependencyInjection/Security/Factory/AbstractFactory.html],
is a very useful base class which provides commonly needed functionality
for security factories. It may be useful when defining an authentication
provider of a different type.

Now that you have created a factory class, the wsse key can be used as
a firewall in your security configuration.

注解

You may be wondering “why do you need a special factory class to add listeners
and providers to the dependency injection container?”. This is a very
good question. The reason is you can use your firewall multiple times,
to secure multiple parts of your application. Because of this, each
time your firewall is used, a new service is created in the DI container.
The factory is what creates these new services.

Configuration

It’s time to see your authentication provider in action. You will need to
do a few things in order to make this work. The first thing is to add the
services above to the DI container. Your factory class above makes reference
to service ids that do not exist yet: wsse.security.authentication.provider and
wsse.security.authentication.listener. It’s time to define those services.

	YAML# src/AppBundle/Resources/config/services.yml
services:
 wsse.security.authentication.provider:
 class: AppBundle\Security\Authentication\Provider\WsseProvider
 arguments: ["", "%kernel.cache_dir%/security/nonces"]

 wsse.security.authentication.listener:
 class: AppBundle\Security\Firewall\WsseListener
 arguments: ["@security.context", "@security.authentication.manager"]

	XML<!-- src/AppBundle/Resources/config/services.xml -->
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="wsse.security.authentication.provider"
 class="AppBundle\Security\Authentication\Provider\WsseProvider" public="false">
 <argument /> <!-- User Provider -->
 <argument>%kernel.cache_dir%/security/nonces</argument>
 </service>

 <service id="wsse.security.authentication.listener"
 class="AppBundle\Security\Firewall\WsseListener" public="false">
 <argument type="service" id="security.context"/>
 <argument type="service" id="security.authentication.manager" />
 </service>
 </services>
</container>

	PHP// src/AppBundle/Resources/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$container->setDefinition('wsse.security.authentication.provider',
 new Definition(
 'AppBundle\Security\Authentication\Provider\WsseProvider', array(
 '',
 '%kernel.cache_dir%/security/nonces',
)
)
);

$container->setDefinition('wsse.security.authentication.listener',
 new Definition(
 'AppBundle\Security\Firewall\WsseListener', array(
 new Reference('security.context'),
 new Reference('security.authentication.manager'),
)
)
);

Now that your services are defined, tell your security context about your
factory in your bundle class:

// src/AppBundle/AppBundle.php
namespace AppBundle;

use AppBundle\DependencyInjection\Security\Factory\WsseFactory;
use Symfony\Component\HttpKernel\Bundle\Bundle;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class AppBundle extends Bundle
{
 public function build(ContainerBuilder $container)
 {
 parent::build($container);

 $extension = $container->getExtension('security');
 $extension->addSecurityListenerFactory(new WsseFactory());
 }
}

You are finished! You can now define parts of your app as under WSSE protection.

	YAMLsecurity:
 firewalls:
 wsse_secured:
 pattern: /api/.*
 stateless: true
 wsse: true

	XML<config>
 <firewall name="wsse_secured" pattern="/api/.*">
 <stateless />
 <wsse />
 </firewall>
</config>

	PHP$container->loadFromExtension('security', array(
 'firewalls' => array(
 'wsse_secured' => array(
 'pattern' => '/api/.*',
 'stateless' => true,
 'wsse' => true,
),
),
));

Congratulations! You have written your very own custom security authentication
provider!

A little Extra

How about making your WSSE authentication provider a bit more exciting? The
possibilities are endless. Why don’t you start by adding some sparkle
to that shine?

Configuration

You can add custom options under the wsse key in your security configuration.
For instance, the time allowed before expiring the Created header item,
by default, is 5 minutes. Make this configurable, so different firewalls
can have different timeout lengths.

You will first need to edit WsseFactory and define the new option in
the addConfiguration method.

class WsseFactory implements SecurityFactoryInterface
{
 // ...

 public function addConfiguration(NodeDefinition $node)
 {
 $node
 ->children()
 ->scalarNode('lifetime')->defaultValue(300)
 ->end();
 }
}

Now, in the create method of the factory, the $config argument will
contain a lifetime key, set to 5 minutes (300 seconds) unless otherwise
set in the configuration. Pass this argument to your authentication provider
in order to put it to use.

class WsseFactory implements SecurityFactoryInterface
{
 public function create(ContainerBuilder $container, $id, $config, $userProvider, $defaultEntryPoint)
 {
 $providerId = 'security.authentication.provider.wsse.'.$id;
 $container
 ->setDefinition($providerId,
 new DefinitionDecorator('wsse.security.authentication.provider'))
 ->replaceArgument(0, new Reference($userProvider))
 ->replaceArgument(2, $config['lifetime']);
 // ...
 }

 // ...
}

注解

You’ll also need to add a third argument to the wsse.security.authentication.provider
service configuration, which can be blank, but will be filled in with
the lifetime in the factory. The WsseProvider class will also now
need to accept a third constructor argument - the lifetime - which it
should use instead of the hard-coded 300 seconds. These two steps are
not shown here.

The lifetime of each WSSE request is now configurable, and can be
set to any desirable value per firewall.

	YAMLsecurity:
 firewalls:
 wsse_secured:
 pattern: /api/.*
 stateless: true
 wsse: { lifetime: 30 }

	XML<config>
 <firewall name="wsse_secured"
 pattern="/api/.*"
 >
 <stateless />
 <wsse lifetime="30" />
 </firewall>
</config>

	PHP$container->loadFromExtension('security', array(
 'firewalls' => array(
 'wsse_secured' => array(
 'pattern' => '/api/.*',
 'stateless' => true,
 'wsse' => array(
 'lifetime' => 30,
),
),
),
));

The rest is up to you! Any relevant configuration items can be defined
in the factory and consumed or passed to the other classes in the container.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

Using pre Authenticated Security Firewalls

A lot of authentication modules are already provided by some web servers,
including Apache. These modules generally set some environment variables
that can be used to determine which user is accessing your application. Out of the
box, Symfony supports most authentication mechanisms.
These requests are called pre authenticated requests because the user is already
authenticated when reaching your application.

X.509 Client Certificate Authentication

When using client certificates, your webserver is doing all the authentication
process itself. With Apache, for example, you would use the
SSLVerifyClient Require directive.

Enable the x509 authentication for a particular firewall in the security configuration:

	YAML# app/config/security.yml
security:
 firewalls:
 secured_area:
 pattern: ^/
 x509:
 provider: your_user_provider

	XML<?xml version="1.0" ?>
<!-- app/config/security.xml -->
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:srv="http://symfony.com/schema/dic/services">

 <config>
 <firewall name="secured_area" pattern="^/">
 <x509 provider="your_user_provider"/>
 </firewall>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'secured_area' => array(
 'pattern' => '^/'
 'x509' => array(
 'provider' => 'your_user_provider',
),
),
),
));

By default, the firewall provides the SSL_CLIENT_S_DN_Email variable to
the user provider, and sets the SSL_CLIENT_S_DN as credentials in the
PreAuthenticatedToken [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Token/PreAuthenticatedToken.html].
You can override these by setting the user and the credentials keys
in the x509 firewall configuration respectively.

注解

An authentication provider will only inform the user provider of the username
that made the request. You will need to create (or use) a “user provider” that
is referenced by the provider configuration parameter (your_user_provider
in the configuration example). This provider will turn the username into a User
object of your choice. For more information on creating or configuring a user
provider, see:

	How to Create a custom User Provider

	How to Load Security Users from the Database (the Entity Provider)

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How to Change the default Target Path Behavior

By default, the Security component retains the information of the last request
URI in a session variable named _security.main.target_path (with main being
the name of the firewall, defined in security.yml). Upon a successful
login, the user is redirected to this path, as to help them continue from the
last known page they visited.

In some situations, this is not ideal. For example, when the last request
URI was an XMLHttpRequest which returned a non-HTML or partial HTML response,
the user is redirected back to a page which the browser cannot render.

To get around this behavior, you would simply need to extend the ExceptionListener
class and override the default method named setTargetPath().

First, override the security.exception_listener.class parameter in your
configuration file. This can be done from your main configuration file (in
app/config) or from a configuration file being imported from a bundle:

	YAML# app/config/services.yml
parameters:
 # ...
 security.exception_listener.class: AppBundle\Security\Firewall\ExceptionListener

	XML<!-- app/config/services.xml -->
<parameters>
 <!-- ... -->
 <parameter key="security.exception_listener.class">AppBundle\Security\Firewall\ExceptionListener</parameter>
</parameters>

	PHP// app/config/services.php
// ...
$container->setParameter('security.exception_listener.class', 'AppBundle\Security\Firewall\ExceptionListener');

Next, create your own ExceptionListener:

// src/AppBundle/Security/Firewall/ExceptionListener.php
namespace AppBundle\Security\Firewall;

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\Security\Http\Firewall\ExceptionListener as BaseExceptionListener;

class ExceptionListener extends BaseExceptionListener
{
 protected function setTargetPath(Request $request)
 {
 // Do not save target path for XHR requests
 // You can add any more logic here you want
 // Note that non-GET requests are already ignored
 if ($request->isXmlHttpRequest()) {
 return;
 }

 parent::setTargetPath($request);
 }
}

Add as much or as little logic here as required for your scenario!

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

Using CSRF Protection in the Login Form

When using a login form, you should make sure that you are protected against CSRF
(Cross-site request forgery [http://en.wikipedia.org/wiki/Cross-site_request_forgery]). The Security component already has built-in support
for CSRF. In this article you’ll learn how you can use it in your login form.

注解

Login CSRF attacks are a bit less well-known. See Forging Login Requests [http://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests]
if you’re curious about more details.

Configuring CSRF Protection

First, configure the Security component so it can use CSRF protection.
The Security component needs a CSRF token provider. You can set this to use the default
provider available in the Form component:

	YAML# app/config/security.yml
security:
 firewalls:
 secured_area:
 # ...
 form_login:
 # ...
 csrf_provider: form.csrf_provider

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <firewall name="secured_area">
 <!-- ... -->

 <form-login csrf-provider="form.csrf_provider" />
 </firewall>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'secured_area' => array(
 // ...
 'form_login' => array(
 // ...
 'csrf_provider' => 'form.csrf_provider',
)
)
)
));

The Security component can be configured further, but this is all information
it needs to be able to use CSRF in the login form.

Rendering the CSRF field

Now that Security component will check for the CSRF token, you have to add
a hidden field to the login form containing the CSRF token. By default,
this field is named _csrf_token. That hidden field must contain the CSRF
token, which can be generated by using the csrf_token function. That
function requires a token ID, which must be set to authenticate when
using the login form:

	Twig{# src/Acme/SecurityBundle/Resources/views/Security/login.html.twig #}

{# ... #}
<form action="{{ path('login_check') }}" method="post">
 {# ... the login fields #}

 <input type="hidden" name="_csrf_token"
 value="{{ csrf_token('authenticate') }}"
 >

 <button type="submit">login</button>
</form>

	PHP<!-- src/Acme/SecurityBundle/Resources/views/Security/login.html.php -->

<!-- ... -->
<form action="<?php echo $view['router']->generate('login_check') ?>" method="post">
 <!-- ... the login fields -->

 <input type="hidden" name="_csrf_token"
 value="<?php echo $view['form']->csrfToken('authenticate') ?>"
 >

 <button type="submit">login</button>
</form>

After this, you have protected your login form against CSRF attacks.

小技巧

You can change the name of the field by setting csrf_parameter and change
the token ID by setting intention in your configuration:

	YAML# app/config/security.yml
security:
 firewalls:
 secured_area:
 # ...
 form_login:
 # ...
 csrf_parameter: _csrf_security_token
 intention: a_private_string

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <firewall name="secured_area">
 <!-- ... -->

 <form-login csrf-parameter="_csrf_security_token"
 intention="a_private_string" />
 </firewall>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'secured_area' => array(
 // ...
 'form_login' => array(
 // ...
 'csrf_parameter' => '_csrf_security_token',
 'intention' => 'a_private_string',
)
)
)
));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How Does the Security access_control Work?

For each incoming request, Symfony checks each access_control entry
to find one that matches the current request. As soon as it finds a matching
access_control entry, it stops - only the first matching access_control
is used to enforce access.

Each access_control has several options that configure two different
things:

	should the incoming request match this access control entry

	once it matches, should some sort of access restriction be enforced:

1. Matching Options

Symfony creates an instance of RequestMatcher [http://api.symfony.com/master/Symfony/Component/HttpFoundation/RequestMatcher.html]
for each access_control entry, which determines whether or not a given
access control should be used on this request. The following access_control
options are used for matching:

	path

	ip or ips

	host

	methods

Take the following access_control entries as an example:

	YAML# app/config/security.yml
security:
 # ...
 access_control:
 - { path: ^/admin, roles: ROLE_USER_IP, ip: 127.0.0.1 }
 - { path: ^/admin, roles: ROLE_USER_HOST, host: symfony\.com$ }
 - { path: ^/admin, roles: ROLE_USER_METHOD, methods: [POST, PUT] }
 - { path: ^/admin, roles: ROLE_USER }

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <!-- ... -->
 <access-control>
 <rule path="^/admin" role="ROLE_USER_IP" ip="127.0.0.1" />
 <rule path="^/admin" role="ROLE_USER_HOST" host="symfony\.com$" />
 <rule path="^/admin" role="ROLE_USER_METHOD" method="POST, PUT" />
 <rule path="^/admin" role="ROLE_USER" />
 </access-control>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 // ...
 'access_control' => array(
 array(
 'path' => '^/admin',
 'role' => 'ROLE_USER_IP',
 'ip' => '127.0.0.1',
),
 array(
 'path' => '^/admin',
 'role' => 'ROLE_USER_HOST',
 'host' => 'symfony\.com$',
),
 array(
 'path' => '^/admin',
 'role' => 'ROLE_USER_METHOD',
 'method' => 'POST, PUT',
),
 array(
 'path' => '^/admin',
 'role' => 'ROLE_USER',
),
),
));

For each incoming request, Symfony will decide which access_control
to use based on the URI, the client’s IP address, the incoming host name,
and the request method. Remember, the first rule that matches is used, and
if ip, host or method are not specified for an entry, that access_control
will match any ip, host or method:

	URI
	IP
	HOST
	METHOD
	access_control
	Why?

	/admin/user
	127.0.0.1
	example.com
	GET
	rule #1 (ROLE_USER_IP)
	The URI matches path and the IP matches ip.

	/admin/user
	127.0.0.1
	symfony.com
	GET
	rule #1 (ROLE_USER_IP)
	The path and ip still match. This would also match
the ROLE_USER_HOST entry, but only the first
access_control match is used.

	/admin/user
	168.0.0.1
	symfony.com
	GET
	rule #2 (ROLE_USER_HOST)
	The ip doesn’t match the first rule, so the second
rule (which matches) is used.

	/admin/user
	168.0.0.1
	symfony.com
	POST
	rule #2 (ROLE_USER_HOST)
	The second rule still matches. This would also match the
third rule (ROLE_USER_METHOD), but only the first
matched access_control is used.

	/admin/user
	168.0.0.1
	example.com
	POST
	rule #3 (ROLE_USER_METHOD)
	The ip and host don’t match the first two entries,
but the third - ROLE_USER_METHOD - matches and is used.

	/admin/user
	168.0.0.1
	example.com
	GET
	rule #4 (ROLE_USER)
	The ip, host and method prevent the first
three entries from matching. But since the URI matches the
path pattern of the ROLE_USER entry, it is used.

	/foo
	127.0.0.1
	symfony.com
	POST
	matches no entries
	This doesn’t match any access_control rules, since its
URI doesn’t match any of the path values.

2. Access Enforcement

Once Symfony has decided which access_control entry matches (if any),
it then enforces access restrictions based on the roles and requires_channel
options:

	role If the user does not have the given role(s), then access is denied
(internally, an AccessDeniedException [http://api.symfony.com/master/Symfony/Component/Security/Core/Exception/AccessDeniedException.html]
is thrown);

	requires_channel If the incoming request’s channel (e.g. http)
does not match this value (e.g. https), the user will be redirected
(e.g. redirected from http to https, or vice versa).

小技巧

If access is denied, the system will try to authenticate the user if not
already (e.g. redirect the user to the login page). If the user is already
logged in, the 403 “access denied” error page will be shown. See
How to Customize Error Pages for more information.

Matching access_control By IP

Certain situations may arise when you need to have an access_control
entry that only matches requests coming from some IP address or range.
For example, this could be used to deny access to a URL pattern to all
requests except those from a trusted, internal server.

警告

As you’ll read in the explanation below the example, the ips option
does not restrict to a specific IP address. Instead, using the ips
key means that the access_control entry will only match this IP address,
and users accessing it from a different IP address will continue down
the access_control list.

Here is an example of how you configure some example /internal* URL
pattern so that it is only accessible by requests from the local server itself:

	YAML# app/config/security.yml
security:
 # ...
 access_control:
 #
 - { path: ^/internal, roles: IS_AUTHENTICATED_ANONYMOUSLY, ips: [127.0.0.1, ::1] }
 - { path: ^/internal, roles: ROLE_NO_ACCESS }

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <!-- ... -->
 <access-control>
 <rule path="^/esi" role="IS_AUTHENTICATED_ANONYMOUSLY"
 ips="127.0.0.1, ::1" />
 <rule path="^/esi" role="ROLE_NO_ACCESS" />
 </access-control>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 // ...
 'access_control' => array(
 array(
 'path' => '^/esi',
 'role' => 'IS_AUTHENTICATED_ANONYMOUSLY',
 'ips' => '127.0.0.1, ::1'
),
 array(
 'path' => '^/esi',
 'role' => 'ROLE_NO_ACCESS'
),
),
));

Here is how it works when the path is /internal/something coming from
the external IP address 10.0.0.1:

	The first access control rule is ignored as the path matches but the
IP address does not match either of the IPs listed;

	The second access control rule is enabled (the only restriction being the
path) and so it matches. If you make sure that no users ever have
ROLE_NO_ACCESS, then access is denied (ROLE_NO_ACCESS can be anything
that does not match an existing role, it just serves as a trick to always
deny access).

But if the same request comes from 127.0.0.1 or ::1 (the IPv6 loopback
address):

	Now, the first access control rule is enabled as both the path and the
ip match: access is allowed as the user always has the
IS_AUTHENTICATED_ANONYMOUSLY role.

	The second access rule is not examined as the first rule matched.

Forcing a Channel (http, https)

You can also require a user to access a URL via SSL; just use the
requires_channel argument in any access_control entries. If this
access_control is matched and the request is using the http channel,
the user will be redirected to https:

	YAML# app/config/security.yml
security:
 # ...
 access_control:
 - { path: ^/cart/checkout, roles: IS_AUTHENTICATED_ANONYMOUSLY, requires_channel: https }

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <access-control>
 <rule path="^/cart/checkout"
 role="IS_AUTHENTICATED_ANONYMOUSLY"
 requires-channel="https" />
 </access-control>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'access_control' => array(
 array(
 'path' => '^/cart/checkout',
 'role' => 'IS_AUTHENTICATED_ANONYMOUSLY',
 'requires_channel' => 'https',
),
),
));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Security

How to Use multiple User Providers

Each authentication mechanism (e.g. HTTP Authentication, form login, etc)
uses exactly one user provider, and will use the first declared user provider
by default. But what if you want to specify a few users via configuration
and the rest of your users in the database? This is possible by creating
a new provider that chains the two together:

	YAML# app/config/security.yml
security:
 providers:
 chain_provider:
 chain:
 providers: [in_memory, user_db]
 in_memory:
 memory:
 users:
 foo: { password: test }
 user_db:
 entity: { class: Acme\UserBundle\Entity\User, property: username }

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <provider name="chain_provider">
 <chain>
 <provider>in_memory</provider>
 <provider>user_db</provider>
 </chain>
 </provider>
 <provider name="in_memory">
 <memory>
 <user name="foo" password="test" />
 </memory>
 </provider>
 <provider name="user_db">
 <entity class="Acme\UserBundle\Entity\User" property="username" />
 </provider>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'providers' => array(
 'chain_provider' => array(
 'chain' => array(
 'providers' => array('in_memory', 'user_db'),
),
),
 'in_memory' => array(
 'memory' => array(
 'users' => array(
 'foo' => array('password' => 'test'),
),
),
),
 'user_db' => array(
 'entity' => array(
 'class' => 'Acme\UserBundle\Entity\User',
 'property' => 'username',
),
),
),
));

Now, all authentication mechanisms will use the chain_provider, since
it’s the first specified. The chain_provider will, in turn, try to load
the user from both the in_memory and user_db providers.

You can also configure the firewall or individual authentication mechanisms
to use a specific provider. Again, unless a provider is specified explicitly,
the first provider is always used:

	YAML# app/config/security.yml
security:
 firewalls:
 secured_area:
 # ...
 pattern: ^/
 provider: user_db
 http_basic:
 realm: "Secured Demo Area"
 provider: in_memory
 form_login: ~

	XML<!-- app/config/security.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<srv:container xmlns="http://symfony.com/schema/dic/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:srv="http://symfony.com/schema/dic/services"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd">

 <config>
 <firewall name="secured_area" pattern="^/" provider="user_db">
 <!-- ... -->
 <http-basic realm="Secured Demo Area" provider="in_memory" />
 <form-login />
 </firewall>
 </config>
</srv:container>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'secured_area' => array(
 // ...
 'pattern' => '^/',
 'provider' => 'user_db',
 'http_basic' => array(
 // ...
 'provider' => 'in_memory',
),
 'form_login' => array(),
),
),
));

In this example, if a user tries to log in via HTTP authentication, the authentication
system will use the in_memory user provider. But if the user tries to
log in via the form login, the user_db provider will be used (since it’s
the default for the firewall as a whole).

For more information about user provider and firewall configuration, see
the SecurityBundle Configuration (“security”).

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

How to Use the Serializer

Serializing and deserializing to and from objects and different formats (e.g.
JSON or XML) is a very complex topic. Symfony comes with a
Serializer Component, which gives you some
tools that you can leverage for your solution.

In fact, before you start, get familiar with the serializer, normalizers
and encoders by reading the Serializer Component.
You should also check out the JMSSerializerBundle [http://jmsyst.com/bundles/JMSSerializerBundle], which expands on the
functionality offered by Symfony’s core serializer.

Activating the Serializer

2.3 新版功能: The Serializer has always existed in Symfony, but prior to Symfony 2.3,
you needed to build the serializer service yourself.

The serializer service is not available by default. To turn it on, activate
it in your configuration:

	YAML# app/config/config.yml
framework:
 # ...
 serializer:
 enabled: true

	XML<!-- app/config/config.xml -->
<framework:config>
 <!-- ... -->
 <framework:serializer enabled="true" />
</framework:config>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 // ...
 'serializer' => array(
 'enabled' => true
),
));

Adding Normalizers and Encoders

Once enabled, the serializer service will be available in the container
and will be loaded with two encoders
(JsonEncoder [http://api.symfony.com/master/Symfony/Component/Serializer/Encoder/JsonEncoder.html] and
XmlEncoder [http://api.symfony.com/master/Symfony/Component/Serializer/Encoder/XmlEncoder.html])
but no normalizers, meaning you’ll
need to load your own.

You can load normalizers and/or encoders by tagging them as
serializer.normalizer and
serializer.encoder. It’s also
possible to set the priority of the tag in order to decide the matching order.

Here is an example on how to load the
GetSetMethodNormalizer [http://api.symfony.com/master/Symfony/Component/Serializer/Normalizer/GetSetMethodNormalizer.html]:

	YAML# app/config/config.yml
services:
 get_set_method_normalizer:
 class: Symfony\Component\Serializer\Normalizer\GetSetMethodNormalizer
 tags:
 - { name: serializer.normalizer }

	XML<!-- app/config/config.xml -->
<services>
 <service id="get_set_method_normalizer" class="Symfony\Component\Serializer\Normalizer\GetSetMethodNormalizer">
 <tag name="serializer.normalizer" />
 </service>
</services>

	PHP// app/config/config.php
use Symfony\Component\DependencyInjection\Definition;

$definition = new Definition(
 'Symfony\Component\Serializer\Normalizer\GetSetMethodNormalizer'
));
$definition->addTag('serializer.normalizer');
$container->setDefinition('get_set_method_normalizer', $definition);

注解

The GetSetMethodNormalizer [http://api.symfony.com/master/Symfony/Component/Serializer/Normalizer/GetSetMethodNormalizer.html]
is broken by design. As soon as you have a circular object graph, an
infinite loop is created when calling the getters. You’re encouraged
to add your own normalizers that fit your use-case.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Service Container

	How to Create an Event Listener
	Request Events, Checking Types

	How to Work with Scopes
	Understanding Scopes

	Using a Service from a narrower Scope

	How to Work with Compiler Passes in Bundles

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Service Container

How to Create an Event Listener

Symfony has various events and hooks that can be used to trigger custom
behavior in your application. Those events are thrown by the HttpKernel
component and can be viewed in the KernelEvents [http://api.symfony.com/master/Symfony/Component/HttpKernel/KernelEvents.html] class.

To hook into an event and add your own custom logic, you have to create
a service that will act as an event listener on that event. In this entry,
you will create a service that will act as an Exception Listener, allowing
you to modify how exceptions are shown by your application. The KernelEvents::EXCEPTION
event is just one of the core kernel events:

// src/AppBundle/EventListener/AcmeExceptionListener.php
namespace AppBundle\EventListener;

use Symfony\Component\HttpKernel\Event\GetResponseForExceptionEvent;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpKernel\Exception\HttpExceptionInterface;

class AcmeExceptionListener
{
 public function onKernelException(GetResponseForExceptionEvent $event)
 {
 // You get the exception object from the received event
 $exception = $event->getException();
 $message = sprintf(
 'My Error says: %s with code: %s',
 $exception->getMessage(),
 $exception->getCode()
);

 // Customize your response object to display the exception details
 $response = new Response();
 $response->setContent($message);

 // HttpExceptionInterface is a special type of exception that
 // holds status code and header details
 if ($exception instanceof HttpExceptionInterface) {
 $response->setStatusCode($exception->getStatusCode());
 $response->headers->replace($exception->getHeaders());
 } else {
 $response->setStatusCode(500);
 }

 // Send the modified response object to the event
 $event->setResponse($response);
 }
}

小技巧

Each event receives a slightly different type of $event object. For
the kernel.exception event, it is GetResponseForExceptionEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseForExceptionEvent.html].
To see what type of object each event listener receives, see KernelEvents [http://api.symfony.com/master/Symfony/Component/HttpKernel/KernelEvents.html].

注解

When setting a response for the kernel.request, kernel.view or
kernel.exception events, the propagation is stopped, so the lower
priority listeners on that event don’t get called.

Now that the class is created, you just need to register it as a service and
notify Symfony that it is a “listener” on the kernel.exception event by
using a special “tag”:

	YAML# app/config/services.yml
services:
 kernel.listener.your_listener_name:
 class: AppBundle\EventListener\AcmeExceptionListener
 tags:
 - { name: kernel.event_listener, event: kernel.exception, method: onKernelException }

	XML<!-- app/config/services.xml -->
<service id="kernel.listener.your_listener_name" class="AppBundle\EventListener\AcmeExceptionListener">
 <tag name="kernel.event_listener" event="kernel.exception" method="onKernelException" />
</service>

	PHP// app/config/services.php
$container
 ->register('kernel.listener.your_listener_name', 'AppBundle\EventListener\AcmeExceptionListener')
 ->addTag('kernel.event_listener', array('event' => 'kernel.exception', 'method' => 'onKernelException'))
;

注解

There is an additional tag option priority that is optional and defaults
to 0. This value can be from -255 to 255, and the listeners will be executed
in the order of their priority (highest to lowest). This is useful when
you need to guarantee that one listener is executed before another.

Request Events, Checking Types

A single page can make several requests (one master request, and then multiple
sub-requests), which is why when working with the KernelEvents::REQUEST
event, you might need to check the type of the request. This can be easily
done as follow:

// src/AppBundle/EventListener/AcmeRequestListener.php
namespace AppBundle\EventListener;

use Symfony\Component\HttpKernel\Event\GetResponseEvent;
use Symfony\Component\HttpKernel\HttpKernel;

class AcmeRequestListener
{
 public function onKernelRequest(GetResponseEvent $event)
 {
 if (HttpKernel::MASTER_REQUEST != $event->getRequestType()) {
 // don't do anything if it's not the master request
 return;
 }

 // ...
 }
}

小技巧

Two types of request are available in the HttpKernelInterface [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernelInterface.html]
interface: HttpKernelInterface::MASTER_REQUEST and
HttpKernelInterface::SUB_REQUEST.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Service Container

How to Work with Scopes

This entry is all about scopes, a somewhat advanced topic related to the
Service Container. If you’ve ever gotten an error mentioning
“scopes” when creating services, or need to create a service that depends
on the request service, then this entry is for you.

Understanding Scopes

The scope of a service controls how long an instance of a service is used
by the container. The DependencyInjection component provides two generic
scopes:

	container (the default one): The same instance is used each time you
request it from this container.

	prototype: A new instance is created each time you request the service.

The
ContainerAwareHttpKernel [http://api.symfony.com/master/Symfony/Component/HttpKernel/DependencyInjection/ContainerAwareHttpKernel.html]
also defines a third scope: request. This scope is tied to the request,
meaning a new instance is created for each subrequest and is unavailable
outside the request (for instance in the CLI).

Scopes add a constraint on the dependencies of a service: a service cannot
depend on services from a narrower scope. For example, if you create a generic
my_foo service, but try to inject the request service, you will receive
a ScopeWideningInjectionException [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Exception/ScopeWideningInjectionException.html]
when compiling the container. Read the sidebar below for more details.

Scopes and Dependencies

Imagine you’ve configured a my_mailer service. You haven’t configured
the scope of the service, so it defaults to container. In other words,
every time you ask the container for the my_mailer service, you get
the same object back. This is usually how you want your services to work.

Imagine, however, that you need the request service in your my_mailer
service, maybe because you’re reading the URL of the current request.
So, you add it as a constructor argument. There are several reasons why
this presents a problem:

	When requesting my_mailer, an instance of my_mailer (called
MailerA) is created and the request service (called RequestA)
is passed to it. Life is good!

	You’ve now made a subrequest in Symfony, which is a fancy way of saying
that you’ve called, for example, the {{ render(...) }} Twig function,
which executes another controller. Internally, the old request service
(RequestA) is actually replaced by a new request instance (RequestB).
This happens in the background, and it’s totally normal.

	In your embedded controller, you once again ask for the my_mailer
service. Since your service is in the container scope, the same
instance (MailerA) is just re-used. But here’s the problem: the
MailerA instance still contains the old RequestA object, which
is now not the correct request object to have (RequestB is now
the current request service). This is subtle, but the mis-match could
cause major problems, which is why it’s not allowed.

So, that’s the reason why scopes exist, and how they can cause
problems. Keep reading to find out the common solutions.

注解

A service can of course depend on a service from a wider scope without
any issue.

Using a Service from a narrower Scope

If your service has a dependency on a scoped service (like the request),
you have three ways to deal with it:

	Use setter injection if the dependency is “synchronized”; this is the
recommended way and the best solution for the request instance as it is
synchronized with the request scope (see
Using a Synchronized Service);

	Put your service in the same scope as the dependency (or a narrower one). If
you depend on the request service, this means putting your new service
in the request scope (see Changing the Scope of your Service);

	Pass the entire container to your service and retrieve your dependency from
the container each time you need it to be sure you have the right instance
– your service can live in the default container scope (see
Passing the Container as a Dependency of your Service).

Each scenario is detailed in the following sections.

Using a Synchronized Service

2.3 新版功能: Synchronized services were introduced in Symfony 2.3.

Injecting the container or setting your service to a narrower scope have
drawbacks. For synchronized services (like the request), using setter
injection is the best option as it has no drawbacks and everything works
without any special code in your service or in your definition:

// src/AppBundle/Mail/Mailer.php
namespace AppBundle\Mail;

use Symfony\Component\HttpFoundation\Request;

class Mailer
{
 protected $request;

 public function setRequest(Request $request = null)
 {
 $this->request = $request;
 }

 public function sendEmail()
 {
 if (null === $this->request) {
 // throw an error?
 }

 // ... do something using the request here
 }
}

Whenever the request scope is entered or left, the service container will
automatically call the setRequest() method with the current request
instance.

You might have noticed that the setRequest() method accepts null as a
valid value for the request argument. That’s because when leaving the
request scope, the request instance can be null (for the master
request for instance). Of course, you should take care of this possibility in
your code. This should also be taken into account when declaring your service:

	YAML# app/config/services.yml
services:
 greeting_card_manager:
 class: AppBundle\Mail\GreetingCardManager
 calls:
 - [setRequest, ["@?request="]]

	XML<!-- app/config/services.xml -->
<services>
 <service id="greeting_card_manager"
 class="AppBundle\Mail\GreetingCardManager"
 >
 <call method="setRequest">
 <argument type="service" id="request" on-invalid="null" strict="false" />
 </call>
 </service>
</services>

	PHP// app/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\ContainerInterface;

$definition = $container->setDefinition(
 'greeting_card_manager',
 new Definition('AppBundle\Mail\GreetingCardManager')
)
->addMethodCall('setRequest', array(
 new Reference('request', ContainerInterface::NULL_ON_INVALID_REFERENCE, false)
));

小技巧

You can declare your own synchronized services very easily; here is
the declaration of the request service for reference:

	YAMLservices:
 request:
 scope: request
 synthetic: true
 synchronized: true

	XML<services>
 <service id="request" scope="request" synthetic="true" synchronized="true" />
</services>

	PHPuse Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\ContainerInterface;

$definition = $container->setDefinition('request')
 ->setScope('request')
 ->setSynthetic(true)
 ->setSynchronized(true);

警告

The service using the synchronized service will need to be public in order
to have its setter called when the scope changes.

Changing the Scope of your Service

Changing the scope of a service should be done in its definition:

	YAML# app/config/services.yml
services:
 greeting_card_manager:
 class: AppBundle\Mail\GreetingCardManager
 scope: request
 arguments: ["@request"]

	XML<!-- app/config/services.xml -->
<services>
 <service id="greeting_card_manager"
 class="AppBundle\Mail\GreetingCardManager"
 scope="request">
 <argument type="service" id="request" />
 </service>
</services>

	PHP// app/config/services.php
use Symfony\Component\DependencyInjection\Definition;

$definition = $container->setDefinition(
 'greeting_card_manager',
 new Definition(
 'AppBundle\Mail\GreetingCardManager',
 array(new Reference('request'),
))
)->setScope('request');

Passing the Container as a Dependency of your Service

Setting the scope to a narrower one is not always possible (for instance, a
twig extension must be in the container scope as the Twig environment
needs it as a dependency). In these cases, you can pass the entire container
into your service:

// src/AppBundle/Mail/Mailer.php
namespace AppBundle\Mail;

use Symfony\Component\DependencyInjection\ContainerInterface;

class Mailer
{
 protected $container;

 public function __construct(ContainerInterface $container)
 {
 $this->container = $container;
 }

 public function sendEmail()
 {
 $request = $this->container->get('request');
 // ... do something using the request here
 }
}

警告

Take care not to store the request in a property of the object for a
future call of the service as it would cause the same issue described
in the first section (except that Symfony cannot detect that you are
wrong).

The service config for this class would look something like this:

	YAML# app/config/services.yml
services:
 my_mailer:
 class: AppBundle\Mail\Mailer
 arguments: ["@service_container"]
 # scope: container can be omitted as it is the default

	XML<!-- app/config/services.xml -->
<services>
 <service id="my_mailer" class="AppBundle\Mail\Mailer">
 <argument type="service" id="service_container" />
 </service>
</services>

	PHP// app/config/services.php
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$container->setDefinition('my_mailer', new Definition(
 'AppBundle\Mail\Mailer',
 array(new Reference('service_container'))
));

注解

Injecting the whole container into a service is generally not a good
idea (only inject what you need).

小技巧

If you define a controller as a service then you can get the Request
object without injecting the container by having it passed in as an
argument of your action method. See
将 Request 作为控制器参数 for details.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Service Container

How to Work with Compiler Passes in Bundles

Compiler passes give you an opportunity to manipulate other service
definitions that have been registered with the service container. You
can read about how to create them in the components section “Compiling the Container”.
To register a compiler pass from a bundle you need to add it to the build
method of the bundle definition class:

// src/Acme/MailerBundle/AcmeMailerBundle.php
namespace Acme\MailerBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;
use Symfony\Component\DependencyInjection\ContainerBuilder;

use Acme\MailerBundle\DependencyInjection\Compiler\CustomCompilerPass;

class AcmeMailerBundle extends Bundle
{
 public function build(ContainerBuilder $container)
 {
 parent::build($container);

 $container->addCompilerPass(new CustomCompilerPass());
 }
}

One of the most common use-cases of compiler passes is to work with tagged services
(read more about tags in the components section “Working with Tagged Services”).
If you are using custom tags in a bundle then by convention, tag names consist
of the name of the bundle (lowercase, underscores as separators), followed
by a dot, and finally the “real” name. For example, if you want to introduce
some sort of “transport” tag in your AcmeMailerBundle, you should call it
acme_mailer.transport.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Sessions

	Session Proxy Examples
	Encryption of Session Data

	Readonly Guest Sessions

	Making the Locale “Sticky” during a User’s Session
	Creating a LocaleListener

	Configuring the Directory where Session Files are Saved

	Bridge a legacy Application with Symfony Sessions

	Avoid Starting Sessions for Anonymous Users

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Sessions

Session Proxy Examples

The session proxy mechanism has a variety of uses and this example demonstrates
two common uses. Rather than injecting the session handler as normal, a handler
is injected into the proxy and registered with the session storage driver:

use Symfony\Component\HttpFoundation\Session\Session;
use Symfony\Component\HttpFoundation\Session\Storage\NativeSessionStorage;
use Symfony\Component\HttpFoundation\Session\Storage\Handler\PdoSessionHandler;

$proxy = new YourProxy(new PdoSessionHandler());
$session = new Session(new NativeSessionStorage(array(), $proxy));

Below, you’ll learn two real examples that can be used for YourProxy:
encryption of session data and readonly guest sessions.

Encryption of Session Data

If you wanted to encrypt the session data, you could use the proxy to encrypt
and decrypt the session as required:

use Symfony\Component\HttpFoundation\Session\Storage\Proxy\SessionHandlerProxy;

class EncryptedSessionProxy extends SessionHandlerProxy
{
 private $key;

 public function __construct(\SessionHandlerInterface $handler, $key)
 {
 $this->key = $key;

 parent::__construct($handler);
 }

 public function read($id)
 {
 $data = parent::read($id);

 return mcrypt_decrypt(\MCRYPT_3DES, $this->key, $data);
 }

 public function write($id, $data)
 {
 $data = mcrypt_encrypt(\MCRYPT_3DES, $this->key, $data);

 return parent::write($id, $data);
 }
}

Readonly Guest Sessions

There are some applications where a session is required for guest users, but
where there is no particular need to persist the session. In this case you
can intercept the session before it is written:

use Foo\User;
use Symfony\Component\HttpFoundation\Session\Storage\Proxy\SessionHandlerProxy;

class ReadOnlyGuestSessionProxy extends SessionHandlerProxy
{
 private $user;

 public function __construct(\SessionHandlerInterface $handler, User $user)
 {
 $this->user = $user;

 parent::__construct($handler);
 }

 public function write($id, $data)
 {
 if ($this->user->isGuest()) {
 return;
 }

 return parent::write($id, $data);
 }
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Sessions

Making the Locale “Sticky” during a User’s Session

Prior to Symfony 2.1, the locale was stored in a session attribute called _locale.
Since 2.1, it is stored in the Request, which means that it’s not “sticky”
during a user’s request. In this article, you’ll learn how to make the locale
of a user “sticky” so that once it’s set, that same locale will be used for
every subsequent request.

Creating a LocaleListener

To simulate that the locale is stored in a session, you need to create and
register a new event listener.
The listener will look something like this. Typically, _locale is used
as a routing parameter to signify the locale, though it doesn’t really matter
how you determine the desired locale from the request:

// src/AppBundle/EventListener/LocaleListener.php
namespace AppBundle\EventListener;

use Symfony\Component\HttpKernel\Event\GetResponseEvent;
use Symfony\Component\HttpKernel\KernelEvents;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;

class LocaleListener implements EventSubscriberInterface
{
 private $defaultLocale;

 public function __construct($defaultLocale = 'en')
 {
 $this->defaultLocale = $defaultLocale;
 }

 public function onKernelRequest(GetResponseEvent $event)
 {
 $request = $event->getRequest();
 if (!$request->hasPreviousSession()) {
 return;
 }

 // try to see if the locale has been set as a _locale routing parameter
 if ($locale = $request->attributes->get('_locale')) {
 $request->getSession()->set('_locale', $locale);
 } else {
 // if no explicit locale has been set on this request, use one from the session
 $request->setLocale($request->getSession()->get('_locale', $this->defaultLocale));
 }
 }

 public static function getSubscribedEvents()
 {
 return array(
 // must be registered before the default Locale listener
 KernelEvents::REQUEST => array(array('onKernelRequest', 17)),
);
 }
}

Then register the listener:

	YAMLservices:
 app.locale_listener:
 class: AppBundle\EventListener\LocaleListener
 arguments: ["%kernel.default_locale%"]
 tags:
 - { name: kernel.event_subscriber }

	XML<service id="app.locale_listener"
 class="AppBundle\EventListener\LocaleListener">
 <argument>%kernel.default_locale%</argument>

 <tag name="kernel.event_subscriber" />
</service>

	PHPuse Symfony\Component\DependencyInjection\Definition;

$container
 ->setDefinition('app.locale_listener', new Definition(
 'AppBundle\EventListener\LocaleListener',
 array('%kernel.default_locale%')
))
 ->addTag('kernel.event_subscriber')
;

That’s it! Now celebrate by changing the user’s locale and seeing that it’s
sticky throughout the request. Remember, to get the user’s locale, always
use the Request::getLocale [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_getLocale]
method:

// from a controller...
use Symfony\Component\HttpFoundation\Request;

public function indexAction(Request $request)
{
 $locale = $request->getLocale();
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Sessions

Configuring the Directory where Session Files are Saved

By default, the Symfony Standard Edition uses the global php.ini values
for session.save_handler and session.save_path to determine where
to store session data. This is because of the following configuration:

	YAML# app/config/config.yml
framework:
 session:
 # handler_id set to null will use default session handler from php.ini
 handler_id: ~

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd"
>
 <framework:config>
 <!-- handler-id set to null will use default session handler from php.ini -->
 <framework:session handler-id="null" />
 </framework:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'session' => array(
 // handler_id set to null will use default session handler from php.ini
 'handler_id' => null,
),
));

With this configuration, changing where your session metadata is stored
is entirely up to your php.ini configuration.

However, if you have the following configuration, Symfony will store the session
data in files in the cache directory %kernel.cache_dir%/sessions. This
means that when you clear the cache, any current sessions will also be deleted:

	YAML# app/config/config.yml
framework:
 session: ~

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd"
>
 <framework:config>
 <framework:session />
 </framework:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'session' => array(),
));

Using a different directory to save session data is one method to ensure
that your current sessions aren’t lost when you clear Symfony’s cache.

小技巧

Using a different session save handler is an excellent (yet more complex)
method of session management available within Symfony. See
Configuring Sessions and Save Handlers for a
discussion of session save handlers. There is also an entry in the cookbook
about storing sessions in the database.

To change the directory in which Symfony saves session data, you only need
change the framework configuration. In this example, you will change the
session directory to app/sessions:

	YAML# app/config/config.yml
framework:
 session:
 handler_id: session.handler.native_file
 save_path: "%kernel.root_dir%/sessions"

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony
 http://symfony.com/schema/dic/symfony/symfony-1.0.xsd"
>
 <framework:config>
 <framework:session handler-id="session.handler.native_file"
 save-path="%kernel.root_dir%/sessions"
 />
 </framework:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'session' => array(
 'handler_id' => 'session.handler.native_file',
 'save_path' => '%kernel.root_dir%/sessions',
),
));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Sessions

Bridge a legacy Application with Symfony Sessions

2.3 新版功能: The ability to integrate with a legacy PHP session was introduced in Symfony 2.3.

If you’re integrating the Symfony full-stack Framework into a legacy application
that starts the session with session_start(), you may still be able to
use Symfony’s session management by using the PHP Bridge session.

If the application has sets it’s own PHP save handler, you can specify null
for the handler_id:

	YAMLframework:
 session:
 storage_id: session.storage.php_bridge
 handler_id: ~

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:framework="http://symfony.com/schema/dic/symfony">

 <framework:config>
 <framework:session storage-id="session.storage.php_bridge"
 handler-id="null"
 />
 </framework:config>
</container>

	PHP$container->loadFromExtension('framework', array(
 'session' => array(
 'storage_id' => 'session.storage.php_bridge',
 'handler_id' => null,
));

Otherwise, if the problem is simply that you cannot avoid the application
starting the session with session_start(), you can still make use of
a Symfony based session save handler by specifying the save handler as in
the example below:

	YAMLframework:
 session:
 storage_id: session.storage.php_bridge
 handler_id: session.handler.native_file

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:framework="http://symfony.com/schema/dic/symfony">

 <framework:config>
 <framework:session storage-id="session.storage.php_bridge"
 handler-id="session.storage.native_file"
 />
 </framework:config>
</container>

	PHP$container->loadFromExtension('framework', array(
 'session' => array(
 'storage_id' => 'session.storage.php_bridge',
 'handler_id' => 'session.storage.native_file',
));

注解

If the legacy application requires its own session save-handler, do not
override this. Instead set handler_id: ~. Note that a save handler
cannot be changed once the session has been started. If the application
starts the session before Symfony is initialized, the save-handler will
have already been set. In this case, you will need handler_id: ~.
Only override the save-handler if you are sure the legacy application
can use the Symfony save-handler without side effects and that the session
has not been started before Symfony is initialized.

For more details, see Integrating with Legacy Sessions.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Sessions

Avoid Starting Sessions for Anonymous Users

Sessions are automatically started whenever you read, write or even check for the
existence of data in the session. This means that if you need to avoid creating
a session cookie for some users, it can be difficult: you must completely avoid
accessing the session.

For example, one common problem in this situation involves checking for flash
messages, which are stored in the session. The following code would guarantee
that a session is always started:

{% for flashMessage in app.session.flashbag.get('notice') %}
 <div class="flash-notice">
 {{ flashMessage }}
 </div>
{% endfor %}

Even if the user is not logged in and even if you haven’t created any flash messages,
just calling the get() (or even has()) method of the flashbag will
start a session. This may hurt your application performance because all users will
receive a session cookie. To avoid this behavior, add a check before trying to
access the flash messages:

{% if app.request.hasPreviousSession %}
 {% for flashMessage in app.session.flashbag.get('notice') %}
 <div class="flash-notice">
 {{ flashMessage }}
 </div>
 {% endfor %}
{% endif %}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

How Symfony2 Differs from Symfony1

The Symfony2 framework embodies a significant evolution when compared with
the first version of the framework. Fortunately, with the MVC architecture
at its core, the skills used to master a symfony1 project continue to be
very relevant when developing in Symfony2. Sure, app.yml is gone, but
routing, controllers and templates all remain.

This chapter walks through the differences between symfony1 and Symfony2.
As you’ll see, many tasks are tackled in a slightly different way. You’ll
come to appreciate these minor differences as they promote stable, predictable,
testable and decoupled code in your Symfony2 applications.

So, sit back and relax as you travel from “then” to “now”.

Directory Structure

When looking at a Symfony2 project - for example, the Symfony2 Standard Edition [https://github.com/symfony/symfony-standard] -
you’ll notice a very different directory structure than in symfony1. The
differences, however, are somewhat superficial.

The app/ Directory

In symfony1, your project has one or more applications, and each lives inside
the apps/ directory (e.g. apps/frontend). By default in Symfony2,
you have just one application represented by the app/ directory. Like
in symfony1, the app/ directory contains configuration specific to that
application. It also contains application-specific cache, log and template
directories as well as a Kernel class (AppKernel), which is the base
object that represents the application.

Unlike symfony1, almost no PHP code lives in the app/ directory. This
directory is not meant to house modules or library files as it did in symfony1.
Instead, it’s simply the home of configuration and other resources (templates,
translation files).

The src/ Directory

Put simply, your actual code goes here. In Symfony2, all actual application-code
lives inside a bundle (roughly equivalent to a symfony1 plugin) and, by default,
each bundle lives inside the src directory. In that way, the src
directory is a bit like the plugins directory in symfony1, but much more
flexible. Additionally, while your bundles will live in the src/ directory,
third-party bundles will live somewhere in the vendor/ directory.

To get a better picture of the src/ directory, first think of the structure
of a symfony1 application. First, part of your code likely lives inside one or
more applications. Most commonly these include modules, but could also include
any other PHP classes you put in your application. You may have also created
a schema.yml file in the config directory of your project and built
several model files. Finally, to help with some common functionality, you’re
using several third-party plugins that live in the plugins/ directory.
In other words, the code that drives your application lives in many different
places.

In Symfony2, life is much simpler because all Symfony2 code must live in
a bundle. In the pretend symfony1 project, all the code could be moved
into one or more plugins (which is a very good practice, in fact). Assuming
that all modules, PHP classes, schema, routing configuration, etc. were moved
into a plugin, the symfony1 plugins/ directory would be very similar
to the Symfony2 src/ directory.

Put simply again, the src/ directory is where your code, assets,
templates and most anything else specific to your project will live.

The vendor/ Directory

The vendor/ directory is basically equivalent to the lib/vendor/
directory in symfony1, which was the conventional directory for all vendor
libraries and bundles. By default, you’ll find the Symfony2 library files in
this directory, along with several other dependent libraries such as Doctrine2,
Twig and Swift Mailer. 3rd party Symfony2 bundles live somewhere in the
vendor/.

The web/ Directory

Not much has changed in the web/ directory. The most noticeable difference
is the absence of the css/, js/ and images/ directories. This
is intentional. Like with your PHP code, all assets should also live inside
a bundle. With the help of a console command, the Resources/public/
directory of each bundle is copied or symbolically-linked to the web/bundles/
directory. This allows you to keep assets organized inside your bundle, but
still make them available to the public. To make sure that all bundles are
available, run the following command:

$ php app/console assets:install web

注解

This command is the Symfony2 equivalent to the symfony1 plugin:publish-assets
command.

Autoloading

One of the advantages of modern frameworks is never needing to worry about
requiring files. By making use of an autoloader, you can refer to any class
in your project and trust that it’s available. Autoloading has changed in
Symfony2 to be more universal, faster, and independent of needing to clear
your cache.

In symfony1, autoloading was done by searching the entire project for the
presence of PHP class files and caching this information in a giant array.
That array told symfony1 exactly which file contained each class. In the
production environment, this caused you to need to clear the cache when classes
were added or moved.

In Symfony2, a tool named Composer [http://getcomposer.org] handles this process.
The idea behind the autoloader is simple: the name of your class (including
the namespace) must match up with the path to the file containing that class.
Take the FrameworkExtraBundle from the Symfony2 Standard Edition as an
example:

namespace Sensio\Bundle\FrameworkExtraBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;
// ...

class SensioFrameworkExtraBundle extends Bundle
{
 // ...
}

The file itself lives at
vendor/sensio/framework-extra-bundle/Sensio/Bundle/FrameworkExtraBundle/SensioFrameworkExtraBundle.php.
As you can see, the second part of the path follows the namespace of the
class. The first part is equal to the package name of the SensioFrameworkExtraBundle.

The namespace, Sensio\Bundle\FrameworkExtraBundle, and package name,
sensio/framework-extra-bundle, spells out the directory that the file
should live in
(vendor/sensio/framework-extra-bundle/Sensio/Bundle/FrameworkExtraBundle/).
Composer can then look for the file at this specific place and load it very
fast.

If the file did not live at this exact location, you’d receive a
Class "Sensio\Bundle\FrameworkExtraBundle\SensioFrameworkExtraBundle" does not exist.
error. In Symfony2, a “class does not exist” error means that the namespace of
the class and physical location do not match. Basically, Symfony2 is looking
in one exact location for that class, but that location doesn’t exist (or
contains a different class). In order for a class to be autoloaded, you
never need to clear your cache in Symfony2.

As mentioned before, for the autoloader to work, it needs to know that the
Sensio namespace lives in the vendor/sensio/framework-extra-bundle
directory and that, for example, the Doctrine namespace lives in the
vendor/doctrine/orm/lib/ directory. This mapping is entirely controlled by
Composer. Each third-party library you load through Composer has its
settings defined and Composer takes care of everything for you.

For this to work, all third-party libraries used by your project must be
defined in the composer.json file.

If you look at the HelloController from the Symfony2 Standard Edition you
can see that it lives in the Acme\DemoBundle\Controller namespace. Yet, the
AcmeDemoBundle is not defined in your composer.json file. Nonetheless are
the files autoloaded. This is because you can tell Composer to autoload files
from specific directories without defining a dependency:

"autoload": {
 "psr-0": { "": "src/" }
}

This means that if a class is not found in the vendor directory, Composer
will search in the src directory before throwing a “class does not exist”
exception. Read more about configuring the Composer autoloader in
the Composer documentation [http://getcomposer.org/doc/04-schema.md#autoload].

Using the Console

In symfony1, the console is in the root directory of your project and is
called symfony:

$ php symfony

In Symfony2, the console is now in the app sub-directory and is called
console:

$ php app/console

Applications

In a symfony1 project, it is common to have several applications: one for the
frontend and one for the backend for instance.

In a Symfony2 project, you only need to create one application (a blog
application, an intranet application, ...). Most of the time, if you want to
create a second application, you might instead create another project and
share some bundles between them.

And if you need to separate the frontend and the backend features of some
bundles, you can create sub-namespaces for controllers, sub-directories for
templates, different semantic configurations, separate routing configurations,
and so on.

Of course, there’s nothing wrong with having multiple applications in your
project, that’s entirely up to you. A second application would mean a new
directory, e.g. my_app/, with the same basic setup as the app/ directory.

小技巧

Read the definition of a Project, an Application, and a
Bundle in the glossary.

Bundles and Plugins

In a symfony1 project, a plugin could contain configuration, modules, PHP
libraries, assets and anything else related to your project. In Symfony2,
the idea of a plugin is replaced by the “bundle”. A bundle is even more powerful
than a plugin because the core Symfony2 framework is brought in via a series
of bundles. In Symfony2, bundles are first-class citizens that are so flexible
that even core code itself is a bundle.

In symfony1, a plugin must be enabled inside the ProjectConfiguration
class:

// config/ProjectConfiguration.class.php
public function setup()
{
 // some plugins here
 $this->enableAllPluginsExcept(array(...));
}

In Symfony2, the bundles are activated inside the application kernel:

// app/AppKernel.php
public function registerBundles()
{
 $bundles = array(
 new Symfony\Bundle\FrameworkBundle\FrameworkBundle(),
 new Symfony\Bundle\TwigBundle\TwigBundle(),
 ...,
 new Acme\DemoBundle\AcmeDemoBundle(),
);

 return $bundles;
}

Routing (routing.yml) and Configuration (config.yml)

In symfony1, the routing.yml and app.yml configuration files were
automatically loaded inside any plugin. In Symfony2, routing and application
configuration inside a bundle must be included manually. For example, to
include a routing resource from a bundle called AcmeDemoBundle, you can
do the following:

	YAML# app/config/routing.yml
_hello:
 resource: "@AcmeDemoBundle/Resources/config/routing.yml"

	XML<!-- app/config/routing.yml -->
<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <import resource="@AcmeDemoBundle/Resources/config/routing.xml" />
</routes>

	PHP// app/config/routing.php
use Symfony\Component\Routing\RouteCollection;

$collection = new RouteCollection();
$collection->addCollection($loader->import("@AcmeHelloBundle/Resources/config/routing.php"));

return $collection;

This will load the routes found in the Resources/config/routing.yml file
of the AcmeDemoBundle. The special @AcmeDemoBundle is a shortcut syntax
that, internally, resolves to the full path to that bundle.

You can use this same strategy to bring in configuration from a bundle:

	YAML# app/config/config.yml
imports:
 - { resource: "@AcmeDemoBundle/Resources/config/config.yml" }

	XML<!-- app/config/config.xml -->
<imports>
 <import resource="@AcmeDemoBundle/Resources/config/config.xml" />
</imports>

	PHP// app/config/config.php
$this->import('@AcmeDemoBundle/Resources/config/config.php')

In Symfony2, configuration is a bit like app.yml in symfony1, except much
more systematic. With app.yml, you could simply create any keys you wanted.
By default, these entries were meaningless and depended entirely on how you
used them in your application:

some app.yml file from symfony1
all:
 email:
 from_address: foo.bar@example.com

In Symfony2, you can also create arbitrary entries under the parameters
key of your configuration:

	YAMLparameters:
 email.from_address: foo.bar@example.com

	XML<parameters>
 <parameter key="email.from_address">foo.bar@example.com</parameter>
</parameters>

	PHP$container->setParameter('email.from_address', 'foo.bar@example.com');

You can now access this from a controller, for example:

public function helloAction($name)
{
 $fromAddress = $this->container->getParameter('email.from_address');
}

In reality, the Symfony2 configuration is much more powerful and is used
primarily to configure objects that you can use. For more information, see
the chapter titled “Service Container”.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Templating

	How to Inject Variables into all Templates (i.e. global Variables)
	Using Service Container Parameters

	Referencing Services

	Using a Twig Extension

	How to Use and Register Namespaced Twig Paths
	Registering your own Namespaces

	How to Use PHP instead of Twig for Templates
	Rendering PHP Templates

	Decorating Templates

	Working with Slots

	Including other Templates

	Embedding other Controllers

	Using Template Helpers

	Output Escaping

	How to Write a custom Twig Extension
	Create the Extension Class

	Register an Extension as a Service

	Using the custom Extension

	Learning further

	How to Render a Template without a custom Controller
	Caching the static Template

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Templating

How to Inject Variables into all Templates (i.e. global Variables)

Sometimes you want a variable to be accessible to all the templates you use.
This is possible inside your app/config/config.yml file:

	YAML# app/config/config.yml
twig:
 # ...
 globals:
 ga_tracking: UA-xxxxx-x

	XML<!-- app/config/config.xml -->
<twig:config>
 <!-- ... -->
 <twig:global key="ga_tracking">UA-xxxxx-x</twig:global>
</twig:config>

	PHP// app/config/config.php
$container->loadFromExtension('twig', array(
 // ...
 'globals' => array(
 'ga_tracking' => 'UA-xxxxx-x',
),
));

Now, the variable ga_tracking is available in all Twig templates:

<p>The google tracking code is: {{ ga_tracking }}</p>

It’s that easy!

Using Service Container Parameters

You can also take advantage of the built-in Service Parameters
system, which lets you isolate or reuse the value:

app/config/parameters.yml
parameters:
 ga_tracking: UA-xxxxx-x

	YAML# app/config/config.yml
twig:
 globals:
 ga_tracking: "%ga_tracking%"

	XML<!-- app/config/config.xml -->
<twig:config>
 <twig:global key="ga_tracking">%ga_tracking%</twig:global>
</twig:config>

	PHP// app/config/config.php
$container->loadFromExtension('twig', array(
 'globals' => array(
 'ga_tracking' => '%ga_tracking%',
),
));

The same variable is available exactly as before.

Referencing Services

Instead of using static values, you can also set the value to a service.
Whenever the global variable is accessed in the template, the service will be
requested from the service container and you get access to that object.

注解

The service is not loaded lazily. In other words, as soon as Twig is
loaded, your service is instantiated, even if you never use that global
variable.

To define a service as a global Twig variable, prefix the string with @.
This should feel familiar, as it’s the same syntax you use in service configuration.

	YAML# app/config/config.yml
twig:
 # ...
 globals:
 user_management: "@acme_user.user_management"

	XML<!-- app/config/config.xml -->
<twig:config>
 <!-- ... -->
 <twig:global key="user_management">@acme_user.user_management</twig:global>
</twig:config>

	PHP// app/config/config.php
$container->loadFromExtension('twig', array(
 // ...
 'globals' => array(
 'user_management' => '@acme_user.user_management',
),
));

Using a Twig Extension

If the global variable you want to set is more complicated - say an object -
then you won’t be able to use the above method. Instead, you’ll need to create
a Twig Extension and return the
global variable as one of the entries in the getGlobals method.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Templating

How to Use and Register Namespaced Twig Paths

2.2 新版功能: Namespaced path support was introduced in 2.2.

Usually, when you refer to a template, you’ll use the MyBundle:Subdir:filename.html.twig
format (see Template Naming and Locations).

Twig also natively offers a feature called “namespaced paths”, and support
is built-in automatically for all of your bundles.

Take the following paths as an example:

{% extends "AppBundle::layout.html.twig" %}
{% include "AppBundle:Foo:bar.html.twig" %}

With namespaced paths, the following works as well:

{% extends "@App/layout.html.twig" %}
{% include "@App/Foo/bar.html.twig" %}

Both paths are valid and functional by default in Symfony.

小技巧

As an added bonus, the namespaced syntax is faster.

Registering your own Namespaces

You can also register your own custom namespaces. Suppose that you’re using
some third-party library that includes Twig templates that live in
vendor/acme/foo-bar/templates. First, register a namespace for this
directory:

	YAML# app/config/config.yml
twig:
 # ...
 paths:
 "%kernel.root_dir%/../vendor/acme/foo-bar/templates": foo_bar

	XML<!-- app/config/config.xml -->
<?xml version="1.0" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:twig="http://symfony.com/schema/dic/twig"
>

 <twig:config debug="%kernel.debug%" strict-variables="%kernel.debug%">
 <twig:path namespace="foo_bar">%kernel.root_dir%/../vendor/acme/foo-bar/templates</twig:path>
 </twig:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('twig', array(
 'paths' => array(
 '%kernel.root_dir%/../vendor/acme/foo-bar/templates' => 'foo_bar',
);
));

The registered namespace is called foo_bar, which refers to the
vendor/acme/foo-bar/templates directory. Assuming there’s a file
called sidebar.twig in that directory, you can use it easily:

{% include '@foo_bar/sidebar.twig' %}

Multiple Paths per Namespace

You can also assign several paths to the same template namespace. The order in
which paths are configured is very important, because Twig will always load
the first template that exists, starting from the first configured path. This
feature can be used as a fallback mechanism to load generic templates when the
specific template doesn’t exist.

	YAML# app/config/config.yml
twig:
 # ...
 paths:
 "%kernel.root_dir%/../vendor/acme/themes/theme1": theme
 "%kernel.root_dir%/../vendor/acme/themes/theme2": theme
 "%kernel.root_dir%/../vendor/acme/themes/common": theme

	XML<!-- app/config/config.xml -->
<?xml version="1.0" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:twig="http://symfony.com/schema/dic/twig"
>

 <twig:config debug="%kernel.debug%" strict-variables="%kernel.debug%">
 <twig:path namespace="theme">%kernel.root_dir%/../vendor/acme/themes/theme1</twig:path>
 <twig:path namespace="theme">%kernel.root_dir%/../vendor/acme/themes/theme2</twig:path>
 <twig:path namespace="theme">%kernel.root_dir%/../vendor/acme/themes/common</twig:path>
 </twig:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('twig', array(
 'paths' => array(
 '%kernel.root_dir%/../vendor/acme/themes/theme1' => 'theme',
 '%kernel.root_dir%/../vendor/acme/themes/theme2' => 'theme',
 '%kernel.root_dir%/../vendor/acme/themes/common' => 'theme',
),
));

Now, you can use the same @theme namespace to refer to any template located
in the previous three directories:

{% include '@theme/header.twig' %}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Templating

How to Use PHP instead of Twig for Templates

Symfony defaults to Twig for its template engine, but you can still use
plain PHP code if you want. Both templating engines are supported equally in
Symfony. Symfony adds some nice features on top of PHP to make writing
templates with PHP more powerful.

Rendering PHP Templates

If you want to use the PHP templating engine, first, make sure to enable it in
your application configuration file:

	YAML# app/config/config.yml
framework:
 # ...
 templating:
 engines: ['twig', 'php']

	XML<!-- app/config/config.xml -->
<framework:config>
 <!-- ... -->
 <framework:templating>
 <framework:engine id="twig" />
 <framework:engine id="php" />
 </framework:templating>
</framework:config>

	PHP$container->loadFromExtension('framework', array(
 // ...
 'templating' => array(
 'engines' => array('twig', 'php'),
),
));

You can now render a PHP template instead of a Twig one simply by using the
.php extension in the template name instead of .twig. The controller
below renders the index.html.php template:

// src/AppBundle/Controller/HelloController.php

// ...
public function indexAction($name)
{
 return $this->render(
 'AppBundle:Hello:index.html.php',
 array('name' => $name)
);
}

You can also use the @Template [http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/view`] shortcut to render the default
AppBundle:Hello:index.html.php template:

// src/AppBundle/Controller/HelloController.php
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;

// ...

/**
 * @Template(engine="php")
 */
public function indexAction($name)
{
 return array('name' => $name);
}

警告

Enabling the php and twig template engines simultaneously is
allowed, but it will produce an undesirable side effect in your application:
the @ notation for Twig namespaces will no longer be supported for the
render() method:

public function indexAction()
{
 // ...

 // namespaced templates will no longer work in controllers
 $this->render('@App/Default/index.html.twig');

 // you must use the traditional template notation
 $this->render('AppBundle:Default:index.html.twig');
}

{# inside a Twig template, namespaced templates work as expected #}
{{ include('@App/Default/index.html.twig') }}

{# traditional template notation will also work #}
{{ include('AppBundle:Default:index.html.twig') }}

Decorating Templates

More often than not, templates in a project share common elements, like the
well-known header and footer. In Symfony, this problem is thought about
differently: a template can be decorated by another one.

The index.html.php template is decorated by layout.html.php, thanks to
the extend() call:

<!-- src/AppBundle/Resources/views/Hello/index.html.php -->
<?php $view->extend('AppBundle::layout.html.php') ?>

Hello <?php echo $name ?>!

The AppBundle::layout.html.php notation sounds familiar, doesn’t it? It
is the same notation used to reference a template. The :: part simply
means that the controller element is empty, so the corresponding file is
directly stored under views/.

Now, have a look at the layout.html.php file:

<!-- src/AppBundle/Resources/views/layout.html.php -->
<?php $view->extend('::base.html.php') ?>

<h1>Hello Application</h1>

<?php $view['slots']->output('_content') ?>

The layout is itself decorated by another one (::base.html.php). Symfony
supports multiple decoration levels: a layout can itself be decorated by
another one. When the bundle part of the template name is empty, views are
looked for in the app/Resources/views/ directory. This directory stores
global views for your entire project:

<!-- app/Resources/views/base.html.php -->
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title><?php $view['slots']->output('title', 'Hello Application') ?></title>
 </head>
 <body>
 <?php $view['slots']->output('_content') ?>
 </body>
</html>

For both layouts, the $view['slots']->output('_content') expression is
replaced by the content of the child template, index.html.php and
layout.html.php respectively (more on slots in the next section).

As you can see, Symfony provides methods on a mysterious $view object. In
a template, the $view variable is always available and refers to a special
object that provides a bunch of methods that makes the template engine tick.

Working with Slots

A slot is a snippet of code, defined in a template, and reusable in any layout
decorating the template. In the index.html.php template, define a
title slot:

<!-- src/AppBundle/Resources/views/Hello/index.html.php -->
<?php $view->extend('AppBundle::layout.html.php') ?>

<?php $view['slots']->set('title', 'Hello World Application') ?>

Hello <?php echo $name ?>!

The base layout already has the code to output the title in the header:

<!-- app/Resources/views/base.html.php -->
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title><?php $view['slots']->output('title', 'Hello Application') ?></title>
</head>

The output() method inserts the content of a slot and optionally takes a
default value if the slot is not defined. And _content is just a special
slot that contains the rendered child template.

For large slots, there is also an extended syntax:

<?php $view['slots']->start('title') ?>
 Some large amount of HTML
<?php $view['slots']->stop() ?>

Including other Templates

The best way to share a snippet of template code is to define a template that
can then be included into other templates.

Create a hello.html.php template:

<!-- src/AppBundle/Resources/views/Hello/hello.html.php -->
Hello <?php echo $name ?>!

And change the index.html.php template to include it:

<!-- src/AppBundle/Resources/views/Hello/index.html.php -->
<?php $view->extend('AppBundle::layout.html.php') ?>

<?php echo $view->render('AppBundle:Hello:hello.html.php', array('name' => $name)) ?>

The render() method evaluates and returns the content of another template
(this is the exact same method as the one used in the controller).

Embedding other Controllers

And what if you want to embed the result of another controller in a template?
That’s very useful when working with Ajax, or when the embedded template needs
some variable not available in the main template.

If you create a fancy action, and want to include it into the
index.html.php template, simply use the following code:

<!-- src/AppBundle/Resources/views/Hello/index.html.php -->
<?php echo $view['actions']->render(
 new \Symfony\Component\HttpKernel\Controller\ControllerReference('AppBundle:Hello:fancy', array(
 'name' => $name,
 'color' => 'green',
))
) ?>

Here, the AppBundle:Hello:fancy string refers to the fancy action of the
Hello controller:

// src/AppBundle/Controller/HelloController.php

class HelloController extends Controller
{
 public function fancyAction($name, $color)
 {
 // create some object, based on the $color variable
 $object = ...;

 return $this->render('AppBundle:Hello:fancy.html.php', array(
 'name' => $name,
 'object' => $object
));
 }

 // ...
}

But where is the $view['actions'] array element defined? Like
$view['slots'], it’s called a template helper, and the next section tells
you more about those.

Using Template Helpers

The Symfony templating system can be easily extended via helpers. Helpers are
PHP objects that provide features useful in a template context. actions and
slots are two of the built-in Symfony helpers.

Creating Links between Pages

Speaking of web applications, creating links between pages is a must. Instead
of hardcoding URLs in templates, the router helper knows how to generate
URLs based on the routing configuration. That way, all your URLs can be easily
updated by changing the configuration:

<a href="<?php echo $view['router']->generate('hello', array('name' => 'Thomas')) ?>">
 Greet Thomas!

The generate() method takes the route name and an array of parameters as
arguments. The route name is the main key under which routes are referenced
and the parameters are the values of the placeholders defined in the route
pattern:

src/AppBundle/Resources/config/routing.yml
hello: # The route name
 path: /hello/{name}
 defaults: { _controller: AppBundle:Hello:index }

Using Assets: Images, JavaScripts and Stylesheets

What would the Internet be without images, JavaScripts, and stylesheets?
Symfony provides the assets tag to deal with them easily:

<link href="<?php echo $view['assets']->getUrl('css/blog.css') ?>" rel="stylesheet" type="text/css" />

<img src="<?php echo $view['assets']->getUrl('images/logo.png') ?>" />

The assets helper’s main purpose is to make your application more
portable. Thanks to this helper, you can move the application root directory
anywhere under your web root directory without changing anything in your
template’s code.

Output Escaping

When using PHP templates, escape variables whenever they are displayed to the
user:

<?php echo $view->escape($var) ?>

By default, the escape() method assumes that the variable is outputted
within an HTML context. The second argument lets you change the context. For
instance, to output something in a JavaScript script, use the js context:

<?php echo $view->escape($var, 'js') ?>

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Templating

How to Write a custom Twig Extension

The main motivation for writing an extension is to move often used code
into a reusable class like adding support for internationalization.
An extension can define tags, filters, tests, operators, global variables,
functions, and node visitors.

Creating an extension also makes for a better separation of code that is
executed at compilation time and code needed at runtime. As such, it makes
your code faster.

小技巧

Before writing your own extensions, have a look at the
Twig official extension repository [https://github.com/twigphp/Twig-extensions].

Create the Extension Class

注解

This cookbook describes how to write a custom Twig extension as of
Twig 1.12. If you are using an older version, please read
Twig extensions documentation legacy [http://twig.sensiolabs.org/doc/advanced_legacy.html#creating-an-extension].

To get your custom functionality you must first create a Twig Extension class.
As an example you’ll create a price filter to format a given number into price:

// src/AppBundle/Twig/AppExtension.php
namespace AppBundle\Twig;

class AppExtension extends \Twig_Extension
{
 public function getFilters()
 {
 return array(
 new \Twig_SimpleFilter('price', array($this, 'priceFilter')),
);
 }

 public function priceFilter($number, $decimals = 0, $decPoint = '.', $thousandsSep = ',')
 {
 $price = number_format($number, $decimals, $decPoint, $thousandsSep);
 $price = '$'.$price;

 return $price;
 }

 public function getName()
 {
 return 'app_extension';
 }
}

小技巧

Along with custom filters, you can also add custom functions and register
global variables.

Register an Extension as a Service

Now you must let the Service Container know about your newly created Twig Extension:

	YAML# app/config/services.yml
services:
 app.twig_extension:
 class: AppBundle\Twig\AppExtension
 public: false
 tags:
 - { name: twig.extension }

	XML<!-- app/config/services.xml -->
<services>
 <service id="app.twig_extension"
 class="AppBundle\Twig\AppExtension"
 public="false">
 <tag name="twig.extension" />
 </service>
</services>

	PHP// app/config/services.php
use Symfony\Component\DependencyInjection\Definition;

$container
 ->register('app.twig_extension', '\AppBundle\Twig\AppExtension')
 ->setPublic(false)
 ->addTag('twig.extension');

注解

Keep in mind that Twig Extensions are not lazily loaded. This means that
there’s a higher chance that you’ll get a
ServiceCircularReferenceException [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Exception/ServiceCircularReferenceException.html]
or a
ScopeWideningInjectionException [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Exception/ScopeWideningInjectionException.html]
if any services (or your Twig Extension in this case) are dependent on
the request service. For more information take a look at How to Work with Scopes.

Using the custom Extension

Using your newly created Twig Extension is no different than any other:

{# outputs $5,500.00 #}
{{ '5500'|price }}

Passing other arguments to your filter:

{# outputs $5500,2516 #}
{{ '5500.25155'|price(4, ',', '') }}

Learning further

For a more in-depth look into Twig Extensions, please take a look at the
Twig extensions documentation [http://twig.sensiolabs.org/doc/advanced.html#creating-an-extension].

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Templating

How to Render a Template without a custom Controller

Usually, when you need to create a page, you need to create a controller
and render a template from within that controller. But if you’re rendering
a simple template that doesn’t need any data passed into it, you can avoid
creating the controller entirely, by using the built-in FrameworkBundle:Template:template
controller.

For example, suppose you want to render a AppBundle:Static:privacy.html.twig
template, which doesn’t require that any variables are passed to it. You
can do this without creating a controller:

	YAMLacme_privacy:
 path: /privacy
 defaults:
 _controller: FrameworkBundle:Template:template
 template: 'AppBundle:Static:privacy.html.twig'

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="acme_privacy" path="/privacy">
 <default key="_controller">FrameworkBundle:Template:template</default>
 <default key="template">AppBundle:Static:privacy.html.twig</default>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('acme_privacy', new Route('/privacy', array(
 '_controller' => 'FrameworkBundle:Template:template',
 'template' => 'AppBundle:Static:privacy.html.twig',
)));

return $collection;

The FrameworkBundle:Template:template controller will simply render whatever
template you’ve passed as the template default value.

You can of course also use this trick when rendering embedded controllers
from within a template. But since the purpose of rendering a controller from
within a template is typically to prepare some data in a custom controller,
this is probably only useful if you’d like to cache this page partial (see
Caching the static Template).

	Twig{{ render(url('acme_privacy')) }}

	PHP<?php echo $view['actions']->render(
 $view['router']->generate('acme_privacy', array(), true)
) ?>

Caching the static Template

2.2 新版功能: The ability to cache templates rendered via FrameworkBundle:Template:template
was introduced in Symfony 2.2.

Since templates that are rendered in this way are typically static, it might
make sense to cache them. Fortunately, this is easy! By configuring a few
other variables in your route, you can control exactly how your page is cached:

	YAMLacme_privacy:
 path: /privacy
 defaults:
 _controller: FrameworkBundle:Template:template
 template: 'AppBundle:Static:privacy.html.twig'
 maxAge: 86400
 sharedAge: 86400

	XML<?xml version="1.0" encoding="UTF-8" ?>

<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="acme_privacy" path="/privacy">
 <default key="_controller">FrameworkBundle:Template:template</default>
 <default key="template">AppBundle:Static:privacy.html.twig</default>
 <default key="maxAge">86400</default>
 <default key="sharedAge">86400</default>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('acme_privacy', new Route('/privacy', array(
 '_controller' => 'FrameworkBundle:Template:template',
 'template' => 'AppBundle:Static:privacy.html.twig',
 'maxAge' => 86400,
 'sharedAge' => 86400,
)));

return $collection;

The maxAge and sharedAge values are used to modify the Response
object created in the controller. For more information on caching, see
HTTP Cache.

There is also a private variable (not shown here). By default, the Response
will be made public, as long as maxAge or sharedAge are passed.
If set to true, the Response will be marked as private.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Testing

	How to Simulate HTTP Authentication in a Functional Test

	How to Simulate Authentication with a Token in a Functional Test

	How to Test the Interaction of several Clients

	How to Use the Profiler in a Functional Test
	Speeding up Tests by not Collecting Profiler Data

	How to Test Code that Interacts with the Database
	Mocking the Repository in a Unit Test

	Changing Database Settings for Functional Tests

	How to Test Doctrine Repositories
	Functional Testing

	How to Customize the Bootstrap Process before Running Tests

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Testing

How to Simulate HTTP Authentication in a Functional Test

If your application needs HTTP authentication, pass the username and password
as server variables to createClient():

$client = static::createClient(array(), array(
 'PHP_AUTH_USER' => 'username',
 'PHP_AUTH_PW' => 'pa$$word',
));

You can also override it on a per request basis:

$client->request('DELETE', '/post/12', array(), array(), array(
 'PHP_AUTH_USER' => 'username',
 'PHP_AUTH_PW' => 'pa$$word',
));

When your application is using a form_login, you can simplify your tests
by allowing your test configuration to make use of HTTP authentication. This
way you can use the above to authenticate in tests, but still have your users
log in via the normal form_login. The trick is to include the http_basic
key in your firewall, along with the form_login key:

	YAML# app/config/config_test.yml
security:
 firewalls:
 your_firewall_name:
 http_basic: ~

	XML<!-- app/config/config_test.xml -->
<security:config>
 <security:firewall name="your_firewall_name">
 <security:http-basic />
 </security:firewall>
</security:config>

	PHP// app/config/config_test.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'your_firewall_name' => array(
 'http_basic' => array(),
),
),
));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Testing

How to Simulate Authentication with a Token in a Functional Test

Authenticating requests in functional tests might slow down the suite.
It could become an issue especially when form_login is used, since
it requires additional requests to fill in and submit the form.

One of the solutions is to configure your firewall to use http_basic in
the test environment as explained in
How to Simulate HTTP Authentication in a Functional Test.
Another way would be to create a token yourself and store it in a session.
While doing this, you have to make sure that an appropriate cookie is sent
with a request. The following example demonstrates this technique:

// src/AppBundle/Tests/Controller/DefaultControllerTest.php
namespace Appbundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;
use Symfony\Component\BrowserKit\Cookie;
use Symfony\Component\Security\Core\Authentication\Token\UsernamePasswordToken;

class DefaultControllerTest extends WebTestCase
{
 private $client = null;

 public function setUp()
 {
 $this->client = static::createClient();
 }

 public function testSecuredHello()
 {
 $this->logIn();

 $crawler = $this->client->request('GET', '/admin');

 $this->assertTrue($this->client->getResponse()->isSuccessful());
 $this->assertGreaterThan(0, $crawler->filter('html:contains("Admin Dashboard")')->count());
 }

 private function logIn()
 {
 $session = $this->client->getContainer()->get('session');

 $firewall = 'secured_area';
 $token = new UsernamePasswordToken('admin', null, $firewall, array('ROLE_ADMIN'));
 $session->set('_security_'.$firewall, serialize($token));
 $session->save();

 $cookie = new Cookie($session->getName(), $session->getId());
 $this->client->getCookieJar()->set($cookie);
 }
}

注解

The technique described in How to Simulate HTTP Authentication in a Functional Test
is cleaner and therefore the preferred way.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Testing

How to Test the Interaction of several Clients

If you need to simulate an interaction between different clients (think of a
chat for instance), create several clients:

$harry = static::createClient();
$sally = static::createClient();

$harry->request('POST', '/say/sally/Hello');
$sally->request('GET', '/messages');

$this->assertEquals(201, $harry->getResponse()->getStatusCode());
$this->assertRegExp('/Hello/', $sally->getResponse()->getContent());

This works except when your code maintains a global state or if it depends on
a third-party library that has some kind of global state. In such a case, you
can insulate your clients:

$harry = static::createClient();
$sally = static::createClient();

$harry->insulate();
$sally->insulate();

$harry->request('POST', '/say/sally/Hello');
$sally->request('GET', '/messages');

$this->assertEquals(201, $harry->getResponse()->getStatusCode());
$this->assertRegExp('/Hello/', $sally->getResponse()->getContent());

Insulated clients transparently execute their requests in a dedicated and
clean PHP process, thus avoiding any side-effects.

小技巧

As an insulated client is slower, you can keep one client in the main
process, and insulate the other ones.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Testing

How to Use the Profiler in a Functional Test

It’s highly recommended that a functional test only tests the Response. But if
you write functional tests that monitor your production servers, you might
want to write tests on the profiling data as it gives you a great way to check
various things and enforce some metrics.

The Symfony Profiler gathers a lot of data for
each request. Use this data to check the number of database calls, the time
spent in the framework, etc. But before writing assertions, enable the profiler
and check that the profiler is indeed available (it is enabled by default in
the test environment):

class HelloControllerTest extends WebTestCase
{
 public function testIndex()
 {
 $client = static::createClient();

 // Enable the profiler for the next request (it does nothing if the profiler is not available)
 $client->enableProfiler();

 $crawler = $client->request('GET', '/hello/Fabien');

 // ... write some assertions about the Response

 // Check that the profiler is enabled
 if ($profile = $client->getProfile()) {
 // check the number of requests
 $this->assertLessThan(
 10,
 $profile->getCollector('db')->getQueryCount()
);

 // check the time spent in the framework
 $this->assertLessThan(
 500,
 $profile->getCollector('time')->getDuration()
);
 }
 }
}

If a test fails because of profiling data (too many DB queries for instance),
you might want to use the Web Profiler to analyze the request after the tests
finish. It’s easy to achieve if you embed the token in the error message:

$this->assertLessThan(
 30,
 $profile->getCollector('db')->getQueryCount(),
 sprintf(
 'Checks that query count is less than 30 (token %s)',
 $profile->getToken()
)
);

警告

The profiler store can be different depending on the environment
(especially if you use the SQLite store, which is the default configured
one).

注解

The profiler information is available even if you insulate the client or
if you use an HTTP layer for your tests.

小技巧

Read the API for built-in data collectors
to learn more about their interfaces.

Speeding up Tests by not Collecting Profiler Data

To avoid collecting data in each test you can set the collect parameter
to false:

	YAML# app/config/config_test.yml

...
framework:
 profiler:
 enabled: true
 collect: false

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <!-- ... -->

 <framework:config>
 <framework:profiler enabled="true" collect="false" />
 </framework:config>
</container>

	PHP// app/config/config.php

// ...
$container->loadFromExtension('framework', array(
 'profiler' => array(
 'enabled' => true,
 'collect' => false,
),
));

In this way only tests that call $client->enableProfiler() will collect data.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Testing

How to Test Code that Interacts with the Database

If your code interacts with the database, e.g. reads data from or stores data
into it, you need to adjust your tests to take this into account. There are
many ways how to deal with this. In a unit test, you can create a mock for
a Repository and use it to return expected objects. In a functional test,
you may need to prepare a test database with predefined values to ensure that
your test always has the same data to work with.

注解

If you want to test your queries directly, see How to Test Doctrine Repositories.

Mocking the Repository in a Unit Test

If you want to test code which depends on a Doctrine repository in isolation,
you need to mock the Repository. Normally you inject the EntityManager
into your class and use it to get the repository. This makes things a little
more difficult as you need to mock both the EntityManager and your repository
class.

小技巧

It is possible (and a good idea) to inject your repository directly by
registering your repository as a factory service.
This is a little bit more work to setup, but makes testing easier as you
only need to mock the repository.

Suppose the class you want to test looks like this:

namespace AppBundle\Salary;

use Doctrine\Common\Persistence\ObjectManager;

class SalaryCalculator
{
 private $entityManager;

 public function __construct(ObjectManager $entityManager)
 {
 $this->entityManager = $entityManager;
 }

 public function calculateTotalSalary($id)
 {
 $employeeRepository = $this->entityManager->getRepository('AppBundle::Employee');
 $employee = $employeeRepository->find($id);

 return $employee->getSalary() + $employee->getBonus();
 }
}

Since the ObjectManager gets injected into the class through the constructor,
it’s easy to pass a mock object within a test:

use AppBundle\Salary\SalaryCalculator;

class SalaryCalculatorTest extends \PHPUnit_Framework_TestCase
{
 public function testCalculateTotalSalary()
 {
 // First, mock the object to be used in the test
 $employee = $this->getMock('\AppBundle\Entity\Employee');
 $employee->expects($this->once())
 ->method('getSalary')
 ->will($this->returnValue(1000));
 $employee->expects($this->once())
 ->method('getBonus')
 ->will($this->returnValue(1100));

 // Now, mock the repository so it returns the mock of the employee
 $employeeRepository = $this->getMockBuilder('\Doctrine\ORM\EntityRepository')
 ->disableOriginalConstructor()
 ->getMock();
 $employeeRepository->expects($this->once())
 ->method('find')
 ->will($this->returnValue($employee));

 // Last, mock the EntityManager to return the mock of the repository
 $entityManager = $this->getMockBuilder('\Doctrine\Common\Persistence\ObjectManager')
 ->disableOriginalConstructor()
 ->getMock();
 $entityManager->expects($this->once())
 ->method('getRepository')
 ->will($this->returnValue($employeeRepository));

 $salaryCalculator = new SalaryCalculator($entityManager);
 $this->assertEquals(2100, $salaryCalculator->calculateTotalSalary(1));
 }
}

In this example, you are building the mocks from the inside out, first creating
the employee which gets returned by the Repository, which itself gets
returned by the EntityManager. This way, no real class is involved in
testing.

Changing Database Settings for Functional Tests

If you have functional tests, you want them to interact with a real database.
Most of the time you want to use a dedicated database connection to make sure
not to overwrite data you entered when developing the application and also
to be able to clear the database before every test.

To do this, you can specify a database configuration which overwrites the default
configuration:

	YAML# app/config/config_test.yml
doctrine:
 # ...
 dbal:
 host: localhost
 dbname: testdb
 user: testdb
 password: testdb

	XML<!-- app/config/config_test.xml -->
<doctrine:config>
 <doctrine:dbal
 host="localhost"
 dbname="testdb"
 user="testdb"
 password="testdb"
 />
</doctrine:config>

	PHP// app/config/config_test.php
$configuration->loadFromExtension('doctrine', array(
 'dbal' => array(
 'host' => 'localhost',
 'dbname' => 'testdb',
 'user' => 'testdb',
 'password' => 'testdb',
),
));

Make sure that your database runs on localhost and has the defined database and
user credentials set up.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Testing

How to Test Doctrine Repositories

Unit testing Doctrine repositories in a Symfony project is not recommended.
When you’re dealing with a repository, you’re really dealing with something
that’s meant to be tested against a real database connection.

Fortunately, you can easily test your queries against a real database, as
described below.

Functional Testing

If you need to actually execute a query, you will need to boot the kernel
to get a valid connection. In this case, you’ll extend the WebTestCase,
which makes all of this quite easy:

// src/Acme/StoreBundle/Tests/Entity/ProductRepositoryFunctionalTest.php
namespace Acme\StoreBundle\Tests\Entity;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class ProductRepositoryFunctionalTest extends WebTestCase
{
 /**
 * @var \Doctrine\ORM\EntityManager
 */
 private $em;

 /**
 * {@inheritDoc}
 */
 public function setUp()
 {
 static::$kernel = static::createKernel();
 static::$kernel->boot();
 $this->em = static::$kernel->getContainer()
 ->get('doctrine')
 ->getManager()
 ;
 }

 public function testSearchByCategoryName()
 {
 $products = $this->em
 ->getRepository('AcmeStoreBundle:Product')
 ->searchByCategoryName('foo')
 ;

 $this->assertCount(1, $products);
 }

 /**
 * {@inheritDoc}
 */
 protected function tearDown()
 {
 parent::tearDown();
 $this->em->close();
 }
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Testing

How to Customize the Bootstrap Process before Running Tests

Sometimes when running tests, you need to do additional bootstrap work before
running those tests. For example, if you’re running a functional test and
have introduced a new translation resource, then you will need to clear your
cache before running those tests. This cookbook covers how to do that.

First, add the following file:

// app/tests.bootstrap.php
if (isset($_ENV['BOOTSTRAP_CLEAR_CACHE_ENV'])) {
 passthru(sprintf(
 'php "%s/console" cache:clear --env=%s --no-warmup',
 __DIR__,
 $_ENV['BOOTSTRAP_CLEAR_CACHE_ENV']
));
}

require __DIR__.'/bootstrap.php.cache';

Replace the test bootstrap file bootstrap.php.cache in app/phpunit.xml.dist
with tests.bootstrap.php:

<!-- app/phpunit.xml.dist -->

<!-- ... -->
<phpunit
 ...
 bootstrap = "tests.bootstrap.php"
>

Now, you can define in your phpunit.xml.dist file which environment you want the
cache to be cleared:

<!-- app/phpunit.xml.dist -->
<php>
 <env name="BOOTSTRAP_CLEAR_CACHE_ENV" value="test"/>
</php>

This now becomes an environment variable (i.e. $_ENV) that’s available
in the custom bootstrap file (tests.bootstrap.php).

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

How to Upgrade Your Symfony Project

So a new Symfony release has come out and you want to upgrade, great! Fortunately,
because Symfony protects backwards-compatibility very closely, this should
be quite easy.

There are two types of upgrades, and both are a little different:

	Upgrading a Patch Version (e.g. 2.6.0 to 2.6.1)

	Upgrading a Minor Version (e.g. 2.5.3 to 2.6.1)

Upgrading a Patch Version (e.g. 2.6.0 to 2.6.1)

If you’re upgrading and only the patch version (the last number) is changing,
then it’s really easy:

$ composer update symfony/symfony

That’s it! You should not encounter any backwards-compatibility breaks or
need to change anything else in your code. That’s because when you started
your project, your composer.json included Symfony using a constraint
like 2.6.*, where only the last version number will change when you
update.

You may also want to upgrade the rest of your libraries. If you’ve done a
good job with your version constraints [https://getcomposer.org/doc/01-basic-usage.md#package-versions] in composer.json, you can do
this safely by running:

$ composer update

But beware. If you have some bad version constraints [https://getcomposer.org/doc/01-basic-usage.md#package-versions] in your composer.json,
(e.g. dev-master), then this could upgrade some non-Symfony libraries
to new versions that contain backwards-compatibility breaking changes.

Upgrading a Minor Version (e.g. 2.5.3 to 2.6.1)

If you’re upgrading a minor version (where the middle number changes), then
you should also not encounter significant backwards compatibility changes.
For details, see our Our backwards Compatibility Promise.

However, some backwards-compatibility breaks are possible, and you’ll learn
in a second how to prepare for them.

There are two steps to upgrading:

1) Update the Symfony Library via Composer;
2) Updating Your Code to Work with the new Version

1) Update the Symfony Library via Composer

First, you need to update Symfony by modifying your composer.json file
to use the new version:

{
 "...": "...",

 "require": {
 "php": ">=5.3.3",
 "symfony/symfony": "2.6.*",
 "...": "... no changes to anything else..."
 },
 "...": "...",
}

Next, use Composer to download new versions of the libraries:

$ composer update symfony/symfony

You may also want to upgrade the rest of your libraries. If you’ve done a
good job with your version constraints [https://getcomposer.org/doc/01-basic-usage.md#package-versions] in composer.json, you can do
this safely by running:

$ composer update

But beware. If you have some bad version constraints [https://getcomposer.org/doc/01-basic-usage.md#package-versions] in your composer.json,
(e.g. dev-master), then this could upgrade some non-Symfony libraries
to new versions that contain backwards-compatibility breaking changes.

2) Updating Your Code to Work with the new Version

In theory, you should be done! However, you may need to make a few changes
to your code to get everything working. Additionally, some features you’re
using might still work, but might now be deprecated. That’s actually ok,
but if you know about these deprecations, you can start to fix them over
time.

Every version of Symfony comes with an UPGRADE file that describes these
changes. Below are links to the file for each version, which you’ll need
to read to see if you need any code changes.

小技巧

Don’t see the version here that you’re upgrading to? Just find the
UPGRADE-X.X.md file for the appropriate version on the Symfony Repository [https://github.com/symfony/symfony].

Upgrading to Symfony 2.6

First, of course, update your composer.json file with the 2.6 version
of Symfony as described above in 1) Update the Symfony Library via Composer.

Next, check the UPGRADE-2.6 [https://github.com/symfony/symfony/blob/2.6/UPGRADE-2.6.md] document for details about any code changes
that you might need to make in your project.

Upgrading to Symfony 2.5

First, of course, update your composer.json file with the 2.5 version
of Symfony as described above in 1) Update the Symfony Library via Composer.

Next, check the UPGRADE-2.5 [https://github.com/symfony/symfony/blob/2.5/UPGRADE-2.5.md] document for details about any code changes
that you might need to make in your project.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Validation

	How to Create a custom Validation Constraint
	Creating the Constraint Class

	Creating the Validator itself

	Using the new Validator

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Validation

How to Create a custom Validation Constraint

You can create a custom constraint by extending the base constraint class,
Constraint [http://api.symfony.com/master/Symfony/Component/Validator/Constraint.html].
As an example you’re going to create a simple validator that checks if a string
contains only alphanumeric characters.

Creating the Constraint Class

First you need to create a Constraint class and extend Constraint [http://api.symfony.com/master/Symfony/Component/Validator/Constraint.html]:

// src/AppBundle/Validator/Constraints/ContainsAlphanumeric.php
namespace AppBundle\Validator\Constraints;

use Symfony\Component\Validator\Constraint;

/**
 * @Annotation
 */
class ContainsAlphanumeric extends Constraint
{
 public $message = 'The string "%string%" contains an illegal character: it can only contain letters or numbers.';
}

注解

The @Annotation annotation is necessary for this new constraint in
order to make it available for use in classes via annotations.
Options for your constraint are represented as public properties on the
constraint class.

Creating the Validator itself

As you can see, a constraint class is fairly minimal. The actual validation is
performed by another “constraint validator” class. The constraint validator
class is specified by the constraint’s validatedBy() method, which
includes some simple default logic:

// in the base Symfony\Component\Validator\Constraint class
public function validatedBy()
{
 return get_class($this).'Validator';
}

In other words, if you create a custom Constraint (e.g. MyConstraint),
Symfony will automatically look for another class, MyConstraintValidator
when actually performing the validation.

The validator class is also simple, and only has one required method validate():

// src/AppBundle/Validator/Constraints/ContainsAlphanumericValidator.php
namespace AppBundle\Validator\Constraints;

use Symfony\Component\Validator\Constraint;
use Symfony\Component\Validator\ConstraintValidator;

class ContainsAlphanumericValidator extends ConstraintValidator
{
 public function validate($value, Constraint $constraint)
 {
 if (!preg_match('/^[a-zA-Za0-9]+$/', $value, $matches)) {
 $this->context->addViolation(
 $constraint->message,
 array('%string%' => $value)
);
 }
 }
}

注解

The validate method does not return a value; instead, it adds violations
to the validator’s context property with an addViolation method
call if there are validation failures. Therefore, a value could be considered
as being valid if it causes no violations to be added to the context.
The first parameter of the addViolation call is the error message to
use for that violation.

Using the new Validator

Using custom validators is very easy, just as the ones provided by Symfony itself:

	YAML# src/AppBundle/Resources/config/validation.yml
AppBundle\Entity\AcmeEntity:
 properties:
 name:
 - NotBlank: ~
 - AppBundle\Validator\Constraints\ContainsAlphanumeric: ~

	Annotations// src/AppBundle/Entity/AcmeEntity.php
use Symfony\Component\Validator\Constraints as Assert;
use AppBundle\Validator\Constraints as AcmeAssert;

class AcmeEntity
{
 // ...

 /**
 * @Assert\NotBlank
 * @AcmeAssert\ContainsAlphanumeric
 */
 protected $name;

 // ...
}

	XML<!-- src/AppBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="AppBundle\Entity\AcmeEntity">
 <property name="name">
 <constraint name="NotBlank" />
 <constraint name="AppBundle\Validator\Constraints\ContainsAlphanumeric" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/AppBundle/Entity/AcmeEntity.php
use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\NotBlank;
use AppBundle\Validator\Constraints\ContainsAlphanumeric;

class AcmeEntity
{
 public $name;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('name', new NotBlank());
 $metadata->addPropertyConstraint('name', new ContainsAlphanumeric());
 }
}

If your constraint contains options, then they should be public properties
on the custom Constraint class you created earlier. These options can be
configured like options on core Symfony constraints.

Constraint Validators with Dependencies

If your constraint validator has dependencies, such as a database connection,
it will need to be configured as a service in the dependency injection
container. This service must include the validator.constraint_validator
tag and an alias attribute:

	YAML# app/config/services.yml
services:
 validator.unique.your_validator_name:
 class: Fully\Qualified\Validator\Class\Name
 tags:
 - { name: validator.constraint_validator, alias: alias_name }

	XML<!-- app/config/services.xml -->
<service id="validator.unique.your_validator_name" class="Fully\Qualified\Validator\Class\Name">
 <argument type="service" id="doctrine.orm.default_entity_manager" />
 <tag name="validator.constraint_validator" alias="alias_name" />
</service>

	PHP// app/config/services.php
$container
 ->register('validator.unique.your_validator_name', 'Fully\Qualified\Validator\Class\Name')
 ->addTag('validator.constraint_validator', array('alias' => 'alias_name'));

Your constraint class should now use this alias to reference the appropriate
validator:

public function validatedBy()
{
 return 'alias_name';
}

As mentioned above, Symfony will automatically look for a class named after
the constraint, with Validator appended. If your constraint validator
is defined as a service, it’s important that you override the
validatedBy() method to return the alias used when defining your service,
otherwise Symfony won’t use the constraint validator service, and will
instantiate the class instead, without any dependencies injected.

Class Constraint Validator

Beside validating a class property, a constraint can have a class scope by
providing a target in its Constraint class:

public function getTargets()
{
 return self::CLASS_CONSTRAINT;
}

With this, the validator validate() method gets an object as its first argument:

class ProtocolClassValidator extends ConstraintValidator
{
 public function validate($protocol, Constraint $constraint)
 {
 if ($protocol->getFoo() != $protocol->getBar()) {
 $this->context->addViolationAt(
 'foo',
 $constraint->message,
 array(),
 null
);
 }
 }
}

Note that a class constraint validator is applied to the class itself, and
not to the property:

	YAML# src/AppBundle/Resources/config/validation.yml
AppBundle\Entity\AcmeEntity:
 constraints:
 - AppBundle\Validator\Constraints\ContainsAlphanumeric: ~

	Annotations/**
 * @AcmeAssert\ContainsAlphanumeric
 */
class AcmeEntity
{
 // ...
}

	XML<!-- src/AppBundle/Resources/config/validation.xml -->
<class name="AppBundle\Entity\AcmeEntity">
 <constraint name="AppBundle\Validator\Constraints\ContainsAlphanumeric" />
</class>

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Web Server

	How to Use PHP’s built-in Web Server
	Starting the Web Server

	Command Options

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Web Server

How to Use PHP’s built-in Web Server

Since PHP 5.4 the CLI SAPI comes with a built-in web server [http://www.php.net/manual/en/features.commandline.webserver.php]. It can be used
to run your PHP applications locally during development, for testing or for
application demonstrations. This way, you don’t have to bother configuring
a full-featured web server such as
Apache or Nginx.

警告

The built-in web server is meant to be run in a controlled environment.
It is not designed to be used on public networks.

Starting the Web Server

Running a Symfony application using PHP’s built-in web server is as easy as
executing the server:run command:

$ php app/console server:run

This starts a server at localhost:8000 that executes your Symfony application.
The command will wait and will respond to incoming HTTP requests until you
terminate it (this is usually done by pressing Ctrl and C).

By default, the web server listens on port 8000 on the loopback device. You
can change the socket passing an IP address and a port as a command-line argument:

$ php app/console server:run 192.168.0.1:8080

Using the built-in Web Server from inside a Virtual Machine

If you want to use the built-in web server from inside a virtual machine
and then load the site from a browser on your host machine, you’ll need
to listen on the 0.0.0.0:8000 address (i.e. on all IP addresses that
are assigned to the virtual machine):

$ php app/console server:run 0.0.0.0:8000

警告

You should NEVER listen to all interfaces on a computer that is
directly accessible from the Internet. The built-in web server is
not designed to be used on public networks.

Command Options

The built-in web server expects a “router” script (read about the “router”
script on php.net [http://php.net/manual/en/features.commandline.webserver.php#example-401]) as an argument. Symfony already passes such a router
script when the command is executed in the prod or in the dev environment.
Use the --router option in any other environment or to use another router
script:

$ php app/console server:run --env=test --router=app/config/router_test.php

If your application’s document root differs from the standard directory layout,
you have to pass the correct location using the --docroot option:

$ php app/console server:run --docroot=public_html

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Web Services

	How to Create a SOAP Web Service in a Symfony Controller

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Web Services

How to Create a SOAP Web Service in a Symfony Controller

Setting up a controller to act as a SOAP server is simple with a couple
tools. You must, of course, have the PHP SOAP [http://php.net/manual/en/book.soap.php] extension installed.
As the PHP SOAP extension can not currently generate a WSDL, you must either
create one from scratch or use a 3rd party generator.

注解

There are several SOAP server implementations available for use with
PHP. Zend SOAP [http://framework.zend.com/manual/en/zend.soap.server.html] and NuSOAP [http://sourceforge.net/projects/nusoap] are two examples. Although the PHP SOAP
extension is used in these examples, the general idea should still
be applicable to other implementations.

SOAP works by exposing the methods of a PHP object to an external entity
(i.e. the person using the SOAP service). To start, create a class - HelloService -
which represents the functionality that you’ll expose in your SOAP service.
In this case, the SOAP service will allow the client to call a method called
hello, which happens to send an email:

// src/Acme/SoapBundle/Services/HelloService.php
namespace Acme\SoapBundle\Services;

class HelloService
{
 private $mailer;

 public function __construct(\Swift_Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 public function hello($name)
 {

 $message = \Swift_Message::newInstance()
 ->setTo('me@example.com')
 ->setSubject('Hello Service')
 ->setBody($name . ' says hi!');

 $this->mailer->send($message);

 return 'Hello, '.$name;
 }
}

Next, you can train Symfony to be able to create an instance of this class.
Since the class sends an e-mail, it’s been designed to accept a Swift_Mailer
instance. Using the Service Container, you can configure Symfony to construct
a HelloService object properly:

	YAML# app/config/services.yml
services:
 hello_service:
 class: Acme\SoapBundle\Services\HelloService
 arguments: ["@mailer"]

	XML<!-- app/config/services.xml -->
<services>
 <service id="hello_service" class="Acme\SoapBundle\Services\HelloService">
 <argument type="service" id="mailer"/>
 </service>
</services>

	PHP// app/config/services.php
$container
 ->register('hello_service', 'Acme\SoapBundle\Services\HelloService')
 ->addArgument(new Reference('mailer'));

Below is an example of a controller that is capable of handling a SOAP
request. If indexAction() is accessible via the route /soap, then the
WSDL document can be retrieved via /soap?wsdl.

namespace Acme\SoapBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Response;

class HelloServiceController extends Controller
{
 public function indexAction()
 {
 $server = new \SoapServer('/path/to/hello.wsdl');
 $server->setObject($this->get('hello_service'));

 $response = new Response();
 $response->headers->set('Content-Type', 'text/xml; charset=ISO-8859-1');

 ob_start();
 $server->handle();
 $response->setContent(ob_get_clean());

 return $response;
 }
}

Take note of the calls to ob_start() and ob_get_clean(). These
methods control output buffering [http://php.net/manual/en/book.outcontrol.php] which allows you to “trap” the echoed
output of $server->handle(). This is necessary because Symfony expects
your controller to return a Response object with the output as its “content”.
You must also remember to set the “Content-Type” header to “text/xml”, as
this is what the client will expect. So, you use ob_start() to start
buffering the STDOUT and use ob_get_clean() to dump the echoed output
into the content of the Response and clear the output buffer. Finally, you’re
ready to return the Response.

Below is an example calling the service using a NuSOAP [http://sourceforge.net/projects/nusoap] client. This example
assumes that the indexAction in the controller above is accessible via the
route /soap:

$client = new \Soapclient('http://example.com/app.php/soap?wsdl', true);

$result = $client->call('hello', array('name' => 'Scott'));

An example WSDL is below.

<?xml version="1.0" encoding="ISO-8859-1"?>
<definitions xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns="urn:arnleadservicewsdl"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="urn:helloservicewsdl">

 <types>
 <xsd:schema targetNamespace="urn:hellowsdl">
 <xsd:import namespace="http://schemas.xmlsoap.org/soap/encoding/" />
 <xsd:import namespace="http://schemas.xmlsoap.org/wsdl/" />
 </xsd:schema>
 </types>

 <message name="helloRequest">
 <part name="name" type="xsd:string" />
 </message>

 <message name="helloResponse">
 <part name="return" type="xsd:string" />
 </message>

 <portType name="hellowsdlPortType">
 <operation name="hello">
 <documentation>Hello World</documentation>
 <input message="tns:helloRequest"/>
 <output message="tns:helloResponse"/>
 </operation>
 </portType>

 <binding name="hellowsdlBinding" type="tns:hellowsdlPortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="hello">
 <soap:operation soapAction="urn:arnleadservicewsdl#hello" style="rpc"/>

 <input>
 <soap:body use="encoded" namespace="urn:hellowsdl"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>

 <output>
 <soap:body use="encoded" namespace="urn:hellowsdl"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>

 <service name="hellowsdl">
 <port name="hellowsdlPort" binding="tns:hellowsdlBinding">
 <soap:address location="http://example.com/app.php/soap" />
 </port>
 </service>
</definitions>

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

Workflow

	How to Create and Store a Symfony Project in Git
	Initial Project Setup

	Managing Vendor Libraries with composer.json

	Storing your Project on a remote Server

	How to Create and Store a Symfony Project in Subversion
	The Subversion Repository

	Initial Project Setup

	Managing Vendor Libraries with composer.json

	Subversion Hosting Solutions

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Workflow

How to Create and Store a Symfony Project in Git

小技巧

Though this entry is specifically about Git, the same generic principles
will apply if you’re storing your project in Subversion.

Once you’ve read through Creating Pages in Symfony and become familiar with
using Symfony, you’ll no-doubt be ready to start your own project. In this
cookbook article, you’ll learn the best way to start a new Symfony project
that’s stored using the Git [http://git-scm.com/] source control management system.

Initial Project Setup

To get started, you’ll need to download Symfony and get things running. See
the Installing and Configuring Symfony chapter for details.

Once your project is running, just follow these simple steps:

	Initialize your Git repository:

$ git init

	Add all of the initial files to Git:

$ git add .

小技巧

As you might have noticed, not all files that were downloaded by Composer in step 1,
have been staged for commit by Git. Certain files and folders, such as the project’s
dependencies (which are managed by Composer), parameters.yml (which contains sensitive
information such as database credentials), log and cache files and dumped assets (which are
created automatically by your project), should not be committed in Git. To help you prevent
committing those files and folders by accident, the Standard Distribution comes with a
file called .gitignore, which contains a list of files and folders that Git should
ignore.

小技巧

You may also want to create a .gitignore file that can be used system-wide.
This allows you to exclude files/folders for all your projects that are created by
your IDE or operating system. For details, see GitHub .gitignore [https://help.github.com/articles/ignoring-files].

	Create an initial commit with your started project:

$ git commit -m "Initial commit"

At this point, you have a fully-functional Symfony project that’s correctly
committed to Git. You can immediately begin development, committing the new
changes to your Git repository.

You can continue to follow along with the Creating Pages in Symfony chapter
to learn more about how to configure and develop inside your application.

小技巧

The Symfony Standard Edition comes with some example functionality. To
remove the sample code, follow the instructions in the
“How to Remove the AcmeDemoBundle” article.

Managing Vendor Libraries with composer.json

How Does it Work?

Every Symfony project uses a group of third-party “vendor” libraries. One
way or another the goal is to download these files into your vendor/
directory and, ideally, to give you some sane way to manage the exact version
you need for each.

By default, these libraries are downloaded by running a composer install
“downloader” binary. This composer file is from a library called Composer [http://getcomposer.org/]
and you can read more about installing it in the Installation
chapter.

The composer command reads from the composer.json file at the root
of your project. This is an JSON-formatted file, which holds a list of each
of the external packages you need, the version to be downloaded and more.
composer also reads from a composer.lock file, which allows you to
pin each library to an exact version. In fact, if a composer.lock
file exists, the versions inside will override those in composer.json.
To upgrade your libraries to new versions, run composer update.

小技巧

If you want to add a new package to your application, run the composer
require command:

$ composer require doctrine/doctrine-fixtures-bundle

To learn more about Composer, see GetComposer.org [http://getcomposer.org/]:

It’s important to realize that these vendor libraries are not actually part
of your repository. Instead, they’re simply un-tracked files that are downloaded
into the vendor/. But since all the information needed to download these
files is saved in composer.json and composer.lock (which are stored
in the repository), any other developer can use the project, run composer install,
and download the exact same set of vendor libraries. This means that you’re
controlling exactly what each vendor library looks like, without needing to
actually commit them to your repository.

So, whenever a developer uses your project, they should run the composer install
script to ensure that all of the needed vendor libraries are downloaded.

Upgrading Symfony

Since Symfony is just a group of third-party libraries and third-party
libraries are entirely controlled through composer.json and composer.lock,
upgrading Symfony means simply upgrading each of these files to match
their state in the latest Symfony Standard Edition.

Of course, if you’ve added new entries to composer.json, be sure
to replace only the original parts (i.e. be sure not to also delete any of
your custom entries).

Storing your Project on a remote Server

You now have a fully-functional Symfony project stored in Git. However,
in most cases, you’ll also want to store your project on a remote server
both for backup purposes, and so that other developers can collaborate on
the project.

The easiest way to store your project on a remote server is via a web-based
hosting service like GitHub [https://github.com/] or Bitbucket [https://bitbucket.org/]. Of course, there are more
services out there, you can start your research with a
comparison of hosting services [http://en.wikipedia.org/wiki/Comparison_of_open-source_software_hosting_facilities].

Alternatively, you can store your Git repository on any server by creating
a barebones repository [http://git-scm.com/book/en/Git-Basics-Getting-a-Git-Repository] and then pushing to it. One library that helps
manage this is Gitolite [https://github.com/sitaramc/gitolite].

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Cookbook

 	Workflow

How to Create and Store a Symfony Project in Subversion

小技巧

This entry is specifically about Subversion, and based on principles found
in How to Create and Store a Symfony Project in Git.

Once you’ve read through Creating Pages in Symfony and become familiar with
using Symfony, you’ll no-doubt be ready to start your own project. The
preferred method to manage Symfony projects is using Git [http://git-scm.com/] but some prefer
to use Subversion [http://subversion.apache.org/] which is totally fine!. In this cookbook article, you’ll
learn how to manage your project using SVN [http://subversion.apache.org/] in a similar manner you
would do with Git [http://git-scm.com/].

小技巧

This is a method to tracking your Symfony project in a Subversion
repository. There are several ways to do and this one is simply one that
works.

The Subversion Repository

For this article it’s assumed that your repository layout follows the
widespread standard structure:

myproject/
 branches/
 tags/
 trunk/

小技巧

Most Subversion hosting should follow this standard practice. This
is the recommended layout in Version Control with Subversion [http://svnbook.red-bean.com/] and the
layout used by most free hosting (see Subversion Hosting Solutions).

Initial Project Setup

To get started, you’ll need to download Symfony and get the basic Subversion setup.
First, download and get your Symfony project running by following the
Installation chapter.

Once you have your new project directory and things are working, follow along
with these steps:

	Checkout the Subversion repository that will host this project. Suppose
it is hosted on Google code [http://code.google.com/hosting/] and called myproject:

$ svn checkout http://myproject.googlecode.com/svn/trunk myproject

	Copy the Symfony project files in the Subversion folder:

$ mv Symfony/* myproject/

	Now, set the ignore rules. Not everything should be stored in your Subversion
repository. Some files (like the cache) are generated and others (like
the database configuration) are meant to be customized on each machine.
This makes use of the svn:ignore property, so that specific files can
be ignored.

$ cd myproject/
$ svn add --depth=empty app app/cache app/logs app/config web

$ svn propset svn:ignore "vendor" .
$ svn propset svn:ignore "bootstrap*" app/
$ svn propset svn:ignore "parameters.yml" app/config/
$ svn propset svn:ignore "*" app/cache/
$ svn propset svn:ignore "*" app/logs/

$ svn propset svn:ignore "bundles" web

$ svn ci -m "commit basic Symfony ignore list (vendor, app/bootstrap*, app/config/parameters.yml, app/cache/*, app/logs/*, web/bundles)"

	The rest of the files can now be added and committed to the project:

$ svn add --force .
$ svn ci -m "add basic Symfony Standard 2.X.Y"

That’s it! Since the app/config/parameters.yml file is ignored, you can
store machine-specific settings like database passwords here without committing
them. The parameters.yml.dist file is committed, but is not read by
Symfony. And by adding any new keys you need to both files, new developers
can quickly clone the project, copy this file to parameters.yml, customize
it, and start developing.

At this point, you have a fully-functional Symfony project stored in your
Subversion repository. The development can start with commits in the Subversion
repository.

You can continue to follow along with the Creating Pages in Symfony chapter
to learn more about how to configure and develop inside your application.

小技巧

The Symfony Standard Edition comes with some example functionality. To
remove the sample code, follow the instructions in the
“How to Remove the AcmeDemoBundle” article.

Managing Vendor Libraries with composer.json

How Does it Work?

Every Symfony project uses a group of third-party “vendor” libraries. One
way or another the goal is to download these files into your vendor/
directory and, ideally, to give you some sane way to manage the exact version
you need for each.

By default, these libraries are downloaded by running a composer install
“downloader” binary. This composer file is from a library called Composer [http://getcomposer.org/]
and you can read more about installing it in the Installation
chapter.

The composer command reads from the composer.json file at the root
of your project. This is an JSON-formatted file, which holds a list of each
of the external packages you need, the version to be downloaded and more.
composer also reads from a composer.lock file, which allows you to
pin each library to an exact version. In fact, if a composer.lock
file exists, the versions inside will override those in composer.json.
To upgrade your libraries to new versions, run composer update.

小技巧

If you want to add a new package to your application, run the composer
require command:

$ composer require doctrine/doctrine-fixtures-bundle

To learn more about Composer, see GetComposer.org [http://getcomposer.org/]:

It’s important to realize that these vendor libraries are not actually part
of your repository. Instead, they’re simply un-tracked files that are downloaded
into the vendor/. But since all the information needed to download these
files is saved in composer.json and composer.lock (which are stored
in the repository), any other developer can use the project, run composer install,
and download the exact same set of vendor libraries. This means that you’re
controlling exactly what each vendor library looks like, without needing to
actually commit them to your repository.

So, whenever a developer uses your project, they should run the composer install
script to ensure that all of the needed vendor libraries are downloaded.

Upgrading Symfony

Since Symfony is just a group of third-party libraries and third-party
libraries are entirely controlled through composer.json and composer.lock,
upgrading Symfony means simply upgrading each of these files to match
their state in the latest Symfony Standard Edition.

Of course, if you’ve added new entries to composer.json, be sure
to replace only the original parts (i.e. be sure not to also delete any of
your custom entries).

Subversion Hosting Solutions

The biggest difference between Git [http://git-scm.com/] and SVN [http://subversion.apache.org/] is that Subversion needs a
central repository to work. You then have several solutions:

	Self hosting: create your own repository and access it either through the
filesystem or the network. To help in this task you can read Version Control
with Subversion [http://svnbook.red-bean.com/].

	Third party hosting: there are a lot of serious free hosting solutions
available like GitHub [https://github.com/], Google code [http://code.google.com/hosting/], SourceForge [http://sourceforge.net/] or Gna [http://gna.org/]. Some of them offer
Git hosting as well.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

Official Symfony Best Practices

	The Symfony Framework Best Practices

	Creating the Project

	Configuration

	Organizing Your Business Logic

	Controllers

	Templates

	Forms

	Internationalization

	Security

	Web Assets

	Tests

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Official Symfony Best Practices

The Symfony Framework Best Practices

The Symfony framework is well-known for being really flexible and is used
to build micro-sites, enterprise applications that handle billions of connections
and even as the basis for other frameworks. Since its release in July 2011,
the community has learned a lot about what’s possible and how to do things best.

These community resources - like blog posts or presentations - have created
an unofficial set of recommendations for developing Symfony applications.
Unfortunately, a lot of these recommendations are unneeded for web applications.
Much of the time, they unnecessarily overcomplicate things and don’t follow the
original pragmatic philosophy of Symfony.

What is this Guide About?

This guide aims to fix that by describing the best practices for developing
web apps with the Symfony full-stack framework. These are best practices that
fit the philosophy of the framework as envisioned by its original creator
Fabien Potencier [https://connect.sensiolabs.com/profile/fabpot].

注解

Best practice is a noun that means “a well defined procedure that is
known to produce near-optimum results”. And that’s exactly what this
guide aims to provide. Even if you don’t agree with every recommendation,
we believe these will help you build great applications with less complexity.

This guide is specially suited for:

	Websites and web applications developed with the full-stack Symfony framework.

For other situations, this guide might be a good starting point that you can
then extend and fit to your specific needs:

	Bundles shared publicly to the Symfony community;

	Advanced developers or teams who have created their own standards;

	Some complex applications that have highly customized requirements;

	Bundles that may be shared internally within a company.

We know that old habits die hard and some of you will be shocked by some
of these best practices. But by following these, you’ll be able to develop
apps faster, with less complexity and with the same or even higher quality.
It’s also a moving target that will continue to improve.

Keep in mind that these are optional recommendations that you and your
team may or may not follow to develop Symfony applications. If you want to
continue using your own best practices and methodologies, you can of course
do it. Symfony is flexible enough to adapt to your needs. That will never
change.

Who this Book Is for (Hint: It’s not a Tutorial)

Any Symfony developer, whether you are an expert or a newcomer, can read this
guide. But since this isn’t a tutorial, you’ll need some basic knowledge of
Symfony to follow everything. If you are totally new to Symfony, welcome!
Start with The Quick Tour tutorial first.

We’ve deliberately kept this guide short. We won’t repeat explanations that
you can find in the vast Symfony documentation, like discussions about dependency
injection or front controllers. We’ll solely focus on explaining how to do
what you already know.

The Application

In addition to this guide, you’ll find a sample application developed with
all these best practices in mind. The application is a simple blog engine,
because that will allow us to focus on the Symfony concepts and features without
getting buried in difficult details.

Instead of developing the application step by step in this guide, you’ll find
selected snippets of code through the chapters. Please refer to the last chapter
of this guide to find more details about this application and the instructions
to install it.

Don’t Update Your Existing Applications

After reading this handbook, some of you may be considering refactoring your
existing Symfony applications. Our recommendation is sound and clear: you
should not refactor your existing applications to comply with these best
practices. The reasons for not doing it are various:

	Your existing applications are not wrong, they just follow another set of
guidelines;

	A full codebase refactorization is prone to introduce errors in your
applications;

	The amount of work spent on this could be better dedicated to improving
your tests or adding features that provide real value to the end users.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Official Symfony Best Practices

Creating the Project

Installing Symfony

In the past, Symfony projects were created with Composer [https://getcomposer.org/], the dependency manager
for PHP applications. However, the current recommendation is to use the Symfony
Installer, which has to be installed before creating your first project.

Linux and Mac OS X Systems

Open your command console and execute the following:

$ curl -LsS http://symfony.com/installer > symfony.phar
$ sudo mv symfony.phar /usr/local/bin/symfony
$ chmod a+x /usr/local/bin/symfony

Now you can execute the Symfony Installer as a global system command called
symfony.

Windows Systems

Open your command console and execute the following:

c:\> php -r "readfile('http://symfony.com/installer');" > symfony.phar

Then, move the downloaded symfony.phar file to your projects directory and
execute it as follows:

c:\> php symfony.phar

Creating the Blog Application

Now that everything is correctly set up, you can create a new project based on
Symfony. In your command console, browse to a directory where you have permission
to create files and execute the following commands:

Linux, Mac OS X
$ cd projects/
$ symfony new blog

Windows
c:\> cd projects/
c:\projects\> php symfony.phar new blog

This command creates a new directory called blog that contains a fresh new
project based on the most recent stable Symfony version available. In addition,
the installer checks if your system meets the technical requirements to execute
Symfony applications. If not, you’ll see the list of changes needed to meet those
requirements.

小技巧

Symfony releases are digitally signed for security reasons. If you want to
verify the integrity of your Symfony installation, take a look at the
public checksums repository [https://github.com/sensiolabs/checksums] and follow these steps [http://fabien.potencier.org/article/73/signing-project-releases] to verify the
signatures.

Structuring the Application

After creating the application, enter the blog/ directory and you’ll see a
number of files and directories generated automatically:

blog/
├─ app/
│ ├─ console
│ ├─ cache/
│ ├─ config/
│ ├─ logs/
│ └─ Resources/
├─ src/
│ └─ AppBundle/
├─ vendor/
└─ web/

This file and directory hierarchy is the convention proposed by Symfony to
structure your applications. The recommended purpose of each directory is the
following:

	app/cache/, stores all the cache files generated by the application;

	app/config/, stores all the configuration defined for any environment;

	app/logs/, stores all the log files generated by the application;

	app/Resources/, stores all the templates and the translation files for the
application;

	src/AppBundle/, stores the Symfony specific code (controllers and routes),
your domain code (e.g. Doctrine classes) and all your business logic;

	vendor/, this is the directory where Composer installs the application’s
dependencies and you should never modify any of its contents;

	web/, stores all the front controller files and all the web assets, such
as stylesheets, JavaScript files and images.

Application Bundles

When Symfony 2.0 was released, most developers naturally adopted the symfony
1.x way of dividing applications into logical modules. That’s why many Symfony
apps use bundles to divide their code into logical features: UserBundle,
ProductBundle, InvoiceBundle, etc.

But a bundle is meant to be something that can be reused as a stand-alone
piece of software. If UserBundle cannot be used “as is” in other Symfony
apps, then it shouldn’t be its own bundle. Moreover InvoiceBundle depends on
ProductBundle, then there’s no advantage to having two separate bundles.

Best Practice

Create only one bundle called AppBundle for your application logic

Implementing a single AppBundle bundle in your projects will make your code
more concise and easier to understand. Starting in Symfony 2.6, the official
Symfony documentation uses the AppBundle name.

注解

There is no need to prefix the AppBundle with your own vendor (e.g.
AcmeAppBundle), because this application bundle is never going to be
shared.

All in all, this is the typical directory structure of a Symfony application
that follows these best practices:

blog/
├─ app/
│ ├─ console
│ ├─ cache/
│ ├─ config/
│ ├─ logs/
│ └─ Resources/
├─ src/
│ └─ AppBundle/
├─ vendor/
└─ web/
 ├─ app.php
 └─ app_dev.php

小技巧

If your Symfony installation doesn’t come with a pre-generated AppBundle,
you can generate it by hand executing this command:

$ php app/console generate:bundle --namespace=AppBundle --dir=src --format=annotation --no-interaction

Extending the Directory Structure

If your project or infrastructure requires some changes to the default directory
structure of Symfony, you can
override the location of the main directories:
cache/, logs/ and web/.

In addition, Symfony3 will use a slightly different directory structure when
it’s released:

blog-symfony3/
├─ app/
│ ├─ config/
│ └─ Resources/
├─ bin/
│ └─ console
├─ src/
├─ var/
│ ├─ cache/
│ └─ logs/
├─ vendor/
└─ web/

The changes are pretty superficial, but for now, we recommend that you use
the Symfony directory structure.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Official Symfony Best Practices

Configuration

Configuration usually involves different application parts (such as infrastructure
and security credentials) and different environments (development, production).
That’s why Symfony recommends that you split the application configuration into
three parts.

Infrastructure-Related Configuration

Best Practice

Define the infrastructure-related configuration options in the
app/config/parameters.yml file.

The default parameters.yml file follows this recommendation and defines the
options related to the database and mail server infrastructure:

app/config/parameters.yml
parameters:
 database_driver: pdo_mysql
 database_host: 127.0.0.1
 database_port: ~
 database_name: symfony
 database_user: root
 database_password: ~

 mailer_transport: smtp
 mailer_host: 127.0.0.1
 mailer_user: ~
 mailer_password: ~

 # ...

These options aren’t defined inside the app/config/config.yml file because
they have nothing to do with the application’s behavior. In other words, your
application doesn’t care about the location of your database or the credentials
to access to it, as long as the database is correctly configured.

Canonical Parameters

Best Practice

Define all your application’s parameters in the
app/config/parameters.yml.dist file.

Since version 2.3, Symfony includes a configuration file called parameters.yml.dist,
which stores the canonical list of configuration parameters for the application.

Whenever a new configuration parameter is defined for the application, you
should also add it to this file and submit the changes to your version control
system. Then, whenever a developer updates the project or deploys it to a server,
Symfony will check if there is any difference between the canonical
parameters.yml.dist file and your local parameters.yml file. If there
is a difference, Symfony will ask you to provide a value for the new parameter
and it will add it to your local parameters.yml file.

Application-Related Configuration

Best Practice

Define the application behavior related configuration options in the
app/config/config.yml file.

The config.yml file contains the options used by the application to modify
its behavior, such as the sender of email notifications, or the enabled
feature toggles [http://en.wikipedia.org/wiki/Feature_toggle]. Defining these values in parameters.yml file would
add an extra layer of configuration that’s not needed because you don’t need
or want these configuration values to change on each server.

The configuration options defined in the config.yml file usually vary from
one environment to another. That’s
why Symfony already includes app/config/config_dev.yml and app/config/config_prod.yml
files so that you can override specific values for each environment.

Constants vs Configuration Options

One of the most common errors when defining application configuration is to
create new options for values that never change, such as the number of items for
paginated results.

Best Practice

Use constants to define configuration options that rarely change.

The traditional approach for defining configuration options has caused many
Symfony apps to include an option like the following, which would be used
to control the number of posts to display on the blog homepage:

app/config/config.yml
parameters:
 homepage.num_items: 10

If you ask yourself when the last time was that you changed the value of
any option like this, odds are that you never have. Creating a configuration
option for a value that you are never going to configure just isn’t necessary.
Our recommendation is to define these values as constants in your application.
You could, for example, define a NUM_ITEMS constant in the Post entity:

// src/AppBundle/Entity/Post.php
namespace AppBundle\Entity;

class Post
{
 const NUM_ITEMS = 10;

 // ...
}

The main advantage of defining constants is that you can use their values
everywhere in your application. When using parameters, they are only available
from places with access to the Symfony container.

Constants can be used for example in your Twig templates thanks to the
constant() function:

<p>
 Displaying the {{ constant('NUM_ITEMS', post) }} most recent results.
</p>

And Doctrine entities and repositories can now easily access these values,
whereas they cannot access the container parameters:

namespace AppBundle\Repository;

use Doctrine\ORM\EntityRepository;
use AppBundle\Entity\Post;

class PostRepository extends EntityRepository
{
 public function findLatest($limit = Post::NUM_ITEMS)
 {
 // ...
 }
}

The only notable disadvantage of using constants for this kind of configuration
values is that you cannot redefine them easily in your tests.

Semantic Configuration: Don’t Do It

Best Practice

Don’t define a semantic dependency injection configuration for your bundles.

As explained in How to Load Service Configuration inside a Bundle article, Symfony bundles
have two choices on how to handle configuration: normal service configuration
through the services.yml file and semantic configuration through a special
*Extension class.

Although semantic configuration is much more powerful and provides nice features
such as configuration validation, the amount of work needed to define that
configuration isn’t worth it for bundles that aren’t meant to be shared as
third-party bundles.

Moving Sensitive Options Outside of Symfony Entirely

When dealing with sensitive options, like database credentials, we also recommend
that you store them outside the Symfony project and make them available
through environment variables. Learn how to do it in the following article:
How to Set external Parameters in the Service Container

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Official Symfony Best Practices

Organizing Your Business Logic

In computer software, business logic or domain logic is “the part of the
program that encodes the real-world business rules that determine how data can
be created, displayed, stored, and changed” (read full definition [http://en.wikipedia.org/wiki/Business_logic]).

In Symfony applications, business logic is all the custom code you write for
your app that’s not specific to the framework (e.g. routing and controllers).
Domain classes, Doctrine entities and regular PHP classes that are used as
services are good examples of business logic.

For most projects, you should store everything inside the AppBundle.
Inside here, you can create whatever directories you want to organize things:

symfony2-project/
├─ app/
├─ src/
│ └─ AppBundle/
│ └─ Utils/
│ └─ MyClass.php
├─ vendor/
└─ web/

Storing Classes Outside of the Bundle?

But there’s no technical reason for putting business logic inside of a bundle.
If you like, you can create your own namespace inside the src/ directory
and put things there:

symfony2-project/
├─ app/
├─ src/
│ ├─ Acme/
│ │ └─ Utils/
│ │ └─ MyClass.php
│ └─ AppBundle/
├─ vendor/
└─ web/

小技巧

The recommended approach of using the AppBundle/ directory is for
simplicity. If you’re advanced enough to know what needs to live in
a bundle and what can live outside of one, then feel free to do that.

Services: Naming and Format

The blog application needs a utility that can transform a post title (e.g.
“Hello World”) into a slug (e.g. “hello-world”). The slug will be used as
part of the post URL.

Let’s create a new Slugger class inside src/AppBundle/Utils/ and
add the following slugify() method:

// src/AppBundle/Utils/Slugger.php
namespace AppBundle\Utils;

class Slugger
{
 public function slugify($string)
 {
 return preg_replace(
 '/[^a-z0-9]/', '-', strtolower(trim(strip_tags($string)))
);
 }
}

Next, define a new service for that class.

app/config/services.yml
services:
 # keep your service names short
 app.slugger:
 class: AppBundle\Utils\Slugger

Traditionally, the naming convention for a service involved following the
class name and location to avoid name collisions. Thus, the service
would have been called app.utils.slugger. But by using short service names,
your code will be easier to read and use.

Best Practice

The name of your application’s services should be as short as possible,
but unique enough that you can search your project for the service if
you ever need to.

Now you can use the custom slugger in any controller class, such as the
AdminController:

public function createAction(Request $request)
{
 // ...

 if ($form->isSubmitted() && $form->isValid()) {
 $slug = $this->get('app.slugger')->slugify($post->getTitle());
 $post->setSlug($slug);

 // ...
 }
}

Service Format: YAML

In the previous section, YAML was used to define the service.

Best Practice

Use the YAML format to define your own services.

This is controversial, and in our experience, YAML and XML usage is evenly
distributed among developers, with a slight preference towards YAML.
Both formats have the same performance, so this is ultimately a matter of
personal taste.

We recommend YAML because it’s friendly to newcomers and concise. You can
of course use whatever format you like.

Service: No Class Parameter

You may have noticed that the previous service definition doesn’t configure
the class namespace as a parameter:

app/config/services.yml

service definition with class namespace as parameter
parameters:
 slugger.class: AppBundle\Utils\Slugger

services:
 app.slugger:
 class: "%slugger.class%"

This practice is cumbersome and completely unnecessary for your own services:

Best Practice

Don’t define parameters for the classes of your services.

This practice was wrongly adopted from third-party bundles. When Symfony
introduced its service container, some developers used this technique to easily
allow overriding services. However, overriding a service by just changing its
class name is a very rare use case because, frequently, the new service has
different constructor arguments.

Using a Persistence Layer

Symfony is an HTTP framework that only cares about generating an HTTP response
for each HTTP request. That’s why Symfony doesn’t provide a way to talk to
a persistence layer (e.g. database, external API). You can choose whatever
library or strategy you want for this.

In practice, many Symfony applications rely on the independent
Doctrine project [http://www.doctrine-project.org/] to define their model using entities and repositories.
Just like with business logic, we recommend storing Doctrine entities in the
AppBundle.

The three entities defined by our sample blog application are a good example:

symfony2-project/
├─ ...
└─ src/
 └─ AppBundle/
 └─ Entity/
 ├─ Comment.php
 ├─ Post.php
 └─ User.php

小技巧

If you’re more advanced, you can of course store them under your own
namespace in src/.

Doctrine Mapping Information

Doctrine Entities are plain PHP objects that you store in some “database”.
Doctrine only knows about your entities through the mapping metadata configured
for your model classes. Doctrine supports four metadata formats: YAML, XML,
PHP and annotations.

Best Practice

Use annotations to define the mapping information of the Doctrine entities.

Annotations are by far the most convenient and agile way of setting up and
looking for mapping information:

namespace AppBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Doctrine\Common\Collections\ArrayCollection;

/**
 * @ORM\Entity
 */
class Post
{
 const NUM_ITEMS = 10;

 /**
 * @ORM\Id
 * @ORM\GeneratedValue
 * @ORM\Column(type="integer")
 */
 private $id;

 /**
 * @ORM\Column(type="string")
 */
 private $title;

 /**
 * @ORM\Column(type="string")
 */
 private $slug;

 /**
 * @ORM\Column(type="text")
 */
 private $content;

 /**
 * @ORM\Column(type="string")
 */
 private $authorEmail;

 /**
 * @ORM\Column(type="datetime")
 */
 private $publishedAt;

 /**
 * @ORM\OneToMany(
 * targetEntity="Comment",
 * mappedBy="post",
 * orphanRemoval=true
 *)
 * @ORM\OrderBy({"publishedAt" = "ASC"})
 */
 private $comments;

 public function __construct()
 {
 $this->publishedAt = new \DateTime();
 $this->comments = new ArrayCollection();
 }

 // getters and setters ...
}

All formats have the same performance, so this is once again ultimately a
matter of taste.

Data Fixtures

As fixtures support is not enabled by default in Symfony, you should execute
the following command to install the Doctrine fixtures bundle:

$ composer require "doctrine/doctrine-fixtures-bundle"

Then, enable the bundle in AppKernel.php, but only for the dev and
test environments:

use Symfony\Component\HttpKernel\Kernel;

class AppKernel extends Kernel
{
 public function registerBundles()
 {
 $bundles = array(
 // ...
);

 if (in_array($this->getEnvironment(), array('dev', 'test'))) {
 // ...
 $bundles[] = new Doctrine\Bundle\FixturesBundle\DoctrineFixturesBundle();
 }

 return $bundles;
 }

 // ...
}

We recommend creating just one fixture class [http://symfony.com/doc/current/bundles/DoctrineFixturesBundle/index.html#writing-simple-fixtures] for simplicity, though
you’re welcome to have more if that class gets quite large.

Assuming you have at least one fixtures class and that the database access
is configured properly, you can load your fixtures by executing the following
command:

$ php app/console doctrine:fixtures:load

Careful, database will be purged. Do you want to continue Y/N ? Y
 > purging database
 > loading AppBundle\DataFixtures\ORM\LoadFixtures

Coding Standards

The Symfony source code follows the PSR-1 [http://www.php-fig.org/psr/psr-1/] and PSR-2 [http://www.php-fig.org/psr/psr-2/] coding standards that
were defined by the PHP community. You can learn more about
the Symfony Coding standards and even
use the PHP-CS-Fixer [https://github.com/FriendsOfPHP/PHP-CS-Fixer], which is a command-line utility that can fix the
coding standards of an entire codebase in a matter of seconds.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Official Symfony Best Practices

Controllers

Symfony follows the philosophy of “thin controllers and fat models”. This
means that controllers should hold just the thin layer of glue-code
needed to coordinate the different parts of the application.

As a rule of thumb, you should follow the 5-10-20 rule, where controllers should
only define 5 variables or less, contain 10 actions or less and include 20 lines
of code or less in each action. This isn’t an exact science, but it should
help you realize when code should be refactored out of the controller and
into a service.

Best Practice

Make your controller extend the FrameworkBundle base controller and use
annotations to configure routing, caching and security whenever possible.

Coupling the controllers to the underlying framework allows you to leverage
all of its features and increases your productivity.

And since your controllers should be thin and contain nothing more than a
few lines of glue-code, spending hours trying to decouple them from your
framework doesn’t benefit you in the long run. The amount of time wasted
isn’t worth the benefit.

In addition, using annotations for routing, caching and security simplifies
configuration. You don’t need to browse tens of files created with different
formats (YAML, XML, PHP): all the configuration is just where you need it
and it only uses one format.

Overall, this means you should aggressively decouple your business logic
from the framework while, at the same time, aggressively coupling your controllers
and routing to the framework in order to get the most out of it.

Routing Configuration

To load routes defined as annotations in your controllers, add the following
configuration to the main routing configuration file:

app/config/routing.yml
app:
 resource: "@AppBundle/Controller/"
 type: annotation

This configuration will load annotations from any controller stored inside the
src/AppBundle/Controller/ directory and even from its subdirectories.
So if your application defines lots of controllers, it’s perfectly ok to
reorganize them into subdirectories:

<your-project>/
├─ ...
└─ src/
 └─ AppBundle/
 ├─ ...
 └─ Controller/
 ├─ DefaultController.php
 ├─ ...
 ├─ Api/
 │ ├─ ...
 │ └─ ...
 └─ Backend/
 ├─ ...
 └─ ...

Template Configuration

Best Practice

Don’t use the @Template() annotation to configure the template used by
the controller.

The @Template annotation is useful, but also involves some magic. For
that reason, we don’t recommend using it.

Most of the time, @Template is used without any parameters, which makes
it more difficult to know which template is being rendered. It also makes
it less obvious to beginners that a controller should always return a Response
object (unless you’re using a view layer).

Lastly, the @Template annotation uses a TemplateListener class that hooks
into the kernel.view event dispatched by the framework. This listener introduces
a measurable performance impact. In the sample blog application, rendering the
homepage took 5 milliseconds using the $this->render() method and 26 milliseconds
using the @Template annotation.

How the Controller Looks

Considering all this, here is an example of how the controller should look
for the homepage of our app:

namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class DefaultController extends Controller
{
 /**
 * @Route("/", name="homepage")
 */
 public function indexAction()
 {
 $posts = $this->getDoctrine()
 ->getRepository('AppBundle:Post')
 ->findLatest();

 return $this->render('default/index.html.twig', array(
 'posts' => $posts
));
 }
}

Using the ParamConverter

If you’re using Doctrine, then you can optionally use the ParamConverter [http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/converters.html]
to automatically query for an entity and pass it as an argument to your controller.

Best Practice

Use the ParamConverter trick to automatically query for Doctrine entities
when it’s simple and convenient.

For example:

use AppBundle\Entity\Post;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

/**
 * @Route("/{id}", name="admin_post_show")
 */
public function showAction(Post $post)
{
 $deleteForm = $this->createDeleteForm($post);

 return $this->render('admin/post/show.html.twig', array(
 'post' => $post,
 'delete_form' => $deleteForm->createView(),
));
}

Normally, you’d expect a $id argument to showAction. Instead, by
creating a new argument ($post) and type-hinting it with the Post
class (which is a Doctrine entity), the ParamConverter automatically queries
for an object whose $id property matches the {id} value. It will
also show a 404 page if no Post can be found.

When Things Get More Advanced

This works without any configuration because the wildcard name {id} matches
the name of the property on the entity. If this isn’t true, or if you have
even more complex logic, the easiest thing to do is just query for the entity
manually. In our application, we have this situation in CommentController:

/**
 * @Route("/comment/{postSlug}/new", name = "comment_new")
 */
public function newAction(Request $request, $postSlug)
{
 $post = $this->getDoctrine()
 ->getRepository('AppBundle:Post')
 ->findOneBy(array('slug' => $postSlug));

 if (!$post) {
 throw $this->createNotFoundException();
 }

 // ...
}

You can also use the @ParamConverter configuration, which is infinitely
flexible:

use AppBundle\Entity\Post;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\ParamConverter;
use Symfony\Component\HttpFoundation\Request;

/**
 * @Route("/comment/{postSlug}/new", name = "comment_new")
 * @ParamConverter("post", options={"mapping": {"postSlug": "slug"}})
 */
public function newAction(Request $request, Post $post)
{
 // ...
}

The point is this: the ParamConverter shortcut is great for simple situations.
But you shouldn’t forget that querying for entities directly is still very
easy.

Pre and Post Hooks

If you need to execute some code before or after the execution of your controllers,
you can use the EventDispatcher component to
set up before and after filters.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Official Symfony Best Practices

Templates

When PHP was created 20 years ago, developers loved its simplicity and how
well it blended HTML and dynamic code. But as time passed, other template
languages - like Twig [http://twig.sensiolabs.org/] - were created to make templating even better.

Best Practice

Use Twig templating format for your templates.

Generally speaking, PHP templates are much more verbose than Twig templates because
they lack native support for lots of modern features needed by templates,
like inheritance, automatic escaping and named arguments for filters and
functions.

Twig is the default templating format in Symfony and has the largest community
support of all non-PHP template engines (it’s used in high profile projects
such as Drupal 8).

In addition, Twig is the only template format with guaranteed support in Symfony
3.0. As a matter of fact, PHP may be removed from the officially supported
template engines.

Template Locations

Best Practice

Store all your application’s templates in app/Resources/views/ directory.

Traditionally, Symfony developers stored the application templates in the
Resources/views/ directory of each bundle. Then they used the logical name
to refer to them (e.g. AcmeDemoBundle:Default:index.html.twig).

But for the templates used in your application, it’s much more convenient
to store them in the app/Resources/views/ directory. For starters, this
drastically simplifies their logical names:

	Templates Stored inside Bundles
	Templates Stored in app/

	AcmeDemoBundle:Default:index.html.twig
	default/index.html.twig

	::layout.html.twig
	layout.html.twig

	AcmeDemoBundle::index.html.twig
	index.html.twig

	AcmeDemoBundle:Default:subdir/index.html.twig
	default/subdir/index.html.twig

	AcmeDemoBundle:Default/subdir:index.html.twig
	default/subdir/index.html.twig

Another advantage is that centralizing your templates simplifies the work
of your designers. They don’t need to look for templates in lots of directories
scattered through lots of bundles.

Twig Extensions

Best Practice

Define your Twig extensions in the AppBundle/Twig/ directory and
configure them using the app/config/services.yml file.

Our application needs a custom md2html Twig filter so that we can transform
the Markdown contents of each post into HTML.

To do this, first, install the excellent Parsedown [http://parsedown.org/] Markdown parser as
a new dependency of the project:

$ composer require erusev/parsedown

Then, create a new Markdown service that will be used later by the Twig
extension. The service definition only requires the path to the class:

app/config/services.yml
services:
 # ...
 markdown:
 class: AppBundle\Utils\Markdown

And the Markdown class just needs to define one single method to transform
Markdown content into HTML:

namespace AppBundle\Utils;

class Markdown
{
 private $parser;

 public function __construct()
 {
 $this->parser = new \Parsedown();
 }

 public function toHtml($text)
 {
 $html = $this->parser->text($text);

 return $html;
 }
}

Next, create a new Twig extension and define a new filter called md2html
using the Twig_SimpleFilter class. Inject the newly defined markdown
service in the constructor of the Twig extension:

namespace AppBundle\Twig;

use AppBundle\Utils\Markdown;

class AppExtension extends \Twig_Extension
{
 private $parser;

 public function __construct(Markdown $parser)
 {
 $this->parser = $parser;
 }

 public function getFilters()
 {
 return array(
 new \Twig_SimpleFilter(
 'md2html',
 array($this, 'markdownToHtml'),
 array('is_safe' => array('html'))
),
);
 }

 public function markdownToHtml($content)
 {
 return $this->parser->toHtml($content);
 }

 public function getName()
 {
 return 'app_extension';
 }
}

Lastly define a new service to enable this Twig extension in the app (the service
name is irrelevant because you never use it in your own code):

app/config/services.yml
services:
 app.twig.app_extension:
 class: AppBundle\Twig\AppExtension
 arguments: ["@markdown"]
 public: false
 tags:
 - { name: twig.extension }

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Official Symfony Best Practices

Forms

Forms are one of the most misused Symfony components due to its vast scope and
endless list of features. In this chapter we’ll show you some of the best
practices so you can leverage forms but get work done quickly.

Building Forms

Best Practice

Define your forms as PHP classes.

The Form component allows you to build forms right inside your controller
code. This is perfectly fine if you don’t need to reuse the form somewhere else.
But for organization and reuse, we recommend that you define each
form in its own PHP class:

namespace AppBundle\Form;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class PostType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('title')
 ->add('summary', 'textarea')
 ->add('content', 'textarea')
 ->add('authorEmail', 'email')
 ->add('publishedAt', 'datetime')
 ;
 }

 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $resolver->setDefaults(array(
 'data_class' => 'AppBundle\Entity\Post'
));
 }

 public function getName()
 {
 return 'post';
 }
}

To use the class, use createForm and instantiate the new class:

use AppBundle\Form\PostType;
// ...

public function newAction(Request $request)
{
 $post = new Post();
 $form = $this->createForm(new PostType(), $post);

 // ...
}

Registering Forms as Services

You can also
register your form type as a service.
But this is not recommended unless you plan to reuse the new form type in many
places or embed it in other forms directly or via the
collection type.

For most forms that are used only to edit or create something, registering
the form as a service is over-kill, and makes it more difficult to figure
out exactly which form class is being used in a controller.

Form Button Configuration

Form classes should try to be agnostic to where they will be used. This
makes them easier to re-use later.

Best Practice

Add buttons in the templates, not in the form classes or the controllers.

Since Symfony 2.5, you can add buttons as fields on your form. This is a nice
way to simplify the template that renders your form. But if you add the buttons
directly in your form class, this would effectively limit the scope of that form:

class PostType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 // ...
 ->add('save', 'submit', array('label' => 'Create Post'))
 ;
 }

 // ...
}

This form may have been designed for creating posts, but if you wanted
to reuse it for editing posts, the button label would be wrong. Instead,
some developers configure form buttons in the controller:

namespace AppBundle\Controller\Admin;

use Symfony\Component\HttpFoundation\Request;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use AppBundle\Entity\Post;
use AppBundle\Form\PostType;

class PostController extends Controller
{
 // ...

 public function newAction(Request $request)
 {
 $post = new Post();
 $form = $this->createForm(new PostType(), $post);
 $form->add('submit', 'submit', array(
 'label' => 'Create',
 'attr' => array('class' => 'btn btn-default pull-right')
));

 // ...
 }
}

This is also an important error, because you are mixing presentation markup
(labels, CSS classes, etc.) with pure PHP code. Separation of concerns is
always a good practice to follow, so put all the view-related things in the
view layer:

{{ form_start(form) }}
 {{ form_widget(form) }}

 <input type="submit" value="Create"
 class="btn btn-default pull-right" />
{{ form_end(form) }}

Rendering the Form

There are a lot of ways to render your form, ranging from rendering the entire
thing in one line to rendering each part of each field independently. The
best way depends on how much customization you need.

One of the simplest ways - which is especially useful during development -
is to render the form tags and use form_widget() to render all of the
fields:

{{ form_start(form, {'attr': {'class': 'my-form-class'} }) }}
 {{ form_widget(form) }}
{{ form_end(form) }}

If you need more control over how your fields are rendered, then you should
remove the form_widget(form) function and render your fields individually.
See the How to Customize Form Rendering article for more information
on this and how you can control how the form renders at a global level
using form theming.

Handling Form Submits

Handling a form submit usually follows a similar template:

public function newAction(Request $request)
{
 // build the form ...

 $form->handleRequest($request);

 if ($form->isSubmitted() && $form->isValid()) {
 $em = $this->getDoctrine()->getManager();
 $em->persist($post);
 $em->flush();

 return $this->redirect($this->generateUrl(
 'admin_post_show',
 array('id' => $post->getId())
));
 }

 // render the template
}

There are really only two notable things here. First, we recommend that you
use a single action for both rendering the form and handling the form submit.
For example, you could have a newAction that only renders the form
and a createAction that only processes the form submit. Both those
actions will be almost identical. So it’s much simpler to let newAction
handle everything.

Second, we recommend using $form->isSubmitted() in the if statement
for clarity. This isn’t technically needed, since isValid() first calls
isSubmitted(). But without this, the flow doesn’t read well as it looks
like the form is always processed (even on the GET request).

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Official Symfony Best Practices

Internationalization

Internationalization and localization adapt the applications and their contents
to the specific region or language of the users. In Symfony this is an opt-in
feature that needs to be enabled before using it. To do this, uncomment the
following translator configuration option and set your application locale:

app/config/config.yml
framework:
 # ...
 translator: { fallback: "%locale%" }

app/config/parameters.yml
parameters:
 # ...
 locale: en

Translation Source File Format

The Symfony Translation component supports lots of different translation
formats: PHP, Qt, .po, .mo, JSON, CSV, INI, etc.

Best Practice

Use the XLIFF format for your translation files.

Of all the available translation formats, only XLIFF and gettext have broad
support in the tools used by professional translators. And since it’s based
on XML, you can validate XLIFF file contents as you write them.

Symfony 2.6 added support for notes inside XLIFF files, making them more
user-friendly for translators. At the end, good translations are all about
context, and these XLIFF notes allow you to define that context.

小技巧

The Apache-licensed JMSTranslationBundle [https://github.com/schmittjoh/JMSTranslationBundle] offers you a web interface for
viewing and editing these translation files. It also has advanced extractors
that can read your project and automatically update the XLIFF files.

Translation Source File Location

Best Practice

Store the translation files in the app/Resources/translations/ directory.

Traditionally, Symfony developers have created these files in the
Resources/translations/ directory of each bundle.

But since the app/Resources/ directory is considered the global location
for the application’s resources, storing translations in app/Resources/translations/
centralizes them and gives them priority over any other translation file.
This lets you override translations defined in third-party bundles.

Translation Keys

Best Practice

Always use keys for translations instead of content strings.

Using keys simplifies the management of the translation files because you
can change the original contents without having to update all of the translation
files.

Keys should always describe their purpose and not their location. For
example, if a form has a field with the label “Username”, then a nice key
would be label.username, not edit_form.label.username.

Example Translation File

Applying all the previous best practices, the sample translation file for
English in the application would be:

<!-- app/Resources/translations/messages.en.xliff -->
<?xml version="1.0"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
 <file source-language="en" target-language="en" datatype="plaintext" original="file.ext">
 <body>
 <trans-unit id="1">
 <source>title.post_list</source>
 <target>Post List</target>
 </trans-unit>
 </body>
 </file>
</xliff>

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Official Symfony Best Practices

Security

Authentication and Firewalls (i.e. Getting the User’s Credentials)

You can configure Symfony to authenticate your users using any method you
want and to load user information from any source. This is a complex topic,
but the Security Cookbook Section has a
lot of information about this.

Regardless of your needs, authentication is configured in security.yml,
primarily under the firewalls key.

Best Practice

Unless you have two legitimately different authentication systems and
users (e.g. form login for the main site and a token system for your
API only), we recommend having only one firewall entry with the anonymous
key enabled.

Most applications only have one authentication system and one set of users.
For this reason, you only need one firewall entry. There are exceptions
of course, especially if you have separated web and API sections on your
site. But the point is to keep things simple.

Additionally, you should use the anonymous key under your firewall. If
you need to require users to be logged in for different sections of your
site (or maybe nearly all sections), use the access_control area.

Best Practice

Use the bcrypt encoder for encoding your users’ passwords.

If your users have a password, then we recommend encoding it using the bcrypt
encoder, instead of the traditional SHA-512 hashing encoder. The main advantages
of bcrypt are the inclusion of a salt value to protect against rainbow
table attacks, and its adaptive nature, which allows to make it slower to
remain resistant to brute-force search attacks.

With this in mind, here is the authentication setup from our application,
which uses a login form to load users from the database:

app/config/security.yml
security:
 encoders:
 AppBundle\Entity\User: bcrypt

 providers:
 database_users:
 entity: { class: AppBundle:User, property: username }

 firewalls:
 secured_area:
 pattern: ^/
 anonymous: true
 form_login:
 check_path: security_login_check
 login_path: security_login_form

 logout:
 path: security_logout
 target: homepage

... access_control exists, but is not shown here

小技巧

The source code for our project contains comments that explain each part.

Authorization (i.e. Denying Access)

Symfony gives you several ways to enforce authorization, including the access_control
configuration in security.yml and
using isGranted on the security.context
service directly.

Best Practice

	For protecting broad URL patterns, use access_control;

	Check security directly on the security.context service whenever
you have a more complex situation.

There are also different ways to centralize your authorization logic, like
with a custom security voter or with ACL.

Best Practice

	For fine-grained restrictions, define a custom security voter;

	For restricting access to any object by any user via an admin
interface, use the Symfony ACL.

Manually Checking Permissions

If you cannot control the access based on URL patterns, you can always do
the security checks in PHP:

/**
 * @Route("/{id}/edit", name="admin_post_edit")
 */
public function editAction($id)
{
 $post = $this->getDoctrine()->getRepository('AppBundle:Post')
 ->find($id);

 if (!$post) {
 throw $this->createNotFoundException();
 }

 if (!$post->isAuthor($this->getUser())) {
 throw $this->createAccessDeniedException();
 }

 // ...
}

Security Voters

If your security logic is complex and can’t be centralized into a method
like isAuthor(), you should leverage custom voters. These are an order
of magnitude easier than ACLs and will give
you the flexibility you need in almost all cases.

First, create a voter class. The following example shows a voter that implements
the same getAuthorEmail logic you used above:

namespace AppBundle\Security;

use Symfony\Component\Security\Core\Authorization\Voter\AbstractVoter;
use Symfony\Component\Security\Core\User\UserInterface;

// AbstractVoter class requires Symfony 2.6 or higher version
class PostVoter extends AbstractVoter
{
 const CREATE = 'create';
 const EDIT = 'edit';

 protected function getSupportedAttributes()
 {
 return array(self::CREATE, self::EDIT);
 }

 protected function getSupportedClasses()
 {
 return array('AppBundle\Entity\Post');
 }

 protected function isGranted($attribute, $post, $user = null)
 {
 if (!$user instanceof UserInterface) {
 return false;
 }

 if ($attribute === self::CREATE && in_array('ROLE_ADMIN', $user->getRoles(), true)) {
 return true;
 }

 if ($attribute === self::EDIT && $user->getEmail() === $post->getAuthorEmail()) {
 return true;
 }

 return false;
 }
}

To enable the security voter in the application, define a new service:

app/config/services.yml
services:
 # ...
 post_voter:
 class: AppBundle\Security\PostVoter
 public: false
 tags:
 - { name: security.voter }

Now, you can use the voter with the security.context service:

/**
 * @Route("/{id}/edit", name="admin_post_edit")
 */
public function editAction($id)
{
 $post = // query for the post ...

 if (!$this->get('security.context')->isGranted('edit', $post)) {
 throw $this->createAccessDeniedException();
 }
}

Learn More

The FOSUserBundle [https://github.com/FriendsOfSymfony/FOSUserBundle], developed by the Symfony community, adds support for a
database-backed user system in Symfony. It also handles common tasks like
user registration and forgotten password functionality.

Enable the Remember Me feature to
allow your users to stay logged in for a long period of time.

When providing customer support, sometimes it’s necessary to access the application
as some other user so that you can reproduce the problem. Symfony provides
the ability to impersonate users.

If your company uses a user login method not supported by Symfony, you can
develop your own user provider and
your own authentication provider.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Official Symfony Best Practices

Web Assets

Web assets are things like CSS, JavaScript and image files that make the
frontend of your site look and work great. Symfony developers have traditionally
stored these assets in the Resources/public/ directory of each bundle.

Best Practice

Store your assets in the web/ directory.

Scattering your web assets across tens of different bundles makes it more
difficult to manage them. Your designers’ lives will be much easier if all
the application assets are in one location.

Templates also benefit from centralizing your assets, because the links are
much more concise:

<link rel="stylesheet" href="{{ asset('css/bootstrap.min.css') }}" />
<link rel="stylesheet" href="{{ asset('css/main.css') }}" />

{# ... #}

<script src="{{ asset('js/jquery.min.js') }}"></script>
<script src="{{ asset('js/bootstrap.min.js') }}"></script>

注解

Keep in mind that web/ is a public directory and that anything stored
here will be publicly accessible. For that reason, you should put your
compiled web assets here, but not their source files (e.g. SASS files).

Using Assetic

These days, you probably can’t simply create static CSS and JavaScript files
and include them in your template. Instead, you’ll probably want to combine
and minify these to improve client-side performance. You may also want to
use LESS or Sass (for example), which means you’ll need some way to process
these into CSS files.

A lot of tools exist to solve these problems, including pure-frontend (non-PHP)
tools like GruntJS.

Best Practice

Use Assetic to compile, combine and minimize web assets, unless you’re
comfortable with frontend tools like GruntJS.

Assetic is an asset manager capable
of compiling assets developed with a lot of different frontend technologies
like LESS, Sass and CoffeeScript.
Combining all your assets with Assetic is a matter of wrapping all the assets
with a single Twig tag:

{% stylesheets
 'css/bootstrap.min.css'
 'css/main.css'
 filter='cssrewrite' output='css/compiled/all.css' %}
 <link rel="stylesheet" href="{{ asset_url }}" />
{% endstylesheets %}

{# ... #}

{% javascripts
 'js/jquery.min.js'
 'js/bootstrap.min.js'
 output='js/compiled/all.js' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

Frontend-Based Applications

Recently, frontend technologies like AngularJS have become pretty popular
for developing frontend web applications that talk to an API.

If you are developing an application like this, you should use the tools
that are recommended by the technology, such as Bower and GruntJS. You should
develop your frontend application separately from your Symfony backend (even
separating the repositories if you want).

Learn More about Assetic

Assetic can also minimize CSS and JavaScript assets
using UglifyCSS/UglifyJS to speed up your
websites. You can even compress images
with Assetic to reduce their size before serving them to the user. Check out
the official Assetic documentation [https://github.com/kriswallsmith/assetic] to learn more about all the available
features.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Official Symfony Best Practices

Tests

Roughly speaking, there are two types of test. Unit testing allows you to
test the input and output of specific functions. Functional testing allows
you to command a “browser” where you browse to pages on your site, click
links, fill out forms and assert that you see certain things on the page.

Unit Tests

Unit tests are used to test your “business logic”, which should live in classes
that are independent of Symfony. For that reason, Symfony doesn’t really
have an opinion on what tools you use for unit testing. However, the most
popular tools are PhpUnit [https://phpunit.de/] and PhpSpec [http://www.phpspec.net/].

Functional Tests

Creating really good functional tests can be tough so some developers skip
these completely. Don’t skip the functional tests! By defining some simple
functional tests, you can quickly spot any big errors before you deploy them:

Best Practice

Define a functional test that at least checks if your application pages
are successfully loading.

A functional test can be as easy as this:

/** @dataProvider provideUrls */
public function testPageIsSuccessful($url)
{
 $client = self::createClient();
 $client->request('GET', $url);

 $this->assertTrue($client->getResponse()->isSuccessful());
}

public function provideUrls()
{
 return array(
 array('/'),
 array('/posts'),
 array('/post/fixture-post-1'),
 array('/blog/category/fixture-category'),
 array('/archives'),
 // ...
);
}

This code checks that all the given URLs load successfully, which means that
their HTTP response status code is between 200 and 299. This may
not look that useful, but given how little effort this took, it’s worth
having it in your application.

In computer software, this kind of test is called smoke testing [http://en.wikipedia.org/wiki/Smoke_testing_(software)] and consists
of “preliminary testing to reveal simple failures severe enough to reject a
prospective software release”.

Hardcode URLs in a Functional Test

Some of you may be asking why the previous functional test doesn’t use the URL
generator service:

Best Practice

Hardcode the URLs used in the functional tests instead of using the URL
generator.

Consider the following functional test that uses the router service to
generate the URL of the tested page:

public function testBlogArchives()
{
 $client = self::createClient();
 $url = $client->getContainer()->get('router')->generate('blog_archives');
 $client->request('GET', $url);

 // ...
}

This will work, but it has one huge drawback. If a developer mistakenly
changes the path of the blog_archives route, the test will still pass,
but the original (old) URL won’t work! This means that any bookmarks for
that URL will be broken and you’ll lose any search engine page ranking.

Testing JavaScript Functionality

The built-in functional testing client is great, but it can’t be used to
test any JavaScript behavior on your pages. If you need to test this, consider
using the Mink [http://mink.behat.org] library from within PHPUnit.

Of course, if you have a heavy JavaScript frontend, you should consider using
pure JavaScript-based testing tools.

Learn More about Functional Tests

Consider using Faker [https://github.com/fzaninotto/Faker] and Alice [https://github.com/nelmio/alice] libraries to generate real-looking data
for your test fixtures.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

The Components

	How to Install and Use the Symfony Components

	ClassLoader
	The ClassLoader Component

	The PSR-0 Class Loader

	MapClassLoader

	Cache a Class Loader

	Debugging a Class Loader

	The Class Map Generator

	Config
	The Config Component

	Loading Resources

	Caching Based on Resources

	Defining and Processing Configuration Values

	Console
	The Console Component

	Using Console Commands, Shortcuts and Built-in Commands

	Building a single Command Application

	Understanding how Console Arguments Are Handled

	Using Events

	The Console Helpers

	CssSelector
	The CssSelector Component

	Debug
	The Debug Component

	DependencyInjection
	The DependencyInjection Component

	Types of Injection

	Introduction to Parameters

	Working with Container Service Definitions

	Compiling the Container

	Working with Tagged Services

	Using a Factory to Create Services

	Configuring Services with a Service Configurator

	Managing common Dependencies with parent Services

	Advanced Container Configuration

	Lazy Services

	Container Building Workflow

	DomCrawler
	The DomCrawler Component

	EventDispatcher
	The EventDispatcher Component

	The Container Aware Event Dispatcher

	The Generic Event Object

	The Immutable Event Dispatcher

	The Traceable Event Dispatcher

	Filesystem
	The Filesystem Component

	Finder
	The Finder Component

	Form
	The Form Component

	Form Events

	Creating a custom Type Guesser

	HttpFoundation
	The HttpFoundation Component

	Session Management

	Configuring Sessions and Save Handlers

	Testing with Sessions

	Integrating with Legacy Sessions

	Trusting Proxies

	HttpKernel
	The HttpKernel Component

	Intl
	The Intl Component

	OptionsResolver
	The OptionsResolver Component

	Process
	The Process Component

	PropertyAccess
	The PropertyAccess Component

	Routing
	The Routing Component

	How to Match a Route Based on the Host

	Security
	The Security Component

	The Firewall and Security Context

	Authentication

	Authorization

	Securely Comparing Strings and Generating Random Numbers

	Serializer
	The Serializer Component

	Stopwatch
	The Stopwatch Component

	Templating
	The Templating Component

	Translation
	The Translation Component

	Using the Translator

	Adding Custom Format Support

	Yaml
	The Yaml Component

	The YAML Format

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

How to Install and Use the Symfony Components

If you’re starting a new project (or already have a project) that will use
one or more components, the easiest way to integrate everything is with Composer [http://getcomposer.org].
Composer is smart enough to download the component(s) that you need and take
care of autoloading so that you can begin using the libraries immediately.

This article will take you through using The Finder Component, though
this applies to using any component.

Using the Finder Component

1. If you’re creating a new project, create a new empty directory for it.

2. Open a terminal and use Composer to grab the library.

$ composer require symfony/finder

The name symfony/finder is written at the top of the documentation for
whatever component you want.

小技巧

Install composer [http://getcomposer.org/download/] if you don’t have it already present on your system.
Depending on how you install, you may end up with a composer.phar
file in your directory. In that case, no worries! Just run
php composer.phar require symfony/finder.

If you know you need a specific version of the library, add that to the command:

$ composer require symfony/finder

3. Write your code!

Once Composer has downloaded the component(s), all you need to do is include
the vendor/autoload.php file that was generated by Composer. This file
takes care of autoloading all of the libraries so that you can use them
immediately:

// File example: src/script.php

// update this to the path to the "vendor/" directory, relative to this file
require_once __DIR__.'/../vendor/autoload.php';

use Symfony\Component\Finder\Finder;

$finder = new Finder();
$finder->in('../data/');

// ...

Using all of the Components

If you want to use all of the Symfony Components, then instead of adding
them one by one, you can include the symfony/symfony package:

$ composer require symfony/symfony

This will also include the Bundle and Bridge libraries, which you may or
may not actually need.

Now what?

Now that the component is installed and autoloaded, read the specific component’s
documentation to find out more about how to use it.

And have fun!

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

ClassLoader

	The ClassLoader Component
	Usage

	Installation

	The PSR-0 Class Loader
	Usage

	MapClassLoader
	Usage

	Cache a Class Loader
	Introduction

	ApcClassLoader

	XcacheClassLoader

	Debugging a Class Loader

	The Class Map Generator
	Generating a Class Map

	Dumping the Class Map

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	ClassLoader

The ClassLoader Component

The ClassLoader component provides tools to autoload your classes and
cache their locations for performance.

Usage

Whenever you reference a class that has not been required or included yet,
PHP uses the autoloading mechanism [http://php.net/manual/en/language.oop5.autoload.php] to delegate the loading of a file defining
the class. Symfony provides two autoloaders, which are able to load your classes:

	The PSR-0 Class Loader: loads classes that follow
the PSR-0 class naming standard;

	MapClassLoader: loads classes using
a static map from class name to file path.

Additionally, the Symfony ClassLoader component ships with a set of wrapper
classes which can be used to add additional functionality on top of existing
autoloaders:

	Cache a Class Loader

	Debugging a Class Loader

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/class-loader
on Packagist [https://packagist.org/packages/symfony/class-loader]);

	Use the official Git repository (https://github.com/symfony/ClassLoader).

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	ClassLoader

The PSR-0 Class Loader

2.1 新版功能: The ClassLoader class was introduced in Symfony 2.1.

If your classes and third-party libraries follow the PSR-0 [http://www.php-fig.org/psr/psr-0/] standard, you
can use the ClassLoader [http://api.symfony.com/master/Symfony/Component/ClassLoader/ClassLoader.html] class to
load all of your project’s classes.

小技巧

You can use both the ApcClassLoader and the XcacheClassLoader to
cache a ClassLoader
instance or the DebugClassLoader to debug
it.

Usage

Registering the ClassLoader [http://api.symfony.com/master/Symfony/Component/ClassLoader/ClassLoader.html] autoloader
is straightforward:

require_once '/path/to/src/Symfony/Component/ClassLoader/ClassLoader.php';

use Symfony\Component\ClassLoader\ClassLoader;

$loader = new ClassLoader();

// to enable searching the include path (eg. for PEAR packages)
$loader->setUseIncludePath(true);

// ... register namespaces and prefixes here - see below

$loader->register();

注解

The autoloader is automatically registered in a Symfony application (see
app/autoload.php).

Use the addPrefix() [http://api.symfony.com/master/Symfony/Component/ClassLoader/ClassLoader.html#method_addPrefix] or
addPrefixes() [http://api.symfony.com/master/Symfony/Component/ClassLoader/ClassLoader.html#method_addPrefixes] methods to
register your classes:

// register a single namespaces
$loader->addPrefix('Symfony', __DIR__.'/vendor/symfony/symfony/src');

// register several namespaces at once
$loader->addPrefixes(array(
 'Symfony' => __DIR__.'/../vendor/symfony/symfony/src',
 'Monolog' => __DIR__.'/../vendor/monolog/monolog/src',
));

// register a prefix for a class following the PEAR naming conventions
$loader->addPrefix('Twig_', __DIR__.'/vendor/twig/twig/lib');

$loader->addPrefixes(array(
 'Swift_' => __DIR__.'/vendor/swiftmailer/swiftmailer/lib/classes',
 'Twig_' => __DIR__.'/vendor/twig/twig/lib',
));

Classes from a sub-namespace or a sub-hierarchy of PEAR [http://pear.php.net/manual/en/standards.naming.php] classes can be looked
for in a location list to ease the vendoring of a sub-set of classes for large
projects:

$loader->addPrefixes(array(
 'Doctrine\\Common' => __DIR__.'/vendor/doctrine/common/lib',
 'Doctrine\\DBAL\\Migrations' => __DIR__.'/vendor/doctrine/migrations/lib',
 'Doctrine\\DBAL' => __DIR__.'/vendor/doctrine/dbal/lib',
 'Doctrine' => __DIR__.'/vendor/doctrine/orm/lib',
));

In this example, if you try to use a class in the Doctrine\Common namespace
or one of its children, the autoloader will first look for the class under the
doctrine-common directory. If not found, it will then fallback to the default
Doctrine directory (the last one configured) before giving up. The order
of the prefix registrations is significant in this case.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	ClassLoader

MapClassLoader

The MapClassLoader [http://api.symfony.com/master/Symfony/Component/ClassLoader/MapClassLoader.html] allows you to
autoload files via a static map from classes to files. This is useful if you
use third-party libraries which don’t follow the PSR-0 [http://www.php-fig.org/psr/psr-0/] standards and so
can’t use the PSR-0 class loader.

The MapClassLoader can be used along with the PSR-0 class loader
by configuring and calling the register() method on both.

注解

The default behavior is to append the MapClassLoader on the autoload
stack. If you want to use it as the first autoloader, pass true when
calling the register() method. Your class loader will then be prepended
on the autoload stack.

Usage

Using it is as easy as passing your mapping to its constructor when creating
an instance of the MapClassLoader class:

require_once '/path/to/src/Symfony/Component/ClassLoader/MapClassLoader.php';

$mapping = array(
 'Foo' => '/path/to/Foo',
 'Bar' => '/path/to/Bar',
);

$loader = new MapClassLoader($mapping);

$loader->register();

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	ClassLoader

Cache a Class Loader

Introduction

Finding the file for a particular class can be an expensive task. Luckily,
the ClassLoader component comes with two classes to cache the mapping
from a class to its containing file. Both the ApcClassLoader [http://api.symfony.com/master/Symfony/Component/ClassLoader/ApcClassLoader.html]
and the XcacheClassLoader [http://api.symfony.com/master/Symfony/Component/ClassLoader/XcacheClassLoader.html] wrap
around an object which implements a findFile() method to find the file
for a class.

注解

Both the ApcClassLoader and the XcacheClassLoader can be used
to cache Composer’s autoloader [http://getcomposer.org/doc/01-basic-usage.md#autoloading].

ApcClassLoader

2.1 新版功能: The ApcClassLoader class was introduced in Symfony 2.1.

ApcClassLoader wraps an existing class loader and caches calls to its
findFile() method using APC [http://php.net/manual/en/book.apc.php]:

require_once '/path/to/src/Symfony/Component/ClassLoader/ApcClassLoader.php';

// instance of a class that implements a findFile() method, like the ClassLoader
$loader = ...;

// sha1(__FILE__) generates an APC namespace prefix
$cachedLoader = new ApcClassLoader(sha1(__FILE__), $loader);

// register the cached class loader
$cachedLoader->register();

// deactivate the original, non-cached loader if it was registered previously
$loader->unregister();

XcacheClassLoader

2.1 新版功能: The XcacheClassLoader class was introduced in Symfony 2.1.

XcacheClassLoader uses XCache [http://xcache.lighttpd.net] to cache a class loader. Registering
it is straightforward:

require_once '/path/to/src/Symfony/Component/ClassLoader/XcacheClassLoader.php';

// instance of a class that implements a findFile() method, like the ClassLoader
$loader = ...;

// sha1(__FILE__) generates an XCache namespace prefix
$cachedLoader = new XcacheClassLoader(sha1(__FILE__), $loader);

// register the cached class loader
$cachedLoader->register();

// deactivate the original, non-cached loader if it was registered previously
$loader->unregister();

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	ClassLoader

Debugging a Class Loader

2.1 新版功能: The DebugClassLoader class was introduced in Symfony 2.1.

The DebugClassLoader [http://api.symfony.com/master/Symfony/Component/ClassLoader/DebugClassLoader.html] attempts to
throw more helpful exceptions when a class isn’t found by the registered
autoloaders. All autoloaders that implement a findFile() method are replaced
with a DebugClassLoader wrapper.

Using the DebugClassLoader is as easy as calling its static
enable() [http://api.symfony.com/master/Symfony/Component/ClassLoader/DebugClassLoader.html#method_enable] method:

use Symfony\Component\ClassLoader\DebugClassLoader;

DebugClassLoader::enable();

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	ClassLoader

The Class Map Generator

Loading a class usually is an easy task given the PSR-0 [http://www.php-fig.org/psr/psr-0] and PSR-4 [http://www.php-fig.org/psr/psr-4] standards.
Thanks to the Symfony ClassLoader component or the autoloading mechanism provided
by Composer, you don’t have to map your class names to actual PHP files manually.
Nowadays, PHP libraries usually come with autoloading support through Composer.

But from time to time you may have to use a third-party library that comes
without any autoloading support and therefore forces you to load each class
manually. For example, imagine a library with the following directory structure:

library/
├── bar/
│ ├── baz/
│ │ └── Boo.php
│ └── Foo.php
└── foo/
 ├── bar/
 │ └── Foo.php
 └── Bar.php

These files contain the following classes:

	File
	Class Name

	library/bar/baz/Boo.php
	Acme\Bar\Baz

	library/bar/Foo.php
	Acme\Bar

	library/foo/bar/Foo.php
	Acme\Foo\Bar

	library/foo/Bar.php
	Acme\Foo

To make your life easier, the ClassLoader component comes with a
ClassMapGenerator [http://api.symfony.com/master/Symfony/Component/ClassLoader/ClassMapGenerator.html] class that makes
it possible to create a map of class names to files.

Generating a Class Map

To generate the class map, simply pass the root directory of your class files
to the createMap() [http://api.symfony.com/master/Symfony/Component/ClassLoader/ClassMapGenerator.html#method_createMap]
method:

use Symfony\Component\ClassLoader\ClassMapGenerator;

print_r(ClassMapGenerator::createMap(__DIR__.'/library'));

Given the files and class from the table above, you should see an output like
this:

Array
(
 [Acme\Foo] => /var/www/library/foo/Bar.php
 [Acme\Foo\Bar] => /var/www/library/foo/bar/Foo.php
 [Acme\Bar\Baz] => /var/www/library/bar/baz/Boo.php
 [Acme\Bar] => /var/www/library/bar/Foo.php
)

Dumping the Class Map

Writing the class map to the console output is not really sufficient when
it comes to autoloading. Luckily, the ClassMapGenerator provides the
dump() [http://api.symfony.com/master/Symfony/Component/ClassLoader/ClassMapGenerator.html#method_dump] method
to save the generated class map to the filesystem:

use Symfony\Component\ClassLoader\ClassMapGenerator;

ClassMapGenerator::dump(__DIR__.'/library', __DIR__.'/class_map.php');

This call to dump() generates the class map and writes it to the class_map.php
file in the same directory with the following contents:

<?php return array (
'Acme\\Foo' => '/var/www/library/foo/Bar.php',
'Acme\\Foo\\Bar' => '/var/www/library/foo/bar/Foo.php',
'Acme\\Bar\\Baz' => '/var/www/library/bar/baz/Boo.php',
'Acme\\Bar' => '/var/www/library/bar/Foo.php',
);

Instead of loading each file manually, you’ll only have to register the generated
class map with, for example, the MapClassLoader [http://api.symfony.com/master/Symfony/Component/ClassLoader/MapClassLoader.html]:

use Symfony\Component\ClassLoader\MapClassLoader;

$mapping = include __DIR__.'/class_map.php';
$loader = new MapClassLoader($mapping);
$loader->register();

// you can now use the classes:
use Acme\Foo;

$foo = new Foo();

// ...

注解

The example assumes that you already have autoloading working (e.g.
through Composer [http://getcomposer.org] or one of the other class loaders from the ClassLoader
component.

Besides dumping the class map for one directory, you can also pass an array
of directories for which to generate the class map (the result actually is
the same as in the example above):

use Symfony\Component\ClassLoader\ClassMapGenerator;

ClassMapGenerator::dump(
 array(__DIR__.'/library/bar', __DIR__.'/library/foo'),
 __DIR__.'/class_map.php'
);

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

Config

	The Config Component
	Installation

	Sections

	Loading Resources
	Locating Resources

	Resource Loaders

	Finding the right Loader

	Caching Based on Resources

	Defining and Processing Configuration Values
	Validating Configuration Values

	Defining a Hierarchy of Configuration Values Using the TreeBuilder

	Adding Node Definitions to the Tree

	Default and required Values

	Documenting the Option

	Optional Sections

	Merging Options

	Appending Sections

	Normalization

	Validation Rules

	Processing Configuration Values

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Config

The Config Component

The Config component provides several classes to help you find, load,
combine, autofill and validate configuration values of any kind, whatever
their source may be (YAML, XML, INI files, or for instance a database).

警告

The IniFileLoader parses the file contents using the
parse_ini_file [http://php.net/manual/en/function.parse-ini-file.php] function, therefore, you can only set
parameters to string values. To set parameters to other data types
(e.g. boolean, integer, etc), the other loaders are recommended.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/config on Packagist [https://packagist.org/packages/symfony/config]);

	Use the official Git repository (https://github.com/symfony/Config).

Sections

	Loading Resources

	Caching Based on Resources

	Defining and Processing Configuration Values

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Config

Loading Resources

Locating Resources

Loading the configuration normally starts with a search for resources – in
most cases: files. This can be done with the FileLocator [http://api.symfony.com/master/Symfony/Component/Config/FileLocator.html]:

use Symfony\Component\Config\FileLocator;

$configDirectories = array(__DIR__.'/app/config');

$locator = new FileLocator($configDirectories);
$yamlUserFiles = $locator->locate('users.yml', null, false);

The locator receives a collection of locations where it should look for files.
The first argument of locate() is the name of the file to look for. The
second argument may be the current path and when supplied, the locator will
look in this directory first. The third argument indicates whether or not the
locator should return the first file it has found, or an array containing
all matches.

Resource Loaders

For each type of resource (YAML, XML, annotation, etc.) a loader must be defined.
Each loader should implement LoaderInterface [http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderInterface.html]
or extend the abstract FileLoader [http://api.symfony.com/master/Symfony/Component/Config/Loader/FileLoader.html]
class, which allows for recursively importing other resources:

use Symfony\Component\Config\Loader\FileLoader;
use Symfony\Component\Yaml\Yaml;

class YamlUserLoader extends FileLoader
{
 public function load($resource, $type = null)
 {
 $configValues = Yaml::parse(file_get_contents($resource));

 // ... handle the config values

 // maybe import some other resource:

 // $this->import('extra_users.yml');
 }

 public function supports($resource, $type = null)
 {
 return is_string($resource) && 'yml' === pathinfo(
 $resource,
 PATHINFO_EXTENSION
);
 }
}

Finding the right Loader

The LoaderResolver [http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderResolver.html] receives as
its first constructor argument a collection of loaders. When a resource (for
instance an XML file) should be loaded, it loops through this collection
of loaders and returns the loader which supports this particular resource type.

The DelegatingLoader [http://api.symfony.com/master/Symfony/Component/Config/Loader/DelegatingLoader.html] makes use
of the LoaderResolver [http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderResolver.html]. When
it is asked to load a resource, it delegates this question to the
LoaderResolver [http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderResolver.html]. In case the resolver
has found a suitable loader, this loader will be asked to load the resource:

use Symfony\Component\Config\Loader\LoaderResolver;
use Symfony\Component\Config\Loader\DelegatingLoader;

$loaderResolver = new LoaderResolver(array(new YamlUserLoader($locator)));
$delegatingLoader = new DelegatingLoader($loaderResolver);

$delegatingLoader->load(__DIR__.'/users.yml');
/*
The YamlUserLoader will be used to load this resource,
since it supports files with a "yml" extension
*/

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Config

Caching Based on Resources

When all configuration resources are loaded, you may want to process the configuration
values and combine them all in one file. This file acts like a cache. Its
contents don’t have to be regenerated every time the application runs – only
when the configuration resources are modified.

For example, the Symfony Routing component allows you to load all routes,
and then dump a URL matcher or a URL generator based on these routes. In
this case, when one of the resources is modified (and you are working in a
development environment), the generated file should be invalidated and regenerated.
This can be accomplished by making use of the ConfigCache [http://api.symfony.com/master/Symfony/Component/Config/ConfigCache.html]
class.

The example below shows you how to collect resources, then generate some code
based on the resources that were loaded, and write this code to the cache. The
cache also receives the collection of resources that were used for generating
the code. By looking at the “last modified” timestamp of these resources,
the cache can tell if it is still fresh or that its contents should be regenerated:

use Symfony\Component\Config\ConfigCache;
use Symfony\Component\Config\Resource\FileResource;

$cachePath = __DIR__.'/cache/appUserMatcher.php';

// the second argument indicates whether or not you want to use debug mode
$userMatcherCache = new ConfigCache($cachePath, true);

if (!$userMatcherCache->isFresh()) {
 // fill this with an array of 'users.yml' file paths
 $yamlUserFiles = ...;

 $resources = array();

 foreach ($yamlUserFiles as $yamlUserFile) {
 // see the previous article "Loading resources" to
 // see where $delegatingLoader comes from
 $delegatingLoader->load($yamlUserFile);
 $resources[] = new FileResource($yamlUserFile);
 }

 // the code for the UserMatcher is generated elsewhere
 $code = ...;

 $userMatcherCache->write($code, $resources);
}

// you may want to require the cached code:
require $cachePath;

In debug mode, a .meta file will be created in the same directory as the
cache file itself. This .meta file contains the serialized resources,
whose timestamps are used to determine if the cache is still fresh. When not
in debug mode, the cache is considered to be “fresh” as soon as it exists,
and therefore no .meta file will be generated.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Config

Defining and Processing Configuration Values

Validating Configuration Values

After loading configuration values from all kinds of resources, the values
and their structure can be validated using the “Definition” part of the Config
Component. Configuration values are usually expected to show some kind of
hierarchy. Also, values should be of a certain type, be restricted in number
or be one of a given set of values. For example, the following configuration
(in YAML) shows a clear hierarchy and some validation rules that should be
applied to it (like: “the value for auto_connect must be a boolean value”):

auto_connect: true
default_connection: mysql
connections:
 mysql:
 host: localhost
 driver: mysql
 username: user
 password: pass
 sqlite:
 host: localhost
 driver: sqlite
 memory: true
 username: user
 password: pass

When loading multiple configuration files, it should be possible to merge
and overwrite some values. Other values should not be merged and stay as
they are when first encountered. Also, some keys are only available when
another key has a specific value (in the sample configuration above: the
memory key only makes sense when the driver is sqlite).

Defining a Hierarchy of Configuration Values Using the TreeBuilder

All the rules concerning configuration values can be defined using the
TreeBuilder [http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder/TreeBuilder.html].

A TreeBuilder [http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder/TreeBuilder.html] instance
should be returned from a custom Configuration class which implements the
ConfigurationInterface [http://api.symfony.com/master/Symfony/Component/Config/Definition/ConfigurationInterface.html]:

namespace Acme\DatabaseConfiguration;

use Symfony\Component\Config\Definition\ConfigurationInterface;
use Symfony\Component\Config\Definition\Builder\TreeBuilder;

class DatabaseConfiguration implements ConfigurationInterface
{
 public function getConfigTreeBuilder()
 {
 $treeBuilder = new TreeBuilder();
 $rootNode = $treeBuilder->root('database');

 // ... add node definitions to the root of the tree

 return $treeBuilder;
 }
}

Adding Node Definitions to the Tree

Variable Nodes

A tree contains node definitions which can be laid out in a semantic way.
This means, using indentation and the fluent notation, it is possible to
reflect the real structure of the configuration values:

$rootNode
 ->children()
 ->booleanNode('auto_connect')
 ->defaultTrue()
 ->end()
 ->scalarNode('default_connection')
 ->defaultValue('default')
 ->end()
 ->end()
;

The root node itself is an array node, and has children, like the boolean
node auto_connect and the scalar node default_connection. In general:
after defining a node, a call to end() takes you one step up in the hierarchy.

Node Type

It is possible to validate the type of a provided value by using the appropriate
node definition. Node type are available for:

	scalar

	boolean

	integer (new in 2.2)

	float (new in 2.2)

	enum (new in 2.1)

	array

	variable (no validation)

and are created with node($name, $type) or their associated shortcut
xxxxNode($name) method.

Numeric Node Constraints

2.2 新版功能: The numeric (float and integer) nodes were introduced in Symfony 2.2.

Numeric nodes (float and integer) provide two extra constraints -
min() [http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder.html#method_min] and
max() [http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder.html#method_max] -
allowing to validate the value:

$rootNode
 ->children()
 ->integerNode('positive_value')
 ->min(0)
 ->end()
 ->floatNode('big_value')
 ->max(5E45)
 ->end()
 ->integerNode('value_inside_a_range')
 ->min(-50)->max(50)
 ->end()
 ->end()
;

Enum Nodes

2.1 新版功能: The enum node was introduced in Symfony 2.1.

Enum nodes provide a constraint to match the given input against a set of
values:

$rootNode
 ->children()
 ->enumNode('gender')
 ->values(array('male', 'female'))
 ->end()
 ->end()
;

This will restrict the gender option to be either male or female.

Array Nodes

It is possible to add a deeper level to the hierarchy, by adding an array
node. The array node itself, may have a pre-defined set of variable nodes:

$rootNode
 ->children()
 ->arrayNode('connection')
 ->children()
 ->scalarNode('driver')->end()
 ->scalarNode('host')->end()
 ->scalarNode('username')->end()
 ->scalarNode('password')->end()
 ->end()
 ->end()
 ->end()
;

Or you may define a prototype for each node inside an array node:

$rootNode
 ->children()
 ->arrayNode('connections')
 ->prototype('array')
 ->children()
 ->scalarNode('driver')->end()
 ->scalarNode('host')->end()
 ->scalarNode('username')->end()
 ->scalarNode('password')->end()
 ->end()
 ->end()
 ->end()
 ->end()
;

A prototype can be used to add a definition which may be repeated many times
inside the current node. According to the prototype definition in the example
above, it is possible to have multiple connection arrays (containing a driver,
host, etc.).

Array Node Options

Before defining the children of an array node, you can provide options like:

	useAttributeAsKey()

	Provide the name of a child node, whose value should be used as the key in the resulting array.

	requiresAtLeastOneElement()

	There should be at least one element in the array (works only when isRequired() is also
called).

	addDefaultsIfNotSet()

	If any child nodes have default values, use them if explicit values haven’t been provided.

An example of this:

$rootNode
 ->children()
 ->arrayNode('parameters')
 ->isRequired()
 ->requiresAtLeastOneElement()
 ->useAttributeAsKey('name')
 ->prototype('array')
 ->children()
 ->scalarNode('value')->isRequired()->end()
 ->end()
 ->end()
 ->end()
 ->end()
;

In YAML, the configuration might look like this:

database:
 parameters:
 param1: { value: param1val }

In XML, each parameters node would have a name attribute (along with
value), which would be removed and used as the key for that element in
the final array. The useAttributeAsKey is useful for normalizing how
arrays are specified between different formats like XML and YAML.

Default and required Values

For all node types, it is possible to define default values and replacement
values in case a node
has a certain value:

	defaultValue()

	Set a default value

	isRequired()

	Must be defined (but may be empty)

	cannotBeEmpty()

	May not contain an empty value

	default*()

	(null, true, false), shortcut for defaultValue()

	treat*Like()

	(null, true, false), provide a replacement value in case the value is *.

$rootNode
 ->children()
 ->arrayNode('connection')
 ->children()
 ->scalarNode('driver')
 ->isRequired()
 ->cannotBeEmpty()
 ->end()
 ->scalarNode('host')
 ->defaultValue('localhost')
 ->end()
 ->scalarNode('username')->end()
 ->scalarNode('password')->end()
 ->booleanNode('memory')
 ->defaultFalse()
 ->end()
 ->end()
 ->end()
 ->arrayNode('settings')
 ->addDefaultsIfNotSet()
 ->children()
 ->scalarNode('name')
 ->isRequired()
 ->cannotBeEmpty()
 ->defaultValue('value')
 ->end()
 ->end()
 ->end()
 ->end()
;

Documenting the Option

All options can be documented using the
info() [http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder/NodeDefinition.html#method_info]
method.

The info will be printed as a comment when dumping the configuration tree.

Optional Sections

2.2 新版功能: The canBeEnabled and canBeDisabled methods were introduced in
Symfony 2.2.

If you have entire sections which are optional and can be enabled/disabled,
you can take advantage of the shortcut
canBeEnabled() [http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder/ArrayNodeDefinition.html#method_canBeEnabled] and
canBeDisabled() [http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder/ArrayNodeDefinition.html#method_canBeDisabled] methods:

$arrayNode
 ->canBeEnabled()
;

// is equivalent to

$arrayNode
 ->treatFalseLike(array('enabled' => false))
 ->treatTrueLike(array('enabled' => true))
 ->treatNullLike(array('enabled' => true))
 ->children()
 ->booleanNode('enabled')
 ->defaultFalse()
;

The canBeDisabled method looks about the same except that the section
would be enabled by default.

Merging Options

Extra options concerning the merge process may be provided. For arrays:

	performNoDeepMerging()

	When the value is also defined in a second configuration array, don’t
try to merge an array, but overwrite it entirely

For all nodes:

	cannotBeOverwritten()

	don’t let other configuration arrays overwrite an existing value for this node

Appending Sections

If you have a complex configuration to validate then the tree can grow to
be large and you may want to split it up into sections. You can do this by
making a section a separate node and then appending it into the main tree
with append():

public function getConfigTreeBuilder()
{
 $treeBuilder = new TreeBuilder();
 $rootNode = $treeBuilder->root('database');

 $rootNode
 ->children()
 ->arrayNode('connection')
 ->children()
 ->scalarNode('driver')
 ->isRequired()
 ->cannotBeEmpty()
 ->end()
 ->scalarNode('host')
 ->defaultValue('localhost')
 ->end()
 ->scalarNode('username')->end()
 ->scalarNode('password')->end()
 ->booleanNode('memory')
 ->defaultFalse()
 ->end()
 ->end()
 ->append($this->addParametersNode())
 ->end()
 ->end()
 ;

 return $treeBuilder;
}

public function addParametersNode()
{
 $builder = new TreeBuilder();
 $node = $builder->root('parameters');

 $node
 ->isRequired()
 ->requiresAtLeastOneElement()
 ->useAttributeAsKey('name')
 ->prototype('array')
 ->children()
 ->scalarNode('value')->isRequired()->end()
 ->end()
 ->end()
 ;

 return $node;
}

This is also useful to help you avoid repeating yourself if you have sections
of the config that are repeated in different places.

Normalization

When the config files are processed they are first normalized, then merged
and finally the tree is used to validate the resulting array. The normalization
process is used to remove some of the differences that result from different
configuration formats, mainly the differences between YAML and XML.

The separator used in keys is typically _ in YAML and - in XML. For
example, auto_connect in YAML and auto-connect in XML.
The normalization would make both of these auto_connect.

警告

The target key will not be altered if it’s mixed like
foo-bar_moo or if it already exists.

Another difference between YAML and XML is in the way arrays of values may
be represented. In YAML you may have:

twig:
 extensions: ['twig.extension.foo', 'twig.extension.bar']

and in XML:

<twig:config>
 <twig:extension>twig.extension.foo</twig:extension>
 <twig:extension>twig.extension.bar</twig:extension>
</twig:config>

This difference can be removed in normalization by pluralizing the key used
in XML. You can specify that you want a key to be pluralized in this way with
fixXmlConfig():

$rootNode
 ->fixXmlConfig('extension')
 ->children()
 ->arrayNode('extensions')
 ->prototype('scalar')->end()
 ->end()
 ->end()
;

If it is an irregular pluralization you can specify the plural to use as
a second argument:

$rootNode
 ->fixXmlConfig('child', 'children')
 ->children()
 ->arrayNode('children')
 // ...
 ->end()
 ->end()
;

As well as fixing this, fixXmlConfig ensures that single XML elements
are still turned into an array. So you may have:

<connection>default</connection>
<connection>extra</connection>

and sometimes only:

<connection>default</connection>

By default connection would be an array in the first case and a string
in the second making it difficult to validate. You can ensure it is always
an array with fixXmlConfig.

You can further control the normalization process if you need to. For example,
you may want to allow a string to be set and used as a particular key or several
keys to be set explicitly. So that, if everything apart from name is optional
in this config:

connection:
 name: my_mysql_connection
 host: localhost
 driver: mysql
 username: user
 password: pass

you can allow the following as well:

connection: my_mysql_connection

By changing a string value into an associative array with name as the key:

$rootNode
 ->children()
 ->arrayNode('connection')
 ->beforeNormalization()
 ->ifString()
 ->then(function ($v) { return array('name' => $v); })
 ->end()
 ->children()
 ->scalarNode('name')->isRequired()
 // ...
 ->end()
 ->end()
 ->end()
;

Validation Rules

More advanced validation rules can be provided using the
ExprBuilder [http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder/ExprBuilder.html]. This
builder implements a fluent interface for a well-known control structure.
The builder is used for adding advanced validation rules to node definitions, like:

$rootNode
 ->children()
 ->arrayNode('connection')
 ->children()
 ->scalarNode('driver')
 ->isRequired()
 ->validate()
 ->ifNotInArray(array('mysql', 'sqlite', 'mssql'))
 ->thenInvalid('Invalid database driver "%s"')
 ->end()
 ->end()
 ->end()
 ->end()
 ->end()
;

A validation rule always has an “if” part. You can specify this part in the
following ways:

	ifTrue()

	ifString()

	ifNull()

	ifArray()

	ifInArray()

	ifNotInArray()

	always()

A validation rule also requires a “then” part:

	then()

	thenEmptyArray()

	thenInvalid()

	thenUnset()

Usually, “then” is a closure. Its return value will be used as a new value
for the node, instead
of the node’s original value.

Processing Configuration Values

The Processor [http://api.symfony.com/master/Symfony/Component/Config/Definition/Processor.html] uses the tree
as it was built using the TreeBuilder [http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder/TreeBuilder.html]
to process multiple arrays of configuration values that should be merged.
If any value is not of the expected type, is mandatory and yet undefined,
or could not be validated in some other way, an exception will be thrown.
Otherwise the result is a clean array of configuration values:

use Symfony\Component\Yaml\Yaml;
use Symfony\Component\Config\Definition\Processor;
use Acme\DatabaseConfiguration;

$config1 = Yaml::parse(file_get_contents(__DIR__.'/src/Matthias/config/config.yml'));
$config2 = Yaml::parse(file_get_contents(__DIR__.'/src/Matthias/config/config_extra.yml'));

$configs = array($config1, $config2);

$processor = new Processor();
$configuration = new DatabaseConfiguration();
$processedConfiguration = $processor->processConfiguration(
 $configuration,
 $configs
);

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

Console

	The Console Component
	Installation

	Creating a basic Command

	Using Command Arguments

	Using Command Options

	Console Helpers

	Testing Commands

	Calling an Existing Command

	Learn More!

	Using Console Commands, Shortcuts and Built-in Commands
	Built-in Commands

	Global Options

	Shortcut Syntax

	Building a single Command Application

	Understanding how Console Arguments Are Handled

	Using Events
	The ConsoleEvents::COMMAND Event

	The ConsoleEvents::TERMINATE Event

	The ConsoleEvents::EXCEPTION Event

	The Console Helpers

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Console

The Console Component

The Console component eases the creation of beautiful and testable command
line interfaces.

The Console component allows you to create command-line commands. Your console
commands can be used for any recurring task, such as cronjobs, imports, or
other batch jobs.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/console on Packagist [https://packagist.org/packages/symfony/console]);

	Use the official Git repository (https://github.com/symfony/Console).

注解

Windows does not support ANSI colors by default so the Console component detects and
disables colors where Windows does not have support. However, if Windows is not
configured with an ANSI driver and your console commands invoke other scripts which
emit ANSI color sequences, they will be shown as raw escape characters.

To enable ANSI color support for Windows, please install ANSICON [https://github.com/adoxa/ansicon/releases].

Creating a basic Command

To make a console command that greets you from the command line, create GreetCommand.php
and add the following to it:

namespace Acme\Console\Command;

use Symfony\Component\Console\Command\Command;
use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Output\OutputInterface;

class GreetCommand extends Command
{
 protected function configure()
 {
 $this
 ->setName('demo:greet')
 ->setDescription('Greet someone')
 ->addArgument(
 'name',
 InputArgument::OPTIONAL,
 'Who do you want to greet?'
)
 ->addOption(
 'yell',
 null,
 InputOption::VALUE_NONE,
 'If set, the task will yell in uppercase letters'
)
 ;
 }

 protected function execute(InputInterface $input, OutputInterface $output)
 {
 $name = $input->getArgument('name');
 if ($name) {
 $text = 'Hello '.$name;
 } else {
 $text = 'Hello';
 }

 if ($input->getOption('yell')) {
 $text = strtoupper($text);
 }

 $output->writeln($text);
 }
}

You also need to create the file to run at the command line which creates
an Application and adds commands to it:

#!/usr/bin/env php
<?php
// application.php

require __DIR__.'/vendor/autoload.php';

use Acme\Console\Command\GreetCommand;
use Symfony\Component\Console\Application;

$application = new Application();
$application->add(new GreetCommand);
$application->run();

Test the new console command by running the following

$ php application.php demo:greet Fabien

This will print the following to the command line:

Hello Fabien

You can also use the --yell option to make everything uppercase:

$ php application.php demo:greet Fabien --yell

This prints:

HELLO FABIEN

Coloring the Output

Whenever you output text, you can surround the text with tags to color its
output. For example:

// green text
$output->writeln('<info>foo</info>');

// yellow text
$output->writeln('<comment>foo</comment>');

// black text on a cyan background
$output->writeln('<question>foo</question>');

// white text on a red background
$output->writeln('<error>foo</error>');

It is possible to define your own styles using the class
OutputFormatterStyle [http://api.symfony.com/master/Symfony/Component/Console/Formatter/OutputFormatterStyle.html]:

use Symfony\Component\Console\Formatter\OutputFormatterStyle;

// ...
$style = new OutputFormatterStyle('red', 'yellow', array('bold', 'blink'));
$output->getFormatter()->setStyle('fire', $style);
$output->writeln('<fire>foo</fire>');

Available foreground and background colors are: black, red, green,
yellow, blue, magenta, cyan and white.

And available options are: bold, underscore, blink, reverse and conceal.

You can also set these colors and options inside the tagname:

// green text
$output->writeln('<fg=green>foo</fg=green>');

// black text on a cyan background
$output->writeln('<fg=black;bg=cyan>foo</fg=black;bg=cyan>');

// bold text on a yellow background
$output->writeln('<bg=yellow;options=bold>foo</bg=yellow;options=bold>');

Verbosity Levels

2.3 新版功能: The VERBOSITY_VERY_VERBOSE and VERBOSITY_DEBUG constants were introduced
in version 2.3

The console has 5 levels of verbosity. These are defined in the
OutputInterface [http://api.symfony.com/master/Symfony/Component/Console/Output/OutputInterface.html]:

	Mode
	Value

	OutputInterface::VERBOSITY_QUIET
	Do not output any messages

	OutputInterface::VERBOSITY_NORMAL
	The default verbosity level

	OutputInterface::VERBOSITY_VERBOSE
	Increased verbosity of messages

	OutputInterface::VERBOSITY_VERY_VERBOSE
	Informative non essential messages

	OutputInterface::VERBOSITY_DEBUG
	Debug messages

You can specify the quiet verbosity level with the --quiet or -q
option. The --verbose or -v option is used when you want an increased
level of verbosity.

小技巧

The full exception stacktrace is printed if the VERBOSITY_VERBOSE
level or above is used.

It is possible to print a message in a command for only a specific verbosity
level. For example:

if (OutputInterface::VERBOSITY_VERBOSE <= $output->getVerbosity()) {
 $output->writeln(...);
}

When the quiet level is used, all output is suppressed as the default
write() [http://api.symfony.com/master/Symfony/Component/Console/Output/Output.html#method_write] method returns
without actually printing.

Using Command Arguments

The most interesting part of the commands are the arguments and options that
you can make available. Arguments are the strings - separated by spaces - that
come after the command name itself. They are ordered, and can be optional
or required. For example, add an optional last_name argument to the command
and make the name argument required:

$this
 // ...
 ->addArgument(
 'name',
 InputArgument::REQUIRED,
 'Who do you want to greet?'
)
 ->addArgument(
 'last_name',
 InputArgument::OPTIONAL,
 'Your last name?'
);

You now have access to a last_name argument in your command:

if ($lastName = $input->getArgument('last_name')) {
 $text .= ' '.$lastName;
}

The command can now be used in either of the following ways:

$ php application.php demo:greet Fabien
$ php application.php demo:greet Fabien Potencier

It is also possible to let an argument take a list of values (imagine you want
to greet all your friends). For this it must be specified at the end of the
argument list:

$this
 // ...
 ->addArgument(
 'names',
 InputArgument::IS_ARRAY,
 'Who do you want to greet (separate multiple names with a space)?'
);

To use this, just specify as many names as you want:

$ php application.php demo:greet Fabien Ryan Bernhard

You can access the names argument as an array:

if ($names = $input->getArgument('names')) {
 $text .= ' '.implode(', ', $names);
}

There are 3 argument variants you can use:

	Mode
	Value

	InputArgument::REQUIRED
	The argument is required

	InputArgument::OPTIONAL
	The argument is optional and therefore can be omitted

	InputArgument::IS_ARRAY
	The argument can contain an indefinite number of arguments and must be used at the end of the argument list

You can combine IS_ARRAY with REQUIRED and OPTIONAL like this:

$this
 // ...
 ->addArgument(
 'names',
 InputArgument::IS_ARRAY | InputArgument::REQUIRED,
 'Who do you want to greet (separate multiple names with a space)?'
);

Using Command Options

Unlike arguments, options are not ordered (meaning you can specify them in any
order) and are specified with two dashes (e.g. --yell - you can also
declare a one-letter shortcut that you can call with a single dash like
-y). Options are always optional, and can be setup to accept a value
(e.g. --dir=src) or simply as a boolean flag without a value (e.g.
--yell).

小技巧

It is also possible to make an option optionally accept a value (so that
--yell, --yell=loud or --yell loud work). Options can also be configured to
accept an array of values.

For example, add a new option to the command that can be used to specify
how many times in a row the message should be printed:

$this
 // ...
 ->addOption(
 'iterations',
 null,
 InputOption::VALUE_REQUIRED,
 'How many times should the message be printed?',
 1
);

Next, use this in the command to print the message multiple times:

for ($i = 0; $i < $input->getOption('iterations'); $i++) {
 $output->writeln($text);
}

Now, when you run the task, you can optionally specify a --iterations
flag:

$ php application.php demo:greet Fabien
$ php application.php demo:greet Fabien --iterations=5

The first example will only print once, since iterations is empty and
defaults to 1 (the last argument of addOption). The second example
will print five times.

Recall that options don’t care about their order. So, either of the following
will work:

$ php application.php demo:greet Fabien --iterations=5 --yell
$ php application.php demo:greet Fabien --yell --iterations=5

There are 4 option variants you can use:

	Option
	Value

	InputOption::VALUE_IS_ARRAY
	This option accepts multiple values (e.g. --dir=/foo --dir=/bar)

	InputOption::VALUE_NONE
	Do not accept input for this option (e.g. --yell)

	InputOption::VALUE_REQUIRED
	This value is required (e.g. --iterations=5), the option itself is still optional

	InputOption::VALUE_OPTIONAL
	This option may or may not have a value (e.g. --yell or --yell=loud)

You can combine VALUE_IS_ARRAY with VALUE_REQUIRED or VALUE_OPTIONAL like this:

$this
 // ...
 ->addOption(
 'colors',
 null,
 InputOption::VALUE_REQUIRED | InputOption::VALUE_IS_ARRAY,
 'Which colors do you like?',
 array('blue', 'red')
);

Console Helpers

The console component also contains a set of “helpers” - different small
tools capable of helping you with different tasks:

	Dialog Helper: interactively ask the user for information

	Formatter Helper: customize the output colorization

	Progress Helper: shows a progress bar

	Table Helper: displays tabular data as a table

Testing Commands

Symfony provides several tools to help you test your commands. The most
useful one is the CommandTester [http://api.symfony.com/master/Symfony/Component/Console/Tester/CommandTester.html]
class. It uses special input and output classes to ease testing without a real
console:

use Acme\Console\Command\GreetCommand;
use Symfony\Component\Console\Application;
use Symfony\Component\Console\Tester\CommandTester;

class ListCommandTest extends \PHPUnit_Framework_TestCase
{
 public function testExecute()
 {
 $application = new Application();
 $application->add(new GreetCommand());

 $command = $application->find('demo:greet');
 $commandTester = new CommandTester($command);
 $commandTester->execute(array('command' => $command->getName()));

 $this->assertRegExp('/.../', $commandTester->getDisplay());

 // ...
 }
}

The getDisplay() [http://api.symfony.com/master/Symfony/Component/Console/Tester/CommandTester.html#method_getDisplay]
method returns what would have been displayed during a normal call from the
console.

You can test sending arguments and options to the command by passing them
as an array to the execute() [http://api.symfony.com/master/Symfony/Component/Console/Tester/CommandTester.html#method_execute]
method:

use Acme\Console\Command\GreetCommand;
use Symfony\Component\Console\Application;
use Symfony\Component\Console\Tester\CommandTester;

class ListCommandTest extends \PHPUnit_Framework_TestCase
{
 // ...

 public function testNameIsOutput()
 {
 $application = new Application();
 $application->add(new GreetCommand());

 $command = $application->find('demo:greet');
 $commandTester = new CommandTester($command);
 $commandTester->execute(array(
 'command' => $command->getName(),
 'name' => 'Fabien',
 '--iterations' => 5,
));

 $this->assertRegExp('/Fabien/', $commandTester->getDisplay());
 }
}

小技巧

You can also test a whole console application by using
ApplicationTester [http://api.symfony.com/master/Symfony/Component/Console/Tester/ApplicationTester.html].

Calling an Existing Command

If a command depends on another one being run before it, instead of asking the
user to remember the order of execution, you can call it directly yourself.
This is also useful if you want to create a “meta” command that just runs a
bunch of other commands (for instance, all commands that need to be run when
the project’s code has changed on the production servers: clearing the cache,
generating Doctrine2 proxies, dumping Assetic assets, ...).

Calling a command from another one is straightforward:

protected function execute(InputInterface $input, OutputInterface $output)
{
 $command = $this->getApplication()->find('demo:greet');

 $arguments = array(
 'command' => 'demo:greet',
 'name' => 'Fabien',
 '--yell' => true,
);

 $input = new ArrayInput($arguments);
 $returnCode = $command->run($input, $output);

 // ...
}

First, you find() [http://api.symfony.com/master/Symfony/Component/Console/Application.html#method_find] the
command you want to execute by passing the command name.

Then, you need to create a new
ArrayInput [http://api.symfony.com/master/Symfony/Component/Console/Input/ArrayInput.html] with the arguments and
options you want to pass to the command.

Eventually, calling the run() method actually executes the command and
returns the returned code from the command (return value from command’s
execute() method).

注解

Most of the time, calling a command from code that is not executed on the
command line is not a good idea for several reasons. First, the command’s
output is optimized for the console. But more important, you can think of
a command as being like a controller; it should use the model to do
something and display feedback to the user. So, instead of calling a
command from the Web, refactor your code and move the logic to a new
class.

Learn More!

	Using Console Commands, Shortcuts and Built-in Commands

	Building a single Command Application

	Using Events

	Understanding how Console Arguments Are Handled

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Console

Using Console Commands, Shortcuts and Built-in Commands

In addition to the options you specify for your commands, there are some
built-in options as well as a couple of built-in commands for the Console component.

注解

These examples assume you have added a file application.php to run at
the cli:

#!/usr/bin/env php
<?php
// application.php

use Symfony\Component\Console\Application;

$application = new Application();
// ...
$application->run();

Built-in Commands

There is a built-in command list which outputs all the standard options
and the registered commands:

$ php application.php list

You can get the same output by not running any command as well

$ php application.php

The help command lists the help information for the specified command. For
example, to get the help for the list command:

$ php application.php help list

Running help without specifying a command will list the global options:

$ php application.php help

Global Options

You can get help information for any command with the --help option. To
get help for the list command:

$ php application.php list --help
$ php application.php list -h

You can suppress output with:

$ php application.php list --quiet
$ php application.php list -q

You can get more verbose messages (if this is supported for a command)
with:

$ php application.php list --verbose
$ php application.php list -v

The verbose flag can optionally take a value between 1 (default) and 3 to
output even more verbose messages:

$ php application.php list --verbose=2
$ php application.php list -vv
$ php application.php list --verbose=3
$ php application.php list -vvv

If you set the optional arguments to give your application a name and version:

$application = new Application('Acme Console Application', '1.2');

then you can use:

$ php application.php list --version
$ php application.php list -V

to get this information output:

Acme Console Application version 1.2

If you do not provide both arguments then it will just output:

console tool

You can force turning on ANSI output coloring with:

$ php application.php list --ansi

or turn it off with:

$ php application.php list --no-ansi

You can suppress any interactive questions from the command you are running with:

$ php application.php list --no-interaction
$ php application.php list -n

Shortcut Syntax

You do not have to type out the full command names. You can just type the
shortest unambiguous name to run a command. So if there are non-clashing
commands, then you can run help like this:

$ php application.php h

If you have commands using : to namespace commands then you just have
to type the shortest unambiguous text for each part. If you have created the
demo:greet as shown in The Console Component then you
can run it with:

$ php application.php d:g Fabien

If you enter a short command that’s ambiguous (i.e. there are more than one
command that match), then no command will be run and some suggestions of
the possible commands to choose from will be output.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Console

Building a single Command Application

When building a command line tool, you may not need to provide several commands.
In such case, having to pass the command name each time is tedious. Fortunately,
it is possible to remove this need by extending the application:

namespace Acme\Tool;

use Symfony\Component\Console\Application;
use Symfony\Component\Console\Input\InputInterface;

class MyApplication extends Application
{
 /**
 * Gets the name of the command based on input.
 *
 * @param InputInterface $input The input interface
 *
 * @return string The command name
 */
 protected function getCommandName(InputInterface $input)
 {
 // This should return the name of your command.
 return 'my_command';
 }

 /**
 * Gets the default commands that should always be available.
 *
 * @return array An array of default Command instances
 */
 protected function getDefaultCommands()
 {
 // Keep the core default commands to have the HelpCommand
 // which is used when using the --help option
 $defaultCommands = parent::getDefaultCommands();

 $defaultCommands[] = new MyCommand();

 return $defaultCommands;
 }

 /**
 * Overridden so that the application doesn't expect the command
 * name to be the first argument.
 */
 public function getDefinition()
 {
 $inputDefinition = parent::getDefinition();
 // clear out the normal first argument, which is the command name
 $inputDefinition->setArguments();

 return $inputDefinition;
 }
}

When calling your console script, the command MyCommand will then always
be used, without having to pass its name.

You can also simplify how you execute the application:

#!/usr/bin/env php
<?php
// command.php

use Acme\Tool\MyApplication;

$application = new MyApplication();
$application->run();

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Console

Understanding how Console Arguments Are Handled

It can be difficult to understand the way arguments are handled by the console application.
The Symfony Console application, like many other CLI utility tools, follows the behavior
described in the docopt [http://docopt.org/] standards.

Have a look at the following command that has three options:

namespace Acme\Console\Command;

use Symfony\Component\Console\Command\Command;
use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Output\OutputInterface;

class DemoArgsCommand extends Command
{
 protected function configure()
 {
 $this
 ->setName('demo:args')
 ->setDescription('Describe args behaviors')
 ->setDefinition(
 new InputDefinition(array(
 new InputOption('foo', 'f'),
 new InputOption('bar', 'b', InputOption::VALUE_REQUIRED),
 new InputOption('cat', 'c', InputOption::VALUE_OPTIONAL),
))
);
 }

 protected function execute(InputInterface $input, OutputInterface $output)
 {
 // ...
 }
}

Since the foo option doesn’t accept a value, it will be either false
(when it is not passed to the command) or true (when --foo was passed
by the user). The value of the bar option (and its b shortcut respectively)
is required. It can be separated from the option name either by spaces or
= characters. The cat option (and its c shortcut) behaves similar
except that it doesn’t require a value. Have a look at the following table
to get an overview of the possible ways to pass options:

	Input
	foo
	bar
	cat

	--bar=Hello
	false
	"Hello"
	null

	--bar Hello
	false
	"Hello"
	null

	-b=Hello
	false
	"Hello"
	null

	-b Hello
	false
	"Hello"
	null

	-bHello
	false
	"Hello"
	null

	-fcWorld -b Hello
	true
	"Hello"
	"World"

	-cfWorld -b Hello
	false
	"Hello"
	"fWorld"

	-cbWorld
	false
	null
	"bWorld"

Things get a little bit more tricky when the command also accepts an optional
argument:

// ...

new InputDefinition(array(
 // ...
 new InputArgument('arg', InputArgument::OPTIONAL),
));

You might have to use the special -- separator to separate options from
arguments. Have a look at the fifth example in the following table where it
is used to tell the command that World is the value for arg and not
the value of the optional cat option:

	Input
	bar
	cat
	arg

	--bar Hello
	"Hello"
	null
	null

	--bar Hello World
	"Hello"
	null
	"World"

	--bar "Hello World"
	"Hello World"
	null
	null

	--bar Hello --cat World
	"Hello"
	"World"
	null

	--bar Hello --cat -- World
	"Hello"
	null
	"World"

	-b Hello -c World
	"Hello"
	"World"
	null

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Console

Using Events

2.3 新版功能: Console events were introduced in Symfony 2.3.

The Application class of the Console component allows you to optionally hook
into the lifecycle of a console application via events. Instead of reinventing
the wheel, it uses the Symfony EventDispatcher component to do the work:

use Symfony\Component\Console\Application;
use Symfony\Component\EventDispatcher\EventDispatcher;

$dispatcher = new EventDispatcher();

$application = new Application();
$application->setDispatcher($dispatcher);
$application->run();

The ConsoleEvents::COMMAND Event

Typical Purposes: Doing something before any command is run (like logging
which command is going to be executed), or displaying something about the event
to be executed.

Just before executing any command, the ConsoleEvents::COMMAND event is
dispatched. Listeners receive a
ConsoleCommandEvent [http://api.symfony.com/master/Symfony/Component/Console/Event/ConsoleCommandEvent.html] event:

use Symfony\Component\Console\Event\ConsoleCommandEvent;
use Symfony\Component\Console\ConsoleEvents;

$dispatcher->addListener(ConsoleEvents::COMMAND, function (ConsoleCommandEvent $event) {
 // get the input instance
 $input = $event->getInput();

 // get the output instance
 $output = $event->getOutput();

 // get the command to be executed
 $command = $event->getCommand();

 // write something about the command
 $output->writeln(sprintf('Before running command <info>%s</info>', $command->getName()));

 // get the application
 $application = $command->getApplication();
});

The ConsoleEvents::TERMINATE Event

Typical Purposes: To perform some cleanup actions after the command has
been executed.

After the command has been executed, the ConsoleEvents::TERMINATE event is
dispatched. It can be used to do any actions that need to be executed for all
commands or to cleanup what you initiated in a ConsoleEvents::COMMAND
listener (like sending logs, closing a database connection, sending emails,
...). A listener might also change the exit code.

Listeners receive a
ConsoleTerminateEvent [http://api.symfony.com/master/Symfony/Component/Console/Event/ConsoleTerminateEvent.html] event:

use Symfony\Component\Console\Event\ConsoleTerminateEvent;
use Symfony\Component\Console\ConsoleEvents;

$dispatcher->addListener(ConsoleEvents::TERMINATE, function (ConsoleTerminateEvent $event) {
 // get the output
 $output = $event->getOutput();

 // get the command that has been executed
 $command = $event->getCommand();

 // display something
 $output->writeln(sprintf('After running command <info>%s</info>', $command->getName()));

 // change the exit code
 $event->setExitCode(128);
});

小技巧

This event is also dispatched when an exception is thrown by the command.
It is then dispatched just before the ConsoleEvents::EXCEPTION event.
The exit code received in this case is the exception code.

The ConsoleEvents::EXCEPTION Event

Typical Purposes: Handle exceptions thrown during the execution of a
command.

Whenever an exception is thrown by a command, the ConsoleEvents::EXCEPTION
event is dispatched. A listener can wrap or change the exception or do
anything useful before the exception is thrown by the application.

Listeners receive a
ConsoleExceptionEvent [http://api.symfony.com/master/Symfony/Component/Console/Event/ConsoleExceptionEvent.html] event:

use Symfony\Component\Console\Event\ConsoleExceptionEvent;
use Symfony\Component\Console\ConsoleEvents;

$dispatcher->addListener(ConsoleEvents::EXCEPTION, function (ConsoleExceptionEvent $event) {
 $output = $event->getOutput();

 $command = $event->getCommand();

 $output->writeln(sprintf('Oops, exception thrown while running command <info>%s</info>', $command->getName()));

 // get the current exit code (the exception code or the exit code set by a ConsoleEvents::TERMINATE event)
 $exitCode = $event->getExitCode();

 // change the exception to another one
 $event->setException(new \LogicException('Caught exception', $exitCode, $event->getException()));
});

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Console

The Console Helpers

The Console component comes with some useful helpers. These helpers contain
function to ease some common tasks.

	Dialog Helper

	Formatter Helper

	Progress Helper

	Table Helper

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Console

 	The Console Helpers

Dialog Helper

The DialogHelper [http://api.symfony.com/master/Symfony/Component/Console/Helper/DialogHelper.html] provides
functions to ask the user for more information. It is included in the default
helper set, which you can get by calling
getHelperSet() [http://api.symfony.com/master/Symfony/Component/Console/Command/Command.html#method_getHelperSet]:

$dialog = $this->getHelper('dialog');

All the methods inside the Dialog Helper have an
OutputInterface [http://api.symfony.com/master/Symfony/Component/Console/Output/OutputInterface.html] as the first
argument, the question as the second argument and the default value as the last
argument.

Asking the User for Confirmation

Suppose you want to confirm an action before actually executing it. Add
the following to your command:

// ...
if (!$dialog->askConfirmation(
 $output,
 '<question>Continue with this action?</question>',
 false
)) {
 return;
}

In this case, the user will be asked “Continue with this action?”, and will
return true if the user answers with y or false if the user answers
with n. The third argument to
askConfirmation() [http://api.symfony.com/master/Symfony/Component/Console/Helper/DialogHelper.html#method_askConfirmation]
is the default value to return if the user doesn’t enter any input. Any other
input will ask the same question again.

Asking the User for Information

You can also ask question with more than a simple yes/no answer. For instance,
if you want to know a bundle name, you can add this to your command:

// ...
$bundle = $dialog->ask(
 $output,
 'Please enter the name of the bundle',
 'AcmeDemoBundle'
);

The user will be asked “Please enter the name of the bundle”. They can type
some name which will be returned by the
ask() [http://api.symfony.com/master/Symfony/Component/Console/Helper/DialogHelper.html#method_ask] method.
If they leave it empty, the default value (AcmeDemoBundle here) is returned.

Autocompletion

2.2 新版功能: Autocompletion for questions was introduced in Symfony 2.2.

You can also specify an array of potential answers for a given question. These
will be autocompleted as the user types:

$dialog = $this->getHelper('dialog');
$bundleNames = array('AcmeDemoBundle', 'AcmeBlogBundle', 'AcmeStoreBundle');
$name = $dialog->ask(
 $output,
 'Please enter the name of a bundle',
 'FooBundle',
 $bundleNames
);

Hiding the User’s Response

2.2 新版功能: The askHiddenResponse method was introduced in Symfony 2.2.

You can also ask a question and hide the response. This is particularly
convenient for passwords:

$dialog = $this->getHelper('dialog');
$password = $dialog->askHiddenResponse(
 $output,
 'What is the database password?',
 false
);

警告

When you ask for a hidden response, Symfony will use either a binary, change
stty mode or use another trick to hide the response. If none is available,
it will fallback and allow the response to be visible unless you pass false
as the third argument like in the example above. In this case, a RuntimeException
would be thrown.

Validating the Answer

You can even validate the answer. For instance, in the last example you asked
for the bundle name. Following the Symfony naming conventions, it should
be suffixed with Bundle. You can validate that by using the
askAndValidate() [http://api.symfony.com/master/Symfony/Component/Console/Helper/DialogHelper.html#method_askAndValidate]
method:

// ...
$bundle = $dialog->askAndValidate(
 $output,
 'Please enter the name of the bundle',
 function ($answer) {
 if ('Bundle' !== substr($answer, -6)) {
 throw new \RuntimeException(
 'The name of the bundle should be suffixed with \'Bundle\''
);
 }

 return $answer;
 },
 false,
 'AcmeDemoBundle'
);

This methods has 2 new arguments, the full signature is:

askAndValidate(
 OutputInterface $output,
 string|array $question,
 callback $validator,
 integer $attempts = false,
 string $default = null,
 array $autocomplete = null
)

The $validator is a callback which handles the validation. It should
throw an exception if there is something wrong. The exception message is displayed
in the console, so it is a good practice to put some useful information in it. The callback
function should also return the value of the user’s input if the validation was successful.

You can set the max number of times to ask in the $attempts argument.
If you reach this max number it will use the default value.
Using false means the amount of attempts is infinite.
The user will be asked as long as they provide an invalid answer and will only
be able to proceed if their input is valid.

Validating a Hidden Response

2.2 新版功能: The askHiddenResponseAndValidate method was introduced in Symfony 2.2.

You can also ask and validate a hidden response:

$dialog = $this->getHelper('dialog');

$validator = function ($value) {
 if ('' === trim($value)) {
 throw new \Exception('The password can not be empty');
 }

 return $value;
};

$password = $dialog->askHiddenResponseAndValidate(
 $output,
 'Please enter your password',
 $validator,
 20,
 false
);

If you want to allow the response to be visible if it cannot be hidden for
some reason, pass true as the fifth argument.

Let the User Choose from a List of Answers

2.2 新版功能: The select() [http://api.symfony.com/master/Symfony/Component/Console/Helper/DialogHelper.html#method_select] method
was introduced in Symfony 2.2.

If you have a predefined set of answers the user can choose from, you
could use the ask method described above or, to make sure the user
provided a correct answer, the askAndValidate method. Both have
the disadvantage that you need to handle incorrect values yourself.

Instead, you can use the
select() [http://api.symfony.com/master/Symfony/Component/Console/Helper/DialogHelper.html#method_select]
method, which makes sure that the user can only enter a valid string
from a predefined list:

$dialog = $this->getHelper('dialog');
$colors = array('red', 'blue', 'yellow');

$color = $dialog->select(
 $output,
 'Please select your favorite color (default to red)',
 $colors,
 0
);
$output->writeln('You have just selected: ' . $colors[$color]);

// ... do something with the color

The option which should be selected by default is provided with the fourth
argument. The default is null, which means that no option is the default one.

If the user enters an invalid string, an error message is shown and the user
is asked to provide the answer another time, until they enter a valid string
or the maximum attempts is reached (which you can define in the fifth
argument). The default value for the attempts is false, which means infinite
attempts. You can define your own error message in the sixth argument.

2.3 新版功能: Multiselect support was introduced in Symfony 2.3.

Multiple Choices

Sometimes, multiple answers can be given. The DialogHelper provides this
feature using comma separated values. This is disabled by default, to enable
this set the seventh argument to true:

// ...

$selected = $dialog->select(
 $output,
 'Please select your favorite color (default to red)',
 $colors,
 0,
 false,
 'Value "%s" is invalid',
 true // enable multiselect
);

$selectedColors = array_map(function ($c) use ($colors) {
 return $colors[$c];
}, $selected);

$output->writeln(
 'You have just selected: ' . implode(', ', $selectedColors)
);

Now, when the user enters 1,2, the result will be:
You have just selected: blue, yellow.

Testing a Command which Expects Input

If you want to write a unit test for a command which expects some kind of input
from the command line, you need to overwrite the HelperSet used by the command:

use Symfony\Component\Console\Application;
use Symfony\Component\Console\Helper\DialogHelper;
use Symfony\Component\Console\Helper\HelperSet;
use Symfony\Component\Console\Tester\CommandTester;

// ...
public function testExecute()
{
 // ...
 $application = new Application();
 $application->add(new MyCommand());
 $command = $application->find('my:command:name');
 $commandTester = new CommandTester($command);

 $dialog = $command->getHelper('dialog');
 $dialog->setInputStream($this->getInputStream("Test\n"));
 // Equals to a user inputting "Test" and hitting ENTER
 // If you need to enter a confirmation, "yes\n" will work

 $commandTester->execute(array('command' => $command->getName()));

 // $this->assertRegExp('/.../', $commandTester->getDisplay());
}

protected function getInputStream($input)
{
 $stream = fopen('php://memory', 'r+', false);
 fputs($stream, $input);
 rewind($stream);

 return $stream;
}

By setting the input stream of the DialogHelper, you imitate what the
console would do internally with all user input through the cli. This way
you can test any user interaction (even complex ones) by passing an appropriate
input stream.

参见

You find more information about testing commands in the console component
docs about testing console commands.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Console

 	The Console Helpers

Formatter Helper

The Formatter helpers provides functions to format the output with colors.
You can do more advanced things with this helper than you can in
Coloring the Output.

The FormatterHelper [http://api.symfony.com/master/Symfony/Component/Console/Helper/FormatterHelper.html] is included
in the default helper set, which you can get by calling
getHelperSet() [http://api.symfony.com/master/Symfony/Component/Console/Command/Command.html#method_getHelperSet]:

$formatter = $this->getHelper('formatter');

The methods return a string, which you’ll usually render to the console by
passing it to the
OutputInterface::writeln [http://api.symfony.com/master/Symfony/Component/Console/Output/OutputInterface.html#method_writeln] method.

Print Messages in a Section

Symfony offers a defined style when printing a message that belongs to some
“section”. It prints the section in color and with brackets around it and the
actual message to the right of this. Minus the color, it looks like this:

[SomeSection] Here is some message related to that section

To reproduce this style, you can use the
formatSection() [http://api.symfony.com/master/Symfony/Component/Console/Helper/FormatterHelper.html#method_formatSection]
method:

$formattedLine = $formatter->formatSection(
 'SomeSection',
 'Here is some message related to that section'
);
$output->writeln($formattedLine);

Print Messages in a Block

Sometimes you want to be able to print a whole block of text with a background
color. Symfony uses this when printing error messages.

If you print your error message on more than one line manually, you will
notice that the background is only as long as each individual line. Use the
formatBlock() [http://api.symfony.com/master/Symfony/Component/Console/Helper/FormatterHelper.html#method_formatBlock]
to generate a block output:

$errorMessages = array('Error!', 'Something went wrong');
$formattedBlock = $formatter->formatBlock($errorMessages, 'error');
$output->writeln($formattedBlock);

As you can see, passing an array of messages to the
formatBlock() [http://api.symfony.com/master/Symfony/Component/Console/Helper/FormatterHelper.html#method_formatBlock]
method creates the desired output. If you pass true as third parameter, the
block will be formatted with more padding (one blank line above and below the
messages and 2 spaces on the left and right).

The exact “style” you use in the block is up to you. In this case, you’re using
the pre-defined error style, but there are other styles, or you can create
your own. See Coloring the Output.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Console

 	The Console Helpers

Progress Helper

2.2 新版功能: The progress helper was introduced in Symfony 2.2.

2.3 新版功能: The setCurrent method was introduced in Symfony 2.3.

When executing longer-running commands, it may be helpful to show progress
information, which updates as your command runs:

[image: ../../../_images/progress.png]
To display progress details, use the ProgressHelper [http://api.symfony.com/master/Symfony/Component/Console/Helper/ProgressHelper.html],
pass it a total number of units, and advance the progress as your command executes:

$progress = $this->getHelper('progress');

$progress->start($output, 50);
$i = 0;
while ($i++ < 50) {
 // ... do some work

 // advance the progress bar 1 unit
 $progress->advance();
}

$progress->finish();

小技巧

You can also set the current progress by calling the
setCurrent() [http://api.symfony.com/master/Symfony/Component/Console/Helper/ProgressHelper.html#method_setCurrent]
method.

The appearance of the progress output can be customized as well, with a number
of different levels of verbosity. Each of these displays different possible
items - like percentage completion, a moving progress bar, or current/total
information (e.g. 10/50):

$progress->setFormat(ProgressHelper::FORMAT_QUIET);
$progress->setFormat(ProgressHelper::FORMAT_NORMAL);
$progress->setFormat(ProgressHelper::FORMAT_VERBOSE);
$progress->setFormat(ProgressHelper::FORMAT_QUIET_NOMAX);
// the default value
$progress->setFormat(ProgressHelper::FORMAT_NORMAL_NOMAX);
$progress->setFormat(ProgressHelper::FORMAT_VERBOSE_NOMAX);

You can also control the different characters and the width used for the
progress bar:

// the finished part of the bar
$progress->setBarCharacter('<comment>=</comment>');
// the unfinished part of the bar
$progress->setEmptyBarCharacter(' ');
$progress->setProgressCharacter('|');
$progress->setBarWidth(50);

To see other available options, check the API documentation for
ProgressHelper [http://api.symfony.com/master/Symfony/Component/Console/Helper/ProgressHelper.html].

警告

For performance reasons, be careful if you set the total number of steps
to a high number. For example, if you’re iterating over a large number of
items, consider setting the redraw frequency to a higher value by calling
setRedrawFrequency() [http://api.symfony.com/master/Symfony/Component/Console/Helper/ProgressHelper.html#method_setRedrawFrequency],
so it updates on only some iterations:

$progress->start($output, 50000);

// update every 100 iterations
$progress->setRedrawFrequency(100);

$i = 0;
while ($i++ < 50000) {
 // ... do some work

 $progress->advance();
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Console

 	The Console Helpers

Table Helper

2.3 新版功能: The table helper was introduced in Symfony 2.3.

When building a console application it may be useful to display tabular data:

[image: ../../../_images/table.png]
To display a table, use the TableHelper [http://api.symfony.com/master/Symfony/Component/Console/Helper/TableHelper.html],
set headers, rows and render:

$table = $this->getHelper('table');
$table
 ->setHeaders(array('ISBN', 'Title', 'Author'))
 ->setRows(array(
 array('99921-58-10-7', 'Divine Comedy', 'Dante Alighieri'),
 array('9971-5-0210-0', 'A Tale of Two Cities', 'Charles Dickens'),
 array('960-425-059-0', 'The Lord of the Rings', 'J. R. R. Tolkien'),
 array('80-902734-1-6', 'And Then There Were None', 'Agatha Christie'),
))
;
$table->render($output);

The table layout can be customized as well. There are two ways to customize
table rendering: using named layouts or by customizing rendering options.

Customize Table Layout using Named Layouts

The Table helper ships with two preconfigured table layouts:

	TableHelper::LAYOUT_DEFAULT

	TableHelper::LAYOUT_BORDERLESS

Layout can be set using setLayout() [http://api.symfony.com/master/Symfony/Component/Console/Helper/TableHelper.html#method_setLayout] method.

Customize Table Layout using Rendering Options

You can also control table rendering by setting custom rendering option values:

	setPaddingChar() [http://api.symfony.com/master/Symfony/Component/Console/Helper/TableHelper.html#method_setPaddingChar]

	setHorizontalBorderChar() [http://api.symfony.com/master/Symfony/Component/Console/Helper/TableHelper.html#method_setHorizontalBorderChar]

	setVerticalBorderChar() [http://api.symfony.com/master/Symfony/Component/Console/Helper/TableHelper.html#method_setVerticalBorderChar]

	setCrossingChar() [http://api.symfony.com/master/Symfony/Component/Console/Helper/TableHelper.html#method_setCrossingChar]

	setCellHeaderFormat() [http://api.symfony.com/master/Symfony/Component/Console/Helper/TableHelper.html#method_setCellHeaderFormat]

	setCellRowFormat() [http://api.symfony.com/master/Symfony/Component/Console/Helper/TableHelper.html#method_setCellRowFormat]

	setBorderFormat() [http://api.symfony.com/master/Symfony/Component/Console/Helper/TableHelper.html#method_setBorderFormat]

	setPadType() [http://api.symfony.com/master/Symfony/Component/Console/Helper/TableHelper.html#method_setPadType]

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

The CssSelector Component

The CssSelector component converts CSS selectors to XPath expressions.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/css-selector on Packagist [https://packagist.org/packages/symfony/css-selector]);

	Use the official Git repository (https://github.com/symfony/CssSelector).

Usage

Why to Use CSS selectors?

When you’re parsing an HTML or an XML document, by far the most powerful
method is XPath.

XPath expressions are incredibly flexible, so there is almost always an
XPath expression that will find the element you need. Unfortunately, they
can also become very complicated, and the learning curve is steep. Even common
operations (such as finding an element with a particular class) can require
long and unwieldy expressions.

Many developers – particularly web developers – are more comfortable
using CSS selectors to find elements. As well as working in stylesheets,
CSS selectors are used in JavaScript with the querySelectorAll function
and in popular JavaScript libraries such as jQuery, Prototype and MooTools.

CSS selectors are less powerful than XPath, but far easier to write, read
and understand. Since they are less powerful, almost all CSS selectors can
be converted to an XPath equivalent. This XPath expression can then be used
with other functions and classes that use XPath to find elements in a
document.

The CssSelector Component

The component’s only goal is to convert CSS selectors to their XPath
equivalents:

use Symfony\Component\CssSelector\CssSelector;

print CssSelector::toXPath('div.item > h4 > a');

This gives the following output:

descendant-or-self::div[@class and contains(concat(' ',normalize-space(@class), ' '), ' item ')]/h4/a

You can use this expression with, for instance, DOMXPath [http://php.net/manual/en/class.domxpath.php] or
SimpleXMLElement [http://php.net/manual/en/class.simplexmlelement.php] to find elements in a document.

小技巧

The Crawler::filter() [http://api.symfony.com/master/Symfony/Component/DomCrawler/Crawler.html#method_filter] method
uses the CssSelector component to find elements based on a CSS selector
string. See the The DomCrawler Component for more details.

Limitations of the CssSelector Component

Not all CSS selectors can be converted to XPath equivalents.

There are several CSS selectors that only make sense in the context of a
web-browser.

	link-state selectors: :link, :visited, :target

	selectors based on user action: :hover, :focus, :active

	UI-state selectors: :invalid, :indeterminate (however, :enabled,
:disabled, :checked and :unchecked are available)

Pseudo-elements (:before, :after, :first-line,
:first-letter) are not supported because they select portions of text
rather than elements.

Several pseudo-classes are not yet supported:

	*:first-of-type, *:last-of-type, *:nth-of-type,
*:nth-last-of-type, *:only-of-type. (These work with an element
name (e.g. li:first-of-type) but not with *.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

The Debug Component

The Debug component provides tools to ease debugging PHP code.

2.3 新版功能: The Debug component was introduced in Symfony 2.3. Previously, the classes
were located in the HttpKernel component.

Installation

You can install the component in many different ways:

	Install it via Composer (symfony/debug on Packagist [https://packagist.org/packages/symfony/debug]);

	Use the official Git repository (https://github.com/symfony/Debug).

Usage

The Debug component provides several tools to help you debug PHP code.
Enabling them all is as easy as it can get:

use Symfony\Component\Debug\Debug;

Debug::enable();

The enable() [http://api.symfony.com/master/Symfony/Component/Debug/Debug.html#method_enable] method registers an
error handler and an exception handler. If the ClassLoader component is available, a special class loader
is also registered.

Read the following sections for more information about the different available
tools.

警告

You should never enable the debug tools in a production environment as
they might disclose sensitive information to the user.

Enabling the Error Handler

The ErrorHandler [http://api.symfony.com/master/Symfony/Component/Debug/ErrorHandler.html] class catches PHP errors
and converts them to exceptions (of class ErrorException [http://php.net/manual/en/class.errorexception.php] or
FatalErrorException [http://api.symfony.com/master/Symfony/Component/Debug/Exception/FatalErrorException.html] for PHP
fatal errors):

use Symfony\Component\Debug\ErrorHandler;

ErrorHandler::register();

Enabling the Exception Handler

The ExceptionHandler [http://api.symfony.com/master/Symfony/Component/Debug/ExceptionHandler.html] class catches
uncaught PHP exceptions and converts them to a nice PHP response. It is useful
in debug mode to replace the default PHP/XDebug output with something prettier
and more useful:

use Symfony\Component\Debug\ExceptionHandler;

ExceptionHandler::register();

注解

If the HttpFoundation component is
available, the handler uses a Symfony Response object; if not, it falls
back to a regular PHP response.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

DependencyInjection

	The DependencyInjection Component
	Installation

	Basic Usage

	Avoiding your Code Becoming Dependent on the Container

	Setting up the Container with Configuration Files

	Types of Injection
	Constructor Injection

	Setter Injection

	Property Injection

	Introduction to Parameters
	Getting and Setting Container Parameters

	Parameters in Configuration Files

	Array Parameters

	Constants as Parameters

	PHP Keywords in XML

	Working with Container Service Definitions
	Getting and Setting Service Definitions

	Working with a Definition

	Compiling the Container
	Managing Configuration with Extensions

	Prepending Configuration Passed to the Extension

	Creating a Compiler Pass

	Registering a Compiler Pass

	Dumping the Configuration for Performance

	Working with Tagged Services
	Define Services with a custom Tag

	Create a CompilerPass

	Register the Pass with the Container

	Adding additional Attributes on Tags

	Using a Factory to Create Services
	Passing Arguments to the Factory Method

	Configuring Services with a Service Configurator
	Configurator Service Config

	Managing common Dependencies with parent Services
	Overriding parent Dependencies

	Advanced Container Configuration
	Marking Services as public / private

	Synthetic Services

	Aliasing

	Requiring Files

	Lazy Services
	Why lazy Services?

	Installation

	Configuration

	Additional Resources

	Container Building Workflow
	Working with a Cached Container

	Application-level Configuration

	Bundle-level Configuration with Extensions

	Compiler Passes to Allow Interaction between Bundles

	Compilation and Caching

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	DependencyInjection

The DependencyInjection Component

The DependencyInjection component allows you to standardize and centralize
the way objects are constructed in your application.

For an introduction to Dependency Injection and service containers see
Service Container.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/dependency-injection on Packagist [https://packagist.org/packages/symfony/dependency-injection]);

	Use the official Git repository (https://github.com/symfony/DependencyInjection).

Basic Usage

You might have a simple class like the following Mailer that
you want to make available as a service:

class Mailer
{
 private $transport;

 public function __construct()
 {
 $this->transport = 'sendmail';
 }

 // ...
}

You can register this in the container as a service:

use Symfony\Component\DependencyInjection\ContainerBuilder;

$container = new ContainerBuilder();
$container->register('mailer', 'Mailer');

An improvement to the class to make it more flexible would be to allow
the container to set the transport used. If you change the class
so this is passed into the constructor:

class Mailer
{
 private $transport;

 public function __construct($transport)
 {
 $this->transport = $transport;
 }

 // ...
}

Then you can set the choice of transport in the container:

use Symfony\Component\DependencyInjection\ContainerBuilder;

$container = new ContainerBuilder();
$container
 ->register('mailer', 'Mailer')
 ->addArgument('sendmail');

This class is now much more flexible as you have separated the choice of
transport out of the implementation and into the container.

Which mail transport you have chosen may be something other services need to
know about. You can avoid having to change it in multiple places by making
it a parameter in the container and then referring to this parameter for the
Mailer service’s constructor argument:

use Symfony\Component\DependencyInjection\ContainerBuilder;

$container = new ContainerBuilder();
$container->setParameter('mailer.transport', 'sendmail');
$container
 ->register('mailer', 'Mailer')
 ->addArgument('%mailer.transport%');

Now that the mailer service is in the container you can inject it as
a dependency of other classes. If you have a NewsletterManager class
like this:

class NewsletterManager
{
 private $mailer;

 public function __construct(\Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 // ...
}

Then you can register this as a service as well and pass the mailer service into it:

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Reference;

$container = new ContainerBuilder();

$container->setParameter('mailer.transport', 'sendmail');
$container
 ->register('mailer', 'Mailer')
 ->addArgument('%mailer.transport%');

$container
 ->register('newsletter_manager', 'NewsletterManager')
 ->addArgument(new Reference('mailer'));

If the NewsletterManager did not require the Mailer and injecting
it was only optional then you could use setter injection instead:

class NewsletterManager
{
 private $mailer;

 public function setMailer(\Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 // ...
}

You can now choose not to inject a Mailer into the NewsletterManager.
If you do want to though then the container can call the setter method:

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Reference;

$container = new ContainerBuilder();

$container->setParameter('mailer.transport', 'sendmail');
$container
 ->register('mailer', 'Mailer')
 ->addArgument('%mailer.transport%');

$container
 ->register('newsletter_manager', 'NewsletterManager')
 ->addMethodCall('setMailer', array(new Reference('mailer')));

You could then get your newsletter_manager service from the container
like this:

use Symfony\Component\DependencyInjection\ContainerBuilder;

$container = new ContainerBuilder();

// ...

$newsletterManager = $container->get('newsletter_manager');

Avoiding your Code Becoming Dependent on the Container

Whilst you can retrieve services from the container directly it is best
to minimize this. For example, in the NewsletterManager you injected
the mailer service in rather than asking for it from the container.
You could have injected the container in and retrieved the mailer service
from it but it would then be tied to this particular container making it
difficult to reuse the class elsewhere.

You will need to get a service from the container at some point but this
should be as few times as possible at the entry point to your application.

Setting up the Container with Configuration Files

As well as setting up the services using PHP as above you can also use
configuration files. This allows you to use XML or YAML to write the definitions
for the services rather than using PHP to define the services as in the above
examples. In anything but the smallest applications it makes sense to organize
the service definitions by moving them into one or more configuration files.
To do this you also need to install
the Config component.

Loading an XML config file:

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\Config\FileLocator;
use Symfony\Component\DependencyInjection\Loader\XmlFileLoader;

$container = new ContainerBuilder();
$loader = new XmlFileLoader($container, new FileLocator(__DIR__));
$loader->load('services.xml');

Loading a YAML config file:

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\Config\FileLocator;
use Symfony\Component\DependencyInjection\Loader\YamlFileLoader;

$container = new ContainerBuilder();
$loader = new YamlFileLoader($container, new FileLocator(__DIR__));
$loader->load('services.yml');

注解

If you want to load YAML config files then you will also need to install
the Yaml component.

If you do want to use PHP to create the services then you can move this
into a separate config file and load it in a similar way:

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\Config\FileLocator;
use Symfony\Component\DependencyInjection\Loader\PhpFileLoader;

$container = new ContainerBuilder();
$loader = new PhpFileLoader($container, new FileLocator(__DIR__));
$loader->load('services.php');

You can now set up the newsletter_manager and mailer services using
config files:

	YAMLparameters:
 # ...
 mailer.transport: sendmail

services:
 mailer:
 class: Mailer
 arguments: ["%mailer.transport%"]
 newsletter_manager:
 class: NewsletterManager
 calls:
 - [setMailer, ["@mailer"]]

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <parameters>
 <!-- ... -->
 <parameter key="mailer.transport">sendmail</parameter>
 </parameters>

 <services>
 <service id="mailer" class="Mailer">
 <argument>%mailer.transport%</argument>
 </service>

 <service id="newsletter_manager" class="NewsletterManager">
 <call method="setMailer">
 <argument type="service" id="mailer" />
 </call>
 </service>
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Reference;

// ...
$container->setParameter('mailer.transport', 'sendmail');
$container
 ->register('mailer', 'Mailer')
 ->addArgument('%mailer.transport%');

$container
 ->register('newsletter_manager', 'NewsletterManager')
 ->addMethodCall('setMailer', array(new Reference('mailer')));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	DependencyInjection

Types of Injection

Making a class’s dependencies explicit and requiring that they be injected
into it is a good way of making a class more reusable, testable and decoupled
from others.

There are several ways that the dependencies can be injected. Each injection
point has advantages and disadvantages to consider, as well as different ways
of working with them when using the service container.

Constructor Injection

The most common way to inject dependencies is via a class’s constructor.
To do this you need to add an argument to the constructor signature to accept
the dependency:

class NewsletterManager
{
 protected $mailer;

 public function __construct(\Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 // ...
}

You can specify what service you would like to inject into this in the
service container configuration:

	YAMLservices:
 my_mailer:
 # ...
 newsletter_manager:
 class: NewsletterManager
 arguments: ["@my_mailer"]

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="my_mailer">
 <!-- ... -->
 </service>

 <service id="newsletter_manager" class="NewsletterManager">
 <argument type="service" id="my_mailer"/>
 </service>
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$container->setDefinition('my_mailer', ...);
$container->setDefinition('newsletter_manager', new Definition(
 'NewsletterManager',
 array(new Reference('my_mailer'))
));

小技巧

Type hinting the injected object means that you can be sure that a suitable
dependency has been injected. By type-hinting, you’ll get a clear error
immediately if an unsuitable dependency is injected. By type hinting
using an interface rather than a class you can make the choice of dependency
more flexible. And assuming you only use methods defined in the interface,
you can gain that flexibility and still safely use the object.

There are several advantages to using constructor injection:

	If the dependency is a requirement and the class cannot work without it
then injecting it via the constructor ensures it is present when the class
is used as the class cannot be constructed without it.

	The constructor is only ever called once when the object is created, so you
can be sure that the dependency will not change during the object’s lifetime.

These advantages do mean that constructor injection is not suitable for working
with optional dependencies. It is also more difficult to use in combination
with class hierarchies: if a class uses constructor injection then extending it
and overriding the constructor becomes problematic.

Setter Injection

Another possible injection point into a class is by adding a setter method that
accepts the dependency:

class NewsletterManager
{
 protected $mailer;

 public function setMailer(\Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 // ...
}

	YAMLservices:
 my_mailer:
 # ...
 newsletter_manager:
 class: NewsletterManager
 calls:
 - [setMailer, ["@my_mailer"]]

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="my_mailer">
 <!-- ... -->
 </service>

 <service id="newsletter_manager" class="NewsletterManager">
 <call method="setMailer">
 <argument type="service" id="my_mailer" />
 </call>
 </service>
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$container->setDefinition('my_mailer', ...);
$container->setDefinition('newsletter_manager', new Definition(
 'NewsletterManager'
))->addMethodCall('setMailer', array(new Reference('my_mailer')));

This time the advantages are:

	Setter injection works well with optional dependencies. If you do not need
the dependency, then just do not call the setter.

	You can call the setter multiple times. This is particularly useful if the
method adds the dependency to a collection. You can then have a variable number
of dependencies.

The disadvantages of setter injection are:

	The setter can be called more than just at the time of construction so
you cannot be sure the dependency is not replaced during the lifetime of the
object (except by explicitly writing the setter method to check if it has already
been called).

	You cannot be sure the setter will be called and so you need to add checks
that any required dependencies are injected.

Property Injection

Another possibility is just setting public fields of the class directly:

class NewsletterManager
{
 public $mailer;

 // ...
}

	YAMLservices:
 my_mailer:
 # ...
 newsletter_manager:
 class: NewsletterManager
 properties:
 mailer: "@my_mailer"

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="my_mailer">
 <!-- ... -->
 </service>

 <service id="newsletter_manager" class="NewsletterManager">
 <property name="mailer" type="service" id="my_mailer" />
 </service>
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

$container->setDefinition('my_mailer', ...);
$container->setDefinition('newsletter_manager', new Definition(
 'NewsletterManager'
))->setProperty('mailer', new Reference('my_mailer'));

There are mainly only disadvantages to using property injection, it is similar
to setter injection but with these additional important problems:

	You cannot control when the dependency is set at all, it can be changed
at any point in the object’s lifetime.

	You cannot use type hinting so you cannot be sure what dependency is injected
except by writing into the class code to explicitly test the class instance
before using it.

But, it is useful to know that this can be done with the service container,
especially if you are working with code that is out of your control, such
as in a third party library, which uses public properties for its dependencies.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	DependencyInjection

Introduction to Parameters

You can define parameters in the service container which can then be used
directly or as part of service definitions. This can help to separate out
values that you will want to change more regularly.

Getting and Setting Container Parameters

Working with container parameters is straightforward using the container’s
accessor methods for parameters. You can check if a parameter has been defined
in the container with:

$container->hasParameter('mailer.transport');

You can retrieve a parameter set in the container with:

$container->getParameter('mailer.transport');

and set a parameter in the container with:

$container->setParameter('mailer.transport', 'sendmail');

警告

The used . notation is just a
Symfony convention to make parameters
easier to read. Parameters are just flat key-value elements, they can’t be
organized into a nested array

注解

You can only set a parameter before the container is compiled. To learn
more about compiling the container see
Compiling the Container.

Parameters in Configuration Files

You can also use the parameters section of a config file to set parameters:

	YAMLparameters:
 mailer.transport: sendmail

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <parameters>
 <parameter key="mailer.transport">sendmail</parameter>
 </parameters>
</container>

	PHP$container->setParameter('mailer.transport', 'sendmail');

As well as retrieving the parameter values directly from the container you
can use them in the config files. You can refer to parameters elsewhere by
surrounding them with percent (%) signs, e.g. %mailer.transport%.
One use for this is to inject the values into your services. This allows
you to configure different versions of services between applications or multiple
services based on the same class but configured differently within a single
application. You could inject the choice of mail transport into the Mailer
class directly. But declaring it as a parameter makes it easier to change
rather than being tied up and hidden with the service definition:

	YAMLparameters:
 mailer.transport: sendmail

services:
 mailer:
 class: Mailer
 arguments: ['%mailer.transport%']

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <parameters>
 <parameter key="mailer.transport">sendmail</parameter>
 </parameters>

 <services>
 <service id="mailer" class="Mailer">
 <argument>%mailer.transport%</argument>
 </service>
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Reference;

$container->setParameter('mailer.transport', 'sendmail');

$container
 ->register('mailer', 'Mailer')
 ->addArgument('%mailer.transport%');

警告

The values between parameter tags in XML configuration files are not
trimmed.

This means that the following configuration sample will have the value
\n sendmail\n:

<parameter key="mailer.transport">
 sendmail
</parameter>

In some cases (for constants or class names), this could throw errors. In
order to prevent this, you must always inline your parameters as follow:

<parameter key="mailer.transport">sendmail</parameter>

If you were using this elsewhere as well, then you would only need to change
the parameter value in one place if needed.

注解

The percent sign inside a parameter or argument, as part of the string, must
be escaped with another percent sign:

	YAMLarguments: ["http://symfony.com/?foo=%%s&bar=%%d"]

	XML<argument>http://symfony.com/?foo=%%s&bar=%%d</argument>

	PHP->addArgument('http://symfony.com/?foo=%%s&bar=%%d');

Array Parameters

Parameters do not need to be flat strings, they can also contain array values.
For the XML format, you need to use the type="collection" attribute for
all parameters that are arrays.

	YAMLparameters:
 my_mailer.gateways:
 - mail1
 - mail2
 - mail3
 my_multilang.language_fallback:
 en:
 - en
 - fr
 fr:
 - fr
 - en

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <parameters>
 <parameter key="my_mailer.gateways" type="collection">
 <parameter>mail1</parameter>
 <parameter>mail2</parameter>
 <parameter>mail3</parameter>
 </parameter>
 <parameter key="my_multilang.language_fallback" type="collection">
 <parameter key="en" type="collection">
 <parameter>en</parameter>
 <parameter>fr</parameter>
 </parameter>
 <parameter key="fr" type="collection">
 <parameter>fr</parameter>
 <parameter>en</parameter>
 </parameter>
 </parameter>
 </parameters>
</container>

	PHP$container->setParameter('my_mailer.gateways', array('mail1', 'mail2', 'mail3'));
$container->setParameter('my_multilang.language_fallback', array(
 'en' => array('en', 'fr'),
 'fr' => array('fr', 'en'),
));

Constants as Parameters

The container also has support for setting PHP constants as parameters. To
take advantage of this feature, map the name of your constant to a parameter
key, and define the type as constant.

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <parameters>
 <parameter key="global.constant.value" type="constant">GLOBAL_CONSTANT</parameter>
 <parameter key="my_class.constant.value" type="constant">My_Class::CONSTANT_NAME</parameter>
 </parameters>
</container>

	PHP$container->setParameter('global.constant.value', GLOBAL_CONSTANT);
$container->setParameter('my_class.constant.value', My_Class::CONSTANT_NAME);

注解

This does not work for YAML configurations. If you’re using YAML, you
can import an XML file to take advantage of this functionality:

imports:
 - { resource: parameters.xml }

PHP Keywords in XML

By default, true, false and null in XML are converted to the PHP
keywords (respectively true, false and null):

<parameters>
 <parameter key="mailer.send_all_in_once">false</parameter>
</parameters>

<!-- after parsing
$container->getParameter('mailer.send_all_in_once'); // returns false
-->

To disable this behavior, use the string type:

<parameters>
 <parameter key="mailer.some_parameter" type="string">true</parameter>
</parameters>

<!-- after parsing
$container->getParameter('mailer.some_parameter'); // returns "true"
-->

注解

This is not available for YAML and PHP, because they already have built-in
support for the PHP keywords.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	DependencyInjection

Working with Container Service Definitions

Getting and Setting Service Definitions

There are some helpful methods for working with the service definitions.

To find out if there is a definition for a service id:

$container->hasDefinition($serviceId);

This is useful if you only want to do something if a particular definition exists.

You can retrieve a definition with:

$container->getDefinition($serviceId);

or:

$container->findDefinition($serviceId);

which unlike getDefinition() also resolves aliases so if the $serviceId
argument is an alias you will get the underlying definition.

The service definitions themselves are objects so if you retrieve a definition
with these methods and make changes to it these will be reflected in the
container. If, however, you are creating a new definition then you can add
it to the container using:

$container->setDefinition($id, $definition);

Working with a Definition

Creating a new Definition

If you need to create a new definition rather than manipulate one retrieved
from the container then the definition class is Definition [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Definition.html].

Class

First up is the class of a definition, this is the class of the object returned
when the service is requested from the container.

To find out what class is set for a definition:

$definition->getClass();

and to set a different class:

$definition->setClass($class); // Fully qualified class name as string

Constructor Arguments

To get an array of the constructor arguments for a definition you can use:

$definition->getArguments();

or to get a single argument by its position:

$definition->getArgument($index);
// e.g. $definition->getArgument(0) for the first argument

You can add a new argument to the end of the arguments array using:

$definition->addArgument($argument);

The argument can be a string, an array, a service parameter by using %parameter_name%
or a service id by using:

use Symfony\Component\DependencyInjection\Reference;

// ...

$definition->addArgument(new Reference('service_id'));

In a similar way you can replace an already set argument by index using:

$definition->replaceArgument($index, $argument);

You can also replace all the arguments (or set some if there are none) with
an array of arguments:

$definition->setArguments($arguments);

Method Calls

If the service you are working with uses setter injection then you can manipulate
any method calls in the definitions as well.

You can get an array of all the method calls with:

$definition->getMethodCalls();

Add a method call with:

$definition->addMethodCall($method, $arguments);

Where $method is the method name and $arguments is an array of the arguments
to call the method with. The arguments can be strings, arrays, parameters or
service ids as with the constructor arguments.

You can also replace any existing method calls with an array of new ones with:

$definition->setMethodCalls($methodCalls);

小技巧

There are more examples of specific ways of working with definitions
in the PHP code blocks of the configuration examples on pages such as
Using a Factory to Create Services and
Managing common Dependencies with parent Services.

注解

The methods here that change service definitions can only be used before
the container is compiled. Once the container is compiled you cannot
manipulate service definitions further. To learn more about compiling
the container see Compiling the Container.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	DependencyInjection

Compiling the Container

The service container can be compiled for various reasons. These reasons
include checking for any potential issues such as circular references and
making the container more efficient by resolving parameters and removing
unused services. Also, certain features - like using
parent services -
require the container to be compiled.

It is compiled by running:

$container->compile();

The compile method uses Compiler Passes for the compilation. The DependencyInjection
component comes with several passes which are automatically registered for
compilation. For example the CheckDefinitionValidityPass [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Compiler/CheckDefinitionValidityPass.html]
checks for various potential issues with the definitions that have been set
in the container. After this and several other passes that check the container’s
validity, further compiler passes are used to optimize the configuration
before it is cached. For example, private services and abstract services
are removed, and aliases are resolved.

Managing Configuration with Extensions

As well as loading configuration directly into the container as shown in
The DependencyInjection Component, you can manage it by
registering extensions with the container. The first step in the compilation
process is to load configuration from any extension classes registered with
the container. Unlike the configuration loaded directly, they are only processed
when the container is compiled. If your application is modular then extensions
allow each module to register and manage their own service configuration.

The extensions must implement ExtensionInterface [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Extension/ExtensionInterface.html]
and can be registered with the container with:

$container->registerExtension($extension);

The main work of the extension is done in the load method. In the load method
you can load configuration from one or more configuration files as well as
manipulate the container definitions using the methods shown in Working with Container Service Definitions.

The load method is passed a fresh container to set up, which is then
merged afterwards into the container it is registered with. This allows you
to have several extensions managing container definitions independently.
The extensions do not add to the containers configuration when they are added
but are processed when the container’s compile method is called.

A very simple extension may just load configuration files into the container:

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Loader\XmlFileLoader;
use Symfony\Component\DependencyInjection\Extension\ExtensionInterface;
use Symfony\Component\Config\FileLocator;

class AcmeDemoExtension implements ExtensionInterface
{
 public function load(array $configs, ContainerBuilder $container)
 {
 $loader = new XmlFileLoader(
 $container,
 new FileLocator(__DIR__.'/../Resources/config')
);
 $loader->load('services.xml');
 }

 // ...
}

This does not gain very much compared to loading the file directly into the
overall container being built. It just allows the files to be split up amongst
the modules/bundles. Being able to affect the configuration of a module from
configuration files outside of the module/bundle is needed to make a complex
application configurable. This can be done by specifying sections of config files
loaded directly into the container as being for a particular extension. These
sections on the config will not be processed directly by the container but by the
relevant Extension.

The Extension must specify a getAlias method to implement the interface:

// ...

class AcmeDemoExtension implements ExtensionInterface
{
 // ...

 public function getAlias()
 {
 return 'acme_demo';
 }
}

For YAML configuration files specifying the alias for the Extension as a key
will mean that those values are passed to the Extension’s load method:

...
acme_demo:
 foo: fooValue
 bar: barValue

If this file is loaded into the configuration then the values in it are only
processed when the container is compiled at which point the Extensions are loaded:

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\Config\FileLocator;
use Symfony\Component\DependencyInjection\Loader\YamlFileLoader;

$container = new ContainerBuilder();
$container->registerExtension(new AcmeDemoExtension);

$loader = new YamlFileLoader($container, new FileLocator(__DIR__));
$loader->load('config.yml');

// ...
$container->compile();

注解

When loading a config file that uses an extension alias as a key, the
extension must already have been registered with the container builder
or an exception will be thrown.

The values from those sections of the config files are passed into the first
argument of the load method of the extension:

public function load(array $configs, ContainerBuilder $container)
{
 $foo = $configs[0]['foo']; //fooValue
 $bar = $configs[0]['bar']; //barValue
}

The $configs argument is an array containing each different config file
that was loaded into the container. You are only loading a single config file
in the above example but it will still be within an array. The array will look
like this:

array(
 array(
 'foo' => 'fooValue',
 'bar' => 'barValue',
),
)

Whilst you can manually manage merging the different files, it is much better
to use the Config component to merge
and validate the config values. Using the configuration processing you could
access the config value this way:

use Symfony\Component\Config\Definition\Processor;
// ...

public function load(array $configs, ContainerBuilder $container)
{
 $configuration = new Configuration();
 $processor = new Processor();
 $config = $processor->processConfiguration($configuration, $configs);

 $foo = $config['foo']; //fooValue
 $bar = $config['bar']; //barValue

 // ...
}

There are a further two methods you must implement. One to return the XML
namespace so that the relevant parts of an XML config file are passed to
the extension. The other to specify the base path to XSD files to validate
the XML configuration:

public function getXsdValidationBasePath()
{
 return __DIR__.'/../Resources/config/';
}

public function getNamespace()
{
 return 'http://www.example.com/symfony/schema/';
}

注解

XSD validation is optional, returning false from the getXsdValidationBasePath
method will disable it.

The XML version of the config would then look like this:

<?xml version="1.0" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:acme_demo="http://www.example.com/symfony/schema/"
 xsi:schemaLocation="http://www.example.com/symfony/schema/ http://www.example.com/symfony/schema/hello-1.0.xsd">

 <acme_demo:config>
 <acme_demo:foo>fooValue</acme_hello:foo>
 <acme_demo:bar>barValue</acme_demo:bar>
 </acme_demo:config>
</container>

注解

In the Symfony full stack framework there is a base Extension class which
implements these methods as well as a shortcut method for processing the
configuration. See How to Load Service Configuration inside a Bundle for more details.

The processed config value can now be added as container parameters as if it were
listed in a parameters section of the config file but with the additional
benefit of merging multiple files and validation of the configuration:

public function load(array $configs, ContainerBuilder $container)
{
 $configuration = new Configuration();
 $processor = new Processor();
 $config = $processor->processConfiguration($configuration, $configs);

 $container->setParameter('acme_demo.FOO', $config['foo']);

 // ...
}

More complex configuration requirements can be catered for in the Extension
classes. For example, you may choose to load a main service configuration file
but also load a secondary one only if a certain parameter is set:

public function load(array $configs, ContainerBuilder $container)
{
 $configuration = new Configuration();
 $processor = new Processor();
 $config = $processor->processConfiguration($configuration, $configs);

 $loader = new XmlFileLoader(
 $container,
 new FileLocator(__DIR__.'/../Resources/config')
);
 $loader->load('services.xml');

 if ($config['advanced']) {
 $loader->load('advanced.xml');
 }
}

注解

Just registering an extension with the container is not enough to get
it included in the processed extensions when the container is compiled.
Loading config which uses the extension’s alias as a key as in the above
examples will ensure it is loaded. The container builder can also be
told to load it with its
loadFromExtension() [http://api.symfony.com/master/Symfony/Component/DependencyInjection/ContainerBuilder.html#method_loadFromExtension]
method:

use Symfony\Component\DependencyInjection\ContainerBuilder;

$container = new ContainerBuilder();
$extension = new AcmeDemoExtension();
$container->registerExtension($extension);
$container->loadFromExtension($extension->getAlias());
$container->compile();

注解

If you need to manipulate the configuration loaded by an extension then
you cannot do it from another extension as it uses a fresh container.
You should instead use a compiler pass which works with the full container
after the extensions have been processed.

Prepending Configuration Passed to the Extension

2.2 新版功能: The ability to prepend the configuration of a bundle was introduced in
Symfony 2.2.

An Extension can prepend the configuration of any Bundle before the load()
method is called by implementing PrependExtensionInterface [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Extension/PrependExtensionInterface.html]:

use Symfony\Component\DependencyInjection\Extension\PrependExtensionInterface;
// ...

class AcmeDemoExtension implements ExtensionInterface, PrependExtensionInterface
{
 // ...

 public function prepend()
 {
 // ...

 $container->prependExtensionConfig($name, $config);

 // ...
 }
}

For more details, see How to Simplify Configuration of multiple Bundles, which is
specific to the Symfony Framework, but contains more details about this feature.

Creating a Compiler Pass

You can also create and register your own compiler passes with the container.
To create a compiler pass it needs to implement the
CompilerPassInterface [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Compiler/CompilerPassInterface.html]
interface. The compiler pass gives you an opportunity to manipulate the service
definitions that have been compiled. This can be very powerful, but is not
something needed in everyday use.

The compiler pass must have the process method which is passed the container
being compiled:

use Symfony\Component\DependencyInjection\Compiler\CompilerPassInterface;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class CustomCompilerPass implements CompilerPassInterface
{
 public function process(ContainerBuilder $container)
 {
 // ...
 }
}

The container’s parameters and definitions can be manipulated using the
methods described in the Working with Container Service Definitions.
One common thing to do in a compiler pass is to search for all services that
have a certain tag in order to process them in some way or dynamically plug
each into some other service.

Registering a Compiler Pass

You need to register your custom pass with the container. Its process method
will then be called when the container is compiled:

use Symfony\Component\DependencyInjection\ContainerBuilder;

$container = new ContainerBuilder();
$container->addCompilerPass(new CustomCompilerPass);

注解

Compiler passes are registered differently if you are using the full
stack framework, see How to Work with Compiler Passes in Bundles
for more details.

Controlling the Pass Ordering

The default compiler passes are grouped into optimization passes and removal
passes. The optimization passes run first and include tasks such as resolving
references within the definitions. The removal passes perform tasks such as removing
private aliases and unused services. You can choose where in the order any custom
passes you add are run. By default they will be run before the optimization passes.

You can use the following constants as the second argument when registering
a pass with the container to control where it goes in the order:

	PassConfig::TYPE_BEFORE_OPTIMIZATION

	PassConfig::TYPE_OPTIMIZE

	PassConfig::TYPE_BEFORE_REMOVING

	PassConfig::TYPE_REMOVE

	PassConfig::TYPE_AFTER_REMOVING

For example, to run your custom pass after the default removal passes have been run:

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Compiler\PassConfig;

$container = new ContainerBuilder();
$container->addCompilerPass(
 new CustomCompilerPass,
 PassConfig::TYPE_AFTER_REMOVING
);

Dumping the Configuration for Performance

Using configuration files to manage the service container can be much easier
to understand than using PHP once there are a lot of services. This ease comes
at a price though when it comes to performance as the config files need to be
parsed and the PHP configuration built from them. The compilation process makes
the container more efficient but it takes time to run. You can have the best of both
worlds though by using configuration files and then dumping and caching the resulting
configuration. The PhpDumper makes dumping the compiled container easy:

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Dumper\PhpDumper;

$file = __DIR__ .'/cache/container.php';

if (file_exists($file)) {
 require_once $file;
 $container = new ProjectServiceContainer();
} else {
 $container = new ContainerBuilder();
 // ...
 $container->compile();

 $dumper = new PhpDumper($container);
 file_put_contents($file, $dumper->dump());
}

ProjectServiceContainer is the default name given to the dumped container
class, you can change this though this with the class option when you dump
it:

// ...
$file = __DIR__ .'/cache/container.php';

if (file_exists($file)) {
 require_once $file;
 $container = new MyCachedContainer();
} else {
 $container = new ContainerBuilder();
 // ...
 $container->compile();

 $dumper = new PhpDumper($container);
 file_put_contents(
 $file,
 $dumper->dump(array('class' => 'MyCachedContainer'))
);
}

You will now get the speed of the PHP configured container with the ease of using
configuration files. Additionally dumping the container in this way further optimizes
how the services are created by the container.

In the above example you will need to delete the cached container file whenever
you make any changes. Adding a check for a variable that determines if you are
in debug mode allows you to keep the speed of the cached container in production
but getting an up to date configuration whilst developing your application:

// ...

// based on something in your project
$isDebug = ...;

$file = __DIR__ .'/cache/container.php';

if (!$isDebug && file_exists($file)) {
 require_once $file;
 $container = new MyCachedContainer();
} else {
 $container = new ContainerBuilder();
 // ...
 $container->compile();

 if (!$isDebug) {
 $dumper = new PhpDumper($container);
 file_put_contents(
 $file,
 $dumper->dump(array('class' => 'MyCachedContainer'))
);
 }
}

This could be further improved by only recompiling the container in debug
mode when changes have been made to its configuration rather than on every
request. This can be done by caching the resource files used to configure
the container in the way described in “Caching Based on Resources”
in the config component documentation.

You do not need to work out which files to cache as the container builder
keeps track of all the resources used to configure it, not just the configuration
files but the extension classes and compiler passes as well. This means that
any changes to any of these files will invalidate the cache and trigger the
container being rebuilt. You just need to ask the container for these resources
and use them as metadata for the cache:

// ...

// based on something in your project
$isDebug = ...;

$file = __DIR__ .'/cache/container.php';
$containerConfigCache = new ConfigCache($file, $isDebug);

if (!$containerConfigCache->isFresh()) {
 $containerBuilder = new ContainerBuilder();
 // ...
 $containerBuilder->compile();

 $dumper = new PhpDumper($containerBuilder);
 $containerConfigCache->write(
 $dumper->dump(array('class' => 'MyCachedContainer')),
 $containerBuilder->getResources()
);
}

require_once $file;
$container = new MyCachedContainer();

Now the cached dumped container is used regardless of whether debug mode is on or not.
The difference is that the ConfigCache is set to debug mode with its second
constructor argument. When the cache is not in debug mode the cached container
will always be used if it exists. In debug mode, an additional metadata file
is written with the timestamps of all the resource files. These are then checked
to see if the files have changed, if they have the cache will be considered stale.

注解

In the full stack framework the compilation and caching of the container
is taken care of for you.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	DependencyInjection

Working with Tagged Services

Tags are a generic string (along with some options) that can be applied to
any service. By themselves, tags don’t actually alter the functionality of your
services in any way. But if you choose to, you can ask a container builder
for a list of all services that were tagged with some specific tag. This
is useful in compiler passes where you can find these services and use or
modify them in some specific way.

For example, if you are using Swift Mailer you might imagine that you want
to implement a “transport chain”, which is a collection of classes implementing
\Swift_Transport. Using the chain, you’ll want Swift Mailer to try several
ways of transporting the message until one succeeds.

To begin with, define the TransportChain class:

class TransportChain
{
 private $transports;

 public function __construct()
 {
 $this->transports = array();
 }

 public function addTransport(\Swift_Transport $transport)
 {
 $this->transports[] = $transport;
 }
}

Then, define the chain as a service:

	YAMLservices:
 acme_mailer.transport_chain:
 class: TransportChain

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="acme_mailer.transport_chain" class="TransportChain" />
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;

$container->setDefinition('acme_mailer.transport_chain', new Definition('TransportChain'));

Define Services with a custom Tag

Now you might want several of the \Swift_Transport classes to be instantiated
and added to the chain automatically using the addTransport() method.
For example you may add the following transports as services:

	YAMLservices:
 acme_mailer.transport.smtp:
 class: \Swift_SmtpTransport
 arguments:
 - "%mailer_host%"
 tags:
 - { name: acme_mailer.transport }
 acme_mailer.transport.sendmail:
 class: \Swift_SendmailTransport
 tags:
 - { name: acme_mailer.transport }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="acme_mailer.transport.smtp" class="\Swift_SmtpTransport">
 <argument>%mailer_host%</argument>
 <tag name="acme_mailer.transport" />
 </service>

 <service id="acme_mailer.transport.sendmail" class="\Swift_SendmailTransport">
 <tag name="acme_mailer.transport" />
 </service>
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;

$definitionSmtp = new Definition('\Swift_SmtpTransport', array('%mailer_host%'));
$definitionSmtp->addTag('acme_mailer.transport');
$container->setDefinition('acme_mailer.transport.smtp', $definitionSmtp);

$definitionSendmail = new Definition('\Swift_SendmailTransport');
$definitionSendmail->addTag('acme_mailer.transport');
$container->setDefinition('acme_mailer.transport.sendmail', $definitionSendmail);

Notice that each was given a tag named acme_mailer.transport. This is
the custom tag that you’ll use in your compiler pass. The compiler pass
is what makes this tag “mean” something.

Create a CompilerPass

Your compiler pass can now ask the container for any services with the
custom tag:

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Compiler\CompilerPassInterface;
use Symfony\Component\DependencyInjection\Reference;

class TransportCompilerPass implements CompilerPassInterface
{
 public function process(ContainerBuilder $container)
 {
 if (!$container->hasDefinition('acme_mailer.transport_chain')) {
 return;
 }

 $definition = $container->getDefinition(
 'acme_mailer.transport_chain'
);

 $taggedServices = $container->findTaggedServiceIds(
 'acme_mailer.transport'
);
 foreach ($taggedServices as $id => $tags) {
 $definition->addMethodCall(
 'addTransport',
 array(new Reference($id))
);
 }
 }
}

The process() method checks for the existence of the acme_mailer.transport_chain
service, then looks for all services tagged acme_mailer.transport. It adds
to the definition of the acme_mailer.transport_chain service a call to
addTransport() for each “acme_mailer.transport” service it has found.
The first argument of each of these calls will be the mailer transport service
itself.

Register the Pass with the Container

You also need to register the pass with the container, it will then be
run when the container is compiled:

use Symfony\Component\DependencyInjection\ContainerBuilder;

$container = new ContainerBuilder();
$container->addCompilerPass(new TransportCompilerPass());

注解

Compiler passes are registered differently if you are using the full
stack framework. See How to Work with Compiler Passes in Bundles
for more details.

Adding additional Attributes on Tags

Sometimes you need additional information about each service that’s tagged with your tag.
For example, you might want to add an alias to each member of the transport chain.

To begin with, change the TransportChain class:

class TransportChain
{
 private $transports;

 public function __construct()
 {
 $this->transports = array();
 }

 public function addTransport(\Swift_Transport $transport, $alias)
 {
 $this->transports[$alias] = $transport;
 }

 public function getTransport($alias)
 {
 if (array_key_exists($alias, $this->transports)) {
 return $this->transports[$alias];
 }
 }
}

As you can see, when addTransport is called, it takes not only a Swift_Transport
object, but also a string alias for that transport. So, how can you allow
each tagged transport service to also supply an alias?

To answer this, change the service declaration:

	YAMLservices:
 acme_mailer.transport.smtp:
 class: \Swift_SmtpTransport
 arguments:
 - "%mailer_host%"
 tags:
 - { name: acme_mailer.transport, alias: foo }
 acme_mailer.transport.sendmail:
 class: \Swift_SendmailTransport
 tags:
 - { name: acme_mailer.transport, alias: bar }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="acme_mailer.transport.smtp" class="\Swift_SmtpTransport">
 <argument>%mailer_host%</argument>
 <tag name="acme_mailer.transport" alias="foo" />
 </service>

 <service id="acme_mailer.transport.sendmail" class="\Swift_SendmailTransport">
 <tag name="acme_mailer.transport" alias="bar" />
 </service>
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;

$definitionSmtp = new Definition('\Swift_SmtpTransport', array('%mailer_host%'));
$definitionSmtp->addTag('acme_mailer.transport', array('alias' => 'foo'));
$container->setDefinition('acme_mailer.transport.smtp', $definitionSmtp);

$definitionSendmail = new Definition('\Swift_SendmailTransport');
$definitionSendmail->addTag('acme_mailer.transport', array('alias' => 'bar'));
$container->setDefinition('acme_mailer.transport.sendmail', $definitionSendmail);

Notice that you’ve added a generic alias key to the tag. To actually
use this, update the compiler:

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Compiler\CompilerPassInterface;
use Symfony\Component\DependencyInjection\Reference;

class TransportCompilerPass implements CompilerPassInterface
{
 public function process(ContainerBuilder $container)
 {
 if (!$container->hasDefinition('acme_mailer.transport_chain')) {
 return;
 }

 $definition = $container->getDefinition(
 'acme_mailer.transport_chain'
);

 $taggedServices = $container->findTaggedServiceIds(
 'acme_mailer.transport'
);
 foreach ($taggedServices as $id => $tags) {
 foreach ($tags as $attributes) {
 $definition->addMethodCall(
 'addTransport',
 array(new Reference($id), $attributes["alias"])
);
 }
 }
 }
}

The double loop may be confusing. This is because a service can have more than one
tag. You tag a service twice or more with the acme_mailer.transport tag. The
second foreach loop iterates over the acme_mailer.transport tags set for the
current service and gives you the attributes.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	DependencyInjection

Using a Factory to Create Services

Symfony’s Service Container provides a powerful way of controlling the
creation of objects, allowing you to specify arguments passed to the constructor
as well as calling methods and setting parameters. Sometimes, however, this
will not provide you with everything you need to construct your objects.
For this situation, you can use a factory to create the object and tell the
service container to call a method on the factory rather than directly instantiating
the class.

Suppose you have a factory that configures and returns a new NewsletterManager
object:

class NewsletterManagerFactory
{
 public static function createNewsletterManager()
 {
 $newsletterManager = new NewsletterManager();

 // ...

 return $newsletterManager;
 }
}

To make the NewsletterManager object available as a service, you can
configure the service container to use the NewsletterManagerFactory factory
class:

	YAMLservices:
 newsletter_manager:
 class: NewsletterManager
 factory_class: NewsletterManagerFactory
 factory_method: createNewsletterManager

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service
 id="newsletter_manager"
 class="NewsletterManager"
 factory-class="NewsletterManagerFactory"
 factory-method="createNewsletterManager" />
 </services>
</services>

	PHPuse Symfony\Component\DependencyInjection\Definition;

// ...
$definition = new Definition('NewsletterManager');
$definition->setFactoryClass('NewsletterManagerFactory');
$definition->setFactoryMethod('createNewsletterManager');

$container->setDefinition('newsletter_manager', $definition);

When you specify the class to use for the factory (via factory_class)
the method will be called statically. If the factory itself should be instantiated
and the resulting object’s method called, configure the factory itself as a service.
In this case, the method (e.g. createNewsletterManager) should be changed
to be non-static:

	YAMLservices:
 newsletter_manager_factory:
 class: NewsletterManagerFactory
 newsletter_manager:
 class: NewsletterManager
 factory_service: newsletter_manager_factory
 factory_method: createNewsletterManager

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="newsletter_manager_factory" class="NewsletterManagerFactory" />

 <service
 id="newsletter_manager"
 class="NewsletterManager"
 factory-service="newsletter_manager_factory"
 factory-method="createNewsletterManager" />
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;

$container->setDefinition('newsletter_manager_factory', new Definition(
 'NewsletterManager'
));
$container->setDefinition('newsletter_manager', new Definition(
 'NewsletterManagerFactory'
))->setFactoryService(
 'newsletter_manager_factory'
)->setFactoryMethod(
 'createNewsletterManager'
);

注解

The factory service is specified by its id name and not a reference to
the service itself. So, you do not need to use the @ syntax for this in
YAML configurations.

Passing Arguments to the Factory Method

If you need to pass arguments to the factory method, you can use the arguments
options inside the service container. For example, suppose the createNewsletterManager
method in the previous example takes the templating service as an argument:

	YAMLservices:
 newsletter_manager_factory:
 class: NewsletterManagerFactory
 newsletter_manager:
 class: NewsletterManager
 factory_service: newsletter_manager_factory
 factory_method: createNewsletterManager
 arguments:
 - "@templating"

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="newsletter_manager_factory" class="NewsletterManagerFactory" />

 <service
 id="newsletter_manager"
 class="NewsletterManager"
 factory-service="newsletter_manager_factory"
 factory-method="createNewsletterManager">

 <argument type="service" id="templating" />
 </service>
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;

// ...
$container->setDefinition('newsletter_manager_factory', new Definition(
 'NewsletterManagerFactory'
));
$container->setDefinition('newsletter_manager', new Definition(
 'NewsletterManager',
 array(new Reference('templating'))
))->setFactoryService(
 'newsletter_manager_factory'
)->setFactoryMethod(
 'createNewsletterManager'
);

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	DependencyInjection

Configuring Services with a Service Configurator

The Service Configurator is a feature of the Dependency Injection Container that
allows you to use a callable to configure a service after its instantiation.

You can specify a method in another service, a PHP function or a static method
in a class. The service instance is passed to the callable, allowing the
configurator to do whatever it needs to configure the service after its
creation.

A Service Configurator can be used, for example, when you have a service that
requires complex setup based on configuration settings coming from different
sources/services. Using an external configurator, you can maintain the service
implementation cleanly and keep it decoupled from the other objects that provide
the configuration needed.

Another interesting use case is when you have multiple objects that share a
common configuration or that should be configured in a similar way at runtime.

For example, suppose you have an application where you send different types of
emails to users. Emails are passed through different formatters that could be
enabled or not depending on some dynamic application settings. You start
defining a NewsletterManager class like this:

class NewsletterManager implements EmailFormatterAwareInterface
{
 protected $mailer;
 protected $enabledFormatters;

 public function setMailer(Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 public function setEnabledFormatters(array $enabledFormatters)
 {
 $this->enabledFormatters = $enabledFormatters;
 }

 // ...
}

and also a GreetingCardManager class:

class GreetingCardManager implements EmailFormatterAwareInterface
{
 protected $mailer;
 protected $enabledFormatters;

 public function setMailer(Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 public function setEnabledFormatters(array $enabledFormatters)
 {
 $this->enabledFormatters = $enabledFormatters;
 }

 // ...
}

As mentioned before, the goal is to set the formatters at runtime depending on
application settings. To do this, you also have an EmailFormatterManager
class which is responsible for loading and validating formatters enabled
in the application:

class EmailFormatterManager
{
 protected $enabledFormatters;

 public function loadFormatters()
 {
 // code to configure which formatters to use
 $enabledFormatters = array(...);
 // ...

 $this->enabledFormatters = $enabledFormatters;
 }

 public function getEnabledFormatters()
 {
 return $this->enabledFormatters;
 }

 // ...
}

If your goal is to avoid having to couple NewsletterManager and
GreetingCardManager with EmailFormatterManager, then you might want to
create a configurator class to configure these instances:

class EmailConfigurator
{
 private $formatterManager;

 public function __construct(EmailFormatterManager $formatterManager)
 {
 $this->formatterManager = $formatterManager;
 }

 public function configure(EmailFormatterAwareInterface $emailManager)
 {
 $emailManager->setEnabledFormatters(
 $this->formatterManager->getEnabledFormatters()
);
 }

 // ...
}

The EmailConfigurator‘s job is to inject the enabled filters into NewsletterManager
and GreetingCardManager because they are not aware of where the enabled
filters come from. In the other hand, the EmailFormatterManager holds the
knowledge about the enabled formatters and how to load them, keeping the single
responsibility principle.

Configurator Service Config

The service config for the above classes would look something like this:

	YAMLservices:
 my_mailer:
 # ...

 email_formatter_manager:
 class: EmailFormatterManager
 # ...

 email_configurator:
 class: EmailConfigurator
 arguments: ["@email_formatter_manager"]
 # ...

 newsletter_manager:
 class: NewsletterManager
 calls:
 - [setMailer, ["@my_mailer"]]
 configurator: ["@email_configurator", configure]

 greeting_card_manager:
 class: GreetingCardManager
 calls:
 - [setMailer, ["@my_mailer"]]
 configurator: ["@email_configurator", configure]

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="my_mailer">
 <!-- ... -->
 </service>

 <service id="email_formatter_manager" class="EmailFormatterManager">
 <!-- ... -->
 </service>

 <service id="email_configurator" class="EmailConfigurator">
 <argument type="service" id="email_formatter_manager" />
 <!-- ... -->
 </service>

 <service id="newsletter_manager" class="NewsletterManager">
 <call method="setMailer">
 <argument type="service" id="my_mailer" />
 </call>
 <configurator service="email_configurator" method="configure" />
 </service>

 <service id="greeting_card_manager" class="GreetingCardManager">
 <call method="setMailer">
 <argument type="service" id="my_mailer" />
 </call>
 <configurator service="email_configurator" method="configure" />
 </service>
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\Reference;

// ...
$container->setDefinition('my_mailer', ...);
$container->setDefinition('email_formatter_manager', new Definition(
 'EmailFormatterManager'
));
$container->setDefinition('email_configurator', new Definition(
 'EmailConfigurator'
));
$container->setDefinition('newsletter_manager', new Definition(
 'NewsletterManager'
))->addMethodCall('setMailer', array(
 new Reference('my_mailer'),
))->setConfigurator(array(
 new Reference('email_configurator'),
 'configure',
)));
$container->setDefinition('greeting_card_manager', new Definition(
 'GreetingCardManager'
))->addMethodCall('setMailer', array(
 new Reference('my_mailer'),
))->setConfigurator(array(
 new Reference('email_configurator'),
 'configure',
)));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	DependencyInjection

Managing common Dependencies with parent Services

As you add more functionality to your application, you may well start to have
related classes that share some of the same dependencies. For example you
may have a Newsletter Manager which uses setter injection to set its dependencies:

class NewsletterManager
{
 protected $mailer;
 protected $emailFormatter;

 public function setMailer(Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 public function setEmailFormatter(EmailFormatter $emailFormatter)
 {
 $this->emailFormatter = $emailFormatter;
 }

 // ...
}

and also a Greeting Card class which shares the same dependencies:

class GreetingCardManager
{
 protected $mailer;
 protected $emailFormatter;

 public function setMailer(Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 public function setEmailFormatter(EmailFormatter $emailFormatter)
 {
 $this->emailFormatter = $emailFormatter;
 }

 // ...
}

The service config for these classes would look something like this:

	YAMLservices:
 my_mailer:
 # ...

 my_email_formatter:
 # ...

 newsletter_manager:
 class: NewsletterManager
 calls:
 - [setMailer, ["@my_mailer"]]
 - [setEmailFormatter, ["@my_email_formatter"]]

 greeting_card_manager:
 class: "GreetingCardManager"
 calls:
 - [setMailer, ["@my_mailer"]]
 - [setEmailFormatter, ["@my_email_formatter"]]

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="my_mailer">
 <!-- ... -->
 </service>

 <service id="my_email_formatter">
 <!-- ... -->
 </service>

 <service id="newsletter_manager" class="NewsletterManager">
 <call method="setMailer">
 <argument type="service" id="my_mailer" />
 </call>
 <call method="setEmailFormatter">
 <argument type="service" id="my_email_formatter" />
 </call>
 </service>

 <service id="greeting_card_manager" class="GreetingCardManager">
 <call method="setMailer">
 <argument type="service" id="my_mailer" />
 </call>

 <call method="setEmailFormatter">
 <argument type="service" id="my_email_formatter" />
 </call>
 </service>
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Reference;

// ...
$container->register('my_mailer', ...);
$container->register('my_email_formatter', ...);

$container
 ->register('newsletter_manager', 'NewsletterManager')
 ->addMethodCall('setMailer', array(
 new Reference('my_mailer'),
))
 ->addMethodCall('setEmailFormatter', array(
 new Reference('my_email_formatter'),
))
;

$container
 ->register('greeting_card_manager', 'GreetingCardManager')
 ->addMethodCall('setMailer', array(
 new Reference('my_mailer'),
))
 ->addMethodCall('setEmailFormatter', array(
 new Reference('my_email_formatter'),
))
;

There is a lot of repetition in both the classes and the configuration. This
means that if you changed, for example, the Mailer of EmailFormatter
classes to be injected via the constructor, you would need to update the config
in two places. Likewise if you needed to make changes to the setter methods
you would need to do this in both classes. The typical way to deal with the
common methods of these related classes would be to extract them to a super class:

abstract class MailManager
{
 protected $mailer;
 protected $emailFormatter;

 public function setMailer(Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 public function setEmailFormatter(EmailFormatter $emailFormatter)
 {
 $this->emailFormatter = $emailFormatter;
 }

 // ...
}

The NewsletterManager and GreetingCardManager can then extend this
super class:

class NewsletterManager extends MailManager
{
 // ...
}

and:

class GreetingCardManager extends MailManager
{
 // ...
}

In a similar fashion, the Symfony service container also supports extending
services in the configuration so you can also reduce the repetition by specifying
a parent for a service.

	YAML# ...
services:
 # ...
 mail_manager:
 abstract: true
 calls:
 - [setMailer, ["@my_mailer"]]
 - [setEmailFormatter, ["@my_email_formatter"]]

 newsletter_manager:
 class: "NewsletterManager"
 parent: mail_manager

 greeting_card_manager:
 class: "GreetingCardManager"
 parent: mail_manager

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <!-- ... -->
 <services>
 <!-- ... -->
 <service id="mail_manager" abstract="true">
 <call method="setMailer">
 <argument type="service" id="my_mailer" />
 </call>

 <call method="setEmailFormatter">
 <argument type="service" id="my_email_formatter" />
 </call>
 </service>

 <service
 id="newsletter_manager"
 class="NewsletterManager"
 parent="mail_manager" />

 <service
 id="greeting_card_manager"
 class="GreetingCardManager"
 parent="mail_manager" />
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\DefinitionDecorator;
use Symfony\Component\DependencyInjection\Reference;

// ...
$mailManager = new Definition();
$mailManager
 ->setAbstract(true);
 ->addMethodCall('setMailer', array(
 new Reference('my_mailer'),
))
 ->addMethodCall('setEmailFormatter', array(
 new Reference('my_email_formatter'),
))
;
$container->setDefinition('mail_manager', $mailManager);

$newsletterManager = new DefinitionDecorator('mail_manager');
$newsletterManager->setClass('NewsletterManager');
$container->setDefinition('newsletter_manager', $newsletterManager);

$greetingCardManager = new DefinitionDecorator('mail_manager');
$greetingCardManager->setClass('GreetingCardManager');
$container->setDefinition('greeting_card_manager', $greetingCardManager);

In this context, having a parent service implies that the arguments and
method calls of the parent service should be used for the child services.
Specifically, the setter methods defined for the parent service will be called
when the child services are instantiated.

注解

If you remove the parent config key, the services will still be instantiated
and they will still of course extend the MailManager class. The difference
is that omitting the parent config key will mean that the calls
defined on the mail_manager service will not be executed when the
child services are instantiated.

警告

The scope, abstract and tags attributes are always taken from
the child service.

The parent service is abstract as it should not be directly retrieved from the
container or passed into another service. It exists merely as a “template” that
other services can use. This is why it can have no class configured which
would cause an exception to be raised for a non-abstract service.

注解

In order for parent dependencies to resolve, the ContainerBuilder must
first be compiled. See Compiling the Container
for more details.

小技巧

In the examples shown, the classes sharing the same configuration also
extend from the same parent class in PHP. This isn’t necessary at all.
You can just extract common parts of similar service definitions into
a parent service without also extending a parent class in PHP.

Overriding parent Dependencies

There may be times where you want to override what class is passed in for
a dependency of one child service only. Fortunately, by adding the method
call config for the child service, the dependencies set by the parent class
will be overridden. So if you needed to pass a different dependency just
to the NewsletterManager class, the config would look like this:

	YAML# ...
services:
 # ...
 my_alternative_mailer:
 # ...

 mail_manager:
 abstract: true
 calls:
 - [setMailer, ["@my_mailer"]]
 - [setEmailFormatter, ["@my_email_formatter"]]

 newsletter_manager:
 class: "NewsletterManager"
 parent: mail_manager
 calls:
 - [setMailer, ["@my_alternative_mailer"]]

 greeting_card_manager:
 class: "GreetingCardManager"
 parent: mail_manager

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <!-- ... -->
 <services>
 <!-- ... -->
 <service id="my_alternative_mailer">
 <!-- ... -->
 </service>

 <service id="mail_manager" abstract="true">
 <call method="setMailer">
 <argument type="service" id="my_mailer" />
 </call>

 <call method="setEmailFormatter">
 <argument type="service" id="my_email_formatter" />
 </call>
 </service>

 <service
 id="newsletter_manager"
 class="NewsletterManager"
 parent="mail_manager">

 <call method="setMailer">
 <argument type="service" id="my_alternative_mailer" />
 </call>
 </service>

 <service
 id="greeting_card_manager"
 class="GreetingCardManager"
 parent="mail_manager" />
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\DefinitionDecorator;
use Symfony\Component\DependencyInjection\Reference;

// ...
$container->setDefinition('my_alternative_mailer', ...);

$mailManager = new Definition();
$mailManager
 ->setAbstract(true);
 ->addMethodCall('setMailer', array(
 new Reference('my_mailer'),
))
 ->addMethodCall('setEmailFormatter', array(
 new Reference('my_email_formatter'),
))
;
$container->setDefinition('mail_manager', $mailManager);

$newsletterManager = new DefinitionDecorator('mail_manager');
$newsletterManager->setClass('NewsletterManager');
 ->addMethodCall('setMailer', array(
 new Reference('my_alternative_mailer'),
))
;
$container->setDefinition('newsletter_manager', $newsletterManager);

$greetingCardManager = new DefinitionDecorator('mail_manager');
$greetingCardManager->setClass('GreetingCardManager');
$container->setDefinition('greeting_card_manager', $greetingCardManager);

The GreetingCardManager will receive the same dependencies as before,
but the NewsletterManager will be passed the my_alternative_mailer
instead of the my_mailer service.

警告

You can’t override method calls. When you defined new method calls in the child
service, it’ll be added to the current set of configured method calls. This means
it works perfectly when the setter overrides the current property, but it doesn’t
work as expected when the setter appends it to the existing data (e.g. an
addFilters() method).
In those cases, the only solution is to not extend the parent service and configuring
the service just like you did before knowing this feature.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	DependencyInjection

Advanced Container Configuration

Marking Services as public / private

When defining services, you’ll usually want to be able to access these definitions
within your application code. These services are called public. For example,
the doctrine service registered with the container when using the DoctrineBundle
is a public service. This means that you can fetch it from the container
using the get() method:

$doctrine = $container->get('doctrine');

In some cases, a service only exists to be injected into another service
and is not intended to be fetched directly from the container as shown
above.

In these cases, to get a minor performance boost, you can set the service
to be not public (i.e. private):

	YAMLservices:
 foo:
 class: Example\Foo
 public: false

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="foo" class="Example\Foo" public="false" />
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;

$definition = new Definition('Example\Foo');
$definition->setPublic(false);
$container->setDefinition('foo', $definition);

What makes private services special is that, if they are only injected once,
they are converted from services to inlined instantiations (e.g. new PrivateThing()).
This increases the container’s performance.

Now that the service is private, you should not fetch the service directly
from the container:

$container->get('foo');

This may or may not work, depending on if the service could be inlined.
Simply said: A service can be marked as private if you do not want to access
it directly from your code.

However, if a service has been marked as private, you can still alias it (see
below) to access this service (via the alias).

注解

Services are by default public.

Synthetic Services

Synthetic services are services that are injected into the container instead
of being created by the container.

For example, if you’re using the HttpKernel
component with the DependencyInjection component, then the request
service is injected in the
ContainerAwareHttpKernel::handle() [http://api.symfony.com/master/Symfony/Component/HttpKernel/DependencyInjection/ContainerAwareHttpKernel.html#method_handle]
method when entering the request scope.
The class does not exist when there is no request, so it can’t be included in
the container configuration. Also, the service should be different for every
subrequest in the application.

To create a synthetic service, set synthetic to true:

	YAMLservices:
 request:
 synthetic: true

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="request" synthetic="true" />
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;

$container
 ->setDefinition('request', new Definition())
 ->setSynthetic(true);

As you see, only the synthetic option is set. All other options are only used
to configure how a service is created by the container. As the service isn’t
created by the container, these options are omitted.

Now, you can inject the class by using
Container::set [http://api.symfony.com/master/Symfony/Component/DependencyInjection/Container.html#method_set]:

// ...
$container->set('request', new MyRequest(...));

Aliasing

You may sometimes want to use shortcuts to access some services. You can
do so by aliasing them and, furthermore, you can even alias non-public
services.

	YAMLservices:
 foo:
 class: Example\Foo
 bar:
 alias: foo

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="foo" class="Example\Foo" />

 <service id="bar" alias="foo" />
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;

$container->setDefinition('foo', new Definition('Example\Foo'));

$containerBuilder->setAlias('bar', 'foo');

This means that when using the container directly, you can access the foo
service by asking for the bar service like this:

$container->get('bar'); // Would return the foo service

小技巧

In YAML, you can also use a shortcut to alias a service:

services:
 foo:
 class: Example\Foo
 bar: "@foo"

Requiring Files

There might be use cases when you need to include another file just before
the service itself gets loaded. To do so, you can use the file directive.

	YAMLservices:
 foo:
 class: Example\Foo\Bar
 file: "%kernel.root_dir%/src/path/to/file/foo.php"

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="foo" class="Example\Foo\Bar">
 <file>%kernel.root_dir%/src/path/to/file/foo.php</file>
 </service>
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;

$definition = new Definition('Example\Foo\Bar');
$definition->setFile('%kernel.root_dir%/src/path/to/file/foo.php');
$container->setDefinition('foo', $definition);

Notice that Symfony will internally call the PHP statement require_once,
which means that your file will be included only once per request.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	DependencyInjection

Lazy Services

2.3 新版功能: Lazy services were introduced in Symfony 2.3.

Why lazy Services?

In some cases, you may want to inject a service that is a bit heavy to instantiate,
but is not always used inside your object. For example, imagine you have
a NewsletterManager and you inject a mailer service into it. Only
a few methods on your NewsletterManager actually use the mailer,
but even when you don’t need it, a mailer service is always instantiated
in order to construct your NewsletterManager.

Configuring lazy services is one answer to this. With a lazy service, a “proxy”
of the mailer service is actually injected. It looks and acts just like
the mailer, except that the mailer isn’t actually instantiated until
you interact with the proxy in some way.

Installation

In order to use the lazy service instantiation, you will first need to install
the ProxyManager bridge [https://github.com/symfony/symfony/tree/master/src/Symfony/Bridge/ProxyManager]:

$ composer require symfony/proxy-manager-bridge:~2.3

注解

If you’re using the full-stack framework, the proxy manager bridge is already
included but the actual proxy manager needs to be included. So, run:

$ php composer.phar require ocramius/proxy-manager:~0.5

Afterwards compile your container and check to make sure that you get
a proxy for your lazy services.

Configuration

You can mark the service as lazy by manipulating its definition:

	YAMLservices:
 foo:
 class: Acme\Foo
 lazy: true

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="foo" class="Acme\Foo" lazy="true" />
 </services>
</container>

	PHPuse Symfony\Component\DependencyInjection\Definition;

$definition = new Definition('Acme\Foo');
$definition->setLazy(true);
$container->setDefinition('foo', $definition);

You can then require the service from the container:

$service = $container->get('foo');

At this point the retrieved $service should be a virtual proxy [http://en.wikipedia.org/wiki/Proxy_pattern] with
the same signature of the class representing the service. You can also inject
the service just like normal into other services. The object that’s actually
injected will be the proxy.

To check if your proxy works you can simply check the interface of the
received object.

var_dump(class_implements($service));

If the class implements the ProxyManager\Proxy\LazyLoadingInterface your
lazy loaded services are working.

注解

If you don’t install the ProxyManager bridge [https://github.com/symfony/symfony/tree/master/src/Symfony/Bridge/ProxyManager], the container will just
skip over the lazy flag and simply instantiate the service as it would
normally do.

The proxy gets initialized and the actual service is instantiated as soon
as you interact in any way with this object.

Additional Resources

You can read more about how proxies are instantiated, generated and initialized
in the documentation of ProxyManager [https://github.com/Ocramius/ProxyManager/blob/master/docs/lazy-loading-value-holder.md].

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	DependencyInjection

Container Building Workflow

In the preceding pages of this section, there has been little to say about
where the various files and classes should be located. This is because this
depends on the application, library or framework in which you want to use
the container. Looking at how the container is configured and built in the
Symfony full stack framework will help you see how this all fits together,
whether you are using the full stack framework or looking to use the service
container in another application.

The full stack framework uses the HttpKernel component to manage the loading
of the service container configuration from the application and bundles and
also handles the compilation and caching. Even if you are not using HttpKernel,
it should give you an idea of one way of organizing configuration in a modular
application.

Working with a Cached Container

Before building it, the kernel checks to see if a cached version of the container
exists. The HttpKernel has a debug setting and if this is false, the
cached version is used if it exists. If debug is true then the kernel
checks to see if configuration is fresh
and if it is, the cached version of the container is used. If not then the container
is built from the application-level configuration and the bundles’s extension
configuration.

Read Dumping the Configuration for Performance
for more details.

Application-level Configuration

Application level config is loaded from the app/config directory. Multiple
files are loaded which are then merged when the extensions are processed. This
allows for different configuration for different environments e.g. dev, prod.

These files contain parameters and services that are loaded directly into
the container as per Setting Up the Container with Configuration Files.
They also contain configuration that is processed by extensions as per
Managing Configuration with Extensions.
These are considered to be bundle configuration since each bundle contains
an Extension class.

Bundle-level Configuration with Extensions

By convention, each bundle contains an Extension class which is in the bundle’s
DependencyInjection directory. These are registered with the ContainerBuilder
when the kernel is booted. When the ContainerBuilder is compiled,
the application-level configuration relevant to the bundle’s extension is
passed to the Extension which also usually loads its own config file(s), typically from the bundle’s
Resources/config directory. The application-level config is usually processed
with a Configuration object also stored
in the bundle’s DependencyInjection directory.

Compiler Passes to Allow Interaction between Bundles

Compiler passes are
used to allow interaction between different bundles as they cannot affect
each other’s configuration in the extension classes. One of the main uses is
to process tagged services, allowing bundles to register services to be picked
up by other bundles, such as Monolog loggers, Twig extensions and Data Collectors
for the Web Profiler. Compiler passes are usually placed in the bundle’s
DependencyInjection/Compiler directory.

Compilation and Caching

After the compilation process has loaded the services from the configuration,
extensions and the compiler passes, it is dumped so that the cache can be used
next time. The dumped version is then used during subsequent requests as it
is more efficient.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

The DomCrawler Component

The DomCrawler component eases DOM navigation for HTML and XML documents.

注解

While possible, the DomCrawler component is not designed for manipulation
of the DOM or re-dumping HTML/XML.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/dom-crawler on Packagist [https://packagist.org/packages/symfony/dom-crawler]);

	Use the official Git repository (https://github.com/symfony/DomCrawler).

Usage

The Crawler [http://api.symfony.com/master/Symfony/Component/DomCrawler/Crawler.html] class provides methods
to query and manipulate HTML and XML documents.

An instance of the Crawler represents a set (SplObjectStorage [http://php.net/manual/en/class.splobjectstorage.php])
of DOMElement [http://php.net/manual/en/class.domelement.php] objects, which are basically nodes that you can
traverse easily:

use Symfony\Component\DomCrawler\Crawler;

$html = <<<'HTML'
<!DOCTYPE html>
<html>
 <body>
 <p class="message">Hello World!</p>
 <p>Hello Crawler!</p>
 </body>
</html>
HTML;

$crawler = new Crawler($html);

foreach ($crawler as $domElement) {
 print $domElement->nodeName;
}

Specialized Link [http://api.symfony.com/master/Symfony/Component/DomCrawler/Link.html] and
Form [http://api.symfony.com/master/Symfony/Component/DomCrawler/Form.html] classes are useful for
interacting with html links and forms as you traverse through the HTML tree.

注解

The DomCrawler will attempt to automatically fix your HTML to match the
official specification. For example, if you nest a <p> tag inside
another <p> tag, it will be moved to be a sibling of the parent tag.
This is expected and is part of the HTML5 spec. But if you’re getting
unexpected behavior, this could be a cause. And while the DomCrawler
isn’t meant to dump content, you can see the “fixed” version of your HTML
by dumping it.

Node Filtering

Using XPath expressions is really easy:

$crawler = $crawler->filterXPath('descendant-or-self::body/p');

小技巧

DOMXPath::query is used internally to actually perform an XPath query.

Filtering is even easier if you have the CssSelector component installed.
This allows you to use jQuery-like selectors to traverse:

$crawler = $crawler->filter('body > p');

Anonymous function can be used to filter with more complex criteria:

use Symfony\Component\DomCrawler\Crawler;
// ...

$crawler = $crawler
 ->filter('body > p')
 ->reduce(function (Crawler $node, $i) {
 // filter even nodes
 return ($i % 2) == 0;
 });

To remove a node the anonymous function must return false.

注解

All filter methods return a new Crawler [http://api.symfony.com/master/Symfony/Component/DomCrawler/Crawler.html]
instance with filtered content.

Node Traversing

Access node by its position on the list:

$crawler->filter('body > p')->eq(0);

Get the first or last node of the current selection:

$crawler->filter('body > p')->first();
$crawler->filter('body > p')->last();

Get the nodes of the same level as the current selection:

$crawler->filter('body > p')->siblings();

Get the same level nodes after or before the current selection:

$crawler->filter('body > p')->nextAll();
$crawler->filter('body > p')->previousAll();

Get all the child or parent nodes:

$crawler->filter('body')->children();
$crawler->filter('body > p')->parents();

注解

All the traversal methods return a new Crawler [http://api.symfony.com/master/Symfony/Component/DomCrawler/Crawler.html]
instance.

Accessing Node Values

Access the value of the first node of the current selection:

$message = $crawler->filterXPath('//body/p')->text();

Access the attribute value of the first node of the current selection:

$class = $crawler->filterXPath('//body/p')->attr('class');

Extract attribute and/or node values from the list of nodes:

$attributes = $crawler
 ->filterXpath('//body/p')
 ->extract(array('_text', 'class'))
;

注解

Special attribute _text represents a node value.

Call an anonymous function on each node of the list:

use Symfony\Component\DomCrawler\Crawler;
// ...

$nodeValues = $crawler->filter('p')->each(function (Crawler $node, $i) {
 return $node->text();
});

2.3 新版功能: As seen here, in Symfony 2.3, the each and reduce Closure functions
are passed a Crawler as the first argument. Previously, that argument
was a DOMNode [http://php.net/manual/en/class.domnode.php].

The anonymous function receives the node (as a Crawler) and the position as arguments.
The result is an array of values returned by the anonymous function calls.

Adding the Content

The crawler supports multiple ways of adding the content:

$crawler = new Crawler('<html><body /></html>');

$crawler->addHtmlContent('<html><body /></html>');
$crawler->addXmlContent('<root><node /></root>');

$crawler->addContent('<html><body /></html>');
$crawler->addContent('<root><node /></root>', 'text/xml');

$crawler->add('<html><body /></html>');
$crawler->add('<root><node /></root>');

注解

When dealing with character sets other than ISO-8859-1, always add HTML
content using the addHTMLContent() [http://api.symfony.com/master/Symfony/Component/DomCrawler/Crawler.html#method_addHTMLContent]
method where you can specify the second parameter to be your target character
set.

As the Crawler’s implementation is based on the DOM extension, it is also able
to interact with native DOMDocument [http://php.net/manual/en/class.domdocument.php], DOMNodeList [http://php.net/manual/en/class.domnodelist.php]
and DOMNode [http://php.net/manual/en/class.domnode.php] objects:

$document = new \DOMDocument();
$document->loadXml('<root><node /><node /></root>');
$nodeList = $document->getElementsByTagName('node');
$node = $document->getElementsByTagName('node')->item(0);

$crawler->addDocument($document);
$crawler->addNodeList($nodeList);
$crawler->addNodes(array($node));
$crawler->addNode($node);
$crawler->add($document);

Manipulating and Dumping a Crawler

These methods on the Crawler are intended to initially populate your
Crawler and aren’t intended to be used to further manipulate a DOM
(though this is possible). However, since the Crawler is a set of
DOMElement [http://php.net/manual/en/class.domelement.php] objects, you can use any method or property available
on DOMElement [http://php.net/manual/en/class.domelement.php], DOMNode [http://php.net/manual/en/class.domnode.php] or DOMDocument [http://php.net/manual/en/class.domdocument.php].
For example, you could get the HTML of a Crawler with something like
this:

$html = '';

foreach ($crawler as $domElement) {
 $html .= $domElement->ownerDocument->saveHTML($domElement);
}

Or you can get the HTML of the first node using
html() [http://api.symfony.com/master/Symfony/Component/DomCrawler/Crawler.html#method_html]:

$html = $crawler->html();

The html method is new in Symfony 2.3.

Links

To find a link by name (or a clickable image by its alt attribute), use
the selectLink method on an existing crawler. This returns a Crawler
instance with just the selected link(s). Calling link() gives you a special
Link [http://api.symfony.com/master/Symfony/Component/DomCrawler/Link.html] object:

$linksCrawler = $crawler->selectLink('Go elsewhere...');
$link = $linksCrawler->link();

// or do this all at once
$link = $crawler->selectLink('Go elsewhere...')->link();

The Link [http://api.symfony.com/master/Symfony/Component/DomCrawler/Link.html] object has several useful
methods to get more information about the selected link itself:

// return the proper URI that can be used to make another request
$uri = $link->getUri();

注解

The getUri() is especially useful as it cleans the href value and
transforms it into how it should really be processed. For example, for a
link with href="#foo", this would return the full URI of the current
page suffixed with #foo. The return from getUri() is always a full
URI that you can act on.

Forms

Special treatment is also given to forms. A selectButton() method is
available on the Crawler which returns another Crawler that matches a button
(input[type=submit], input[type=image], or a button) with the
given text. This method is especially useful because you can use it to return
a Form [http://api.symfony.com/master/Symfony/Component/DomCrawler/Form.html] object that represents the
form that the button lives in:

$form = $crawler->selectButton('validate')->form();

// or "fill" the form fields with data
$form = $crawler->selectButton('validate')->form(array(
 'name' => 'Ryan',
));

The Form [http://api.symfony.com/master/Symfony/Component/DomCrawler/Form.html] object has lots of very
useful methods for working with forms:

$uri = $form->getUri();

$method = $form->getMethod();

The getUri() [http://api.symfony.com/master/Symfony/Component/DomCrawler/Form.html#method_getUri] method does more
than just return the action attribute of the form. If the form method
is GET, then it mimics the browser’s behavior and returns the action
attribute followed by a query string of all of the form’s values.

You can virtually set and get values on the form:

// set values on the form internally
$form->setValues(array(
 'registration[username]' => 'symfonyfan',
 'registration[terms]' => 1,
));

// get back an array of values - in the "flat" array like above
$values = $form->getValues();

// returns the values like PHP would see them,
// where "registration" is its own array
$values = $form->getPhpValues();

To work with multi-dimensional fields:

<form>
 <input name="multi[]" />
 <input name="multi[]" />
 <input name="multi[dimensional]" />
</form>

Pass an array of values:

// Set a single field
$form->setValues(array('multi' => array('value')));

// Set multiple fields at once
$form->setValues(array('multi' => array(
 1 => 'value',
 'dimensional' => 'an other value'
)));

This is great, but it gets better! The Form object allows you to interact
with your form like a browser, selecting radio values, ticking checkboxes,
and uploading files:

$form['registration[username]']->setValue('symfonyfan');

// check or uncheck a checkbox
$form['registration[terms]']->tick();
$form['registration[terms]']->untick();

// select an option
$form['registration[birthday][year]']->select(1984);

// select many options from a "multiple" select
$form['registration[interests]']->select(array('symfony', 'cookies'));

// even fake a file upload
$form['registration[photo]']->upload('/path/to/lucas.jpg');

What’s the point of doing all of this? If you’re testing internally, you
can grab the information off of your form as if it had just been submitted
by using the PHP values:

$values = $form->getPhpValues();
$files = $form->getPhpFiles();

If you’re using an external HTTP client, you can use the form to grab all
of the information you need to create a POST request for the form:

$uri = $form->getUri();
$method = $form->getMethod();
$values = $form->getValues();
$files = $form->getFiles();

// now use some HTTP client and post using this information

One great example of an integrated system that uses all of this is Goutte [https://github.com/fabpot/goutte].
Goutte understands the Symfony Crawler object and can use it to submit forms
directly:

use Goutte\Client;

// make a real request to an external site
$client = new Client();
$crawler = $client->request('GET', 'https://github.com/login');

// select the form and fill in some values
$form = $crawler->selectButton('Log in')->form();
$form['login'] = 'symfonyfan';
$form['password'] = 'anypass';

// submit that form
$crawler = $client->submit($form);

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

EventDispatcher

	The EventDispatcher Component
	Introduction

	Installation

	Usage

	Other Dispatchers

	The Container Aware Event Dispatcher
	Introduction

	Setup

	Adding Listeners

	The Generic Event Object

	The Immutable Event Dispatcher

	The Traceable Event Dispatcher

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	EventDispatcher

The EventDispatcher Component

The EventDispatcher component provides tools that allow your application
components to communicate with each other by dispatching events and listening
to them.

Introduction

Object Oriented code has gone a long way to ensuring code extensibility. By
creating classes that have well defined responsibilities, your code becomes
more flexible and a developer can extend them with subclasses to modify their
behaviors. But if they want to share the changes with other developers who have
also made their own subclasses, code inheritance is no longer the answer.

Consider the real-world example where you want to provide a plugin system for
your project. A plugin should be able to add methods, or do something before
or after a method is executed, without interfering with other plugins. This is
not an easy problem to solve with single inheritance, and multiple inheritance
(were it possible with PHP) has its own drawbacks.

The Symfony EventDispatcher component implements the Mediator [http://en.wikipedia.org/wiki/Mediator_pattern] pattern in
a simple and effective way to make all these things possible and to make your
projects truly extensible.

Take a simple example from The HttpKernel Component. Once a
Response object has been created, it may be useful to allow other elements
in the system to modify it (e.g. add some cache headers) before it’s actually
used. To make this possible, the Symfony kernel throws an event -
kernel.response. Here’s how it works:

	A listener (PHP object) tells a central dispatcher object that it wants
to listen to the kernel.response event;

	At some point, the Symfony kernel tells the dispatcher object to dispatch
the kernel.response event, passing with it an Event object that has
access to the Response object;

	The dispatcher notifies (i.e. calls a method on) all listeners of the
kernel.response event, allowing each of them to make modifications to
the Response object.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/event-dispatcher on Packagist [https://packagist.org/packages/symfony/event-dispatcher]);

	Use the official Git repository (https://github.com/symfony/EventDispatcher).

Usage

Events

When an event is dispatched, it’s identified by a unique name (e.g.
kernel.response), which any number of listeners might be listening to. An
Event [http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html] instance is also created
and passed to all of the listeners. As you’ll see later, the Event object
itself often contains data about the event being dispatched.

Naming Conventions

The unique event name can be any string, but optionally follows a few simple
naming conventions:

	use only lowercase letters, numbers, dots (.), and underscores (_);

	prefix names with a namespace followed by a dot (e.g. kernel.);

	end names with a verb that indicates what action is being taken (e.g.
request).

Here are some examples of good event names:

	kernel.response

	form.pre_set_data

Event Names and Event Objects

When the dispatcher notifies listeners, it passes an actual Event object
to those listeners. The base Event class is very simple: it contains a
method for stopping event
propagation, but not much else.

Often times, data about a specific event needs to be passed along with the
Event object so that the listeners have needed information. In the case of
the kernel.response event, the Event object that’s created and passed to
each listener is actually of type
FilterResponseEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/FilterResponseEvent.html], a
subclass of the base Event object. This class contains methods such as
getResponse and setResponse, allowing listeners to get or even replace
the Response object.

The moral of the story is this: When creating a listener to an event, the
Event object that’s passed to the listener may be a special subclass that
has additional methods for retrieving information from and responding to the
event.

The Dispatcher

The dispatcher is the central object of the event dispatcher system. In
general, a single dispatcher is created, which maintains a registry of
listeners. When an event is dispatched via the dispatcher, it notifies all
listeners registered with that event:

use Symfony\Component\EventDispatcher\EventDispatcher;

$dispatcher = new EventDispatcher();

Connecting Listeners

To take advantage of an existing event, you need to connect a listener to the
dispatcher so that it can be notified when the event is dispatched. A call to
the dispatcher’s addListener() method associates any valid PHP callable to
an event:

$listener = new AcmeListener();
$dispatcher->addListener('foo.action', array($listener, 'onFooAction'));

The addListener() method takes up to three arguments:

	The event name (string) that this listener wants to listen to;

	A PHP callable that will be notified when an event is thrown that it listens
to;

	An optional priority integer (higher equals more important, and therefore
that the listener will be triggered earlier) that determines when a listener
is triggered versus other listeners (defaults to 0). If two listeners
have the same priority, they are executed in the order that they were added
to the dispatcher.

注解

A PHP callable [http://www.php.net/manual/en/language.pseudo-types.php#language.types.callback] is a PHP variable that can be used by the
call_user_func() function and returns true when passed to the
is_callable() function. It can be a \Closure instance, an object
implementing an __invoke method (which is what closures are in fact),
a string representing a function, or an array representing an object
method or a class method.

So far, you’ve seen how PHP objects can be registered as listeners. You
can also register PHP Closures [http://php.net/manual/en/functions.anonymous.php] as event listeners:

use Symfony\Component\EventDispatcher\Event;

$dispatcher->addListener('foo.action', function (Event $event) {
 // will be executed when the foo.action event is dispatched
});

Once a listener is registered with the dispatcher, it waits until the event is
notified. In the above example, when the foo.action event is dispatched,
the dispatcher calls the AcmeListener::onFooAction method and passes the
Event object as the single argument:

use Symfony\Component\EventDispatcher\Event;

class AcmeListener
{
 // ...

 public function onFooAction(Event $event)
 {
 // ... do something
 }
}

In many cases, a special Event subclass that’s specific to the given event
is passed to the listener. This gives the listener access to special
information about the event. Check the documentation or implementation of each
event to determine the exact Symfony\Component\EventDispatcher\Event
instance that’s being passed. For example, the kernel.response event passes an
instance of Symfony\Component\HttpKernel\Event\FilterResponseEvent:

use Symfony\Component\HttpKernel\Event\FilterResponseEvent;

public function onKernelResponse(FilterResponseEvent $event)
{
 $response = $event->getResponse();
 $request = $event->getRequest();

 // ...
}

Registering Event Listeners in the Service Container

When you are using the
ContainerAwareEventDispatcher [http://api.symfony.com/master/Symfony/Component/EventDispatcher/ContainerAwareEventDispatcher.html]
and the
DependencyInjection component,
you can use the
RegisterListenersPass [http://api.symfony.com/master/Symfony/Component/HttpKernel/DependencyInjection/RegisterListenersPass.html]
from the HttpKernel component to tag services as event listeners:

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Definition;
use Symfony\Component\DependencyInjection\ParameterBag\ParameterBag;
use Symfony\Component\DependencyInjection\Reference;
use Symfony\Component\HttpKernel\DependencyInjection\RegisterListenersPass;

$containerBuilder = new ContainerBuilder(new ParameterBag());
$containerBuilder->addCompilerPass(new RegisterListenersPass());

// register the event dispatcher service
$containerBuilder->setDefinition('event_dispatcher', new Definition(
 'Symfony\Component\EventDispatcher\ContainerAwareEventDispatcher',
 array(new Reference('service_container'))
));

// register your event listener service
$listener = new Definition('AcmeListener');
$listener->addTag('kernel.event_listener', array(
 'event' => 'foo.action',
 'method' => 'onFooAction',
));
$containerBuilder->setDefinition('listener_service_id', $listener);

// register an event subscriber
$subscriber = new Definition('AcmeSubscriber');
$subscriber->addTag('kernel.event_subscriber');
$containerBuilder->setDefinition('subscriber_service_id', $subscriber);

By default, the listeners pass assumes that the event dispatcher’s service
id is event_dispatcher, that event listeners are tagged with the
kernel.event_listener tag and that event subscribers are tagged with
the kernel.event_subscriber tag. You can change these default values
by passing custom values to the constructor of RegisterListenersPass.

Creating and Dispatching an Event

In addition to registering listeners with existing events, you can create and
dispatch your own events. This is useful when creating third-party libraries
and also when you want to keep different components of your own system
flexible and decoupled.

The Static Events Class

Suppose you want to create a new Event - store.order - that is dispatched
each time an order is created inside your application. To keep things
organized, start by creating a StoreEvents class inside your application
that serves to define and document your event:

namespace Acme\StoreBundle;

final class StoreEvents
{
 /**
 * The store.order event is thrown each time an order is created
 * in the system.
 *
 * The event listener receives an
 * Acme\StoreBundle\Event\FilterOrderEvent instance.
 *
 * @var string
 */
 const STORE_ORDER = 'store.order';
}

Notice that this class doesn’t actually do anything. The purpose of the
StoreEvents class is just to be a location where information about common
events can be centralized. Notice also that a special FilterOrderEvent
class will be passed to each listener of this event.

Creating an Event Object

Later, when you dispatch this new event, you’ll create an Event instance
and pass it to the dispatcher. The dispatcher then passes this same instance
to each of the listeners of the event. If you don’t need to pass any
information to your listeners, you can use the default
Symfony\Component\EventDispatcher\Event class. Most of the time, however,
you will need to pass information about the event to each listener. To
accomplish this, you’ll create a new class that extends
Symfony\Component\EventDispatcher\Event.

In this example, each listener will need access to some pretend Order
object. Create an Event class that makes this possible:

namespace Acme\StoreBundle\Event;

use Symfony\Component\EventDispatcher\Event;
use Acme\StoreBundle\Order;

class FilterOrderEvent extends Event
{
 protected $order;

 public function __construct(Order $order)
 {
 $this->order = $order;
 }

 public function getOrder()
 {
 return $this->order;
 }
}

Each listener now has access to the Order object via the getOrder
method.

Dispatch the Event

The dispatch() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventDispatcher.html#method_dispatch]
method notifies all listeners of the given event. It takes two arguments: the
name of the event to dispatch and the Event instance to pass to each
listener of that event:

use Acme\StoreBundle\StoreEvents;
use Acme\StoreBundle\Order;
use Acme\StoreBundle\Event\FilterOrderEvent;

// the order is somehow created or retrieved
$order = new Order();
// ...

// create the FilterOrderEvent and dispatch it
$event = new FilterOrderEvent($order);
$dispatcher->dispatch(StoreEvents::STORE_ORDER, $event);

Notice that the special FilterOrderEvent object is created and passed to
the dispatch method. Now, any listener to the store.order event will
receive the FilterOrderEvent and have access to the Order object via
the getOrder method:

// some listener class that's been registered for "store.order" event
use Acme\StoreBundle\Event\FilterOrderEvent;

public function onStoreOrder(FilterOrderEvent $event)
{
 $order = $event->getOrder();
 // do something to or with the order
}

Using Event Subscribers

The most common way to listen to an event is to register an event listener
with the dispatcher. This listener can listen to one or more events and is
notified each time those events are dispatched.

Another way to listen to events is via an event subscriber. An event
subscriber is a PHP class that’s able to tell the dispatcher exactly which
events it should subscribe to. It implements the
EventSubscriberInterface [http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventSubscriberInterface.html]
interface, which requires a single static method called
getSubscribedEvents. Take the following example of a subscriber that
subscribes to the kernel.response and store.order events:

namespace Acme\StoreBundle\Event;

use Symfony\Component\EventDispatcher\EventSubscriberInterface;
use Symfony\Component\HttpKernel\Event\FilterResponseEvent;

class StoreSubscriber implements EventSubscriberInterface
{
 public static function getSubscribedEvents()
 {
 return array(
 'kernel.response' => array(
 array('onKernelResponsePre', 10),
 array('onKernelResponseMid', 5),
 array('onKernelResponsePost', 0),
),
 'store.order' => array('onStoreOrder', 0),
);
 }

 public function onKernelResponsePre(FilterResponseEvent $event)
 {
 // ...
 }

 public function onKernelResponseMid(FilterResponseEvent $event)
 {
 // ...
 }

 public function onKernelResponsePost(FilterResponseEvent $event)
 {
 // ...
 }

 public function onStoreOrder(FilterOrderEvent $event)
 {
 // ...
 }
}

This is very similar to a listener class, except that the class itself can
tell the dispatcher which events it should listen to. To register a subscriber
with the dispatcher, use the
addSubscriber() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventDispatcher.html#method_addSubscriber]
method:

use Acme\StoreBundle\Event\StoreSubscriber;

$subscriber = new StoreSubscriber();
$dispatcher->addSubscriber($subscriber);

The dispatcher will automatically register the subscriber for each event
returned by the getSubscribedEvents method. This method returns an array
indexed by event names and whose values are either the method name to call or
an array composed of the method name to call and a priority. The example
above shows how to register several listener methods for the same event in
subscriber and also shows how to pass the priority of each listener method.
The higher the priority, the earlier the method is called. In the above
example, when the kernel.response event is triggered, the methods
onKernelResponsePre, onKernelResponseMid, and onKernelResponsePost
are called in that order.

Stopping Event Flow/Propagation

In some cases, it may make sense for a listener to prevent any other listeners
from being called. In other words, the listener needs to be able to tell the
dispatcher to stop all propagation of the event to future listeners (i.e. to
not notify any more listeners). This can be accomplished from inside a
listener via the
stopPropagation() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html#method_stopPropagation] method:

use Acme\StoreBundle\Event\FilterOrderEvent;

public function onStoreOrder(FilterOrderEvent $event)
{
 // ...

 $event->stopPropagation();
}

Now, any listeners to store.order that have not yet been called will not
be called.

It is possible to detect if an event was stopped by using the
isPropagationStopped() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html#method_isPropagationStopped] method
which returns a boolean value:

$dispatcher->dispatch('foo.event', $event);
if ($event->isPropagationStopped()) {
 // ...
}

EventDispatcher aware Events and Listeners

The EventDispatcher always injects a reference to itself in the passed event
object. This means that all listeners have direct access to the
EventDispatcher object that notified the listener via the passed Event
object’s getDispatcher() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html#method_getDispatcher]
method.

This can lead to some advanced applications of the EventDispatcher including
letting listeners dispatch other events, event chaining or even lazy loading of
more listeners into the dispatcher object. Examples follow:

Lazy loading listeners:

use Symfony\Component\EventDispatcher\Event;
use Acme\StoreBundle\Event\StoreSubscriber;

class Foo
{
 private $started = false;

 public function myLazyListener(Event $event)
 {
 if (false === $this->started) {
 $subscriber = new StoreSubscriber();
 $event->getDispatcher()->addSubscriber($subscriber);
 }

 $this->started = true;

 // ... more code
 }
}

Dispatching another event from within a listener:

use Symfony\Component\EventDispatcher\Event;

class Foo
{
 public function myFooListener(Event $event)
 {
 $event->getDispatcher()->dispatch('log', $event);

 // ... more code
 }
}

While this above is sufficient for most uses, if your application uses multiple
EventDispatcher instances, you might need to specifically inject a known
instance of the EventDispatcher into your listeners. This could be done
using constructor or setter injection as follows:

Constructor injection:

use Symfony\Component\EventDispatcher\EventDispatcherInterface;

class Foo
{
 protected $dispatcher = null;

 public function __construct(EventDispatcherInterface $dispatcher)
 {
 $this->dispatcher = $dispatcher;
 }
}

Or setter injection:

use Symfony\Component\EventDispatcher\EventDispatcherInterface;

class Foo
{
 protected $dispatcher = null;

 public function setEventDispatcher(EventDispatcherInterface $dispatcher)
 {
 $this->dispatcher = $dispatcher;
 }
}

Choosing between the two is really a matter of taste. Many tend to prefer the
constructor injection as the objects are fully initialized at construction
time. But when you have a long list of dependencies, using setter injection
can be the way to go, especially for optional dependencies.

Dispatcher Shortcuts

The EventDispatcher::dispatch [http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventDispatcher.html#method_dispatch]
method always returns an Event [http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html]
object. This allows for various shortcuts. For example, if one does not need
a custom event object, one can simply rely on a plain
Event [http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html] object. You do not even need
to pass this to the dispatcher as it will create one by default unless you
specifically pass one:

$dispatcher->dispatch('foo.event');

Moreover, the EventDispatcher always returns whichever event object that was
dispatched, i.e. either the event that was passed or the event that was
created internally by the dispatcher. This allows for nice shortcuts:

if (!$dispatcher->dispatch('foo.event')->isPropagationStopped()) {
 // ...
}

Or:

$barEvent = new BarEvent();
$bar = $dispatcher->dispatch('bar.event', $barEvent)->getBar();

Or:

$bar = $dispatcher->dispatch('bar.event', new BarEvent())->getBar();

and so on...

Event Name Introspection

Since the EventDispatcher already knows the name of the event when dispatching
it, the event name is also injected into the
Event [http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html] objects, making it available
to event listeners via the getName() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html#method_getName]
method.

The event name, (as with any other data in a custom event object) can be used as
part of the listener’s processing logic:

use Symfony\Component\EventDispatcher\Event;

class Foo
{
 public function myEventListener(Event $event)
 {
 echo $event->getName();
 }
}

Other Dispatchers

Besides the commonly used EventDispatcher, the component comes with 2
other dispatchers:

	The Container Aware Event Dispatcher

	The Immutable Event Dispatcher

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	EventDispatcher

The Container Aware Event Dispatcher

Introduction

The ContainerAwareEventDispatcher [http://api.symfony.com/master/Symfony/Component/EventDispatcher/ContainerAwareEventDispatcher.html] is
a special EventDispatcher implementation which is coupled to the service container
that is part of the DependencyInjection component.
It allows services to be specified as event listeners making the EventDispatcher
extremely powerful.

Services are lazy loaded meaning the services attached as listeners will only be
created if an event is dispatched that requires those listeners.

Setup

Setup is straightforward by injecting a ContainerInterface [http://api.symfony.com/master/Symfony/Component/DependencyInjection/ContainerInterface.html]
into the ContainerAwareEventDispatcher [http://api.symfony.com/master/Symfony/Component/EventDispatcher/ContainerAwareEventDispatcher.html]:

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\EventDispatcher\ContainerAwareEventDispatcher;

$container = new ContainerBuilder();
$dispatcher = new ContainerAwareEventDispatcher($container);

Adding Listeners

The Container Aware EventDispatcher can either load specified services
directly, or services that implement EventSubscriberInterface [http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventSubscriberInterface.html].

The following examples assume the service container has been loaded with any
services that are mentioned.

注解

Services must be marked as public in the container.

Adding Services

To connect existing service definitions, use the
addListenerService() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/ContainerAwareEventDispatcher.html#method_addListenerService]
method where the $callback is an array of array($serviceId, $methodName):

$dispatcher->addListenerService($eventName, array('foo', 'logListener'));

Adding Subscriber Services

EventSubscribers can be added using the
addSubscriberService() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/ContainerAwareEventDispatcher.html#method_addSubscriberService]
method where the first argument is the service ID of the subscriber service,
and the second argument is the service’s class name (which must implement
EventSubscriberInterface [http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventSubscriberInterface.html]) as follows:

$dispatcher->addSubscriberService(
 'kernel.store_subscriber',
 'StoreSubscriber'
);

The EventSubscriberInterface will be exactly as you would expect:

use Symfony\Component\EventDispatcher\EventSubscriberInterface;
// ...

class StoreSubscriber implements EventSubscriberInterface
{
 public static function getSubscribedEvents()
 {
 return array(
 'kernel.response' => array(
 array('onKernelResponsePre', 10),
 array('onKernelResponsePost', 0),
),
 'store.order' => array('onStoreOrder', 0),
);
 }

 public function onKernelResponsePre(FilterResponseEvent $event)
 {
 // ...
 }

 public function onKernelResponsePost(FilterResponseEvent $event)
 {
 // ...
 }

 public function onStoreOrder(FilterOrderEvent $event)
 {
 // ...
 }
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	EventDispatcher

The Generic Event Object

The base Event [http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html] class provided by the
EventDispatcher component is deliberately sparse to allow the creation of
API specific event objects by inheritance using OOP. This allows for elegant and
readable code in complex applications.

The GenericEvent [http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html] is available
for convenience for those who wish to use just one event object throughout their
application. It is suitable for most purposes straight out of the box, because
it follows the standard observer pattern where the event object
encapsulates an event ‘subject’, but has the addition of optional extra
arguments.

GenericEvent [http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html] has a simple API in
addition to the base class Event [http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html]

	__construct() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html#method___construct]:
Constructor takes the event subject and any arguments;

	getSubject() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html#method_getSubject]:
Get the subject;

	setArgument() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html#method_setArgument]:
Sets an argument by key;

	setArguments() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html#method_setArguments]:
Sets arguments array;

	getArgument() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html#method_getArgument]:
Gets an argument by key;

	getArguments() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html#method_getArguments]:
Getter for all arguments;

	hasArgument() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html#method_hasArgument]:
Returns true if the argument key exists;

The GenericEvent also implements ArrayAccess [http://php.net/manual/en/class.arrayaccess.php] on the event
arguments which makes it very convenient to pass extra arguments regarding the
event subject.

The following examples show use-cases to give a general idea of the flexibility.
The examples assume event listeners have been added to the dispatcher.

Simply passing a subject:

use Symfony\Component\EventDispatcher\GenericEvent;

$event = new GenericEvent($subject);
$dispatcher->dispatch('foo', $event);

class FooListener
{
 public function handler(GenericEvent $event)
 {
 if ($event->getSubject() instanceof Foo) {
 // ...
 }
 }
}

Passing and processing arguments using the ArrayAccess [http://php.net/manual/en/class.arrayaccess.php] API to access
the event arguments:

use Symfony\Component\EventDispatcher\GenericEvent;

$event = new GenericEvent(
 $subject,
 array('type' => 'foo', 'counter' => 0)
);
$dispatcher->dispatch('foo', $event);

echo $event['counter'];

class FooListener
{
 public function handler(GenericEvent $event)
 {
 if (isset($event['type']) && $event['type'] === 'foo') {
 // ... do something
 }

 $event['counter']++;
 }
}

Filtering data:

use Symfony\Component\EventDispatcher\GenericEvent;

$event = new GenericEvent($subject, array('data' => 'Foo'));
$dispatcher->dispatch('foo', $event);

echo $event['data'];

class FooListener
{
 public function filter(GenericEvent $event)
 {
 $event['data'] = strtolower($event['data']);
 }
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	EventDispatcher

The Immutable Event Dispatcher

2.1 新版功能: This feature was introduced in Symfony 2.1.

The ImmutableEventDispatcher [http://api.symfony.com/master/Symfony/Component/EventDispatcher/ImmutableEventDispatcher.html] is
a locked or frozen event dispatcher. The dispatcher cannot register new
listeners or subscribers.

The ImmutableEventDispatcher takes another event dispatcher with all the
listeners and subscribers. The immutable dispatcher is just a proxy of this
original dispatcher.

To use it, first create a normal dispatcher (EventDispatcher or
ContainerAwareEventDispatcher) and register some listeners or
subscribers:

use Symfony\Component\EventDispatcher\EventDispatcher;

$dispatcher = new EventDispatcher();
$dispatcher->addListener('foo.action', function ($event) {
 // ...
});

// ...

Now, inject that into an ImmutableEventDispatcher:

use Symfony\Component\EventDispatcher\ImmutableEventDispatcher;
// ...

$immutableDispatcher = new ImmutableEventDispatcher($dispatcher);

You’ll need to use this new dispatcher in your project.

If you are trying to execute one of the methods which modifies the dispatcher
(e.g. addListener), a BadMethodCallException is thrown.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	EventDispatcher

The Traceable Event Dispatcher

The TraceableEventDispatcher [http://api.symfony.com/master/Symfony/Component/HttpKernel/Debug/TraceableEventDispatcher.html]
is an event dispatcher that wraps any other event dispatcher and can then
be used to determine which event listeners have been called by the dispatcher.
Pass the event dispatcher to be wrapped and an instance of the
Stopwatch [http://api.symfony.com/master/Symfony/Component/Stopwatch/Stopwatch.html] to its constructor:

use Symfony\Component\HttpKernel\Debug\TraceableEventDispatcher;
use Symfony\Component\Stopwatch\Stopwatch;

// the event dispatcher to debug
$eventDispatcher = ...;

$traceableEventDispatcher = new TraceableEventDispatcher(
 $eventDispatcher,
 new Stopwatch()
);

Now, the TraceableEventDispatcher can be used like any other event dispatcher
to register event listeners and dispatch events:

// ...

// register an event listener
$eventListener = ...;
$priority = ...;
$traceableEventDispatcher->addListener(
 'event.the_name',
 $eventListener,
 $priority
);

// dispatch an event
$event = ...;
$traceableEventDispatcher->dispatch('event.the_name', $event);

After your application has been processed, you can use the
getCalledListeners() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/Debug/TraceableEventDispatcherInterface.html#method_getCalledListeners]
method to retrieve an array of event listeners that have been called in your
application. Similarly, the
getNotCalledListeners() [http://api.symfony.com/master/Symfony/Component/EventDispatcher/Debug/TraceableEventDispatcherInterface.html#method_getNotCalledListeners]
method returns an array of event listeners that have not been called:

// ...

$calledListeners = $traceableEventDispatcher->getCalledListeners();
$notCalledListeners = $traceableEventDispatcher->getNotCalledListeners();

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

The Filesystem Component

The Filesystem component provides basic utilities for the filesystem.

2.1 新版功能: The Filesystem component was introduced in Symfony 2.1. Previously, the
Filesystem class was located in the HttpKernel component.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/filesystem on Packagist [https://packagist.org/packages/symfony/filesystem]);

	Use the official Git repository (https://github.com/symfony/Filesystem).

Usage

The Filesystem [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html] class is the unique
endpoint for filesystem operations:

use Symfony\Component\Filesystem\Filesystem;
use Symfony\Component\Filesystem\Exception\IOException;

$fs = new Filesystem();

try {
 $fs->mkdir('/tmp/random/dir/'.mt_rand());
} catch (IOException $e) {
 echo "An error occurred while creating your directory";
}

注解

Methods mkdir() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_mkdir],
exists() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_exists],
touch() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_touch],
remove() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_remove],
chmod() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_chmod],
chown() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_chown] and
chgrp() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_chgrp] can receive a
string, an array or any object implementing Traversable [http://php.net/manual/en/class.traversable.php] as
the target argument.

mkdir

mkdir() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_mkdir] creates a directory.
On POSIX filesystems, directories are created with a default mode value
0777. You can use the second argument to set your own mode:

$fs->mkdir('/tmp/photos', 0700);

注解

You can pass an array or any Traversable [http://php.net/manual/en/class.traversable.php] object as the first
argument.

exists

exists() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_exists] checks for the
presence of all files or directories and returns false if a file is missing:

// this directory exists, return true
$fs->exists('/tmp/photos');

// rabbit.jpg exists, bottle.png does not exists, return false
$fs->exists(array('rabbit.jpg', 'bottle.png'));

注解

You can pass an array or any Traversable [http://php.net/manual/en/class.traversable.php] object as the first
argument.

copy

copy() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_copy] is used to copy
files. If the target already exists, the file is copied only if the source
modification date is later than the target. This behavior can be overridden by
the third boolean argument:

// works only if image-ICC has been modified after image.jpg
$fs->copy('image-ICC.jpg', 'image.jpg');

// image.jpg will be overridden
$fs->copy('image-ICC.jpg', 'image.jpg', true);

touch

touch() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_touch] sets access and
modification time for a file. The current time is used by default. You can set
your own with the second argument. The third argument is the access time:

// set modification time to the current timestamp
$fs->touch('file.txt');
// set modification time 10 seconds in the future
$fs->touch('file.txt', time() + 10);
// set access time 10 seconds in the past
$fs->touch('file.txt', time(), time() - 10);

注解

You can pass an array or any Traversable [http://php.net/manual/en/class.traversable.php] object as the first
argument.

chown

chown() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_chown] is used to change
the owner of a file. The third argument is a boolean recursive option:

// set the owner of the lolcat video to www-data
$fs->chown('lolcat.mp4', 'www-data');
// change the owner of the video directory recursively
$fs->chown('/video', 'www-data', true);

注解

You can pass an array or any Traversable [http://php.net/manual/en/class.traversable.php] object as the first
argument.

chgrp

chgrp() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_chgrp] is used to change
the group of a file. The third argument is a boolean recursive option:

// set the group of the lolcat video to nginx
$fs->chgrp('lolcat.mp4', 'nginx');
// change the group of the video directory recursively
$fs->chgrp('/video', 'nginx', true);

注解

You can pass an array or any Traversable [http://php.net/manual/en/class.traversable.php] object as the first
argument.

chmod

chmod() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_chmod] is used to change
the mode of a file. The fourth argument is a boolean recursive option:

// set the mode of the video to 0600
$fs->chmod('video.ogg', 0600);
// change the mod of the src directory recursively
$fs->chmod('src', 0700, 0000, true);

注解

You can pass an array or any Traversable [http://php.net/manual/en/class.traversable.php] object as the first
argument.

remove

remove() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_remove] is used to remove
files, symlinks, directories easily:

$fs->remove(array('symlink', '/path/to/directory', 'activity.log'));

注解

You can pass an array or any Traversable [http://php.net/manual/en/class.traversable.php] object as the first
argument.

rename

rename() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_rename] is used to rename
files and directories:

// rename a file
$fs->rename('/tmp/processed_video.ogg', '/path/to/store/video_647.ogg');
// rename a directory
$fs->rename('/tmp/files', '/path/to/store/files');

symlink

symlink() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_symlink] creates a
symbolic link from the target to the destination. If the filesystem does not
support symbolic links, a third boolean argument is available:

// create a symbolic link
$fs->symlink('/path/to/source', '/path/to/destination');
// duplicate the source directory if the filesystem
// does not support symbolic links
$fs->symlink('/path/to/source', '/path/to/destination', true);

makePathRelative

makePathRelative() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_makePathRelative] returns
the relative path of a directory given another one:

// returns '../'
$fs->makePathRelative(
 '/var/lib/symfony/src/Symfony/',
 '/var/lib/symfony/src/Symfony/Component'
);
// returns 'videos/'
$fs->makePathRelative('/tmp/videos', '/tmp')

mirror

mirror() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_mirror] mirrors a
directory:

$fs->mirror('/path/to/source', '/path/to/target');

isAbsolutePath

isAbsolutePath() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_isAbsolutePath] returns
true if the given path is absolute, false otherwise:

// return true
$fs->isAbsolutePath('/tmp');
// return true
$fs->isAbsolutePath('c:\\Windows');
// return false
$fs->isAbsolutePath('tmp');
// return false
$fs->isAbsolutePath('../dir');

dumpFile

2.3 新版功能: The dumpFile() was introduced in Symfony 2.3.

dumpFile() [http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#method_dumpFile] allows you to
dump contents to a file. It does this in an atomic manner: it writes a temporary
file first and then moves it to the new file location when it’s finished.
This means that the user will always see either the complete old file or
complete new file (but never a partially-written file):

$fs->dumpFile('file.txt', 'Hello World');

The file.txt file contains Hello World now.

A desired file mode can be passed as the third argument.

Error Handling

Whenever something wrong happens, an exception implementing
ExceptionInterface [http://api.symfony.com/master/Symfony/Component/Filesystem/Exception/ExceptionInterface.html] is
thrown.

注解

Prior to version 2.1, mkdir returned a boolean and did not throw
exceptions. As of 2.1, a
IOException [http://api.symfony.com/master/Symfony/Component/Filesystem/Exception/IOException.html] is thrown
if a directory creation fails.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

The Finder Component

The Finder component finds files and directories via an intuitive fluent
interface.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/finder on Packagist [https://packagist.org/packages/symfony/finder]);

	Use the official Git repository (https://github.com/symfony/Finder).

Usage

The Finder [http://api.symfony.com/master/Symfony/Component/Finder/Finder.html] class finds files and/or
directories:

use Symfony\Component\Finder\Finder;

$finder = new Finder();
$finder->files()->in(__DIR__);

foreach ($finder as $file) {
 // Print the absolute path
 print $file->getRealpath()."\n";

 // Print the relative path to the file, omitting the filename
 print $file->getRelativePath()."\n";

 // Print the relative path to the file
 print $file->getRelativePathname()."\n";
}

The $file is an instance of SplFileInfo [http://api.symfony.com/master/Symfony/Component/Finder/SplFileInfo.html]
which extends SplFileInfo [http://php.net/manual/en/class.splfileinfo.php] to provide methods to work with relative
paths.

The above code prints the names of all the files in the current directory
recursively. The Finder class uses a fluent interface, so all methods return
the Finder instance.

小技巧

A Finder instance is a PHP Iterator [http://php.net/manual/en/class.iterator.php]. So, instead of iterating over the
Finder with foreach, you can also convert it to an array with the
iterator_to_array [http://php.net/manual/en/function.iterator-to-array.php] method, or get the number of items with
iterator_count [http://php.net/manual/en/function.iterator-count.php].

警告

When searching through multiple locations passed to the
in() [http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#method_in] method, a separate iterator
is created internally for every location. This means we have multiple result
sets aggregated into one.
Since iterator_to_array [http://php.net/manual/en/function.iterator-to-array.php] uses keys of result sets by default,
when converting to an array, some keys might be duplicated and their values
overwritten. This can be avoided by passing false as a second parameter
to iterator_to_array [http://php.net/manual/en/function.iterator-to-array.php].

Criteria

There are lots of ways to filter and sort your results.

Location

The location is the only mandatory criteria. It tells the finder which
directory to use for the search:

$finder->in(__DIR__);

Search in several locations by chaining calls to
in() [http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#method_in]:

$finder->files()->in(__DIR__)->in('/elsewhere');

2.2 新版功能: Wildcard support was introduced in version 2.2.

Use wildcard characters to search in the directories matching a pattern:

$finder->in('src/Symfony/*/*/Resources');

Each pattern has to resolve to at least one directory path.

Exclude directories from matching with the
exclude() [http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#method_exclude] method:

$finder->in(__DIR__)->exclude('ruby');

2.3 新版功能: The ignoreUnreadableDirs() [http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#method_ignoreUnreadableDirs]
method was introduced in Symfony 2.3.

It’s also possible to ignore directories that you don’t have permission to read:

$finder->ignoreUnreadableDirs()->in(__DIR__);

As the Finder uses PHP iterators, you can pass any URL with a supported
protocol [http://www.php.net/manual/en/wrappers.php]:

$finder->in('ftp://example.com/pub/');

And it also works with user-defined streams:

use Symfony\Component\Finder\Finder;

$s3 = new \Zend_Service_Amazon_S3($key, $secret);
$s3->registerStreamWrapper("s3");

$finder = new Finder();
$finder->name('photos*')->size('< 100K')->date('since 1 hour ago');
foreach ($finder->in('s3://bucket-name') as $file) {
 // ... do something

 print $file->getFilename()."\n";
}

注解

Read the Streams [http://www.php.net/streams] documentation to learn how to create your own streams.

Files or Directories

By default, the Finder returns files and directories; but the
files() [http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#method_files] and
directories() [http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#method_directories] methods control that:

$finder->files();

$finder->directories();

If you want to follow links, use the followLinks() method:

$finder->files()->followLinks();

By default, the iterator ignores popular VCS files. This can be changed with
the ignoreVCS() method:

$finder->ignoreVCS(false);

Sorting

Sort the result by name or by type (directories first, then files):

$finder->sortByName();

$finder->sortByType();

注解

Notice that the sort* methods need to get all matching elements to do
their jobs. For large iterators, it is slow.

You can also define your own sorting algorithm with sort() method:

$sort = function (\SplFileInfo $a, \SplFileInfo $b)
{
 return strcmp($a->getRealpath(), $b->getRealpath());
};

$finder->sort($sort);

File Name

Restrict files by name with the
name() [http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#method_name] method:

$finder->files()->name('*.php');

The name() method accepts globs, strings, or regexes:

$finder->files()->name('/\.php$/');

The notName() method excludes files matching a pattern:

$finder->files()->notName('*.rb');

File Contents

Restrict files by contents with the
contains() [http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#method_contains] method:

$finder->files()->contains('lorem ipsum');

The contains() method accepts strings or regexes:

$finder->files()->contains('/lorem\s+ipsum$/i');

The notContains() method excludes files containing given pattern:

$finder->files()->notContains('dolor sit amet');

Path

2.2 新版功能: The path() and notPath() methods were introduced in Symfony 2.2.

Restrict files and directories by path with the
path() [http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#method_path] method:

$finder->path('some/special/dir');

On all platforms slash (i.e. /) should be used as the directory separator.

The path() method accepts a string or a regular expression:

$finder->path('foo/bar');
$finder->path('/^foo\/bar/');

Internally, strings are converted into regular expressions by escaping slashes
and adding delimiters:

dirname ===> /dirname/
a/b/c ===> /a\/b\/c/

The notPath() [http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#method_notPath] method excludes files by path:

$finder->notPath('other/dir');

File Size

Restrict files by size with the
size() [http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#method_size] method:

$finder->files()->size('< 1.5K');

Restrict by a size range by chaining calls:

$finder->files()->size('>= 1K')->size('<= 2K');

The comparison operator can be any of the following: >, >=, <, <=,
==, !=.

The target value may use magnitudes of kilobytes (k, ki), megabytes
(m, mi), or gigabytes (g, gi). Those suffixed with an i use
the appropriate 2**n version in accordance with the IEC standard [http://physics.nist.gov/cuu/Units/binary.html].

File Date

Restrict files by last modified dates with the
date() [http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#method_date] method:

$finder->date('since yesterday');

The comparison operator can be any of the following: >, >=, <, <=,
==. You can also use since or after as an alias for >, and
until or before as an alias for <.

The target value can be any date supported by the strtotime [http://www.php.net/manual/en/datetime.formats.php] function.

Directory Depth

By default, the Finder recursively traverse directories. Restrict the depth of
traversing with depth() [http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#method_depth]:

$finder->depth('== 0');
$finder->depth('< 3');

Custom Filtering

To restrict the matching file with your own strategy, use
filter() [http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#method_filter]:

$filter = function (\SplFileInfo $file)
{
 if (strlen($file) > 10) {
 return false;
 }
};

$finder->files()->filter($filter);

The filter() method takes a Closure as an argument. For each matching file,
it is called with the file as a SplFileInfo [http://api.symfony.com/master/Symfony/Component/Finder/SplFileInfo.html]
instance. The file is excluded from the result set if the Closure returns
false.

Reading Contents of Returned Files

The contents of returned files can be read with
getContents() [http://api.symfony.com/master/Symfony/Component/Finder/SplFileInfo.html#method_getContents]:

use Symfony\Component\Finder\Finder;

$finder = new Finder();
$finder->files()->in(__DIR__);

foreach ($finder as $file) {
 $contents = $file->getContents();

 // ...
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

Form

	The Form Component
	Installation

	Configuration

	Creating a simple Form

	Creating a custom Type Guesser
	Create a PHPDoc Type Guesser

	Registering a Type Guesser

	Form Events
	The Form Workflow

	Registering Event Listeners or Event Subscribers

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Form

The Form Component

The Form component allows you to easily create, process and reuse HTML
forms.

The Form component is a tool to help you solve the problem of allowing end-users
to interact with the data and modify the data in your application. And though
traditionally this has been through HTML forms, the component focuses on
processing data to and from your client and application, whether that data
be from a normal form post or from an API.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/form on Packagist [https://packagist.org/packages/symfony/form]);

	Use the official Git repository (https://github.com/symfony/Form).

Configuration

小技巧

If you are working with the full-stack Symfony framework, the Form component
is already configured for you. In this case, skip to Creating a simple Form.

In Symfony, forms are represented by objects and these objects are built
by using a form factory. Building a form factory is simple:

use Symfony\Component\Form\Forms;

$formFactory = Forms::createFormFactory();

This factory can already be used to create basic forms, but it is lacking
support for very important features:

	Request Handling: Support for request handling and file uploads;

	CSRF Protection: Support for protection against Cross-Site-Request-Forgery
(CSRF) attacks;

	Templating: Integration with a templating layer that allows you to reuse
HTML fragments when rendering a form;

	Translation: Support for translating error messages, field labels and
other strings;

	Validation: Integration with a validation library to generate error
messages for submitted data.

The Symfony Form component relies on other libraries to solve these problems.
Most of the time you will use Twig and the Symfony
HttpFoundation,
Translation and Validator components, but you can replace any of these with
a different library of your choice.

The following sections explain how to plug these libraries into the form
factory.

小技巧

For a working example, see https://github.com/bschussek/standalone-forms

Request Handling

2.3 新版功能: The handleRequest() method was introduced in Symfony 2.3.

To process form data, you’ll need to call the handleRequest() [http://api.symfony.com/master/Symfony/Component/Form/Form.html#method_handleRequest]
method:

$form->handleRequest();

Behind the scenes, this uses a NativeRequestHandler [http://api.symfony.com/master/Symfony/Component/Form/NativeRequestHandler.html]
object to read data off of the correct PHP superglobals (i.e. $_POST or
$_GET) based on the HTTP method configured on the form (POST is default).

参见

If you need more control over exactly when your form is submitted or which
data is passed to it, you can use the submit() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_submit]
for this. Read more about it in the cookbook.

Integration with the HttpFoundation Component

If you use the HttpFoundation component, then you should add the
HttpFoundationExtension [http://api.symfony.com/master/Symfony/Component/Form/Extension/HttpFoundation/HttpFoundationExtension.html]
to your form factory:

use Symfony\Component\Form\Forms;
use Symfony\Component\Form\Extension\HttpFoundation\HttpFoundationExtension;

$formFactory = Forms::createFormFactoryBuilder()
 ->addExtension(new HttpFoundationExtension())
 ->getFormFactory();

Now, when you process a form, you can pass the Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html]
object to handleRequest() [http://api.symfony.com/master/Symfony/Component/Form/Form.html#method_handleRequest]:

$form->handleRequest($request);

注解

For more information about the HttpFoundation component or how to
install it, see The HttpFoundation Component.

CSRF Protection

Protection against CSRF attacks is built into the Form component, but you need
to explicitly enable it or replace it with a custom solution. The following
snippet adds CSRF protection to the form factory:

use Symfony\Component\Form\Forms;
use Symfony\Component\Form\Extension\Csrf\CsrfExtension;
use Symfony\Component\Form\Extension\Csrf\CsrfProvider\SessionCsrfProvider;
use Symfony\Component\HttpFoundation\Session\Session;

// generate a CSRF secret from somewhere
$csrfSecret = '<generated token>';

// create a Session object from the HttpFoundation component
$session = new Session();

$csrfProvider = new SessionCsrfProvider($session, $csrfSecret);

$formFactory = Forms::createFormFactoryBuilder()
 // ...
 ->addExtension(new CsrfExtension($csrfProvider))
 ->getFormFactory();

To secure your application against CSRF attacks, you need to define a CSRF
secret. Generate a random string with at least 32 characters, insert it in the
above snippet and make sure that nobody except your web server can access
the secret.

Internally, this extension will automatically add a hidden field to every
form (called __token by default) whose value is automatically generated
and validated when binding the form.

小技巧

If you’re not using the HttpFoundation component, you can use
DefaultCsrfProvider [http://api.symfony.com/master/Symfony/Component/Form/Extension/Csrf/CsrfProvider/DefaultCsrfProvider.html]
instead, which relies on PHP’s native session handling:

use Symfony\Component\Form\Extension\Csrf\CsrfProvider\DefaultCsrfProvider;

$csrfProvider = new DefaultCsrfProvider($csrfSecret);

Twig Templating

If you’re using the Form component to process HTML forms, you’ll need a way
to easily render your form as HTML form fields (complete with field values,
errors, and labels). If you use Twig [http://twig.sensiolabs.org] as your template engine, the Form
component offers a rich integration.

To use the integration, you’ll need the TwigBridge, which provides integration
between Twig and several Symfony components. If you’re using Composer, you
could install the latest 2.3 version by adding the following require
line to your composer.json file:

{
 "require": {
 "symfony/twig-bridge": "2.3.*"
 }
}

The TwigBridge integration provides you with several Twig Functions
that help you render the HTML widget, label and error for each field
(as well as a few other things). To configure the integration, you’ll need
to bootstrap or access Twig and add the FormExtension [http://api.symfony.com/master/Symfony/Bridge/Twig/Extension/FormExtension.html]:

use Symfony\Component\Form\Forms;
use Symfony\Bridge\Twig\Extension\FormExtension;
use Symfony\Bridge\Twig\Form\TwigRenderer;
use Symfony\Bridge\Twig\Form\TwigRendererEngine;

// the Twig file that holds all the default markup for rendering forms
// this file comes with TwigBridge
$defaultFormTheme = 'form_div_layout.html.twig';

$vendorDir = realpath(__DIR__.'/../vendor');
// the path to TwigBridge so Twig can locate the
// form_div_layout.html.twig file
$vendorTwigBridgeDir =
 $vendorDir.'/symfony/twig-bridge/Symfony/Bridge/Twig';
// the path to your other templates
$viewsDir = realpath(__DIR__.'/../views');

$twig = new Twig_Environment(new Twig_Loader_Filesystem(array(
 $viewsDir,
 $vendorTwigBridgeDir.'/Resources/views/Form',
)));
$formEngine = new TwigRendererEngine(array($defaultFormTheme));
$formEngine->setEnvironment($twig);
// add the FormExtension to Twig
$twig->addExtension(
 new FormExtension(new TwigRenderer($formEngine, $csrfProvider))
);

// create your form factory as normal
$formFactory = Forms::createFormFactoryBuilder()
 // ...
 ->getFormFactory();

The exact details of your Twig Configuration [http://twig.sensiolabs.org/doc/intro.html] will vary, but the goal is
always to add the FormExtension [http://api.symfony.com/master/Symfony/Bridge/Twig/Extension/FormExtension.html]
to Twig, which gives you access to the Twig functions for rendering forms.
To do this, you first need to create a TwigRendererEngine [http://api.symfony.com/master/Symfony/Bridge/Twig/Form/TwigRendererEngine.html],
where you define your form themes
(i.e. resources/files that define form HTML markup).

For general details on rendering forms, see How to Customize Form Rendering.

注解

If you use the Twig integration, read “Translation”
below for details on the needed translation filters.

Translation

If you’re using the Twig integration with one of the default form theme files
(e.g. form_div_layout.html.twig), there are 2 Twig filters (trans
and transChoice) that are used for translating form labels, errors, option
text and other strings.

To add these Twig filters, you can either use the built-in
TranslationExtension [http://api.symfony.com/master/Symfony/Bridge/Twig/Extension/TranslationExtension.html] that integrates
with Symfony’s Translation component, or add the 2 Twig filters yourself,
via your own Twig extension.

To use the built-in integration, be sure that your project has Symfony’s
Translation and Config components
installed. If you’re using Composer, you could get the latest 2.3 version
of each of these by adding the following to your composer.json file:

{
 "require": {
 "symfony/translation": "2.3.*",
 "symfony/config": "2.3.*"
 }
}

Next, add the TranslationExtension [http://api.symfony.com/master/Symfony/Bridge/Twig/Extension/TranslationExtension.html]
to your Twig_Environment instance:

use Symfony\Component\Form\Forms;
use Symfony\Component\Translation\Translator;
use Symfony\Component\Translation\Loader\XliffFileLoader;
use Symfony\Bridge\Twig\Extension\TranslationExtension;

// create the Translator
$translator = new Translator('en');
// somehow load some translations into it
$translator->addLoader('xlf', new XliffFileLoader());
$translator->addResource(
 'xlf',
 __DIR__.'/path/to/translations/messages.en.xlf',
 'en'
);

// add the TranslationExtension (gives us trans and transChoice filters)
$twig->addExtension(new TranslationExtension($translator));

$formFactory = Forms::createFormFactoryBuilder()
 // ...
 ->getFormFactory();

Depending on how your translations are being loaded, you can now add string
keys, such as field labels, and their translations to your translation files.

For more details on translations, see Translations.

Validation

The Form component comes with tight (but optional) integration with Symfony’s
Validator component. If you’re using a different solution for validation,
no problem! Simply take the submitted/bound data of your form (which is an
array or object) and pass it through your own validation system.

To use the integration with Symfony’s Validator component, first make sure
it’s installed in your application. If you’re using Composer and want to
install the latest 2.3 version, add this to your composer.json:

{
 "require": {
 "symfony/validator": "2.3.*"
 }
}

If you’re not familiar with Symfony’s Validator component, read more about
it: Validation. The Form component comes with a
ValidatorExtension [http://api.symfony.com/master/Symfony/Component/Form/Extension/Validator/ValidatorExtension.html]
class, which automatically applies validation to your data on bind. These
errors are then mapped to the correct field and rendered.

Your integration with the Validation component will look something like this:

use Symfony\Component\Form\Forms;
use Symfony\Component\Form\Extension\Validator\ValidatorExtension;
use Symfony\Component\Validator\Validation;

$vendorDir = realpath(__DIR__.'/../vendor');
$vendorFormDir = $vendorDir.'/symfony/form/Symfony/Component/Form';
$vendorValidatorDir =
 $vendorDir.'/symfony/validator/Symfony/Component/Validator';

// create the validator - details will vary
$validator = Validation::createValidator();

// there are built-in translations for the core error messages
$translator->addResource(
 'xlf',
 $vendorFormDir.'/Resources/translations/validators.en.xlf',
 'en',
 'validators'
);
$translator->addResource(
 'xlf',
 $vendorValidatorDir.'/Resources/translations/validators.en.xlf',
 'en',
 'validators'
);

$formFactory = Forms::createFormFactoryBuilder()
 // ...
 ->addExtension(new ValidatorExtension($validator))
 ->getFormFactory();

To learn more, skip down to the Form Validation section.

Accessing the Form Factory

Your application only needs one form factory, and that one factory object
should be used to create any and all form objects in your application. This
means that you should create it in some central, bootstrap part of your application
and then access it whenever you need to build a form.

注解

In this document, the form factory is always a local variable called
$formFactory. The point here is that you will probably need to create
this object in some more “global” way so you can access it from anywhere.

Exactly how you gain access to your one form factory is up to you. If you’re
using a Service Container, then you should add the form factory to
your container and grab it out whenever you need to. If your application
uses global or static variables (not usually a good idea), then you can store
the object on some static class or do something similar.

Regardless of how you architect your application, just remember that you
should only have one form factory and that you’ll need to be able to access
it throughout your application.

Creating a simple Form

小技巧

If you’re using the Symfony framework, then the form factory is available
automatically as a service called form.factory. Also, the default
base controller class has a createFormBuilder() [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller.html#method_createFormBuilder]
method, which is a shortcut to fetch the form factory and call createBuilder
on it.

Creating a form is done via a FormBuilder [http://api.symfony.com/master/Symfony/Component/Form/FormBuilder.html]
object, where you build and configure different fields. The form builder
is created from the form factory.

	Standalone Use$form = $formFactory->createBuilder()
 ->add('task', 'text')
 ->add('dueDate', 'date')
 ->getForm();

echo $twig->render('new.html.twig', array(
 'form' => $form->createView(),
));

	Framework Use// src/Acme/TaskBundle/Controller/DefaultController.php
namespace Acme\TaskBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Request;

class DefaultController extends Controller
{
 public function newAction(Request $request)
 {
 // createFormBuilder is a shortcut to get the "form factory"
 // and then call "createBuilder()" on it
 $form = $this->createFormBuilder()
 ->add('task', 'text')
 ->add('dueDate', 'date')
 ->getForm();

 return $this->render('AcmeTaskBundle:Default:new.html.twig', array(
 'form' => $form->createView(),
));
 }
}

As you can see, creating a form is like writing a recipe: you call add
for each new field you want to create. The first argument to add is the
name of your field, and the second is the field “type”. The Form component
comes with a lot of built-in types.

Now that you’ve built your form, learn how to render
it and process the form submission.

Setting default Values

If you need your form to load with some default values (or you’re building
an “edit” form), simply pass in the default data when creating your form
builder:

	Standalone Use$defaults = array(
 'dueDate' => new \DateTime('tomorrow'),
);

$form = $formFactory->createBuilder('form', $defaults)
 ->add('task', 'text')
 ->add('dueDate', 'date')
 ->getForm();

	Framework Use$defaults = array(
 'dueDate' => new \DateTime('tomorrow'),
);

$form = $this->createFormBuilder($defaults)
 ->add('task', 'text')
 ->add('dueDate', 'date')
 ->getForm();

小技巧

In this example, the default data is an array. Later, when you use the
data_class option to bind data directly
to objects, your default data will be an instance of that object.

Rendering the Form

Now that the form has been created, the next step is to render it. This is
done by passing a special form “view” object to your template (notice the
$form->createView() in the controller above) and using a set of form
helper functions:

<form action="#" method="post" {{ form_enctype(form) }}>
 {{ form_widget(form) }}

 <input type="submit" />
</form>

[image: ../../_images/form-simple.png]
That’s it! By printing form_widget(form), each field in the form is
rendered, along with a label and error message (if there is one). As easy
as this is, it’s not very flexible (yet). Usually, you’ll want to render each
form field individually so you can control how the form looks. You’ll learn how
to do that in the “Rendering a Form in a Template” section.

Changing a Form’s Method and Action

2.3 新版功能: The ability to configure the form method and action was introduced in
Symfony 2.3.

By default, a form is submitted to the same URI that rendered the form with
an HTTP POST request. This behavior can be changed using the action
and method options (the method option is also used
by handleRequest() to determine whether a form has been submitted):

	Standalone Use$formBuilder = $formFactory->createBuilder('form', null, array(
 'action' => '/search',
 'method' => 'GET',
));

// ...

	Framework Use// ...

public function searchAction()
{
 $formBuilder = $this->createFormBuilder('form', null, array(
 'action' => '/search',
 'method' => 'GET',
));

 // ...
}

Handling Form Submissions

To handle form submissions, use the handleRequest() [http://api.symfony.com/master/Symfony/Component/Form/Form.html#method_handleRequest]
method:

	Standalone Useuse Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\RedirectResponse;

$form = $formFactory->createBuilder()
 ->add('task', 'text')
 ->add('dueDate', 'date')
 ->getForm();

$request = Request::createFromGlobals();

$form->handleRequest($request);

if ($form->isValid()) {
 $data = $form->getData();

 // ... perform some action, such as saving the data to the database

 $response = new RedirectResponse('/task/success');
 $response->prepare($request);

 return $response->send();
}

// ...

	Framework Use// ...

public function newAction(Request $request)
{
 $form = $this->createFormBuilder()
 ->add('task', 'text')
 ->add('dueDate', 'date')
 ->getForm();

 $form->handleRequest($request);

 if ($form->isValid()) {
 $data = $form->getData();

 // ... perform some action, such as saving the data to the database

 return $this->redirect($this->generateUrl('task_success'));
 }

 // ...
}

This defines a common form “workflow”, which contains 3 different possibilities:

	On the initial GET request (i.e. when the user “surfs” to your page),
build your form and render it;

If the request is a POST, process the submitted data (via handleRequest()).
Then:

	if the form is invalid, re-render the form (which will now contain errors);

	if the form is valid, perform some action and redirect.

Luckily, you don’t need to decide whether or not a form has been submitted.
Just pass the current request to the handleRequest() method. Then, the Form
component will do all the necessary work for you.

Form Validation

The easiest way to add validation to your form is via the constraints
option when building each field:

	Standalone Useuse Symfony\Component\Validator\Constraints\NotBlank;
use Symfony\Component\Validator\Constraints\Type;

$form = $formFactory->createBuilder()
 ->add('task', 'text', array(
 'constraints' => new NotBlank(),
))
 ->add('dueDate', 'date', array(
 'constraints' => array(
 new NotBlank(),
 new Type('\DateTime'),
)
))
 ->getForm();

	Framework Useuse Symfony\Component\Validator\Constraints\NotBlank;
use Symfony\Component\Validator\Constraints\Type;

$form = $this->createFormBuilder()
 ->add('task', 'text', array(
 'constraints' => new NotBlank(),
))
 ->add('dueDate', 'date', array(
 'constraints' => array(
 new NotBlank(),
 new Type('\DateTime'),
)
))
 ->getForm();

When the form is bound, these validation constraints will be applied automatically
and the errors will display next to the fields on error.

注解

For a list of all of the built-in validation constraints, see
Validation Constraints Reference.

Accessing Form Errors

You can use the getErrors() [http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_getErrors]
method to access the list of errors. Each element is a FormError [http://api.symfony.com/master/Symfony/Component/Form/FormError.html]
object:

$form = ...;

// ...

// an array of FormError objects, but only errors attached to this
// form level (e.g. "global errors)
$errors = $form->getErrors();

// an array of FormError objects, but only errors attached to the
// "firstName" field
$errors = $form['firstName']->getErrors();

// a string representation of all errors of the whole form tree
$errors = $form->getErrorsAsString();

注解

If you enable the error_bubbling
option on a field, calling getErrors() on the parent form will include
errors from that field. However, there is no way to determine which field
an error was originally attached to.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Form

Creating a custom Type Guesser

The Form component can guess the type and some options of a form field by
using type guessers. The component already includes a type guesser using the
assertions of the Validation component, but you can also add your own custom
type guessers.

Form Type Guessers in the Bridges

Symfony also provides some form type guessers in the bridges:

	PropelTypeGuesser [http://api.symfony.com/master/Symfony/Bridge/Propel1/Form/PropelTypeGuesser.html] provided by
the Propel1 bridge;

	DoctrineOrmTypeGuesser [http://api.symfony.com/master/Symfony/Bridge/Doctrine/Form/DoctrineOrmTypeGuesser.html]
provided by the Doctrine bridge.

Create a PHPDoc Type Guesser

In this section, you are going to build a guesser that reads information about
fields from the PHPDoc of the properties. At first, you need to create a class
which implements FormTypeGuesserInterface [http://api.symfony.com/master/Symfony/Component/Form/FormTypeGuesserInterface.html].
This interface requires 4 methods:

	guessType() [http://api.symfony.com/master/Symfony/Component/Form/FormTypeGuesserInterface.html#method_guessType] -
tries to guess the type of a field;

	guessRequired() [http://api.symfony.com/master/Symfony/Component/Form/FormTypeGuesserInterface.html#method_guessRequired] -
tries to guess the value of the required
option;

	guessMaxLength() [http://api.symfony.com/master/Symfony/Component/Form/FormTypeGuesserInterface.html#method_guessMaxLength] -
tries to guess the value of the max_length
option;

	guessPattern() [http://api.symfony.com/master/Symfony/Component/Form/FormTypeGuesserInterface.html#method_guessPattern] -
tries to guess the value of the pattern
option.

Start by creating the class and these methods. Next, you’ll learn how to fill each on.

namespace Acme\Form;

use Symfony\Component\Form\FormTypeGuesserInterface;

class PHPDocTypeGuesser implements FormTypeGuesserInterface
{
 public function guessType($class, $property)
 {
 }

 public function guessRequired($class, $property)
 {
 }

 public function guessMaxLength($class, $property)
 {
 }

 public function guessPattern($class, $property)
 {
 }
}

Guessing the Type

When guessing a type, the method returns either an instance of
TypeGuess [http://api.symfony.com/master/Symfony/Component/Form/Guess/TypeGuess.html] or nothing, to determine
that the type guesser cannot guess the type.

The TypeGuess constructor requires 3 options:

	The type name (one of the form types);

	Additional options (for instance, when the type is entity, you also
want to set the class option). If no types are guessed, this should be
set to an empty array;

	The confidence that the guessed type is correct. This can be one of the
constants of the Guess [http://api.symfony.com/master/Symfony/Component/Form/Guess/Guess.html] class:
LOW_CONFIDENCE, MEDIUM_CONFIDENCE, HIGH_CONFIDENCE,
VERY_HIGH_CONFIDENCE. After all type guessers have been executed, the
type with the highest confidence is used.

With this knowledge, you can easily implement the guessType method of the
PHPDocTypeGuesser:

namespace Acme\Form;

use Symfony\Component\Form\Guess\Guess;
use Symfony\Component\Form\Guess\TypeGuess;

class PHPDocTypeGuesser implements FormTypeGuesserInterface
{
 public function guessType($class, $property)
 {
 $annotations = $this->readPhpDocAnnotations($class, $property);

 if (!isset($annotations['var'])) {
 return; // guess nothing if the @var annotation is not available
 }

 // otherwise, base the type on the @var annotation
 switch ($annotations['var']) {
 case 'string':
 // there is a high confidence that the type is text when
 // @var string is used
 return new TypeGuess('text', array(), Guess::HIGH_CONFIDENCE);

 case 'int':
 case 'integer':
 // integers can also be the id of an entity or a checkbox (0 or 1)
 return new TypeGuess('integer', array(), Guess::MEDIUM_CONFIDENCE);

 case 'float':
 case 'double':
 case 'real':
 return new TypeGuess('number', array(), Guess::MEDIUM_CONFIDENCE);

 case 'boolean':
 case 'bool':
 return new TypeGuess('checkbox', array(), Guess::HIGH_CONFIDENCE);

 default:
 // there is a very low confidence that this one is correct
 return new TypeGuess('text', array(), Guess::LOW_CONFIDENCE);
 }
 }

 protected function readPhpDocAnnotations($class, $property)
 {
 $reflectionProperty = new \ReflectionProperty($class, $property);
 $phpdoc = $reflectionProperty->getDocComment();

 // parse the $phpdoc into an array like:
 // array('type' => 'string', 'since' => '1.0')
 $phpdocTags = ...;

 return $phpdocTags;
 }
}

This type guesser can now guess the field type for a property if it has
PHPdoc!

Guessing Field Options

The other 3 methods (guessMaxLength, guessRequired and
guessPattern) return a ValueGuess [http://api.symfony.com/master/Symfony/Component/Form/Guess/ValueGuess.html]
instance with the value of the option. This constructor has 2 arguments:

	The value of the option;

	The confidence that the guessed value is correct (using the constants of the
Guess class).

null is guessed when you believe the value of the option should not be
set.

警告

You should be very careful using the guessPattern method. When the
type is a float, you cannot use it to determine a min or max value of the
float (e.g. you want a float to be greater than 5, 4.512313 is not valid
but length(4.512314) > length(5) is, so the pattern will succeed). In
this case, the value should be set to null with a MEDIUM_CONFIDENCE.

Registering a Type Guesser

The last thing you need to do is registering your custom type guesser by using
addTypeGuesser() [http://api.symfony.com/master/Symfony/Component/Form/FormFactoryBuilder.html#method_addTypeGuesser] or
addTypeGuessers() [http://api.symfony.com/master/Symfony/Component/Form/FormFactoryBuilder.html#method_addTypeGuessers]:

use Symfony\Component\Form\Forms;
use Acme\Form\PHPDocTypeGuesser;

$formFactory = Forms::createFormFactoryBuilder()
 // ...
 ->addTypeGuesser(new PHPDocTypeGuesser())
 ->getFormFactory();

// ...

注解

When you use the Symfony framework, you need to register your type guesser
and tag it with form.type_guesser. For more information see
the tag reference.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Form

Form Events

The Form component provides a structured process to let you customize your
forms, by making use of the EventDispatcher
component. Using form events, you may modify information or fields at
different steps of the workflow: from the population of the form to the
submission of the data from the request.

Registering an event listener is very easy using the Form component.

For example, if you wish to register a function to the
FormEvents::PRE_SUBMIT event, the following code lets you add a field,
depending on the request values:

// ...

use Symfony\Component\Form\FormEvent;
use Symfony\Component\Form\FormEvents;

$listener = function (FormEvent $event) {
 // ...
};

$form = $formFactory->createBuilder()
 // add form fields
 ->addEventListener(FormEvents::PRE_SUBMIT, $listener);

// ...

The Form Workflow

The Form Submission Workflow

[image: ../../_images/general_flow.png]

1) Pre-populating the Form (FormEvents::PRE_SET_DATA and FormEvents::POST_SET_DATA)

[image: ../../_images/set_data_flow.png]
Two events are dispatched during pre-population of a form, when
Form::setData() [http://api.symfony.com/master/Symfony/Component/Form/Form.html#method_setData]
is called: FormEvents::PRE_SET_DATA and FormEvents::POST_SET_DATA.

A) The FormEvents::PRE_SET_DATA Event

The FormEvents::PRE_SET_DATA event is dispatched at the beginning of the
Form::setData() method. It can be used to:

	Modify the data given during pre-population;

	Modify a form depending on the pre-populated data (adding or removing fields dynamically).

Form Events Information Table

	Data Type
	Value

	Model data
	null

	Normalized data
	null

	View data
	null

警告

During FormEvents::PRE_SET_DATA,
Form::setData() [http://api.symfony.com/master/Symfony/Component/Form/Form.html#method_setData]
is locked and will throw an exception if used. If you wish to modify
data, you should use
FormEvent::setData() [http://api.symfony.com/master/Symfony/Component/Form/FormEvent.html#method_setData]
instead.

FormEvents::PRE_SET_DATA in the Form component

The collection form type relies on the
Symfony\Component\Form\Extension\Core\EventListener\ResizeFormListener
subscriber, listening to the FormEvents::PRE_SET_DATA event in order
to reorder the form’s fields depending on the data from the pre-populated
object, by removing and adding all form rows.

B) The FormEvents::POST_SET_DATA Event

The FormEvents::POST_SET_DATA event is dispatched at the end of the
Form::setData() [http://api.symfony.com/master/Symfony/Component/Form/Form.html#method_setData]
method. This event is mostly here for reading data after having pre-populated
the form.

Form Events Information Table

	Data Type
	Value

	Model data
	Model data injected into setData()

	Normalized data
	Model data transformed using a model transformer

	View data
	Normalized data transformed using a view transformer

FormEvents::POST_SET_DATA in the Form component

The Symfony\Component\Form\Extension\DataCollector\EventListener\DataCollectorListener
class is subscribed to listen to the FormEvents::POST_SET_DATA event
in order to collect information about the forms from the denormalized
model and view data.

2) Submitting a Form (FormEvents::PRE_SUBMIT, FormEvents::SUBMIT and FormEvents::POST_SUBMIT)

[image: ../../_images/submission_flow.png]
Three events are dispatched when
Form::handleRequest() [http://api.symfony.com/master/Symfony/Component/Form/Form.html#method_handleRequest]
or Form::submit() [http://api.symfony.com/master/Symfony/Component/Form/Form.html#method_submit] are
called: FormEvents::PRE_SUBMIT, FormEvents::SUBMIT,
FormEvents::POST_SUBMIT.

A) The FormEvents::PRE_SUBMIT Event

The FormEvents::PRE_SUBMIT event is dispatched at the beginning of the
Form::submit() [http://api.symfony.com/master/Symfony/Component/Form/Form.html#method_submit] method.

It can be used to:

	Change data from the request, before submitting the data to the form;

	Add or remove form fields, before submitting the data to the form.

Form Events Information Table

	Data Type
	Value

	Model data
	Same as in FormEvents::POST_SET_DATA

	Normalized data
	Same as in FormEvents::POST_SET_DATA

	View data
	Same as in FormEvents::POST_SET_DATA

FormEvents::PRE_SUBMIT in the Form component

The Symfony\Component\Form\Extension\Core\EventListener\TrimListener
subscriber subscribes to the FormEvents::PRE_SUBMIT event in order to
trim the request’s data (for string values).
The Symfony\Component\Form\Extension\Csrf\EventListener\CsrfValidationListener
subscriber subscribes to the FormEvents::PRE_SUBMIT event in order to
validate the CSRF token.

B) The FormEvents::SUBMIT Event

The FormEvents::SUBMIT event is dispatched just before the
Form::submit() [http://api.symfony.com/master/Symfony/Component/Form/Form.html#method_submit] method
transforms back the normalized data to the model and view data.

It can be used to change data from the normalized representation of the data.

Form Events Information Table

	Data Type
	Value

	Model data
	Same as in FormEvents::POST_SET_DATA

	Normalized data
	Data from the request reverse-transformed from the request using a view transformer

	View data
	Same as in FormEvents::POST_SET_DATA

警告

At this point, you cannot add or remove fields to the form.

FormEvents::SUBMIT in the Form component

The Symfony\Component\Form\Extension\Core\EventListener\ResizeFormListener
subscribes to the FormEvents::SUBMIT event in order to remove the
fields that need to be removed whenever manipulating a collection of forms
for which allow_delete has been enabled.

C) The FormEvents::POST_SUBMIT Event

The FormEvents::POST_SUBMIT event is dispatched after the
Form::submit() [http://api.symfony.com/master/Symfony/Component/Form/Form.html#method_submit] once the
model and view data have been denormalized.

It can be used to fetch data after denormalization.

Form Events Information Table

	Data Type
	Value

	Model data
	Normalized data reverse-transformed using a model transformer

	Normalized data
	Same as in FormEvents::POST_SUBMIT

	View data
	Normalized data transformed using a view transformer

警告

At this point, you cannot add or remove fields to the form.

FormEvents::POST_SUBMIT in the Form component

The Symfony\Component\Form\Extension\DataCollector\EventListener\DataCollectorListener
subscribes to the FormEvents::POST_SUBMIT event in order to collect
information about the forms.
The Symfony\Component\Form\Extension\Validator\EventListener\ValidationListener
subscribes to the FormEvents::POST_SUBMIT event in order to
automatically validate the denormalized object, and update the normalized
as well as the view’s representations.

Registering Event Listeners or Event Subscribers

In order to be able to use Form events, you need to create an event listener
or an event subscriber, and register it to an event.

The name of each of the “form” events is defined as a constant on the
FormEvents [http://api.symfony.com/master/Symfony/Component/Form/FormEvents.html] class.
Additionally, each event callback (listener or subscriber method) is passed a
single argument, which is an instance of
FormEvent [http://api.symfony.com/master/Symfony/Component/Form/FormEvent.html]. The event object contains a
reference to the current state of the form, and the current data being
processed.

	Name
	FormEvents Constant
	Event’s Data

	form.pre_set_data
	FormEvents::PRE_SET_DATA
	Model data

	form.post_set_data
	FormEvents::POST_SET_DATA
	Model data

	form.pre_bind
	FormEvents::PRE_SUBMIT
	Request data

	form.bind
	FormEvents::SUBMIT
	Normalized data

	form.post_bind
	FormEvents::POST_SUBMIT
	View data

2.3 新版功能: Before Symfony 2.3, FormEvents::PRE_SUBMIT, FormEvents::SUBMIT
and FormEvents::POST_SUBMIT were called FormEvents::PRE_BIND,
FormEvents::BIND and FormEvents::POST_BIND.

警告

The FormEvents::PRE_BIND, FormEvents::BIND and
FormEvents::POST_BIND constants will be removed in version 3.0 of
Symfony.
The event names still keep their original values, so make sure you use the
FormEvents constants in your code for forward compatibility.

Event Listeners

An event listener may be any type of valid callable.

Creating and binding an event listener to the form is very easy:

// ...

use Symfony\Component\Form\FormEvent;
use Symfony\Component\Form\FormEvents;

$form = $formFactory->createBuilder()
 ->add('username', 'text')
 ->add('show_email', 'checkbox')
 ->addEventListener(FormEvents::PRE_SUBMIT, function (FormEvent $event) {
 $user = $event->getData();
 $form = $event->getForm();

 if (!$user) {
 return;
 }

 // Check whether the user has chosen to display his email or not.
 // If the data was submitted previously, the additional value that is
 // included in the request variables needs to be removed.
 if (true === $user['show_email']) {
 $form->add('email', 'email');
 } else {
 unset($user['email']);
 $event->setData($user);
 }
 })
 ->getForm();

// ...

When you have created a form type class, you can use one of its methods as a
callback for better readability:

// ...

class SubscriptionType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder->add('username', 'text');
 $builder->add('show_email', 'checkbox');
 $builder->addEventListener(
 FormEvents::PRE_SET_DATA,
 array($this, 'onPreSetData')
);
 }

 public function onPreSetData(FormEvent $event)
 {
 // ...
 }
}

Event Subscribers

Event subscribers have different uses:

	Improving readability;

	Listening to multiple events;

	Regrouping multiple listeners inside a single class.

use Symfony\Component\EventDispatcher\EventSubscriberInterface;
use Symfony\Component\Form\FormEvent;
use Symfony\Component\Form\FormEvents;

class AddEmailFieldListener implements EventSubscriberInterface
{
 public static function getSubscribedEvents()
 {
 return array(
 FormEvents::PRE_SET_DATA => 'onPreSetData',
 FormEvents::PRE_SUBMIT => 'onPreSubmit',
);
 }

 public function onPreSetData(FormEvent $event)
 {
 $user = $event->getData();
 $form = $event->getForm();

 // Check whether the user from the initial data has chosen to
 // display his email or not.
 if (true === $user->isShowEmail()) {
 $form->add('email', 'email');
 }
 }

 public function onPreSubmit(FormEvent $event)
 {
 $user = $event->getData();
 $form = $event->getForm();

 if (!$user) {
 return;
 }

 // Check whether the user has chosen to display his email or not.
 // If the data was submitted previously, the additional value that
 // is included in the request variables needs to be removed.
 if (true === $user['show_email']) {
 $form->add('email', 'email');
 } else {
 unset($user['email']);
 $event->setData($user);
 }
 }
}

To register the event subscriber, use the addEventSubscriber() method:

// ...

$form = $formFactory->createBuilder()
 ->add('username', 'text')
 ->add('show_email', 'checkbox')
 ->addEventSubscriber(new AddEmailFieldListener())
 ->getForm();

// ...

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

HttpFoundation

	The HttpFoundation Component
	Installation

	Request

	Response

	Session

	Session Management
	Session API

	Session Data Management

	Attributes

	Flash Messages

	Configuring Sessions and Save Handlers
	Save Handlers

	Configuring PHP Sessions

	Session Cookie Lifetime

	Configuring Garbage Collection

	Session Lifetime

	Session Idle Time/Keep Alive

	Session Metadata

	PHP 5.4 Compatibility

	Save Handler Proxy

	Testing with Sessions
	Unit Testing

	Functional Testing

	Integrating with Legacy Sessions

	Trusting Proxies
	Configuring Header Names

	Not Trusting certain Headers

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	HttpFoundation

The HttpFoundation Component

The HttpFoundation component defines an object-oriented layer for the HTTP
specification.

In PHP, the request is represented by some global variables ($_GET,
$_POST, $_FILES, $_COOKIE, $_SESSION, ...) and the response is
generated by some functions (echo, header, setcookie, ...).

The Symfony HttpFoundation component replaces these default PHP global
variables and functions by an object-oriented layer.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/http-foundation on Packagist [https://packagist.org/packages/symfony/http-foundation]);

	Use the official Git repository (https://github.com/symfony/HttpFoundation).

Request

The most common way to create a request is to base it on the current PHP global
variables with
createFromGlobals() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_createFromGlobals]:

use Symfony\Component\HttpFoundation\Request;

$request = Request::createFromGlobals();

which is almost equivalent to the more verbose, but also more flexible,
__construct() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method___construct] call:

$request = new Request(
 $_GET,
 $_POST,
 array(),
 $_COOKIE,
 $_FILES,
 $_SERVER
);

Accessing Request Data

A Request object holds information about the client request. This information
can be accessed via several public properties:

	request: equivalent of $_POST;

	query: equivalent of $_GET ($request->query->get('name'));

	cookies: equivalent of $_COOKIE;

	attributes: no equivalent - used by your app to store other data (see below);

	files: equivalent of $_FILES;

	server: equivalent of $_SERVER;

	headers: mostly equivalent to a sub-set of $_SERVER
($request->headers->get('User-Agent')).

Each property is a ParameterBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html]
instance (or a sub-class of), which is a data holder class:

	request: ParameterBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html];

	query: ParameterBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html];

	cookies: ParameterBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html];

	attributes: ParameterBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html];

	files: FileBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/FileBag.html];

	server: ServerBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ServerBag.html];

	headers: HeaderBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/HeaderBag.html].

All ParameterBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html] instances have
methods to retrieve and update its data:

	all() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_all]

	Returns the parameters.

	keys() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_keys]

	Returns the parameter keys.

	replace() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_replace]

	Replaces the current parameters by a new set.

	add() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_add]

	Adds parameters.

	get() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_get]

	Returns a parameter by name.

	set() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_set]

	Sets a parameter by name.

	has() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_has]

	Returns true if the parameter is defined.

	remove() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_remove]

	Removes a parameter.

The ParameterBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html] instance also
has some methods to filter the input values:

	getAlpha() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_getAlpha]

	Returns the alphabetic characters of the parameter value;

	getAlnum() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_getAlnum]

	Returns the alphabetic characters and digits of the parameter value;

	getDigits() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_getDigits]

	Returns the digits of the parameter value;

	getInt() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_getInt]

	Returns the parameter value converted to integer;

	filter() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_filter]

	Filters the parameter by using the PHP filter_var [http://php.net/manual/en/function.filter-var.php] function.

All getters takes up to three arguments: the first one is the parameter name
and the second one is the default value to return if the parameter does not
exist:

// the query string is '?foo=bar'

$request->query->get('foo');
// returns bar

$request->query->get('bar');
// returns null

$request->query->get('bar', 'bar');
// returns 'bar'

When PHP imports the request query, it handles request parameters like
foo[bar]=bar in a special way as it creates an array. So you can get the
foo parameter and you will get back an array with a bar element. But
sometimes, you might want to get the value for the “original” parameter name:
foo[bar]. This is possible with all the ParameterBag getters like
get() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_get] via the third
argument:

// the query string is '?foo[bar]=bar'

$request->query->get('foo');
// returns array('bar' => 'bar')

$request->query->get('foo[bar]');
// returns null

$request->query->get('foo[bar]', null, true);
// returns 'bar'

Thanks to the public attributes property, you can store additional data
in the request, which is also an instance of
ParameterBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html]. This is mostly used
to attach information that belongs to the Request and that needs to be
accessed from many different points in your application. For information
on how this is used in the Symfony framework, see
the Symfony book.

Finally, the raw data sent with the request body can be accessed using
getContent() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_getContent]:

$content = $request->getContent();

For instance, this may be useful to process a JSON string sent to the
application by a remote service using the HTTP POST method.

Identifying a Request

In your application, you need a way to identify a request; most of the time,
this is done via the “path info” of the request, which can be accessed via the
getPathInfo() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_getPathInfo] method:

// for a request to http://example.com/blog/index.php/post/hello-world
// the path info is "/post/hello-world"
$request->getPathInfo();

Simulating a Request

Instead of creating a request based on the PHP globals, you can also simulate
a request:

$request = Request::create(
 '/hello-world',
 'GET',
 array('name' => 'Fabien')
);

The create() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_create] method
creates a request based on a URI, a method and some parameters (the
query parameters or the request ones depending on the HTTP method); and of
course, you can also override all other variables as well (by default, Symfony
creates sensible defaults for all the PHP global variables).

Based on such a request, you can override the PHP global variables via
overrideGlobals() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_overrideGlobals]:

$request->overrideGlobals();

小技巧

You can also duplicate an existing request via
duplicate() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_duplicate] or
change a bunch of parameters with a single call to
initialize() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_initialize].

Accessing the Session

If you have a session attached to the request, you can access it via the
getSession() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_getSession] method;
the
hasPreviousSession() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_hasPreviousSession]
method tells you if the request contains a session which was started in one of
the previous requests.

Accessing Accept-* Headers Data

You can easily access basic data extracted from Accept-* headers
by using the following methods:

	getAcceptableContentTypes() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_getAcceptableContentTypes]

	Returns the list of accepted content types ordered by descending quality.

	getLanguages() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_getLanguages]

	Returns the list of accepted languages ordered by descending quality.

	getCharsets() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_getCharsets]

	Returns the list of accepted charsets ordered by descending quality.

2.2 新版功能: The AcceptHeader [http://api.symfony.com/master/Symfony/Component/HttpFoundation/AcceptHeader.html] class was
introduced in Symfony 2.2.

If you need to get full access to parsed data from Accept, Accept-Language,
Accept-Charset or Accept-Encoding, you can use
AcceptHeader [http://api.symfony.com/master/Symfony/Component/HttpFoundation/AcceptHeader.html] utility class:

use Symfony\Component\HttpFoundation\AcceptHeader;

$accept = AcceptHeader::fromString($request->headers->get('Accept'));
if ($accept->has('text/html')) {
 $item = $accept->get('text/html');
 $charset = $item->getAttribute('charset', 'utf-8');
 $quality = $item->getQuality();
}

// Accept header items are sorted by descending quality
$accepts = AcceptHeader::fromString($request->headers->get('Accept'))
 ->all();

Accessing other Data

The Request class has many other methods that you can use to access the
request information. Have a look at
the Request API [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html]
for more information about them.

Response

A Response [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html] object holds all the
information that needs to be sent back to the client from a given request. The
constructor takes up to three arguments: the response content, the status
code, and an array of HTTP headers:

use Symfony\Component\HttpFoundation\Response;

$response = new Response(
 'Content',
 200,
 array('content-type' => 'text/html')
);

This information can also be manipulated after the Response object creation:

$response->setContent('Hello World');

// the headers public attribute is a ResponseHeaderBag
$response->headers->set('Content-Type', 'text/plain');

$response->setStatusCode(404);

When setting the Content-Type of the Response, you can set the charset,
but it is better to set it via the
setCharset() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_setCharset] method:

$response->setCharset('ISO-8859-1');

Note that by default, Symfony assumes that your Responses are encoded in
UTF-8.

Sending the Response

Before sending the Response, you can ensure that it is compliant with the HTTP
specification by calling the
prepare() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_prepare] method:

$response->prepare($request);

Sending the response to the client is then as simple as calling
send() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_send]:

$response->send();

Setting Cookies

The response cookies can be manipulated through the headers public
attribute:

use Symfony\Component\HttpFoundation\Cookie;

$response->headers->setCookie(new Cookie('foo', 'bar'));

The
setCookie() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ResponseHeaderBag.html#method_setCookie]
method takes an instance of
Cookie [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Cookie.html] as an argument.

You can clear a cookie via the
clearCookie() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ResponseHeaderBag.html#method_clearCookie] method.

Managing the HTTP Cache

The Response [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html] class has a rich set
of methods to manipulate the HTTP headers related to the cache:

	setPublic() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_setPublic];

	setPrivate() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_setPrivate];

	expire() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_expire];

	setExpires() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_setExpires];

	setMaxAge() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_setMaxAge];

	setSharedMaxAge() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_setSharedMaxAge];

	setTtl() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_setTtl];

	setClientTtl() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_setClientTtl];

	setLastModified() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_setLastModified];

	setEtag() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_setEtag];

	setVary() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_setVary];

The setCache() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_setCache] method
can be used to set the most commonly used cache information in one method
call:

$response->setCache(array(
 'etag' => 'abcdef',
 'last_modified' => new \DateTime(),
 'max_age' => 600,
 's_maxage' => 600,
 'private' => false,
 'public' => true,
));

To check if the Response validators (ETag, Last-Modified) match a
conditional value specified in the client Request, use the
isNotModified() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_isNotModified]
method:

if ($response->isNotModified($request)) {
 $response->send();
}

If the Response is not modified, it sets the status code to 304 and removes the
actual response content.

Redirecting the User

To redirect the client to another URL, you can use the
RedirectResponse [http://api.symfony.com/master/Symfony/Component/HttpFoundation/RedirectResponse.html] class:

use Symfony\Component\HttpFoundation\RedirectResponse;

$response = new RedirectResponse('http://example.com/');

Streaming a Response

The StreamedResponse [http://api.symfony.com/master/Symfony/Component/HttpFoundation/StreamedResponse.html] class allows
you to stream the Response back to the client. The response content is
represented by a PHP callable instead of a string:

use Symfony\Component\HttpFoundation\StreamedResponse;

$response = new StreamedResponse();
$response->setCallback(function () {
 echo 'Hello World';
 flush();
 sleep(2);
 echo 'Hello World';
 flush();
});
$response->send();

注解

The flush() function does not flush buffering. If ob_start() has
been called before or the output_buffering php.ini option is enabled,
you must call ob_flush() before flush().

Additionally, PHP isn’t the only layer that can buffer output. Your web
server might also buffer based on its configuration. Even more, if you
use fastcgi, buffering can’t be disabled at all.

Serving Files

When sending a file, you must add a Content-Disposition header to your
response. While creating this header for basic file downloads is easy, using
non-ASCII filenames is more involving. The
makeDisposition() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/ResponseHeaderBag.html#method_makeDisposition]
abstracts the hard work behind a simple API:

use Symfony\Component\HttpFoundation\ResponseHeaderBag;

$d = $response->headers->makeDisposition(
 ResponseHeaderBag::DISPOSITION_ATTACHMENT,
 'foo.pdf'
);

$response->headers->set('Content-Disposition', $d);

2.2 新版功能: The BinaryFileResponse [http://api.symfony.com/master/Symfony/Component/HttpFoundation/BinaryFileResponse.html]
class was introduced in Symfony 2.2.

Alternatively, if you are serving a static file, you can use a
BinaryFileResponse [http://api.symfony.com/master/Symfony/Component/HttpFoundation/BinaryFileResponse.html]:

use Symfony\Component\HttpFoundation\BinaryFileResponse;

$file = 'path/to/file.txt';
$response = new BinaryFileResponse($file);

The BinaryFileResponse will automatically handle Range and
If-Range headers from the request. It also supports X-Sendfile
(see for Nginx [http://wiki.nginx.org/XSendfile] and Apache [https://tn123.org/mod_xsendfile/]). To make use of it, you need to determine
whether or not the X-Sendfile-Type header should be trusted and call
trustXSendfileTypeHeader() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/BinaryFileResponse.html#method_trustXSendfileTypeHeader]
if it should:

BinaryFileResponse::trustXSendfileTypeHeader();

You can still set the Content-Type of the sent file, or change its Content-Disposition:

$response->headers->set('Content-Type', 'text/plain');
$response->setContentDisposition(
 ResponseHeaderBag::DISPOSITION_ATTACHMENT,
 'filename.txt'
);

Creating a JSON Response

Any type of response can be created via the
Response [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html] class by setting the
right content and headers. A JSON response might look like this:

use Symfony\Component\HttpFoundation\Response;

$response = new Response();
$response->setContent(json_encode(array(
 'data' => 123,
)));
$response->headers->set('Content-Type', 'application/json');

There is also a helpful JsonResponse [http://api.symfony.com/master/Symfony/Component/HttpFoundation/JsonResponse.html]
class, which can make this even easier:

use Symfony\Component\HttpFoundation\JsonResponse;

$response = new JsonResponse();
$response->setData(array(
 'data' => 123
));

This encodes your array of data to JSON and sets the Content-Type header
to application/json.

警告

To avoid XSSI JSON Hijacking [http://haacked.com/archive/2009/06/25/json-hijacking.aspx], you should pass an associative array
as the outer-most array to JsonResponse and not an indexed array so
that the final result is an object (e.g. {"object": "not inside an array"})
instead of an array (e.g. [{"object": "inside an array"}]). Read
the OWASP guidelines [https://www.owasp.org/index.php/OWASP_AJAX_Security_Guidelines#Always_return_JSON_with_an_Object_on_the_outside] for more information.

Only methods that respond to GET requests are vulnerable to XSSI ‘JSON Hijacking’.
Methods responding to POST requests only remain unaffected.

JSONP Callback

If you’re using JSONP, you can set the callback function that the data should
be passed to:

$response->setCallback('handleResponse');

In this case, the Content-Type header will be text/javascript and
the response content will look like this:

handleResponse({'data': 123});

Session

The session information is in its own document: Session Management.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	HttpFoundation

Session Management

The Symfony HttpFoundation component has a very powerful and flexible session
subsystem which is designed to provide session management through a simple
object-oriented interface using a variety of session storage drivers.

Sessions are used via the simple Session [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html]
implementation of SessionInterface [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionInterface.html] interface.

警告

Make sure your PHP session isn’t already started before using the Session
class. If you have a legacy session system that starts your session, see
Legacy Sessions.

Quick example:

use Symfony\Component\HttpFoundation\Session\Session;

$session = new Session();
$session->start();

// set and get session attributes
$session->set('name', 'Drak');
$session->get('name');

// set flash messages
$session->getFlashBag()->add('notice', 'Profile updated');

// retrieve messages
foreach ($session->getFlashBag()->get('notice', array()) as $message) {
 echo '<div class="flash-notice">'.$message.'</div>';
}

注解

Symfony sessions are designed to replace several native PHP functions.
Applications should avoid using session_start(), session_regenerate_id(),
session_id(), session_name(), and session_destroy() and instead
use the APIs in the following section.

注解

While it is recommended to explicitly start a session, a session will actually
start on demand, that is, if any session request is made to read/write session
data.

警告

Symfony sessions are incompatible with php.ini directive session.auto_start = 1
This directive should be turned off in php.ini, in the webserver directives or
in .htaccess.

Session API

The Session [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html] class implements
SessionInterface [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionInterface.html].

The Session [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html] has a simple API
as follows divided into a couple of groups.

Session Workflow

	start() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_start]

	Starts the session - do not use session_start().

	migrate() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_migrate]

	Regenerates the session ID - do not use session_regenerate_id().
This method can optionally change the lifetime of the new cookie that will
be emitted by calling this method.

	invalidate() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_invalidate]

	Clears all session data and regenerates session ID. Do not use session_destroy().

	getId() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_getId]

	Gets the session ID. Do not use session_id().

	setId() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_setId]

	Sets the session ID. Do not use session_id().

	getName() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_getName]

	Gets the session name. Do not use session_name().

	setName() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_setName]

	Sets the session name. Do not use session_name().

Session Attributes

	set() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_set]

	Sets an attribute by key.

	get() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_get]

	Gets an attribute by key.

	all() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_all]

	Gets all attributes as an array of key => value.

	has() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_has]

	Returns true if the attribute exists.

	replace() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_replace]

	Sets multiple attributes at once: takes a keyed array and sets each key => value pair.

	remove() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_remove]

	Deletes an attribute by key.

	clear() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_clear]

	Clear all attributes.

The attributes are stored internally in a “Bag”, a PHP object that acts like
an array. A few methods exist for “Bag” management:

	registerBag() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_registerBag]

	Registers a SessionBagInterface [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionBagInterface.html].

	getBag() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_getBag]

	Gets a SessionBagInterface [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionBagInterface.html] by
bag name.

	getFlashBag() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_getFlashBag]

	Gets the FlashBagInterface [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html].
This is just a shortcut for convenience.

Session Metadata

	getMetadataBag() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_getMetadataBag]

	Gets the MetadataBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/MetadataBag.html]
which contains information about the session.

Session Data Management

PHP’s session management requires the use of the $_SESSION super-global,
however, this interferes somewhat with code testability and encapsulation in an
OOP paradigm. To help overcome this, Symfony uses session bags linked to the
session to encapsulate a specific dataset of attributes or flash messages.

This approach also mitigates namespace pollution within the $_SESSION
super-global because each bag stores all its data under a unique namespace.
This allows Symfony to peacefully co-exist with other applications or libraries
that might use the $_SESSION super-global and all data remains completely
compatible with Symfony’s session management.

Symfony provides two kinds of storage bags, with two separate implementations.
Everything is written against interfaces so you may extend or create your own
bag types if necessary.

SessionBagInterface [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionBagInterface.html] has
the following API which is intended mainly for internal purposes:

	getStorageKey() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionBagInterface.html#method_getStorageKey]

	Returns the key which the bag will ultimately store its array under in $_SESSION.
Generally this value can be left at its default and is for internal use.

	initialize() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionBagInterface.html#method_initialize]

	This is called internally by Symfony session storage classes to link bag data
to the session.

	getName() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionBagInterface.html#method_getName]

	Returns the name of the session bag.

Attributes

The purpose of the bags implementing the AttributeBagInterface [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html]
is to handle session attribute storage. This might include things like user ID,
and remember me login settings or other user based state information.

	AttributeBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBag.html]

	This is the standard default implementation.

	NamespacedAttributeBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/NamespacedAttributeBag.html]

	This implementation allows for attributes to be stored in a structured namespace.

Any plain key-value storage system is limited in the extent to which
complex data can be stored since each key must be unique. You can achieve
namespacing by introducing a naming convention to the keys so different parts of
your application could operate without clashing. For example, module1.foo and
module2.foo. However, sometimes this is not very practical when the attributes
data is an array, for example a set of tokens. In this case, managing the array
becomes a burden because you have to retrieve the array then process it and
store it again:

$tokens = array(
 'tokens' => array(
 'a' => 'a6c1e0b6',
 'b' => 'f4a7b1f3',
),
);

So any processing of this might quickly get ugly, even simply adding a token to
the array:

$tokens = $session->get('tokens');
$tokens['c'] = $value;
$session->set('tokens', $tokens);

With structured namespacing, the key can be translated to the array
structure like this using a namespace character (defaults to /):

$session->set('tokens/c', $value);

This way you can easily access a key within the stored array directly and easily.

AttributeBagInterface [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html]
has a simple API

	set() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#method_set]

	Sets an attribute by key.

	get() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#method_get]

	Gets an attribute by key.

	all() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#method_all]

	Gets all attributes as an array of key => value.

	has() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#method_has]

	Returns true if the attribute exists.

	keys() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#method_keys]

	Returns an array of stored attribute keys.

	replace() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#method_replace]

	Sets multiple attributes at once: takes a keyed array and sets each key => value pair.

	remove() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#method_remove]

	Deletes an attribute by key.

	clear() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#method_clear]

	Clear the bag.

Flash Messages

The purpose of the FlashBagInterface [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html]
is to provide a way of setting and retrieving messages on a per session basis.
The usual workflow would be to set flash messages in a request and to display them
after a page redirect. For example, a user submits a form which hits an update
controller, and after processing the controller redirects the page to either the
updated page or an error page. Flash messages set in the previous page request
would be displayed immediately on the subsequent page load for that session.
This is however just one application for flash messages.

	AutoExpireFlashBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/AutoExpireFlashBag.html]

	In this implementation, messages set in one page-load will
be available for display only on the next page load. These messages will auto
expire regardless of if they are retrieved or not.

	FlashBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBag.html]

	In this implementation, messages will remain in the session until
they are explicitly retrieved or cleared. This makes it possible to use ESI
caching.

FlashBagInterface [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html]
has a simple API

	add() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#method_add]

	Adds a flash message to the stack of specified type.

	set() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#method_set]

	Sets flashes by type; This method conveniently takes both single messages as
a string or multiple messages in an array.

	get() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#method_get]

	Gets flashes by type and clears those flashes from the bag.

	setAll() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#method_setAll]

	Sets all flashes, accepts a keyed array of arrays type => array(messages).

	all() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#method_all]

	Gets all flashes (as a keyed array of arrays) and clears the flashes from the bag.

	peek() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#method_peek]

	Gets flashes by type (read only).

	peekAll() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#method_peekAll]

	Gets all flashes (read only) as keyed array of arrays.

	has() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#method_has]

	Returns true if the type exists, false if not.

	keys() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#method_keys]

	Returns an array of the stored flash types.

	clear() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#method_clear]

	Clears the bag.

For simple applications it is usually sufficient to have one flash message per
type, for example a confirmation notice after a form is submitted. However,
flash messages are stored in a keyed array by flash $type which means your
application can issue multiple messages for a given type. This allows the API
to be used for more complex messaging in your application.

Examples of setting multiple flashes:

use Symfony\Component\HttpFoundation\Session\Session;

$session = new Session();
$session->start();

// add flash messages
$session->getFlashBag()->add(
 'warning',
 'Your config file is writable, it should be set read-only'
);
$session->getFlashBag()->add('error', 'Failed to update name');
$session->getFlashBag()->add('error', 'Another error');

Displaying the flash messages might look as follows.

Simple, display one type of message:

// display warnings
foreach ($session->getFlashBag()->get('warning', array()) as $message) {
 echo '<div class="flash-warning">'.$message.'</div>';
}

// display errors
foreach ($session->getFlashBag()->get('error', array()) as $message) {
 echo '<div class="flash-error">'.$message.'</div>';
}

Compact method to process display all flashes at once:

foreach ($session->getFlashBag()->all() as $type => $messages) {
 foreach ($messages as $message) {
 echo '<div class="flash-'.$type.'">'.$message.'</div>';
 }
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	HttpFoundation

Configuring Sessions and Save Handlers

This section deals with how to configure session management and fine tune it
to your specific needs. This documentation covers save handlers, which
store and retrieve session data, and configuring session behavior.

Save Handlers

The PHP session workflow has 6 possible operations that may occur. The normal
session follows open, read, write and close, with the possibility
of destroy and gc (garbage collection which will expire any old sessions:
gc is called randomly according to PHP’s configuration and if called, it is
invoked after the open operation). You can read more about this at
php.net/session.customhandler [http://php.net/session.customhandler]

Native PHP Save Handlers

So-called native handlers, are save handlers which are either compiled into
PHP or provided by PHP extensions, such as PHP-Sqlite, PHP-Memcached and so on.

All native save handlers are internal to PHP and as such, have no public facing API.
They must be configured by php.ini directives, usually session.save_path and
potentially other driver specific directives. Specific details can be found in
the docblock of the setOptions() method of each class. For instance, the one
provided by the Memcached extension can be found on php.net/memcached.setoption [http://php.net/memcached.setoption]

While native save handlers can be activated by directly using
ini_set('session.save_handler', $name);, Symfony provides a convenient way to
activate these in the same way as it does for custom handlers.

Symfony provides drivers for the following native save handler as an example:

	NativeFileSessionHandler [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/NativeFileSessionHandler.html]

Example usage:

use Symfony\Component\HttpFoundation\Session\Session;
use Symfony\Component\HttpFoundation\Session\Storage\NativeSessionStorage;
use Symfony\Component\HttpFoundation\Session\Storage\Handler\NativeFileSessionHandler;

$storage = new NativeSessionStorage(array(), new NativeFileSessionHandler());
$session = new Session($storage);

注解

With the exception of the files handler which is built into PHP and
always available, the availability of the other handlers depends on those
PHP extensions being active at runtime.

注解

Native save handlers provide a quick solution to session storage, however,
in complex systems where you need more control, custom save handlers may
provide more freedom and flexibility. Symfony provides several implementations
which you may further customize as required.

Custom Save Handlers

Custom handlers are those which completely replace PHP’s built-in session save
handlers by providing six callback functions which PHP calls internally at
various points in the session workflow.

The Symfony HttpFoundation component provides some by default and these can
easily serve as examples if you wish to write your own.

	PdoSessionHandler [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/PdoSessionHandler.html]

	MemcacheSessionHandler [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/MemcacheSessionHandler.html]

	MemcachedSessionHandler [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/MemcachedSessionHandler.html]

	MongoDbSessionHandler [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/MongoDbSessionHandler.html]

	NullSessionHandler [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/NullSessionHandler.html]

Example usage:

use Symfony\Component\HttpFoundation\Session\Session;
use Symfony\Component\HttpFoundation\Session\Storage\NativeSessionStorage;
use Symfony\Component\HttpFoundation\Session\Storage\Handler\PdoSessionHandler;

$pdo = new \PDO(...);
$storage = new NativeSessionStorage(array(), new PdoSessionHandler($pdo));
$session = new Session($storage);

Configuring PHP Sessions

The NativeSessionStorage [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/NativeSessionStorage.html]
can configure most of the php.ini configuration directives which are documented
at php.net/session.configuration [http://php.net/session.configuration].

To configure these settings, pass the keys (omitting the initial session. part
of the key) as a key-value array to the $options constructor argument.
Or set them via the
setOptions() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/NativeSessionStorage.html#method_setOptions]
method.

For the sake of clarity, some key options are explained in this documentation.

Session Cookie Lifetime

For security, session tokens are generally recommended to be sent as session cookies.
You can configure the lifetime of session cookies by specifying the lifetime
(in seconds) using the cookie_lifetime key in the constructor’s $options
argument in NativeSessionStorage [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/NativeSessionStorage.html].

Setting a cookie_lifetime to 0 will cause the cookie to live only as
long as the browser remains open. Generally, cookie_lifetime would be set to
a relatively large number of days, weeks or months. It is not uncommon to set
cookies for a year or more depending on the application.

Since session cookies are just a client-side token, they are less important in
controlling the fine details of your security settings which ultimately can only
be securely controlled from the server side.

注解

The cookie_lifetime setting is the number of seconds the cookie should live
for, it is not a Unix timestamp. The resulting session cookie will be stamped
with an expiry time of time() + cookie_lifetime where the time is taken
from the server.

Configuring Garbage Collection

When a session opens, PHP will call the gc handler randomly according to the
probability set by session.gc_probability / session.gc_divisor. For
example if these were set to 5/100 respectively, it would mean a probability
of 5%. Similarly, 3/4 would mean a 3 in 4 chance of being called, i.e. 75%.

If the garbage collection handler is invoked, PHP will pass the value stored in
the php.ini directive session.gc_maxlifetime. The meaning in this context is
that any stored session that was saved more than gc_maxlifetime ago should be
deleted. This allows one to expire records based on idle time.

You can configure these settings by passing gc_probability, gc_divisor
and gc_maxlifetime in an array to the constructor of
NativeSessionStorage [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/NativeSessionStorage.html]
or to the setOptions() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/NativeSessionStorage.html#method_setOptions]
method.

Session Lifetime

When a new session is created, meaning Symfony issues a new session cookie
to the client, the cookie will be stamped with an expiry time. This is
calculated by adding the PHP runtime configuration value in
session.cookie_lifetime with the current server time.

注解

PHP will only issue a cookie once. The client is expected to store that cookie
for the entire lifetime. A new cookie will only be issued when the session is
destroyed, the browser cookie is deleted, or the session ID is regenerated
using the migrate() or invalidate() methods of the Session class.

The initial cookie lifetime can be set by configuring NativeSessionStorage
using the setOptions(array('cookie_lifetime' => 1234)) method.

注解

A cookie lifetime of 0 means the cookie expires when the browser is closed.

Session Idle Time/Keep Alive

There are often circumstances where you may want to protect, or minimize
unauthorized use of a session when a user steps away from their terminal while
logged in by destroying the session after a certain period of idle time. For
example, it is common for banking applications to log the user out after just
5 to 10 minutes of inactivity. Setting the cookie lifetime here is not
appropriate because that can be manipulated by the client, so we must do the expiry
on the server side. The easiest way is to implement this via garbage collection
which runs reasonably frequently. The cookie_lifetime would be set to a
relatively high value, and the garbage collection gc_maxlifetime would be set
to destroy sessions at whatever the desired idle period is.

The other option is specifically check if a session has expired after the
session is started. The session can be destroyed as required. This method of
processing can allow the expiry of sessions to be integrated into the user
experience, for example, by displaying a message.

Symfony records some basic metadata about each session to give you complete
freedom in this area.

Session Metadata

Sessions are decorated with some basic metadata to enable fine control over the
security settings. The session object has a getter for the metadata,
getMetadataBag() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#method_getMetadataBag] which
exposes an instance of MetadataBag [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/MetadataBag.html]:

$session->getMetadataBag()->getCreated();
$session->getMetadataBag()->getLastUsed();

Both methods return a Unix timestamp (relative to the server).

This metadata can be used to explicitly expire a session on access, e.g.:

$session->start();
if (time() - $session->getMetadataBag()->getLastUsed() > $maxIdleTime) {
 $session->invalidate();
 throw new SessionExpired(); // redirect to expired session page
}

It is also possible to tell what the cookie_lifetime was set to for a
particular cookie by reading the getLifetime() method:

$session->getMetadataBag()->getLifetime();

The expiry time of the cookie can be determined by adding the created
timestamp and the lifetime.

PHP 5.4 Compatibility

Since PHP 5.4.0, SessionHandler [http://php.net/manual/en/class.sessionhandler.php] and SessionHandlerInterface [http://php.net/manual/en/class.sessionhandlerinterface.php]
are available. Symfony provides forward compatibility for the SessionHandlerInterface [http://php.net/manual/en/class.sessionhandlerinterface.php]
so it can be used under PHP 5.3. This greatly improves interoperability with other
libraries.

SessionHandler [http://php.net/manual/en/class.sessionhandler.php] is a special PHP internal class which exposes native save
handlers to PHP user-space.

In order to provide a solution for those using PHP 5.4, Symfony has a special
class called NativeSessionHandler [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/NativeSessionHandler.html]
which under PHP 5.4, extends from \SessionHandler and under PHP 5.3 is just a
empty base class. This provides some interesting opportunities to leverage
PHP 5.4 functionality if it is available.

Save Handler Proxy

A Save Handler Proxy is basically a wrapper around a Save Handler that was
introduced to seamlessly support the migration from PHP 5.3 to PHP 5.4+. It
further creates an extension point from where custom logic can be added that
works independently of which handler is being wrapped inside.

There are two kinds of save handler class proxies which inherit from
AbstractProxy [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/AbstractProxy.html]:
they are NativeProxy [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/NativeProxy.html]
and SessionHandlerProxy [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/SessionHandlerProxy.html].

NativeSessionStorage [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/NativeSessionStorage.html]
automatically injects storage handlers into a save handler proxy unless already
wrapped by one.

NativeProxy [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/NativeProxy.html]
is used automatically under PHP 5.3 when internal PHP save handlers are specified
using the Native*SessionHandler classes, while
SessionHandlerProxy [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/SessionHandlerProxy.html]
will be used to wrap any custom save handlers, that implement SessionHandlerInterface [http://php.net/manual/en/class.sessionhandlerinterface.php].

From PHP 5.4 and above, all session handlers implement SessionHandlerInterface [http://php.net/manual/en/class.sessionhandlerinterface.php]
including Native*SessionHandler classes which inherit from SessionHandler [http://php.net/manual/en/class.sessionhandler.php].

The proxy mechanism allows you to get more deeply involved in session save handler
classes. A proxy for example could be used to encrypt any session transaction
without knowledge of the specific save handler.

注解

Before PHP 5.4, you can only proxy user-land save handlers but not
native PHP save handlers.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	HttpFoundation

Testing with Sessions

Symfony is designed from the ground up with code-testability in mind. In order
to make your code which utilizes session easily testable we provide two separate
mock storage mechanisms for both unit testing and functional testing.

Testing code using real sessions is tricky because PHP’s workflow state is global
and it is not possible to have multiple concurrent sessions in the same PHP
process.

The mock storage engines simulate the PHP session workflow without actually
starting one allowing you to test your code without complications. You may also
run multiple instances in the same PHP process.

The mock storage drivers do not read or write the system globals
session_id() or session_name(). Methods are provided to simulate this if
required:

	getId() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionStorageInterface.html#method_getId]: Gets the
session ID.

	setId() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionStorageInterface.html#method_setId]: Sets the
session ID.

	getName() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionStorageInterface.html#method_getName]: Gets the
session name.

	setName() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionStorageInterface.html#method_setName]: Sets the
session name.

Unit Testing

For unit testing where it is not necessary to persist the session, you should
simply swap out the default storage engine with
MockArraySessionStorage [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/MockArraySessionStorage.html]:

use Symfony\Component\HttpFoundation\Session\Storage\MockArraySessionStorage;
use Symfony\Component\HttpFoundation\Session\Session;

$session = new Session(new MockArraySessionStorage());

Functional Testing

For functional testing where you may need to persist session data across
separate PHP processes, simply change the storage engine to
MockFileSessionStorage [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/MockFileSessionStorage.html]:

use Symfony\Component\HttpFoundation\Session\Session;
use Symfony\Component\HttpFoundation\Session\Storage\MockFileSessionStorage;

$session = new Session(new MockFileSessionStorage());

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	HttpFoundation

Integrating with Legacy Sessions

Sometimes it may be necessary to integrate Symfony into a legacy application
where you do not initially have the level of control you require.

As stated elsewhere, Symfony Sessions are designed to replace the use of
PHP’s native session_*() functions and use of the $_SESSION
superglobal. Additionally, it is mandatory for Symfony to start the session.

However when there really are circumstances where this is not possible, you
can use a special storage bridge
PhpBridgeSessionStorage [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/PhpBridgeSessionStorage.html]
which is designed to allow Symfony to work with a session started outside of
the Symfony Session framework. You are warned that things can interrupt this
use-case unless you are careful: for example the legacy application erases
$_SESSION.

A typical use of this might look like this:

use Symfony\Component\HttpFoundation\Session\Session;
use Symfony\Component\HttpFoundation\Session\Storage\PhpBridgeSessionStorage;

// legacy application configures session
ini_set('session.save_handler', 'files');
ini_set('session.save_path', '/tmp');
session_start();

// Get Symfony to interface with this existing session
$session = new Session(new PhpBridgeSessionStorage());

// symfony will now interface with the existing PHP session
$session->start();

This will allow you to start using the Symfony Session API and allow migration
of your application to Symfony sessions.

注解

Symfony sessions store data like attributes in special ‘Bags’ which use a
key in the $_SESSION superglobal. This means that a Symfony session
cannot access arbitrary keys in $_SESSION that may be set by the legacy
application, although all the $_SESSION contents will be saved when
the session is saved.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	HttpFoundation

Trusting Proxies

小技巧

If you’re using the Symfony Framework, start by reading
How to Configure Symfony to Work behind a Load Balancer or a Reverse Proxy.

If you find yourself behind some sort of proxy - like a load balancer - then
certain header information may be sent to you using special X-Forwarded-*
headers. For example, the Host HTTP header is usually used to return
the requested host. But when you’re behind a proxy, the true host may be
stored in a X-Forwarded-Host header.

Since HTTP headers can be spoofed, Symfony does not trust these proxy
headers by default. If you are behind a proxy, you should manually whitelist
your proxy.

2.3 新版功能: CIDR notation support was introduced in Symfony 2.3, so you can whitelist whole
subnets (e.g. 10.0.0.0/8, fc00::/7).

use Symfony\Component\HttpFoundation\Request;

// only trust proxy headers coming from this IP addresses
Request::setTrustedProxies(array('192.0.0.1', '10.0.0.0/8'));

Configuring Header Names

By default, the following proxy headers are trusted:

	X-Forwarded-For Used in getClientIp() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_getClientIp];

	X-Forwarded-Host Used in getHost() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_getHost];

	X-Forwarded-Port Used in getPort() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_getPort];

	X-Forwarded-Proto Used in getScheme() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_getScheme] and isSecure() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_isSecure];

If your reverse proxy uses a different header name for any of these, you
can configure that header name via setTrustedHeaderName() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_setTrustedHeaderName]:

Request::setTrustedHeaderName(Request::HEADER_CLIENT_IP, 'X-Proxy-For');
Request::setTrustedHeaderName(Request::HEADER_CLIENT_HOST, 'X-Proxy-Host');
Request::setTrustedHeaderName(Request::HEADER_CLIENT_PORT, 'X-Proxy-Port');
Request::setTrustedHeaderName(Request::HEADER_CLIENT_PROTO, 'X-Proxy-Proto');

Not Trusting certain Headers

By default, if you whitelist your proxy’s IP address, then all four headers
listed above are trusted. If you need to trust some of these headers but
not others, you can do that as well:

// disables trusting the ``X-Forwarded-Proto`` header, the default header is used
Request::setTrustedHeaderName(Request::HEADER_CLIENT_PROTO, '');

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

HttpKernel

	The HttpKernel Component
	Installation

	The Workflow of a Request

	Creating an Event Listener

	A full Working Example

	Sub Requests

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	HttpKernel

The HttpKernel Component

The HttpKernel component provides a structured process for converting
a Request into a Response by making use of the EventDispatcher.
It’s flexible enough to create a full-stack framework (Symfony), a micro-framework
(Silex) or an advanced CMS system (Drupal).

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/http-kernel on Packagist [https://packagist.org/packages/symfony/http-kernel]);

	Use the official Git repository (https://github.com/symfony/HttpKernel).

The Workflow of a Request

Every HTTP web interaction begins with a request and ends with a response.
Your job as a developer is to create PHP code that reads the request information
(e.g. the URL) and creates and returns a response (e.g. an HTML page or JSON string).

[image: ../../_images/request-response-flow.png]
Typically, some sort of framework or system is built to handle all the repetitive
tasks (e.g. routing, security, etc) so that a developer can easily build
each page of the application. Exactly how these systems are built varies
greatly. The HttpKernel component provides an interface that formalizes
the process of starting with a request and creating the appropriate response.
The component is meant to be the heart of any application or framework, no
matter how varied the architecture of that system:

namespace Symfony\Component\HttpKernel;

use Symfony\Component\HttpFoundation\Request;

interface HttpKernelInterface
{
 // ...

 /**
 * @return Response A Response instance
 */
 public function handle(
 Request $request,
 $type = self::MASTER_REQUEST,
 $catch = true
);
}

Internally, HttpKernel::handle() [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernel.html#method_handle] -
the concrete implementation of HttpKernelInterface::handle() [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernelInterface.html#method_handle] -
defines a workflow that starts with a Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html]
and ends with a Response [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html].

[image: ../../_images/01-workflow.png]
The exact details of this workflow are the key to understanding how the kernel
(and the Symfony Framework or any other library that uses the kernel) works.

HttpKernel: Driven by Events

The HttpKernel::handle() method works internally by dispatching events.
This makes the method both flexible, but also a bit abstract, since all the
“work” of a framework/application built with HttpKernel is actually done
in event listeners.

To help explain this process, this document looks at each step of the process
and talks about how one specific implementation of the HttpKernel - the Symfony
Framework - works.

Initially, using the HttpKernel [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernel.html]
is really simple, and involves creating an EventDispatcher
and a controller resolver
(explained below). To complete your working kernel, you’ll add more event
listeners to the events discussed below:

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpKernel\HttpKernel;
use Symfony\Component\EventDispatcher\EventDispatcher;
use Symfony\Component\HttpKernel\Controller\ControllerResolver;

// create the Request object
$request = Request::createFromGlobals();

$dispatcher = new EventDispatcher();
// ... add some event listeners

// create your controller resolver
$resolver = new ControllerResolver();
// instantiate the kernel
$kernel = new HttpKernel($dispatcher, $resolver);

// actually execute the kernel, which turns the request into a response
// by dispatching events, calling a controller, and returning the response
$response = $kernel->handle($request);

// send the headers and echo the content
$response->send();

// triggers the kernel.terminate event
$kernel->terminate($request, $response);

See “A full Working Example” for a more concrete implementation.

For general information on adding listeners to the events below, see
Creating an Event Listener.

小技巧

Fabien Potencier also wrote a wonderful series on using the HttpKernel
component and other Symfony components to create your own framework. See
Create your own framework... on top of the Symfony2 Components [http://fabien.potencier.org/article/50/create-your-own-framework-on-top-of-the-symfony2-components-part-1].

1) The kernel.request Event

Typical Purposes: To add more information to the Request, initialize
parts of the system, or return a Response if possible (e.g. a security
layer that denies access).

Kernel Events Information Table

The first event that is dispatched inside HttpKernel::handle [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernel.html#method_handle]
is kernel.request, which may have a variety of different listeners.

[image: ../../_images/02-kernel-request.png]
Listeners of this event can be quite varied. Some listeners - such as a security
listener - might have enough information to create a Response object immediately.
For example, if a security listener determined that a user doesn’t have access,
that listener may return a RedirectResponse [http://api.symfony.com/master/Symfony/Component/HttpFoundation/RedirectResponse.html]
to the login page or a 403 Access Denied response.

If a Response is returned at this stage, the process skips directly to
the kernel.response event.

[image: ../../_images/03-kernel-request-response.png]
Other listeners simply initialize things or add more information to the request.
For example, a listener might determine and set the locale on the Request
object.

Another common listener is routing. A router listener may process the Request
and determine the controller that should be rendered (see the next section).
In fact, the Request object has an “attributes”
bag which is a perfect spot to store this extra, application-specific data
about the request. This means that if your router listener somehow determines
the controller, it can store it on the Request attributes (which can be used
by your controller resolver).

Overall, the purpose of the kernel.request event is either to create and
return a Response directly, or to add information to the Request
(e.g. setting the locale or setting some other information on the Request
attributes).

注解

When setting a response for the kernel.request event, the propagation
is stopped. This means listeners with lower priority won’t be executed.

kernel.request in the Symfony Framework

The most important listener to kernel.request in the Symfony Framework
is the RouterListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/RouterListener.html].
This class executes the routing layer, which returns an array of information
about the matched request, including the _controller and any placeholders
that are in the route’s pattern (e.g. {slug}). See
Routing component.

This array of information is stored in the Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html]
object’s attributes array. Adding the routing information here doesn’t
do anything yet, but is used next when resolving the controller.

2) Resolve the Controller

Assuming that no kernel.request listener was able to create a Response,
the next step in HttpKernel is to determine and prepare (i.e. resolve) the
controller. The controller is the part of the end-application’s code that
is responsible for creating and returning the Response for a specific page.
The only requirement is that it is a PHP callable - i.e. a function, method
on an object, or a Closure.

But how you determine the exact controller for a request is entirely up
to your application. This is the job of the “controller resolver” - a class
that implements ControllerResolverInterface [http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolverInterface.html]
and is one of the constructor arguments to HttpKernel.

[image: ../../_images/04-resolve-controller.png]
Your job is to create a class that implements the interface and fill in its
two methods: getController and getArguments. In fact, one default
implementation already exists, which you can use directly or learn from:
ControllerResolver [http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolver.html].
This implementation is explained more in the sidebar below:

namespace Symfony\Component\HttpKernel\Controller;

use Symfony\Component\HttpFoundation\Request;

interface ControllerResolverInterface
{
 public function getController(Request $request);

 public function getArguments(Request $request, $controller);
}

Internally, the HttpKernel::handle method first calls
getController() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolverInterface.html#method_getController]
on the controller resolver. This method is passed the Request and is responsible
for somehow determining and returning a PHP callable (the controller) based
on the request’s information.

The second method, getArguments() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolverInterface.html#method_getArguments],
will be called after another event - kernel.controller - is dispatched.

Resolving the Controller in the Symfony Framework

The Symfony Framework uses the built-in
ControllerResolver [http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolver.html]
class (actually, it uses a sub-class with some extra functionality
mentioned below). This class leverages the information that was placed
on the Request object’s attributes property during the RouterListener.

getController

The ControllerResolver looks for a _controller
key on the Request object’s attributes property (recall that this
information is typically placed on the Request via the RouterListener).
This string is then transformed into a PHP callable by doing the following:

	The AcmeDemoBundle:Default:index format of the _controller key
is changed to another string that contains the full class and method
name of the controller by following the convention used in Symfony - e.g.
Acme\DemoBundle\Controller\DefaultController::indexAction. This transformation
is specific to the ControllerResolver [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/ControllerResolver.html]
sub-class used by the Symfony Framework.

	A new instance of your controller class is instantiated with no
constructor arguments.

	If the controller implements ContainerAwareInterface [http://api.symfony.com/master/Symfony/Component/DependencyInjection/ContainerAwareInterface.html],
setContainer is called on the controller object and the container
is passed to it. This step is also specific to the ControllerResolver [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/ControllerResolver.html]
sub-class used by the Symfony Framework.

There are also a few other variations on the above process (e.g. if
you’re registering your controllers as services).

3) The kernel.controller Event

Typical Purposes: Initialize things or change the controller just before
the controller is executed.

Kernel Events Information Table

After the controller callable has been determined, HttpKernel::handle
dispatches the kernel.controller event. Listeners to this event might initialize
some part of the system that needs to be initialized after certain things
have been determined (e.g. the controller, routing information) but before
the controller is executed. For some examples, see the Symfony section below.

[image: ../../_images/06-kernel-controller.png]
Listeners to this event can also change the controller callable completely
by calling FilterControllerEvent::setController [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/FilterControllerEvent.html#method_setController]
on the event object that’s passed to listeners on this event.

kernel.controller in the Symfony Framework

There are a few minor listeners to the kernel.controller event in
the Symfony Framework, and many deal with collecting profiler data when
the profiler is enabled.

One interesting listener comes from the SensioFrameworkExtraBundle [http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/index.html],
which is packaged with the Symfony Standard Edition. This listener’s
@ParamConverter [http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/converters.html] functionality allows you to pass a full object (e.g. a
Post object) to your controller instead of a scalar value (e.g. an
id parameter that was on your route). The listener -
ParamConverterListener - uses reflection to look at each of the
arguments of the controller and tries to use different methods to convert
those to objects, which are then stored in the attributes property of
the Request object. Read the next section to see why this is important.

4) Getting the Controller Arguments

Next, HttpKernel::handle calls
getArguments() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolverInterface.html#method_getArguments].
Remember that the controller returned in getController is a callable.
The purpose of getArguments is to return the array of arguments that
should be passed to that controller. Exactly how this is done is completely
up to your design, though the built-in ControllerResolver [http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolver.html]
is a good example.

[image: ../../_images/07-controller-arguments.png]
At this point the kernel has a PHP callable (the controller) and an array
of arguments that should be passed when executing that callable.

Getting the Controller Arguments in the Symfony Framework

Now that you know exactly what the controller callable (usually a method
inside a controller object) is, the ControllerResolver uses reflection [http://php.net/manual/en/book.reflection.php]
on the callable to return an array of the names of each of the arguments.
It then iterates over each of these arguments and uses the following tricks
to determine which value should be passed for each argument:

	If the Request attributes bag contains a key that matches the name
of the argument, that value is used. For example, if the first argument
to a controller is $slug, and there is a slug key in the Request
attributes bag, that value is used (and typically this value came
from the RouterListener).

	If the argument in the controller is type-hinted with Symfony’s
Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html] object, then the
Request is passed in as the value.

5) Calling the Controller

The next step is simple! HttpKernel::handle executes the controller.

[image: ../../_images/08-call-controller.png]
The job of the controller is to build the response for the given resource.
This could be an HTML page, a JSON string or anything else. Unlike every
other part of the process so far, this step is implemented by the “end-developer”,
for each page that is built.

Usually, the controller will return a Response object. If this is true,
then the work of the kernel is just about done! In this case, the next step
is the kernel.response event.

[image: ../../_images/09-controller-returns-response.png]
But if the controller returns anything besides a Response, then the kernel
has a little bit more work to do - kernel.view
(since the end goal is always to generate a Response object).

注解

A controller must return something. If a controller returns null,
an exception will be thrown immediately.

6) The kernel.view Event

Typical Purposes: Transform a non-Response return value from a controller
into a Response

Kernel Events Information Table

If the controller doesn’t return a Response object, then the kernel dispatches
another event - kernel.view. The job of a listener to this event is to
use the return value of the controller (e.g. an array of data or an object)
to create a Response.

[image: ../../_images/10-kernel-view.png]
This can be useful if you want to use a “view” layer: instead of returning
a Response from the controller, you return data that represents the page.
A listener to this event could then use this data to create a Response that
is in the correct format (e.g HTML, JSON, etc).

At this stage, if no listener sets a response on the event, then an exception
is thrown: either the controller or one of the view listeners must always
return a Response.

注解

When setting a response for the kernel.view event, the propagation
is stopped. This means listeners with lower priority won’t be executed.

kernel.view in the Symfony Framework

There is no default listener inside the Symfony Framework for the kernel.view
event. However, one core bundle - SensioFrameworkExtraBundle [http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/index.html] - does
add a listener to this event. If your controller returns an array,
and you place the @Template [http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/view.html] annotation above the controller, then this
listener renders a template, passes the array you returned from your
controller to that template, and creates a Response containing the
returned content from that template.

Additionally, a popular community bundle FOSRestBundle [https://github.com/friendsofsymfony/FOSRestBundle] implements
a listener on this event which aims to give you a robust view layer
capable of using a single controller to return many different content-type
responses (e.g. HTML, JSON, XML, etc).

7) The kernel.response Event

Typical Purposes: Modify the Response object just before it is sent

Kernel Events Information Table

The end goal of the kernel is to transform a Request into a Response. The
Response might be created during the kernel.request
event, returned from the controller,
or returned by one of the listeners to the kernel.view
event.

Regardless of who creates the Response, another event - kernel.response
is dispatched directly afterwards. A typical listener to this event will modify
the Response object in some way, such as modifying headers, adding cookies,
or even changing the content of the Response itself (e.g. injecting some
JavaScript before the end </body> tag of an HTML response).

After this event is dispatched, the final Response object is returned
from handle() [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernel.html#method_handle]. In the
most typical use-case, you can then call the send() [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#method_send]
method, which sends the headers and prints the Response content.

kernel.response in the Symfony Framework

There are several minor listeners on this event inside the Symfony Framework,
and most modify the response in some way. For example, the
WebDebugToolbarListener [http://api.symfony.com/master/Symfony/Bundle/WebProfilerBundle/EventListener/WebDebugToolbarListener.html]
injects some JavaScript at the bottom of your page in the dev environment
which causes the web debug toolbar to be displayed. Another listener,
ContextListener [http://api.symfony.com/master/Symfony/Component/Security/Http/Firewall/ContextListener.html]
serializes the current user’s information into the
session so that it can be reloaded on the next request.

8) The kernel.terminate Event

Typical Purposes: To perform some “heavy” action after the response has
been streamed to the user

Kernel Events Information Table

The final event of the HttpKernel process is kernel.terminate and is unique
because it occurs after the HttpKernel::handle method, and after the
response is sent to the user. Recall from above, then the code that uses
the kernel, ends like this:

// send the headers and echo the content
$response->send();

// triggers the kernel.terminate event
$kernel->terminate($request, $response);

As you can see, by calling $kernel->terminate after sending the response,
you will trigger the kernel.terminate event where you can perform certain
actions that you may have delayed in order to return the response as quickly
as possible to the client (e.g. sending emails).

警告

Internally, the HttpKernel makes use of the fastcgi_finish_request [http://php.net/manual/en/function.fastcgi-finish-request.php]
PHP function. This means that at the moment, only the PHP FPM [http://php.net/manual/en/install.fpm.php] server
API is able to send a response to the client while the server’s PHP process
still performs some tasks. With all other server APIs, listeners to kernel.terminate
are still executed, but the response is not sent to the client until they
are all completed.

注解

Using the kernel.terminate event is optional, and should only be
called if your kernel implements TerminableInterface [http://api.symfony.com/master/Symfony/Component/HttpKernel/TerminableInterface.html].

kernel.terminate in the Symfony Framework

If you use the SwiftmailerBundle with Symfony and use memory spooling,
then the EmailSenderListener [https://github.com/symfony/SwiftmailerBundle/blob/master/EventListener/EmailSenderListener.php] is activated, which actually delivers
any emails that you scheduled to send during the request.

Handling Exceptions: the kernel.exception Event

Typical Purposes: Handle some type of exception and create an appropriate
Response to return for the exception

Kernel Events Information Table

If an exception is thrown at any point inside HttpKernel::handle, another
event - kernel.exception is thrown. Internally, the body of the handle
function is wrapped in a try-catch block. When any exception is thrown, the
kernel.exception event is dispatched so that your system can somehow respond
to the exception.

[image: ../../_images/11-kernel-exception.png]
Each listener to this event is passed a GetResponseForExceptionEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseForExceptionEvent.html]
object, which you can use to access the original exception via the
getException() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseForExceptionEvent.html#method_getException]
method. A typical listener on this event will check for a certain type of
exception and create an appropriate error Response.

For example, to generate a 404 page, you might throw a special type of exception
and then add a listener on this event that looks for this exception and
creates and returns a 404 Response. In fact, the HttpKernel component
comes with an ExceptionListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ExceptionListener.html],
which if you choose to use, will do this and more by default (see the sidebar
below for more details).

注解

When setting a response for the kernel.exception event, the propagation
is stopped. This means listeners with lower priority won’t be executed.

kernel.exception in the Symfony Framework

There are two main listeners to kernel.exception when using the
Symfony Framework.

ExceptionListener in HttpKernel

The first comes core to the HttpKernel component
and is called ExceptionListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ExceptionListener.html].
The listener has several goals:

	The thrown exception is converted into a
FlattenException [http://api.symfony.com/master/Symfony/Component/HttpKernel/Exception/FlattenException.html]
object, which contains all the information about the request, but which
can be printed and serialized.

	If the original exception implements
HttpExceptionInterface [http://api.symfony.com/master/Symfony/Component/HttpKernel/Exception/HttpExceptionInterface.html],
then getStatusCode and getHeaders are called on the exception
and used to populate the headers and status code of the FlattenException
object. The idea is that these are used in the next step when creating
the final response.

	A controller is executed and passed the flattened exception. The exact
controller to render is passed as a constructor argument to this listener.
This controller will return the final Response for this error page.

ExceptionListener in Security

The other important listener is the
ExceptionListener [http://api.symfony.com/master/Symfony/Component/Security/Http/Firewall/ExceptionListener.html].
The goal of this listener is to handle security exceptions and, when
appropriate, help the user to authenticate (e.g. redirect to the login
page).

Creating an Event Listener

As you’ve seen, you can create and attach event listeners to any of the events
dispatched during the HttpKernel::handle cycle. Typically a listener is a PHP
class with a method that’s executed, but it can be anything. For more information
on creating and attaching event listeners, see The EventDispatcher Component.

The name of each of the “kernel” events is defined as a constant on the
KernelEvents [http://api.symfony.com/master/Symfony/Component/HttpKernel/KernelEvents.html] class. Additionally, each
event listener is passed a single argument, which is some sub-class of KernelEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/KernelEvent.html].
This object contains information about the current state of the system and
each event has their own event object:

	Name
	KernelEvents Constant
	Argument Passed to the Listener

	kernel.request
	KernelEvents::REQUEST
	GetResponseEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseEvent.html]

	kernel.controller
	KernelEvents::CONTROLLER
	FilterControllerEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/FilterControllerEvent.html]

	kernel.view
	KernelEvents::VIEW
	GetResponseForControllerResultEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseForControllerResultEvent.html]

	kernel.response
	KernelEvents::RESPONSE
	FilterResponseEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/FilterResponseEvent.html]

	kernel.terminate
	KernelEvents::TERMINATE
	PostResponseEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/PostResponseEvent.html]

	kernel.exception
	KernelEvents::EXCEPTION
	GetResponseForExceptionEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseForExceptionEvent.html]

A full Working Example

When using the HttpKernel component, you’re free to attach any listeners
to the core events and use any controller resolver that implements the
ControllerResolverInterface [http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolverInterface.html].
However, the HttpKernel component comes with some built-in listeners and
a built-in ControllerResolver that can be used to create a working example:

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpKernel\HttpKernel;
use Symfony\Component\EventDispatcher\EventDispatcher;
use Symfony\Component\HttpKernel\Controller\ControllerResolver;
use Symfony\Component\HttpKernel\EventListener\RouterListener;
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;
use Symfony\Component\Routing\Matcher\UrlMatcher;
use Symfony\Component\Routing\RequestContext;

$routes = new RouteCollection();
$routes->add('hello', new Route('/hello/{name}', array(
 '_controller' => function (Request $request) {
 return new Response(
 sprintf("Hello %s", $request->get('name'))
);
 }
)
));

$request = Request::createFromGlobals();

$matcher = new UrlMatcher($routes, new RequestContext());

$dispatcher = new EventDispatcher();
$dispatcher->addSubscriber(new RouterListener($matcher));

$resolver = new ControllerResolver();
$kernel = new HttpKernel($dispatcher, $resolver);

$response = $kernel->handle($request);
$response->send();

$kernel->terminate($request, $response);

Sub Requests

In addition to the “main” request that’s sent into HttpKernel::handle,
you can also send so-called “sub request”. A sub request looks and acts like
any other request, but typically serves to render just one small portion of
a page instead of a full page. You’ll most commonly make sub-requests from
your controller (or perhaps from inside a template, that’s being rendered by
your controller).

[image: ../../_images/sub-request.png]
To execute a sub request, use HttpKernel::handle, but change the second
argument as follows:

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpKernel\HttpKernelInterface;

// ...

// create some other request manually as needed
$request = new Request();
// for example, possibly set its _controller manually
$request->attributes->set('_controller', '...');

$response = $kernel->handle($request, HttpKernelInterface::SUB_REQUEST);
// do something with this response

This creates another full request-response cycle where this new Request is
transformed into a Response. The only difference internally is that some
listeners (e.g. security) may only act upon the master request. Each listener
is passed some sub-class of KernelEvent [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/KernelEvent.html],
whose getRequestType() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/KernelEvent.html#method_getRequestType]
can be used to figure out if the current request is a “master” or “sub” request.

For example, a listener that only needs to act on the master request may
look like this:

use Symfony\Component\HttpKernel\HttpKernelInterface;
// ...

public function onKernelRequest(GetResponseEvent $event)
{
 if (HttpKernelInterface::MASTER_REQUEST !== $event->getRequestType()) {
 return;
 }

 // ...
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

The Intl Component

A PHP replacement layer for the C intl extension [http://www.php.net/manual/en/book.intl.php] that also provides
access to the localization data of the ICU library [http://site.icu-project.org/].

2.3 新版功能: The Intl component was introduced in Symfony 2.3. In earlier versions of Symfony,
you should use the Locale component instead.

警告

The replacement layer is limited to the locale “en”. If you want to use
other locales, you should install the intl extension [http://www.php.net/manual/en/intl.setup.php] instead.

Installation

You can install the component in two different ways:

	Install it via Composer (symfony/intl on Packagist [https://packagist.org/packages/symfony/intl]);

	Using the official Git repository (https://github.com/symfony/Intl).

If you install the component via Composer, the following classes and functions
of the intl extension will be automatically provided if the intl extension is
not loaded:

	Collator [http://php.net/manual/en/class.collator.php]

	IntlDateFormatter [http://php.net/manual/en/class.intldateformatter.php]

	Locale [http://php.net/manual/en/class.locale.php]

	NumberFormatter [http://php.net/manual/en/class.numberformatter.php]

	intl_error_name [http://php.net/manual/en/function.intl-error-name.php]

	intl_is_failure [http://php.net/manual/en/function.intl-is-failure.php]

	intl_get_error_code [http://php.net/manual/en/function.intl-get-error-code.php]

	intl_get_error_message [http://php.net/manual/en/function.intl-get-error-message.php]

When the intl extension is not available, the following classes are used to
replace the intl classes:

	Collator [http://api.symfony.com/master/Symfony/Component/Intl/Collator/Collator.html]

	IntlDateFormatter [http://api.symfony.com/master/Symfony/Component/Intl/DateFormatter/IntlDateFormatter.html]

	Locale [http://api.symfony.com/master/Symfony/Component/Intl/Locale/Locale.html]

	NumberFormatter [http://api.symfony.com/master/Symfony/Component/Intl/NumberFormatter/NumberFormatter.html]

	IntlGlobals [http://api.symfony.com/master/Symfony/Component/Intl/Globals/IntlGlobals.html]

Composer automatically exposes these classes in the global namespace.

If you don’t use Composer but the
Symfony ClassLoader component,
you need to expose them manually by adding the following lines to your autoload
code:

if (!function_exists('intl_is_failure')) {
 require '/path/to/Icu/Resources/stubs/functions.php';

 $loader->registerPrefixFallback('/path/to/Icu/Resources/stubs');
}

ICU and Deployment Problems

The intl extension internally uses the ICU library [http://site.icu-project.org/] to obtain localization
data such as number formats in different languages, country names and more.
To make this data accessible to userland PHP libraries, Symfony ships a copy
in the Icu component [https://packagist.org/packages/symfony/icu].

Depending on the ICU version compiled with your intl extension, a matching
version of that component needs to be installed. It sounds complicated,
but usually Composer does this for you automatically:

	1.0.*: when the intl extension is not available

	1.1.*: when intl is compiled with ICU 4.0 or higher

	1.2.*: when intl is compiled with ICU 4.4 or higher

These versions are important when you deploy your application to a server with
a lower ICU version than your development machines, because deployment will
fail if:

	the development machines are compiled with ICU 4.4 or higher, but the
server is compiled with a lower ICU version than 4.4;

	the intl extension is available on the development machines but not on
the server.

For example, consider that your development machines ship ICU 4.8 and the server
ICU 4.2. When you run composer update on the development machine, version
1.2.* of the Icu component will be installed. But after deploying the
application, composer install will fail with the following error:

$ composer install
Loading composer repositories with package information
Installing dependencies from lock file
Your requirements could not be resolved to an installable set of packages.

 Problem 1
 - symfony/icu 1.2.x requires lib-icu >=4.4 -> the requested linked
 library icu has the wrong version installed or is missing from your
 system, make sure to have the extension providing it.

The error tells you that the requested version of the Icu component, version
1.2, is not compatible with PHP’s ICU version 4.2.

One solution to this problem is to run composer update instead of
composer install. It is highly recommended not to do this. The
update command will install the latest versions of each Composer dependency
to your production server and potentially break the application.

A better solution is to fix your composer.json to the version required by the
production server. First, determine the ICU version on the server:

$ php -i | grep ICU
ICU version => 4.2.1

Then fix the Icu component in your composer.json file to a matching version:

"require: {
 "symfony/icu": "1.1.*"
}

Set the version to

	“1.0.*” if the server does not have the intl extension installed;

	“1.1.*” if the server is compiled with ICU 4.2 or lower.

Finally, run composer update symfony/icu on your development machine, test
extensively and deploy again. The installation of the dependencies will now
succeed.

Writing and Reading Resource Bundles

The ResourceBundle [http://php.net/manual/en/class.resourcebundle.php] class is not currently supported by this component.
Instead, it includes a set of readers and writers for reading and writing
arrays (or array-like objects) from/to resource bundle files. The following
classes are supported:

	TextBundleWriter

	PhpBundleWriter

	BinaryBundleReader

	PhpBundleReader

	BufferedBundleReader

	StructuredBundleReader

Continue reading if you are interested in how to use these classes. Otherwise
skip this section and jump to Accessing ICU Data.

TextBundleWriter

The TextBundleWriter [http://api.symfony.com/master/Symfony/Component/Intl/ResourceBundle/Writer/TextBundleWriter.html]
writes an array or an array-like object to a plain-text resource bundle. The
resulting .txt file can be converted to a binary .res file with the
BundleCompiler [http://api.symfony.com/master/Symfony/Component/Intl/ResourceBundle/Compiler/BundleCompiler.html]
class:

use Symfony\Component\Intl\ResourceBundle\Writer\TextBundleWriter;
use Symfony\Component\Intl\ResourceBundle\Compiler\BundleCompiler;

$writer = new TextBundleWriter();
$writer->write('/path/to/bundle', 'en', array(
 'Data' => array(
 'entry1',
 'entry2',
 // ...
),
));

$compiler = new BundleCompiler();
$compiler->compile('/path/to/bundle', '/path/to/binary/bundle');

The command “genrb” must be available for the
BundleCompiler [http://api.symfony.com/master/Symfony/Component/Intl/ResourceBundle/Compiler/BundleCompiler.html] to
work. If the command is located in a non-standard location, you can pass its
path to the
BundleCompiler [http://api.symfony.com/master/Symfony/Component/Intl/ResourceBundle/Compiler/BundleCompiler.html]
constructor.

PhpBundleWriter

The PhpBundleWriter [http://api.symfony.com/master/Symfony/Component/Intl/ResourceBundle/Writer/PhpBundleWriter.html]
writes an array or an array-like object to a .php resource bundle:

use Symfony\Component\Intl\ResourceBundle\Writer\PhpBundleWriter;

$writer = new PhpBundleWriter();
$writer->write('/path/to/bundle', 'en', array(
 'Data' => array(
 'entry1',
 'entry2',
 // ...
),
));

BinaryBundleReader

The BinaryBundleReader [http://api.symfony.com/master/Symfony/Component/Intl/ResourceBundle/Reader/BinaryBundleReader.html]
reads binary resource bundle files and returns an array or an array-like object.
This class currently only works with the intl extension [http://www.php.net/manual/en/book.intl.php] installed:

use Symfony\Component\Intl\ResourceBundle\Reader\BinaryBundleReader;

$reader = new BinaryBundleReader();
$data = $reader->read('/path/to/bundle', 'en');

echo $data['Data']['entry1'];

PhpBundleReader

The PhpBundleReader [http://api.symfony.com/master/Symfony/Component/Intl/ResourceBundle/Reader/PhpBundleReader.html]
reads resource bundles from .php files and returns an array or an array-like
object:

use Symfony\Component\Intl\ResourceBundle\Reader\PhpBundleReader;

$reader = new PhpBundleReader();
$data = $reader->read('/path/to/bundle', 'en');

echo $data['Data']['entry1'];

BufferedBundleReader

The BufferedBundleReader [http://api.symfony.com/master/Symfony/Component/Intl/ResourceBundle/Reader/BufferedBundleReader.html]
wraps another reader, but keeps the last N reads in a buffer, where N is a
buffer size passed to the constructor:

use Symfony\Component\Intl\ResourceBundle\Reader\BinaryBundleReader;
use Symfony\Component\Intl\ResourceBundle\Reader\BufferedBundleReader;

$reader = new BufferedBundleReader(new BinaryBundleReader(), 10);

// actually reads the file
$data = $reader->read('/path/to/bundle', 'en');

// returns data from the buffer
$data = $reader->read('/path/to/bundle', 'en');

// actually reads the file
$data = $reader->read('/path/to/bundle', 'fr');

StructuredBundleReader

The StructuredBundleReader [http://api.symfony.com/master/Symfony/Component/Intl/ResourceBundle/Reader/StructuredBundleReader.html]
wraps another reader and offers a
readEntry() [http://api.symfony.com/master/Symfony/Component/Intl/ResourceBundle/Reader/StructuredBundleReaderInterface.html#method_readEntry]
method for reading an entry of the resource bundle without having to worry
whether array keys are set or not. If a path cannot be resolved, null is
returned:

use Symfony\Component\Intl\ResourceBundle\Reader\BinaryBundleReader;
use Symfony\Component\Intl\ResourceBundle\Reader\StructuredBundleReader;

$reader = new StructuredBundleReader(new BinaryBundleReader());

$data = $reader->read('/path/to/bundle', 'en');

// Produces an error if the key "Data" does not exist
echo $data['Data']['entry1'];

// Returns null if the key "Data" does not exist
echo $reader->readEntry('/path/to/bundle', 'en', array('Data', 'entry1'));

Additionally, the
readEntry() [http://api.symfony.com/master/Symfony/Component/Intl/ResourceBundle/Reader/StructuredBundleReaderInterface.html#method_readEntry]
method resolves fallback locales. For example, the fallback locale of “en_GB” is
“en”. For single-valued entries (strings, numbers etc.), the entry will be read
from the fallback locale if it cannot be found in the more specific locale. For
multi-valued entries (arrays), the values of the more specific and the fallback
locale will be merged. In order to suppress this behavior, the last parameter
$fallback can be set to false:

echo $reader->readEntry(
 '/path/to/bundle',
 'en',
 array('Data', 'entry1'),
 false
);

Accessing ICU Data

The ICU data is located in several “resource bundles”. You can access a PHP
wrapper of these bundles through the static
Intl [http://api.symfony.com/master/Symfony/Component/Intl/Intl.html] class. At the moment, the following
data is supported:

	Language and Script Names

	Country Names

	Locales

	Currencies

Language and Script Names

The translations of language and script names can be found in the language
bundle:

use Symfony\Component\Intl\Intl;

\Locale::setDefault('en');

$languages = Intl::getLanguageBundle()->getLanguageNames();
// => array('ab' => 'Abkhazian', ...)

$language = Intl::getLanguageBundle()->getLanguageName('de');
// => 'German'

$language = Intl::getLanguageBundle()->getLanguageName('de', 'AT');
// => 'Austrian German'

$scripts = Intl::getLanguageBundle()->getScriptNames();
// => array('Arab' => 'Arabic', ...)

$script = Intl::getLanguageBundle()->getScriptName('Hans');
// => 'Simplified'

All methods accept the translation locale as the last, optional parameter,
which defaults to the current default locale:

$languages = Intl::getLanguageBundle()->getLanguageNames('de');
// => array('ab' => 'Abchasisch', ...)

Country Names

The translations of country names can be found in the region bundle:

use Symfony\Component\Intl\Intl;

\Locale::setDefault('en');

$countries = Intl::getRegionBundle()->getCountryNames();
// => array('AF' => 'Afghanistan', ...)

$country = Intl::getRegionBundle()->getCountryName('GB');
// => 'United Kingdom'

All methods accept the translation locale as the last, optional parameter,
which defaults to the current default locale:

$countries = Intl::getRegionBundle()->getCountryNames('de');
// => array('AF' => 'Afghanistan', ...)

Locales

The translations of locale names can be found in the locale bundle:

use Symfony\Component\Intl\Intl;

\Locale::setDefault('en');

$locales = Intl::getLocaleBundle()->getLocaleNames();
// => array('af' => 'Afrikaans', ...)

$locale = Intl::getLocaleBundle()->getLocaleName('zh_Hans_MO');
// => 'Chinese (Simplified, Macau SAR China)'

All methods accept the translation locale as the last, optional parameter,
which defaults to the current default locale:

$locales = Intl::getLocaleBundle()->getLocaleNames('de');
// => array('af' => 'Afrikaans', ...)

Currencies

The translations of currency names and other currency-related information can
be found in the currency bundle:

use Symfony\Component\Intl\Intl;

\Locale::setDefault('en');

$currencies = Intl::getCurrencyBundle()->getCurrencyNames();
// => array('AFN' => 'Afghan Afghani', ...)

$currency = Intl::getCurrencyBundle()->getCurrencyName('INR');
// => 'Indian Rupee'

$symbol = Intl::getCurrencyBundle()->getCurrencySymbol('INR');
// => '₹'

$fractionDigits = Intl::getCurrencyBundle()->getFractionDigits('INR');
// => 2

$roundingIncrement = Intl::getCurrencyBundle()->getRoundingIncrement('INR');
// => 0

All methods (except for
getFractionDigits() [http://api.symfony.com/master/Symfony/Component/Intl/ResourceBundle/CurrencyBundleInterface.html#method_getFractionDigits]
and
getRoundingIncrement() [http://api.symfony.com/master/Symfony/Component/Intl/ResourceBundle/CurrencyBundleInterface.html#method_getRoundingIncrement])
accept the translation locale as the last, optional parameter, which defaults
to the current default locale:

$currencies = Intl::getCurrencyBundle()->getCurrencyNames('de');
// => array('AFN' => 'Afghanische Afghani', ...)

That’s all you need to know for now. Have fun coding!

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

The OptionsResolver Component

The OptionsResolver component helps you configure objects with option
arrays. It supports default values, option constraints and lazy options.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/options-resolver on Packagist [https://packagist.org/packages/symfony/options-resolver]);

	Use the official Git repository (https://github.com/symfony/OptionsResolver).

Usage

Imagine you have a Mailer class which has 2 options: host and
password. These options are going to be handled by the OptionsResolver
Component.

First, create the Mailer class:

class Mailer
{
 protected $options;

 public function __construct(array $options = array())
 {
 }
}

You could of course set the $options value directly on the property. Instead,
use the OptionsResolver [http://api.symfony.com/master/Symfony/Component/OptionsResolver/OptionsResolver.html] class
and let it resolve the options by calling
resolve() [http://api.symfony.com/master/Symfony/Component/OptionsResolver/OptionsResolver.html#method_resolve].
The advantages of doing this will become more obvious as you continue:

use Symfony\Component\OptionsResolver\OptionsResolver;

// ...
public function __construct(array $options = array())
{
 $resolver = new OptionsResolver();

 $this->options = $resolver->resolve($options);
}

The options property now is a well defined array with all resolved options
readily available:

// ...
public function sendMail($from, $to)
{
 $mail = ...;
 $mail->setHost($this->options['host']);
 $mail->setUsername($this->options['username']);
 $mail->setPassword($this->options['password']);
 // ...
}

Configuring the OptionsResolver

Now, try to actually use the class:

$mailer = new Mailer(array(
 'host' => 'smtp.example.org',
 'username' => 'user',
 'password' => 'pa$$word',
));

Right now, you’ll receive a
InvalidOptionsException [http://api.symfony.com/master/Symfony/Component/OptionsResolver/Exception/InvalidOptionsException.html],
which tells you that the options host and password do not exist.
This is because you need to configure the OptionsResolver first, so it
knows which options should be resolved.

小技巧

To check if an option exists, you can use the
isKnown() [http://api.symfony.com/master/Symfony/Component/OptionsResolver/OptionsResolver.html#method_isKnown]
function.

A best practice is to put the configuration in a method (e.g.
configureOptions). You call this method in the constructor to configure
the OptionsResolver class:

use Symfony\Component\OptionsResolver\OptionsResolver;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class Mailer
{
 protected $options;

 public function __construct(array $options = array())
 {
 $resolver = new OptionsResolver();
 $this->configureOptions($resolver);

 $this->options = $resolver->resolve($options);
 }

 protected function configureOptions(OptionsResolverInterface $resolver)
 {
 // ... configure the resolver, you will learn this
 // in the sections below
 }
}

Set default Values

Most of the options have a default value. You can configure these options by
calling setDefaults() [http://api.symfony.com/master/Symfony/Component/OptionsResolver/OptionsResolver.html#method_setDefaults]:

// ...
protected function setDefaultOptions(OptionsResolverInterface $resolver)
{
 // ...

 $resolver->setDefaults(array(
 'username' => 'root',
));
}

This would add an option - username - and give it a default value of
root. If the user passes in a username option, that value will
override this default. You don’t need to configure username as an optional
option.

Required Options

The host option is required: the class can’t work without it. You can set
the required options by calling
setRequired() [http://api.symfony.com/master/Symfony/Component/OptionsResolver/OptionsResolver.html#method_setRequired]:

// ...
protected function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setRequired(array('host'));
}

You are now able to use the class without errors:

$mailer = new Mailer(array(
 'host' => 'smtp.example.org',
));

echo $mailer->getHost(); // 'smtp.example.org'

If you don’t pass a required option, a
MissingOptionsException [http://api.symfony.com/master/Symfony/Component/OptionsResolver/Exception/MissingOptionsException.html]
will be thrown.

小技巧

To determine if an option is required, you can use the
isRequired() [http://api.symfony.com/master/Symfony/Component/OptionsResolver/OptionsResolver.html#method_isRequired]
method.

Optional Options

Sometimes, an option can be optional (e.g. the password option in the
Mailer class), but it doesn’t have a default value. You can configure
these options by calling
setOptional() [http://api.symfony.com/master/Symfony/Component/OptionsResolver/OptionsResolver.html#method_setOptional]:

// ...
protected function setDefaultOptions(OptionsResolverInterface $resolver)
{
 // ...

 $resolver->setOptional(array('password'));
}

Options with defaults are already marked as optional.

小技巧

When setting an option as optional, you can’t be sure if it’s in the array
or not. You have to check if the option exists before using it.

To avoid checking if it exists everytime, you can also set a default of
null to an option using the setDefaults() method (see Set Default Values),
this means the element always exists in the array, but with a default of
null.

Default Values that Depend on another Option

Suppose you add a port option to the Mailer class, whose default
value you guess based on the encryption. You can do that easily by using a
closure as the default value:

use Symfony\Component\OptionsResolver\Options;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

// ...
protected function setDefaultOptions(OptionsResolverInterface $resolver)
{
 // ...

 $resolver->setDefaults(array(
 'encryption' => null,
 'port' => function (Options $options) {
 if ('ssl' === $options['encryption']) {
 return 465;
 }

 return 25;
 },
));
}

The Options [http://api.symfony.com/master/Symfony/Component/OptionsResolver/Options.html] class implements
ArrayAccess [http://php.net/manual/en/class.arrayaccess.php], Iterator [http://php.net/manual/en/class.iterator.php] and Countable [http://php.net/manual/en/class.countable.php]. That
means you can handle it just like a normal array containing the options.

警告

The first argument of the closure must be typehinted as Options,
otherwise it is considered as the value.

Overwriting default Values

A previously set default value can be overwritten by invoking
setDefaults() [http://api.symfony.com/master/Symfony/Component/OptionsResolver/OptionsResolver.html#method_setDefaults]
again. When using a closure as the new value it is passed 2 arguments:

	$options: an Options [http://api.symfony.com/master/Symfony/Component/OptionsResolver/Options.html]
instance with all the other default options

	$previousValue: the previous set default value

use Symfony\Component\OptionsResolver\Options;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

// ...
protected function setDefaultOptions(OptionsResolverInterface $resolver)
{
 // ...
 $resolver->setDefaults(array(
 'encryption' => 'ssl',
 'host' => 'localhost',
));

 // ...
 $resolver->setDefaults(array(
 'encryption' => 'tls', // simple overwrite
 'host' => function (Options $options, $previousValue) {
 return 'localhost' == $previousValue
 ? '127.0.0.1'
 : $previousValue;
 },
));
}

小技巧

If the previous default value is calculated by an expensive closure and
you don’t need access to it, you can use the
replaceDefaults() [http://api.symfony.com/master/Symfony/Component/OptionsResolver/OptionsResolver.html#method_replaceDefaults]
method instead. It acts like setDefaults but simply erases the
previous value to improve performance. This means that the previous
default value is not available when overwriting with another closure:

use Symfony\Component\OptionsResolver\Options;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

// ...
protected function setDefaultOptions(OptionsResolverInterface $resolver)
{
 // ...
 $resolver->setDefaults(array(
 'encryption' => 'ssl',
 'heavy' => function (Options $options) {
 // Some heavy calculations to create the $result

 return $result;
 },
));

 $resolver->replaceDefaults(array(
 'encryption' => 'tls', // simple overwrite
 'heavy' => function (Options $options) {
 // $previousValue not available
 // ...

 return $someOtherResult;
 },
));
}

注解

Existing option keys that you do not mention when overwriting are preserved.

Configure Allowed Values

Not all values are valid values for options. Suppose the Mailer class has
a transport option, it can only be one of sendmail, mail or
smtp. You can configure these allowed values by calling
setAllowedValues() [http://api.symfony.com/master/Symfony/Component/OptionsResolver/OptionsResolver.html#method_setAllowedValues]:

// ...
protected function setDefaultOptions(OptionsResolverInterface $resolver)
{
 // ...

 $resolver->setAllowedValues(array(
 'encryption' => array(null, 'ssl', 'tls'),
));
}

There is also an
addAllowedValues() [http://api.symfony.com/master/Symfony/Component/OptionsResolver/OptionsResolver.html#method_addAllowedValues]
method, which you can use if you want to add an allowed value to the previously
configured allowed values.

Configure Allowed Types

You can also specify allowed types. For instance, the port option can
be anything, but it must be an integer. You can configure these types by calling
setAllowedTypes() [http://api.symfony.com/master/Symfony/Component/OptionsResolver/OptionsResolver.html#method_setAllowedTypes]:

// ...
protected function setDefaultOptions(OptionsResolverInterface $resolver)
{
 // ...

 $resolver->setAllowedTypes(array(
 'port' => 'integer',
));
}

Possible types are the ones associated with the is_* PHP functions or a
class name. You can also pass an array of types as the value. For instance,
array('null', 'string') allows port to be null or a string.

There is also an
addAllowedTypes() [http://api.symfony.com/master/Symfony/Component/OptionsResolver/OptionsResolver.html#method_addAllowedTypes]
method, which you can use to add an allowed type to the previous allowed types.

Normalize the Options

Some values need to be normalized before you can use them. For instance,
pretend that the host should always start with http://. To do that,
you can write normalizers. These closures will be executed after all options
are passed and should return the normalized value. You can configure these
normalizers by calling
setNormalizers() [http://api.symfony.com/master/Symfony/Component/OptionsResolver/OptionsResolver.html#method_setNormalizers]:

// ...
protected function setDefaultOptions(OptionsResolverInterface $resolver)
{
 // ...

 $resolver->setNormalizers(array(
 'host' => function (Options $options, $value) {
 if ('http://' !== substr($value, 0, 7)) {
 $value = 'http://'.$value;
 }

 return $value;
 },
));
}

You see that the closure also gets an $options parameter. Sometimes, you
need to use the other options for normalizing:

// ...
protected function setDefaultOptions(OptionsResolverInterface $resolver)
{
 // ...

 $resolver->setNormalizers(array(
 'host' => function (Options $options, $value) {
 if (!in_array(substr($value, 0, 7), array('http://', 'https://'))) {
 if ($options['ssl']) {
 $value = 'https://'.$value;
 } else {
 $value = 'http://'.$value;
 }
 }

 return $value;
 },
));
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

The Process Component

The Process component executes commands in sub-processes.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/process on Packagist [https://packagist.org/packages/symfony/process]);

	Use the official Git repository (https://github.com/symfony/Process).

Usage

The Process [http://api.symfony.com/master/Symfony/Component/Process/Process.html] class allows you to execute
a command in a sub-process:

use Symfony\Component\Process\Process;

$process = new Process('ls -lsa');
$process->run();

// executes after the command finishes
if (!$process->isSuccessful()) {
 throw new \RuntimeException($process->getErrorOutput());
}

print $process->getOutput();

The component takes care of the subtle differences between the different platforms
when executing the command.

2.2 新版功能: The getIncrementalOutput() and getIncrementalErrorOutput() methods
were introduced in Symfony 2.2.

The getOutput() method always return the whole content of the standard
output of the command and getErrorOutput() the content of the error
output. Alternatively, the getIncrementalOutput() [http://api.symfony.com/master/Symfony/Component/Process/Process.html#method_getIncrementalOutput]
and getIncrementalErrorOutput() [http://api.symfony.com/master/Symfony/Component/Process/Process.html#method_getIncrementalErrorOutput]
methods returns the new outputs since the last call.

Getting real-time Process Output

When executing a long running command (like rsync-ing files to a remote
server), you can give feedback to the end user in real-time by passing an
anonymous function to the
run() [http://api.symfony.com/master/Symfony/Component/Process/Process.html#method_run] method:

use Symfony\Component\Process\Process;

$process = new Process('ls -lsa');
$process->run(function ($type, $buffer) {
 if (Process::ERR === $type) {
 echo 'ERR > '.$buffer;
 } else {
 echo 'OUT > '.$buffer;
 }
});

2.1 新版功能: The non-blocking feature was introduced in 2.1.

Running Processes Asynchronously

You can also start the subprocess and then let it run asynchronously, retrieving
output and the status in your main process whenever you need it. Use the
start() [http://api.symfony.com/master/Symfony/Component/Process/Process.html#method_start] method to start an asynchronous
process, the isRunning() [http://api.symfony.com/master/Symfony/Component/Process/Process.html#method_isRunning] method
to check if the process is done and the
getOutput() [http://api.symfony.com/master/Symfony/Component/Process/Process.html#method_getOutput] method to get the output:

$process = new Process('ls -lsa');
$process->start();

while ($process->isRunning()) {
 // waiting for process to finish
}

echo $process->getOutput();

You can also wait for a process to end if you started it asynchronously and
are done doing other stuff:

$process = new Process('ls -lsa');
$process->start();

// ... do other things

$process->wait(function ($type, $buffer) {
 if (Process::ERR === $type) {
 echo 'ERR > '.$buffer;
 } else {
 echo 'OUT > '.$buffer;
 }
});

注解

The wait() [http://api.symfony.com/master/Symfony/Component/Process/Process.html#method_wait] method is blocking,
which means that your code will halt at this line until the external
process is completed.

Stopping a Process

2.3 新版功能: The signal parameter of the stop method was introduced in Symfony 2.3.

Any asynchronous process can be stopped at any time with the
stop() [http://api.symfony.com/master/Symfony/Component/Process/Process.html#method_stop] method. This method takes
two arguments: a timeout and a signal. Once the timeout is reached, the signal
is sent to the running process. The default signal sent to a process is SIGKILL.
Please read the signal documentation below
to find out more about signal handling in the Process component:

$process = new Process('ls -lsa');
$process->start();

// ... do other things

$process->stop(3, SIGINT);

Executing PHP Code in Isolation

If you want to execute some PHP code in isolation, use the PhpProcess
instead:

use Symfony\Component\Process\PhpProcess;

$process = new PhpProcess(<<<EOF
 <?php echo 'Hello World'; ?>
EOF
);
$process->run();

To make your code work better on all platforms, you might want to use the
ProcessBuilder [http://api.symfony.com/master/Symfony/Component/Process/ProcessBuilder.html] class instead:

use Symfony\Component\Process\ProcessBuilder;

$builder = new ProcessBuilder(array('ls', '-lsa'));
$builder->getProcess()->run();

2.3 新版功能: The ProcessBuilder::setPrefix [http://api.symfony.com/master/Symfony/Component/Process/ProcessBuilder.html#method_setPrefix]
method was introduced in Symfony 2.3.

In case you are building a binary driver, you can use the
setPrefix() [http://api.symfony.com/master/Symfony/Component/Process/Process.html#method_setPrefix] method to prefix all
the generated process commands.

The following example will generate two process commands for a tar binary
adapter:

use Symfony\Component\Process\ProcessBuilder;

$builder = new ProcessBuilder();
$builder->setPrefix('/usr/bin/tar');

// '/usr/bin/tar' '--list' '--file=archive.tar.gz'
echo $builder
 ->setArguments(array('--list', '--file=archive.tar.gz'))
 ->getProcess()
 ->getCommandLine();

// '/usr/bin/tar' '-xzf' 'archive.tar.gz'
echo $builder
 ->setArguments(array('-xzf', 'archive.tar.gz'))
 ->getProcess()
 ->getCommandLine();

Process Timeout

You can limit the amount of time a process takes to complete by setting a
timeout (in seconds):

use Symfony\Component\Process\Process;

$process = new Process('ls -lsa');
$process->setTimeout(3600);
$process->run();

If the timeout is reached, a
RuntimeException [http://api.symfony.com/master/Symfony/Process/Exception/RuntimeException.html] is thrown.

For long running commands, it is your responsibility to perform the timeout
check regularly:

$process->setTimeout(3600);
$process->start();

while ($condition) {
 // ...

 // check if the timeout is reached
 $process->checkTimeout();

 usleep(200000);
}

Process Signals

2.3 新版功能: The signal method was introduced in Symfony 2.3.

When running a program asynchronously, you can send it POSIX signals with the
signal() [http://api.symfony.com/master/Symfony/Component/Process/Process.html#method_signal] method:

use Symfony\Component\Process\Process;

$process = new Process('find / -name "rabbit"');
$process->start();

// will send a SIGKILL to the process
$process->signal(SIGKILL);

警告

Due to some limitations in PHP, if you’re using signals with the Process
component, you may have to prefix your commands with exec [http://en.wikipedia.org/wiki/Exec_(operating_system)]. Please read
Symfony Issue#5759 [https://github.com/symfony/symfony/issues/5759] and PHP Bug#39992 [https://bugs.php.net/bug.php?id=39992] to understand why this is happening.

POSIX signals are not available on Windows platforms, please refer to the
PHP documentation [http://php.net/manual/en/pcntl.constants.php] for available signals.

Process Pid

2.3 新版功能: The getPid method was introduced in Symfony 2.3.

You can access the pid [http://en.wikipedia.org/wiki/Process_identifier] of a running process with the
getPid() [http://api.symfony.com/master/Symfony/Component/Process/Process.html#method_getPid] method.

use Symfony\Component\Process\Process;

$process = new Process('/usr/bin/php worker.php');
$process->start();

$pid = $process->getPid();

警告

Due to some limitations in PHP, if you want to get the pid of a symfony Process,
you may have to prefix your commands with exec [http://en.wikipedia.org/wiki/Exec_(operating_system)]. Please read
Symfony Issue#5759 [https://github.com/symfony/symfony/issues/5759] to understand why this is happening.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

PropertyAccess

	The PropertyAccess Component
	Installation

	Usage

	Reading from Arrays

	Reading from Objects

	Writing to Arrays

	Writing to Objects

	Mixing Objects and Arrays

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	PropertyAccess

The PropertyAccess Component

The PropertyAccess component provides function to read and write from/to an
object or array using a simple string notation.

2.2 新版功能: The PropertyAccess component was introduced in Symfony 2.2. Previously,
the PropertyPath class was located in the Form component.

Installation

You can install the component in two different ways:

	Install it via Composer (symfony/property-access on Packagist [https://packagist.org/packages/symfony/property-access]);

	Use the official Git repository (https://github.com/symfony/PropertyAccess).

Usage

The entry point of this component is the
PropertyAccess::createPropertyAccessor [http://api.symfony.com/master/Symfony/Component/PropertyAccess/PropertyAccess.html#method_createPropertyAccessor]
factory. This factory will create a new instance of the
PropertyAccessor [http://api.symfony.com/master/Symfony/Component/PropertyAccess/PropertyAccessor.html] class with the
default configuration:

use Symfony\Component\PropertyAccess\PropertyAccess;

$accessor = PropertyAccess::createPropertyAccessor();

2.3 新版功能: The createPropertyAccessor() [http://api.symfony.com/master/Symfony/Component/PropertyAccess/PropertyAccess.html#method_createPropertyAccessor]
method was introduced in Symfony 2.3. Previously, it was called getPropertyAccessor().

Reading from Arrays

You can read an array with the
PropertyAccessor::getValue [http://api.symfony.com/master/Symfony/Component/PropertyAccess/PropertyAccessor.html#method_getValue]
method. This is done using the index notation that is used in PHP:

// ...
$person = array(
 'first_name' => 'Wouter',
);

echo $accessor->getValue($person, '[first_name]'); // 'Wouter'
echo $accessor->getValue($person, '[age]'); // null

As you can see, the method will return null if the index does not exists.

You can also use multi dimensional arrays:

// ...
$persons = array(
 array(
 'first_name' => 'Wouter',
),
 array(
 'first_name' => 'Ryan',
)
);

echo $accessor->getValue($persons, '[0][first_name]'); // 'Wouter'
echo $accessor->getValue($persons, '[1][first_name]'); // 'Ryan'

Reading from Objects

The getValue method is a very robust method, and you can see all of its
features when working with objects.

Accessing public Properties

To read from properties, use the “dot” notation:

// ...
$person = new Person();
$person->firstName = 'Wouter';

echo $accessor->getValue($person, 'firstName'); // 'Wouter'

$child = new Person();
$child->firstName = 'Bar';
$person->children = array($child);

echo $accessor->getValue($person, 'children[0].firstName'); // 'Bar'

警告

Accessing public properties is the last option used by PropertyAccessor.
It tries to access the value using the below methods first before using
the property directly. For example, if you have a public property that
has a getter method, it will use the getter.

Using Getters

The getValue method also supports reading using getters. The method will
be created using common naming conventions for getters. It camelizes the
property name (first_name becomes FirstName) and prefixes it with
get. So the actual method becomes getFirstName:

// ...
class Person
{
 private $firstName = 'Wouter';

 public function getFirstName()
 {
 return $this->firstName;
 }
}

$person = new Person();

echo $accessor->getValue($person, 'first_name'); // 'Wouter'

Using Hassers/Issers

And it doesn’t even stop there. If there is no getter found, the accessor will
look for an isser or hasser. This method is created using the same way as
getters, this means that you can do something like this:

// ...
class Person
{
 private $author = true;
 private $children = array();

 public function isAuthor()
 {
 return $this->author;
 }

 public function hasChildren()
 {
 return 0 !== count($this->children);
 }
}

$person = new Person();

if ($accessor->getValue($person, 'author')) {
 echo 'He is an author';
}
if ($accessor->getValue($person, 'children')) {
 echo 'He has children';
}

This will produce: He is an author

Magic __get() Method

The getValue method can also use the magic __get method:

// ...
class Person
{
 private $children = array(
 'Wouter' => array(...),
);

 public function __get($id)
 {
 return $this->children[$id];
 }
}

$person = new Person();

echo $accessor->getValue($person, 'Wouter'); // array(...)

Magic __call() Method

At last, getValue can use the magic __call method, but you need to
enable this feature by using PropertyAccessorBuilder [http://api.symfony.com/master/Symfony/Component/PropertyAccess/PropertyAccessorBuilder.html]:

// ...
class Person
{
 private $children = array(
 'wouter' => array(...),
);

 public function __call($name, $args)
 {
 $property = lcfirst(substr($name, 3));
 if ('get' === substr($name, 0, 3)) {
 return isset($this->children[$property])
 ? $this->children[$property]
 : null;
 } elseif ('set' === substr($name, 0, 3)) {
 $value = 1 == count($args) ? $args[0] : null;
 $this->children[$property] = $value;
 }
 }
}

$person = new Person();

// Enable magic __call
$accessor = PropertyAccess::createPropertyAccessorBuilder()
 ->enableMagicCall()
 ->getPropertyAccessor();

echo $accessor->getValue($person, 'wouter'); // array(...)

2.3 新版功能: The use of magic __call() method was introduced in Symfony 2.3.

警告

The __call feature is disabled by default, you can enable it by calling
PropertyAccessorBuilder::enableMagicCallEnabled [http://api.symfony.com/master/Symfony/Component/PropertyAccess/PropertyAccessorBuilder.html#method_enableMagicCallEnabled]
see Enable other Features.

Writing to Arrays

The PropertyAccessor class can do more than just read an array, it can
also write to an array. This can be achieved using the
PropertyAccessor::setValue [http://api.symfony.com/master/Symfony/Component/PropertyAccess/PropertyAccessor.html#method_setValue]
method:

// ...
$person = array();

$accessor->setValue($person, '[first_name]', 'Wouter');

echo $accessor->getValue($person, '[first_name]'); // 'Wouter'
// or
// echo $person['first_name']; // 'Wouter'

Writing to Objects

The setValue method has the same features as the getValue method. You
can use setters, the magic __set method or properties to set values:

// ...
class Person
{
 public $firstName;
 private $lastName;
 private $children = array();

 public function setLastName($name)
 {
 $this->lastName = $name;
 }

 public function __set($property, $value)
 {
 $this->$property = $value;
 }

 // ...
}

$person = new Person();

$accessor->setValue($person, 'firstName', 'Wouter');
$accessor->setValue($person, 'lastName', 'de Jong');
$accessor->setValue($person, 'children', array(new Person()));

echo $person->firstName; // 'Wouter'
echo $person->getLastName(); // 'de Jong'
echo $person->children; // array(Person());

You can also use __call to set values but you need to enable the feature,
see Enable other Features.

// ...
class Person
{
 private $children = array();

 public function __call($name, $args)
 {
 $property = lcfirst(substr($name, 3));
 if ('get' === substr($name, 0, 3)) {
 return isset($this->children[$property])
 ? $this->children[$property]
 : null;
 } elseif ('set' === substr($name, 0, 3)) {
 $value = 1 == count($args) ? $args[0] : null;
 $this->children[$property] = $value;
 }
 }

}

$person = new Person();

// Enable magic __call
$accessor = PropertyAccess::createPropertyAccessorBuilder()
 ->enableMagicCall()
 ->getPropertyAccessor();

$accessor->setValue($person, 'wouter', array(...));

echo $person->getWouter(); // array(...)

Mixing Objects and Arrays

You can also mix objects and arrays:

// ...
class Person
{
 public $firstName;
 private $children = array();

 public function setChildren($children)
 {
 $this->children = $children;
 }

 public function getChildren()
 {
 return $this->children;
 }
}

$person = new Person();

$accessor->setValue($person, 'children[0]', new Person);
// equal to $person->getChildren()[0] = new Person()

$accessor->setValue($person, 'children[0].firstName', 'Wouter');
// equal to $person->getChildren()[0]->firstName = 'Wouter'

echo 'Hello '.$accessor->getValue($person, 'children[0].firstName'); // 'Wouter'
// equal to $person->getChildren()[0]->firstName

Enable other Features

The PropertyAccessor [http://api.symfony.com/master/Symfony/Component/PropertyAccess/PropertyAccessor.html] can be
configured to enable extra features. To do that you could use the
PropertyAccessorBuilder [http://api.symfony.com/master/Symfony/Component/PropertyAccess/PropertyAccessorBuilder.html]:

// ...
$accessorBuilder = PropertyAccess::createPropertyAccessorBuilder();

// Enable magic __call
$accessorBuilder->enableMagicCall();

// Disable magic __call
$accessorBuilder->disableMagicCall();

// Check if magic __call handling is enabled
$accessorBuilder->isMagicCallEnabled(); // true or false

// At the end get the configured property accessor
$accessor = $accessorBuilder->getPropertyAccessor();

// Or all in one
$accessor = PropertyAccess::createPropertyAccessorBuilder()
 ->enableMagicCall()
 ->getPropertyAccessor();

Or you can pass parameters directly to the constructor (not the recommended way):

// ...
$accessor = new PropertyAccessor(true); // this enables handling of magic __call

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

Routing

	The Routing Component
	Installation

	Usage

	How to Match a Route Based on the Host
	Using Placeholders

	Using Host Matching of Imported Routes

	Testing your Controllers

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Routing

The Routing Component

The Routing component maps an HTTP request to a set of configuration
variables.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/routing on Packagist [https://packagist.org/packages/symfony/routing]);

	Use the official Git repository (https://github.com/symfony/Routing).

Usage

In order to set up a basic routing system you need three parts:

	A RouteCollection [http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html], which contains the route definitions (instances of the class Route [http://api.symfony.com/master/Symfony/Component/Routing/Route.html])

	A RequestContext [http://api.symfony.com/master/Symfony/Component/Routing/RequestContext.html], which has information about the request

	A UrlMatcher [http://api.symfony.com/master/Symfony/Component/Routing/Matcher/UrlMatcher.html], which performs the mapping of the request to a single route

Here is a quick example. Notice that this assumes that you’ve already configured
your autoloader to load the Routing component:

use Symfony\Component\Routing\Matcher\UrlMatcher;
use Symfony\Component\Routing\RequestContext;
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$route = new Route('/foo', array('controller' => 'MyController'));
$routes = new RouteCollection();
$routes->add('route_name', $route);

$context = new RequestContext($_SERVER['REQUEST_URI']);

$matcher = new UrlMatcher($routes, $context);

$parameters = $matcher->match('/foo');
// array('controller' => 'MyController', '_route' => 'route_name')

注解

Be careful when using $_SERVER['REQUEST_URI'], as it may include
any query parameters on the URL, which will cause problems with route
matching. An easy way to solve this is to use the HttpFoundation component
as explained below.

You can add as many routes as you like to a
RouteCollection [http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html].

The RouteCollection::add() [http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html#method_add]
method takes two arguments. The first is the name of the route. The second
is a Route [http://api.symfony.com/master/Symfony/Component/Routing/Route.html] object, which expects a
URL path and some array of custom variables in its constructor. This array
of custom variables can be anything that’s significant to your application,
and is returned when that route is matched.

If no matching route can be found a
ResourceNotFoundException [http://api.symfony.com/master/Symfony/Component/Routing/Exception/ResourceNotFoundException.html] will be thrown.

In addition to your array of custom variables, a _route key is added,
which holds the name of the matched route.

Defining Routes

A full route definition can contain up to seven parts:

	The URL path route. This is matched against the URL passed to the RequestContext,
and can contain named wildcard placeholders (e.g. {placeholders})
to match dynamic parts in the URL.

	An array of default values. This contains an array of arbitrary values
that will be returned when the request matches the route.

	An array of requirements. These define constraints for the values of the
placeholders as regular expressions.

	An array of options. These contain internal settings for the route and
are the least commonly needed.

	A host. This is matched against the host of the request. See
How to Match a Route Based on the Host for more details.

	An array of schemes. These enforce a certain HTTP scheme (http, https).

	An array of methods. These enforce a certain HTTP request method (HEAD,
GET, POST, ...).

2.2 新版功能: Host matching support was introduced in Symfony 2.2

Take the following route, which combines several of these ideas:

$route = new Route(
 '/archive/{month}', // path
 array('controller' => 'showArchive'), // default values
 array('month' => '[0-9]{4}-[0-9]{2}', 'subdomain' => 'www|m'), // requirements
 array(), // options
 '{subdomain}.example.com', // host
 array(), // schemes
 array() // methods
);

// ...

$parameters = $matcher->match('/archive/2012-01');
// array(
// 'controller' => 'showArchive',
// 'month' => '2012-01',
// 'subdomain' => 'www',
// '_route' => ...
//)

$parameters = $matcher->match('/archive/foo');
// throws ResourceNotFoundException

In this case, the route is matched by /archive/2012-01, because the {month}
wildcard matches the regular expression wildcard given. However, /archive/foo
does not match, because “foo” fails the month wildcard.

小技巧

If you want to match all URLs which start with a certain path and end in an
arbitrary suffix you can use the following route definition:

$route = new Route(
 '/start/{suffix}',
 array('suffix' => ''),
 array('suffix' => '.*')
);

Using Prefixes

You can add routes or other instances of
RouteCollection [http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html] to another collection.
This way you can build a tree of routes. Additionally you can define a prefix
and default values for the parameters, requirements, options, schemes and the
host to all routes of a subtree using methods provided by the
RouteCollection class:

$rootCollection = new RouteCollection();

$subCollection = new RouteCollection();
$subCollection->add(...);
$subCollection->add(...);
$subCollection->addPrefix('/prefix');
$subCollection->addDefaults(array(...));
$subCollection->addRequirements(array(...));
$subCollection->addOptions(array(...));
$subCollection->setHost('admin.example.com');
$subCollection->setMethods(array('POST'));
$subCollection->setSchemes(array('https'));

$rootCollection->addCollection($subCollection);

Set the Request Parameters

The RequestContext [http://api.symfony.com/master/Symfony/Component/Routing/RequestContext.html] provides information
about the current request. You can define all parameters of an HTTP request
with this class via its constructor:

public function __construct(
 $baseUrl = '',
 $method = 'GET',
 $host = 'localhost',
 $scheme = 'http',
 $httpPort = 80,
 $httpsPort = 443,
 $path = '/',
 $queryString = ''
)

Normally you can pass the values from the $_SERVER variable to populate the
RequestContext [http://api.symfony.com/master/Symfony/Component/Routing/RequestContext.html]. But If you use the
HttpFoundation component, you can use its
Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html] class to feed the
RequestContext [http://api.symfony.com/master/Symfony/Component/Routing/RequestContext.html] in a shortcut:

use Symfony\Component\HttpFoundation\Request;

$context = new RequestContext();
$context->fromRequest(Request::createFromGlobals());

Generate a URL

While the UrlMatcher [http://api.symfony.com/master/Symfony/Component/Routing/Matcher/UrlMatcher.html] tries
to find a route that fits the given request you can also build a URL from
a certain route:

use Symfony\Component\Routing\Generator\UrlGenerator;

$routes = new RouteCollection();
$routes->add('show_post', new Route('/show/{slug}'));

$context = new RequestContext($_SERVER['REQUEST_URI']);

$generator = new UrlGenerator($routes, $context);

$url = $generator->generate('show_post', array(
 'slug' => 'my-blog-post',
));
// /show/my-blog-post

注解

If you have defined a scheme, an absolute URL is generated if the scheme
of the current RequestContext [http://api.symfony.com/master/Symfony/Component/Routing/RequestContext.html] does
not match the requirement.

Load Routes from a File

You’ve already seen how you can easily add routes to a collection right inside
PHP. But you can also load routes from a number of different files.

The Routing component comes with a number of loader classes, each giving
you the ability to load a collection of route definitions from an external
file of some format.
Each loader expects a FileLocator [http://api.symfony.com/master/Symfony/Component/Config/FileLocator.html] instance
as the constructor argument. You can use the FileLocator [http://api.symfony.com/master/Symfony/Component/Config/FileLocator.html]
to define an array of paths in which the loader will look for the requested files.
If the file is found, the loader returns a RouteCollection [http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html].

If you’re using the YamlFileLoader, then route definitions look like this:

routes.yml
route1:
 path: /foo
 defaults: { _controller: 'MyController::fooAction' }

route2:
 path: /foo/bar
 defaults: { _controller: 'MyController::foobarAction' }

To load this file, you can use the following code. This assumes that your
routes.yml file is in the same directory as the below code:

use Symfony\Component\Config\FileLocator;
use Symfony\Component\Routing\Loader\YamlFileLoader;

// look inside *this* directory
$locator = new FileLocator(array(__DIR__));
$loader = new YamlFileLoader($locator);
$collection = $loader->load('routes.yml');

Besides YamlFileLoader [http://api.symfony.com/master/Symfony/Component/Routing/Loader/YamlFileLoader.html] there are two
other loaders that work the same way:

	XmlFileLoader [http://api.symfony.com/master/Symfony/Component/Routing/Loader/XmlFileLoader.html]

	PhpFileLoader [http://api.symfony.com/master/Symfony/Component/Routing/Loader/PhpFileLoader.html]

If you use the PhpFileLoader [http://api.symfony.com/master/Symfony/Component/Routing/Loader/PhpFileLoader.html] you
have to provide the name of a PHP file which returns a RouteCollection [http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html]:

// RouteProvider.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add(
 'route_name',
 new Route('/foo', array('controller' => 'ExampleController'))
);
// ...

return $collection;

Routes as Closures

There is also the ClosureLoader [http://api.symfony.com/master/Symfony/Component/Routing/Loader/ClosureLoader.html], which
calls a closure and uses the result as a RouteCollection [http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html]:

use Symfony\Component\Routing\Loader\ClosureLoader;

$closure = function () {
 return new RouteCollection();
};

$loader = new ClosureLoader();
$collection = $loader->load($closure);

Routes as Annotations

Last but not least there are
AnnotationDirectoryLoader [http://api.symfony.com/master/Symfony/Component/Routing/Loader/AnnotationDirectoryLoader.html] and
AnnotationFileLoader [http://api.symfony.com/master/Symfony/Component/Routing/Loader/AnnotationFileLoader.html] to load
route definitions from class annotations. The specific details are left
out here.

The all-in-one Router

The Router [http://api.symfony.com/master/Symfony/Component/Routing/Router.html] class is an all-in-one package
to quickly use the Routing component. The constructor expects a loader instance,
a path to the main route definition and some other settings:

public function __construct(
 LoaderInterface $loader,
 $resource,
 array $options = array(),
 RequestContext $context = null,
 array $defaults = array()
);

With the cache_dir option you can enable route caching (if you provide a
path) or disable caching (if it’s set to null). The caching is done
automatically in the background if you want to use it. A basic example of the
Router [http://api.symfony.com/master/Symfony/Component/Routing/Router.html] class would look like:

$locator = new FileLocator(array(__DIR__));
$requestContext = new RequestContext($_SERVER['REQUEST_URI']);

$router = new Router(
 new YamlFileLoader($locator),
 'routes.yml',
 array('cache_dir' => __DIR__.'/cache'),
 $requestContext
);
$router->match('/foo/bar');

注解

If you use caching, the Routing component will compile new classes which
are saved in the cache_dir. This means your script must have write
permissions for that location.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Routing

How to Match a Route Based on the Host

2.2 新版功能: Host matching support was introduced in Symfony 2.2

You can also match on the HTTP host of the incoming request.

	YAMLmobile_homepage:
 path: /
 host: m.example.com
 defaults: { _controller: AcmeDemoBundle:Main:mobileHomepage }

homepage:
 path: /
 defaults: { _controller: AcmeDemoBundle:Main:homepage }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="mobile_homepage" path="/" host="m.example.com">
 <default key="_controller">AcmeDemoBundle:Main:mobileHomepage</default>
 </route>

 <route id="homepage" path="/">
 <default key="_controller">AcmeDemoBundle:Main:homepage</default>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('mobile_homepage', new Route('/', array(
 '_controller' => 'AcmeDemoBundle:Main:mobileHomepage',
), array(), array(), 'm.example.com'));

$collection->add('homepage', new Route('/', array(
 '_controller' => 'AcmeDemoBundle:Main:homepage',
)));

return $collection;

Both routes match the same path /, however the first one will match
only if the host is m.example.com.

Using Placeholders

The host option uses the same syntax as the path matching system. This means
you can use placeholders in your hostname:

	YAMLprojects_homepage:
 path: /
 host: "{project_name}.example.com"
 defaults: { _controller: AcmeDemoBundle:Main:mobileHomepage }

homepage:
 path: /
 defaults: { _controller: AcmeDemoBundle:Main:homepage }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="projects_homepage" path="/" host="{project_name}.example.com">
 <default key="_controller">AcmeDemoBundle:Main:mobileHomepage</default>
 </route>

 <route id="homepage" path="/">
 <default key="_controller">AcmeDemoBundle:Main:homepage</default>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('project_homepage', new Route('/', array(
 '_controller' => 'AcmeDemoBundle:Main:mobileHomepage',
), array(), array(), '{project_name}.example.com'));

$collection->add('homepage', new Route('/', array(
 '_controller' => 'AcmeDemoBundle:Main:homepage',
)));

return $collection;

You can also set requirements and default options for these placeholders. For
instance, if you want to match both m.example.com and
mobile.example.com, you use this:

	YAMLmobile_homepage:
 path: /
 host: "{subdomain}.example.com"
 defaults:
 _controller: AcmeDemoBundle:Main:mobileHomepage
 subdomain: m
 requirements:
 subdomain: m|mobile

homepage:
 path: /
 defaults: { _controller: AcmeDemoBundle:Main:homepage }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing
 http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="mobile_homepage" path="/" host="{subdomain}.example.com">
 <default key="_controller">AcmeDemoBundle:Main:mobileHomepage</default>
 <default key="subdomain">m</default>
 <requirement key="subdomain">m|mobile</requirement>
 </route>

 <route id="homepage" path="/">
 <default key="_controller">AcmeDemoBundle:Main:homepage</default>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('mobile_homepage', new Route('/', array(
 '_controller' => 'AcmeDemoBundle:Main:mobileHomepage',
 'subdomain' => 'm',
), array(
 'subdomain' => 'm|mobile',
), array(), '{subdomain}.example.com'));

$collection->add('homepage', new Route('/', array(
 '_controller' => 'AcmeDemoBundle:Main:homepage',
)));

return $collection;

小技巧

You can also use service parameters if you do not want to hardcode the
hostname:

	YAMLmobile_homepage:
 path: /
 host: "m.{domain}"
 defaults:
 _controller: AcmeDemoBundle:Main:mobileHomepage
 domain: "%domain%"
 requirements:
 domain: "%domain%"

homepage:
 path: /
 defaults: { _controller: AcmeDemoBundle:Main:homepage }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <route id="mobile_homepage" path="/" host="m.{domain}">
 <default key="_controller">AcmeDemoBundle:Main:mobileHomepage</default>
 <default key="domain">%domain%</default>
 <requirement key="domain">%domain%</requirement>
 </route>

 <route id="homepage" path="/">
 <default key="_controller">AcmeDemoBundle:Main:homepage</default>
 </route>
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add('mobile_homepage', new Route('/', array(
 '_controller' => 'AcmeDemoBundle:Main:mobileHomepage',
 'domain' => '%domain%',
), array(
 'domain' => '%domain%',
), array(), 'm.{domain}'));

$collection->add('homepage', new Route('/', array(
 '_controller' => 'AcmeDemoBundle:Main:homepage',
)));

return $collection;

小技巧

Make sure you also include a default option for the domain placeholder,
otherwise you need to include a domain value each time you generate
a URL using the route.

Using Host Matching of Imported Routes

You can also set the host option on imported routes:

	YAMLacme_hello:
 resource: "@AcmeHelloBundle/Resources/config/routing.yml"
 host: "hello.example.com"

	XML<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/routing http://symfony.com/schema/routing/routing-1.0.xsd">

 <import resource="@AcmeHelloBundle/Resources/config/routing.xml" host="hello.example.com" />
</routes>

	PHPuse Symfony\Component\Routing\RouteCollection;

$collection = new RouteCollection();
$collection->addCollection($loader->import("@AcmeHelloBundle/Resources/config/routing.php"), '', array(), array(), array(), 'hello.example.com');

return $collection;

The host hello.example.com will be set on each route loaded from the new
routing resource.

Testing your Controllers

You need to set the Host HTTP header on your request objects if you want to get
past url matching in your functional tests.

$crawler = $client->request(
 'GET',
 '/homepage',
 array(),
 array(),
 array('HTTP_HOST' => 'm.' . $client->getContainer()->getParameter('domain'))
);

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

Security

	The Security Component
	Installation

	Sections

	The Firewall and Security Context
	A Firewall for HTTP Requests

	Flow: Firewall, Authentication, Authorization

	Authentication
	The Authentication Manager

	Authentication Providers

	Authorization
	Access Decision Manager

	Voters

	Roles

	Using the Decision Manager

	Securely Comparing Strings and Generating Random Numbers
	Comparing Strings

	Generating a Secure random Number

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Security

The Security Component

The Security component provides a complete security system for your web
application. It ships with facilities for authenticating using HTTP basic
or digest authentication, interactive form login or X.509 certificate
login, but also allows you to implement your own authentication strategies.
Furthermore, the component provides ways to authorize authenticated users
based on their roles, and it contains an advanced ACL system.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/security on Packagist [https://packagist.org/packages/symfony/security]);

	Use the official Git repository (https://github.com/symfony/Security).

Sections

	The Firewall and Security Context

	Authentication

	Authorization

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Security

The Firewall and Security Context

Central to the Security component is the security context, which is an instance
of SecurityContextInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/SecurityContextInterface.html]. When all
steps in the process of authenticating the user have been taken successfully,
you can ask the security context if the authenticated user has access to a
certain action or resource of the application:

use Symfony\Component\Security\Core\SecurityContext;
use Symfony\Component\Security\Core\Exception\AccessDeniedException;

// instance of Symfony\Component\Security\Core\Authentication\AuthenticationManagerInterface
$authenticationManager = ...;

// instance of Symfony\Component\Security\Core\Authorization\AccessDecisionManagerInterface
$accessDecisionManager = ...;

$securityContext = new SecurityContext(
 $authenticationManager,
 $accessDecisionManager
);

// ... authenticate the user

if (!$securityContext->isGranted('ROLE_ADMIN')) {
 throw new AccessDeniedException();
}

注解

Read the dedicated sections to learn more about Authentication
and Authorization.

A Firewall for HTTP Requests

Authenticating a user is done by the firewall. An application may have
multiple secured areas, so the firewall is configured using a map of these
secured areas. For each of these areas, the map contains a request matcher
and a collection of listeners. The request matcher gives the firewall the
ability to find out if the current request points to a secured area.
The listeners are then asked if the current request can be used to authenticate
the user:

use Symfony\Component\Security\Http\FirewallMap;
use Symfony\Component\HttpFoundation\RequestMatcher;
use Symfony\Component\Security\Http\Firewall\ExceptionListener;

$map = new FirewallMap();

$requestMatcher = new RequestMatcher('^/secured-area/');

// instances of Symfony\Component\Security\Http\Firewall\ListenerInterface
$listeners = array(...);

$exceptionListener = new ExceptionListener(...);

$map->add($requestMatcher, $listeners, $exceptionListener);

The firewall map will be given to the firewall as its first argument, together
with the event dispatcher that is used by the HttpKernel [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernel.html]:

use Symfony\Component\Security\Http\Firewall;
use Symfony\Component\HttpKernel\KernelEvents;

// the EventDispatcher used by the HttpKernel
$dispatcher = ...;

$firewall = new Firewall($map, $dispatcher);

$dispatcher->addListener(
 KernelEvents::REQUEST,
 array($firewall, 'onKernelRequest')
);

The firewall is registered to listen to the kernel.request event that
will be dispatched by the HttpKernel at the beginning of each request
it processes. This way, the firewall may prevent the user from going any
further than allowed.

Firewall Listeners

When the firewall gets notified of the kernel.request event, it asks
the firewall map if the request matches one of the secured areas. The first
secured area that matches the request will return a set of corresponding
firewall listeners (which each implement ListenerInterface [http://api.symfony.com/master/Symfony/Component/Security/Http/Firewall/ListenerInterface.html]).
These listeners will all be asked to handle the current request. This basically
means: find out if the current request contains any information by which
the user might be authenticated (for instance the Basic HTTP authentication
listener checks if the request has a header called PHP_AUTH_USER).

Exception Listener

If any of the listeners throws an AuthenticationException [http://api.symfony.com/master/Symfony/Component/Security/Core/Exception/AuthenticationException.html],
the exception listener that was provided when adding secured areas to the
firewall map will jump in.

The exception listener determines what happens next, based on the arguments
it received when it was created. It may start the authentication procedure,
perhaps ask the user to supply their credentials again (when they have only been
authenticated based on a “remember-me” cookie), or transform the exception
into an AccessDeniedHttpException [http://api.symfony.com/master/Symfony/Component/HttpKernel/Exception/AccessDeniedHttpException.html],
which will eventually result in an “HTTP/1.1 403: Access Denied” response.

Entry Points

When the user is not authenticated at all (i.e. when the security context
has no token yet), the firewall’s entry point will be called to “start”
the authentication process. An entry point should implement
AuthenticationEntryPointInterface [http://api.symfony.com/master/Symfony/Component/Security/Http/EntryPoint/AuthenticationEntryPointInterface.html],
which has only one method: start() [http://api.symfony.com/master/Symfony/Component/Security/Http/EntryPoint/AuthenticationEntryPointInterface.html#method_start].
This method receives the current Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html]
object and the exception by which the exception listener was triggered.
The method should return a Response [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html]
object. This could be, for instance, the page containing the login form or,
in the case of Basic HTTP authentication, a response with a WWW-Authenticate
header, which will prompt the user to supply their username and password.

Flow: Firewall, Authentication, Authorization

Hopefully you can now see a little bit about how the “flow” of the security
context works:

	The Firewall is registered as a listener on the kernel.request event;

	At the beginning of the request, the Firewall checks the firewall map
to see if any firewall should be active for this URL;

	If a firewall is found in the map for this URL, its listeners are notified;

	Each listener checks to see if the current request contains any authentication
information - a listener may (a) authenticate a user, (b) throw an
AuthenticationException, or (c) do nothing (because there is no
authentication information on the request);

	Once a user is authenticated, you’ll use Authorization
to deny access to certain resources.

Read the next sections to find out more about Authentication
and Authorization.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Security

Authentication

When a request points to a secured area, and one of the listeners from the
firewall map is able to extract the user’s credentials from the current
Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html] object, it should create
a token, containing these credentials. The next thing the listener should
do is ask the authentication manager to validate the given token, and return
an authenticated token if the supplied credentials were found to be valid.
The listener should then store the authenticated token in the security context:

use Symfony\Component\Security\Http\Firewall\ListenerInterface;
use Symfony\Component\Security\Core\SecurityContextInterface;
use Symfony\Component\Security\Core\Authentication\AuthenticationManagerInterface;
use Symfony\Component\HttpKernel\Event\GetResponseEvent;
use Symfony\Component\Security\Core\Authentication\Token\UsernamePasswordToken;

class SomeAuthenticationListener implements ListenerInterface
{
 /**
 * @var SecurityContextInterface
 */
 private $securityContext;

 /**
 * @var AuthenticationManagerInterface
 */
 private $authenticationManager;

 /**
 * @var string Uniquely identifies the secured area
 */
 private $providerKey;

 // ...

 public function handle(GetResponseEvent $event)
 {
 $request = $event->getRequest();

 $username = ...;
 $password = ...;

 $unauthenticatedToken = new UsernamePasswordToken(
 $username,
 $password,
 $this->providerKey
);

 $authenticatedToken = $this
 ->authenticationManager
 ->authenticate($unauthenticatedToken);

 $this->securityContext->setToken($authenticatedToken);
 }
}

注解

A token can be of any class, as long as it implements
TokenInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Token/TokenInterface.html].

The Authentication Manager

The default authentication manager is an instance of
AuthenticationProviderManager [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/AuthenticationProviderManager.html]:

use Symfony\Component\Security\Core\Authentication\AuthenticationProviderManager;

// instances of Symfony\Component\Security\Core\Authentication\AuthenticationProviderInterface
$providers = array(...);

$authenticationManager = new AuthenticationProviderManager($providers);

try {
 $authenticatedToken = $authenticationManager
 ->authenticate($unauthenticatedToken);
} catch (AuthenticationException $failed) {
 // authentication failed
}

The AuthenticationProviderManager, when instantiated, receives several
authentication providers, each supporting a different type of token.

注解

You may of course write your own authentication manager, it only has
to implement AuthenticationManagerInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/AuthenticationManagerInterface.html].

Authentication Providers

Each provider (since it implements
AuthenticationProviderInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Provider/AuthenticationProviderInterface.html])
has a method supports() [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Provider/AuthenticationProviderInterface.html#method_supports]
by which the AuthenticationProviderManager
can determine if it supports the given token. If this is the case, the
manager then calls the provider’s method AuthenticationProviderInterface::authenticate [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Provider/AuthenticationProviderInterface::authenticate.html].
This method should return an authenticated token or throw an
AuthenticationException [http://api.symfony.com/master/Symfony/Component/Security/Core/Exception/AuthenticationException.html]
(or any other exception extending it).

Authenticating Users by their Username and Password

An authentication provider will attempt to authenticate a user based on
the credentials they provided. Usually these are a username and a password.
Most web applications store their user’s username and a hash of the user’s
password combined with a randomly generated salt. This means that the average
authentication would consist of fetching the salt and the hashed password
from the user data storage, hash the password the user has just provided
(e.g. using a login form) with the salt and compare both to determine if
the given password is valid.

This functionality is offered by the DaoAuthenticationProvider [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Provider/DaoAuthenticationProvider.html].
It fetches the user’s data from a UserProviderInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserProviderInterface.html],
uses a PasswordEncoderInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Encoder/PasswordEncoderInterface.html]
to create a hash of the password and returns an authenticated token if the
password was valid:

use Symfony\Component\Security\Core\Authentication\Provider\DaoAuthenticationProvider;
use Symfony\Component\Security\Core\User\UserChecker;
use Symfony\Component\Security\Core\User\InMemoryUserProvider;
use Symfony\Component\Security\Core\Encoder\EncoderFactory;

$userProvider = new InMemoryUserProvider(
 array(
 'admin' => array(
 // password is "foo"
 'password' => '5FZ2Z8QIkA7UTZ4BYkoC+GsReLf569mSKDsfods6LYQ8t+a8EW9oaircfMpmaLbPBh4FOBiiFyLfuZmTSUwzZg==',
 'roles' => array('ROLE_ADMIN'),
),
)
);

// for some extra checks: is account enabled, locked, expired, etc.?
$userChecker = new UserChecker();

// an array of password encoders (see below)
$encoderFactory = new EncoderFactory(...);

$provider = new DaoAuthenticationProvider(
 $userProvider,
 $userChecker,
 'secured_area',
 $encoderFactory
);

$provider->authenticate($unauthenticatedToken);

注解

The example above demonstrates the use of the “in-memory” user provider,
but you may use any user provider, as long as it implements
UserProviderInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserProviderInterface.html].
It is also possible to let multiple user providers try to find the user’s
data, using the ChainUserProvider [http://api.symfony.com/master/Symfony/Component/Security/Core/User/ChainUserProvider.html].

The Password Encoder Factory

The DaoAuthenticationProvider [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Provider/DaoAuthenticationProvider.html]
uses an encoder factory to create a password encoder for a given type of
user. This allows you to use different encoding strategies for different
types of users. The default EncoderFactory [http://api.symfony.com/master/Symfony/Component/Security/Core/Encoder/EncoderFactory.html]
receives an array of encoders:

use Symfony\Component\Security\Core\Encoder\EncoderFactory;
use Symfony\Component\Security\Core\Encoder\MessageDigestPasswordEncoder;

$defaultEncoder = new MessageDigestPasswordEncoder('sha512', true, 5000);
$weakEncoder = new MessageDigestPasswordEncoder('md5', true, 1);

$encoders = array(
 'Symfony\\Component\\Security\\Core\\User\\User' => $defaultEncoder,
 'Acme\\Entity\\LegacyUser' => $weakEncoder,

 // ...
);

$encoderFactory = new EncoderFactory($encoders);

Each encoder should implement PasswordEncoderInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Encoder/PasswordEncoderInterface.html]
or be an array with a class and an arguments key, which allows the
encoder factory to construct the encoder only when it is needed.

Creating a custom Password Encoder

There are many built-in password encoders. But if you need to create your
own, it just needs to follow these rules:

	The class must implement PasswordEncoderInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Encoder/PasswordEncoderInterface.html];

	The implementations of
encodePassword() [http://api.symfony.com/master/Symfony/Component/Security/Core/Encoder/PasswordEncoderInterface.html#method_encodePassword]
and
isPasswordValid() [http://api.symfony.com/master/Symfony/Component/Security/Core/Encoder/PasswordEncoderInterface.html#method_isPasswordValid]
must first of all make sure the password is not too long, i.e. the password length is no longer
than 4096 characters. This is for security reasons (see CVE-2013-5750 [http://symfony.com/blog/cve-2013-5750-security-issue-in-fosuserbundle-login-form]), and you can use the
isPasswordTooLong() [http://api.symfony.com/master/Symfony/Component/Security/Core/Encoder/BasePasswordEncoder.html#method_isPasswordTooLong]
method for this check:

use Symfony\Component\Security\Core\Exception\BadCredentialsException;

class FoobarEncoder extends BasePasswordEncoder
{
 public function encodePassword($raw, $salt)
 {
 if ($this->isPasswordTooLong($raw)) {
 throw new BadCredentialsException('Invalid password.');
 }

 // ...
 }

 public function isPasswordValid($encoded, $raw, $salt)
 {
 if ($this->isPasswordTooLong($raw)) {
 return false;
 }

 // ...
}

Using Password Encoders

When the getEncoder() [http://api.symfony.com/master/Symfony/Component/Security/Core/Encoder/EncoderFactory.html#method_getEncoder]
method of the password encoder factory is called with the user object as
its first argument, it will return an encoder of type PasswordEncoderInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Encoder/PasswordEncoderInterface.html]
which should be used to encode this user’s password:

// a Acme\Entity\LegacyUser instance
$user = ...;

// the password that was submitted, e.g. when registering
$plainPassword = ...;

$encoder = $encoderFactory->getEncoder($user);

// will return $weakEncoder (see above)
$encodedPassword = $encoder->encodePassword($plainPassword, $user->getSalt());

$user->setPassword($encodedPassword);

// ... save the user

Now, when you want to check if the submitted password (e.g. when trying to log
in) is correct, you can use:

// fetch the Acme\Entity\LegacyUser
$user = ...;

// the submitted password, e.g. from the login form
$plainPassword = ...;

$validPassword = $encoder->isPasswordValid(
 $user->getPassword(), // the encoded password
 $plainPassword, // the submitted password
 $user->getSalt()
);

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Security

Authorization

When any of the authentication providers (see Authentication Providers)
has verified the still-unauthenticated token, an authenticated token will
be returned. The authentication listener should set this token directly
in the SecurityContextInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/SecurityContextInterface.html]
using its setToken() [http://api.symfony.com/master/Symfony/Component/Security/Core/SecurityContextInterface.html#method_setToken]
method.

From then on, the user is authenticated, i.e. identified. Now, other parts
of the application can use the token to decide whether or not the user may
request a certain URI, or modify a certain object. This decision will be made
by an instance of AccessDecisionManagerInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/AccessDecisionManagerInterface.html].

An authorization decision will always be based on a few things:

	
	The current token

	For instance, the token’s getRoles() [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Token/TokenInterface.html#method_getRoles]
method may be used to retrieve the roles of the current user (e.g.
ROLE_SUPER_ADMIN), or a decision may be based on the class of the token.

	
	A set of attributes

	Each attribute stands for a certain right the user should have, e.g.
ROLE_ADMIN to make sure the user is an administrator.

	
	An object (optional)

	Any object for which access control needs to be checked, like
an article or a comment object.

Access Decision Manager

Since deciding whether or not a user is authorized to perform a certain
action can be a complicated process, the standard AccessDecisionManager [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/AccessDecisionManager.html]
itself depends on multiple voters, and makes a final verdict based on all
the votes (either positive, negative or neutral) it has received. It
recognizes several strategies:

	affirmative (default)

	grant access as soon as any voter returns an affirmative response;

	consensus

	grant access if there are more voters granting access than there are denying;

	unanimous

	only grant access if none of the voters has denied access;

use Symfony\Component\Security\Core\Authorization\AccessDecisionManager;

// instances of Symfony\Component\Security\Core\Authorization\Voter\VoterInterface
$voters = array(...);

// one of "affirmative", "consensus", "unanimous"
$strategy = ...;

// whether or not to grant access when all voters abstain
$allowIfAllAbstainDecisions = ...;

// whether or not to grant access when there is no majority (applies only to the "consensus" strategy)
$allowIfEqualGrantedDeniedDecisions = ...;

$accessDecisionManager = new AccessDecisionManager(
 $voters,
 $strategy,
 $allowIfAllAbstainDecisions,
 $allowIfEqualGrantedDeniedDecisions
);

参见

You can change the default strategy in the
configuration.

Voters

Voters are instances
of VoterInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html],
which means they have to implement a few methods which allows the decision
manager to use them:

	supportsAttribute($attribute)

	will be used to check if the voter knows how to handle the given attribute;

	supportsClass($class)

	will be used to check if the voter is able to grant or deny access for
an object of the given class;

	vote(TokenInterface $token, $object, array $attributes)

	this method will do the actual voting and return a value equal to one
of the class constants of VoterInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html],
i.e. VoterInterface::ACCESS_GRANTED, VoterInterface::ACCESS_DENIED
or VoterInterface::ACCESS_ABSTAIN;

The Security component contains some standard voters which cover many use
cases:

AuthenticatedVoter

The AuthenticatedVoter [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/AuthenticatedVoter.html]
voter supports the attributes IS_AUTHENTICATED_FULLY, IS_AUTHENTICATED_REMEMBERED,
and IS_AUTHENTICATED_ANONYMOUSLY and grants access based on the current
level of authentication, i.e. is the user fully authenticated, or only based
on a “remember-me” cookie, or even authenticated anonymously?

use Symfony\Component\Security\Core\Authentication\AuthenticationTrustResolver;

$anonymousClass = 'Symfony\Component\Security\Core\Authentication\Token\AnonymousToken';
$rememberMeClass = 'Symfony\Component\Security\Core\Authentication\Token\RememberMeToken';

$trustResolver = new AuthenticationTrustResolver($anonymousClass, $rememberMeClass);

$authenticatedVoter = new AuthenticatedVoter($trustResolver);

// instance of Symfony\Component\Security\Core\Authentication\Token\TokenInterface
$token = ...;

// any object
$object = ...;

$vote = $authenticatedVoter->vote($token, $object, array('IS_AUTHENTICATED_FULLY');

RoleVoter

The RoleVoter [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/RoleVoter.html]
supports attributes starting with ROLE_ and grants access to the user
when the required ROLE_* attributes can all be found in the array of
roles returned by the token’s getRoles() [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Token/TokenInterface.html#method_getRoles]
method:

use Symfony\Component\Security\Core\Authorization\Voter\RoleVoter;

$roleVoter = new RoleVoter('ROLE_');

$roleVoter->vote($token, $object, array('ROLE_ADMIN'));

RoleHierarchyVoter

The RoleHierarchyVoter [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/RoleHierarchyVoter.html]
extends RoleVoter [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/RoleVoter.html]
and provides some additional functionality: it knows how to handle a
hierarchy of roles. For instance, a ROLE_SUPER_ADMIN role may have subroles
ROLE_ADMIN and ROLE_USER, so that when a certain object requires the
user to have the ROLE_ADMIN role, it grants access to users who in fact
have the ROLE_ADMIN role, but also to users having the ROLE_SUPER_ADMIN
role:

use Symfony\Component\Security\Core\Authorization\Voter\RoleHierarchyVoter;
use Symfony\Component\Security\Core\Role\RoleHierarchy;

$hierarchy = array(
 'ROLE_SUPER_ADMIN' => array('ROLE_ADMIN', 'ROLE_USER'),
);

$roleHierarchy = new RoleHierarchy($hierarchy);

$roleHierarchyVoter = new RoleHierarchyVoter($roleHierarchy);

注解

When you make your own voter, you may of course use its constructor
to inject any dependencies it needs to come to a decision.

Roles

Roles are objects that give expression to a certain right the user has.
The only requirement is that they implement RoleInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/Role/RoleInterface.html],
which means they should also have a getRole() [http://api.symfony.com/master/Symfony/Component/Security/Core/Role/Role/RoleInterface.html#method_getRole]
method that returns a string representation of the role itself. The default
Role [http://api.symfony.com/master/Symfony/Component/Security/Core/Role/Role.html] simply returns its
first constructor argument:

use Symfony\Component\Security\Core\Role\Role;

$role = new Role('ROLE_ADMIN');

// will echo 'ROLE_ADMIN'
echo $role->getRole();

注解

Most authentication tokens extend from AbstractToken [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Token/AbstractToken.html],
which means that the roles given to its constructor will be
automatically converted from strings to these simple Role objects.

Using the Decision Manager

The Access Listener

The access decision manager can be used at any point in a request to decide whether
or not the current user is entitled to access a given resource. One optional,
but useful, method for restricting access based on a URL pattern is the
AccessListener [http://api.symfony.com/master/Symfony/Component/Security/Http/Firewall/AccessListener.html],
which is one of the firewall listeners (see Firewall Listeners) that
is triggered for each request matching the firewall map (see A Firewall for HTTP Requests).

It uses an access map (which should be an instance of AccessMapInterface [http://api.symfony.com/master/Symfony/Component/Security/Http/AccessMapInterface.html])
which contains request matchers and a corresponding set of attributes that
are required for the current user to get access to the application:

use Symfony\Component\Security\Http\AccessMap;
use Symfony\Component\HttpFoundation\RequestMatcher;
use Symfony\Component\Security\Http\Firewall\AccessListener;

$accessMap = new AccessMap();
$requestMatcher = new RequestMatcher('^/admin');
$accessMap->add($requestMatcher, array('ROLE_ADMIN'));

$accessListener = new AccessListener(
 $securityContext,
 $accessDecisionManager,
 $accessMap,
 $authenticationManager
);

Security Context

The access decision manager is also available to other parts of the application
via the isGranted() [http://api.symfony.com/master/Symfony/Component/Security/Core/SecurityContext.html#method_isGranted]
method of the SecurityContext [http://api.symfony.com/master/Symfony/Component/Security/Core/SecurityContext.html].
A call to this method will directly delegate the question to the access
decision manager:

use Symfony\Component\Security\SecurityContext;
use Symfony\Component\Security\Core\Exception\AccessDeniedException;

$securityContext = new SecurityContext(
 $authenticationManager,
 $accessDecisionManager
);

if (!$securityContext->isGranted('ROLE_ADMIN')) {
 throw new AccessDeniedException();
}

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Security

Securely Comparing Strings and Generating Random Numbers

The Symfony Security component comes with a collection of nice utilities
related to security. These utilities are used by Symfony, but you should
also use them if you want to solve the problem they address.

Comparing Strings

The time it takes to compare two strings depends on their differences. This
can be used by an attacker when the two strings represent a password for
instance; it is known as a Timing attack [http://en.wikipedia.org/wiki/Timing_attack].

Internally, when comparing two passwords, Symfony uses a constant-time
algorithm; you can use the same strategy in your own code thanks to the
StringUtils [http://api.symfony.com/master/Symfony/Component/Security/Core/Util/StringUtils.html] class:

use Symfony\Component\Security\Core\Util\StringUtils;

// is some known string (e.g. password) equal to some user input?
$bool = StringUtils::equals($knownString, $userInput);

警告

To avoid timing attacks, the known string must be the first argument
and the user-entered string the second.

Generating a Secure random Number

Whenever you need to generate a secure random number, you are highly
encouraged to use the Symfony
SecureRandom [http://api.symfony.com/master/Symfony/Component/Security/Core/Util/SecureRandom.html] class:

use Symfony\Component\Security\Core\Util\SecureRandom;

$generator = new SecureRandom();
$random = $generator->nextBytes(10);

The
nextBytes() [http://api.symfony.com/master/Symfony/Component/Security/Core/Util/SecureRandom.html#method_nextBytes]
method returns a random string composed of the number of characters passed as
an argument (10 in the above example).

The SecureRandom class works better when OpenSSL is installed. But when it’s
not available, it falls back to an internal algorithm, which needs a seed file
to work correctly. Just pass a file name to enable it:

use Symfony\Component\Security\Core\Util\SecureRandom;

$generator = new SecureRandom('/some/path/to/store/the/seed.txt');
$random = $generator->nextBytes(10);

注解

If you’re using the Symfony Framework, you can access a secure random
instance directly from the container: its name is security.secure_random.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

The Serializer Component

The Serializer component is meant to be used to turn objects into a
specific format (XML, JSON, YAML, ...) and the other way around.

In order to do so, the Serializer component follows the following
simple schema.

[image: ../_images/serializer_workflow.png]
As you can see in the picture above, an array is used as a man in
the middle. This way, Encoders will only deal with turning specific
formats into arrays and vice versa. The same way, Normalizers
will deal with turning specific objects into arrays and vice versa.

Serialization is a complicated topic, and while this component may not work
in all cases, it can be a useful tool while developing tools to serialize
and deserialize your objects.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/serializer on Packagist [https://packagist.org/packages/symfony/serializer]);

	Use the official Git repository (https://github.com/symfony/Serializer).

Usage

Using the Serializer component is really simple. You just need to set up
the Serializer [http://api.symfony.com/master/Symfony/Component/Serializer/Serializer.html] specifying
which Encoders and Normalizer are going to be available:

use Symfony\Component\Serializer\Serializer;
use Symfony\Component\Serializer\Encoder\XmlEncoder;
use Symfony\Component\Serializer\Encoder\JsonEncoder;
use Symfony\Component\Serializer\Normalizer\GetSetMethodNormalizer;

$encoders = array(new XmlEncoder(), new JsonEncoder());
$normalizers = array(new GetSetMethodNormalizer());

$serializer = new Serializer($normalizers, $encoders);

Serializing an Object

For the sake of this example, assume the following class already
exists in your project:

namespace Acme;

class Person
{
 private $age;
 private $name;

 // Getters
 public function getName()
 {
 return $this->name;
 }

 public function getAge()
 {
 return $this->age;
 }

 // Setters
 public function setName($name)
 {
 $this->name = $name;
 }

 public function setAge($age)
 {
 $this->age = $age;
 }
}

Now, if you want to serialize this object into JSON, you only need to
use the Serializer service created before:

$person = new Acme\Person();
$person->setName('foo');
$person->setAge(99);

$jsonContent = $serializer->serialize($person, 'json');

// $jsonContent contains {"name":"foo","age":99}

echo $jsonContent; // or return it in a Response

The first parameter of the serialize() [http://api.symfony.com/master/Symfony/Component/Serializer/Serializer.html#method_serialize]
is the object to be serialized and the second is used to choose the proper encoder,
in this case JsonEncoder [http://api.symfony.com/master/Symfony/Component/Serializer/Encoder/JsonEncoder.html].

Ignoring Attributes when Serializing

2.3 新版功能: The GetSetMethodNormalizer::setIgnoredAttributes [http://api.symfony.com/master/Symfony/Component/Serializer/Normalizer/GetSetMethodNormalizer.html#method_setIgnoredAttributes]
method was introduced in Symfony 2.3.

As an option, there’s a way to ignore attributes from the origin object when
serializing. To remove those attributes use the
setIgnoredAttributes() [http://api.symfony.com/master/Symfony/Component/Serializer/Normalizer/GetSetMethodNormalizer.html#method_setIgnoredAttributes]
method on the normalizer definition:

use Symfony\Component\Serializer\Serializer;
use Symfony\Component\Serializer\Encoder\JsonEncoder;
use Symfony\Component\Serializer\Normalizer\GetSetMethodNormalizer;

$normalizer = new GetSetMethodNormalizer();
$normalizer->setIgnoredAttributes(array('age'));
$encoder = new JsonEncoder();

$serializer = new Serializer(array($normalizer), array($encoder));
$serializer->serialize($person, 'json'); // Output: {"name":"foo"}

Deserializing an Object

You’ll now learn how to do the exact opposite. This time, the information
of the Person class would be encoded in XML format:

$data = <<<EOF
<person>
 <name>foo</name>
 <age>99</age>
</person>
EOF;

$person = $serializer->deserialize($data, 'Acme\Person', 'xml');

In this case, deserialize() [http://api.symfony.com/master/Symfony/Component/Serializer/Serializer.html#method_deserialize]
needs three parameters:

	The information to be decoded

	The name of the class this information will be decoded to

	The encoder used to convert that information into an array

Using Camelized Method Names for Underscored Attributes

2.3 新版功能: The GetSetMethodNormalizer::setCamelizedAttributes [http://api.symfony.com/master/Symfony/Component/Serializer/Normalizer/GetSetMethodNormalizer.html#method_setCamelizedAttributes]
method was introduced in Symfony 2.3.

Sometimes property names from the serialized content are underscored (e.g.
first_name). Normally, these attributes will use get/set methods like
getFirst_name, when getFirstName method is what you really want. To
change that behavior use the
setCamelizedAttributes() [http://api.symfony.com/master/Symfony/Component/Serializer/Normalizer/GetSetMethodNormalizer.html#method_setCamelizedAttributes]
method on the normalizer definition:

$encoder = new JsonEncoder();
$normalizer = new GetSetMethodNormalizer();
$normalizer->setCamelizedAttributes(array('first_name'));

$serializer = new Serializer(array($normalizer), array($encoder));

$json = <<<EOT
{
 "name": "foo",
 "age": "19",
 "first_name": "bar"
}
EOT;

$person = $serializer->deserialize($json, 'Acme\Person', 'json');

As a final result, the deserializer uses the first_name attribute as if
it were firstName and uses the getFirstName and setFirstName methods.

Using Callbacks to Serialize Properties with Object Instances

When serializing, you can set a callback to format a specific object property:

use Acme\Person;
use Symfony\Component\Serializer\Encoder\JsonEncoder;
use Symfony\Component\Serializer\Normalizer\GetSetMethodNormalizer;
use Symfony\Component\Serializer\Serializer;

$encoder = new JsonEncoder();
$normalizer = new GetSetMethodNormalizer();

$callback = function ($dateTime) {
 return $dateTime instanceof \DateTime
 ? $dateTime->format(\DateTime::ISO8601)
 : '';
};

$normalizer->setCallbacks(array('createdAt' => $callback));

$serializer = new Serializer(array($normalizer), array($encoder));

$person = new Person();
$person->setName('cordoval');
$person->setAge(34);
$person->setCreatedAt(new \DateTime('now'));

$serializer->serialize($person, 'json');
// Output: {"name":"cordoval", "age": 34, "createdAt": "2014-03-22T09:43:12-0500"}

JMSSerializer

A popular third-party library, JMS serializer [https://github.com/schmittjoh/serializer], provides a more
sophisticated albeit more complex solution. This library includes the
ability to configure how your objects should be serialized/deserialized via
annotations (as well as YAML, XML and PHP), integration with the Doctrine ORM,
and handling of other complex cases (e.g. circular references).

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

The Stopwatch Component

The Stopwatch component provides a way to profile code.

2.2 新版功能: The Stopwatch component was introduced in Symfony 2.2. Previously, the
Stopwatch class was located in the HttpKernel component (and was introduced
in Symfony 2.1).

Installation

You can install the component in two different ways:

	Install it via Composer (symfony/stopwatch on Packagist [https://packagist.org/packages/symfony/stopwatch]);

	Use the official Git repository (https://github.com/symfony/Stopwatch).

Usage

The Stopwatch component provides an easy and consistent way to measure execution
time of certain parts of code so that you don’t constantly have to parse
microtime by yourself. Instead, use the simple
Stopwatch [http://api.symfony.com/master/Symfony/Component/Stopwatch/Stopwatch.html] class:

use Symfony\Component\Stopwatch\Stopwatch;

$stopwatch = new Stopwatch();
// Start event named 'eventName'
$stopwatch->start('eventName');
// ... some code goes here
$event = $stopwatch->stop('eventName');

The StopwatchEvent [http://api.symfony.com/master/Symfony/Component/Stopwatch/StopwatchEvent.html] object can be retrieved
from the start() [http://api.symfony.com/master/Symfony/Component/Stopwatch/Stopwatch.html#method_start],
stop() [http://api.symfony.com/master/Symfony/Component/Stopwatch/Stopwatch.html#method_stop] and
lap() [http://api.symfony.com/master/Symfony/Component/Stopwatch/Stopwatch.html#method_lap] methods.

You can also provide a category name to an event:

$stopwatch->start('eventName', 'categoryName');

You can consider categories as a way of tagging events. For example, the
Symfony Profiler tool uses categories to nicely color-code different events.

Periods

As you know from the real world, all stopwatches come with two buttons:
one to start and stop the stopwatch, and another to measure the lap time.
This is exactly what the lap() [http://api.symfony.com/master/Symfony/Component/Stopwatch/Stopwatch.html#method_lap]
method does:

$stopwatch = new Stopwatch();
// Start event named 'foo'
$stopwatch->start('foo');
// ... some code goes here
$stopwatch->lap('foo');
// ... some code goes here
$stopwatch->lap('foo');
// ... some other code goes here
$event = $stopwatch->stop('foo');

Lap information is stored as “periods” within the event. To get lap information
call:

$event->getPeriods();

In addition to periods, you can get other useful information from the event object.
For example:

$event->getCategory(); // Returns the category the event was started in
$event->getOrigin(); // Returns the event start time in milliseconds
$event->ensureStopped(); // Stops all periods not already stopped
$event->getStartTime(); // Returns the start time of the very first period
$event->getEndTime(); // Returns the end time of the very last period
$event->getDuration(); // Returns the event duration, including all periods
$event->getMemory(); // Returns the max memory usage of all periods

Sections

Sections are a way to logically split the timeline into groups. You can see
how Symfony uses sections to nicely visualize the framework lifecycle in the
Symfony Profiler tool. Here is a basic usage example using sections:

$stopwatch = new Stopwatch();

$stopwatch->openSection();
$stopwatch->start('parsing_config_file', 'filesystem_operations');
$stopwatch->stopSection('routing');

$events = $stopwatch->getSectionEvents('routing');

You can reopen a closed section by calling the openSection() [http://api.symfony.com/master/Symfony/Component/Stopwatch/Stopwatch.html#method_openSection]
method and specifying the id of the section to be reopened:

$stopwatch->openSection('routing');
$stopwatch->start('building_config_tree');
$stopwatch->stopSection('routing');

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

Templating

	The Templating Component
	Installation

	Usage

	The $view Variable

	Including Templates

	Global Variables

	Output Escaping

	Helpers

	Creating a Custom Engine

	Using Multiple Engines

	The Templating Helpers

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Templating

The Templating Component

The Templating component provides all the tools needed to build any kind
of template system.

It provides an infrastructure to load template files and optionally
monitor them for changes. It also provides a concrete template engine
implementation using PHP with additional tools for escaping and separating
templates into blocks and layouts.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/templating on Packagist [https://packagist.org/packages/symfony/templating]);

	Use the official Git repository (https://github.com/symfony/Templating).

Usage

The PhpEngine [http://api.symfony.com/master/Symfony/Component/Templating/PhpEngine.html] class is the entry point
of the component. It needs a
template name parser (TemplateNameParserInterface [http://api.symfony.com/master/Symfony/Component/Templating/TemplateNameParserInterface.html])
to convert a template name to a
template reference (TemplateReferenceInterface [http://api.symfony.com/master/Symfony/Component/Templating/TemplateReferenceInterface.html]).
It also needs a template loader (LoaderInterface [http://api.symfony.com/master/Symfony/Component/Templating/Loader/LoaderInterface.html])
which uses the template reference to actually find and load the template:

use Symfony\Component\Templating\PhpEngine;
use Symfony\Component\Templating\TemplateNameParser;
use Symfony\Component\Templating\Loader\FilesystemLoader;

$loader = new FilesystemLoader(__DIR__.'/views/%name%');

$templating = new PhpEngine(new TemplateNameParser(), $loader);

echo $templating->render('hello.php', array('firstname' => 'Fabien'));

<!-- views/hello.php -->
Hello, <?php echo $firstname ?>!

The render() [http://api.symfony.com/master/Symfony/Component/Templating/PhpEngine.html#method_render] method parses
the views/hello.php file and returns the output text. The second argument
of render is an array of variables to use in the template. In this
example, the result will be Hello, Fabien!.

注解

Templates will be cached in the memory of the engine. This means that if
you render the same template multiple times in the same request, the
template will only be loaded once from the file system.

The $view Variable

In all templates parsed by the PhpEngine, you get access to a mysterious
variable called $view. That variable holds the current PhpEngine
instance. That means you get access to a bunch of methods that make your life
easier.

Including Templates

The best way to share a snippet of template code is to create a template that
can then be included by other templates. As the $view variable is an
instance of PhpEngine, you can use the render method (which was used
to render the template originally) inside the template to render another template:

<?php $names = array('Fabien', ...) ?>
<?php foreach ($names as $name) : ?>
 <?php echo $view->render('hello.php', array('firstname' => $name)) ?>
<?php endforeach ?>

Global Variables

Sometimes, you need to set a variable which is available in all templates
rendered by an engine (like the $app variable when using the Symfony
framework). These variables can be set by using the
addGlobal() [http://api.symfony.com/master/Symfony/Component/Templating/PhpEngine.html#method_addGlobal] method and they
can be accessed in the template as normal variables:

$templating->addGlobal('ga_tracking', 'UA-xxxxx-x');

In a template:

<p>The google tracking code is: <?php echo $ga_tracking ?></p>

警告

The global variables cannot be called this or view, since they are
already used by the PHP engine.

注解

The global variables can be overridden by a local variable in the template
with the same name.

Output Escaping

When you render variables, you should probably escape them so that HTML or
JavaScript code isn’t written out to your page. This will prevent things like
XSS attacks. To do this, use the
escape() [http://api.symfony.com/master/Symfony/Component/Templating/PhpEngine.html#method_escape] method:

<?php echo $view->escape($firstname) ?>

By default, the escape() method assumes that the variable is outputted
within an HTML context. The second argument lets you change the context. For
example, to output something inside JavaScript, use the js context:

<?php echo $view->escape($var, 'js') ?>

The component comes with an HTML and JS escaper. You can register your own
escaper using the
setEscaper() [http://api.symfony.com/master/Symfony/Component/Templating/PhpEngine.html#method_setEscaper] method:

$templating->setEscaper('css', function ($value) {
 // ... all CSS escaping

 return $escapedValue;
});

Helpers

The Templating component can be easily extended via helpers. Helpers are PHP objects that
provide features useful in a template context. The component has
2 built-in helpers:

	Assets Helper

	Slots Helper

Before you can use these helpers, you need to register them using
set() [http://api.symfony.com/master/Symfony/Component/Templating/PhpEngine.html#method_set]:

use Symfony\Component\Templating\Helper\AssetsHelper;
// ...

$templating->set(new AssetsHelper());

Custom Helpers

You can create your own helpers by creating a class which implements
HelperInterface [http://api.symfony.com/master/Symfony/Component/Templating/Helper/HelperInterface.html]. However,
most of the time you’ll extend
Helper [http://api.symfony.com/master/Symfony/Component/Templating/Helper/Helper.html].

The Helper has one required method:
getName() [http://api.symfony.com/master/Symfony/Component/Templating/Helper/HelperInterface.html#method_getName].
This is the name that is used to get the helper from the $view object.

Creating a Custom Engine

Besides providing a PHP templating engine, you can also create your own engine
using the Templating component. To do that, create a new class which
implements the EngineInterface [http://api.symfony.com/master/Symfony/Component/Templating/EngineInterface.html]. This
requires 3 method:

	render($name, array $parameters = array()) [http://api.symfony.com/master/Symfony/Component/Templating/EngineInterface.html#method_render]
- Renders a template

	exists($name) [http://api.symfony.com/master/Symfony/Component/Templating/EngineInterface.html#method_exists]
- Checks if the template exists

	supports($name) [http://api.symfony.com/master/Symfony/Component/Templating/EngineInterface.html#method_supports]
- Checks if the given template can be handled by this engine.

Using Multiple Engines

It is possible to use multiple engines at the same time using the
DelegatingEngine [http://api.symfony.com/master/Symfony/Component/Templating/DelegatingEngine.html] class. This class
takes a list of engines and acts just like a normal templating engine. The
only difference is that it delegates the calls to one of the other engines. To
choose which one to use for the template, the
EngineInterface::supports() [http://api.symfony.com/master/Symfony/Component/Templating/EngineInterface.html#method_supports]
method is used.

use Acme\Templating\CustomEngine;
use Symfony\Component\Templating\PhpEngine;
use Symfony\Component\Templating\DelegatingEngine;

$templating = new DelegatingEngine(array(
 new PhpEngine(...),
 new CustomEngine(...),
));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Templating

The Templating Helpers

The Templating component comes with some useful helpers. These helpers contain
functions to ease some common tasks.

	Slots Helper

	Assets Helper

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Templating

 	The Templating Helpers

Slots Helper

More often than not, templates in a project share common elements, like the
well-known header and footer. Using this helper, the static HTML code can
be placed in a layout file along with “slots”, which represent the dynamic
parts that will change on a page-by-page basis. These slots are then filled
in by different children template. In other words, the layout file decorates
the child template.

Displaying Slots

The slots are accessible by using the slots helper ($view['slots']). Use
output() [http://api.symfony.com/master/Symfony/Component/Templating/Helper/SlotsHelper.html#method_output] to
display the content of the slot on that place:

<!-- views/layout.php -->
<!doctype html>
<html>
 <head>
 <title>
 <?php $view['slots']->output('title', 'Default title') ?>
 </title>
 </head>
 <body>
 <?php $view['slots']->output('_content') ?>
 </body>
</html>

The first argument of the method is the name of the slot. The method has an
optional second argument, which is the default value to use if the slot is not
available.

The _content slot is a special slot set by the PhpEngine. It contains
the content of the subtemplate.

警告

If you’re using the standalone component, make sure you registered the
SlotsHelper [http://api.symfony.com/master/Symfony/Component/Templating/Helper/SlotsHelper.html]:

use Symfony\Component\Templating\Helper\SlotsHelper;

// ...
$templateEngine->set(new SlotsHelper());

Extending Templates

The extend() [http://api.symfony.com/master/Symfony/Component/Templating/PhpEngine.html#method_extend] method is called in the
sub-template to set its parent template. Then
$view['slots']->set() [http://api.symfony.com/master/Symfony/Component/Templating/Helper/SlotsHelper.html#method_set]
can be used to set the content of a slot. All content which is not explicitly
set in a slot is in the _content slot.

<!-- views/page.php -->
<?php $view->extend('layout.php') ?>

<?php $view['slots']->set('title', $page->title) ?>

<h1>
 <?php echo $page->title ?>
</h1>
<p>
 <?php echo $page->body ?>
</p>

注解

Multiple levels of inheritance is possible: a layout can extend another
layout.

For large slots, there is also an extended syntax:

<?php $view['slots']->start('title') ?>
 Some large amount of HTML
<?php $view['slots']->stop() ?>

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Templating

 	The Templating Helpers

Assets Helper

The assets helper’s main purpose is to make your application more portable by
generating asset paths:

<link href="<?php echo $view['assets']->getUrl('css/style.css') ?>" rel="stylesheet">

<img src="<?php echo $view['assets']->getUrl('images/logo.png') ?>">

The assets helper can then be configured to render paths to a CDN or modify
the paths in case your assets live in a sub-directory of your host (e.g. http://example.com/app).

Configure Paths

By default, the assets helper will prefix all paths with a slash. You can
configure this by passing a base assets path as the first argument of the
constructor:

use Symfony\Component\Templating\Helper\AssetsHelper;

// ...
$templateEngine->set(new AssetsHelper('/foo/bar'));

Now, if you use the helper, everything will be prefixed with /foo/bar:

<img src="<?php echo $view['assets']->getUrl('images/logo.png') ?>">
<!-- renders as:

-->

Absolute Urls

You can also specify a URL to use in the second parameter of the constructor:

// ...
$templateEngine->set(new AssetsHelper(null, 'http://cdn.example.com/'));

Now URLs are rendered like http://cdn.example.com/images/logo.png.

Versioning

To avoid using the cached resource after updating the old resource, you can
use versions which you bump every time you release a new project. The version
can be specified in the third argument:

// ...
$templateEngine->set(new AssetsHelper(null, null, '328rad75'));

Now, every URL is suffixed with ?328rad75. If you want to have a different
format, you can specify the new format in fourth argument. It’s a string that
is used in sprintf [http://php.net/manual/en/function.sprintf.php]. The first argument is the path and the
second is the version. For instance, %s?v=%s will be rendered as
/images/logo.png?v=328rad75.

Multiple Packages

Asset path generation is handled internally by packages. The component provides
2 packages by default:

	PathPackage [http://api.symfony.com/master/Symfony/Component/Templating/Asset/PathPackage.html]

	UrlPackage [http://api.symfony.com/master/Symfony/Component/Templating/Asset/UrlPackage.html]

You can also use multiple packages:

use Symfony\Component\Templating\Asset\PathPackage;

// ...
$templateEngine->set(new AssetsHelper());

$templateEngine->get('assets')->addPackage('images', new PathPackage('/images/'));
$templateEngine->get('assets')->addPackage('scripts', new PathPackage('/scripts/'));

This will setup the assets helper with 3 packages: the default package which
defaults to / (set by the constructor), the images package which prefixes
it with /images/ and the scripts package which prefixes it with
/scripts/.

If you want to set another default package, you can use
setDefaultPackage() [http://api.symfony.com/master/Symfony/Component/Templating/Helper/AssetsHelper.html#method_setDefaultPackage].

You can specify which package you want to use in the second argument of
getUrl() [http://api.symfony.com/master/Symfony/Component/Templating/Helper/AssetsHelper.html#method_getUrl]:

<img src="<?php echo $view['assets']->getUrl('foo.png', 'images') ?>">
<!-- renders as:

-->

Custom Packages

You can create your own package by extending
Package [http://api.symfony.com/master/Symfony/Component/Templating/Asset/Package.html].

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

Translation

	The Translation Component
	Installation

	Constructing the Translator

	The Translation Process

	Using Message Domains

	Usage

	Using the Translator
	Message Placeholders

	Creating Translations

	Pluralization

	Forcing the Translator Locale

	Adding Custom Format Support
	Creating a Custom Loader

	Creating a Custom Dumper

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Translation

The Translation Component

The Translation component provides tools to internationalize your
application.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/translation on Packagist [https://packagist.org/packages/symfony/translation]);

	Use the official Git repository (https://github.com/symfony/Translation).

Constructing the Translator

The main access point of the Translation component is
Translator [http://api.symfony.com/master/Symfony/Component/Translation/Translator.html]. Before you can use it,
you need to configure it and load the messages to translate (called message
catalogs).

Configuration

The constructor of the Translator class needs one argument: The locale.

use Symfony\Component\Translation\Translator;
use Symfony\Component\Translation\MessageSelector;

$translator = new Translator('fr_FR', new MessageSelector());

注解

The locale set here is the default locale to use. You can override this
locale when translating strings.

注解

The term locale refers roughly to the user’s language and country. It
can be any string that your application uses to manage translations and
other format differences (e.g. currency format). The ISO 639-1 [http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes]
language code, an underscore (_), then the ISO 3166-1 alpha-2 [http://en.wikipedia.org/wiki/ISO_3166-1#Current_codes]
country code (e.g. fr_FR for French/France) is recommended.

Loading Message Catalogs

The messages are stored in message catalogs inside the Translator
class. A message catalog is like a dictionary of translations for a specific
locale.

The Translation component uses Loader classes to load catalogs. You can load
multiple resources for the same locale, which will then be combined into one
catalog.

The component comes with some default loaders:

	ArrayLoader [http://api.symfony.com/master/Symfony/Component/Translation/Loader/ArrayLoader.html] - to load
catalogs from PHP arrays.

	CsvFileLoader [http://api.symfony.com/master/Symfony/Component/Translation/Loader/CsvFileLoader.html] - to load
catalogs from CSV files.

	IcuDatFileLoader [http://api.symfony.com/master/Symfony/Component/Translation/Loader/IcuDatFileLoader.html] - to load
catalogs from resource bundles.

	IcuResFileLoader [http://api.symfony.com/master/Symfony/Component/Translation/Loader/IcuResFileLoader.html] - to load
catalogs from resource bundles.

	IniFileLoader [http://api.symfony.com/master/Symfony/Component/Translation/Loader/IniFileLoader.html] - to load
catalogs from ini files.

	MoFileLoader [http://api.symfony.com/master/Symfony/Component/Translation/Loader/MoFileLoader.html] - to load
catalogs from gettext files.

	PhpFileLoader [http://api.symfony.com/master/Symfony/Component/Translation/Loader/PhpFileLoader.html] - to load
catalogs from PHP files.

	PoFileLoader [http://api.symfony.com/master/Symfony/Component/Translation/Loader/PoFileLoader.html] - to load
catalogs from gettext files.

	QtFileLoader [http://api.symfony.com/master/Symfony/Component/Translation/Loader/QtFileLoader.html] - to load
catalogs from QT XML files.

	XliffFileLoader [http://api.symfony.com/master/Symfony/Component/Translation/Loader/XliffFileLoader.html] - to load
catalogs from Xliff files.

	YamlFileLoader [http://api.symfony.com/master/Symfony/Component/Translation/Loader/YamlFileLoader.html] - to load
catalogs from Yaml files (requires the Yaml component).

2.1 新版功能: The IcuDatFileLoader, IcuResFileLoader, IniFileLoader,
MoFileLoader, PoFileLoader and QtFileLoader were introduced
in Symfony 2.1.

All file loaders require the Config component.

You can also create your own Loader,
in case the format is not already supported by one of the default loaders.

At first, you should add one or more loaders to the Translator:

// ...
$translator->addLoader('array', new ArrayLoader());

The first argument is the name to which you can refer the loader in the
translator and the second argument is an instance of the loader itself. After
this, you can add your resources using the correct loader.

Loading Messages with the ArrayLoader

Loading messages can be done by calling
addResource() [http://api.symfony.com/master/Symfony/Component/Translation/Translator.html#method_addResource]. The first
argument is the loader name (this was the first argument of the addLoader
method), the second is the resource and the third argument is the locale:

// ...
$translator->addResource('array', array(
 'Hello World!' => 'Bonjour',
), 'fr_FR');

Loading Messages with the File Loaders

If you use one of the file loaders, you should also use the addResource
method. The only difference is that you should put the file name to the resource
file as the second argument, instead of an array:

// ...
$translator->addLoader('yaml', new YamlFileLoader());
$translator->addResource('yaml', 'path/to/messages.fr.yml', 'fr_FR');

The Translation Process

To actually translate the message, the Translator uses a simple process:

	A catalog of translated messages is loaded from translation resources defined
for the locale (e.g. fr_FR). Messages from the
Fallback Locales are also loaded and added to the
catalog, if they don’t already exist. The end result is a large “dictionary”
of translations;

	If the message is located in the catalog, the translation is returned. If
not, the translator returns the original message.

You start this process by calling
trans() [http://api.symfony.com/master/Symfony/Component/Translation/Translator.html#method_trans] or
transChoice() [http://api.symfony.com/master/Symfony/Component/Translation/Translator.html#method_transChoice]. Then, the
Translator looks for the exact string inside the appropriate message catalog
and returns it (if it exists).

Fallback Locales

If the message is not located in the catalog of the specific locale, the
translator will look into the catalog of one or more fallback locales. For
example, assume you’re trying to translate into the fr_FR locale:

	First, the translator looks for the translation in the fr_FR locale;

	If it wasn’t found, the translator looks for the translation in the fr
locale;

	If the translation still isn’t found, the translator uses the one or more
fallback locales set explicitly on the translator.

For (3), the fallback locales can be set by calling
setFallbackLocale() [http://api.symfony.com/master/Symfony/Component/Translation/Translator.html#method_setFallbackLocale]:

// ...
$translator->setFallbackLocale(array('en'));

Using Message Domains

As you’ve seen, message files are organized into the different locales that
they translate. The message files can also be organized further into “domains”.

The domain is specified in the fourth argument of the addResource()
method. The default domain is messages. For example, suppose that, for
organization, translations were split into three different domains:
messages, admin and navigation. The French translation would be
loaded like this:

// ...
$translator->addLoader('xliff', new XliffLoader());

$translator->addResource('xliff', 'messages.fr.xliff', 'fr_FR');
$translator->addResource('xliff', 'admin.fr.xliff', 'fr_FR', 'admin');
$translator->addResource(
 'xliff',
 'navigation.fr.xliff',
 'fr_FR',
 'navigation'
);

When translating strings that are not in the default domain (messages),
you must specify the domain as the third argument of trans():

$translator->trans('Symfony is great', array(), 'admin');

Symfony will now look for the message in the admin domain of the
specified locale.

Usage

Read how to use the Translation component in Using the Translator.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Translation

Using the Translator

Imagine you want to translate the string “Symfony is great” into French:

use Symfony\Component\Translation\Translator;
use Symfony\Component\Translation\Loader\ArrayLoader;

$translator = new Translator('fr_FR');
$translator->addLoader('array', new ArrayLoader());
$translator->addResource('array', array(
 'Symfony is great!' => 'J\'aime Symfony!',
), 'fr_FR');

echo $translator->trans('Symfony is great!');

In this example, the message “Symfony is great!” will be translated into
the locale set in the constructor (fr_FR) if the message exists in one of
the message catalogs.

Message Placeholders

Sometimes, a message containing a variable needs to be translated:

// ...
$translated = $translator->trans('Hello '.$name);

echo $translated;

However, creating a translation for this string is impossible since the translator
will try to look up the exact message, including the variable portions
(e.g. “Hello Ryan” or “Hello Fabien”). Instead of writing a translation
for every possible iteration of the $name variable, you can replace the
variable with a “placeholder”:

// ...
$translated = $translator->trans(
 'Hello %name%',
 array('%name%' => $name)
);

echo $translated;

Symfony will now look for a translation of the raw message (Hello %name%)
and then replace the placeholders with their values. Creating a translation
is done just as before:

	XML<?xml version="1.0"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
 <file source-language="en" datatype="plaintext" original="file.ext">
 <body>
 <trans-unit id="1">
 <source>Hello %name%</source>
 <target>Bonjour %name%</target>
 </trans-unit>
 </body>
 </file>
</xliff>

	PHPreturn array(
 'Hello %name%' => 'Bonjour %name%',
);

	YAML'Hello %name%': Bonjour %name%

注解

The placeholders can take on any form as the full message is reconstructed
using the PHP strtr function [http://php.net/manual/en/function.strtr.php]. But the %...% form
is recommended, to avoid problems when using Twig.

As you’ve seen, creating a translation is a two-step process:

	Abstract the message that needs to be translated by processing it through
the Translator.

	Create a translation for the message in each locale that you choose to
support.

The second step is done by creating message catalogs that define the translations
for any number of different locales.

Creating Translations

The act of creating translation files is an important part of “localization”
(often abbreviated L10n [http://en.wikipedia.org/wiki/Internationalization_and_localization]). Translation files consist of a series of
id-translation pairs for the given domain and locale. The source is the identifier
for the individual translation, and can be the message in the main locale (e.g.
“Symfony is great”) of your application or a unique identifier (e.g.
symfony.great - see the sidebar below).

Translation files can be created in several different formats, XLIFF being the
recommended format. These files are parsed by one of the loader classes.

	XML<?xml version="1.0"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
 <file source-language="en" datatype="plaintext" original="file.ext">
 <body>
 <trans-unit id="1">
 <source>Symfony is great</source>
 <target>J'aime Symfony</target>
 </trans-unit>
 <trans-unit id="2">
 <source>symfony.great</source>
 <target>J'aime Symfony</target>
 </trans-unit>
 </body>
 </file>
</xliff>

	YAMLSymfony is great: J'aime Symfony
symfony.great: J'aime Symfony

	PHPreturn array(
 'Symfony is great' => 'J\'aime Symfony',
 'symfony.great' => 'J\'aime Symfony',
);

Using Real or Keyword Messages

This example illustrates the two different philosophies when creating
messages to be translated:

$translator->trans('Symfony is great');

$translator->trans('symfony.great');

In the first method, messages are written in the language of the default
locale (English in this case). That message is then used as the “id”
when creating translations.

In the second method, messages are actually “keywords” that convey the
idea of the message. The keyword message is then used as the “id” for
any translations. In this case, translations must be made for the default
locale (i.e. to translate symfony.great to Symfony is great).

The second method is handy because the message key won’t need to be changed
in every translation file if you decide that the message should actually
read “Symfony is really great” in the default locale.

The choice of which method to use is entirely up to you, but the “keyword”
format is often recommended.

Additionally, the php and yaml file formats support nested ids to
avoid repeating yourself if you use keywords instead of real text for your
ids:

	YAMLsymfony:
 is:
 great: Symfony is great
 amazing: Symfony is amazing
 has:
 bundles: Symfony has bundles
user:
 login: Login

	PHParray(
 'symfony' => array(
 'is' => array(
 'great' => 'Symfony is great',
 'amazing' => 'Symfony is amazing',
),
 'has' => array(
 'bundles' => 'Symfony has bundles',
),
),
 'user' => array(
 'login' => 'Login',
),
);

The multiple levels are flattened into single id/translation pairs by
adding a dot (.) between every level, therefore the above examples are
equivalent to the following:

	YAMLsymfony.is.great: Symfony is great
symfony.is.amazing: Symfony is amazing
symfony.has.bundles: Symfony has bundles
user.login: Login

	PHPreturn array(
 'symfony.is.great' => 'Symfony is great',
 'symfony.is.amazing' => 'Symfony is amazing',
 'symfony.has.bundles' => 'Symfony has bundles',
 'user.login' => 'Login',
);

Pluralization

Message pluralization is a tough topic as the rules can be quite complex. For
instance, here is the mathematical representation of the Russian pluralization
rules:

(($number % 10 == 1) && ($number % 100 != 11))
 ? 0
 : ((($number % 10 >= 2)
 && ($number % 10 <= 4)
 && (($number % 100 < 10)
 || ($number % 100 >= 20)))
 ? 1
 : 2
);

As you can see, in Russian, you can have three different plural forms, each
given an index of 0, 1 or 2. For each form, the plural is different, and
so the translation is also different.

When a translation has different forms due to pluralization, you can provide
all the forms as a string separated by a pipe (|):

'There is one apple|There are %count% apples'

To translate pluralized messages, use the
transChoice() [http://api.symfony.com/master/Symfony/Component/Translation/Translator.html#method_transChoice] method:

$translator->transChoice(
 'There is one apple|There are %count% apples',
 10,
 array('%count%' => 10)
);

The second argument (10 in this example) is the number of objects being
described and is used to determine which translation to use and also to populate
the %count% placeholder.

Based on the given number, the translator chooses the right plural form.
In English, most words have a singular form when there is exactly one object
and a plural form for all other numbers (0, 2, 3...). So, if count is
1, the translator will use the first string (There is one apple)
as the translation. Otherwise it will use There are %count% apples.

Here is the French translation:

'Il y a %count% pomme|Il y a %count% pommes'

Even if the string looks similar (it is made of two sub-strings separated by a
pipe), the French rules are different: the first form (no plural) is used when
count is 0 or 1. So, the translator will automatically use the
first string (Il y a %count% pomme) when count is 0 or 1.

Each locale has its own set of rules, with some having as many as six different
plural forms with complex rules behind which numbers map to which plural form.
The rules are quite simple for English and French, but for Russian, you’d
may want a hint to know which rule matches which string. To help translators,
you can optionally “tag” each string:

'one: There is one apple|some: There are %count% apples'

'none_or_one: Il y a %count% pomme|some: Il y a %count% pommes'

The tags are really only hints for translators and don’t affect the logic
used to determine which plural form to use. The tags can be any descriptive
string that ends with a colon (:). The tags also do not need to be the
same in the original message as in the translated one.

小技巧

As tags are optional, the translator doesn’t use them (the translator will
only get a string based on its position in the string).

Explicit Interval Pluralization

The easiest way to pluralize a message is to let the Translator use internal
logic to choose which string to use based on a given number. Sometimes, you’ll
need more control or want a different translation for specific cases (for
0, or when the count is negative, for example). For such cases, you can
use explicit math intervals:

'{0} There are no apples|{1} There is one apple|]1,19] There are %count% apples|[20,Inf] There are many apples'

The intervals follow the ISO 31-11 [http://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals] notation. The above string specifies
four different intervals: exactly 0, exactly 1, 2-19, and 20
and higher.

You can also mix explicit math rules and standard rules. In this case, if
the count is not matched by a specific interval, the standard rules take
effect after removing the explicit rules:

'{0} There are no apples|[20,Inf] There are many apples|There is one apple|a_few: There are %count% apples'

For example, for 1 apple, the standard rule There is one apple will
be used. For 2-19 apples, the second standard rule There are %count%
apples will be selected.

An Interval [http://api.symfony.com/master/Symfony/Component/Translation/Interval.html] can represent a finite set
of numbers:

{1,2,3,4}

Or numbers between two other numbers:

[1, +Inf[
]-1,2[

The left delimiter can be [(inclusive) or] (exclusive). The right
delimiter can be [(exclusive) or] (inclusive). Beside numbers, you
can use -Inf and +Inf for the infinite.

Forcing the Translator Locale

When translating a message, the Translator uses the specified locale or the
fallback locale if necessary. You can also manually specify the locale to
use for translation:

$translator->trans(
 'Symfony is great',
 array(),
 'messages',
 'fr_FR'
);

$translator->transChoice(
 '{0} There are no apples|{1} There is one apple|]1,Inf[There are %count% apples',
 10,
 array('%count%' => 10),
 'messages',
 'fr_FR'
);

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Translation

Adding Custom Format Support

Sometimes, you need to deal with custom formats for translation files. The
Translation component is flexible enough to support this. Just create a
loader (to load translations) and, optionally, a dumper (to dump translations).

Imagine that you have a custom format where translation messages are defined
using one line for each translation and parentheses to wrap the key and the
message. A translation file would look like this:

(welcome)(accueil)
(goodbye)(au revoir)
(hello)(bonjour)

Creating a Custom Loader

To define a custom loader that is able to read these kinds of files, you must create a
new class that implements the
LoaderInterface [http://api.symfony.com/master/Symfony/Component/Translation/Loader/LoaderInterface.html]. The
load() [http://api.symfony.com/master/Symfony/Component/Translation/Loader/LoaderInterface.html#method_load]
method will get a filename and parse it into an array. Then, it will
create the catalog that will be returned:

use Symfony\Component\Translation\MessageCatalogue;
use Symfony\Component\Translation\Loader\LoaderInterface;

class MyFormatLoader implements LoaderInterface
{
 public function load($resource, $locale, $domain = 'messages')
 {
 $messages = array();
 $lines = file($resource);

 foreach ($lines as $line) {
 if (preg_match('/\(([^\)]+)\)\(([^\)]+)\)/', $line, $matches)) {
 $messages[$matches[1]] = $matches[2];
 }
 }

 $catalogue = new MessageCatalogue($locale);
 $catalogue->add($messages, $domain);

 return $catalogue;
 }

}

Once created, it can be used as any other loader:

use Symfony\Component\Translation\Translator;

$translator = new Translator('fr_FR');
$translator->addLoader('my_format', new MyFormatLoader());

$translator->addResource('my_format', __DIR__.'/translations/messages.txt', 'fr_FR');

echo $translator->trans('welcome');

It will print “accueil”.

Creating a Custom Dumper

It is also possible to create a custom dumper for your format, which is
useful when using the extraction commands. To do so, a new class
implementing the
DumperInterface [http://api.symfony.com/master/Symfony/Component/Translation/Dumper/DumperInterface.html]
must be created. To write the dump contents into a file, extending the
FileDumper [http://api.symfony.com/master/Symfony/Component/Translation/Dumper/FileDumper.html] class
will save a few lines:

use Symfony\Component\Translation\MessageCatalogue;
use Symfony\Component\Translation\Dumper\FileDumper;

class MyFormatDumper extends FileDumper
{
 protected function format(MessageCatalogue $messages, $domain = 'messages')
 {
 $output = '';

 foreach ($messages->all($domain) as $source => $target) {
 $output .= sprintf("(%s)(%s)\n", $source, $target);
 }

 return $output;
 }

 protected function getExtension()
 {
 return 'txt';
 }
}

The format() [http://api.symfony.com/master/Symfony/Component/Translation/Dumper/FileDumper.html#method_format]
method creates the output string, that will be used by the
dump() [http://api.symfony.com/master/Symfony/Component/Translation/Dumper/FileDumper.html#method_dump] method
of the FileDumper class to create the file. The dumper can be used like any other
built-in dumper. In the following example, the translation messages defined in the
YAML file are dumped into a text file with the custom format:

use Symfony\Component\Translation\Loader\YamlFileLoader;

$loader = new YamlFileLoader();
$catalogue = $loader->load(__DIR__ . '/translations/messages.fr_FR.yml' , 'fr_FR');

$dumper = new MyFormatDumper();
$dumper->dump($catalogue, array('path' => __DIR__.'/dumps'));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

Yaml

	The Yaml Component
	What is It?

	Installation

	Why?

	Using the Symfony YAML Component

	The YAML Format
	Scalars

	Collections

	Comments

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Yaml

The Yaml Component

The Yaml component loads and dumps YAML files.

What is It?

The Symfony Yaml component parses YAML strings to convert them to PHP arrays.
It is also able to convert PHP arrays to YAML strings.

YAML [http://yaml.org/], YAML Ain’t Markup Language, is a human friendly data serialization
standard for all programming languages. YAML is a great format for your
configuration files. YAML files are as expressive as XML files and as readable
as INI files.

The Symfony Yaml Component implements a selected subset of features defined in
the YAML 1.2 version specification [http://yaml.org/spec/1.2/spec.html].

小技巧

Learn more about the Yaml component in the
The YAML Format article.

Installation

You can install the component in 2 different ways:

	Install it via Composer (symfony/yaml on Packagist [https://packagist.org/packages/symfony/yaml]);

	Use the official Git repository (https://github.com/symfony/Yaml).

Why?

Fast

One of the goals of Symfony Yaml is to find the right balance between speed and
features. It supports just the needed features to handle configuration files.
Notable lacking features are: document directives, multi-line quoted messages,
compact block collections and multi-document files.

Real Parser

It sports a real parser and is able to parse a large subset of the YAML
specification, for all your configuration needs. It also means that the parser
is pretty robust, easy to understand, and simple enough to extend.

Clear Error Messages

Whenever you have a syntax problem with your YAML files, the library outputs a
helpful message with the filename and the line number where the problem
occurred. It eases the debugging a lot.

Dump Support

It is also able to dump PHP arrays to YAML with object support, and inline
level configuration for pretty outputs.

Types Support

It supports most of the YAML built-in types like dates, integers, octals,
booleans, and much more...

Full Merge Key Support

Full support for references, aliases, and full merge key. Don’t repeat
yourself by referencing common configuration bits.

Using the Symfony YAML Component

The Symfony Yaml component is very simple and consists of two main classes:
one parses YAML strings (Parser [http://api.symfony.com/master/Symfony/Component/Yaml/Parser.html]), and the
other dumps a PHP array to a YAML string
(Dumper [http://api.symfony.com/master/Symfony/Component/Yaml/Dumper.html]).

On top of these two classes, the Yaml [http://api.symfony.com/master/Symfony/Component/Yaml/Yaml.html] class
acts as a thin wrapper that simplifies common uses.

Reading YAML Files

The parse() [http://api.symfony.com/master/Symfony/Component/Yaml/Parser.html#method_parse] method parses a YAML
string and converts it to a PHP array:

use Symfony\Component\Yaml\Parser;

$yaml = new Parser();

$value = $yaml->parse(file_get_contents('/path/to/file.yml'));

If an error occurs during parsing, the parser throws a
ParseException [http://api.symfony.com/master/Symfony/Component/Yaml/Exception/ParseException.html] exception
indicating the error type and the line in the original YAML string where the
error occurred:

use Symfony\Component\Yaml\Exception\ParseException;

try {
 $value = $yaml->parse(file_get_contents('/path/to/file.yml'));
} catch (ParseException $e) {
 printf("Unable to parse the YAML string: %s", $e->getMessage());
}

小技巧

As the parser is re-entrant, you can use the same parser object to load
different YAML strings.

It may also be convenient to use the
parse() [http://api.symfony.com/master/Symfony/Component/Yaml/Yaml.html#method_parse] wrapper method:

use Symfony\Component\Yaml\Yaml;

$yaml = Yaml::parse(file_get_contents('/path/to/file.yml'));

The parse() [http://api.symfony.com/master/Symfony/Component/Yaml/Yaml.html#method_parse] static method takes a YAML
string or a file containing YAML. Internally, it calls the
parse() [http://api.symfony.com/master/Symfony/Component/Yaml/Parser.html#method_parse] method, but enhances the
error if something goes wrong by adding the filename to the message.

警告

Because it is currently possible to pass a filename to this method, you
must validate the input first. Passing a filename is deprecated in
Symfony 2.2, and will be removed in Symfony 3.0.

Writing YAML Files

The dump() [http://api.symfony.com/master/Symfony/Component/Yaml/Dumper.html#method_dump] method dumps any PHP
array to its YAML representation:

use Symfony\Component\Yaml\Dumper;

$array = array(
 'foo' => 'bar',
 'bar' => array('foo' => 'bar', 'bar' => 'baz'),
);

$dumper = new Dumper();

$yaml = $dumper->dump($array);

file_put_contents('/path/to/file.yml', $yaml);

注解

Of course, the Symfony Yaml dumper is not able to dump resources. Also,
even if the dumper is able to dump PHP objects, it is considered to be a
not supported feature.

If an error occurs during the dump, the parser throws a
DumpException [http://api.symfony.com/master/Symfony/Component/Yaml/Exception/DumpException.html] exception.

If you only need to dump one array, you can use the
dump() [http://api.symfony.com/master/Symfony/Component/Yaml/Yaml.html#method_dump] static method shortcut:

use Symfony\Component\Yaml\Yaml;

$yaml = Yaml::dump($array, $inline);

The YAML format supports two kind of representation for arrays, the expanded
one, and the inline one. By default, the dumper uses the inline
representation:

{ foo: bar, bar: { foo: bar, bar: baz } }

The second argument of the dump() [http://api.symfony.com/master/Symfony/Component/Yaml/Dumper.html#method_dump]
method customizes the level at which the output switches from the expanded
representation to the inline one:

echo $dumper->dump($array, 1);

foo: bar
bar: { foo: bar, bar: baz }

echo $dumper->dump($array, 2);

foo: bar
bar:
 foo: bar
 bar: baz

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	The Components

 	Yaml

The YAML Format

According to the official YAML [http://yaml.org/] website, YAML is “a human friendly data
serialization standard for all programming languages”.

Even if the YAML format can describe complex nested data structure, this
chapter only describes the minimum set of features needed to use YAML as a
configuration file format.

YAML is a simple language that describes data. As PHP, it has a syntax for
simple types like strings, booleans, floats, or integers. But unlike PHP, it
makes a difference between arrays (sequences) and hashes (mappings).

Scalars

The syntax for scalars is similar to the PHP syntax.

Strings

Strings in YAML can be wrapped both in single and double quotes. In some cases,
they can also be unquoted:

A string in YAML

'A singled-quoted string in YAML'

"A double-quoted string in YAML"

Quoted styles are useful when a string starts or end with one or more relevant
spaces, because unquoted strings are trimmed on both end when parsing their
contents. Quotes are required when the string contains special or reserved characters.

When using single-quoted strings, any single quote ' inside its contents
must be doubled to escape it:

'A single quote '' inside a single-quoted string'

Strings containing any of the following characters must be quoted. Although you
can use double quotes, for these characters it is more convenient to use single
quotes, which avoids having to escape any backslash \:

	:, {, }, [,], ,, &, *, #, ?, |,
-, <, >, =, !, %, @, \`

The double-quoted style provides a way to express arbitrary strings, by
using \ to escape characters and sequences. For instance, it is very useful
when you need to embed a \n or a Unicode character in a string.

"A double-quoted string in YAML\n"

If the string contains any of the following control characters, it must be
escaped with double quotes:

	\0, \x01, \x02, \x03, \x04, \x05, \x06, \a,
\b, \t, \n, \v, \f, \r, \x0e, \x0f, \x10,
\x11, \x12, \x13, \x14, \x15, \x16, \x17, \x18,
\x19, \x1a, \e, \x1c, \x1d, \x1e, \x1f, \N,
_, \L, \P

Finally, there are other cases when the strings must be quoted, no matter if
you’re using single or double quotes:

	When the string is true or false (otherwise, it would be treated as a
boolean value);

	When the string is null or ~ (otherwise, it would be considered as a
null value);

	When the string looks like a number, such as integers (e.g. 2, 14, etc.),
floats (e.g. 2.6, 14.9) and exponential numbers (e.g. 12e7, etc.)
(otherwise, it would be treated as a numeric value);

	When the string looks like a date (e.g. 2014-12-31) (otherwise it would be
automatically converted into a Unix timestamp).

When a string contains line breaks, you can use the literal style, indicated
by the pipe (|), to indicate that the string will span several lines. In
literals, newlines are preserved:

|
 \/ /| |\/| |
 / / | | | |__

Alternatively, strings can be written with the folded style, denoted by >,
where each line break is replaced by a space:

>
 This is a very long sentence
 that spans several lines in the YAML
 but which will be rendered as a string
 without carriage returns.

注解

Notice the two spaces before each line in the previous examples. They
won’t appear in the resulting PHP strings.

Numbers

an integer
12

an octal
014

an hexadecimal
0xC

a float
13.4

an exponential number
1.2e+34

infinity
.inf

Nulls

Nulls in YAML can be expressed with null or ~.

Booleans

Booleans in YAML are expressed with true and false.

Dates

YAML uses the ISO-8601 standard to express dates:

2001-12-14t21:59:43.10-05:00

simple date
2002-12-14

Collections

A YAML file is rarely used to describe a simple scalar. Most of the time, it
describes a collection. A collection can be a sequence or a mapping of
elements. Both sequences and mappings are converted to PHP arrays.

Sequences use a dash followed by a space:

- PHP
- Perl
- Python

The previous YAML file is equivalent to the following PHP code:

array('PHP', 'Perl', 'Python');

Mappings use a colon followed by a space (:) to mark each key/value pair:

PHP: 5.2
MySQL: 5.1
Apache: 2.2.20

which is equivalent to this PHP code:

array('PHP' => 5.2, 'MySQL' => 5.1, 'Apache' => '2.2.20');

注解

In a mapping, a key can be any valid scalar.

The number of spaces between the colon and the value does not matter:

PHP: 5.2
MySQL: 5.1
Apache: 2.2.20

YAML uses indentation with one or more spaces to describe nested collections:

"symfony 1.0":
 PHP: 5.0
 Propel: 1.2
"symfony 1.2":
 PHP: 5.2
 Propel: 1.3

The following YAML is equivalent to the following PHP code:

array(
 'symfony 1.0' => array(
 'PHP' => 5.0,
 'Propel' => 1.2,
),
 'symfony 1.2' => array(
 'PHP' => 5.2,
 'Propel' => 1.3,
),
);

There is one important thing you need to remember when using indentation in a
YAML file: Indentation must be done with one or more spaces, but never with
tabulations.

You can nest sequences and mappings as you like:

'Chapter 1':
 - Introduction
 - Event Types
'Chapter 2':
 - Introduction
 - Helpers

YAML can also use flow styles for collections, using explicit indicators
rather than indentation to denote scope.

A sequence can be written as a comma separated list within square brackets
([]):

[PHP, Perl, Python]

A mapping can be written as a comma separated list of key/values within curly
braces ({}):

{ PHP: 5.2, MySQL: 5.1, Apache: 2.2.20 }

You can mix and match styles to achieve a better readability:

'Chapter 1': [Introduction, Event Types]
'Chapter 2': [Introduction, Helpers]

"symfony 1.0": { PHP: 5.0, Propel: 1.2 }
"symfony 1.2": { PHP: 5.2, Propel: 1.3 }

Comments

Comments can be added in YAML by prefixing them with a hash mark (#):

Comment on a line
"symfony 1.0": { PHP: 5.0, Propel: 1.2 } # Comment at the end of a line
"symfony 1.2": { PHP: 5.2, Propel: 1.3 }

注解

Comments are simply ignored by the YAML parser and do not need to be
indented according to the current level of nesting in a collection.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

Reference Documents

	Configuration Options

Ever wondered what configuration options you have available to you in files
such as app/config/config.yml? In this section, all the available configuration
is broken down by the key (e.g. framework) that defines each possible
section of your Symfony configuration.

	framework

	doctrine

	security

	assetic

	swiftmailer

	twig

	monolog

	web_profiler

	Configuring the Kernel (e.g. AppKernel)

	Forms and Validation

	Form Field Type Reference

	Validation Constraints Reference

	Twig Template Function and Variable Reference

	Twig Extensions (forms, filters, tags, etc) Reference

	Other Areas

	The Dependency Injection Tags

	Requirements for Running Symfony

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

FrameworkBundle Configuration (“framework”)

This reference document is a work in progress. It should be accurate, but
all options are not yet fully covered.

The FrameworkBundle contains most of the “base” framework functionality
and can be configured under the framework key in your application configuration.
This includes settings related to sessions, translation, forms, validation,
routing and more.

Configuration

	secret

	http_method_override

	ide

	test

	default_locale

	trusted_proxies

	
	form

	
	enabled

	
	csrf_protection

	
	enabled

	field_name

	
	session

	
	name

	cookie_lifetime

	cookie_path

	cookie_domain

	cookie_secure

	cookie_httponly

	gc_divisor

	gc_probability

	gc_maxlifetime

	save_path

	
	serializer

	
	enabled

	
	templating

	
	assets_base_urls

	assets_version

	assets_version_format

	
	profiler

	
	collect

	enabled

	
	translator

	
	enabled

	fallback

	
	validation

	
	cache

	enable_annotations

	translation_domain

secret

type: string required

This is a string that should be unique to your application. In practice,
it’s used for generating the CSRF tokens, but it could be used in any other
context where having a unique string is useful. It becomes the service container
parameter named kernel.secret.

http_method_override

2.3 新版功能: The http_method_override option was introduced in Symfony 2.3.

type: Boolean default: true

This determines whether the _method request parameter is used as the intended
HTTP method on POST requests. If enabled, the
Request::enableHttpMethodParameterOverride [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_enableHttpMethodParameterOverride]
method gets called automatically. It becomes the service container parameter
named kernel.http_method_override. For more information, see
How to Use HTTP Methods beyond GET and POST in Routes.

ide

type: string default: null

If you’re using an IDE like TextMate or Mac Vim, then Symfony can turn all
of the file paths in an exception message into a link, which will open that
file in your IDE.

Symfony contains preconfigured urls for some popular IDEs, you can set them
using the following keys:

	textmate

	macvim

	emacs

	sublime

2.3.14 新版功能: The emacs and sublime editors were introduced in Symfony 2.3.14.

You can also specify a custom url string. If you do this, all percentage
signs (%) must be doubled to escape that character. For example, if you
have installed PhpStormOpener [https://github.com/pinepain/PhpStormOpener] and use PHPstorm, you will do something like:

	YAML# app/config/config.yml
framework:
 ide: "pstorm://%%f:%%l"

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <framework:config ide="pstorm://%%f:%%l" />
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'ide' => 'pstorm://%%f:%%l',
));

Of course, since every developer uses a different IDE, it’s better to set
this on a system level. This can be done by setting the xdebug.file_link_format
in the php.ini configuration to the url string. If this configuration value
is set, then the ide option will be ignored.

test

type: Boolean

If this configuration parameter is present (and not false), then the
services related to testing your application (e.g. test.client) are loaded.
This setting should be present in your test environment (usually via
app/config/config_test.yml). For more information, see Testing.

default_locale

type: string default: en

The default locale is used if no _locale routing parameter has been set. It
becomes the service container parameter named kernel.default_locale and it
is also available with the
Request::getDefaultLocale [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_getDefaultLocale]
method.

trusted_proxies

type: array

Configures the IP addresses that should be trusted as proxies. For more details,
see How to Configure Symfony to Work behind a Load Balancer or a Reverse Proxy.

2.3 新版功能: CIDR notation support was introduced in Symfony 2.3, so you can whitelist whole
subnets (e.g. 10.0.0.0/8, fc00::/7).

	YAML# app/config/config.yml
framework:
 trusted_proxies: [192.0.0.1, 10.0.0.0/8]

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <framework:config trusted-proxies="192.0.0.1, 10.0.0.0/8" />
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'trusted_proxies' => array('192.0.0.1', '10.0.0.0/8'),
));

form

csrf_protection

session

name

type: string default: null

This specifies the name of the session cookie. By default it will use the cookie
name which is defined in the php.ini with the session.name directive.

cookie_lifetime

type: integer default: null

This determines the lifetime of the session - in seconds. It will use null by
default, which means session.cookie_lifetime value from php.ini will be used.
Setting this value to 0 means the cookie is valid for the length of the browser
session.

cookie_path

type: string default: /

This determines the path to set in the session cookie. By default it will use /.

cookie_domain

type: string default: ''

This determines the domain to set in the session cookie. By default it’s blank,
meaning the host name of the server which generated the cookie according
to the cookie specification.

cookie_secure

type: Boolean default: false

This determines whether cookies should only be sent over secure connections.

cookie_httponly

type: Boolean default: false

This determines whether cookies should only be accessible through the HTTP protocol.
This means that the cookie won’t be accessible by scripting languages, such
as JavaScript. This setting can effectively help to reduce identity theft
through XSS attacks.

gc_probability

type: integer default: 1

This defines the probability that the garbage collector (GC) process is started
on every session initialization. The probability is calculated by using
gc_probability / gc_divisor, e.g. 1/100 means there is a 1% chance
that the GC process will start on each request.

gc_divisor

type: integer default: 100

See gc_probability.

gc_maxlifetime

type: integer default: 1440

This determines the number of seconds after which data will be seen as “garbage”
and potentially cleaned up. Garbage collection may occur during session start
and depends on gc_divisor and gc_probability.

save_path

type: string default: %kernel.cache.dir%/sessions

This determines the argument to be passed to the save handler. If you choose
the default file handler, this is the path where the session files are created.
For more information, see Configuring the Directory where Session Files are Saved.

You can also set this value to the save_path of your php.ini by setting
the value to null:

	YAML# app/config/config.yml
framework:
 session:
 save_path: null

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <framework:config>
 <framework:session save-path="null" />
 </framework:config>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 'session' => array(
 'save_path' => null,
),
));

serializer

enabled

type: boolean default: false

Whether to enable the serializer service or not in the service container.

For more details, see How to Use the Serializer.

templating

assets_base_urls

default: { http: [], ssl: [] }

This option allows you to define base URLs to be used for assets referenced
from http and ssl (https) pages. A string value may be provided in
lieu of a single-element array. If multiple base URLs are provided, Symfony
will select one from the collection each time it generates an asset’s path.

For your convenience, assets_base_urls can be set directly with a string or
array of strings, which will be automatically organized into collections of base
URLs for http and https requests. If a URL starts with https:// or
is protocol-relative [http://tools.ietf.org/html/rfc3986#section-4.2] (i.e. starts with //) it will be added to both
collections. URLs starting with http:// will only be added to the
http collection.

assets_version

type: string

This option is used to bust the cache on assets by globally adding a query
parameter to all rendered asset paths (e.g. /images/logo.png?v2). This
applies only to assets rendered via the Twig asset function (or PHP equivalent)
as well as assets rendered with Assetic.

For example, suppose you have the following:

	Twig

	PHP<img src="<?php echo $view['assets']->getUrl('images/logo.png') ?>" alt="Symfony!" />

By default, this will render a path to your image such as /images/logo.png.
Now, activate the assets_version option:

	YAML# app/config/config.yml
framework:
 # ...
 templating: { engines: ['twig'], assets_version: v2 }

	XML<!-- app/config/config.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:framework="http://symfony.com/schema/dic/symfony"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/symfony http://symfony.com/schema/dic/symfony/symfony-1.0.xsd">

 <framework:templating assets-version="v2">
 <!-- ... -->
 <framework:engine>twig</framework:engine>
 </framework:templating>
</container>

	PHP// app/config/config.php
$container->loadFromExtension('framework', array(
 // ...
 'templating' => array(
 'engines' => array('twig'),
 'assets_version' => 'v2',
),
));

Now, the same asset will be rendered as /images/logo.png?v2 If you use
this feature, you must manually increment the assets_version value
before each deployment so that the query parameters change.

You can also control how the query string works via the assets_version_format
option.

assets_version_format

type: string default: %%s?%%s

This specifies a sprintf [http://php.net/manual/en/function.sprintf.php] pattern that will be used with the assets_version
option to construct an asset’s path. By default, the pattern adds the asset’s
version as a query string. For example, if assets_version_format is set to
%%s?version=%%s and assets_version is set to 5, the asset’s path
would be /images/logo.png?version=5.

注解

All percentage signs (%) in the format string must be doubled to escape
the character. Without escaping, values might inadvertently be interpreted
as Service Parameters.

小技巧

Some CDN’s do not support cache-busting via query strings, so injecting the
version into the actual file path is necessary. Thankfully, assets_version_format
is not limited to producing versioned query strings.

The pattern receives the asset’s original path and version as its first and
second parameters, respectively. Since the asset’s path is one parameter, you
cannot modify it in-place (e.g. /images/logo-v5.png); however, you can
prefix the asset’s path using a pattern of version-%%2$s/%%1$s, which
would result in the path version-5/images/logo.png.

URL rewrite rules could then be used to disregard the version prefix before
serving the asset. Alternatively, you could copy assets to the appropriate
version path as part of your deployment process and forgot any URL rewriting.
The latter option is useful if you would like older asset versions to remain
accessible at their original URL.

profiler

enabled

2.2 新版功能: The enabled option was introduced in Symfony 2.2. Prior to Symfony
2.2, the profiler could only be disabled by omitting the framework.profiler
configuration entirely.

type: boolean default: false

The profiler can be enabled by setting this key to true. When you are
using the Symfony Standard Edition, the profiler is enabled in the dev
and test environments.

collect

2.3 新版功能: The collect option was introduced in Symfony 2.3. Previously, when
profiler.enabled was false, the profiler was actually enabled,
but the collectors were disabled. Now, the profiler and the collectors
can be controlled independently.

type: boolean default: true

This option configures the way the profiler behaves when it is enabled. If set
to true, the profiler collects data for all requests. If you want to only
collect information on-demand, you can set the collect flag to false
and activate the data collectors by hand:

$profiler->enable();

translator

enabled

type: boolean default: false

Whether or not to enable the translator service in the service container.

fallback

type: string default: en

This option is used when the translation key for the current locale wasn’t found.

For more details, see Translations.

validation

cache

type: string

This value is used to determine the service that is used to persist class
metadata in a cache. The actual service name is built by prefixing the configured
value with validator.mapping.cache. (e.g. if the value is apc, the
validator.mapping.cache.apc service will be injected). The service has
to implement the CacheInterface [http://api.symfony.com/master/Symfony/Component/Validator/Mapping/Cache/CacheInterface.html].

enable_annotations

type: Boolean default: false

If this option is enabled, validation constraints can be defined using annotations.

translation_domain

type: string default: validators

The translation domain that is used when translating validation constraint
error messages.

Full default Configuration

	YAMLframework:
 secret: ~
 http_method_override: true
 trusted_proxies: []
 ide: ~
 test: ~
 default_locale: en

 # form configuration
 form:
 enabled: false
 csrf_protection:
 enabled: false
 field_name: _token

 # esi configuration
 esi:
 enabled: false

 # fragments configuration
 fragments:
 enabled: false
 path: /_fragment

 # profiler configuration
 profiler:
 enabled: false
 collect: true
 only_exceptions: false
 only_master_requests: false
 dsn: file:%kernel.cache_dir%/profiler
 username:
 password:
 lifetime: 86400
 matcher:
 ip: ~

 # use the urldecoded format
 path: ~ # Example: ^/path to resource/
 service: ~

 # router configuration
 router:
 resource: ~ # Required
 type: ~
 http_port: 80
 https_port: 443

 # set to true to throw an exception when a parameter does not match the requirements
 # set to false to disable exceptions when a parameter does not match the requirements (and return null instead)
 # set to null to disable parameter checks against requirements
 # 'true' is the preferred configuration in development mode, while 'false' or 'null' might be preferred in production
 strict_requirements: true

 # session configuration
 session:
 storage_id: session.storage.native
 handler_id: session.handler.native_file
 name: ~
 cookie_lifetime: ~
 cookie_path: ~
 cookie_domain: ~
 cookie_secure: ~
 cookie_httponly: ~
 gc_divisor: ~
 gc_probability: ~
 gc_maxlifetime: ~
 save_path: "%kernel.cache_dir%/sessions"

 # serializer configuration
 serializer:
 enabled: false

 # templating configuration
 templating:
 assets_version: ~
 assets_version_format: "%%s?%%s"
 hinclude_default_template: ~
 form:
 resources:

 # Default:
 - FrameworkBundle:Form
 assets_base_urls:
 http: []
 ssl: []
 cache: ~
 engines: # Required

 # Example:
 - twig
 loaders: []
 packages:

 # Prototype
 name:
 version: ~
 version_format: "%%s?%%s"
 base_urls:
 http: []
 ssl: []

 # translator configuration
 translator:
 enabled: false
 fallback: en

 # validation configuration
 validation:
 enabled: false
 cache: ~
 enable_annotations: false
 translation_domain: validators

 # annotation configuration
 annotations:
 cache: file
 file_cache_dir: "%kernel.cache_dir%/annotations"
 debug: "%kernel.debug%"

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

DoctrineBundle Configuration (“doctrine”)

Full Default Configuration

	YAMLdoctrine:
 dbal:
 default_connection: default
 types:
 # A collection of custom types
 # Example
 some_custom_type:
 class: Acme\HelloBundle\MyCustomType
 commented: true
 # If enabled all tables not prefixed with sf2_ will be ignored by the schema
 # tool. This is for custom tables which should not be altered automatically.
 #schema_filter: ^sf2_

 connections:
 # A collection of different named connections (e.g. default, conn2, etc)
 default:
 dbname: ~
 host: localhost
 port: ~
 user: root
 password: ~
 charset: ~
 path: ~
 memory: ~

 # The unix socket to use for MySQL
 unix_socket: ~

 # True to use as persistent connection for the ibm_db2 driver
 persistent: ~

 # The protocol to use for the ibm_db2 driver (default to TCPIP if omitted)
 protocol: ~

 # True to use dbname as service name instead of SID for Oracle
 service: ~

 # The session mode to use for the oci8 driver
 sessionMode: ~

 # True to use a pooled server with the oci8 driver
 pooled: ~

 # Configuring MultipleActiveResultSets for the pdo_sqlsrv driver
 MultipleActiveResultSets: ~
 driver: pdo_mysql
 platform_service: ~

 # when true, queries are logged to a "doctrine" monolog channel
 logging: "%kernel.debug%"
 profiling: "%kernel.debug%"
 driver_class: ~
 wrapper_class: ~
 options:
 # an array of options
 key: []
 mapping_types:
 # an array of mapping types
 name: []
 slaves:

 # a collection of named slave connections (e.g. slave1, slave2)
 slave1:
 dbname: ~
 host: localhost
 port: ~
 user: root
 password: ~
 charset: ~
 path: ~
 memory: ~

 # The unix socket to use for MySQL
 unix_socket: ~

 # True to use as persistent connection for the ibm_db2 driver
 persistent: ~

 # The protocol to use for the ibm_db2 driver (default to TCPIP if omitted)
 protocol: ~

 # True to use dbname as service name instead of SID for Oracle
 service: ~

 # The session mode to use for the oci8 driver
 sessionMode: ~

 # True to use a pooled server with the oci8 driver
 pooled: ~

 # Configuring MultipleActiveResultSets for the pdo_sqlsrv driver
 MultipleActiveResultSets: ~

 orm:
 default_entity_manager: ~
 auto_generate_proxy_classes: false
 proxy_dir: "%kernel.cache_dir%/doctrine/orm/Proxies"
 proxy_namespace: Proxies
 # search for the "ResolveTargetEntityListener" class for a cookbook about this
 resolve_target_entities: []
 entity_managers:
 # A collection of different named entity managers (e.g. some_em, another_em)
 some_em:
 query_cache_driver:
 type: array # Required
 host: ~
 port: ~
 instance_class: ~
 class: ~
 metadata_cache_driver:
 type: array # Required
 host: ~
 port: ~
 instance_class: ~
 class: ~
 result_cache_driver:
 type: array # Required
 host: ~
 port: ~
 instance_class: ~
 class: ~
 connection: ~
 class_metadata_factory_name: Doctrine\ORM\Mapping\ClassMetadataFactory
 default_repository_class: Doctrine\ORM\EntityRepository
 auto_mapping: false
 hydrators:

 # An array of hydrator names
 hydrator_name: []
 mappings:
 # An array of mappings, which may be a bundle name or something else
 mapping_name:
 mapping: true
 type: ~
 dir: ~
 alias: ~
 prefix: ~
 is_bundle: ~
 dql:
 # a collection of string functions
 string_functions:
 # example
 # test_string: Acme\HelloBundle\DQL\StringFunction

 # a collection of numeric functions
 numeric_functions:
 # example
 # test_numeric: Acme\HelloBundle\DQL\NumericFunction

 # a collection of datetime functions
 datetime_functions:
 # example
 # test_datetime: Acme\HelloBundle\DQL\DatetimeFunction

 # Register SQL Filters in the entity manager
 filters:
 # An array of filters
 some_filter:
 class: ~ # Required
 enabled: false

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:doctrine="http://symfony.com/schema/dic/doctrine"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/doctrine
 http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd">

 <doctrine:config>
 <doctrine:dbal default-connection="default">
 <doctrine:connection
 name="default"
 dbname="database"
 host="localhost"
 port="1234"
 user="user"
 password="secret"
 driver="pdo_mysql"
 driver-class="MyNamespace\MyDriverImpl"
 path="%kernel.data_dir%/data.sqlite"
 memory="true"
 unix-socket="/tmp/mysql.sock"
 wrapper-class="MyDoctrineDbalConnectionWrapper"
 charset="UTF8"
 logging="%kernel.debug%"
 platform-service="MyOwnDatabasePlatformService"
 >
 <doctrine:option key="foo">bar</doctrine:option>
 <doctrine:mapping-type name="enum">string</doctrine:mapping-type>
 </doctrine:connection>
 <doctrine:connection name="conn1" />
 <doctrine:type name="custom">Acme\HelloBundle\MyCustomType</doctrine:type>
 </doctrine:dbal>

 <doctrine:orm
 default-entity-manager="default"
 auto-generate-proxy-classes="false"
 proxy-namespace="Proxies"
 proxy-dir="%kernel.cache_dir%/doctrine/orm/Proxies"
 >
 <doctrine:entity-manager
 name="default"
 query-cache-driver="array"
 result-cache-driver="array"
 connection="conn1"
 class-metadata-factory-name="Doctrine\ORM\Mapping\ClassMetadataFactory"
 >
 <doctrine:metadata-cache-driver
 type="memcache"
 host="localhost"
 port="11211"
 instance-class="Memcache"
 class="Doctrine\Common\Cache\MemcacheCache"
 />

 <doctrine:mapping name="AcmeHelloBundle" />

 <doctrine:dql>
 <doctrine:string-function name="test_string">
 Acme\HelloBundle\DQL\StringFunction
 </doctrine:string-function>

 <doctrine:numeric-function name="test_numeric">
 Acme\HelloBundle\DQL\NumericFunction
 </doctrine:numeric-function>

 <doctrine:datetime-function name="test_datetime">
 Acme\HelloBundle\DQL\DatetimeFunction
 </doctrine:datetime-function>
 </doctrine:dql>
 </doctrine:entity-manager>

 <doctrine:entity-manager name="em2" connection="conn2" metadata-cache-driver="apc">
 <doctrine:mapping
 name="DoctrineExtensions"
 type="xml"
 dir="%kernel.root_dir%/../vendor/gedmo/doctrine-extensions/lib/DoctrineExtensions/Entity"
 prefix="DoctrineExtensions\Entity"
 alias="DExt"
 />
 </doctrine:entity-manager>
 </doctrine:orm>
 </doctrine:config>
</container>

Configuration Overview

This following configuration example shows all the configuration defaults
that the ORM resolves to:

doctrine:
 orm:
 auto_mapping: true
 # the standard distribution overrides this to be true in debug, false otherwise
 auto_generate_proxy_classes: false
 proxy_namespace: Proxies
 proxy_dir: "%kernel.cache_dir%/doctrine/orm/Proxies"
 default_entity_manager: default
 metadata_cache_driver: array
 query_cache_driver: array
 result_cache_driver: array

There are lots of other configuration options that you can use to overwrite
certain classes, but those are for very advanced use-cases only.

Caching Drivers

For the caching drivers you can specify the values “array”, “apc”, “memcache”,
“memcached”, “xcache” or “service”.

The following example shows an overview of the caching configurations:

doctrine:
 orm:
 auto_mapping: true
 metadata_cache_driver: apc
 query_cache_driver:
 type: service
 id: my_doctrine_common_cache_service
 result_cache_driver:
 type: memcache
 host: localhost
 port: 11211
 instance_class: Memcache

Mapping Configuration

Explicit definition of all the mapped entities is the only necessary
configuration for the ORM and there are several configuration options that
you can control. The following configuration options exist for a mapping:

type

One of annotation, xml, yml, php or staticphp. This specifies
which type of metadata type your mapping uses.

dir

Path to the mapping or entity files (depending on the driver). If this path
is relative it is assumed to be relative to the bundle root. This only works
if the name of your mapping is a bundle name. If you want to use this option
to specify absolute paths you should prefix the path with the kernel parameters
that exist in the DIC (for example %kernel.root_dir%).

prefix

A common namespace prefix that all entities of this mapping share. This prefix
should never conflict with prefixes of other defined mappings otherwise some
of your entities cannot be found by Doctrine. This option defaults to the
bundle namespace + Entity, for example for an application bundle called
AcmeHelloBundle prefix would be Acme\HelloBundle\Entity.

alias

Doctrine offers a way to alias entity namespaces to simpler, shorter names
to be used in DQL queries or for Repository access. When using a bundle the
alias defaults to the bundle name.

is_bundle

This option is a derived value from dir and by default is set to true
if dir is relative proved by a file_exists() check that returns false.
It is false if the existence check returns true. In this case an
absolute path was specified and the metadata files are most likely in a directory
outside of a bundle.

Doctrine DBAL Configuration

DoctrineBundle supports all parameters that default Doctrine drivers
accept, converted to the XML or YAML naming standards that Symfony
enforces. See the Doctrine DBAL documentation [http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/configuration.html] for more information.
The following block shows all possible configuration keys:

	YAMLdoctrine:
 dbal:
 dbname: database
 host: localhost
 port: 1234
 user: user
 password: secret
 driver: pdo_mysql
 # the DBAL driverClass option
 driver_class: MyNamespace\MyDriverImpl
 # the DBAL driverOptions option
 options:
 foo: bar
 path: "%kernel.data_dir%/data.sqlite"
 memory: true
 unix_socket: /tmp/mysql.sock
 # the DBAL wrapperClass option
 wrapper_class: MyDoctrineDbalConnectionWrapper
 charset: UTF8
 logging: "%kernel.debug%"
 platform_service: MyOwnDatabasePlatformService
 mapping_types:
 enum: string
 types:
 custom: Acme\HelloBundle\MyCustomType
 # the DBAL keepSlave option
 keep_slave: false

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:doctrine="http://symfony.com/schema/dic/doctrine"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/doctrine
 http://symfony.com/schema/dic/doctrine/doctrine-1.0.xsd"
>

 <doctrine:config>
 <doctrine:dbal
 name="default"
 dbname="database"
 host="localhost"
 port="1234"
 user="user"
 password="secret"
 driver="pdo_mysql"
 driver-class="MyNamespace\MyDriverImpl"
 path="%kernel.data_dir%/data.sqlite"
 memory="true"
 unix-socket="/tmp/mysql.sock"
 wrapper-class="MyDoctrineDbalConnectionWrapper"
 charset="UTF8"
 logging="%kernel.debug%"
 platform-service="MyOwnDatabasePlatformService">

 <doctrine:option key="foo">bar</doctrine:option>
 <doctrine:mapping-type name="enum">string</doctrine:mapping-type>
 <doctrine:type name="custom">Acme\HelloBundle\MyCustomType</doctrine:type>
 </doctrine:dbal>
 </doctrine:config>
</container>

If you want to configure multiple connections in YAML, put them under the
connections key and give them a unique name:

doctrine:
 dbal:
 default_connection: default
 connections:
 default:
 dbname: Symfony
 user: root
 password: null
 host: localhost
 customer:
 dbname: customer
 user: root
 password: null
 host: localhost

The database_connection service always refers to the default connection,
which is the first one defined or the one configured via the
default_connection parameter.

Each connection is also accessible via the doctrine.dbal.[name]_connection
service where [name] is the name of the connection.

Shortened Configuration Syntax

When you are only using one entity manager, all config options available
can be placed directly under doctrine.orm config level.

doctrine:
 orm:
 # ...
 query_cache_driver:
 # ...
 metadata_cache_driver:
 # ...
 result_cache_driver:
 # ...
 connection: ~
 class_metadata_factory_name: Doctrine\ORM\Mapping\ClassMetadataFactory
 default_repository_class: Doctrine\ORM\EntityRepository
 auto_mapping: false
 hydrators:
 # ...
 mappings:
 # ...
 dql:
 # ...
 filters:
 # ...

This shortened version is commonly used in other documentation sections.
Keep in mind that you can’t use both syntaxes at the same time.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

SecurityBundle Configuration (“security”)

The security system is one of the most powerful parts of Symfony, and can
largely be controlled via its configuration.

Full default Configuration

The following is the full default configuration for the security system.
Each part will be explained in the next section.

	YAML# app/config/security.yml
security:
 access_denied_url: ~ # Example: /foo/error403

 # strategy can be: none, migrate, invalidate
 session_fixation_strategy: migrate
 hide_user_not_found: true
 always_authenticate_before_granting: false
 erase_credentials: true
 access_decision_manager:
 strategy: affirmative
 allow_if_all_abstain: false
 allow_if_equal_granted_denied: true
 acl:

 # any name configured in doctrine.dbal section
 connection: ~
 cache:
 id: ~
 prefix: sf2_acl_
 provider: ~
 tables:
 class: acl_classes
 entry: acl_entries
 object_identity: acl_object_identities
 object_identity_ancestors: acl_object_identity_ancestors
 security_identity: acl_security_identities
 voter:
 allow_if_object_identity_unavailable: true

 encoders:
 # Examples:
 Acme\DemoBundle\Entity\User1: sha512
 Acme\DemoBundle\Entity\User2:
 algorithm: sha512
 encode_as_base64: true
 iterations: 5000

 # PBKDF2 encoder
 # see the note about PBKDF2 below for details on security and speed
 Acme\Your\Class\Name:
 algorithm: pbkdf2
 hash_algorithm: sha512
 encode_as_base64: true
 iterations: 1000
 key_length: 40

 # Example options/values for what a custom encoder might look like
 Acme\DemoBundle\Entity\User3:
 id: my.encoder.id

 # BCrypt encoder
 # see the note about bcrypt below for details on specific dependencies
 Acme\DemoBundle\Entity\User4:
 algorithm: bcrypt
 cost: 13

 # Plaintext encoder
 # it does not do any encoding
 Acme\DemoBundle\Entity\User5:
 algorithm: plaintext
 ignore_case: false

 providers: # Required
 # Examples:
 my_in_memory_provider:
 memory:
 users:
 foo:
 password: foo
 roles: ROLE_USER
 bar:
 password: bar
 roles: [ROLE_USER, ROLE_ADMIN]

 my_entity_provider:
 entity:
 class: SecurityBundle:User
 property: username
 manager_name: ~

 # Example custom provider
 my_some_custom_provider:
 id: ~

 # Chain some providers
 my_chain_provider:
 chain:
 providers: [my_in_memory_provider, my_entity_provider]

 firewalls: # Required
 # Examples:
 somename:
 pattern: .*
 request_matcher: some.service.id
 access_denied_url: /foo/error403
 access_denied_handler: some.service.id
 entry_point: some.service.id
 provider: some_key_from_above
 # manages where each firewall stores session information
 # See "Firewall Context" below for more details
 context: context_key
 stateless: false
 x509:
 provider: some_key_from_above
 http_basic:
 provider: some_key_from_above
 http_digest:
 provider: some_key_from_above
 form_login:
 # submit the login form here
 check_path: /login_check

 # the user is redirected here when they need to log in
 login_path: /login

 # if true, forward the user to the login form instead of redirecting
 use_forward: false

 # login success redirecting options (read further below)
 always_use_default_target_path: false
 default_target_path: /
 target_path_parameter: _target_path
 use_referer: false

 # login failure redirecting options (read further below)
 failure_path: /foo
 failure_forward: false
 failure_path_parameter: _failure_path
 failure_handler: some.service.id
 success_handler: some.service.id

 # field names for the username and password fields
 username_parameter: _username
 password_parameter: _password

 # csrf token options
 csrf_parameter: _csrf_token
 intention: authenticate
 csrf_provider: my.csrf_provider.id

 # by default, the login form *must* be a POST, not a GET
 post_only: true
 remember_me: false

 # by default, a session must exist before submitting an authentication request
 # if false, then Request::hasPreviousSession is not called during authentication
 # new in Symfony 2.3
 require_previous_session: true

 remember_me:
 token_provider: name
 key: someS3cretKey
 name: NameOfTheCookie
 lifetime: 3600 # in seconds
 path: /foo
 domain: somedomain.foo
 secure: false
 httponly: true
 always_remember_me: false
 remember_me_parameter: _remember_me
 logout:
 path: /logout
 target: /
 invalidate_session: false
 delete_cookies:
 a: { path: null, domain: null }
 b: { path: null, domain: null }
 handlers: [some.service.id, another.service.id]
 success_handler: some.service.id
 anonymous: ~

 # Default values and options for any firewall
 some_firewall_listener:
 pattern: ~
 security: true
 request_matcher: ~
 access_denied_url: ~
 access_denied_handler: ~
 entry_point: ~
 provider: ~
 stateless: false
 context: ~
 logout:
 csrf_parameter: _csrf_token
 csrf_provider: ~
 intention: logout
 path: /logout
 target: /
 success_handler: ~
 invalidate_session: true
 delete_cookies:

 # Prototype
 name:
 path: ~
 domain: ~
 handlers: []
 anonymous:
 key: 4f954a0667e01
 switch_user:
 provider: ~
 parameter: _switch_user
 role: ROLE_ALLOWED_TO_SWITCH

 access_control:
 requires_channel: ~

 # use the urldecoded format
 path: ~ # Example: ^/path to resource/
 host: ~
 ips: []
 methods: []
 roles: []
 role_hierarchy:
 ROLE_ADMIN: [ROLE_ORGANIZER, ROLE_USER]
 ROLE_SUPERADMIN: [ROLE_ADMIN]

Form Login Configuration

When using the form_login authentication listener beneath a firewall,
there are several common options for configuring the “form login” experience.

For even more details, see How to Customize your Form Login.

The Login Form and Process

login_path

type: string default: /login

This is the route or path that the user will be redirected to (unless use_forward
is set to true) when they try to access a protected resource but isn’t
fully authenticated.

This path must be accessible by a normal, un-authenticated user, else
you may create a redirect loop. For details, see
“Avoid Common Pitfalls”.

check_path

type: string default: /login_check

This is the route or path that your login form must submit to. The firewall
will intercept any requests (POST requests only, by default) to this
URL and process the submitted login credentials.

Be sure that this URL is covered by your main firewall (i.e. don’t create
a separate firewall just for check_path URL).

use_forward

type: Boolean default: false

If you’d like the user to be forwarded to the login form instead of being
redirected, set this option to true.

username_parameter

type: string default: _username

This is the field name that you should give to the username field of your
login form. When you submit the form to check_path, the security system
will look for a POST parameter with this name.

password_parameter

type: string default: _password

This is the field name that you should give to the password field of your
login form. When you submit the form to check_path, the security system
will look for a POST parameter with this name.

post_only

type: Boolean default: true

By default, you must submit your login form to the check_path URL as
a POST request. By setting this option to false, you can send a GET request
to the check_path URL.

Redirecting after Login

	always_use_default_target_path (type: Boolean, default: false)

	default_target_path (type: string, default: /)

	target_path_parameter (type: string, default: _target_path)

	use_referer (type: Boolean, default: false)

Using the PBKDF2 Encoder: Security and Speed

2.2 新版功能: The PBKDF2 password encoder was introduced in Symfony 2.2.

The PBKDF2 [http://en.wikipedia.org/wiki/PBKDF2] encoder provides a high level of Cryptographic security, as
recommended by the National Institute of Standards and Technology (NIST).

You can see an example of the pbkdf2 encoder in the YAML block on this page.

But using PBKDF2 also warrants a warning: using it (with a high number
of iterations) slows down the process. Thus, PBKDF2 should be used with
caution and care.

A good configuration lies around at least 1000 iterations and sha512
for the hash algorithm.

Using the BCrypt Password Encoder

警告

To use this encoder, you either need to use PHP Version 5.5 or install
the ircmaxell/password-compat [https://packagist.org/packages/ircmaxell/password-compat] library via Composer.

2.2 新版功能: The BCrypt password encoder was introduced in Symfony 2.2.

	YAML# app/config/security.yml
security:
 # ...

 encoders:
 Symfony\Component\Security\Core\User\User:
 algorithm: bcrypt
 cost: 15

	XML<!-- app/config/security.xml -->
<config>
 <!-- ... -->
 <encoder
 class="Symfony\Component\Security\Core\User\User"
 algorithm="bcrypt"
 cost="15"
 />
</config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 // ...
 'encoders' => array(
 'Symfony\Component\Security\Core\User\User' => array(
 'algorithm' => 'bcrypt',
 'cost' => 15,
),
),
));

The cost can be in the range of 4-31 and determines how long a password
will be encoded. Each increment of cost doubles the time it takes to
encode a password.

If you don’t provide the cost option, the default cost of 13 is used.

注解

You can change the cost at any time — even if you already have some
passwords encoded using a different cost. New passwords will be encoded
using the new cost, while the already encoded ones will be validated
using a cost that was used back when they were encoded.

A salt for each new password is generated automatically and need not be
persisted. Since an encoded password contains the salt used to encode it,
persisting the encoded password alone is enough.

注解

All the encoded passwords are 60 characters long, so make sure to
allocate enough space for them to be persisted.

Firewall Context

Most applications will only need one firewall.
But if your application does use multiple firewalls, you’ll notice that
if you’re authenticated in one firewall, you’re not automatically authenticated
in another. In other words, the systems don’t share a common “context”: each
firewall acts like a separate security system.

However, each firewall has an optional context key (which defaults to
the name of the firewall), which is used when storing and retrieving security
data to and from the session. If this key were set to the same value across
multiple firewalls, the “context” could actually be shared:

	YAML# app/config/security.yml
security:
 # ...

 firewalls:
 somename:
 # ...
 context: my_context
 othername:
 # ...
 context: my_context

	XML<!-- app/config/security.xml -->
<security:config>
 <firewall name="somename" context="my_context">
 <! ... ->
 </firewall>
 <firewall name="othername" context="my_context">
 <! ... ->
 </firewall>
</security:config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'somename' => array(
 // ...
 'context' => 'my_context'
),
 'othername' => array(
 // ...
 'context' => 'my_context'
),
),
));

HTTP-Digest Authentication

To use HTTP-Digest authentication you need to provide a realm and a key:

	YAML# app/config/security.yml
security:
 firewalls:
 somename:
 http_digest:
 key: "a_random_string"
 realm: "secure-api"

	XML<!-- app/config/security.xml -->
<security:config>
 <firewall name="somename">
 <http-digest key="a_random_string" realm="secure-api" />
 </firewall>
</security:config>

	PHP// app/config/security.php
$container->loadFromExtension('security', array(
 'firewalls' => array(
 'somename' => array(
 'http_digest' => array(
 'key' => 'a_random_string',
 'realm' => 'secure-api',
),
),
),
));

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

AsseticBundle Configuration (“assetic”)

Full Default Configuration

	YAMLassetic:
 debug: "%kernel.debug%"
 use_controller:
 enabled: "%kernel.debug%"
 profiler: false
 read_from: "%kernel.root_dir%/../web"
 write_to: "%assetic.read_from%"
 java: /usr/bin/java
 node: /usr/bin/node
 ruby: /usr/bin/ruby
 sass: /usr/bin/sass
 # An key-value pair of any number of named elements
 variables:
 some_name: []
 bundles:

 # Defaults (all currently registered bundles):
 - FrameworkBundle
 - SecurityBundle
 - TwigBundle
 - MonologBundle
 - SwiftmailerBundle
 - DoctrineBundle
 - AsseticBundle
 - ...
 assets:
 # An array of named assets (e.g. some_asset, some_other_asset)
 some_asset:
 inputs: []
 filters: []
 options:
 # A key-value array of options and values
 some_option_name: []
 filters:

 # An array of named filters (e.g. some_filter, some_other_filter)
 some_filter: []
 twig:
 functions:
 # An array of named functions (e.g. some_function, some_other_function)
 some_function: []

	XML<assetic:config
 debug="%kernel.debug%"
 use-controller="%kernel.debug%"
 read-from="%kernel.root_dir%/../web"
 write-to="%assetic.read_from%"
 java="/usr/bin/java"
 node="/usr/bin/node"
 sass="/usr/bin/sass"
>
 <!-- Defaults (all currently registered bundles) -->
 <assetic:bundle>FrameworkBundle</assetic:bundle>
 <assetic:bundle>SecurityBundle</assetic:bundle>
 <assetic:bundle>TwigBundle</assetic:bundle>
 <assetic:bundle>MonologBundle</assetic:bundle>
 <assetic:bundle>SwiftmailerBundle</assetic:bundle>
 <assetic:bundle>DoctrineBundle</assetic:bundle>
 <assetic:bundle>AsseticBundle</assetic:bundle>
 <assetic:bundle>...</assetic:bundle>

 <assetic:asset>
 <!-- prototype -->
 <assetic:name>
 <assetic:input />

 <assetic:filter />

 <assetic:option>
 <!-- prototype -->
 <assetic:name />
 </assetic:option>
 </assetic:name>
 </assetic:asset>

 <assetic:filter>
 <!-- prototype -->
 <assetic:name />
 </assetic:filter>

 <assetic:twig>
 <assetic:functions>
 <!-- prototype -->
 <assetic:name />
 </assetic:functions>
 </assetic:twig>

</assetic:config>

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

SwiftmailerBundle Configuration (“swiftmailer”)

This reference document is a work in progress. It should be accurate, but
all options are not yet fully covered. For a full list of the default configuration
options, see Full Default Configuration

The swiftmailer key configures Symfony’s integration with Swift Mailer,
which is responsible for creating and delivering email messages.

The following section lists all options that are available to configure a
mailer. It is also possible to configure several mailers (see Using Multiple Mailers).

Configuration

	transport

	username

	password

	host

	port

	encryption

	auth_mode

	
	spool

	
	type

	path

	sender_address

	
	antiflood

	
	threshold

	sleep

	delivery_address

	disable_delivery

	logging

transport

type: string default: smtp

The exact transport method to use to deliver emails. Valid values are:

	smtp

	gmail (see How to Use Gmail to Send Emails)

	mail

	sendmail

	null (same as setting disable_delivery to true)

username

type: string

The username when using smtp as the transport.

password

type: string

The password when using smtp as the transport.

host

type: string default: localhost

The host to connect to when using smtp as the transport.

port

type: string default: 25 or 465 (depending on encryption)

The port when using smtp as the transport. This defaults to 465 if encryption
is ssl and 25 otherwise.

encryption

type: string

The encryption mode to use when using smtp as the transport. Valid values
are tls, ssl, or null (indicating no encryption).

auth_mode

type: string

The authentication mode to use when using smtp as the transport. Valid
values are plain, login, cram-md5, or null.

spool

For details on email spooling, see How to Spool Emails.

type

type: string default: file

The method used to store spooled messages. Valid values are memory and
file. A custom spool should be possible by creating a service called
swiftmailer.spool.myspool and setting this value to myspool.

path

type: string default: %kernel.cache_dir%/swiftmailer/spool

When using the file spool, this is the path where the spooled messages
will be stored.

sender_address

type: string

If set, all messages will be delivered with this address as the “return path”
address, which is where bounced messages should go. This is handled internally
by Swift Mailer’s Swift_Plugins_ImpersonatePlugin class.

antiflood

threshold

type: integer default: 99

Used with Swift_Plugins_AntiFloodPlugin. This is the number of emails
to send before restarting the transport.

sleep

type: integer default: 0

Used with Swift_Plugins_AntiFloodPlugin. This is the number of seconds
to sleep for during a transport restart.

delivery_address

type: string

If set, all email messages will be sent to this address instead of being sent
to their actual recipients. This is often useful when developing. For example,
by setting this in the config_dev.yml file, you can guarantee that all
emails sent during development go to a single account.

This uses Swift_Plugins_RedirectingPlugin. Original recipients are available
on the X-Swift-To, X-Swift-Cc and X-Swift-Bcc headers.

disable_delivery

type: Boolean default: false

If true, the transport will automatically be set to null, and no
emails will actually be delivered.

logging

type: Boolean default: %kernel.debug%

If true, Symfony’s data collector will be activated for Swift Mailer and the
information will be available in the profiler.

Full default Configuration

	YAMLswiftmailer:
 transport: smtp
 username: ~
 password: ~
 host: localhost
 port: false
 encryption: ~
 auth_mode: ~
 spool:
 type: file
 path: "%kernel.cache_dir%/swiftmailer/spool"
 sender_address: ~
 antiflood:
 threshold: 99
 sleep: 0
 delivery_address: ~
 disable_delivery: ~
 logging: "%kernel.debug%"

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:swiftmailer="http://symfony.com/schema/dic/swiftmailer"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/swiftmailer http://symfony.com/schema/dic/swiftmailer/swiftmailer-1.0.xsd">

 <swiftmailer:config
 transport="smtp"
 username=""
 password=""
 host="localhost"
 port="false"
 encryption=""
 auth_mode=""
 sender_address=""
 delivery_address=""
 disable_delivery=""
 logging="%kernel.debug%"
 >
 <swiftmailer:spool
 path="%kernel.cache_dir%/swiftmailer/spool"
 type="file" />

 <swiftmailer:antiflood
 sleep="0"
 threshold="99" />
 </swiftmailer:config>
</container>

Using multiple Mailers

You can configure multiple mailers by grouping them under the mailers
key (the default mailer is identified by the default_mailer option):

	YAMLswiftmailer:
 default_mailer: second_mailer
 mailers:
 first_mailer:
 # ...
 second_mailer:
 # ...

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:swiftmailer="http://symfony.com/schema/dic/swiftmailer"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/swiftmailer
 http://symfony.com/schema/dic/swiftmailer/swiftmailer-1.0.xsd"
>
 <swiftmailer:config default-mailer="second_mailer">
 <swiftmailer:mailer name="first_mailer"/>
 <swiftmailer:mailer name="second_mailer"/>
 </swiftmailer:config>
</container>

	PHP$container->loadFromExtension('swiftmailer', array(
 'default_mailer' => 'second_mailer',
 'mailers' => array(
 'first_mailer' => array(
 // ...
),
 'second_mailer' => array(
 // ...
),
),
));

Each mailer is registered as a service:

// ...

// returns the first mailer
$container->get('swiftmailer.mailer.first_mailer');

// also returns the second mailer since it is the default mailer
$container->get('swiftmailer.mailer');

// returns the second mailer
$container->get('swiftmailer.mailer.second_mailer');

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

TwigBundle Configuration (“twig”)

	YAMLtwig:
 exception_controller: twig.controller.exception:showAction
 form:
 resources:

 # Default:
 - form_div_layout.html.twig

 # Example:
 - MyBundle::form.html.twig
 globals:

 # Examples:
 foo: "@bar"
 pi: 3.14

 # Example options, but the easiest use is as seen above
 some_variable_name:
 # a service id that should be the value
 id: ~
 # set to service or leave blank
 type: ~
 value: ~
 autoescape: ~

 # The following were added in Symfony 2.3.
 # See http://twig.sensiolabs.org/doc/recipes.html#using-the-template-name-to-set-the-default-escaping-strategy
 autoescape_service: ~ # Example: @my_service
 autoescape_service_method: ~ # use in combination with autoescape_service option
 base_template_class: ~ # Example: Twig_Template
 cache: "%kernel.cache_dir%/twig"
 charset: "%kernel.charset%"
 debug: "%kernel.debug%"
 strict_variables: ~
 auto_reload: ~
 optimizations: ~

	XML<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:twig="http://symfony.com/schema/dic/twig"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/twig http://symfony.com/schema/dic/twig/twig-1.0.xsd">

 <twig:config auto-reload="%kernel.debug%" autoescape="true" base-template-class="Twig_Template" cache="%kernel.cache_dir%/twig" charset="%kernel.charset%" debug="%kernel.debug%" strict-variables="false">
 <twig:form>
 <twig:resource>MyBundle::form.html.twig</twig:resource>
 </twig:form>
 <twig:global key="foo" id="bar" type="service" />
 <twig:global key="pi">3.14</twig:global>
 </twig:config>
</container>

	PHP$container->loadFromExtension('twig', array(
 'form' => array(
 'resources' => array(
 'MyBundle::form.html.twig',
)
),
 'globals' => array(
 'foo' => '@bar',
 'pi' => 3.14,
),
 'auto_reload' => '%kernel.debug%',
 'autoescape' => true,
 'base_template_class' => 'Twig_Template',
 'cache' => '%kernel.cache_dir%/twig',
 'charset' => '%kernel.charset%',
 'debug' => '%kernel.debug%',
 'strict_variables' => false,
));

Configuration

exception_controller

type: string default: twig.controller.exception:showAction

This is the controller that is activated after an exception is thrown anywhere
in your application. The default controller
(ExceptionController [http://api.symfony.com/master/Symfony/Bundle/TwigBundle/Controller/ExceptionController.html])
is what’s responsible for rendering specific templates under different error
conditions (see How to Customize Error Pages). Modifying this
option is advanced. If you need to customize an error page you should use
the previous link. If you need to perform some behavior on an exception,
you should add a listener to the kernel.exception event (see kernel.event_listener).

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

MonologBundle Configuration (“monolog”)

Full Default Configuration

	YAMLmonolog:
 handlers:

 # Examples:
 syslog:
 type: stream
 path: /var/log/symfony.log
 level: ERROR
 bubble: false
 formatter: my_formatter
 main:
 type: fingers_crossed
 action_level: WARNING
 buffer_size: 30
 handler: custom
 custom:
 type: service
 id: my_handler

 # Default options and values for some "my_custom_handler"
 # Note: many of these options are specific to the "type".
 # For example, the "service" type doesn't use any options
 # except id and channels
 my_custom_handler:
 type: ~ # Required
 id: ~
 priority: 0
 level: DEBUG
 bubble: true
 path: "%kernel.logs_dir%/%kernel.environment%.log"
 ident: false
 facility: user
 max_files: 0
 action_level: WARNING
 activation_strategy: ~
 stop_buffering: true
 buffer_size: 0
 handler: ~
 members: []
 channels:
 type: ~
 elements: ~
 from_email: ~
 to_email: ~
 subject: ~
 mailer: ~
 email_prototype:
 id: ~ # Required (when the email_prototype is used)
 method: ~
 formatter: ~

	XML<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:monolog="http://symfony.com/schema/dic/monolog"
 xsi:schemaLocation="http://symfony.com/schema/dic/services
 http://symfony.com/schema/dic/services/services-1.0.xsd
 http://symfony.com/schema/dic/monolog
 http://symfony.com/schema/dic/monolog/monolog-1.0.xsd"
>

 <monolog:config>
 <monolog:handler
 name="syslog"
 type="stream"
 path="/var/log/symfony.log"
 level="error"
 bubble="false"
 formatter="my_formatter"
 />
 <monolog:handler
 name="main"
 type="fingers_crossed"
 action-level="warning"
 handler="custom"
 />
 <monolog:handler
 name="custom"
 type="service"
 id="my_handler"
 />
 </monolog:config>
</container>

注解

When the profiler is enabled, a handler is added to store the logs’
messages in the profiler. The profiler uses the name “debug” so it
is reserved and cannot be used in the configuration.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

WebProfilerBundle Configuration (“web_profiler”)

Full default Configuration

	YAMLweb_profiler:

 # DEPRECATED, it is not useful anymore and can be removed safely from your configuration
 verbose: true

 # display the web debug toolbar at the bottom of pages with a summary of profiler info
 toolbar: false
 position: bottom

 # gives you the opportunity to look at the collected data before following the redirect
 intercept_redirects: false

	XML<web-profiler:config
 toolbar="false"
 verbose="true"
 intercept_redirects="false"
/>

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

Configuring in the Kernel (e.g. AppKernel)

Some configuration can be done on the kernel class itself (usually called
app/AppKernel.php). You can do this by overriding specific methods in
the parent Kernel [http://api.symfony.com/master/Symfony/Component/HttpKernel/Kernel.html] class.

Configuration

	Charset

	Kernel Name

	Root Directory

	Cache Directory

	Log Directory

Charset

type: string default: UTF-8

This returns the charset that is used in the application. To change it,
override the getCharset() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Kernel.html#method_getCharset]
method and return another charset, for instance:

// app/AppKernel.php

// ...
class AppKernel extends Kernel
{
 public function getCharset()
 {
 return 'ISO-8859-1';
 }
}

Kernel Name

type: string default: app (i.e. the directory name holding
the kernel class)

To change this setting, override the getName() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Kernel.html#method_getName]
method. Alternatively, move your kernel into a different directory. For
example, if you moved the kernel into a foo directory (instead of app),
the kernel name will be foo.

The name of the kernel isn’t usually directly important - it’s used in the
generation of cache files. If you have an application with multiple kernels,
the easiest way to make each have a unique name is to duplicate the app
directory and rename it to something else (e.g. foo).

Root Directory

type: string default: the directory of AppKernel

This returns the root directory of your kernel. If you use the Symfony Standard
edition, the root directory refers to the app directory.

To change this setting, override the
getRootDir() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Kernel.html#method_getRootDir] method:

// app/AppKernel.php

// ...
class AppKernel extends Kernel
{
 // ...

 public function getRootDir()
 {
 return realpath(parent::getRootDir().'/../');
 }
}

Cache Directory

type: string default: $this->rootDir/cache/$this->environment

This returns the path to the cache directory. To change it, override the
getCacheDir() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Kernel.html#method_getCacheDir] method. Read
“Override the cache Directory” for more information.

Log Directory

type: string default: $this->rootDir/logs

This returns the path to the log directory. To change it, override the
getLogDir() [http://api.symfony.com/master/Symfony/Component/HttpKernel/Kernel.html#method_getLogDir] method. Read
“Override the logs Directory” for more information.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

Form Types Reference

A form is composed of fields, each of which are built with the help of
a field type (e.g. a text type, choice type, etc). Symfony comes
standard with a large list of field types that can be used in your application.

Supported Field Types

The following field types are natively available in Symfony:

Text Fields

	text

	textarea

	email

	integer

	money

	number

	password

	percent

	search

	url

Choice Fields

	choice

	entity

	country

	language

	locale

	timezone

	currency

Date and Time Fields

	date

	datetime

	time

	birthday

Other Fields

	checkbox

	file

	radio

Field Groups

	collection

	repeated

Hidden Fields

	hidden

Buttons

	button

	reset

	submit

Base Fields

	form

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

text Field Type

The text field represents the most basic input text field.

	Rendered as
	input text field

	Inherited
options
	
	data

	disabled

	empty_data

	error_bubbling

	error_mapping

	label

	label_attr

	mapped

	max_length

	read_only

	required

	trim

	Parent type
	form

	Class
	TextType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/TextType.html]

Inherited Options

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

max_length

type: integer default: null

If this option is not null, an attribute maxlength is added, which
is used by some browsers to limit the amount of text in a field.

This is just a browser validation, so data must still be validated
server-side.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped
via the trim() function when the data is bound. This guarantees that
if a value is submitted with extra whitespace, it will be removed before
the value is merged back onto the underlying object.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

textarea Field Type

Renders a textarea HTML element.

	Rendered as
	textarea tag

	Inherited
options
	
	attr

	data

	disabled

	empty_data

	error_bubbling

	error_mapping

	label

	label_attr

	mapped

	max_length

	read_only

	required

	trim

	Parent type
	text

	Class
	TextareaType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/TextareaType.html]

Inherited Options

These options inherit from the form type:

attr

type: array default: Empty array

If you want to add extra attributes to an HTML field representation
you can use the attr option. It’s an associative array with HTML attributes
as keys. This can be useful when you need to set a custom class for some widget:

$builder->add('body', 'textarea', array(
 'attr' => array('class' => 'tinymce'),
));

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

max_length

type: integer default: null

If this option is not null, an attribute maxlength is added, which
is used by some browsers to limit the amount of text in a field.

This is just a browser validation, so data must still be validated
server-side.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped
via the trim() function when the data is bound. This guarantees that
if a value is submitted with extra whitespace, it will be removed before
the value is merged back onto the underlying object.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

email Field Type

The email field is a text field that is rendered using the HTML5
<input type="email" /> tag.

	Rendered as
	input email field (a text box)

	Inherited
options
	
	data

	disabled

	empty_data

	error_bubbling

	error_mapping

	label

	label_attr

	mapped

	max_length

	read_only

	required

	trim

	Parent type
	text

	Class
	EmailType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/EmailType.html]

Inherited Options

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

max_length

type: integer default: null

If this option is not null, an attribute maxlength is added, which
is used by some browsers to limit the amount of text in a field.

This is just a browser validation, so data must still be validated
server-side.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped
via the trim() function when the data is bound. This guarantees that
if a value is submitted with extra whitespace, it will be removed before
the value is merged back onto the underlying object.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

integer Field Type

Renders an input “number” field. Basically, this is a text field that’s good
at handling data that’s in an integer form. The input number field looks
like a text box, except that - if the user’s browser supports HTML5 - it will
have some extra frontend functionality.

This field has different options on how to handle input values that aren’t
integers. By default, all non-integer values (e.g. 6.78) will round down (e.g. 6).

	Rendered as
	input number field

	Options
	
	grouping

	precision

	rounding_mode

	Inherited
options
	
	data

	disabled

	empty_data

	error_bubbling

	error_mapping

	invalid_message

	invalid_message_parameters

	label

	label_attr

	mapped

	read_only

	required

	Parent type
	form

	Class
	IntegerType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/IntegerType.html]

Field Options

grouping

type: integer default: false

This value is used internally as the NumberFormatter::GROUPING_USED value
when using PHP’s NumberFormatter class. Its documentation is non-existent,
but it appears that if you set this to true, numbers will be grouped with
a comma or period (depending on your locale): 12345.123 would display
as 12,345.123.

precision

type: integer default: Locale-specific (usually around 3)

This specifies how many decimals will be allowed until the field rounds
the submitted value (via rounding_mode). For example, if precision
is set to 2, a submitted value of 20.123 will be rounded to,
for example, 20.12 (depending on your rounding_mode).

rounding_mode

type: integer default: IntegerToLocalizedStringTransformer::ROUND_DOWN

By default, if the user enters a non-integer number, it will be rounded
down. There are several other rounding methods, and each is a constant
on the IntegerToLocalizedStringTransformer [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/DataTransformer/IntegerToLocalizedStringTransformer.html]:

	IntegerToLocalizedStringTransformer::ROUND_DOWN Rounding mode to
round towards zero.

	IntegerToLocalizedStringTransformer::ROUND_FLOOR Rounding mode to
round towards negative infinity.

	IntegerToLocalizedStringTransformer::ROUND_UP Rounding mode to round
away from zero.

	IntegerToLocalizedStringTransformer::ROUND_CEILING Rounding mode
to round towards positive infinity.

Inherited Options

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

invalid_message

type: string default: This value is not valid

This is the validation error message that’s used if the data entered into
this field doesn’t make sense (i.e. fails validation).

This might happen, for example, if the user enters a nonsense string into
a time field that cannot be converted
into a real time or if the user enters a string (e.g. apple) into a
number field.

Normal (business logic) validation (such as when setting a minimum length for
a field) should be set using validation messages with your validation rules
(reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to
include some variables in the string. This can be done by adding placeholders
to that option and including the variables in this option:

$builder->add('some_field', 'some_type', array(
 // ...
 'invalid_message' => 'You entered an invalid value - it should include %num% letters',
 'invalid_message_parameters' => array('%num%' => 6),
));

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

money Field Type

Renders an input text field and specializes in handling submitted “money”
data.

This field type allows you to specify a currency, whose symbol is rendered
next to the text field. There are also several other options for customizing
how the input and output of the data is handled.

	Rendered as
	input text field

	Options
	
	currency

	divisor

	grouping

	precision

	Inherited
options
	
	data

	disabled

	empty_data

	error_bubbling

	error_mapping

	invalid_message

	invalid_message_parameters

	label

	label_attr

	mapped

	read_only

	required

	Parent type
	form

	Class
	MoneyType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/MoneyType.html]

Field Options

currency

type: string default: EUR

Specifies the currency that the money is being specified in. This determines
the currency symbol that should be shown by the text box. Depending on
the currency - the currency symbol may be shown before or after the input
text field.

This can be any 3 letter ISO 4217 code [http://en.wikipedia.org/wiki/ISO_4217]. You can also set this to false to
hide the currency symbol.

divisor

type: integer default: 1

If, for some reason, you need to divide your starting value by a number
before rendering it to the user, you can use the divisor option.
For example:

$builder->add('price', 'money', array(
 'divisor' => 100,
));

In this case, if the price field is set to 9900, then the value
99 will actually be rendered to the user. When the user submits the
value 99, it will be multiplied by 100 and 9900 will ultimately
be set back on your object.

grouping

type: integer default: false

This value is used internally as the NumberFormatter::GROUPING_USED value
when using PHP’s NumberFormatter class. Its documentation is non-existent,
but it appears that if you set this to true, numbers will be grouped with
a comma or period (depending on your locale): 12345.123 would display
as 12,345.123.

precision

type: integer default: 2

For some reason, if you need some precision other than 2 decimal places,
you can modify this value. You probably won’t need to do this unless,
for example, you want to round to the nearest dollar (set the precision
to 0).

Inherited Options

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

invalid_message

type: string default: This value is not valid

This is the validation error message that’s used if the data entered into
this field doesn’t make sense (i.e. fails validation).

This might happen, for example, if the user enters a nonsense string into
a time field that cannot be converted
into a real time or if the user enters a string (e.g. apple) into a
number field.

Normal (business logic) validation (such as when setting a minimum length for
a field) should be set using validation messages with your validation rules
(reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to
include some variables in the string. This can be done by adding placeholders
to that option and including the variables in this option:

$builder->add('some_field', 'some_type', array(
 // ...
 'invalid_message' => 'You entered an invalid value - it should include %num% letters',
 'invalid_message_parameters' => array('%num%' => 6),
));

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

Form Variables

	Variable
	Type
	Usage

	money_pattern
	string
	The format to use to display the money, including the currency.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

number Field Type

Renders an input text field and specializes in handling number input. This
type offers different options for the precision, rounding, and grouping that
you want to use for your number.

	Rendered as
	input text field

	Options
	
	grouping

	precision

	rounding_mode

	Inherited
options
	
	data

	disabled

	empty_data

	error_bubbling

	error_mapping

	invalid_message

	invalid_message_parameters

	label

	label_attr

	mapped

	read_only

	required

	Parent type
	form

	Class
	NumberType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/NumberType.html]

Field Options

grouping

type: integer default: false

This value is used internally as the NumberFormatter::GROUPING_USED value
when using PHP’s NumberFormatter class. Its documentation is non-existent,
but it appears that if you set this to true, numbers will be grouped with
a comma or period (depending on your locale): 12345.123 would display
as 12,345.123.

precision

type: integer default: Locale-specific (usually around 3)

This specifies how many decimals will be allowed until the field rounds
the submitted value (via rounding_mode). For example, if precision
is set to 2, a submitted value of 20.123 will be rounded to,
for example, 20.12 (depending on your rounding_mode).

rounding_mode

type: integer default: IntegerToLocalizedStringTransformer::ROUND_HALFUP

If a submitted number needs to be rounded (based on the precision
option), you have several configurable options for that rounding. Each
option is a constant on the IntegerToLocalizedStringTransformer [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/DataTransformer/IntegerToLocalizedStringTransformer.html]:

	IntegerToLocalizedStringTransformer::ROUND_DOWN Rounding mode to
round towards zero.

	IntegerToLocalizedStringTransformer::ROUND_FLOOR Rounding mode to
round towards negative infinity.

	IntegerToLocalizedStringTransformer::ROUND_UP Rounding mode to round
away from zero.

	IntegerToLocalizedStringTransformer::ROUND_CEILING Rounding mode
to round towards positive infinity.

	IntegerToLocalizedStringTransformer::ROUND_HALFDOWN Rounding mode
to round towards “nearest neighbor” unless both neighbors are equidistant,
in which case round down.

	IntegerToLocalizedStringTransformer::ROUND_HALFEVEN Rounding mode
to round towards the “nearest neighbor” unless both neighbors are equidistant,
in which case, round towards the even neighbor.

	IntegerToLocalizedStringTransformer::ROUND_HALFUP Rounding mode to
round towards “nearest neighbor” unless both neighbors are equidistant,
in which case round up.

Inherited Options

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

invalid_message

type: string default: This value is not valid

This is the validation error message that’s used if the data entered into
this field doesn’t make sense (i.e. fails validation).

This might happen, for example, if the user enters a nonsense string into
a time field that cannot be converted
into a real time or if the user enters a string (e.g. apple) into a
number field.

Normal (business logic) validation (such as when setting a minimum length for
a field) should be set using validation messages with your validation rules
(reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to
include some variables in the string. This can be done by adding placeholders
to that option and including the variables in this option:

$builder->add('some_field', 'some_type', array(
 // ...
 'invalid_message' => 'You entered an invalid value - it should include %num% letters',
 'invalid_message_parameters' => array('%num%' => 6),
));

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

password Field Type

The password field renders an input password text box.

	Rendered as
	input password field

	Options
	
	always_empty

	Inherited
options
	
	disabled

	empty_data

	error_bubbling

	error_mapping

	label

	label_attr

	mapped

	max_length

	read_only

	required

	trim

	Parent type
	text

	Class
	PasswordType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/PasswordType.html]

Field Options

always_empty

type: Boolean default: true

If set to true, the field will always render blank, even if the corresponding
field has a value. When set to false, the password field will be rendered
with the value attribute set to its true value only upon submission.

Put simply, if for some reason you want to render your password field
with the password value already entered into the box, set this to false
and submit the form.

Inherited Options

These options inherit from the form type:

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

max_length

type: integer default: null

If this option is not null, an attribute maxlength is added, which
is used by some browsers to limit the amount of text in a field.

This is just a browser validation, so data must still be validated
server-side.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped
via the trim() function when the data is bound. This guarantees that
if a value is submitted with extra whitespace, it will be removed before
the value is merged back onto the underlying object.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

percent Field Type

The percent type renders an input text field and specializes in handling
percentage data. If your percentage data is stored as a decimal (e.g. .95),
you can use this field out-of-the-box. If you store your data as a number
(e.g. 95), you should set the type option to integer.

This field adds a percentage sign “%” after the input box.

	Rendered as
	input text field

	Options
	
	precision

	type

	Inherited
options
	
	data

	disabled

	empty_data

	error_bubbling

	error_mapping

	invalid_message

	invalid_message_parameters

	label

	label_attr

	mapped

	read_only

	required

	Parent type
	form

	Class
	PercentType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/PercentType.html]

Field Options

precision

type: integer default: 0

By default, the input numbers are rounded. To allow for more decimal
places, use this option.

type

type: string default: fractional

This controls how your data is stored on your object. For example, a percentage
corresponding to “55%”, might be stored as .55 or 55 on your
object. The two “types” handle these two cases:

	fractional
If your data is stored as a decimal (e.g. .55), use this type.
The data will be multiplied by 100 before being shown to the
user (e.g. 55). The submitted data will be divided by 100
on form submit so that the decimal value is stored (.55);

	integer
If your data is stored as an integer (e.g. 55), then use this option.
The raw value (55) is shown to the user and stored on your object.
Note that this only works for integer values.

Inherited Options

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

invalid_message

type: string default: This value is not valid

This is the validation error message that’s used if the data entered into
this field doesn’t make sense (i.e. fails validation).

This might happen, for example, if the user enters a nonsense string into
a time field that cannot be converted
into a real time or if the user enters a string (e.g. apple) into a
number field.

Normal (business logic) validation (such as when setting a minimum length for
a field) should be set using validation messages with your validation rules
(reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to
include some variables in the string. This can be done by adding placeholders
to that option and including the variables in this option:

$builder->add('some_field', 'some_type', array(
 // ...
 'invalid_message' => 'You entered an invalid value - it should include %num% letters',
 'invalid_message_parameters' => array('%num%' => 6),
));

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

search Field Type

This renders an <input type="search" /> field, which is a text box with
special functionality supported by some browsers.

Read about the input search field at DiveIntoHTML5.info [http://diveintohtml5.info/forms.html#type-search]

	Rendered as
	input search field

	Inherited
options
	
	disabled

	empty_data

	error_bubbling

	error_mapping

	label

	label_attr

	mapped

	max_length

	read_only

	required

	trim

	Parent type
	text

	Class
	SearchType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/SearchType.html]

Inherited Options

These options inherit from the form type:

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

max_length

type: integer default: null

If this option is not null, an attribute maxlength is added, which
is used by some browsers to limit the amount of text in a field.

This is just a browser validation, so data must still be validated
server-side.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped
via the trim() function when the data is bound. This guarantees that
if a value is submitted with extra whitespace, it will be removed before
the value is merged back onto the underlying object.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

url Field Type

The url field is a text field that prepends the submitted value with
a given protocol (e.g. http://) if the submitted value doesn’t already
have a protocol.

	Rendered as
	input url field

	Options
	
	default_protocol

	Inherited
options
	
	data

	disabled

	empty_data

	error_bubbling

	error_mapping

	label

	label_attr

	mapped

	max_length

	read_only

	required

	trim

	Parent type
	text

	Class
	UrlType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/UrlType.html]

Field Options

default_protocol

type: string default: http

If a value is submitted that doesn’t begin with some protocol (e.g. http://,
ftp://, etc), this protocol will be prepended to the string when
the data is submitted to the form.

Inherited Options

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

max_length

type: integer default: null

If this option is not null, an attribute maxlength is added, which
is used by some browsers to limit the amount of text in a field.

This is just a browser validation, so data must still be validated
server-side.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped
via the trim() function when the data is bound. This guarantees that
if a value is submitted with extra whitespace, it will be removed before
the value is merged back onto the underlying object.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

choice Field Type

A multi-purpose field used to allow the user to “choose” one or more options.
It can be rendered as a select tag, radio buttons, or checkboxes.

To use this field, you must specify either the choice_list or choices
option.

	Rendered as
	can be various tags (see below)

	Options
	
	choices

	choice_list

	empty_value

	expanded

	multiple

	preferred_choices

	Overridden
options
	
	compound

	empty_data

	error_bubbling

	Inherited
options
	
	by_reference

	data

	disabled

	error_mapping

	inherit_data

	label

	label_attr

	mapped

	read_only

	required

	Parent type
	form

	Class
	ChoiceType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/ChoiceType.html]

Example Usage

The easiest way to use this field is to specify the choices directly via the
choices option. The key of the array becomes the value that’s actually
set on your underlying object (e.g. m), while the value is what the
user sees on the form (e.g. Male).

$builder->add('gender', 'choice', array(
 'choices' => array('m' => 'Male', 'f' => 'Female'),
 'required' => false,
));

By setting multiple to true, you can allow the user to choose multiple
values. The widget will be rendered as a multiple select tag or a series
of checkboxes depending on the expanded option:

$builder->add('availability', 'choice', array(
 'choices' => array(
 'morning' => 'Morning',
 'afternoon' => 'Afternoon',
 'evening' => 'Evening',
),
 'multiple' => true,
));

You can also use the choice_list option, which takes an object that can
specify the choices for your widget.

Select Tag, Checkboxes or Radio Buttons

This field may be rendered as one of several different HTML fields, depending
on the expanded and multiple options:

	Element Type
	Expanded
	Multiple

	select tag
	false
	false

	select tag (with multiple attribute)
	false
	true

	radio buttons
	true
	false

	checkboxes
	true
	true

Field Options

choices

type: array default: array()

This is the most basic way to specify the choices that should be used
by this field. The choices option is an array, where the array key
is the item value and the array value is the item’s label:

$builder->add('gender', 'choice', array(
 'choices' => array('m' => 'Male', 'f' => 'Female')
));

小技巧

When the values to choose from are not integers or strings (but e.g. floats
or booleans), you should use the choice_list option instead. With this
option you are able to keep the original data format which is important
to ensure that the user input is validated properly and useless database
updates caused by a data type mismatch are avoided.

choice_list

type: ChoiceListInterface [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/ChoiceList/ChoiceListInterface.html]

This is one way of specifying the options to be used for this field.
The choice_list option must be an instance of the ChoiceListInterface.
For more advanced cases, a custom class that implements the interface
can be created to supply the choices.

With this option you can also allow float values to be selected as data.

use Symfony\Component\Form\Extension\Core\ChoiceList\ChoiceList;

// ...
$builder->add('status', 'choice', array(
 'choice_list' => new ChoiceList(array(1, 0.5), array('Full', 'Half'))
));

empty_value

2.3 新版功能: Since Symfony 2.3, empty values are also supported if the expanded
option is set to true.

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if the
multiple option is set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending
on the multiple value). If false, a select element will be rendered.

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed
to choosing just one option). Depending on the value of the expanded
option, this will render either a select tag or checkboxes if true and
a select tag or radio buttons if false. The returned value will be an array.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be
moved to the top of the select menu. The following would move the “Baz” option
to the top, with a visual separator between it and the rest of the options:

$builder->add('foo_choices', 'choice', array(
 'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
 'preferred_choices' => array('baz'),
));

Note that preferred choices are only meaningful when rendering as a select
element (i.e. expanded is false). The preferred choices and normal choices
are separated visually by a set of dotted lines (i.e. -------------------).
This can be customized when rendering the field:

	Twig{{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

	PHP<?php echo $view['form']->widget($form['foo_choices'], array('separator' => '=====')) ?>

Overridden Options

compound

type: boolean default: same value as expanded option

This option specifies if a form is compound. The value is by default
overridden by the value of the expanded option.

empty_data

type: mixed

The actual default value of this option depends on other field options:

	If multiple is false and expanded is false, then ''
(empty string);

	Otherwise array() (empty array).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: boolean default: false

Set that error on this field must be attached to the field instead of
the parent field (the form in most cases).

Inherited Options

These options inherit from the form type:

by_reference

type: Boolean default: true

In most cases, if you have a name field, then you expect setName()
to be called on the underlying object. In some cases, however, setName()
may not be called. Setting by_reference ensures that the setter is
called in all cases.

To explain this further, here’s a simple example:

$builder = $this->createFormBuilder($article);
$builder
 ->add('title', 'text')
 ->add(
 $builder->create('author', 'form', array('by_reference' => ?))
 ->add('name', 'text')
 ->add('email', 'email')
)

If by_reference is true, the following takes place behind the scenes
when you call submit() (or handleRequest()) on the form:

$article->setTitle('...');
$article->getAuthor()->setName('...');
$article->getAuthor()->setEmail('...');

Notice that setAuthor() is not called. The author is modified by reference.

If you set by_reference to false, submitting looks like this:

$article->setTitle('...');
$author = $article->getAuthor();
$author->setName('...');
$author->setEmail('...');
$article->setAuthor($author);

So, all that by_reference=false really does is force the framework to
call the setter on the parent object.

Similarly, if you’re using the collection
form type where your underlying collection data is an object (like with Doctrine’s
ArrayCollection), then by_reference must be set to false if you
need the adder and remover (e.g. addAuthor() and removeAuthor()) to be called.

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

inherit_data

2.3 新版功能: The inherit_data option was introduced in Symfony 2.3. Before, it
was known as virtual.

type: boolean default: false

This option determines if the form will inherit data from its parent form.
This can be useful if you have a set of fields that are duplicated across
multiple forms. See How to Reduce Code Duplication with “inherit_data”.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

Field Variables

	Variable
	Type
	Usage

	multiple
	Boolean
	The value of the multiple option.

	expanded
	Boolean
	The value of the expanded option.

	preferred_choices
	array
	A nested array containing the ChoiceView objects of
choices which should be presented to the user with priority.

	choices
	array
	A nested array containing the ChoiceView objects of
the remaining choices.

	separator
	string
	The separator to use between choice groups.

	empty_value
	mixed
	The empty value if not already in the list, otherwise
null.

	is_selected
	callable
	A callable which takes a ChoiceView and the selected value(s)
and returns whether the choice is in the selected value(s).

	empty_value_in_choices
	Boolean
	Whether the empty value is in the choice list.

小技巧

It’s significantly faster to use the selectedchoice(selected_value) test
instead when using Twig.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

entity Field Type

A special choice field that’s designed to load options from a Doctrine
entity. For example, if you have a Category entity, you could use this
field to display a select field of all, or some, of the Category
objects from the database.

	Rendered as
	can be various tags (see Select Tag, Checkboxes or Radio Buttons)

	Options
	
	class

	data_class

	em

	group_by

	property

	query_builder

	Overridden
Options
	
	choices

	choice_list

	Inherited
options
	from the choice type:

	empty_value

	expanded

	multiple

	preferred_choices

from the form type:

	data

	disabled

	empty_data

	error_bubbling

	error_mapping

	label

	label_attr

	mapped

	read_only

	required

	Parent type
	choice

	Class
	EntityType [http://api.symfony.com/master/Symfony/Bridge/Doctrine/Form/Type/EntityType.html]

Basic Usage

The entity type has just one required option: the entity which should
be listed inside the choice field:

$builder->add('users', 'entity', array(
 'class' => 'AcmeHelloBundle:User',
 'property' => 'username',
));

In this case, all User objects will be loaded from the database and rendered
as either a select tag, a set or radio buttons or a series of checkboxes
(this depends on the multiple and expanded values).
If the entity object does not have a __toString() method the property option
is needed.

Using a Custom Query for the Entities

If you need to specify a custom query to use when fetching the entities (e.g.
you only want to return some entities, or need to order them), use the query_builder
option. The easiest way to use the option is as follows:

use Doctrine\ORM\EntityRepository;
// ...

$builder->add('users', 'entity', array(
 'class' => 'AcmeHelloBundle:User',
 'query_builder' => function(EntityRepository $er) {
 return $er->createQueryBuilder('u')
 ->orderBy('u.username', 'ASC');
 },
));

Using Choices

If you already have the exact collection of entities that you want included
in the choice element, you can simply pass them via the choices key.
For example, if you have a $group variable (passed into your form perhaps
as a form option) and getUsers returns a collection of User entities,
then you can supply the choices option directly:

$builder->add('users', 'entity', array(
 'class' => 'AcmeHelloBundle:User',
 'choices' => $group->getUsers(),
));

Select Tag, Checkboxes or Radio Buttons

This field may be rendered as one of several different HTML fields, depending
on the expanded and multiple options:

	Element Type
	Expanded
	Multiple

	select tag
	false
	false

	select tag (with multiple attribute)
	false
	true

	radio buttons
	true
	false

	checkboxes
	true
	true

Field Options

class

type: string required

The class of your entity (e.g. AcmeStoreBundle:Category). This can be
a fully-qualified class name (e.g. Acme\StoreBundle\Entity\Category)
or the short alias name (as shown prior).

data_class

type: string

This option is used to set the appropriate data mapper to be used by the form,
so you can use it for any form field type which requires an object.

$builder->add('media', 'sonata_media_type', array(
 'data_class' => 'Acme\DemoBundle\Entity\Media',
));

em

type: string default: the default entity manager

If specified, the specified entity manager will be used to load the choices
instead of the default entity manager.

group_by

type: string

This is a property path (e.g. author.name) used to organize the
available choices in groups. It only works when rendered as a select tag
and does so by adding optgroup elements around options. Choices that do not
return a value for this property path are rendered directly under the
select tag, without a surrounding optgroup.

property

type: string

This is the property that should be used for displaying the entities
as text in the HTML element. If left blank, the entity object will be
cast into a string and so must have a __toString() method.

注解

The property option is the property path used to display the option. So you
can use anything supported by the
PropertyAccessor component

For example, if the translations property is actually an associative array of
objects, each with a name property, then you could do this:

$builder->add('gender', 'entity', array(
 'class' => 'MyBundle:Gender',
 'property' => 'translations[en].name',
));

query_builder

type: Doctrine\ORM\QueryBuilder or a Closure

If specified, this is used to query the subset of options (and their
order) that should be used for the field. The value of this option can
either be a QueryBuilder object or a Closure. If using a Closure,
it should take a single argument, which is the EntityRepository of
the entity.

Overridden Options

choice_list

default: EntityChoiceList [http://api.symfony.com/master/Symfony/Bridge/Doctrine/Form/ChoiceList/EntityChoiceList.html]

The purpose of the entity type is to create and configure this EntityChoiceList
for you, by using all of the above options. If you need to override this
option, you may just consider using the choice Field Type
directly.

choices

type: array | \Traversable default: null

Instead of allowing the class and query_builder options to fetch the
entities to include for you, you can pass the choices option directly.
See Using Choices.

Inherited Options

These options inherit from the choice type:

empty_value

2.3 新版功能: Since Symfony 2.3, empty values are also supported if the expanded
option is set to true.

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if the
multiple option is set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending
on the multiple value). If false, a select element will be rendered.

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed
to choosing just one option). Depending on the value of the expanded
option, this will render either a select tag or checkboxes if true and
a select tag or radio buttons if false. The returned value will be an array.

注解

If you are working with a collection of Doctrine entities, it will be helpful
to read the documentation for the collection Field Type
as well. In addition, there is a complete example in the cookbook article
How to Embed a Collection of Forms.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be
moved to the top of the select menu. The following would move the “Baz” option
to the top, with a visual separator between it and the rest of the options:

$builder->add('foo_choices', 'choice', array(
 'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
 'preferred_choices' => array('baz'),
));

Note that preferred choices are only meaningful when rendering as a select
element (i.e. expanded is false). The preferred choices and normal choices
are separated visually by a set of dotted lines (i.e. -------------------).
This can be customized when rendering the field:

	Twig{{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

	PHP<?php echo $view['form']->widget($form['foo_choices'], array('separator' => '=====')) ?>

注解

This option expects an array of entity objects, unlike the choice field
that requires an array of keys.

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The actual default value of this option depends on other field options:

	If multiple is false and expanded is false, then ''
(empty string);

	Otherwise array() (empty array).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

country Field Type

The country type is a subset of the ChoiceType that displays countries
of the world. As an added bonus, the country names are displayed in the language
of the user.

The “value” for each country is the two-letter country code.

注解

The locale of your user is guessed using Locale::getDefault() [http://php.net/manual/en/locale.getdefault.php]

Unlike the choice type, you don’t need to specify a choices or
choice_list option as the field type automatically uses all of the countries
of the world. You can specify either of these options manually, but then
you should just use the choice type directly.

	Rendered as
	can be various tags (see Select Tag, Checkboxes or Radio Buttons)

	Overridden
Options
	
	choices

	Inherited
options
	from the choice type

	empty_value

	error_bubbling

	error_mapping

	expanded

	multiple

	preferred_choices

from the form type

	data

	disabled

	empty_data

	label

	label_attr

	mapped

	read_only

	required

	Parent type
	choice

	Class
	CountryType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/CountryType.html]

Overridden Options

choices

default: Symfony\Component\Intl\Intl::getRegionBundle()->getCountryNames()

The country type defaults the choices option to the whole list of countries.
The locale is used to translate the countries names.

Inherited Options

These options inherit from the choice type:

empty_value

2.3 新版功能: Since Symfony 2.3, empty values are also supported if the expanded
option is set to true.

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if the
multiple option is set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending
on the multiple value). If false, a select element will be rendered.

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed
to choosing just one option). Depending on the value of the expanded
option, this will render either a select tag or checkboxes if true and
a select tag or radio buttons if false. The returned value will be an array.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be
moved to the top of the select menu. The following would move the “Baz” option
to the top, with a visual separator between it and the rest of the options:

$builder->add('foo_choices', 'choice', array(
 'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
 'preferred_choices' => array('baz'),
));

Note that preferred choices are only meaningful when rendering as a select
element (i.e. expanded is false). The preferred choices and normal choices
are separated visually by a set of dotted lines (i.e. -------------------).
This can be customized when rendering the field:

	Twig{{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

	PHP<?php echo $view['form']->widget($form['foo_choices'], array('separator' => '=====')) ?>

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The actual default value of this option depends on other field options:

	If multiple is false and expanded is false, then ''
(empty string);

	Otherwise array() (empty array).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

language Field Type

The language type is a subset of the ChoiceType that allows the user
to select from a large list of languages. As an added bonus, the language names
are displayed in the language of the user.

The “value” for each language is the Unicode language identifier used in
the International Components for Unicode [http://site.icu-project.org] (e.g. fr or zh_Hant).

注解

The locale of your user is guessed using Locale::getDefault() [http://php.net/manual/en/locale.getdefault.php]

Unlike the choice type, you don’t need to specify a choices or
choice_list option as the field type automatically uses a large list
of languages. You can specify either of these options manually, but then
you should just use the choice type directly.

	Rendered as
	can be various tags (see Select Tag, Checkboxes or Radio Buttons)

	Overridden
Options
	
	choices

	Inherited
options
	from the choice type

	empty_value

	error_bubbling

	error_mapping

	expanded

	multiple

	preferred_choices

from the form type

	data

	disabled

	empty_data

	label

	label_attr

	mapped

	read_only

	required

	Parent type
	choice

	Class
	LanguageType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/LanguageType.html]

Overridden Options

choices

default: Symfony\Component\Intl\Intl::getLanguageBundle()->getLanguageNames().

The choices option defaults to all languages.
The default locale is used to translate the languages names.

Inherited Options

These options inherit from the choice type:

empty_value

2.3 新版功能: Since Symfony 2.3, empty values are also supported if the expanded
option is set to true.

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if the
multiple option is set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending
on the multiple value). If false, a select element will be rendered.

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed
to choosing just one option). Depending on the value of the expanded
option, this will render either a select tag or checkboxes if true and
a select tag or radio buttons if false. The returned value will be an array.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be
moved to the top of the select menu. The following would move the “Baz” option
to the top, with a visual separator between it and the rest of the options:

$builder->add('foo_choices', 'choice', array(
 'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
 'preferred_choices' => array('baz'),
));

Note that preferred choices are only meaningful when rendering as a select
element (i.e. expanded is false). The preferred choices and normal choices
are separated visually by a set of dotted lines (i.e. -------------------).
This can be customized when rendering the field:

	Twig{{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

	PHP<?php echo $view['form']->widget($form['foo_choices'], array('separator' => '=====')) ?>

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The actual default value of this option depends on other field options:

	If multiple is false and expanded is false, then ''
(empty string);

	Otherwise array() (empty array).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

locale Field Type

The locale type is a subset of the ChoiceType that allows the user
to select from a large list of locales (language+country). As an added bonus,
the locale names are displayed in the language of the user.

The “value” for each locale is either the two letter ISO 639-1 [http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes] language
code (e.g. fr), or the language code followed by an underscore (_),
then the ISO 3166-1 alpha-2 [http://en.wikipedia.org/wiki/ISO_3166-1#Current_codes] country code (e.g. fr_FR
for French/France).

注解

The locale of your user is guessed using Locale::getDefault() [http://php.net/manual/en/locale.getdefault.php]

Unlike the choice type, you don’t need to specify a choices or
choice_list option as the field type automatically uses a large list
of locales. You can specify either of these options manually, but then
you should just use the choice type directly.

	Rendered as
	can be various tags (see Select Tag, Checkboxes or Radio Buttons)

	Overridden
Options
	
	choices

	Inherited
options
	from the choice type

	empty_value

	error_bubbling

	error_mapping

	expanded

	multiple

	preferred_choices

from the form type

	data

	disabled

	empty_data

	label

	label_attr

	mapped

	read_only

	required

	Parent type
	choice

	Class
	LocaleType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/LocaleType.html]

Overridden Options

choices

default: Symfony\Component\Intl\Intl::getLocaleBundle()->getLocaleNames()

The choices option defaults to all locales. It uses the default locale to
specify the language.

Inherited Options

These options inherit from the choice type:

empty_value

2.3 新版功能: Since Symfony 2.3, empty values are also supported if the expanded
option is set to true.

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if the
multiple option is set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending
on the multiple value). If false, a select element will be rendered.

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed
to choosing just one option). Depending on the value of the expanded
option, this will render either a select tag or checkboxes if true and
a select tag or radio buttons if false. The returned value will be an array.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be
moved to the top of the select menu. The following would move the “Baz” option
to the top, with a visual separator between it and the rest of the options:

$builder->add('foo_choices', 'choice', array(
 'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
 'preferred_choices' => array('baz'),
));

Note that preferred choices are only meaningful when rendering as a select
element (i.e. expanded is false). The preferred choices and normal choices
are separated visually by a set of dotted lines (i.e. -------------------).
This can be customized when rendering the field:

	Twig{{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

	PHP<?php echo $view['form']->widget($form['foo_choices'], array('separator' => '=====')) ?>

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The actual default value of this option depends on other field options:

	If multiple is false and expanded is false, then ''
(empty string);

	Otherwise array() (empty array).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

timezone Field Type

The timezone type is a subset of the ChoiceType that allows the user
to select from all possible timezones.

The “value” for each timezone is the full timezone name, such as America/Chicago
or Europe/Istanbul.

Unlike the choice type, you don’t need to specify a choices or
choice_list option as the field type automatically uses a large list
of timezones. You can specify either of these options manually, but then
you should just use the choice type directly.

	Rendered as
	can be various tags (see Select Tag, Checkboxes or Radio Buttons)

	Overridden
Options
	
	choice_list

	Inherited
options
	from the choice type

	empty_value

	expanded

	multiple

	preferred_choices

from the form type

	data

	disabled

	empty_data

	error_bubbling

	error_mapping

	label

	label_attr

	mapped

	read_only

	required

	Parent type
	choice

	Class
	TimezoneType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/TimezoneType.html]

Overridden Options

choice_list

default: TimezoneChoiceList [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/ChoiceList/TimezoneChoiceList.html]

The Timezone type defaults the choice_list to all timezones returned by
DateTimeZone::listIdentifiers() [http://php.net/manual/en/datetimezone.listidentifiers.php], broken down by continent.

Inherited Options

These options inherit from the choice type:

empty_value

2.3 新版功能: Since Symfony 2.3, empty values are also supported if the expanded
option is set to true.

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if the
multiple option is set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending
on the multiple value). If false, a select element will be rendered.

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed
to choosing just one option). Depending on the value of the expanded
option, this will render either a select tag or checkboxes if true and
a select tag or radio buttons if false. The returned value will be an array.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be
moved to the top of the select menu. The following would move the “Baz” option
to the top, with a visual separator between it and the rest of the options:

$builder->add('foo_choices', 'choice', array(
 'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
 'preferred_choices' => array('baz'),
));

Note that preferred choices are only meaningful when rendering as a select
element (i.e. expanded is false). The preferred choices and normal choices
are separated visually by a set of dotted lines (i.e. -------------------).
This can be customized when rendering the field:

	Twig{{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

	PHP<?php echo $view['form']->widget($form['foo_choices'], array('separator' => '=====')) ?>

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The actual default value of this option depends on other field options:

	If multiple is false and expanded is false, then ''
(empty string);

	Otherwise array() (empty array).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

currency Field Type

The currency type is a subset of the
choice type that allows the user to
select from a large list of 3-letter ISO 4217 [http://en.wikipedia.org/wiki/ISO_4217] currencies.

Unlike the choice type, you don’t need to specify a choices or
choice_list option as the field type automatically uses a large list of
currencies. You can specify either of these options manually, but then you
should just use the choice type directly.

	Rendered as
	can be various tags (see Select Tag, Checkboxes or Radio Buttons)

	Overridden
Options
	
	choices

	Inherited
options
	from the choice type

	empty_value

	error_bubbling

	expanded

	multiple

	preferred_choices

from the form type

	data

	disabled

	empty_data

	label

	label_attr

	mapped

	read_only

	required

	Parent type
	choice

	Class
	CurrencyType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/CurrencyType.html]

Overridden Options

choices

default: Symfony\Component\Intl\Intl::getCurrencyBundle()->getCurrencyNames()

The choices option defaults to all currencies.

Inherited Options

These options inherit from the choice type:

empty_value

2.3 新版功能: Since Symfony 2.3, empty values are also supported if the expanded
option is set to true.

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if the
multiple option is set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

expanded

type: Boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending
on the multiple value). If false, a select element will be rendered.

multiple

type: Boolean default: false

If true, the user will be able to select multiple options (as opposed
to choosing just one option). Depending on the value of the expanded
option, this will render either a select tag or checkboxes if true and
a select tag or radio buttons if false. The returned value will be an array.

preferred_choices

type: array default: array()

If this option is specified, then a sub-set of all of the options will be
moved to the top of the select menu. The following would move the “Baz” option
to the top, with a visual separator between it and the rest of the options:

$builder->add('foo_choices', 'choice', array(
 'choices' => array('foo' => 'Foo', 'bar' => 'Bar', 'baz' => 'Baz'),
 'preferred_choices' => array('baz'),
));

Note that preferred choices are only meaningful when rendering as a select
element (i.e. expanded is false). The preferred choices and normal choices
are separated visually by a set of dotted lines (i.e. -------------------).
This can be customized when rendering the field:

	Twig{{ form_widget(form.foo_choices, { 'separator': '=====' }) }}

	PHP<?php echo $view['form']->widget($form['foo_choices'], array('separator' => '=====')) ?>

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The actual default value of this option depends on other field options:

	If multiple is false and expanded is false, then ''
(empty string);

	Otherwise array() (empty array).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

date Field Type

A field that allows the user to modify date information via a variety of
different HTML elements.

The underlying data used for this field type can be a DateTime object,
a string, a timestamp or an array. As long as the input option is set
correctly, the field will take care of all of the details.

The field can be rendered as a single text box, three text boxes (month,
day, and year) or three select boxes (see the widget option).

	Underlying Data Type
	can be DateTime, string, timestamp, or array (see the input option)

	Rendered as
	single text box or three select fields

	Options
	
	days

	empty_value

	format

	input

	model_timezone

	months

	view_timezone

	widget

	years

	Overridden Options
	
	by_reference

	error_bubbling

	Inherited
options
	
	data

	disabled

	error_mapping

	inherit_data

	invalid_message

	invalid_message_parameters

	mapped

	read_only

	Parent type
	form

	Class
	DateType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/DateType.html]

Basic Usage

This field type is highly configurable, but easy to use. The most important
options are input and widget.

Suppose that you have a publishedAt field whose underlying date is a
DateTime object. The following configures the date type for that
field as three different choice fields:

$builder->add('publishedAt', 'date', array(
 'input' => 'datetime',
 'widget' => 'choice',
));

The input option must be changed to match the type of the underlying
date data. For example, if the publishedAt field’s data were a unix timestamp,
you’d need to set input to timestamp:

$builder->add('publishedAt', 'date', array(
 'input' => 'timestamp',
 'widget' => 'choice',
));

The field also supports an array and string as valid input option
values.

Field Options

days

type: array default: 1 to 31

List of days available to the day field type. This option is only relevant
when the widget option is set to choice:

'days' => range(1,31)

empty_value

type: string or array

If your widget option is set to choice, then this field will be represented
as a series of select boxes. The empty_value option can be used to
add a “blank” entry to the top of each select box:

$builder->add('dueDate', 'date', array(
 'empty_value' => '',
));

Alternatively, you can specify a string to be displayed for the “blank” value:

$builder->add('dueDate', 'date', array(
 'empty_value' => array('year' => 'Year', 'month' => 'Month', 'day' => 'Day')
));

format

type: integer or string default: IntlDateFormatter::MEDIUM [http://www.php.net/manual/en/class.intldateformatter.php#intl.intldateformatter-constants]
(or yyyy-MM-dd if widget is single_text)

Option passed to the IntlDateFormatter class, used to transform user input
into the proper format. This is critical when the widget option is
set to single_text, and will define how the user will input the data.
By default, the format is determined based on the current user locale: meaning
that the expected format will be different for different users. You
can override it by passing the format as a string.

For more information on valid formats, see Date/Time Format Syntax [http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax]:

$builder->add('date_created', 'date', array(
 'widget' => 'single_text',
 // this is actually the default format for single_text
 'format' => 'yyyy-MM-dd',
));

注解

If you want your field to be rendered as an HTML5 “date” field, you have to
use a single_text widget with the yyyy-MM-dd format (the RFC 3339 [http://tools.ietf.org/html/rfc3339]
format) which is the default value if you use the single_text widget.

input

type: string default: datetime

The format of the input data - i.e. the format that the date is stored on
your underlying object. Valid values are:

	string (e.g. 2011-06-05)

	datetime (a DateTime object)

	array (e.g. array('year' => 2011, 'month' => 06, 'day' => 05))

	timestamp (e.g. 1307232000)

The value that comes back from the form will also be normalized back into
this format.

警告

If timestamp is used, DateType is limited to dates between
Fri, 13 Dec 1901 20:45:54 GMT and Tue, 19 Jan 2038 03:14:07 GMT on 32bit
systems. This is due to a limitation in PHP itself [http://php.net/manual/en/function.date.php#refsect1-function.date-changelog].

model_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the
PHP supported timezones [http://php.net/manual/en/timezones.php].

months

type: array default: 1 to 12

List of months available to the month field type. This option is only relevant
when the widget option is set to choice.

view_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also
the data that the user submits). This must be one of the PHP supported timezones [http://php.net/manual/en/timezones.php].

widget

type: string default: choice

The basic way in which this field should be rendered. Can be one of the following:

	choice: renders three select inputs. The order of the selects is defined
in the format option.

	text: renders a three field input of type text (month, day, year).

	single_text: renders a single input of type date. User’s input is
validated based on the format option.

years

type: array default: five years before to five years after the
current year

List of years available to the year field type. This option is only relevant
when the widget option is set to choice.

Overridden Options

by_reference

default: false

The DateTime classes are treated as immutable objects.

error_bubbling

default: false

Inherited Options

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

inherit_data

2.3 新版功能: The inherit_data option was introduced in Symfony 2.3. Before, it
was known as virtual.

type: boolean default: false

This option determines if the form will inherit data from its parent form.
This can be useful if you have a set of fields that are duplicated across
multiple forms. See How to Reduce Code Duplication with “inherit_data”.

invalid_message

type: string default: This value is not valid

This is the validation error message that’s used if the data entered into
this field doesn’t make sense (i.e. fails validation).

This might happen, for example, if the user enters a nonsense string into
a time field that cannot be converted
into a real time or if the user enters a string (e.g. apple) into a
number field.

Normal (business logic) validation (such as when setting a minimum length for
a field) should be set using validation messages with your validation rules
(reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to
include some variables in the string. This can be done by adding placeholders
to that option and including the variables in this option:

$builder->add('some_field', 'some_type', array(
 // ...
 'invalid_message' => 'You entered an invalid value - it should include %num% letters',
 'invalid_message_parameters' => array('%num%' => 6),
));

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

Field Variables

	Variable
	Type
	Usage

	widget
	mixed
	The value of the widget option.

	type
	string
	Only present when widget is single_text and HTML5 is activated,
contains the input type to use (datetime, date or time).

	date_pattern
	string
	A string with the date format to use.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

datetime Field Type

This field type allows the user to modify data that represents a specific
date and time (e.g. 1984-06-05 12:15:30).

Can be rendered as a text input or select tags. The underlying format of the
data can be a DateTime object, a string, a timestamp or an array.

	Underlying Data Type
	can be DateTime, string, timestamp, or array (see the input option)

	Rendered as
	single text box or three select fields

	Options
	
	date_format

	date_widget

	days

	empty_value

	format

	hours

	input

	minutes

	model_timezone

	months

	seconds

	time_widget

	view_timezone

	widget

	with_minutes

	with_seconds

	years

	Inherited
options
	
	data

	disabled

	inherit_data

	invalid_message

	invalid_message_parameters

	mapped

	read_only

	Parent type
	form

	Class
	DateTimeType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/DateTimeType.html]

Field Options

date_format

type: integer or string default: IntlDateFormatter::MEDIUM

Defines the format option that will be passed down to the date field.
See the date type’s format option
for more details.

date_widget

type: string default: choice

Defines the widget option for the date type

days

type: array default: 1 to 31

List of days available to the day field type. This option is only relevant
when the widget option is set to choice:

'days' => range(1,31)

empty_value

2.3 新版功能: Since Symfony 2.3, empty values are also supported if the expanded
option is set to true.

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if the
multiple option is set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

format

type: string default: Symfony\Component\Form\Extension\Core\Type\DateTimeType::HTML5_FORMAT

If the widget option is set to single_text, this option specifies
the format of the input, i.e. how Symfony will interpret the given input
as a datetime string. It defaults to the RFC 3339 [http://tools.ietf.org/html/rfc3339] format which is used
by the HTML5 datetime field. Keeping the default value will cause the
field to be rendered as an input field with type="datetime".

hours

type: array default: 0 to 23

List of hours available to the hours field type. This option is only relevant
when the widget option is set to choice.

input

type: string default: datetime

The format of the input data - i.e. the format that the date is stored on
your underlying object. Valid values are:

	string (e.g. 2011-06-05 12:15:00)

	datetime (a DateTime object)

	array (e.g. array(2011, 06, 05, 12, 15, 0))

	timestamp (e.g. 1307276100)

The value that comes back from the form will also be normalized back into
this format.

警告

If timestamp is used, DateType is limited to dates between
Fri, 13 Dec 1901 20:45:54 GMT and Tue, 19 Jan 2038 03:14:07 GMT on 32bit
systems. This is due to a limitation in PHP itself [http://php.net/manual/en/function.date.php#refsect1-function.date-changelog].

minutes

type: array default: 0 to 59

List of minutes available to the minutes field type. This option is only
relevant when the widget option is set to choice.

model_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the
PHP supported timezones [http://php.net/manual/en/timezones.php].

months

type: array default: 1 to 12

List of months available to the month field type. This option is only relevant
when the widget option is set to choice.

seconds

type: array default: 0 to 59

List of seconds available to the seconds field type. This option is only
relevant when the widget option is set to choice.

time_widget

type: string default: choice

Defines the widget option for the time type

view_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also
the data that the user submits). This must be one of the PHP supported timezones [http://php.net/manual/en/timezones.php].

widget

type: string default: null

Defines the widget option for both the date
type and time type. This can be overridden with
the date_widget and time_widget options.

with_minutes

2.2 新版功能: The with_minutes option was introduced in Symfony 2.2.

type: Boolean default: true

Whether or not to include minutes in the input. This will result in an additional
input to capture minutes.

with_seconds

type: Boolean default: false

Whether or not to include seconds in the input. This will result in an additional
input to capture seconds.

years

type: array default: five years before to five years after the
current year

List of years available to the year field type. This option is only relevant
when the widget option is set to choice.

Inherited Options

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

inherit_data

2.3 新版功能: The inherit_data option was introduced in Symfony 2.3. Before, it
was known as virtual.

type: boolean default: false

This option determines if the form will inherit data from its parent form.
This can be useful if you have a set of fields that are duplicated across
multiple forms. See How to Reduce Code Duplication with “inherit_data”.

invalid_message

type: string default: This value is not valid

This is the validation error message that’s used if the data entered into
this field doesn’t make sense (i.e. fails validation).

This might happen, for example, if the user enters a nonsense string into
a time field that cannot be converted
into a real time or if the user enters a string (e.g. apple) into a
number field.

Normal (business logic) validation (such as when setting a minimum length for
a field) should be set using validation messages with your validation rules
(reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to
include some variables in the string. This can be done by adding placeholders
to that option and including the variables in this option:

$builder->add('some_field', 'some_type', array(
 // ...
 'invalid_message' => 'You entered an invalid value - it should include %num% letters',
 'invalid_message_parameters' => array('%num%' => 6),
));

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

Field Variables

	Variable
	Type
	Usage

	widget
	mixed
	The value of the widget option.

	type
	string
	Only present when widget is single_text and HTML5 is activated,
contains the input type to use (datetime, date or time).

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

time Field Type

A field to capture time input.

This can be rendered as a text field, a series of text fields (e.g. hour,
minute, second) or a series of select fields. The underlying data can be stored
as a DateTime object, a string, a timestamp or an array.

	Underlying Data Type
	can be DateTime, string, timestamp, or array (see the input option)

	Rendered as
	can be various tags (see below)

	Options
	
	empty_value

	hours

	input

	minutes

	model_timezone

	seconds

	view_timezone

	widget

	with_minutes

	with_seconds

	Overridden Options
	
	by_reference

	error_bubbling

	Inherited
Options
	
	data

	disabled

	error_mapping

	inherit_data

	invalid_message

	invalid_message_parameters

	mapped

	read_only

	Parent type
	form

	Class
	TimeType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/TimeType.html]

Basic Usage

This field type is highly configurable, but easy to use. The most important
options are input and widget.

Suppose that you have a startTime field whose underlying time data is a
DateTime object. The following configures the time type for that
field as two different choice fields:

$builder->add('startTime', 'time', array(
 'input' => 'datetime',
 'widget' => 'choice',
));

The input option must be changed to match the type of the underlying
date data. For example, if the startTime field’s data were a unix timestamp,
you’d need to set input to timestamp:

$builder->add('startTime', 'time', array(
 'input' => 'timestamp',
 'widget' => 'choice',
));

The field also supports an array and string as valid input option
values.

Field Options

empty_value

2.3 新版功能: Since Symfony 2.3, empty values are also supported if the expanded
option is set to true.

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if the
multiple option is set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

hours

type: array default: 0 to 23

List of hours available to the hours field type. This option is only relevant
when the widget option is set to choice.

input

type: string default: datetime

The format of the input data - i.e. the format that the date is stored on
your underlying object. Valid values are:

	string (e.g. 12:17:26)

	datetime (a DateTime object)

	array (e.g. array('hour' => 12, 'minute' => 17, 'second' => 26))

	timestamp (e.g. 1307232000)

The value that comes back from the form will also be normalized back into
this format.

minutes

type: array default: 0 to 59

List of minutes available to the minutes field type. This option is only
relevant when the widget option is set to choice.

model_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the
PHP supported timezones [http://php.net/manual/en/timezones.php].

seconds

type: array default: 0 to 59

List of seconds available to the seconds field type. This option is only
relevant when the widget option is set to choice.

view_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also
the data that the user submits). This must be one of the PHP supported timezones [http://php.net/manual/en/timezones.php].

widget

type: string default: choice

The basic way in which this field should be rendered. Can be one of the following:

	choice: renders one, two (default) or three select inputs (hour, minute,
second), depending on the with_minutes and with_seconds options.

	text: renders one, two (default) or three text inputs (hour, minute,
second), depending on the with_minutes and with_seconds options.

	single_text: renders a single input of type time. User’s input will
be validated against the form hh:mm (or hh:mm:ss if using seconds).

警告

Combining the widget type single_text and the with_minutes option
set to false can cause unexpected behavior in the client as the input
type time might not support selecting an hour only.

with_minutes

2.2 新版功能: The with_minutes option was introduced in Symfony 2.2.

type: Boolean default: true

Whether or not to include minutes in the input. This will result in an additional
input to capture minutes.

with_seconds

type: Boolean default: false

Whether or not to include seconds in the input. This will result in an additional
input to capture seconds.

Overridden Options

by_reference

default: false

The DateTime classes are treated as immutable objects.

error_bubbling

default: false

Inherited Options

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

inherit_data

2.3 新版功能: The inherit_data option was introduced in Symfony 2.3. Before, it
was known as virtual.

type: boolean default: false

This option determines if the form will inherit data from its parent form.
This can be useful if you have a set of fields that are duplicated across
multiple forms. See How to Reduce Code Duplication with “inherit_data”.

invalid_message

type: string default: This value is not valid

This is the validation error message that’s used if the data entered into
this field doesn’t make sense (i.e. fails validation).

This might happen, for example, if the user enters a nonsense string into
a time field that cannot be converted
into a real time or if the user enters a string (e.g. apple) into a
number field.

Normal (business logic) validation (such as when setting a minimum length for
a field) should be set using validation messages with your validation rules
(reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to
include some variables in the string. This can be done by adding placeholders
to that option and including the variables in this option:

$builder->add('some_field', 'some_type', array(
 // ...
 'invalid_message' => 'You entered an invalid value - it should include %num% letters',
 'invalid_message_parameters' => array('%num%' => 6),
));

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

Form Variables

	Variable
	Type
	Usage

	widget
	mixed
	The value of the widget option.

	with_minutes
	Boolean
	The value of the with_minutes option.

	with_seconds
	Boolean
	The value of the with_seconds option.

	type
	string
	Only present when widget is single_text and HTML5 is activated,
contains the input type to use (datetime, date or time).

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

birthday Field Type

A date field that specializes in handling
birthdate data.

Can be rendered as a single text box, three text boxes (month, day, and year),
or three select boxes.

This type is essentially the same as the date
type, but with a more appropriate default for the years option. The years
option defaults to 120 years ago to the current year.

	Underlying Data Type
	can be DateTime, string, timestamp, or array
(see the input option)

	Rendered as
	can be three select boxes or 1 or 3 text boxes, based on the widget option

	Overridden options
	
	years

	Inherited options
	from the date type:

	days

	empty_value

	format

	input

	model_timezone

	months

	view_timezone

	widget

from the form type:

	data

	disabled

	inherit_data

	invalid_message

	invalid_message_parameters

	mapped

	read_only

	Parent type
	date

	Class
	BirthdayType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/BirthdayType.html]

Overridden Options

years

type: array default: 120 years ago to the current year

List of years available to the year field type. This option is only
relevant when the widget option is set to choice.

Inherited Options

These options inherit from the date type:

days

type: array default: 1 to 31

List of days available to the day field type. This option is only relevant
when the widget option is set to choice:

'days' => range(1,31)

empty_value

2.3 新版功能: Since Symfony 2.3, empty values are also supported if the expanded
option is set to true.

type: string or Boolean

This option determines whether or not a special “empty” option (e.g. “Choose an option”)
will appear at the top of a select widget. This option only applies if the
multiple option is set to false.

	Add an empty value with “Choose an option” as the text:

$builder->add('states', 'choice', array(
 'empty_value' => 'Choose an option',
));

	Guarantee that no “empty” value option is displayed:

$builder->add('states', 'choice', array(
 'empty_value' => false,
));

If you leave the empty_value option unset, then a blank (with no text)
option will automatically be added if and only if the required option
is false:

// a blank (with no text) option will be added
$builder->add('states', 'choice', array(
 'required' => false,
));

format

type: integer or string default: IntlDateFormatter::MEDIUM [http://www.php.net/manual/en/class.intldateformatter.php#intl.intldateformatter-constants]
(or yyyy-MM-dd if widget is single_text)

Option passed to the IntlDateFormatter class, used to transform user input
into the proper format. This is critical when the widget option is
set to single_text, and will define how the user will input the data.
By default, the format is determined based on the current user locale: meaning
that the expected format will be different for different users. You
can override it by passing the format as a string.

For more information on valid formats, see Date/Time Format Syntax [http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax]:

$builder->add('date_created', 'date', array(
 'widget' => 'single_text',
 // this is actually the default format for single_text
 'format' => 'yyyy-MM-dd',
));

注解

If you want your field to be rendered as an HTML5 “date” field, you have to
use a single_text widget with the yyyy-MM-dd format (the RFC 3339 [http://tools.ietf.org/html/rfc3339]
format) which is the default value if you use the single_text widget.

input

type: string default: datetime

The format of the input data - i.e. the format that the date is stored on
your underlying object. Valid values are:

	string (e.g. 2011-06-05)

	datetime (a DateTime object)

	array (e.g. array('year' => 2011, 'month' => 06, 'day' => 05))

	timestamp (e.g. 1307232000)

The value that comes back from the form will also be normalized back into
this format.

警告

If timestamp is used, DateType is limited to dates between
Fri, 13 Dec 1901 20:45:54 GMT and Tue, 19 Jan 2038 03:14:07 GMT on 32bit
systems. This is due to a limitation in PHP itself [http://php.net/manual/en/function.date.php#refsect1-function.date-changelog].

model_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the
PHP supported timezones [http://php.net/manual/en/timezones.php].

months

type: array default: 1 to 12

List of months available to the month field type. This option is only relevant
when the widget option is set to choice.

view_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also
the data that the user submits). This must be one of the PHP supported timezones [http://php.net/manual/en/timezones.php].

widget

type: string default: choice

The basic way in which this field should be rendered. Can be one of the following:

	choice: renders three select inputs. The order of the selects is defined
in the format option.

	text: renders a three field input of type text (month, day, year).

	single_text: renders a single input of type date. User’s input is
validated based on the format option.

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

inherit_data

2.3 新版功能: The inherit_data option was introduced in Symfony 2.3. Before, it
was known as virtual.

type: boolean default: false

This option determines if the form will inherit data from its parent form.
This can be useful if you have a set of fields that are duplicated across
multiple forms. See How to Reduce Code Duplication with “inherit_data”.

invalid_message

type: string default: This value is not valid

This is the validation error message that’s used if the data entered into
this field doesn’t make sense (i.e. fails validation).

This might happen, for example, if the user enters a nonsense string into
a time field that cannot be converted
into a real time or if the user enters a string (e.g. apple) into a
number field.

Normal (business logic) validation (such as when setting a minimum length for
a field) should be set using validation messages with your validation rules
(reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to
include some variables in the string. This can be done by adding placeholders
to that option and including the variables in this option:

$builder->add('some_field', 'some_type', array(
 // ...
 'invalid_message' => 'You entered an invalid value - it should include %num% letters',
 'invalid_message_parameters' => array('%num%' => 6),
));

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

checkbox Field Type

Creates a single input checkbox. This should always be used for a field that
has a Boolean value: if the box is checked, the field will be set to true,
if the box is unchecked, the value will be set to false.

	Rendered as
	input checkbox field

	Options
	
	value

	Overridden
options
	
	compound

	empty_data

	Inherited
options
	
	data

	disabled

	error_bubbling

	error_mapping

	label

	label_attr

	mapped

	read_only

	required

	Parent type
	form

	Class
	CheckboxType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/CheckboxType.html]

Example Usage

$builder->add('public', 'checkbox', array(
 'label' => 'Show this entry publicly?',
 'required' => false,
));

Field Options

value

type: mixed default: 1

The value that’s actually used as the value for the checkbox or radio button.
This does not affect the value that’s set on your object.

警告

To make a checkbox or radio button checked by default, use the data
option.

Overridden Options

compound

type: boolean default: false

This option specifies if a form is compound. As it’s not the case for checkbox,
by default the value is overridden with the false value.

empty_data

type: string default: mixed

This option determines what value the field will return when the empty_value
choice is selected. In the checkbox and the radio type, the value of empty_data
is overriden by the value returned by the data transformer (see How to Use Data Transformers).

Inherited Options

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

Form Variables

	Variable
	Type
	Usage

	checked
	Boolean
	Whether or not the current input is checked.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

file Field Type

The file type represents a file input in your form.

	Rendered as
	input file field

	Inherited
options
	
	disabled

	empty_data

	error_bubbling

	error_mapping

	label

	label_attr

	mapped

	read_only

	required

	Parent type
	form

	Class
	FileType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/FileType.html]

Basic Usage

Say you have this form definition:

$builder->add('attachment', 'file');

When the form is submitted, the attachment field will be an instance of
UploadedFile [http://api.symfony.com/master/Symfony/Component/HttpFoundation/File/UploadedFile.html]. It can be
used to move the attachment file to a permanent location:

use Symfony\Component\HttpFoundation\File\UploadedFile;

public function uploadAction()
{
 // ...

 if ($form->isValid()) {
 $someNewFilename = ...

 $form['attachment']->getData()->move($dir, $someNewFilename);

 // ...
 }

 // ...
}

The move() method takes a directory and a file name as its arguments.
You might calculate the filename in one of the following ways:

// use the original file name
$file->move($dir, $file->getClientOriginalName());

// compute a random name and try to guess the extension (more secure)
$extension = $file->guessExtension();
if (!$extension) {
 // extension cannot be guessed
 $extension = 'bin';
}
$file->move($dir, rand(1, 99999).'.'.$extension);

Using the original name via getClientOriginalName() is not safe as it
could have been manipulated by the end-user. Moreover, it can contain
characters that are not allowed in file names. You should sanitize the name
before using it directly.

Read the cookbook for an example of
how to manage a file upload associated with a Doctrine entity.

Inherited Options

These options inherit from the form type:

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: mixed

The default value is null.

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

Form Variables

	Variable
	Type
	Usage

	type
	string
	The type variable is set to file, in order to render as a file input field.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

radio Field Type

Creates a single radio button. If the radio button is selected, the field will
be set to the specified value. Radio buttons cannot be unchecked - the value only
changes when another radio button with the same name gets checked.

The radio type isn’t usually used directly. More commonly it’s used
internally by other types such as choice.
If you want to have a Boolean field, use checkbox.

	Rendered as
	input radio field

	Inherited
options
	from the checkbox type:

	value

from the form type:

	data

	disabled

	empty_data

	error_bubbling

	error_mapping

	label

	label_attr

	mapped

	read_only

	required

	Parent type
	checkbox

	Class
	RadioType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/RadioType.html]

Inherited Options

These options inherit from the checkbox
type:

value

type: mixed default: 1

The value that’s actually used as the value for the checkbox or radio button.
This does not affect the value that’s set on your object.

警告

To make a checkbox or radio button checked by default, use the data
option.

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

empty_data

type: string default: mixed

This option determines what value the field will return when the empty_value
choice is selected. In the checkbox and the radio type, the value of empty_data
is overriden by the value returned by the data transformer (see How to Use Data Transformers).

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

Form Variables

	Variable
	Type
	Usage

	checked
	Boolean
	Whether or not the current input is checked.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

collection Field Type

This field type is used to render a “collection” of some field or form. In
the easiest sense, it could be an array of text fields that populate
an array emails field. In more complex examples, you can embed entire
forms, which is useful when creating forms that expose one-to-many relationships
(e.g. a product from where you can manage many related product photos).

	Rendered as
	depends on the type option

	Options
	
	allow_add

	allow_delete

	options

	prototype

	prototype_name

	type

	Inherited
options
	
	by_reference

	cascade_validation

	empty_data

	error_bubbling

	error_mapping

	label

	label_attr

	mapped

	required

	Parent type
	form

	Class
	CollectionType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/CollectionType.html]

注解

If you are working with a collection of Doctrine entities, pay special
attention to the allow_add, allow_delete and by_reference options.
You can also see a complete example in the cookbook article
How to Embed a Collection of Forms.

Basic Usage

This type is used when you want to manage a collection of similar items in
a form. For example, suppose you have an emails field that corresponds
to an array of email addresses. In the form, you want to expose each email
address as its own input text box:

$builder->add('emails', 'collection', array(
 // each item in the array will be an "email" field
 'type' => 'email',
 // these options are passed to each "email" type
 'options' => array(
 'required' => false,
 'attr' => array('class' => 'email-box')
),
));

The simplest way to render this is all at once:

	Twig{{ form_row(form.emails) }}

	PHP<?php echo $view['form']->row($form['emails']) ?>

A much more flexible method would look like this:

	Twig{{ form_label(form.emails) }}
{{ form_errors(form.emails) }}

{% for emailField in form.emails %}

 {{ form_errors(emailField) }}
 {{ form_widget(emailField) }}

{% endfor %}

	PHP<?php echo $view['form']->label($form['emails']) ?>
<?php echo $view['form']->errors($form['emails']) ?>

<?php foreach ($form['emails'] as $emailField): ?>

 <?php echo $view['form']->errors($emailField) ?>
 <?php echo $view['form']->widget($emailField) ?>

<?php endforeach ?>

In both cases, no input fields would render unless your emails data array
already contained some emails.

In this simple example, it’s still impossible to add new addresses or remove
existing addresses. Adding new addresses is possible by using the allow_add
option (and optionally the prototype option) (see example below). Removing
emails from the emails array is possible with the allow_delete option.

Adding and Removing Items

If allow_add is set to true, then if any unrecognized items are submitted,
they’ll be added seamlessly to the array of items. This is great in theory,
but takes a little bit more effort in practice to get the client-side JavaScript
correct.

Following along with the previous example, suppose you start with two
emails in the emails data array. In that case, two input fields will
be rendered that will look something like this (depending on the name of
your form):

<input type="email" id="form_emails_0" name="form[emails][0]" value="foo@foo.com" />
<input type="email" id="form_emails_1" name="form[emails][1]" value="bar@bar.com" />

To allow your user to add another email, just set allow_add to true
and - via JavaScript - render another field with the name form[emails][2]
(and so on for more and more fields).

To help make this easier, setting the prototype option to true allows
you to render a “template” field, which you can then use in your JavaScript
to help you dynamically create these new fields. A rendered prototype field
will look like this:

<input type="email" id="form_emails___name__" name="form[emails][__name__]" value="" />

By replacing __name__ with some unique value (e.g. 2),
you can build and insert new HTML fields into your form.

Using jQuery, a simple example might look like this. If you’re rendering
your collection fields all at once (e.g. form_row(form.emails)), then
things are even easier because the data-prototype attribute is rendered
automatically for you (with a slight difference - see note below) and all
you need is the JavaScript:

	Twig{{ form_start(form) }}
 {# ... #}

 {# store the prototype on the data-prototype attribute #}
 <ul id="email-fields-list" data-prototype="{{ form_widget(form.emails.vars.prototype)|e }}">
 {% for emailField in form.emails %}

 {{ form_errors(emailField) }}
 {{ form_widget(emailField) }}

 {% endfor %}

 Add another email

 {# ... #}
{{ form_end(form) }}

<script type="text/javascript">
 // keep track of how many email fields have been rendered
 var emailCount = '{{ form.emails|length }}';

 jQuery(document).ready(function() {
 jQuery('#add-another-email').click(function(e) {
 e.preventDefault();

 var emailList = jQuery('#email-fields-list');

 // grab the prototype template
 var newWidget = emailList.attr('data-prototype');
 // replace the "__name__" used in the id and name of the prototype
 // with a number that's unique to your emails
 // end name attribute looks like name="contact[emails][2]"
 newWidget = newWidget.replace(/__name__/g, emailCount);
 emailCount++;

 // create a new list element and add it to the list
 var newLi = jQuery('').html(newWidget);
 newLi.appendTo(emailList);
 });
 })
</script>

小技巧

If you’re rendering the entire collection at once, then the prototype
is automatically available on the data-prototype attribute of the
element (e.g. div or table) that surrounds your collection. The
only difference is that the entire “form row” is rendered for you, meaning
you wouldn’t have to wrap it in any container element as it was done
above.

Field Options

allow_add

type: Boolean default: false

If set to true, then if unrecognized items are submitted to the collection,
they will be added as new items. The ending array will contain the existing
items as well as the new item that was in the submitted data. See the above
example for more details.

The prototype option can be used to help render a prototype item that
can be used - with JavaScript - to create new form items dynamically on the
client side. For more information, see the above example and Allowing “new” Tags with the “Prototype”.

警告

If you’re embedding entire other forms to reflect a one-to-many database
relationship, you may need to manually ensure that the foreign key of
these new objects is set correctly. If you’re using Doctrine, this won’t
happen automatically. See the above link for more details.

allow_delete

type: Boolean default: false

If set to true, then if an existing item is not contained in the submitted
data, it will be correctly absent from the final array of items. This means
that you can implement a “delete” button via JavaScript which simply removes
a form element from the DOM. When the user submits the form, its absence
from the submitted data will mean that it’s removed from the final array.

For more information, see Allowing Tags to be Removed.

警告

Be careful when using this option when you’re embedding a collection
of objects. In this case, if any embedded forms are removed, they will
correctly be missing from the final array of objects. However, depending on
your application logic, when one of those objects is removed, you may want
to delete it or at least remove its foreign key reference to the main object.
None of this is handled automatically. For more information, see
Allowing Tags to be Removed.

options

type: array default: array()

This is the array that’s passed to the form type specified in the type
option. For example, if you used the choice
type as your type option (e.g. for a collection of drop-down menus), then
you’d need to at least pass the choices option to the underlying type:

$builder->add('favorite_cities', 'collection', array(
 'type' => 'choice',
 'options' => array(
 'choices' => array(
 'nashville' => 'Nashville',
 'paris' => 'Paris',
 'berlin' => 'Berlin',
 'london' => 'London',
),
),
));

prototype

type: Boolean default: true

This option is useful when using the allow_add option. If true (and
if allow_add is also true), a special “prototype” attribute will be
available so that you can render a “template” example on your page of what
a new element should look like. The name attribute given to this element
is __name__. This allows you to add a “add another” button via JavaScript
which reads the prototype, replaces __name__ with some unique name or
number, and render it inside your form. When submitted, it will be added
to your underlying array due to the allow_add option.

The prototype field can be rendered via the prototype variable in the
collection field:

	Twig{{ form_row(form.emails.vars.prototype) }}

	PHP<?php echo $view['form']->row($form['emails']->vars['prototype']) ?>

Note that all you really need is the “widget”, but depending on how you’re
rendering your form, having the entire “form row” may be easier for you.

小技巧

If you’re rendering the entire collection field at once, then the prototype
form row is automatically available on the data-prototype attribute
of the element (e.g. div or table) that surrounds your collection.

For details on how to actually use this option, see the above example as well
as Allowing “new” Tags with the “Prototype”.

prototype_name

type: String default: __name__

If you have several collections in your form, or worse, nested collections
you may want to change the placeholder so that unrelated placeholders are not
replaced with the same value.

type

type: string or FormTypeInterface [http://api.symfony.com/master/Symfony/Component/Form/FormTypeInterface.html] required

This is the field type for each item in this collection (e.g. text, choice,
etc). For example, if you have an array of email addresses, you’d use the
email type. If you want to embed
a collection of some other form, create a new instance of your form type
and pass it as this option.

Inherited Options

These options inherit from the form type.
Not all options are listed here - only the most applicable to this type:

by_reference

type: Boolean default: true

In most cases, if you have a name field, then you expect setName()
to be called on the underlying object. In some cases, however, setName()
may not be called. Setting by_reference ensures that the setter is
called in all cases.

To explain this further, here’s a simple example:

$builder = $this->createFormBuilder($article);
$builder
 ->add('title', 'text')
 ->add(
 $builder->create('author', 'form', array('by_reference' => ?))
 ->add('name', 'text')
 ->add('email', 'email')
)

If by_reference is true, the following takes place behind the scenes
when you call submit() (or handleRequest()) on the form:

$article->setTitle('...');
$article->getAuthor()->setName('...');
$article->getAuthor()->setEmail('...');

Notice that setAuthor() is not called. The author is modified by reference.

If you set by_reference to false, submitting looks like this:

$article->setTitle('...');
$author = $article->getAuthor();
$author->setName('...');
$author->setEmail('...');
$article->setAuthor($author);

So, all that by_reference=false really does is force the framework to
call the setter on the parent object.

Similarly, if you’re using the collection
form type where your underlying collection data is an object (like with Doctrine’s
ArrayCollection), then by_reference must be set to false if you
need the adder and remover (e.g. addAuthor() and removeAuthor()) to be called.

cascade_validation

type: Boolean default: false

Set this option to true to force validation on embedded form types.
For example, if you have a ProductType with an embedded CategoryType,
setting cascade_validation to true on ProductType will cause
the data from CategoryType to also be validated.

小技巧

Instead of using this option, it is recommended that you use the Valid
constraint in your model to force validation on a child object stored on
a property. This cascades only the validation but not the use of the
validation_group option on child forms. You can read more about this
in the section about Embedding a Single Object.

小技巧

By default the error_bubbling option is enabled for the
collection Field Type,
which passes the errors to the parent form. If you want to attach
the errors to the locations where they actually occur you have to
set error_bubbling to false.

empty_data

type: mixed

The default value is array() (empty array).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: Boolean default: true

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

Field Variables

	Variable
	Type
	Usage

	allow_add
	Boolean
	The value of the allow_add option.

	allow_delete
	Boolean
	The value of the allow_delete option.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

repeated Field Type

This is a special field “group”, that creates two identical fields whose
values must match (or a validation error is thrown). The most common use
is when you need the user to repeat their password or email to verify
accuracy.

	Rendered as
	input text field by default, but see type option

	Options
	
	first_name

	first_options

	options

	second_name

	second_options

	type

	Overridden
Options
	
	error_bubbling

	Inherited
options
	
	data

	error_mapping

	invalid_message

	invalid_message_parameters

	mapped

	Parent type
	form

	Class
	RepeatedType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/RepeatedType.html]

Example Usage

$builder->add('password', 'repeated', array(
 'type' => 'password',
 'invalid_message' => 'The password fields must match.',
 'options' => array('attr' => array('class' => 'password-field')),
 'required' => true,
 'first_options' => array('label' => 'Password'),
 'second_options' => array('label' => 'Repeat Password'),
));

Upon a successful form submit, the value entered into both of the “password”
fields becomes the data of the password key. In other words, even though
two fields are actually rendered, the end data from the form is just the
single value (usually a string) that you need.

The most important option is type, which can be any field type and determines
the actual type of the two underlying fields. The options option is passed
to each of those individual fields, meaning - in this example - any option
supported by the password type can be passed in this array.

Rendering

The repeated field type is actually two underlying fields, which you can
render all at once, or individually. To render all at once, use something
like:

	Twig{{ form_row(form.password) }}

	PHP<?php echo $view['form']->row($form['password']) ?>

To render each field individually, use something like this:

	Twig{# .first and .second may vary in your use - see the note below #}
{{ form_row(form.password.first) }}
{{ form_row(form.password.second) }}

	PHP<?php echo $view['form']->row($form['password']['first']) ?>
<?php echo $view['form']->row($form['password']['second']) ?>

注解

The names first and second are the default names for the two
sub-fields. However, these names can be controlled via the first_name
and second_name options. If you’ve set these options, then use those
values instead of first and second when rendering.

Validation

One of the key features of the repeated field is internal validation
(you don’t need to do anything to set this up) that forces the two fields
to have a matching value. If the two fields don’t match, an error will be
shown to the user.

The invalid_message is used to customize the error that will
be displayed when the two fields do not match each other.

Field Options

first_name

type: string default: first

This is the actual field name to be used for the first field. This is mostly
meaningless, however, as the actual data entered into both of the fields will
be available under the key assigned to the repeated field itself (e.g.
password). However, if you don’t specify a label, this field name is used
to “guess” the label for you.

first_options

type: array default: array()

Additional options (will be merged into options above) that should be passed
only to the first field. This is especially useful for customizing the
label:

$builder->add('password', 'repeated', array(
 'first_options' => array('label' => 'Password'),
 'second_options' => array('label' => 'Repeat Password'),
));

options

type: array default: array()

This options array will be passed to each of the two underlying fields. In
other words, these are the options that customize the individual field types.
For example, if the type option is set to password, this array might
contain the options always_empty or required - both options that are
supported by the password field type.

second_name

type: string default: second

The same as first_name, but for the second field.

second_options

type: array default: array()

Additional options (will be merged into options above) that should be passed
only to the second field. This is especially useful for customizing the
label (see first_options).

type

type: string default: text

The two underlying fields will be of this field type. For example, passing
a type of password will render two password fields.

Overridden Options

error_bubbling

default: false

Inherited Options

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

invalid_message

type: string default: This value is not valid

This is the validation error message that’s used if the data entered into
this field doesn’t make sense (i.e. fails validation).

This might happen, for example, if the user enters a nonsense string into
a time field that cannot be converted
into a real time or if the user enters a string (e.g. apple) into a
number field.

Normal (business logic) validation (such as when setting a minimum length for
a field) should be set using validation messages with your validation rules
(reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to
include some variables in the string. This can be done by adding placeholders
to that option and including the variables in this option:

$builder->add('some_field', 'some_type', array(
 // ...
 'invalid_message' => 'You entered an invalid value - it should include %num% letters',
 'invalid_message_parameters' => array('%num%' => 6),
));

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

hidden Field Type

The hidden type represents a hidden input field.

	Rendered as
	input hidden field

	Overriden
options
	
	error_bubbling

	required

	Inherited
options
	
	data

	error_mapping

	mapped

	property_path

	Parent type
	form

	Class
	HiddenType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/HiddenType.html]

Overridden Options

error_bubbling

default: true

Pass errors to the root form, otherwise they will not be visible.

required

default: false

Hidden fields cannot have a required attribute.

Inherited Options

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

property_path

type: any default: the field's name

Fields display a property value of the form’s domain object by default. When
the form is submitted, the submitted value is written back into the object.

If you want to override the property that a field reads from and writes to,
you can set the property_path option. Its default value is the field’s
name.

If you wish the field to be ignored when reading or writing to the object
you can set the property_path option to false, but using
property_path for this purpose is deprecated, you should use the
mapped option.

2.1 新版功能: The mapped option was introduced in Symfony 2.1 for this use-case.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

button Field Type

2.3 新版功能: The button type was introduced in Symfony 2.3

A simple, non-responsive button.

	Rendered as
	button tag

	Inherited
options
	
	attr

	disabled

	label

	translation_domain

	Parent type
	none

	Class
	ButtonType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/ButtonType.html]

Inherited Options

The following options are defined in the
BaseType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/BaseType.html] class.
The BaseType class is the parent class for both the button type and
the form type, but it is not part of
the form type tree (i.e. it can not be used as a form type on its own).

attr

type: array default: Empty array

If you want to add extra attributes to the HTML representation of the button,
you can use attr option. It’s an associative array with HTML attribute
as a key. This can be useful when you need to set a custom class for the button:

$builder->add('save', 'button', array(
 'attr' => array('class' => 'save'),
));

disabled

type: boolean default: false

If you don’t want a user to be able to click a button, you can set the disabled
option to true. It will not be possible to submit the form with this button,
not even when bypassing the browser and sending a request manually, for
example with cURL.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be displayed on the button. The label can also be
directly set inside the template:

	Twig{{ form_widget(form.save, { 'label': 'Click me' }) }}

	PHP<?php echo $view['form']->widget($form['save'], array('label' => 'Click me')) ?>

translation_domain

type: string default: messages

This is the translation domain that will be used for any labels or options
that are rendered for this button.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

reset Field Type

2.3 新版功能: The reset type was introduced in Symfony 2.3

A button that resets all fields to their original values.

	Rendered as
	input reset tag

	Inherited
options
	
	attr

	disabled

	label

	label_attr

	translation_domain

	Parent type
	button

	Class
	ResetType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/ResetType.html]

Inherited Options

attr

type: array default: Empty array

If you want to add extra attributes to the HTML representation of the button,
you can use attr option. It’s an associative array with HTML attribute
as a key. This can be useful when you need to set a custom class for the button:

$builder->add('save', 'button', array(
 'attr' => array('class' => 'save'),
));

disabled

type: boolean default: false

If you don’t want a user to be able to click a button, you can set the disabled
option to true. It will not be possible to submit the form with this button,
not even when bypassing the browser and sending a request manually, for
example with cURL.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be displayed on the button. The label can also be
directly set inside the template:

	Twig{{ form_widget(form.save, { 'label': 'Click me' }) }}

	PHP<?php echo $view['form']->widget($form['save'], array('label' => 'Click me')) ?>

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

translation_domain

type: string default: messages

This is the translation domain that will be used for any labels or options
that are rendered for this button.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

submit Field Type

2.3 新版功能: The submit type was introduced in Symfony 2.3

A submit button.

	Rendered as
	button submit tag

	Inherited
options
	
	attr

	disabled

	label

	label_attr

	translation_domain

	validation_groups

	Parent type
	button

	Class
	SubmitType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/SubmitType.html]

The Submit button has an additional method
isClicked() [http://api.symfony.com/master/Symfony/Component/Form/ClickableInterface.html#method_isClicked] that lets you
check whether this button was used to submit the form. This is especially
useful when a form has multiple submit buttons:

if ($form->get('save')->isClicked()) {
 // ...
}

Inherited Options

attr

type: array default: Empty array

If you want to add extra attributes to the HTML representation of the button,
you can use attr option. It’s an associative array with HTML attribute
as a key. This can be useful when you need to set a custom class for the button:

$builder->add('save', 'button', array(
 'attr' => array('class' => 'save'),
));

disabled

type: boolean default: false

If you don’t want a user to be able to click a button, you can set the disabled
option to true. It will not be possible to submit the form with this button,
not even when bypassing the browser and sending a request manually, for
example with cURL.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be displayed on the button. The label can also be
directly set inside the template:

	Twig{{ form_widget(form.save, { 'label': 'Click me' }) }}

	PHP<?php echo $view['form']->widget($form['save'], array('label' => 'Click me')) ?>

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

translation_domain

type: string default: messages

This is the translation domain that will be used for any labels or options
that are rendered for this button.

validation_groups

type: array default: null

When your form contains multiple submit buttons, you can change the validation
group based on the button which was used to submit the form. Imagine a registration
form wizard with buttons to go to the previous or the next step:

$form = $this->createFormBuilder($user)
 ->add('previousStep', 'submit', array(
 'validation_groups' => false,
))
 ->add('nextStep', 'submit', array(
 'validation_groups' => array('Registration'),
))
 ->getForm();

The special false ensures that no validation is performed when the previous
step button is clicked. When the second button is clicked, all constraints
from the “Registration” are validated.

参见

You can read more about this in the Form chapter
of the book.

Form Variables

	Variable
	Type
	Usage

	clicked
	Boolean
	Whether the button is clicked or not.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Form Types Reference

form Field Type

The form type predefines a couple of options that are then available
on all types for which form is the parent type.

	Options
	
	action

	by_reference

	cascade_validation

	compound

	constraints

	data

	data_class

	empty_data

	error_bubbling

	error_mapping

	extra_fields_message

	inherit_data

	invalid_message

	invalid_message_parameters

	label_attr

	mapped

	max_length

	method

	pattern

	post_max_size_message

	property_path

	read_only

	required

	trim

	Inherited
options
	
	attr

	auto_initialize

	block_name

	disabled

	label

	translation_domain

	Parent
	none

	Class
	FormType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/FormType.html]

Field Options

action

2.3 新版功能: The action option was introduced in Symfony 2.3.

type: string default: empty string

This option specifies where to send the form’s data on submission (usually a
URI). Its value is rendered as the action attribute of the form
element. An empty value is considered a same-document reference, i.e. the form
will be submitted to the same URI that rendered the form.

by_reference

type: Boolean default: true

In most cases, if you have a name field, then you expect setName()
to be called on the underlying object. In some cases, however, setName()
may not be called. Setting by_reference ensures that the setter is
called in all cases.

To explain this further, here’s a simple example:

$builder = $this->createFormBuilder($article);
$builder
 ->add('title', 'text')
 ->add(
 $builder->create('author', 'form', array('by_reference' => ?))
 ->add('name', 'text')
 ->add('email', 'email')
)

If by_reference is true, the following takes place behind the scenes
when you call submit() (or handleRequest()) on the form:

$article->setTitle('...');
$article->getAuthor()->setName('...');
$article->getAuthor()->setEmail('...');

Notice that setAuthor() is not called. The author is modified by reference.

If you set by_reference to false, submitting looks like this:

$article->setTitle('...');
$author = $article->getAuthor();
$author->setName('...');
$author->setEmail('...');
$article->setAuthor($author);

So, all that by_reference=false really does is force the framework to
call the setter on the parent object.

Similarly, if you’re using the collection
form type where your underlying collection data is an object (like with Doctrine’s
ArrayCollection), then by_reference must be set to false if you
need the adder and remover (e.g. addAuthor() and removeAuthor()) to be called.

cascade_validation

type: Boolean default: false

Set this option to true to force validation on embedded form types.
For example, if you have a ProductType with an embedded CategoryType,
setting cascade_validation to true on ProductType will cause
the data from CategoryType to also be validated.

小技巧

Instead of using this option, it is recommended that you use the Valid
constraint in your model to force validation on a child object stored on
a property. This cascades only the validation but not the use of the
validation_group option on child forms. You can read more about this
in the section about Embedding a Single Object.

小技巧

By default the error_bubbling option is enabled for the
collection Field Type,
which passes the errors to the parent form. If you want to attach
the errors to the locations where they actually occur you have to
set error_bubbling to false.

compound

type: boolean default: true

This option specifies if a form is compound. This is independent of whether the
form actually has children. A form can be compound but not have any children
at all (e.g. an empty collection form).

constraints

type: array or Constraint [http://api.symfony.com/master/Symfony/Component/Validator/Constraint.html] default: null

Allows you to attach one or more validation constraints to a specific field.
For more information, see Adding Validation.
This option is added in the FormTypeValidatorExtension [http://api.symfony.com/master/Symfony/Component/Form/Extension/Validator/Type/FormTypeValidatorExtension.html]
form extension.

data

type: mixed default: Defaults to field of the underlying object (if there is one)

When you create a form, each field initially displays the value of the
corresponding property of the form’s domain object (if an object is bound
to the form). If you want to override the initial value for the form or just
an individual field, you can set it in the data option:

$builder->add('token', 'hidden', array(
 'data' => 'abcdef',
));

注解

The default values for form fields are taken directly from the
underlying data structure (e.g. an entity or an array).
The data option overrides this default value.

data_class

type: string

This option is used to set the appropriate data mapper to be used by the form,
so you can use it for any form field type which requires an object.

$builder->add('media', 'sonata_media_type', array(
 'data_class' => 'Acme\DemoBundle\Entity\Media',
));

empty_data

type: mixed

The actual default value of this option depends on other field options:

	If data_class is set and required is true, then new $data_class();

	If data_class is set and required is false, then null;

	If data_class is not set and compound is true, then array()
(empty array);

	If data_class is not set and compound is false, then '' (empty string).

This option determines what value the field will return when the submitted
value is empty.

But you can customize this to your needs. For example, if you want the
gender choice field to be explicitly set to null when no value is
selected, you can do it like this:

$builder->add('gender', 'choice', array(
 'choices' => array(
 'm' => 'Male',
 'f' => 'Female'
),
 'required' => false,
 'empty_value' => 'Choose your gender',
 'empty_data' => null
));

注解

If you want to set the empty_data option for your entire form class,
see the cookbook article How to Configure empty Data for a Form Class.

error_bubbling

type: Boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field
or form. For example, if set to true on a normal field, any errors for
that field will be attached to the main form, not to the specific field.

error_mapping

2.1 新版功能: The error_mapping option was introduced in Symfony 2.1.

type: array default: empty

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode that validates
whether the city and zip code match. Unfortunately, there is no “matchingCityAndZipCode”
field in your form, so all that Symfony can do is display the error on top
of the form.

With customized error mapping, you can do better: map the error to the city
field so that it displays above it:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{
 $resolver->setDefaults(array(
 'error_mapping' => array(
 'matchingCityAndZipCode' => 'city',
),
));
}

Here are the rules for the left and the right side of the mapping:

	The left side contains property paths;

	If the violation is generated on a property or method of a class, its path
is simply propertyName;

	If the violation is generated on an entry of an array or ArrayAccess
object, the property path is [indexName];

	You can construct nested property paths by concatenating them, separating
properties by dots. For example: addresses[work].matchingCityAndZipCode;

	The left side of the error mapping also accepts a dot ., which refers
to the field itself. That means that any error added to the field is added
to the given nested field instead;

	The right side contains simply the names of fields in the form.

extra_fields_message

type: string default: This form should not contain extra fields.

This is the validation error message that’s used if the submitted form data
contains one or more fields that are not part of the form definition. The
placeholder {{ extra_fields }} can be used to display a comma separated
list of the submitted extra field names.

inherit_data

2.3 新版功能: The inherit_data option was introduced in Symfony 2.3. Before, it
was known as virtual.

type: boolean default: false

This option determines if the form will inherit data from its parent form.
This can be useful if you have a set of fields that are duplicated across
multiple forms. See How to Reduce Code Duplication with “inherit_data”.

invalid_message

type: string default: This value is not valid

This is the validation error message that’s used if the data entered into
this field doesn’t make sense (i.e. fails validation).

This might happen, for example, if the user enters a nonsense string into
a time field that cannot be converted
into a real time or if the user enters a string (e.g. apple) into a
number field.

Normal (business logic) validation (such as when setting a minimum length for
a field) should be set using validation messages with your validation rules
(reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to
include some variables in the string. This can be done by adding placeholders
to that option and including the variables in this option:

$builder->add('some_field', 'some_type', array(
 // ...
 'invalid_message' => 'You entered an invalid value - it should include %num% letters',
 'invalid_message_parameters' => array('%num%' => 6),
));

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when
rendering the label for the field. It’s an associative array with HTML attribute
as a key. This attributes can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name', {'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}}) }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name',
 array('label_attr' => array('class' => 'CUSTOM_LABEL_CLASS'))
);

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you
can set the mapped option to false.

max_length

type: integer default: null

If this option is not null, an attribute maxlength is added, which
is used by some browsers to limit the amount of text in a field.

This is just a browser validation, so data must still be validated
server-side.

method

2.3 新版功能: The method option was introduced in Symfony 2.3.

type: string default: POST

This option specifies the HTTP method used to submit the form’s data. Its
value is rendered as the method attribute of the form element and is
used to decide whether to process the form submission in the
handleRequest() method after submission. Possible values are:

	POST

	GET

	PUT

	DELETE

	PATCH

注解

When the method is PUT, PATCH, or DELETE, Symfony will automatically
render a _method hidden field in your form. This is used to “fake”
these HTTP methods, as they’re not supported on standard browsers. For
more information, see How to Use HTTP Methods beyond GET and POST in Routes.

注解

The PATCH method allows submitting partial data. In other words, if the
submitted form data is missing certain fields, those will be ignored
and the default values (if any) will be used. With all other HTTP methods,
if the submitted form data is missing some fields, those fields are set
to null.

pattern

type: string default: null

This adds an HTML5 pattern attribute to restrict the field input by a
given regular expression.

警告

The pattern attribute provides client-side validation for convenience
purposes only and must not be used as a replacement for reliable
server-side validation.

注解

When using validation constraints, this option is set automatically
for some constraints to match the server-side validation.

post_max_size_message

type: string default: The uploaded file was too large. Please try to upload a smaller file.

This is the validation error message that’s used if submitted POST form data
exceeds php.ini‘s post_max_size directive. The {{ max }}
placeholder can be used to display the allowed size.

注解

Validating the post_max_size only happens on the root form.

property_path

type: any default: the field's name

Fields display a property value of the form’s domain object by default. When
the form is submitted, the submitted value is written back into the object.

If you want to override the property that a field reads from and writes to,
you can set the property_path option. Its default value is the field’s
name.

If you wish the field to be ignored when reading or writing to the object
you can set the property_path option to false, but using
property_path for this purpose is deprecated, you should use the
mapped option.

2.1 新版功能: The mapped option was introduced in Symfony 2.1 for this use-case.

read_only

type: Boolean default: false

If this option is true, the field will be rendered with the readonly
attribute so that the field is not editable.

required

type: Boolean default: true

If true, an HTML5 required attribute [http://diveintohtml5.info/forms.html] will be rendered. The corresponding
label will also render with a required class.

This is superficial and independent from validation. At best, if you let Symfony
guess your field type, then the value of this option will be guessed from
your validation information.

注解

The required option also affects how empty data for each field is
handled. For more details, see the empty_data option.

trim

type: Boolean default: true

If true, the whitespace of the submitted string value will be stripped
via the trim() function when the data is bound. This guarantees that
if a value is submitted with extra whitespace, it will be removed before
the value is merged back onto the underlying object.

Inherited Options

The following options are defined in the
BaseType [http://api.symfony.com/master/Symfony/Component/Form/Extension/Core/Type/BaseType.html] class.
The BaseType class is the parent class for both the form type and
the button type, but it is not part
of the form type tree (i.e. it can not be used as a form type on its own).

attr

type: array default: Empty array

If you want to add extra attributes to an HTML field representation
you can use the attr option. It’s an associative array with HTML attributes
as keys. This can be useful when you need to set a custom class for some widget:

$builder->add('body', 'textarea', array(
 'attr' => array('class' => 'tinymce'),
));

auto_initialize

type: boolean default: true

An internal option: sets whether the form should be initialized automatically.
For all fields, this option should only be true for root forms. You won’t
need to change this option and probably won’t need to worry about it.

block_name

type: string default: the form’s name (see Knowing which
block to customize)

Allows you to override the block name used to render the form type.
Useful for example if you have multiple instances of the same form and you
need to personalize the rendering of the forms individually.

disabled

2.1 新版功能: The disabled option was introduced in Symfony 2.1.

type: boolean default: false

If you don’t want a user to modify the value of a field, you can set the disabled
option to true. Any submitted value will be ignored.

label

type: string default: The label is “guessed” from the field name

Sets the label that will be used when rendering the field. Setting to false
will suppress the label. The label can also be directly set inside the template:

	Twig{{ form_label(form.name, 'Your name') }}

	PHPecho $view['form']->label(
 $form['name'],
 'Your name'
);

translation_domain

type: string default: messages

This is the translation domain that will be used for any labels or options
that are rendered for this field.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

Validation Constraints Reference

The Validator is designed to validate objects against constraints.
In real life, a constraint could be: “The cake must not be burned”. In
Symfony, constraints are similar: They are assertions that a condition is
true.

Supported Constraints

The following constraints are natively available in Symfony:

Basic Constraints

These are the basic constraints: use them to assert very basic things about
the value of properties or the return value of methods on your object.

	NotBlank

	Blank

	NotNull

	Null

	True

	False

	Type

String Constraints

	Email

	Length

	Url

	Regex

	Ip

Number Constraints

	Range

Comparison Constraints

	EqualTo

	NotEqualTo

	IdenticalTo

	NotIdenticalTo

	LessThan

	LessThanOrEqual

	GreaterThan

	GreaterThanOrEqual

Date Constraints

	Date

	DateTime

	Time

Collection Constraints

	Choice

	Collection

	Count

	UniqueEntity

	Language

	Locale

	Country

File Constraints

	File

	Image

Financial and other Number Constraints

	CardScheme

	Currency

	Luhn

	Iban

	Isbn

	Issn

Other Constraints

	Callback

	All

	UserPassword

	Valid

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

NotBlank

Validates that a value is not blank, defined as not equal to a blank string
and also not equal to null. To force that a value is simply not equal to
null, see the NotNull constraint.

	Applies to
	property or method

	Options
	
	message

	Class
	NotBlank [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/NotBlank.html]

	Validator
	NotBlankValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/NotBlankValidator.html]

Basic Usage

If you wanted to ensure that the firstName property of an Author class
were not blank, you could do the following:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 firstName:
 - NotBlank: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\NotBlank()
 */
 protected $firstName;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="firstName">
 <constraint name="NotBlank" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('firstName', new Assert\NotBlank());
 }
}

Options

message

type: string default: This value should not be blank.

This is the message that will be shown if the value is blank.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Blank

Validates that a value is blank, defined as equal to a blank string or equal
to null. To force that a value strictly be equal to null, see the
Null constraint. To force that a value is not
blank, see NotBlank.

	Applies to
	property or method

	Options
	
	message

	Class
	Blank [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Blank.html]

	Validator
	BlankValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/BlankValidator.html]

Basic Usage

If, for some reason, you wanted to ensure that the firstName property
of an Author class were blank, you could do the following:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 firstName:
 - Blank: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Blank()
 */
 protected $firstName;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="firstName">
 <constraint name="Blank" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('firstName', new Assert\Blank());
 }
}

Options

message

type: string default: This value should be blank.

This is the message that will be shown if the value is not blank.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

NotNull

Validates that a value is not strictly equal to null. To ensure that
a value is simply not blank (not a blank string), see the NotBlank
constraint.

	Applies to
	property or method

	Options
	
	message

	Class
	NotNull [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/NotNull.html]

	Validator
	NotNullValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/NotNullValidator.html]

Basic Usage

If you wanted to ensure that the firstName property of an Author class
were not strictly equal to null, you would:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 firstName:
 - NotNull: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\NotNull()
 */
 protected $firstName;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="firstName">
 <constraint name="NotNull" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('firstName', new Assert\NotNull());
 }
}

Options

message

type: string default: This value should not be null.

This is the message that will be shown if the value is null.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Null

Validates that a value is exactly equal to null. To force that a property
is simply blank (blank string or null), see the Blank
constraint. To ensure that a property is not null, see NotNull.

	Applies to
	property or method

	Options
	
	message

	Class
	Null [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Null.html]

	Validator
	NullValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/NullValidator.html]

Basic Usage

If, for some reason, you wanted to ensure that the firstName property
of an Author class exactly equal to null, you could do the following:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 firstName:
 - 'Null': ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Null()
 */
 protected $firstName;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="firstName">
 <constraint name="Null" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('firstName', Assert\Null());
 }
}

警告

When using YAML, be sure to surround Null with quotes ('Null')
or else YAML will convert this into a null value.

Options

message

type: string default: This value should be null.

This is the message that will be shown if the value is not null.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

True

Validates that a value is true. Specifically, this checks to see if
the value is exactly true, exactly the integer 1, or exactly the
string “1”.

Also see False.

	Applies to
	property or method

	Options
	
	message

	Class
	True [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/True.html]

	Validator
	TrueValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/TrueValidator.html]

Basic Usage

This constraint can be applied to properties (e.g. a termsAccepted property
on a registration model) or to a “getter” method. It’s most powerful in the
latter case, where you can assert that a method returns a true value. For
example, suppose you have the following method:

// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

class Author
{
 protected $token;

 public function isTokenValid()
 {
 return $this->token == $this->generateToken();
 }
}

Then you can constrain this method with True.

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 getters:
 tokenValid:
 - 'True':
 message: The token is invalid.

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 protected $token;

 /**
 * @Assert\True(message = "The token is invalid")
 */
 public function isTokenValid()
 {
 return $this->token == $this->generateToken();
 }
}

	XML<!-- src/Acme/Blogbundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <getter property="tokenValid">
 <constraint name="True">
 <option name="message">The token is invalid.</option>
 </constraint>
 </getter>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\True;

class Author
{
 protected $token;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addGetterConstraint('tokenValid', new True(array(
 'message' => 'The token is invalid.',
)));
 }

 public function isTokenValid()
 {
 return $this->token == $this->generateToken();
 }
}

If the isTokenValid() returns false, the validation will fail.

警告

When using YAML, be sure to surround True with quotes ('True')
or else YAML will convert this into a true Boolean value.

Options

message

type: string default: This value should be true.

This message is shown if the underlying data is not true.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

False

Validates that a value is false. Specifically, this checks to see if
the value is exactly false, exactly the integer 0, or exactly the
string “0”.

Also see True.

	Applies to
	property or method

	Options
	
	message

	Class
	False [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/False.html]

	Validator
	FalseValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/FalseValidator.html]

Basic Usage

The False constraint can be applied to a property or a “getter” method,
but is most commonly useful in the latter case. For example, suppose that
you want to guarantee that some state property is not in a dynamic
invalidStates array. First, you’d create a “getter” method:

protected $state;

protected $invalidStates = array();

public function isStateInvalid()
{
 return in_array($this->state, $this->invalidStates);
}

In this case, the underlying object is only valid if the isStateInvalid
method returns false:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author
 getters:
 stateInvalid:
 - 'False':
 message: You've entered an invalid state.

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\False(
 * message = "You've entered an invalid state."
 *)
 */
 public function isStateInvalid()
 {
 // ...
 }
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <getter property="stateInvalid">
 <constraint name="False">
 <option name="message">You've entered an invalid state.</option>
 </constraint>
 </getter>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addGetterConstraint('stateInvalid', new Assert\False());
 }
}

警告

When using YAML, be sure to surround False with quotes ('False')
or else YAML will convert this into a false Boolean value.

Options

message

type: string default: This value should be false.

This message is shown if the underlying data is not false.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Type

Validates that a value is of a specific data type. For example, if a variable
should be an array, you can use this constraint with the array type option
to validate this.

	Applies to
	property or method

	Options
	
	type

	message

	Class
	Type [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Type.html]

	Validator
	TypeValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/TypeValidator.html]

Basic Usage

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 age:
 - Type:
 type: integer
 message: The value {{ value }} is not a valid {{ type }}.

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Type(type="integer", message="The value {{ value }} is not a valid {{ type }}.")
 */
 protected $age;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="age">
 <constraint name="Type">
 <option name="type">integer</option>
 <option name="message">The value {{ value }} is not a valid {{ type }}.</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('age', new Assert\Type(array(
 'type' => 'integer',
 'message' => 'The value {{ value }} is not a valid {{ type }}.',
)));
 }
}

Options

type

type: string [default option]

This required option is the fully qualified class name or one of the PHP datatypes
as determined by PHP’s is_ functions.

	array [http://php.net/manual/en/function.is-array.php]

	bool [http://php.net/manual/en/function.is-bool.php]

	callable [http://php.net/manual/en/function.is-callable.php]

	float [http://php.net/manual/en/function.is-float.php]

	double [http://php.net/manual/en/function.is-double.php]

	int [http://php.net/manual/en/function.is-int.php]

	integer [http://php.net/manual/en/function.is-integer.php]

	long [http://php.net/manual/en/function.is-long.php]

	null [http://php.net/manual/en/function.is-null.php]

	numeric [http://php.net/manual/en/function.is-numeric.php]

	object [http://php.net/manual/en/function.is-object.php]

	real [http://php.net/manual/en/function.is-real.php]

	resource [http://php.net/manual/en/function.is-resource.php]

	scalar [http://php.net/manual/en/function.is-scalar.php]

	string [http://php.net/manual/en/function.is-string.php]

Also, you can use ctype_ functions from corresponding built-in PHP extension [http://php.net/book.ctype.php].
Consider a list of ctype functions [http://php.net/ref.ctype.php]:

	alnum [http://php.net/manual/en/function.ctype-alnum.php]

	alpha [http://php.net/manual/en/function.ctype-alpha.php]

	cntrl [http://php.net/manual/en/function.ctype-cntrl.php]

	digit [http://php.net/manual/en/function.ctype-digit.php]

	graph [http://php.net/manual/en/function.ctype-graph.php]

	lower [http://php.net/manual/en/function.ctype-lower.php]

	print [http://php.net/manual/en/function.ctype-print.php]

	punct [http://php.net/manual/en/function.ctype-punct.php]

	space [http://php.net/manual/en/function.ctype-space.php]

	upper [http://php.net/manual/en/function.ctype-upper.php]

	xdigit [http://php.net/manual/en/function.ctype-xdigit.php]

Make sure that the proper locale [http://php.net/manual/en/function.setlocale.php] is set before using one of these.

message

type: string default: This value should be of type {{ type }}.

The message if the underlying data is not of the given type.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Email

Validates that a value is a valid email address. The underlying value is
cast to a string before being validated.

	Applies to
	property or method

	Options
	
	message

	checkMX

	checkHost

	Class
	Email [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Email.html]

	Validator
	EmailValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/EmailValidator.html]

Basic Usage

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 email:
 - Email:
 message: The email "{{ value }}" is not a valid email.
 checkMX: true

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Email(
 * message = "The email '{{ value }}' is not a valid email.",
 * checkMX = true
 *)
 */
 protected $email;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="email">
 <constraint name="Email">
 <option name="message">The email "{{ value }}" is not a valid email.</option>
 <option name="checkMX">true</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('email', new Assert\Email(array(
 'message' => 'The email "{{ value }}" is not a valid email.',
 'checkMX' => true,
)));
 }
}

Options

message

type: string default: This value is not a valid email address.

This message is shown if the underlying data is not a valid email address.

checkMX

type: Boolean default: false

If true, then the checkdnsrr [http://php.net/manual/en/function.checkdnsrr.php] PHP function will be used to
check the validity of the MX record of the host of the given email.

checkHost

type: Boolean default: false

If true, then the checkdnsrr [http://php.net/manual/en/function.checkdnsrr.php] PHP function will be used to
check the validity of the MX or the A or the AAAA record of the host
of the given email.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Length

Validates that a given string length is between some minimum and maximum value.

	Applies to
	property or method

	Options
	
	min

	max

	charset

	minMessage

	maxMessage

	exactMessage

	Class
	Length [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Length.html]

	Validator
	LengthValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/LengthValidator.html]

Basic Usage

To verify that the firstName field length of a class is between “2” and
“50”, you might add the following:

	YAML# src/Acme/EventBundle/Resources/config/validation.yml
Acme\EventBundle\Entity\Participant:
 properties:
 firstName:
 - Length:
 min: 2
 max: 50
 minMessage: "Your first name must be at least {{ limit }} characters long"
 maxMessage: "Your first name cannot be longer than {{ limit }} characters long"

	Annotations// src/Acme/EventBundle/Entity/Participant.php
namespace Acme\EventBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Participant
{
 /**
 * @Assert\Length(
 * min = 2,
 * max = 50,
 * minMessage = "Your first name must be at least {{ limit }} characters long",
 * maxMessage = "Your first name cannot be longer than {{ limit }} characters long"
 *)
 */
 protected $firstName;
}

	XML<!-- src/Acme/EventBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\EventBundle\Entity\Participant">
 <property name="firstName">
 <constraint name="Length">
 <option name="min">2</option>
 <option name="max">50</option>
 <option name="minMessage">Your first name must be at least {{ limit }} characters long</option>
 <option name="maxMessage">Your first name cannot be longer than {{ limit }} characters long</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/EventBundle/Entity/Participant.php
namespace Acme\EventBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Participant
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('firstName', new Assert\Length(array(
 'min' => 2,
 'max' => 50,
 'minMessage' => 'Your first name must be at least {{ limit }} characters long',
 'maxMessage' => 'Your first name cannot be longer than {{ limit }} characters long',
)));
 }
}

Options

min

type: integer

This required option is the “min” length value. Validation will fail if the given
value’s length is less than this min value.

max

type: integer

This required option is the “max” length value. Validation will fail if the given
value’s length is greater than this max value.

charset

type: string default: UTF-8

The charset to be used when computing value’s length. The grapheme_strlen [http://php.net/manual/en/function.grapheme-strlen.php] PHP
function is used if available. If not, the mb_strlen [http://php.net/manual/en/function.mb-strlen.php] PHP function
is used if available. If neither are available, the strlen [http://php.net/manual/en/function.strlen.php] PHP function
is used.

minMessage

type: string default: This value is too short. It should have {{ limit }} characters or more.

The message that will be shown if the underlying value’s length is less than the min option.

maxMessage

type: string default: This value is too long. It should have {{ limit }} characters or less.

The message that will be shown if the underlying value’s length is more than the max option.

exactMessage

type: string default: This value should have exactly {{ limit }} characters.

The message that will be shown if min and max values are equal and the underlying
value’s length is not exactly this value.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Url

Validates that a value is a valid URL string.

	Applies to
	property or method

	Options
	
	message

	protocols

	Class
	Url [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Url.html]

	Validator
	UrlValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/UrlValidator.html]

Basic Usage

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 bioUrl:
 - Url: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Url()
 */
 protected $bioUrl;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="bioUrl">
 <constraint name="Url" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('bioUrl', new Assert\Url());
 }
}

Options

message

type: string default: This value is not a valid URL.

This message is shown if the URL is invalid.

protocols

type: array default: array('http', 'https')

The protocols that will be considered to be valid. For example, if you also
needed ftp:// type URLs to be valid, you’d redefine the protocols
array, listing http, https, and also ftp.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Regex

Validates that a value matches a regular expression.

	Applies to
	property or method

	Options
	
	pattern

	htmlPattern

	match

	message

	Class
	Regex [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Regex.html]

	Validator
	RegexValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/RegexValidator.html]

Basic Usage

Suppose you have a description field and you want to verify that it begins
with a valid word character. The regular expression to test for this would
be /^\w+/, indicating that you’re looking for at least one or more word
characters at the beginning of your string:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 description:
 - Regex: '/^\w+/'

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Regex("/^\w+/")
 */
 protected $description;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="description">
 <constraint name="Regex">
 <option name="pattern">/^\w+/</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('description', new Assert\Regex(array(
 'pattern' => '/^\w+/',
)));
 }
}

Alternatively, you can set the match option to false in order to assert
that a given string does not match. In the following example, you’ll assert
that the firstName field does not contain any numbers and give it a custom
message:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 firstName:
 - Regex:
 pattern: '/\d/'
 match: false
 message: Your name cannot contain a number

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Regex(
 * pattern="/\d/",
 * match=false,
 * message="Your name cannot contain a number"
 *)
 */
 protected $firstName;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="firstName">
 <constraint name="Regex">
 <option name="pattern">/\d/</option>
 <option name="match">false</option>
 <option name="message">Your name cannot contain a number</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('firstName', new Assert\Regex(array(
 'pattern' => '/\d/',
 'match' => false,
 'message' => 'Your name cannot contain a number',
)));
 }
}

Options

pattern

type: string [default option]

This required option is the regular expression pattern that the input will
be matched against. By default, this validator will fail if the input string
does not match this regular expression (via the preg_match [http://php.net/manual/en/function.preg-match.php] PHP function).
However, if match is set to false, then validation will fail if the input
string does match this pattern.

htmlPattern

2.1 新版功能: The htmlPattern option was introduced in Symfony 2.1

type: string|Boolean default: null

This option specifies the pattern to use in the HTML5 pattern attribute.
You usually don’t need to specify this option because by default, the constraint
will convert the pattern given in the pattern option into an HTML5 compatible
pattern. This means that the delimiters are removed (e.g. /[a-z]+/ becomes [a-z]+).

However, there are some other incompatibilities between both patterns which
cannot be fixed by the constraint. For instance, the HTML5 pattern attribute
does not support flags. If you have a pattern like /[a-z]+/i, you need
to specify the HTML5 compatible pattern in the htmlPattern option:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 name:
 - Regex:
 pattern: "/^[a-z]+$/i"
 htmlPattern: "^[a-zA-Z]+$"

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Regex(
 * pattern = "/^[a-z]+$/i",
 * htmlPattern = "^[a-zA-Z]+$"
 *)
 */
 protected $name;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="name">
 <constraint name="Regex">
 <option name="pattern">/^[a-z]+$/i</option>
 <option name="htmlPattern">^[a-zA-Z]+$</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('name', new Assert\Regex(array(
 'pattern' => '/^[a-z]+$/i',
 'htmlPattern' => '^[a-zA-Z]+$',
)));
 }
}

Setting htmlPattern to false will disable client side validation.

match

type: Boolean default: true

If true (or not set), this validator will pass if the given string matches
the given pattern regular expression. However, when this option is set
to false, the opposite will occur: validation will pass only if the given
string does not match the pattern regular expression.

message

type: string default: This value is not valid.

This is the message that will be shown if this validator fails.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Ip

Validates that a value is a valid IP address. By default, this will validate
the value as IPv4, but a number of different options exist to validate as
IPv6 and many other combinations.

	Applies to
	property or method

	Options
	
	version

	message

	Class
	Ip [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Ip.html]

	Validator
	IpValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/IpValidator.html]

Basic Usage

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 ipAddress:
 - Ip: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Ip
 */
 protected $ipAddress;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="ipAddress">
 <constraint name="Ip" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('ipAddress', new Assert\Ip());
 }
}

Options

version

type: string default: 4

This determines exactly how the IP address is validated and can take one
of a variety of different values:

All ranges

	4 - Validates for IPv4 addresses

	6 - Validates for IPv6 addresses

	all - Validates all IP formats

No private ranges

	4_no_priv - Validates for IPv4 but without private IP ranges

	6_no_priv - Validates for IPv6 but without private IP ranges

	all_no_priv - Validates for all IP formats but without private IP ranges

No reserved ranges

	4_no_res - Validates for IPv4 but without reserved IP ranges

	6_no_res - Validates for IPv6 but without reserved IP ranges

	all_no_res - Validates for all IP formats but without reserved IP ranges

Only public ranges

	4_public - Validates for IPv4 but without private and reserved ranges

	6_public - Validates for IPv6 but without private and reserved ranges

	all_public - Validates for all IP formats but without private and reserved ranges

message

type: string default: This is not a valid IP address.

This message is shown if the string is not a valid IP address.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Range

Validates that a given number is between some minimum and maximum number.

	Applies to
	property or method

	Options
	
	min

	max

	minMessage

	maxMessage

	invalidMessage

	Class
	Range [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Range.html]

	Validator
	RangeValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/RangeValidator.html]

Basic Usage

To verify that the “height” field of a class is between “120” and “180”, you might add
the following:

	YAML# src/Acme/EventBundle/Resources/config/validation.yml
Acme\EventBundle\Entity\Participant:
 properties:
 height:
 - Range:
 min: 120
 max: 180
 minMessage: You must be at least {{ limit }}cm tall to enter
 maxMessage: You cannot be taller than {{ limit }}cm to enter

	Annotations// src/Acme/EventBundle/Entity/Participant.php
namespace Acme\EventBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Participant
{
 /**
 * @Assert\Range(
 * min = 120,
 * max = 180,
 * minMessage = "You must be at least {{ limit }}cm tall to enter",
 * maxMessage = "You cannot be taller than {{ limit }}cm to enter"
 *)
 */
 protected $height;
}

	XML<!-- src/Acme/EventBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\EventBundle\Entity\Participant">
 <property name="height">
 <constraint name="Range">
 <option name="min">120</option>
 <option name="max">180</option>
 <option name="minMessage">You must be at least {{ limit }}cm tall to enter</option>
 <option name="maxMessage">You cannot be taller than {{ limit }}cm to enter</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/EventBundle/Entity/Participant.php
namespace Acme\EventBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Participant
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('height', new Assert\Range(array(
 'min' => 120,
 'max' => 180,
 'minMessage' => 'You must be at least {{ limit }}cm tall to enter',
 'maxMessage' => 'You cannot be taller than {{ limit }}cm to enter',
)));
 }
}

Options

min

type: integer

This required option is the “min” value. Validation will fail if the given
value is less than this min value.

max

type: integer

This required option is the “max” value. Validation will fail if the given
value is greater than this max value.

minMessage

type: string default: This value should be {{ limit }} or more.

The message that will be shown if the underlying value is less than the min
option.

maxMessage

type: string default: This value should be {{ limit }} or less.

The message that will be shown if the underlying value is more than the max
option.

invalidMessage

type: string default: This value should be a valid number.

The message that will be shown if the underlying value is not a number (per
the is_numeric [http://www.php.net/manual/en/function.is-numeric.php] PHP function).

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

EqualTo

2.3 新版功能: The EqualTo constraint was introduced in Symfony 2.3.

Validates that a value is equal to another value, defined in the options. To
force that a value is not equal, see NotEqualTo.

警告

This constraint compares using ==, so 3 and "3" are considered
equal. Use IdenticalTo to compare with
===.

	Applies to
	property or method

	Options
	
	value

	message

	Class
	EqualTo [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/EqualTo.html]

	Validator
	EqualToValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/EqualToValidator.html]

Basic Usage

If you want to ensure that the age of a Person class is equal to
20, you could do the following:

	YAML# src/Acme/SocialBundle/Resources/config/validation.yml
Acme\SocialBundle\Entity\Person:
 properties:
 age:
 - EqualTo:
 value: 20

	Annotations// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 /**
 * @Assert\EqualTo(
 * value = 20
 *)
 */
 protected $age;
}

	XML<!-- src/Acme/SocialBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\SocialBundle\Entity\Person">
 <property name="age">
 <constraint name="EqualTo">
 <option name="value">20</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('age', new Assert\EqualTo(array(
 'value' => 20,
)));
 }
}

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a
string, number or object.

message

type: string default: This value should be equal to {{ compared_value }}.

This is the message that will be shown if the value is not equal.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

NotEqualTo

2.3 新版功能: The NotEqualTo constraint was introduced in Symfony 2.3.

Validates that a value is not equal to another value, defined in the
options. To force that a value is equal, see
EqualTo.

警告

This constraint compares using !=, so 3 and "3" are considered
equal. Use NotIdenticalTo to compare with
!==.

	Applies to
	property or method

	Options
	
	value

	message

	Class
	NotEqualTo [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/NotEqualTo.html]

	Validator
	NotEqualToValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/NotEqualToValidator.html]

Basic Usage

If you want to ensure that the age of a Person class is not equal to
15, you could do the following:

	YAML# src/Acme/SocialBundle/Resources/config/validation.yml
Acme\SocialBundle\Entity\Person:
 properties:
 age:
 - NotEqualTo:
 value: 15

	Annotations// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 /**
 * @Assert\NotEqualTo(
 * value = 15
 *)
 */
 protected $age;
}

	XML<!-- src/Acme/SocialBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\SocialBundle\Entity\Person">
 <property name="age">
 <constraint name="NotEqualTo">
 <option name="value">15</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('age', new Assert\NotEqualTo(array(
 'value' => 15,
)));
 }
}

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a
string, number or object.

message

type: string default: This value should not be equal to {{ compared_value }}.

This is the message that will be shown if the value is equal.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

IdenticalTo

2.3 新版功能: The IdenticalTo constraint was introduced in Symfony 2.3.

Validates that a value is identical to another value, defined in the options.
To force that a value is not identical, see
NotIdenticalTo.

警告

This constraint compares using ===, so 3 and "3" are not
considered equal. Use EqualTo to compare
with ==.

	Applies to
	property or method

	Options
	
	value

	message

	Class
	IdenticalTo [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/IdenticalTo.html]

	Validator
	IdenticalToValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/IdenticalToValidator.html]

Basic Usage

If you want to ensure that the age of a Person class is equal to
20 and an integer, you could do the following:

	YAML# src/Acme/SocialBundle/Resources/config/validation.yml
Acme\SocialBundle\Entity\Person:
 properties:
 age:
 - IdenticalTo:
 value: 20

	Annotations// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 /**
 * @Assert\IdenticalTo(
 * value = 20
 *)
 */
 protected $age;
}

	XML<!-- src/Acme/SocialBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\SocialBundle\Entity\Person">
 <property name="age">
 <constraint name="IdenticalTo">
 <option name="value">20</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('age', new Assert\IdenticalTo(array(
 'value' => 20,
)));
 }
}

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a
string, number or object.

message

type: string default: This value should be identical to {{ compared_value_type }} {{ compared_value }}.

This is the message that will be shown if the value is not identical.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

NotIdenticalTo

2.3 新版功能: The NotIdenticalTo constraint was introduced in Symfony 2.3.

Validates that a value is not identical to another value, defined in the
options. To force that a value is identical, see
IdenticalTo.

警告

This constraint compares using !==, so 3 and "3" are
considered not equal. Use NotEqualTo to compare
with !=.

	Applies to
	property or method

	Options
	
	value

	message

	Class
	NotIdenticalTo [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/NotIdenticalTo.html]

	Validator
	NotIdenticalToValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/NotIdenticalToValidator.html]

Basic Usage

If you want to ensure that the age of a Person class is not equal to
15 and not an integer, you could do the following:

	YAML# src/Acme/SocialBundle/Resources/config/validation.yml
Acme\SocialBundle\Entity\Person:
 properties:
 age:
 - NotIdenticalTo:
 value: 15

	Annotations// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 /**
 * @Assert\NotIdenticalTo(
 * value = 15
 *)
 */
 protected $age;
}

	XML<!-- src/Acme/SocialBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\SocialBundle\Entity\Person">
 <property name="age">
 <constraint name="NotIdenticalTo">
 <option name="value">15</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('age', new Assert\NotIdenticalTo(array(
 'value' => 15,
)));
 }
}

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a
string, number or object.

message

type: string default: This value should not be identical to {{ compared_value_type }} {{ compared_value }}.

This is the message that will be shown if the value is not equal.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

LessThan

2.3 新版功能: The LessThan constraint was introduced in Symfony 2.3.

Validates that a value is less than another value, defined in the options. To
force that a value is less than or equal to another value, see
LessThanOrEqual. To force a value is greater
than another value, see GreaterThan.

	Applies to
	property or method

	Options
	
	value

	message

	Class
	LessThan [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/LessThan.html]

	Validator
	LessThanValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/LessThanValidator.html]

Basic Usage

If you want to ensure that the age of a Person class is less than
80, you could do the following:

	YAML# src/Acme/SocialBundle/Resources/config/validation.yml
Acme\SocialBundle\Entity\Person:
 properties:
 age:
 - LessThan:
 value: 80

	Annotations// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 /**
 * @Assert\LessThan(
 * value = 80
 *)
 */
 protected $age;
}

	XML<!-- src/Acme/SocialBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\SocialBundle\Entity\Person">
 <property name="age">
 <constraint name="LessThan">
 <option name="value">80</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('age', new Assert\LessThan(array(
 'value' => 80,
)));
 }
}

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a
string, number or object.

message

type: string default: This value should be less than {{ compared_value }}.

This is the message that will be shown if the value is not less than the
comparison value.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

LessThanOrEqual

2.3 新版功能: The LessThanOrEqual constraint was introduced in Symfony 2.3.

Validates that a value is less than or equal to another value, defined in the
options. To force that a value is less than another value, see
LessThan.

	Applies to
	property or method

	Options
	
	value

	message

	Class
	LessThanOrEqual [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/LessThanOrEqual.html]

	Validator
	LessThanOrEqualValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/LessThanOrEqualValidator.html]

Basic Usage

If you want to ensure that the age of a Person class is less than or
equal to 80, you could do the following:

	YAML# src/Acme/SocialBundle/Resources/config/validation.yml
Acme\SocialBundle\Entity\Person:
 properties:
 age:
 - LessThanOrEqual:
 value: 80

	Annotations// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 /**
 * @Assert\LessThanOrEqual(
 * value = 80
 *)
 */
 protected $age;
}

	XML<!-- src/Acme/SocialBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\SocialBundle\Entity\Person">
 <property name="age">
 <constraint name="LessThanOrEqual">
 <option name="value">80</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('age', new Assert\LessThanOrEqual(array(
 'value' => 80,
)));
 }
}

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a
string, number or object.

message

type: string default: This value should be less than or equal to {{ compared_value }}.

This is the message that will be shown if the value is not less than or equal
to the comparison value.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

GreaterThan

2.3 新版功能: The GreaterThan constraint was introduced in Symfony 2.3.

Validates that a value is greater than another value, defined in the options. To
force that a value is greater than or equal to another value, see
GreaterThanOrEqual. To force a value is less
than another value, see LessThan.

	Applies to
	property or method

	Options
	
	value

	message

	Class
	GreaterThan [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/GreaterThan.html]

	Validator
	GreaterThanValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/GreaterThanValidator.html]

Basic Usage

If you want to ensure that the age of a Person class is greater than
18, you could do the following:

	YAML# src/Acme/SocialBundle/Resources/config/validation.yml
Acme\SocialBundle\Entity\Person:
 properties:
 age:
 - GreaterThan:
 value: 18

	Annotations// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 /**
 * @Assert\GreaterThan(
 * value = 18
 *)
 */
 protected $age;
}

	XML<!-- src/Acme/SocialBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\SocialBundle\Entity\Person">
 <property name="age">
 <constraint name="GreaterThan">
 <option name="value">18</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('age', new Assert\GreaterThan(array(
 'value' => 18,
)));
 }
}

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a
string, number or object.

message

type: string default: This value should be greater than {{ compared_value }}.

This is the message that will be shown if the value is not greater than the
comparison value.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

GreaterThanOrEqual

2.3 新版功能: The GreaterThanOrEqual constraint was introduced in Symfony 2.3.

Validates that a value is greater than or equal to another value, defined in
the options. To force that a value is greater than another value, see
GreaterThan.

	Applies to
	property or method

	Options
	
	value

	message

	Class
	GreaterThanOrEqual [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/GreaterThanOrEqual.html]

	Validator
	GreaterThanOrEqualValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/GreaterThanOrEqualValidator.html]

Basic Usage

If you want to ensure that the age of a Person class is greater than
or equal to 18, you could do the following:

	YAML# src/Acme/SocialBundle/Resources/config/validation.yml
Acme\SocialBundle\Entity\Person:
 properties:
 age:
 - GreaterThanOrEqual:
 value: 18

	Annotations// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 /**
 * @Assert\GreaterThanOrEqual(
 * value = 18
 *)
 */
 protected $age;
}

	XML<!-- src/Acme/SocialBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\SocialBundle\Entity\Person">
 <property name="age">
 <constraint name="GreaterThanOrEqual">
 <option name="value">18</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/SocialBundle/Entity/Person.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Person
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('age', new Assert\GreaterThanOrEqual(array(
 'value' => 18,
)));
 }
}

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a
string, number or object.

message

type: string default: This value should be greater than or equal to {{ compared_value }}.

This is the message that will be shown if the value is not greater than or equal
to the comparison value.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Date

Validates that a value is a valid date, meaning either a DateTime object
or a string (or an object that can be cast into a string) that follows a
valid YYYY-MM-DD format.

	Applies to
	property or method

	Options
	
	message

	Class
	Date [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Date.html]

	Validator
	DateValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/DateValidator.html]

Basic Usage

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 birthday:
 - Date: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Date()
 */
 protected $birthday;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="birthday">
 <constraint name="Date" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('birthday', new Assert\Date());
 }
}

Options

message

type: string default: This value is not a valid date.

This message is shown if the underlying data is not a valid date.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

DateTime

Validates that a value is a valid “datetime”, meaning either a DateTime
object or a string (or an object that can be cast into a string) that follows
a valid YYYY-MM-DD HH:MM:SS format.

	Applies to
	property or method

	Options
	
	message

	Class
	DateTime [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/DateTime.html]

	Validator
	DateTimeValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/DateTimeValidator.html]

Basic Usage

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 createdAt:
 - DateTime: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\DateTime()
 */
 protected $createdAt;
}

	XML<!-- src/Acme/UserBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="createdAt">
 <constraint name="DateTime" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('createdAt', new Assert\DateTime());
 }
}

Options

message

type: string default: This value is not a valid datetime.

This message is shown if the underlying data is not a valid datetime.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Time

Validates that a value is a valid time, meaning either a DateTime object
or a string (or an object that can be cast into a string) that follows
a valid “HH:MM:SS” format.

	Applies to
	property or method

	Options
	
	message

	Class
	Time [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Time.html]

	Validator
	TimeValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/TimeValidator.html]

Basic Usage

Suppose you have an Event class, with a startAt field that is the time
of the day when the event starts:

	YAML# src/Acme/EventBundle/Resources/config/validation.yml
Acme\EventBundle\Entity\Event:
 properties:
 startsAt:
 - Time: ~

	Annotations// src/Acme/EventBundle/Entity/Event.php
namespace Acme\EventBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Event
{
 /**
 * @Assert\Time()
 */
 protected $startsAt;
}

	XML<!-- src/Acme/EventBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\EventBundle\Entity\Event">
 <property name="startsAt">
 <constraint name="Time" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/EventBundle/Entity/Event.php
namespace Acme\EventBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Event
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('startsAt', new Assert\Time());
 }
}

Options

message

type: string default: This value is not a valid time.

This message is shown if the underlying data is not a valid time.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Choice

This constraint is used to ensure that the given value is one of a given
set of valid choices. It can also be used to validate that each item in
an array of items is one of those valid choices.

	Applies to
	property or method

	Options
	
	choices

	callback

	multiple

	min

	max

	message

	multipleMessage

	minMessage

	maxMessage

	strict

	Class
	Choice [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Choice.html]

	Validator
	ChoiceValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/ChoiceValidator.html]

Basic Usage

The basic idea of this constraint is that you supply it with an array of
valid values (this can be done in several ways) and it validates that the
value of the given property exists in that array.

If your valid choice list is simple, you can pass them in directly via the
choices option:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 gender:
 - Choice:
 choices: [male, female]
 message: Choose a valid gender.

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Choice(choices = {"male", "female"}, message = "Choose a valid gender.")
 */
 protected $gender;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="gender">
 <constraint name="Choice">
 <option name="choices">
 <value>male</value>
 <value>female</value>
 </option>
 <option name="message">Choose a valid gender.</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/EntityAuthor.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 protected $gender;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('gender', new Assert\Choice(array(
 'choices' => array('male', 'female'),
 'message' => 'Choose a valid gender.',
)));
 }
}

Supplying the Choices with a Callback Function

You can also use a callback function to specify your options. This is useful
if you want to keep your choices in some central location so that, for example,
you can easily access those choices for validation or for building a select
form element.

// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

class Author
{
 public static function getGenders()
 {
 return array('male', 'female');
 }
}

You can pass the name of this method to the callback option of the Choice
constraint.

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 gender:
 - Choice: { callback: getGenders }

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Choice(callback = "getGenders")
 */
 protected $gender;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="gender">
 <constraint name="Choice">
 <option name="callback">getGenders</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/EntityAuthor.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 protected $gender;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('gender', new Assert\Choice(array(
 'callback' => 'getGenders',
)));
 }
}

If the static callback is stored in a different class, for example Util,
you can pass the class name and the method as an array.

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 gender:
 - Choice: { callback: [Util, getGenders] }

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Choice(callback = {"Util", "getGenders"})
 */
 protected $gender;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="gender">
 <constraint name="Choice">
 <option name="callback">
 <value>Util</value>
 <value>getGenders</value>
 </option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/EntityAuthor.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 protected $gender;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('gender', new Assert\Choice(array(
 'callback' => array('Util', 'getGenders'),
)));
 }
}

Available Options

choices

type: array [default option]

A required option (unless callback is specified) - this is the array
of options that should be considered in the valid set. The input value
will be matched against this array.

callback

type: string|array|Closure

This is a callback method that can be used instead of the choices option
to return the choices array. See Supplying the Choices with a Callback Function
for details on its usage.

multiple

type: Boolean default: false

If this option is true, the input value is expected to be an array instead
of a single, scalar value. The constraint will check that each value of
the input array can be found in the array of valid choices. If even one
of the input values cannot be found, the validation will fail.

min

type: integer

If the multiple option is true, then you can use the min option
to force at least XX number of values to be selected. For example, if
min is 3, but the input array only contains 2 valid items, the validation
will fail.

max

type: integer

If the multiple option is true, then you can use the max option
to force no more than XX number of values to be selected. For example, if
max is 3, but the input array contains 4 valid items, the validation
will fail.

message

type: string default: The value you selected is not a valid choice.

This is the message that you will receive if the multiple option is set
to false, and the underlying value is not in the valid array of choices.

multipleMessage

type: string default: One or more of the given values is invalid.

This is the message that you will receive if the multiple option is set
to true, and one of the values on the underlying array being checked
is not in the array of valid choices.

minMessage

type: string default: You must select at least {{ limit }} choices.

This is the validation error message that’s displayed when the user chooses
too few choices per the min option.

maxMessage

type: string default: You must select at most {{ limit }} choices.

This is the validation error message that’s displayed when the user chooses
too many options per the max option.

strict

type: Boolean default: false

If true, the validator will also check the type of the input value. Specifically,
this value is passed to as the third argument to the PHP in_array [http://php.net/manual/en/function.in-array.php] method
when checking to see if a value is in the valid choices array.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Collection

This constraint is used when the underlying data is a collection (i.e. an
array or an object that implements Traversable and ArrayAccess),
but you’d like to validate different keys of that collection in different
ways. For example, you might validate the email key using the Email
constraint and the inventory key of the collection with the Range constraint.

This constraint can also make sure that certain collection keys are present
and that extra keys are not present.

	Applies to
	property or method

	Options
	
	fields

	allowExtraFields

	extraFieldsMessage

	allowMissingFields

	missingFieldsMessage

	Class
	Collection [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Collection.html]

	Validator
	CollectionValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/CollectionValidator.html]

Basic Usage

The Collection constraint allows you to validate the different keys of
a collection individually. Take the following example:

// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

class Author
{
 protected $profileData = array(
 'personal_email',
 'short_bio',
);

 public function setProfileData($key, $value)
 {
 $this->profileData[$key] = $value;
 }
}

To validate that the personal_email element of the profileData array
property is a valid email address and that the short_bio element is not
blank but is no longer than 100 characters in length, you would do the following:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 profileData:
 - Collection:
 fields:
 personal_email: Email
 short_bio:
 - NotBlank
 - Length:
 max: 100
 maxMessage: Your short bio is too long!
 allowMissingFields: true

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Collection(
 * fields = {
 * "personal_email" = @Assert\Email,
 * "short_bio" = {
 * @Assert\NotBlank(),
 * @Assert\Length(
 * max = 100,
 * maxMessage = "Your short bio is too long!"
 *)
 * }
 * },
 * allowMissingFields = true
 *)
 */
 protected $profileData = array(
 'personal_email',
 'short_bio',
);
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="profileData">
 <constraint name="Collection">
 <option name="fields">
 <value key="personal_email">
 <constraint name="Email" />
 </value>
 <value key="short_bio">
 <constraint name="NotBlank" />
 <constraint name="Length">
 <option name="max">100</option>
 <option name="maxMessage">Your short bio is too long!</option>
 </constraint>
 </value>
 </option>
 <option name="allowMissingFields">true</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 private $options = array();

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('profileData', new Assert\Collection(array(
 'fields' => array(
 'personal_email' => new Assert\Email(),
 'short_bio' => array(
 new Assert\NotBlank(),
 new Assert\Length(array(
 'max' => 100,
 'maxMessage' => 'Your short bio is too long!',
)),
),
),
 'allowMissingFields' => true,
)));
 }
}

Presence and Absence of Fields

By default, this constraint validates more than simply whether or not the
individual fields in the collection pass their assigned constraints. In fact,
if any keys of a collection are missing or if there are any unrecognized
keys in the collection, validation errors will be thrown.

If you would like to allow for keys to be absent from the collection or if
you would like “extra” keys to be allowed in the collection, you can modify
the allowMissingFields and allowExtraFields options respectively. In
the above example, the allowMissingFields option was set to true, meaning
that if either of the personal_email or short_bio elements were missing
from the $personalData property, no validation error would occur.

Required and optional Field Constraints

2.3 新版功能: The Required and Optional constraints were moved to the namespace
Symfony\Component\Validator\Constraints\ in Symfony 2.3.

Constraints for fields within a collection can be wrapped in the Required or
Optional constraint to control whether they should always be applied (Required)
or only applied when the field is present (Optional).

For instance, if you want to require that the personal_email field of the
profileData array is not blank and is a valid email but the alternate_email
field is optional but must be a valid email if supplied, you can do the following:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 profile_data:
 - Collection:
 fields:
 personal_email:
 - Required
 - NotBlank: ~
 - Email: ~
 alternate_email:
 - Optional:
 - Email: ~

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Collection(
 * fields={
 * "personal_email" = @Assert\Required({@Assert\NotBlank, @Assert\Email}),
 * "alternate_email" = @Assert\Optional(@Assert\Email)
 * }
 *)
 */
 protected $profileData = array('personal_email');
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="profile_data">
 <constraint name="Collection">
 <option name="fields">
 <value key="personal_email">
 <constraint name="Required">
 <constraint name="NotBlank" />
 <constraint name="Email" />
 </constraint>
 </value>
 <value key="alternate_email">
 <constraint name="Optional">
 <constraint name="Email" />
 </constraint>
 </value>
 </option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 protected $profileData = array('personal_email');

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('profileData', new Assert\Collection(array(
 'fields' => array(
 'personal_email' => new Assert\Required(array(new Assert\NotBlank(), new Assert\Email())),
 'alternate_email' => new Assert\Optional(new Assert\Email()),
),
)));
 }
}

Even without allowMissingFields set to true, you can now omit the alternate_email
property completely from the profileData array, since it is Optional.
However, if the personal_email field does not exist in the array,
the NotBlank constraint will still be applied (since it is wrapped in
Required) and you will receive a constraint violation.

Options

fields

type: array [default option]

This option is required, and is an associative array defining all of the
keys in the collection and, for each key, exactly which validator(s) should
be executed against that element of the collection.

allowExtraFields

type: Boolean default: false

If this option is set to false and the underlying collection contains
one or more elements that are not included in the fields option, a validation
error will be returned. If set to true, extra fields are ok.

extraFieldsMessage

type: Boolean default: The fields {{ fields }} were not expected.

The message shown if allowExtraFields is false and an extra field is detected.

allowMissingFields

type: Boolean default: false

If this option is set to false and one or more fields from the fields
option are not present in the underlying collection, a validation error will
be returned. If set to true, it’s ok if some fields in the fields
option are not present in the underlying collection.

missingFieldsMessage

type: Boolean default: The fields {{ fields }} are missing.

The message shown if allowMissingFields is false and one or more fields
are missing from the underlying collection.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Count

Validates that a given collection’s (i.e. an array or an object that implements Countable)
element count is between some minimum and maximum value.

	Applies to
	property or method

	Options
	
	min

	max

	minMessage

	maxMessage

	exactMessage

	Class
	Count [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Count.html]

	Validator
	CountValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/CountValidator.html]

Basic Usage

To verify that the emails array field contains between 1 and 5 elements
you might add the following:

	YAML# src/Acme/EventBundle/Resources/config/validation.yml
Acme\EventBundle\Entity\Participant:
 properties:
 emails:
 - Count:
 min: 1
 max: 5
 minMessage: "You must specify at least one email"
 maxMessage: "You cannot specify more than {{ limit }} emails"

	Annotations// src/Acme/EventBundle/Entity/Participant.php
namespace Acme\EventBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Participant
{
 /**
 * @Assert\Count(
 * min = "1",
 * max = "5",
 * minMessage = "You must specify at least one email",
 * maxMessage = "You cannot specify more than {{ limit }} emails"
 *)
 */
 protected $emails = array();
}

	XML<!-- src/Acme/EventBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\EventBundle\Entity\Participant">
 <property name="emails">
 <constraint name="Count">
 <option name="min">1</option>
 <option name="max">5</option>
 <option name="minMessage">You must specify at least one email</option>
 <option name="maxMessage">You cannot specify more than {{ limit }} emails</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/EventBundle/Entity/Participant.php
namespace Acme\EventBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Participant
{
 public static function loadValidatorMetadata(ClassMetadata $data)
 {
 $metadata->addPropertyConstraint('emails', new Assert\Count(array(
 'min' => 1,
 'max' => 5,
 'minMessage' => 'You must specify at least one email',
 'maxMessage' => 'You cannot specify more than {{ limit }} emails',
)));
 }
}

Options

min

type: integer

This required option is the “min” count value. Validation will fail if the given
collection elements count is less than this min value.

max

type: integer

This required option is the “max” count value. Validation will fail if the given
collection elements count is greater than this max value.

minMessage

type: string default: This collection should contain {{ limit }} elements or more.

The message that will be shown if the underlying collection elements count is less than the min option.

maxMessage

type: string default: This collection should contain {{ limit }} elements or less.

The message that will be shown if the underlying collection elements count is more than the max option.

exactMessage

type: string default: This collection should contain exactly {{ limit }} elements.

The message that will be shown if min and max values are equal and the underlying collection elements
count is not exactly this value.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

UniqueEntity

Validates that a particular field (or fields) in a Doctrine entity is (are)
unique. This is commonly used, for example, to prevent a new user to register
using an email address that already exists in the system.

	Applies to
	class

	Options
	
	fields

	message

	em

	repositoryMethod

	errorPath

	ignoreNull

	Class
	UniqueEntity [http://api.symfony.com/master/Symfony/Bridge/Doctrine/Validator/Constraints/UniqueEntity.html]

	Validator
	UniqueEntityValidator [http://api.symfony.com/master/Symfony/Bridge/Doctrine/Validator/Constraints/UniqueEntityValidator.html]

Basic Usage

Suppose you have an AcmeUserBundle bundle with a User entity that has an
email field. You can use the UniqueEntity constraint to guarantee that
the email field remains unique between all of the constraints in your user
table:

	YAML# src/Acme/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Entity\Author:
 constraints:
 - Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity: email
 properties:
 email:
 - Email: ~

	Annotations// Acme/UserBundle/Entity/Author.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;
use Doctrine\ORM\Mapping as ORM;

// DON'T forget this use statement!!!
use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;

/**
 * @ORM\Entity
 * @UniqueEntity("email")
 */
class Author
{
 /**
 * @var string $email
 *
 * @ORM\Column(name="email", type="string", length=255, unique=true)
 * @Assert\Email()
 */
 protected $email;

 // ...
}

	XML<!-- src/Acme/AdministrationBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\UserBundle\Entity\Author">
 <constraint name="Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity">
 <option name="fields">email</option>
 </constraint>
 <property name="email">
 <constraint name="Email" />
 </property>
 </class>
</constraint-mapping>

	PHP// Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

// DON'T forget this use statement!!!
use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addConstraint(new UniqueEntity(array(
 'fields' => 'email',
)));

 $metadata->addPropertyConstraint('email', new Assert\Email());
 }
}

Options

fields

type: array | string [default option]

This required option is the field (or list of fields) on which this entity
should be unique. For example, if you specified both the email and name
field in a single UniqueEntity constraint, then it would enforce that
the combination value where unique (e.g. two users could have the same email,
as long as they don’t have the same name also).

If you need to require two fields to be individually unique (e.g. a unique
email and a unique username), you use two UniqueEntity entries,
each with a single field.

message

type: string default: This value is already used.

The message that’s displayed when this constraint fails.

em

type: string

The name of the entity manager to use for making the query to determine the
uniqueness. If it’s left blank, the correct entity manager will be determined
for this class. For that reason, this option should probably not need to be
used.

repositoryMethod

type: string default: findBy

The name of the repository method to use for making the query to determine the
uniqueness. If it’s left blank, the findBy method will be used. This
method should return a countable result.

errorPath

type: string default: The name of the first field in fields

2.1 新版功能: The errorPath option was introduced in Symfony 2.1.

If the entity violates the constraint the error message is bound to the first
field in fields. If there is more than one field, you may want to map
the error message to another field.

Consider this example:

	YAML# src/Acme/AdministrationBundle/Resources/config/validation.yml
Acme\AdministrationBundle\Entity\Service:
 constraints:
 - Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity:
 fields: [host, port]
 errorPath: port
 message: 'This port is already in use on that host.'

	Annotations// src/Acme/AdministrationBundle/Entity/Service.php
namespace Acme\AdministrationBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;

/**
 * @ORM\Entity
 * @UniqueEntity(
 * fields={"host", "port"},
 * errorPath="port",
 * message="This port is already in use on that host."
 *)
 */
class Service
{
 /**
 * @ORM\ManyToOne(targetEntity="Host")
 */
 public $host;

 /**
 * @ORM\Column(type="integer")
 */
 public $port;
}

	XML<!-- src/Acme/AdministrationBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\AdministrationBundle\Entity\Service">
 <constraint name="Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity">
 <option name="fields">
 <value>host</value>
 <value>port</value>
 </option>
 <option name="errorPath">port</option>
 <option name="message">This port is already in use on that host.</option>
 </constraint>
 </class>

</constraint-mapping>

	PHP// src/Acme/AdministrationBundle/Entity/Service.php
namespace Acme\AdministrationBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;

class Service
{
 public $host;
 public $port;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addConstraint(new UniqueEntity(array(
 'fields' => array('host', 'port'),
 'errorPath' => 'port',
 'message' => 'This port is already in use on that host.',
)));
 }
}

Now, the message would be bound to the port field with this configuration.

ignoreNull

type: Boolean default: true

2.1 新版功能: The ignoreNull option was introduced in Symfony 2.1.

If this option is set to true, then the constraint will allow multiple
entities to have a null value for a field without failing validation.
If set to false, only one null value is allowed - if a second entity
also has a null value, validation would fail.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Language

Validates that a value is a valid language Unicode language identifier
(e.g. fr or zh-Hant).

	Applies to
	property or method

	Options
	
	message

	Class
	Language [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Language.html]

	Validator
	LanguageValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/LanguageValidator.html]

Basic Usage

	YAML# src/Acme/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Entity\User:
 properties:
 preferredLanguage:
 - Language: ~

	Annotations// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class User
{
 /**
 * @Assert\Language()
 */
 protected $preferredLanguage;
}

	XML<!-- src/Acme/UserBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\UserBundle\Entity\User">
 <property name="preferredLanguage">
 <constraint name="Language" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class User
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('preferredLanguage', new Assert\Language());
 }
}

Options

message

type: string default: This value is not a valid language.

This message is shown if the string is not a valid language code.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Locale

Validates that a value is a valid locale.

The “value” for each locale is either the two letter ISO 639-1 [http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes] language code
(e.g. fr), or the language code followed by an underscore (_), then
the ISO 3166-1 alpha-2 [http://en.wikipedia.org/wiki/ISO_3166-1#Current_codes] country code (e.g. fr_FR for French/France).

	Applies to
	property or method

	Options
	
	message

	Class
	Locale [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Locale.html]

	Validator
	LocaleValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/LocaleValidator.html]

Basic Usage

	YAML# src/Acme/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Entity\User:
 properties:
 locale:
 - Locale: ~

	Annotations// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class User
{
 /**
 * @Assert\Locale()
 */
 protected $locale;
}

	XML<!-- src/Acme/UserBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\UserBundle\Entity\User">
 <property name="locale">
 <constraint name="Locale" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class User
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('locale', new Assert\Locale());
 }
}

Options

message

type: string default: This value is not a valid locale.

This message is shown if the string is not a valid locale.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Country

Validates that a value is a valid ISO 3166-1 alpha-2 [http://en.wikipedia.org/wiki/ISO_3166-1#Current_codes] country code.

	Applies to
	property or method

	Options
	
	message

	Class
	Country [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Country.html]

	Validator
	CountryValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/CountryValidator.html]

Basic Usage

	YAML# src/Acme/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Entity\User:
 properties:
 country:
 - Country: ~

	Annotations// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class User
{
 /**
 * @Assert\Country()
 */
 protected $country;
}

	XML<!-- src/Acme/UserBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\UserBundle\Entity\User">
 <property name="country">
 <constraint name="Country" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class User
{
 public static function loadValidationMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('country', new Assert\Country());
 }
}

Options

message

type: string default: This value is not a valid country.

This message is shown if the string is not a valid country code.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

File

Validates that a value is a valid “file”, which can be one of the following:

	A string (or object with a __toString() method) path to an existing file;

	A valid File [http://api.symfony.com/master/Symfony/Component/HttpFoundation/File/File.html] object
(including objects of class UploadedFile [http://api.symfony.com/master/Symfony/Component/HttpFoundation/File/UploadedFile.html]).

This constraint is commonly used in forms with the file
form type.

小技巧

If the file you’re validating is an image, try the Image
constraint.

	Applies to
	property or method

	Options
	
	maxSize

	mimeTypes

	maxSizeMessage

	mimeTypesMessage

	notFoundMessage

	notReadableMessage

	uploadIniSizeErrorMessage

	uploadFormSizeErrorMessage

	uploadErrorMessage

	Class
	File [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/File.html]

	Validator
	FileValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/FileValidator.html]

Basic Usage

This constraint is most commonly used on a property that will be rendered
in a form as a file form type. For example,
suppose you’re creating an author form where you can upload a “bio” PDF for
the author. In your form, the bioFile property would be a file type.
The Author class might look as follows:

// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\HttpFoundation\File\File;

class Author
{
 protected $bioFile;

 public function setBioFile(File $file = null)
 {
 $this->bioFile = $file;
 }

 public function getBioFile()
 {
 return $this->bioFile;
 }
}

To guarantee that the bioFile File object is valid, and that it is
below a certain file size and a valid PDF, add the following:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 properties:
 bioFile:
 - File:
 maxSize: 1024k
 mimeTypes: [application/pdf, application/x-pdf]
 mimeTypesMessage: Please upload a valid PDF

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\File(
 * maxSize = "1024k",
 * mimeTypes = {"application/pdf", "application/x-pdf"},
 * mimeTypesMessage = "Please upload a valid PDF"
 *)
 */
 protected $bioFile;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="bioFile">
 <constraint name="File">
 <option name="maxSize">1024k</option>
 <option name="mimeTypes">
 <value>application/pdf</value>
 <value>application/x-pdf</value>
 </option>
 <option name="mimeTypesMessage">Please upload a valid PDF</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('bioFile', new Assert\File(array(
 'maxSize' => '1024k',
 'mimeTypes' => array(
 'application/pdf',
 'application/x-pdf',
),
 'mimeTypesMessage' => 'Please upload a valid PDF',
)));
 }
}

The bioFile property is validated to guarantee that it is a real file.
Its size and mime type are also validated because the appropriate options
have been specified.

Options

maxSize

type: mixed

If set, the size of the underlying file must be below this file size in order
to be valid. The size of the file can be given in one of the following formats:

	bytes: To specify the maxSize in bytes, pass a value that is entirely
numeric (e.g. 4096);

	kilobytes: To specify the maxSize in kilobytes, pass a number and
suffix it with a lowercase “k” (e.g. 200k);

	megabytes: To specify the maxSize in megabytes, pass a number and
suffix it with a capital “M” (e.g. 4M).

mimeTypes

type: array or string

If set, the validator will check that the mime type of the underlying file
is equal to the given mime type (if a string) or exists in the collection
of given mime types (if an array).

You can find a list of existing mime types on the IANA website [http://www.iana.org/assignments/media-types/index.html].

maxSizeMessage

type: string default: The file is too large ({{ size }} {{ suffix }}). Allowed maximum size is {{ limit }} {{ suffix }}.

The message displayed if the file is larger than the maxSize option.

mimeTypesMessage

type: string default: The mime type of the file is invalid ({{ type }}). Allowed mime types are {{ types }}.

The message displayed if the mime type of the file is not a valid mime type
per the mimeTypes option.

notFoundMessage

type: string default: The file could not be found.

The message displayed if no file can be found at the given path. This error
is only likely if the underlying value is a string path, as a File object
cannot be constructed with an invalid file path.

notReadableMessage

type: string default: The file is not readable.

The message displayed if the file exists, but the PHP is_readable function
fails when passed the path to the file.

uploadIniSizeErrorMessage

type: string default: The file is too large. Allowed maximum size is {{ limit }} {{ suffix }}.

The message that is displayed if the uploaded file is larger than the upload_max_filesize
php.ini setting.

uploadFormSizeErrorMessage

type: string default: The file is too large.

The message that is displayed if the uploaded file is larger than allowed
by the HTML file input field.

uploadErrorMessage

type: string default: The file could not be uploaded.

The message that is displayed if the uploaded file could not be uploaded
for some unknown reason, such as the file upload failed or it couldn’t be written
to disk.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Image

The Image constraint works exactly like the File
constraint, except that its mimeTypes and mimeTypesMessage options are
automatically setup to work for image files specifically.

Additionally, as of Symfony 2.1, it has options so you can validate against
the width and height of the image.

See the File constraint for the bulk of
the documentation on this constraint.

	Applies to
	property or method

	Options
	
	mimeTypes

	minWidth

	maxWidth

	maxHeight

	minHeight

	mimeTypesMessage

	sizeNotDetectedMessage

	maxWidthMessage

	minWidthMessage

	maxHeightMessage

	minHeightMessage

	See File for inherited options

	Class
	Image [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Image.html]

	Validator
	ImageValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/ImageValidator.html]

Basic Usage

This constraint is most commonly used on a property that will be rendered
in a form as a file form type. For example,
suppose you’re creating an author form where you can upload a “headshot”
image for the author. In your form, the headshot property would be a
file type. The Author class might look as follows:

// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\HttpFoundation\File\File;

class Author
{
 protected $headshot;

 public function setHeadshot(File $file = null)
 {
 $this->headshot = $file;
 }

 public function getHeadshot()
 {
 return $this->headshot;
 }
}

To guarantee that the headshot File object is a valid image and that
it is between a certain size, add the following:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author
 properties:
 headshot:
 - Image:
 minWidth: 200
 maxWidth: 400
 minHeight: 200
 maxHeight: 400

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Image(
 * minWidth = 200,
 * maxWidth = 400,
 * minHeight = 200,
 * maxHeight = 400
 *)
 */
 protected $headshot;
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <property name="headshot">
 <constraint name="Image">
 <option name="minWidth">200</option>
 <option name="maxWidth">400</option>
 <option name="minHeight">200</option>
 <option name="maxHeight">400</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\Image;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('headshot', new Image(array(
 'minWidth' => 200,
 'maxWidth' => 400,
 'minHeight' => 200,
 'maxHeight' => 400,
)));
 }
}

The headshot property is validated to guarantee that it is a real image
and that it is between a certain width and height.

Options

This constraint shares all of its options with the File
constraint. It does, however, modify two of the default option values and
add several other options.

mimeTypes

type: array or string default: image/*

You can find a list of existing image mime types on the IANA website [http://www.iana.org/assignments/media-types/image/index.html].

mimeTypesMessage

type: string default: This file is not a valid image.

minWidth

type: integer

If set, the width of the image file must be greater than or equal to this
value in pixels.

maxWidth

type: integer

If set, the width of the image file must be less than or equal to this
value in pixels.

minHeight

type: integer

If set, the height of the image file must be greater than or equal to this
value in pixels.

maxHeight

type: integer

If set, the height of the image file must be less than or equal to this
value in pixels.

sizeNotDetectedMessage

type: string default: The size of the image could not be detected.

If the system is unable to determine the size of the image, this error will
be displayed. This will only occur when at least one of the four size constraint
options has been set.

maxWidthMessage

type: string default: The image width is too big ({{ width }}px). Allowed maximum width is {{ max_width }}px.

The error message if the width of the image exceeds maxWidth.

minWidthMessage

type: string default: The image width is too small ({{ width }}px). Minimum width expected is {{ min_width }}px.

The error message if the width of the image is less than minWidth.

maxHeightMessage

type: string default: The image height is too big ({{ height }}px). Allowed maximum height is {{ max_height }}px.

The error message if the height of the image exceeds maxHeight.

minHeightMessage

type: string default: The image height is too small ({{ height }}px). Minimum height expected is {{ min_height }}px.

The error message if the height of the image is less than minHeight.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

CardScheme

2.2 新版功能: The CardScheme constraint was introduced in Symfony 2.2.

This constraint ensures that a credit card number is valid for a given credit card
company. It can be used to validate the number before trying to initiate a payment
through a payment gateway.

	Applies to
	property or method

	Options
	
	schemes

	message

	Class
	CardScheme [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/CardScheme.html]

	Validator
	CardSchemeValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/CardSchemeValidator.html]

Basic Usage

To use the CardScheme validator, simply apply it to a property or method
on an object that will contain a credit card number.

	YAML# src/Acme/SubscriptionBundle/Resources/config/validation.yml
Acme\SubscriptionBundle\Entity\Transaction:
 properties:
 cardNumber:
 - CardScheme:
 schemes: [VISA]
 message: Your credit card number is invalid.

	XML<!-- src/Acme/SubscriptionBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\SubscriptionBundle\Entity\Transaction">
 <property name="cardNumber">
 <constraint name="CardScheme">
 <option name="schemes">
 <value>VISA</value>
 </option>
 <option name="message">Your credit card number is invalid.</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	Annotations// src/Acme/SubscriptionBundle/Entity/Transaction.php
namespace Acme\SubscriptionBundle\Entity\Transaction;

use Symfony\Component\Validator\Constraints as Assert;

class Transaction
{
 /**
 * @Assert\CardScheme(schemes = {"VISA"}, message = "Your credit card number is invalid.")
 */
 protected $cardNumber;
}

	PHP// src/Acme/SubscriptionBundle/Entity/Transaction.php
namespace Acme\SubscriptionBundle\Entity\Transaction;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Transaction
{
 protected $cardNumber;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('cardNumber', new Assert\CardScheme(array(
 'schemes' => array(
 'VISA'
),
 'message' => 'Your credit card number is invalid.',
)));
 }
}

Available Options

schemes

type: mixed [default option]

This option is required and represents the name of the number scheme used to
validate the credit card number, it can either be a string or an array. Valid
values are:

	AMEX

	CHINA_UNIONPAY

	DINERS

	DISCOVER

	INSTAPAYMENT

	JCB

	LASER

	MAESTRO

	MASTERCARD

	VISA

For more information about the used schemes, see Wikipedia: Issuer identification number (IIN) [http://en.wikipedia.org/wiki/Bank_card_number#Issuer_identification_number_.28IIN.29].

message

type: string default: Unsupported card type or invalid card number.

The message shown when the value does not pass the CardScheme check.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Currency

2.3 新版功能: The Currency constraint was introduced in Symfony 2.3.

Validates that a value is a valid 3-letter ISO 4217 [http://en.wikipedia.org/wiki/ISO_4217] currency name.

	Applies to
	property or method

	Options
	
	message

	Class
	Currency [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Currency.html]

	Validator
	CurrencyValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/CurrencyValidator.html]

Basic Usage

If you want to ensure that the currency property of an Order is a valid
currency, you could do the following:

	YAML# src/Acme/EcommerceBundle/Resources/config/validation.yml
Acme\EcommerceBundle\Entity\Order:
 properties:
 currency:
 - Currency: ~

	Annotations// src/Acme/EcommerceBundle/Entity/Order.php
namespace Acme\EcommerceBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Order
{
 /**
 * @Assert\Currency
 */
 protected $currency;
}

	XML<!-- src/Acme/EcommerceBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\EcommerceBundle\Entity\Order">
 <property name="currency">
 <constraint name="Currency" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/EcommerceBundle/Entity/Order.php
namespace Acme\SocialBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Order
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('currency', new Assert\Currency());
 }
}

Options

message

type: string default: This value is not a valid currency.

This is the message that will be shown if the value is not a valid currency.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Luhn

2.2 新版功能: The Luhn constraint was introduced in Symfony 2.2.

This constraint is used to ensure that a credit card number passes the Luhn algorithm [http://en.wikipedia.org/wiki/Luhn_algorithm].
It is useful as a first step to validating a credit card: before communicating with a
payment gateway.

	Applies to
	property or method

	Options
	
	message

	Class
	Luhn [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Luhn.html]

	Validator
	LuhnValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/LuhnValidator.html]

Basic Usage

To use the Luhn validator, simply apply it to a property on an object that
will contain a credit card number.

	YAML# src/Acme/SubscriptionBundle/Resources/config/validation.yml
Acme\SubscriptionBundle\Entity\Transaction:
 properties:
 cardNumber:
 - Luhn:
 message: Please check your credit card number.

	Annotations// src/Acme/SubscriptionBundle/Entity/Transaction.php
namespace Acme\SubscriptionBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Transaction
{
 /**
 * @Assert\Luhn(message = "Please check your credit card number.")
 */
 protected $cardNumber;
}

	XML<!-- src/Acme/SubscriptionBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\SubscriptionBundle\Entity\Transaction">
 <property name="cardNumber">
 <constraint name="Luhn">
 <option name="message">Please check your credit card number.</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/SubscriptionBundle/Entity/Transaction.php
namespace Acme\SubscriptionBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Transaction
{
 protected $cardNumber;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('cardNumber', new Assert\Luhn(array(
 'message' => 'Please check your credit card number',
)));
 }
}

Available Options

message

type: string default: Invalid card number.

The default message supplied when the value does not pass the Luhn check.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Iban

2.3 新版功能: The Iban constraint was introduced in Symfony 2.3.

This constraint is used to ensure that a bank account number has the proper format of
an International Bank Account Number (IBAN) [http://en.wikipedia.org/wiki/International_Bank_Account_Number]. IBAN is an internationally agreed means
of identifying bank accounts across national borders with a reduced risk of propagating
transcription errors.

	Applies to
	property or method

	Options
	
	message

	Class
	Iban [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Iban.html]

	Validator
	IbanValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/IbanValidator.html]

Basic Usage

To use the Iban validator, simply apply it to a property on an object that
will contain an International Bank Account Number.

	YAML# src/Acme/SubscriptionBundle/Resources/config/validation.yml
Acme\SubscriptionBundle\Entity\Transaction:
 properties:
 bankAccountNumber:
 - Iban:
 message: This is not a valid International Bank Account Number (IBAN).

	Annotations// src/Acme/SubscriptionBundle/Entity/Transaction.php
namespace Acme\SubscriptionBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Transaction
{
 /**
 * @Assert\Iban(message = "This is not a valid International Bank Account Number (IBAN).")
 */
 protected $bankAccountNumber;
}

	XML<!-- src/Acme/SubscriptionBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\SubscriptionBundle\Entity\Transaction">
 <property name="bankAccountNumber">
 <constraint name="Iban">
 <option name="message">This is not a valid International Bank Account Number (IBAN).</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/SubscriptionBundle/Entity/Transaction.php
namespace Acme\SubscriptionBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Transaction
{
 protected $bankAccountNumber;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('bankAccountNumber', new Assert\Iban(array(
 'message' => 'This is not a valid International Bank Account Number (IBAN).',
)));
 }
}

Available Options

message

type: string default: This is not a valid International Bank Account Number (IBAN).

The default message supplied when the value does not pass the Iban check.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Isbn

2.3 新版功能: The Isbn constraint was introduced in Symfony 2.3.

This constraint validates that an International Standard Book Number (ISBN) [http://en.wikipedia.org/wiki/Isbn]
is either a valid ISBN-10, a valid ISBN-13 or both.

	Applies to
	property or method

	Options
	
	isbn10

	isbn13

	isbn10Message

	isbn13Message

	bothIsbnMessage

	Class
	Isbn [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Isbn.html]

	Validator
	IsbnValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/IsbnValidator.html]

Basic Usage

To use the Isbn validator, simply apply it to a property or method
on an object that will contain a ISBN number.

	YAML# src/Acme/BookcaseBundle/Resources/config/validation.yml
Acme\BookcaseBundle\Entity\Book:
 properties:
 isbn:
 - Isbn:
 isbn10: true
 isbn13: true
 bothIsbnMessage: This value is neither a valid ISBN-10 nor a valid ISBN-13.

	Annotations// src/Acme/BookcaseBundle/Entity/Book.php
namespace Acme\BookcaseBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Book
{
 /**
 * @Assert\Isbn(
 * isbn10 = true,
 * isbn13 = true,
 * bothIsbnMessage = "This value is neither a valid ISBN-10 nor a valid ISBN-13."
 *)
 */
 protected $isbn;
}

	XML<!-- src/Acme/BookcaseBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BookcaseBundle\Entity\Book">
 <property name="isbn">
 <constraint name="Isbn">
 <option name="isbn10">true</option>
 <option name="isbn13">true</option>
 <option name="bothIsbnMessage">This value is neither a valid ISBN-10 nor a valid ISBN-13.</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/BookcaseBundle/Entity/Book.php
namespace Acme\BookcaseBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Book
{
 protected $isbn;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('isbn', new Assert\Isbn(array(
 'isbn10' => true,
 'isbn13' => true,
 'bothIsbnMessage' => 'This value is neither a valid ISBN-10 nor a valid ISBN-13.'
)));
 }
}

Available Options

isbn10

type: boolean

If this required option is set to true the constraint will check if the
code is a valid ISBN-10 code.

isbn13

type: boolean

If this required option is set to true the constraint will check if the
code is a valid ISBN-13 code.

isbn10Message

type: string default: This value is not a valid ISBN-10.

The message that will be shown if the isbn10 option is true and the given
value does not pass the ISBN-10 check.

isbn13Message

type: string default: This value is not a valid ISBN-13.

The message that will be shown if the isbn13 option is true and the given
value does not pass the ISBN-13 check.

bothIsbnMessage

type: string default: This value is neither a valid ISBN-10 nor a valid ISBN-13.

The message that will be shown if both the isbn10 and isbn13 options
are true and the given value does not pass the ISBN-13 nor the ISBN-13 check.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Issn

2.3 新版功能: The Issn constraint was introduced in Symfony 2.3.

Validates that a value is a valid International Standard Serial Number (ISSN) [http://en.wikipedia.org/wiki/Issn].

	Applies to
	property or method

	Options
	
	message

	caseSensitive

	requireHyphen

	Class
	Issn [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Issn.html]

	Validator
	IssnValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/IssnValidator.html]

Basic Usage

	YAML# src/Acme/JournalBundle/Resources/config/validation.yml
Acme\JournalBundle\Entity\Journal:
 properties:
 issn:
 - Issn: ~

	Annotations// src/Acme/JournalBundle/Entity/Journal.php
namespace Acme\JournalBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Journal
{
 /**
 * @Assert\Issn
 */
 protected $issn;
}

	XML<!-- src/Acme/JournalBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\JournalBundle\Entity\Journal">
 <property name="issn">
 <constraint name="Issn" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/JournalBundle/Entity/Journal.php
namespace Acme\JournalBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Journal
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('issn', new Assert\Issn());
 }
}

Options

message

type: String default: This value is not a valid ISSN.

The message shown if the given value is not a valid ISSN.

caseSensitive

type: Boolean default: false

The validator will allow ISSN values to end with a lower case ‘x’ by default.
When switching this to true, the validator requires an upper case ‘X’.

requireHyphen

type: Boolean default: false

The validator will allow non hyphenated ISSN values by default. When switching
this to true, the validator requires a hyphenated ISSN value.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Callback

The purpose of the Callback assertion is to let you create completely custom
validation rules and to assign any validation errors to specific fields on
your object. If you’re using validation with forms, this means that you can
make these custom errors display next to a specific field, instead of simply
at the top of your form.

This process works by specifying one or more callback methods, each of
which will be called during the validation process. Each of those methods
can do anything, including creating and assigning validation errors.

注解

A callback method itself doesn’t fail or return any value. Instead,
as you’ll see in the example, a callback method has the ability to directly
add validator “violations”.

	Applies to
	class

	Options
	
	methods

	Class
	Callback [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Callback.html]

	Validator
	CallbackValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/CallbackValidator.html]

Setup

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 constraints:
 - Callback:
 methods: [isAuthorValid]

	Annotations// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

/**
 * @Assert\Callback(methods={"isAuthorValid"})
 */
class Author
{
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <constraint name="Callback">
 <option name="methods">
 <value>isAuthorValid</value>
 </option>
 </constraint>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addConstraint(new Assert\Callback(array(
 'methods' => array('isAuthorValid'),
)));
 }
}

The Callback Method

The callback method is passed a special ExecutionContextInterface object. You
can set “violations” directly on this object and determine to which field
those errors should be attributed:

// ...
use Symfony\Component\Validator\ExecutionContextInterface;

class Author
{
 // ...
 private $firstName;

 public function isAuthorValid(ExecutionContextInterface $context)
 {
 // somehow you have an array of "fake names"
 $fakeNames = array();

 // check if the name is actually a fake name
 if (in_array($this->getFirstName(), $fakeNames)) {
 $context->addViolationAt('firstname', 'This name sounds totally fake!', array(), null);
 }
 }
}

Options

methods

type: array default: array() [default option]

This is an array of the methods that should be executed during the validation
process. Each method can be one of the following formats:

	String method name

If the name of a method is a simple string (e.g. isAuthorValid), that
method will be called on the same object that’s being validated and the
ExecutionContextInterface will be the only argument (see the above example).

	Static array callback

Each method can also be specified as a standard array callback:

	YAML# src/Acme/BlogBundle/Resources/config/validation.yml
Acme\BlogBundle\Entity\Author:
 constraints:
 - Callback:
 methods:
 - [Acme\BlogBundle\MyStaticValidatorClass, isAuthorValid]

	Annotations// src/Acme/BlogBundle/Entity/Author.php
use Symfony\Component\Validator\Constraints as Assert;

/**
 * @Assert\Callback(methods={
 * { "Acme\BlogBundle\MyStaticValidatorClass", "isAuthorValid" }
 * })
 */
class Author
{
}

	XML<!-- src/Acme/BlogBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\BlogBundle\Entity\Author">
 <constraint name="Callback">
 <option name="methods">
 <value>
 <value>Acme\BlogBundle\MyStaticValidatorClass</value>
 <value>isAuthorValid</value>
 </value>
 </option>
 </constraint>
 </class>
</constraint-mapping>

	PHP// src/Acme/BlogBundle/Entity/Author.php

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints\Callback;

class Author
{
 public $name;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addConstraint(new Callback(array(
 'methods' => array(
 array('Acme\BlogBundle\MyStaticValidatorClass', 'isAuthorValid'),
),
)));
 }
}

In this case, the static method isAuthorValid will be called on the
Acme\BlogBundle\MyStaticValidatorClass class. It’s passed both the original
object being validated (e.g. Author) as well as the ExecutionContextInterface:

namespace Acme\BlogBundle;

use Symfony\Component\Validator\ExecutionContextInterface;
use Acme\BlogBundle\Entity\Author;

class MyStaticValidatorClass
{
 public static function isAuthorValid(Author $author, ExecutionContextInterface $context)
 {
 // ...
 }
}

小技巧

If you specify your Callback constraint via PHP, then you also have
the option to make your callback either a PHP closure or a non-static
callback. It is not currently possible, however, to specify a service
as a constraint. To validate using a service, you should
create a custom validation constraint
and add that new constraint to your class.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

All

When applied to an array (or Traversable object), this constraint allows
you to apply a collection of constraints to each element of the array.

	Applies to
	property or method

	Options
	
	constraints

	Class
	All [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/All.html]

	Validator
	AllValidator [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/AllValidator.html]

Basic Usage

Suppose that you have an array of strings, and you want to validate each
entry in that array:

	YAML# src/Acme/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Entity\User:
 properties:
 favoriteColors:
 - All:
 - NotBlank: ~
 - Length:
 min: 5

	Annotations// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class User
{
 /**
 * @Assert\All({
 * @Assert\NotBlank,
 * @Assert\Length(min = 5)
 * })
 */
 protected $favoriteColors = array();
}

	XML<!-- src/Acme/UserBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\UserBundle\Entity\User">
 <property name="favoriteColors">
 <constraint name="All">
 <option name="constraints">
 <constraint name="NotBlank" />
 <constraint name="Length">
 <option name="min">5</option>
 </constraint>
 </option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class User
{
 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('favoriteColors', new Assert\All(array(
 'constraints' => array(
 new Assert\NotBlank(),
 new Assert\Length(array('min' => 5)),
),
)));
 }
}

Now, each entry in the favoriteColors array will be validated to not
be blank and to be at least 5 characters long.

Options

constraints

type: array [default option]

This required option is the array of validation constraints that you want
to apply to each element of the underlying array.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

UserPassword

注解

Since Symfony 2.2, the UserPassword* classes in the
Symfony\Component\Security\Core\Validator\Constraint [http://api.symfony.com/master/Symfony/Component/Security/Core/Validator/Constraint.html]
namespace are deprecated and will be removed in Symfony 2.3. Please use
the UserPassword* classes in the
Symfony\Component\Security\Core\Validator\Constraints [http://api.symfony.com/master/Symfony/Component/Security/Core/Validator/Constraints.html]
namespace instead.

This validates that an input value is equal to the current authenticated
user’s password. This is useful in a form where a user can change their password,
but needs to enter their old password for security.

注解

This should not be used to validate a login form, since this is done
automatically by the security system.

	Applies to
	property or method

	Options
	
	message

	Class
	UserPassword [http://api.symfony.com/master/Symfony/Component/Security/Core/Validator/Constraints/UserPassword.html]

	Validator
	UserPasswordValidator [http://api.symfony.com/master/Symfony/Component/Security/Core/Validator/Constraints/UserPasswordValidator.html]

Basic Usage

Suppose you have a PasswordChange class, that’s used in a form where the
user can change their password by entering their old password and a new password.
This constraint will validate that the old password matches the user’s current
password:

	YAML# src/Acme/UserBundle/Resources/config/validation.yml
Acme\UserBundle\Form\Model\ChangePassword:
 properties:
 oldPassword:
 - Symfony\Component\Security\Core\Validator\Constraints\UserPassword:
 message: "Wrong value for your current password"

	Annotations// src/Acme/UserBundle/Form/Model/ChangePassword.php
namespace Acme\UserBundle\Form\Model;

use Symfony\Component\Security\Core\Validator\Constraints as SecurityAssert;

class ChangePassword
{
 /**
 * @SecurityAssert\UserPassword(
 * message = "Wrong value for your current password"
 *)
 */
 protected $oldPassword;
}

	XML<!-- src/Acme/UserBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\UserBundle\Form\Model\ChangePassword">
 <property name="oldPassword">
 <constraint name="Symfony\Component\Security\Core\Validator\Constraints\UserPassword">
 <option name="message">Wrong value for your current password</option>
 </constraint>
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/UserBundle/Form/Model/ChangePassword.php
namespace Acme\UserBundle\Form\Model;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Security\Core\Validator\Constraints as SecurityAssert;

class ChangePassword
{
 public static function loadValidatorData(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('oldPassword', new SecurityAssert\UserPassword(array(
 'message' => 'Wrong value for your current password',
)));
 }
}

Options

message

type: message default: This value should be the user current password.

This is the message that’s displayed when the underlying string does not
match the current user’s password.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

 	Validation Constraints Reference

Valid

This constraint is used to enable validation on objects that are embedded
as properties on an object being validated. This allows you to validate an
object and all sub-objects associated with it.

	Applies to
	property or method

	Options
	
	traverse

	deep

	Class
	Valid [http://api.symfony.com/master/Symfony/Component/Validator/Constraints/Valid.html]

小技巧

By default the error_bubbling option is enabled for the
collection Field Type,
which passes the errors to the parent form. If you want to attach
the errors to the locations where they actually occur you have to
set error_bubbling to false.

Basic Usage

In the following example, create two classes Author and Address
that both have constraints on their properties. Furthermore, Author stores
an Address instance in the $address property.

// src/Acme/HelloBundle/Entity/Address.php
namespace Acme\HelloBundle\Entity;

class Address
{
 protected $street;
 protected $zipCode;
}

// src/Acme/HelloBundle/Entity/Author.php
namespace Acme\HelloBundle\Entity;

class Author
{
 protected $firstName;
 protected $lastName;
 protected $address;
}

	YAML# src/Acme/HelloBundle/Resources/config/validation.yml
Acme\HelloBundle\Entity\Address:
 properties:
 street:
 - NotBlank: ~
 zipCode:
 - NotBlank: ~
 - Length:
 max: 5

Acme\HelloBundle\Entity\Author:
 properties:
 firstName:
 - NotBlank: ~
 - Length:
 min: 4
 lastName:
 - NotBlank: ~

	Annotations// src/Acme/HelloBundle/Entity/Address.php
namespace Acme\HelloBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Address
{
 /**
 * @Assert\NotBlank()
 */
 protected $street;

 /**
 * @Assert\NotBlank
 * @Assert\Length(max = 5)
 */
 protected $zipCode;
}

// src/Acme/HelloBundle/Entity/Author.php
namespace Acme\HelloBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\NotBlank
 * @Assert\Length(min = 4)
 */
 protected $firstName;

 /**
 * @Assert\NotBlank
 */
 protected $lastName;

 protected $address;
}

	XML<!-- src/Acme/HelloBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\HelloBundle\Entity\Address">
 <property name="street">
 <constraint name="NotBlank" />
 </property>
 <property name="zipCode">
 <constraint name="NotBlank" />
 <constraint name="Length">
 <option name="max">5</option>
 </constraint>
 </property>
 </class>

 <class name="Acme\HelloBundle\Entity\Author">
 <property name="firstName">
 <constraint name="NotBlank" />
 <constraint name="Length">
 <option name="min">4</option>
 </constraint>
 </property>
 <property name="lastName">
 <constraint name="NotBlank" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/HelloBundle/Entity/Address.php
namespace Acme\HelloBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Address
{
 protected $street;
 protected $zipCode;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('street', new Assert\NotBlank());
 $metadata->addPropertyConstraint('zipCode', new Assert\NotBlank());
 $metadata->addPropertyConstraint('zipCode', new Assert\Length(array("max" => 5)));
 }
}

// src/Acme/HelloBundle/Entity/Author.php
namespace Acme\HelloBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 protected $firstName;
 protected $lastName;
 protected $address;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('firstName', new Assert\NotBlank());
 $metadata->addPropertyConstraint('firstName', new Assert\Length(array("min" => 4)));
 $metadata->addPropertyConstraint('lastName', new Assert\NotBlank());
 }
}

With this mapping, it is possible to successfully validate an author with an
invalid address. To prevent that, add the Valid constraint to the $address
property.

	YAML# src/Acme/HelloBundle/Resources/config/validation.yml
Acme\HelloBundle\Entity\Author:
 properties:
 address:
 - Valid: ~

	Annotations// src/Acme/HelloBundle/Entity/Author.php
namespace Acme\HelloBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 /**
 * @Assert\Valid
 */
 protected $address;
}

	XML<!-- src/Acme/HelloBundle/Resources/config/validation.xml -->
<?xml version="1.0" encoding="UTF-8" ?>
<constraint-mapping xmlns="http://symfony.com/schema/dic/constraint-mapping"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/constraint-mapping http://symfony.com/schema/dic/constraint-mapping/constraint-mapping-1.0.xsd">

 <class name="Acme\HelloBundle\Entity\Author">
 <property name="address">
 <constraint name="Valid" />
 </property>
 </class>
</constraint-mapping>

	PHP// src/Acme/HelloBundle/Entity/Author.php
namespace Acme\HelloBundle\Entity;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{
 protected $address;

 public static function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('address', new Assert\Valid());
 }
}

If you validate an author with an invalid address now, you can see that the
validation of the Address fields failed.

Acme\\HelloBundle\\Author.address.zipCode:
 This value is too long. It should have 5 characters or less.

Options

traverse

type: boolean default: true

If this constraint is applied to a property that holds an array of objects,
then each object in that array will be validated only if this option is set
to true.

deep

type: boolean default: false

If this constraint is applied to a property that holds an array of objects,
then each object in that array will be validated recursively if this option is set
to true.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

Twig Template Form Function and Variable Reference

When working with forms in a template, there are two powerful things at your
disposal:

	Functions for rendering each part of a form

	Variables for getting any information about any field

You’ll use functions often to render your fields. Variables, on the other
hand, are less commonly-used, but infinitely powerful since you can access
a fields label, id attribute, errors, and anything else about the field.

Form Rendering Functions

This reference manual covers all the possible Twig functions available for
rendering forms. There are several different functions available, and each
is responsible for rendering a different part of a form (e.g. labels, errors,
widgets, etc).

form(view, variables)

Renders the HTML of a complete form.

{# render the form and change the submission method #}
{{ form(form, {'method': 'GET'}) }}

You will mostly use this helper for prototyping or if you use custom form
themes. If you need more flexibility in rendering the form, you should use
the other helpers to render individual parts of the form instead:

{{ form_start(form) }}
 {{ form_errors(form) }}

 {{ form_row(form.name) }}
 {{ form_row(form.dueDate) }}

 {{ form_row(form.submit, { 'label': 'Submit me' }) }}
{{ form_end(form) }}

form_start(view, variables)

Renders the start tag of a form. This helper takes care of printing the
configured method and target action of the form. It will also include the
correct enctype property if the form contains upload fields.

{# render the start tag and change the submission method #}
{{ form_start(form, {'method': 'GET'}) }}

form_end(view, variables)

Renders the end tag of a form.

{{ form_end(form) }}

This helper also outputs form_rest() unless you set render_rest to
false:

{# don't render unrendered fields #}
{{ form_end(form, {'render_rest': false}) }}

form_label(view, label, variables)

Renders the label for the given field. You can optionally pass the specific
label you want to display as the second argument.

{{ form_label(form.name) }}

{# The two following syntaxes are equivalent #}
{{ form_label(form.name, 'Your Name', {'label_attr': {'class': 'foo'}}) }}
{{ form_label(form.name, null, {'label': 'Your name', 'label_attr': {'class': 'foo'}}) }}

See “More about Form Variables” to learn about the variables
argument.

form_errors(view)

Renders any errors for the given field.

{{ form_errors(form.name) }}

{# render any "global" errors #}
{{ form_errors(form) }}

form_widget(view, variables)

Renders the HTML widget of a given field. If you apply this to an entire form
or collection of fields, each underlying form row will be rendered.

{# render a widget, but add a "foo" class to it #}
{{ form_widget(form.name, {'attr': {'class': 'foo'}}) }}

The second argument to form_widget is an array of variables. The most
common variable is attr, which is an array of HTML attributes to apply
to the HTML widget. In some cases, certain types also have other template-related
options that can be passed. These are discussed on a type-by-type basis.
The attributes are not applied recursively to child fields if you’re
rendering many fields at once (e.g. form_widget(form)).

See “More about Form Variables” to learn more about the variables
argument.

form_row(view, variables)

Renders the “row” of a given field, which is the combination of the field’s
label, errors and widget.

{# render a field row, but display a label with text "foo" #}
{{ form_row(form.name, {'label': 'foo'}) }}

The second argument to form_row is an array of variables. The templates
provided in Symfony only allow to override the label as shown in the example
above.

See “More about Form Variables” to learn about the variables
argument.

form_rest(view, variables)

This renders all fields that have not yet been rendered for the given form.
It’s a good idea to always have this somewhere inside your form as it’ll
render hidden fields for you and make any fields you forgot to render more
obvious (since it’ll render the field for you).

{{ form_rest(form) }}

form_enctype(view)

注解

This helper was deprecated in Symfony 2.3 and will be removed in Symfony 3.0.
You should use form_start() instead.

If the form contains at least one file upload field, this will render the
required enctype="multipart/form-data" form attribute. It’s always a
good idea to include this in your form tag:

<form action="{{ path('form_submit') }}" method="post" {{ form_enctype(form) }}>

Form Tests Reference

Tests can be executed by using the is operator in Twig to create a
condition. Read the Twig documentation [http://twig.sensiolabs.org/doc/templates.html#test-operator] for more information.

selectedchoice(selected_value)

This test will check if the current choice is equal to the selected_value
or if the current choice is in the array (when selected_value is an array).

<option {% if choice is selectedchoice(value) %} selected="selected"{% endif %} ...>

More about Form Variables

小技巧

For a full list of variables, see: Form Variables Reference.

In almost every Twig function above, the final argument is an array of “variables”
that are used when rendering that one part of the form. For example, the
following would render the “widget” for a field, and modify its attributes
to include a special class:

{# render a widget, but add a "foo" class to it #}
{{ form_widget(form.name, { 'attr': {'class': 'foo'} }) }}

The purpose of these variables - what they do & where they come from - may
not be immediately clear, but they’re incredibly powerful. Whenever you
render any part of a form, the block that renders it makes use of a number
of variables. By default, these blocks live inside form_div_layout.html.twig [https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig].

Look at the form_label as an example:

{% block form_label %}
 {% if not compound %}
 {% set label_attr = label_attr|merge({'for': id}) %}
 {% endif %}
 {% if required %}
 {% set label_attr = label_attr|merge({'class': (label_attr.class|default('') ~ ' required')|trim}) %}
 {% endif %}
 {% if label is empty %}
 {% set label = name|humanize %}
 {% endif %}
 <label{% for attrname, attrvalue in label_attr %} {{ attrname }}="{{ attrvalue }}"{% endfor %}>{{ label|trans({}, translation_domain) }}</label>
{% endblock form_label %}

This block makes use of several variables: compound, label_attr, required,
label, name and translation_domain.
These variables are made available by the form rendering system. But more
importantly, these are the variables that you can override when calling form_label
(since in this example, you’re rendering the label).

The exact variables available to override depends on which part of the form
you’re rendering (e.g. label versus widget) and which field you’re rendering
(e.g. a choice widget has an extra expanded option). If you get comfortable
with looking through form_div_layout.html.twig [https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig], you’ll always be able
to see what options you have available.

小技巧

Behind the scenes, these variables are made available to the FormView
object of your form when the Form component calls buildView and finishView
on each “node” of your form tree. To see what “view” variables a particular
field has, find the source code for the form field (and its parent fields)
and look at the above two functions.

注解

If you’re rendering an entire form at once (or an entire embedded form),
the variables argument will only be applied to the form itself and
not its children. In other words, the following will not pass a “foo”
class attribute to all of the child fields in the form:

{# does **not** work - the variables are not recursive #}
{{ form_widget(form, { 'attr': {'class': 'foo'} }) }}

Form Variables Reference

The following variables are common to every field type. Certain field types
may have even more variables and some variables here only really apply to
certain types.

Assuming you have a form variable in your template, and you want to reference
the variables on the name field, accessing the variables is done by using
a public vars property on the FormView [http://api.symfony.com/master/Symfony/Component/Form/FormView.html]
object:

	Twig<label for="{{ form.name.vars.id }}"
 class="{{ form.name.vars.required ? 'required' : '' }}">
 {{ form.name.vars.label }}
</label>

	PHP<label for="<?php echo $view['form']->get('name')->vars['id'] ?>"
 class="<?php echo $view['form']->get('name')->vars['required'] ? 'required' : '' ?>">
 <?php echo $view['form']->get('name')->vars['label'] ?>
</label>

2.3 新版功能: The method and action variables were introduced in Symfony 2.3.

	Variable
	Usage

	form
	The current FormView instance.

	id
	The id HTML attribute to be rendered.

	name
	The name of the field (e.g. title) - but not the name
HTML attribute, which is full_name.

	full_name
	The name HTML attribute to be rendered.

	errors
	An array of any errors attached to this specific field
(e.g. form.title.errors).
Note that you can’t use form.errors to determine if a form is valid,
since this only returns “global” errors: some individual fields may have errors.
Instead, use the valid option.

	valid
	Returns true or false depending on whether the whole form is valid.

	value
	The value that will be used when rendering (commonly the value HTML attribute).

	read_only
	If true, readonly="readonly" is added to the field.

	disabled
	If true, disabled="disabled" is added to the field.

	required
	If true, a required attribute is added to the field to activate HTML5
validation. Additionally, a required class is added to the label.

	max_length
	Adds a maxlength HTML attribute to the element.

	pattern
	Adds a pattern HTML attribute to the element.

	label
	The string label that will be rendered.

	multipart
	If true, form_enctype will render enctype="multipart/form-data".
This only applies to the root form element.

	attr
	A key-value array that will be rendered as HTML attributes on the field.

	label_attr
	A key-value array that will be rendered as HTML attributes on the label.

	compound
	Whether or not a field is actually a holder for a group of children fields
(for example, a choice field, which is actually a group of checkboxes.

	block_prefixes
	An array of all the names of the parent types.

	translation_domain
	The domain of the translations for this form.

	cache_key
	A unique key which is used for caching.

	data
	The normalized data of the type.

	method
	The method of the current form (POST, GET, etc.).

	action
	The action of the current form.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

Symfony Twig Extensions

Twig is the default template engine for Symfony. By itself, it already contains
a lot of built-in functions, filters, tags and tests (learn more about them
from the Twig Reference [http://twig.sensiolabs.org/documentation#reference]).

Symfony adds custom extensions on top of Twig to integrate some components
into the Twig templates. The following sections describe the custom
functions, filters,
tags and tests
that are available when using the Symfony Core Framework.

There may also be tags in bundles you use that aren’t listed here.

Functions

render

2.2 新版功能: The render() function was introduced in Symfony 2.2. Prior, the
{% render %} tag was used and had a different signature.

{{ render(uri, options) }}

	uri

	type: string | ControllerReference

	options

	type: array default: []

Renders the fragment for the given controller (using the controller function)
or URI. For more information, see Embedding Controllers.

The render strategy can be specified in the strategy key of the options.

小技巧

The URI can be generated by other functions, like path and url.

render_esi

{{ render_esi(uri, options) }}

	uri

	type: string | ControllerReference

	options

	type: array default: []

Generates an ESI tag when possible or falls back to the behavior of
render function instead. For more information, see
Embedding Controllers.

小技巧

The URI can be generated by other functions, like path and url.

小技巧

The render_esi() function is an example of the shortcut functions
of render. It automatically sets the strategy based on what’s given
in the function name, e.g. render_hinclude() will use the hinclude.js
strategy. This works for all render_*() functions.

controller

2.2 新版功能: The controller() function was introduced in Symfony 2.2.

{{ controller(controller, attributes, query) }}

	controller

	type: string

	attributes

	type: array default: []

	query

	type: array default: []

Returns an instance of ControllerReference to be used with functions like
render() and
render_esi().

asset

{{ asset(path, packageName) }}

	path

	type: string

	packageName

	type: string | null default: null

Returns a public path to path, which takes into account the base path set
for the package and the URL path. More information in
Linking to Assets.

asset_version

{{ asset_version(packageName) }}

	packageName

	type: string | null default: null

Returns the current version of the package, more information in
Linking to Assets.

form

{{ form(view, variables) }}

	view

	type: FormView

	variables

	type: array default: []

Renders the HTML of a complete form, more information in
the Twig Form reference.

form_start

{{ form_start(view, variables) }}

	view

	type: FormView

	variables

	type: array default: []

Renders the HTML start tag of a form, more information in
the Twig Form reference.

form_end

{{ form_end(view, variables) }}

	view

	type: FormView

	variables

	type: array default: []

Renders the HTML end tag of a form together with all fields that have not been
rendered yet, more information in the Twig Form reference.

form_enctype

{{ form_enctype(view) }}

	view

	type: FormView

Renders the required enctype="multipart/form-data" attribute if the form
contains at least one file upload field, more information in
the Twig Form reference.

form_widget

{{ form_widget(view, variables) }}

	view

	type: FormView

	variables

	type: array default: []

Renders a complete form or a specific HTML widget of a field, more information
in the Twig Form reference.

form_errors

{{ form_errors(view) }}

	view

	type: FormView

Renders any errors for the given field or the global errors, more information
in the Twig Form reference.

form_label

{{ form_label(view, label, variables) }}

	view

	type: FormView

	label

	type: string default: null

	variables

	type: array default: []

Renders the label for the given field, more information in
the Twig Form reference.

form_row

{{ form_row(view, variables) }}

	view

	type: FormView

	variables

	type: array default: []

Renders the row (the field’s label, errors and widget) of the given field, more
information in the Twig Form reference.

form_rest

{{ form_rest(view, variables) }}

	view

	type: FormView

	variables

	type: array default: []

Renders all fields that have not yet been rendered, more information in
the Twig Form reference.

csrf_token

{{ csrf_token(intention) }}

	intention

	type: string

Renders a CSRF token. Use this function if you want CSRF protection without
creating a form.

is_granted

{{ is_granted(role, object, field) }}

	role

	type: string

	object

	type: object

	field

	type: string

Returns true if the current user has the required role. Optionally, an
object can be pasted to be used by the voter. More information can be found in
Access Control in Templates.

注解

You can also pass in the field to use ACE for a specific field. Read more
about this in Scope of Access Control Entries.

logout_path

{{ logout_path(key) }}

	key

	type: string

Generates a relative logout URL for the given firewall.

logout_url

{{ logout_url(key) }}

	key

	type: string

Equal to the logout_path function, but it’ll generate an absolute URL
instead of a relative one.

path

{{ path(name, parameters, relative) }}

	name

	type: string

	parameters

	type: array default: []

	relative

	type: boolean default: false

Returns the relative URL (without the scheme and host) for the given route. If
relative is enabled, it’ll create a path relative to the current path. More
information in Linking to Pages.

url

{{ url(name, parameters, schemeRelative) }}

	name

	type: string

	parameters

	type: array default: []

	schemeRelative

	type: boolean default: false

Returns the absolute URL (with scheme and host) for the given route. If
schemeRelative is enabled, it’ll create a scheme-relative URL. More
information in Linking to Pages.

Filters

humanize

2.1 新版功能: The humanize filter was introduced in Symfony 2.1

{{ text|humanize }}

	text

	type: string

Makes a technical name human readable (i.e. replaces underscores by spaces and
capitalizes the string).

trans

{{ message|trans(arguments, domain, locale) }}

	message

	type: string

	arguments

	type: array default: []

	domain

	type: string default: null

	locale

	type: string default: null

Translates the text into the current language. More information in
Translation Filters.

transchoice

{{ message|transchoice(count, arguments, domain, locale) }}

	message

	type: string

	count

	type: integer

	arguments

	type: array default: []

	domain

	type: string default: null

	locale

	type: string default: null

Translates the text with pluralization support. More information in
Translation Filters.

yaml_encode

{{ input|yaml_encode(inline, dumpObjects) }}

	input

	type: mixed

	inline

	type: integer default: 0

	dumpObjects

	type: boolean default: false

Transforms the input into YAML syntax. See Writing YAML Files for more
information.

yaml_dump

{{ value|yaml_dump(inline, dumpObjects) }}

	value

	type: mixed

	inline

	type: integer default: 0

	dumpObjects

	type: boolean default: false

Does the same as yaml_encode(), but includes the type in the output.

abbr_class

{{ class|abbr_class }}

	class

	type: string

Generates an <abbr> element with the short name of a PHP class (the FQCN
will be shown in a tooltip when a user hovers over the element).

abbr_method

{{ method|abbr_method }}

	method

	type: string

Generates an <abbr> element using the FQCN::method() syntax. If method
is Closure, Closure will be used instead and if method doesn’t have a
class name, it’s shown as a function (method()).

format_args

{{ args|format_args }}

	args

	type: array

Generates a string with the arguments and their types (within elements).

format_args_as_text

{{ args|format_args_as_text }}

	args

	type: array

Equal to the format_args filter, but without using HTML tags.

file_excerpt

{{ file|file_excerpt(line) }}

	file

	type: string

	line

	type: integer

Generates an excerpt of seven lines around the given line.

format_file

{{ file|format_file(line, text) }}

	file

	type: string

	line

	type: integer

	text

	type: string default: null

Generates the file path inside an <a> element. If the path is inside the
kernel root directory, the kernel root directory path is replaced by
kernel.root_dir (showing the full path in a tooltip on hover).

format_file_from_text

{{ text|format_file_from_text }}

	text

	type: string

Uses format_file to improve the output of default PHP errors.

file_link

{{ file|file_link(line) }}

	line

	type: integer

Generates a link to the provided file (and optionally line number) using a
preconfigured scheme.

Tags

form_theme

{% form_theme form resources %}

	form

	type: FormView

	resources

	type: array | string

Sets the resources to override the form theme for the given form view instance.
You can use _self as resources to set it to the current resource. More
information in How to Customize Form Rendering.

trans

{% trans with vars from domain into locale %}{% endtrans %}

	vars

	type: array default: []

	domain

	type: string default: string

	locale

	type: string default: string

Renders the translation of the content. More information in Twig Templates.

transchoice

{% transchoice count with vars from domain into locale %}{% endtranschoice %}

	count

	type: integer

	vars

	type: array default: []

	domain

	type: string default: null

	locale

	type: string default: null

Renders the translation of the content with pluralization support, more
information in Twig Templates.

trans_default_domain

{% trans_default_domain domain %}

	domain

	type: string

This will set the default domain in the current template.

Tests

selectedchoice

{% if choice is selectedchoice(selectedValue) %}

	choice

	type: ChoiceView

	selectedValue

	type: string

Checks if selectedValue was checked for the provided choice field. Using
this test is the most effective way.

Global Variables

app

The app variable is available everywhere and gives access to many commonly
needed objects and values. It is an instance of
GlobalVariables [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Templating/GlobalVariables.html].

The available attributes are:

	app.user

	app.request

	app.session

	app.environment

	app.debug

	app.security

Symfony Standard Edition Extensions

The Symfony Standard Edition adds some bundles to the Symfony Core Framework.
Those bundles can have other Twig extensions:

	Twig Extensions includes some interesting extensions that do not belong to the
Twig core. You can read more in the official Twig Extensions documentation [http://twig.sensiolabs.org/doc/extensions/index.html];

	Assetic adds the {% stylesheets %}, {% javascripts %} and
{% image %} tags. You can read more about them in
the Assetic Documentation.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

The Dependency Injection Tags

Dependency Injection Tags are little strings that can be applied to a service
to “flag” it to be used in some special way. For example, if you have a service
that you would like to register as a listener to one of Symfony’s core events,
you can flag it with the kernel.event_listener tag.

You can learn a little bit more about “tags” by reading the “Tags”
section of the Service Container chapter.

Below is information about all of the tags available inside Symfony. There
may also be tags in other bundles you use that aren’t listed here.

	Tag Name
	Usage

	assetic.asset
	Register an asset to the current asset manager

	assetic.factory_worker
	Add a factory worker

	assetic.filter
	Register a filter

	assetic.formula_loader
	Add a formula loader to the current asset manager

	assetic.formula_resource
	Adds a resource to the current asset manager

	assetic.templating.php
	Remove this service if PHP templating is disabled

	assetic.templating.twig
	Remove this service if Twig templating is disabled

	data_collector
	Create a class that collects custom data for the profiler

	doctrine.event_listener
	Add a Doctrine event listener

	doctrine.event_subscriber
	Add a Doctrine event subscriber

	form.type
	Create a custom form field type

	form.type_extension
	Create a custom “form extension”

	form.type_guesser
	Add your own logic for “form type guessing”

	kernel.cache_clearer
	Register your service to be called during the cache clearing process

	kernel.cache_warmer
	Register your service to be called during the cache warming process

	kernel.event_listener
	Listen to different events/hooks in Symfony

	kernel.event_subscriber
	To subscribe to a set of different events/hooks in Symfony

	kernel.fragment_renderer
	Add new HTTP content rendering strategies

	monolog.logger
	Logging with a custom logging channel

	monolog.processor
	Add a custom processor for logging

	routing.loader
	Register a custom service that loads routes

	security.voter
	Add a custom voter to Symfony’s authorization logic

	security.remember_me_aware
	To allow remember me authentication

	serializer.encoder
	Register a new encoder in the serializer service

	serializer.normalizer
	Register a new normalizer in the serializer service

	swiftmailer.default.plugin
	Register a custom SwiftMailer Plugin

	templating.helper
	Make your service available in PHP templates

	translation.loader
	Register a custom service that loads translations

	translation.extractor
	Register a custom service that extracts translation messages from a file

	translation.dumper
	Register a custom service that dumps translation messages

	twig.extension
	Register a custom Twig Extension

	twig.loader
	Register a custom service that loads Twig templates

	validator.constraint_validator
	Create your own custom validation constraint

	validator.initializer
	Register a service that initializes objects before validation

assetic.asset

Purpose: Register an asset with the current asset manager

assetic.factory_worker

Purpose: Add a factory worker

A Factory worker is a class implementing Assetic\Factory\Worker\WorkerInterface.
Its process($asset) method is called for each asset after asset creation.
You can modify an asset or even return a new one.

In order to add a new worker, first create a class:

use Assetic\Asset\AssetInterface;
use Assetic\Factory\Worker\WorkerInterface;

class MyWorker implements WorkerInterface
{
 public function process(AssetInterface $asset)
 {
 // ... change $asset or return a new one
 }

}

And then register it as a tagged service:

	YAMLservices:
 acme.my_worker:
 class: MyWorker
 tags:
 - { name: assetic.factory_worker }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="acme.my_worker" class="MyWorker>
 <tag name="assetic.factory_worker" />
 </service>
 </services>
</container>

	PHP$container
 ->register('acme.my_worker', 'MyWorker')
 ->addTag('assetic.factory_worker')
;

assetic.filter

Purpose: Register a filter

AsseticBundle uses this tag to register common filters. You can also use
this tag to register your own filters.

First, you need to create a filter:

use Assetic\Asset\AssetInterface;
use Assetic\Filter\FilterInterface;

class MyFilter implements FilterInterface
{
 public function filterLoad(AssetInterface $asset)
 {
 $asset->setContent('alert("yo");' . $asset->getContent());
 }

 public function filterDump(AssetInterface $asset)
 {
 // ...
 }
}

Second, define a service:

	YAMLservices:
 acme.my_filter:
 class: MyFilter
 tags:
 - { name: assetic.filter, alias: my_filter }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="acme.my_filter" class="MyFilter">
 <tag name="assetic.filter" alias="my_filter" />
 </service>
 </services>
</container>

	PHP$container
 ->register('acme.my_filter', 'MyFilter')
 ->addTag('assetic.filter', array('alias' => 'my_filter'))
;

Finally, apply the filter:

{% javascripts
 '@AcmeBaseBundle/Resources/public/js/global.js'
 filter='my_filter'
%}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

You can also apply your filter via the assetic.filters.my_filter.apply_to
config option as it’s described here: How to Apply an Assetic Filter to a specific File Extension.
In order to do that, you must define your filter service in a separate xml
config file and point to this file’s path via the assetic.filters.my_filter.resource
configuration key.

assetic.formula_loader

Purpose: Add a formula loader to the current asset manager

A Formula loader is a class implementing
Assetic\\Factory\Loader\\FormulaLoaderInterface interface. This class
is responsible for loading assets from a particular kind of resources (for
instance, twig template). Assetic ships loaders for PHP and Twig templates.

An alias attribute defines the name of the loader.

assetic.formula_resource

Purpose: Adds a resource to the current asset manager

A resource is something formulae can be loaded from. For instance, Twig
templates are resources.

assetic.templating.php

Purpose: Remove this service if PHP templating is disabled

The tagged service will be removed from the container if the
framework.templating.engines config section does not contain php.

assetic.templating.twig

Purpose: Remove this service if Twig templating is disabled

The tagged service will be removed from the container if
framework.templating.engines config section does not contain twig.

data_collector

Purpose: Create a class that collects custom data for the profiler

For details on creating your own custom data collection, read the cookbook
article: How to Create a custom Data Collector.

doctrine.event_listener

Purpose: Add a Doctrine event listener

For details on creating Doctrine event listeners, read the cookbook article:
How to Register Event Listeners and Subscribers.

doctrine.event_subscriber

Purpose: Add a Doctrine event subscriber

For details on creating Doctrine event subscribers, read the cookbook article:
How to Register Event Listeners and Subscribers.

form.type

Purpose: Create a custom form field type

For details on creating your own custom form type, read the cookbook article:
How to Create a Custom Form Field Type.

form.type_extension

Purpose: Create a custom “form extension”

Form type extensions are a way for you took “hook into” the creation of any
field in your form. For example, the addition of the CSRF token is done via
a form type extension (FormTypeCsrfExtension [http://api.symfony.com/master/Symfony/Component/Form/Extension/Csrf/Type/FormTypeCsrfExtension.html]).

A form type extension can modify any part of any field in your form. To create
a form type extension, first create a class that implements the
FormTypeExtensionInterface [http://api.symfony.com/master/Symfony/Component/Form/FormTypeExtensionInterface.html] interface.
For simplicity, you’ll often extend an
AbstractTypeExtension [http://api.symfony.com/master/Symfony/Component/Form/AbstractTypeExtension.html] class instead of
the interface directly:

// src/Acme/MainBundle/Form/Type/MyFormTypeExtension.php
namespace Acme\MainBundle\Form\Type;

use Symfony\Component\Form\AbstractTypeExtension;

class MyFormTypeExtension extends AbstractTypeExtension
{
 // ... fill in whatever methods you want to override
 // like buildForm(), buildView(), finishView(), setDefaultOptions()
}

In order for Symfony to know about your form extension and use it, give it
the form.type_extension tag:

	YAMLservices:
 main.form.type.my_form_type_extension:
 class: Acme\MainBundle\Form\Type\MyFormTypeExtension
 tags:
 - { name: form.type_extension, alias: field }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service
 id="main.form.type.my_form_type_extension"
 class="Acme\MainBundle\Form\Type\MyFormTypeExtension">

 <tag name="form.type_extension" alias="field" />
 </service>
 </services>
</container>

	PHP$container
 ->register('main.form.type.my_form_type_extension', 'Acme\MainBundle\Form\Type\MyFormTypeExtension')
 ->addTag('form.type_extension', array('alias' => 'field'))
;

The alias key of the tag is the type of field that this extension should
be applied to. For example, to apply the extension to any form/field, use the
“form” value.

form.type_guesser

Purpose: Add your own logic for “form type guessing”

This tag allows you to add your own logic to the Form Guessing
process. By default, form guessing is done by “guessers” based on the validation
metadata and Doctrine metadata (if you’re using Doctrine) or Propel metadata
(if you’re using Propel).

参见

For information on how to create your own type guesser, see
Creating a custom Type Guesser.

kernel.cache_clearer

Purpose: Register your service to be called during the cache clearing process

Cache clearing occurs whenever you call cache:clear command. If your
bundle caches files, you should add custom cache clearer for clearing those
files during the cache clearing process.

In order to register your custom cache clearer, first you must create a
service class:

// src/Acme/MainBundle/Cache/MyClearer.php
namespace Acme\MainBundle\Cache;

use Symfony\Component\HttpKernel\CacheClearer\CacheClearerInterface;

class MyClearer implements CacheClearerInterface
{
 public function clear($cacheDir)
 {
 // clear your cache
 }

}

Then register this class and tag it with kernel.cache_clearer:

	YAMLservices:
 my_cache_clearer:
 class: Acme\MainBundle\Cache\MyClearer
 tags:
 - { name: kernel.cache_clearer }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="my_cache_clearer" class="Acme\MainBundle\Cache\MyClearer">
 <tag name="kernel.cache_clearer" />
 </service>
 </services>
</container>

	PHP$container
 ->register('my_cache_clearer', 'Acme\MainBundle\Cache\MyClearer')
 ->addTag('kernel.cache_clearer')
;

kernel.cache_warmer

Purpose: Register your service to be called during the cache warming process

Cache warming occurs whenever you run the cache:warmup or cache:clear
task (unless you pass --no-warmup to cache:clear). It is also run when
handling the request, if it wasn’t done by one of the commands yet. The purpose is
to initialize any cache that will be needed by the application and prevent
the first user from any significant “cache hit” where the cache is generated
dynamically.

To register your own cache warmer, first create a service that implements
the CacheWarmerInterface [http://api.symfony.com/master/Symfony/Component/HttpKernel/CacheWarmer/CacheWarmerInterface.html] interface:

// src/Acme/MainBundle/Cache/MyCustomWarmer.php
namespace Acme\MainBundle\Cache;

use Symfony\Component\HttpKernel\CacheWarmer\CacheWarmerInterface;

class MyCustomWarmer implements CacheWarmerInterface
{
 public function warmUp($cacheDir)
 {
 // ... do some sort of operations to "warm" your cache
 }

 public function isOptional()
 {
 return true;
 }
}

The isOptional method should return true if it’s possible to use the
application without calling this cache warmer. In Symfony, optional warmers
are always executed by default (you can change this by using the
--no-optional-warmers option when executing the command).

To register your warmer with Symfony, give it the kernel.cache_warmer tag:

	YAMLservices:
 main.warmer.my_custom_warmer:
 class: Acme\MainBundle\Cache\MyCustomWarmer
 tags:
 - { name: kernel.cache_warmer, priority: 0 }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="main.warmer.my_custom_warmer" class="Acme\MainBundle\Cache\MyCustomWarmer">
 <tag name="kernel.cache_warmer" priority="0" />
 </service>
 </services>
</container>

	PHP$container
 ->register('main.warmer.my_custom_warmer', 'Acme\MainBundle\Cache\MyCustomWarmer')
 ->addTag('kernel.cache_warmer', array('priority' => 0))
;

注解

The priority value is optional, and defaults to 0.
The higher the priority, the sooner it gets executed.

Core Cache Warmers

	Cache Warmer Class Name
	Priority

	TemplatePathsCacheWarmer [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/CacheWarmer/TemplatePathsCacheWarmer.html]
	20

	RouterCacheWarmer [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/CacheWarmer/RouterCacheWarmer.html]
	0

	TemplateCacheCacheWarmer [http://api.symfony.com/master/Symfony/Bundle/TwigBundle/CacheWarmer/TemplateCacheCacheWarmer.html]
	0

kernel.event_listener

Purpose: To listen to different events/hooks in Symfony

This tag allows you to hook your own classes into Symfony’s process at different
points.

For a full example of this listener, read the How to Create an Event Listener
cookbook entry.

For another practical example of a kernel listener, see the cookbook
article: How to Register a new Request Format and Mime Type.

Core Event Listener Reference

When adding your own listeners, it might be useful to know about the other
core Symfony listeners and their priorities.

注解

All listeners listed here may not be listening depending on your environment,
settings and bundles. Additionally, third-party bundles will bring in
additional listeners not listed here.

kernel.request

	Listener Class Name
	Priority

	ProfilerListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ProfilerListener.html]
	1024

	TestSessionListener [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/EventListener/TestSessionListener.html]
	192

	SessionListener [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/EventListener/SessionListener.html]
	128

	RouterListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/RouterListener.html]
	32

	LocaleListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/LocaleListener.html]
	16

	Firewall [http://api.symfony.com/master/Symfony/Component/Security/Http/Firewall.html]
	8

kernel.controller

	Listener Class Name
	Priority

	RequestDataCollector [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/DataCollector/RequestDataCollector.html]
	0

kernel.response

	Listener Class Name
	Priority

	EsiListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/EsiListener.html]
	0

	ResponseListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ResponseListener.html]
	0

	ResponseListener [http://api.symfony.com/master/Symfony/Bundle/SecurityBundle/EventListener/ResponseListener.html]
	0

	ProfilerListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ProfilerListener.html]
	-100

	TestSessionListener [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/EventListener/TestSessionListener.html]
	-128

	WebDebugToolbarListener [http://api.symfony.com/master/Symfony/Bundle/WebProfilerBundle/EventListener/WebDebugToolbarListener.html]
	-128

	StreamedResponseListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/StreamedResponseListener.html]
	-1024

kernel.exception

	Listener Class Name
	Priority

	ProfilerListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ProfilerListener.html]
	0

	ExceptionListener [http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ExceptionListener.html]
	-128

kernel.terminate

	Listener Class Name
	Priority

	EmailSenderListener [https://github.com/symfony/SwiftmailerBundle/blob/master/EventListener/EmailSenderListener.php]
	0

kernel.event_subscriber

Purpose: To subscribe to a set of different events/hooks in Symfony

To enable a custom subscriber, add it as a regular service in one of your
configuration, and tag it with kernel.event_subscriber:

	YAMLservices:
 kernel.subscriber.your_subscriber_name:
 class: Fully\Qualified\Subscriber\Class\Name
 tags:
 - { name: kernel.event_subscriber }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service
 id="kernel.subscriber.your_subscriber_name"
 class="Fully\Qualified\Subscriber\Class\Name">

 <tag name="kernel.event_subscriber" />
 </service>
 </services>
</container>

	PHP$container
 ->register('kernel.subscriber.your_subscriber_name', 'Fully\Qualified\Subscriber\Class\Name')
 ->addTag('kernel.event_subscriber')
;

注解

Your service must implement the EventSubscriberInterface [http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventSubscriberInterface.html]
interface.

注解

If your service is created by a factory, you MUST correctly set the class
parameter for this tag to work correctly.

kernel.fragment_renderer

Purpose: Add a new HTTP content rendering strategy

To add a new rendering strategy - in addition to the core strategies like
EsiFragmentRenderer - create a class that implements
FragmentRendererInterface [http://api.symfony.com/master/Symfony/Component/HttpKernel/Fragment/FragmentRendererInterface.html],
register it as a service, then tag it with kernel.fragment_renderer.

monolog.logger

Purpose: To use a custom logging channel with Monolog

Monolog allows you to share its handlers between several logging channels.
The logger service uses the channel app but you can change the
channel when injecting the logger in a service.

	YAMLservices:
 my_service:
 class: Fully\Qualified\Loader\Class\Name
 arguments: ["@logger"]
 tags:
 - { name: monolog.logger, channel: acme }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="my_service" class="Fully\Qualified\Loader\Class\Name">
 <argument type="service" id="logger" />
 <tag name="monolog.logger" channel="acme" />
 </service>
 </services>
</container>

	PHP$definition = new Definition('Fully\Qualified\Loader\Class\Name', array(new Reference('logger'));
$definition->addTag('monolog.logger', array('channel' => 'acme'));
$container->setDefinition('my_service', $definition);

小技巧

If you use MonologBundle 2.4 or higher, you can configure custom channels
in the configuration and retrieve the corresponding logger service from
the service container directly (see Configure Additional Channels without Tagged Services).

monolog.processor

Purpose: Add a custom processor for logging

Monolog allows you to add processors in the logger or in the handlers to add
extra data in the records. A processor receives the record as an argument and
must return it after adding some extra data in the extra attribute of
the record.

The built-in IntrospectionProcessor can be used to add the file, the line,
the class and the method where the logger was triggered.

You can add a processor globally:

	YAMLservices:
 my_service:
 class: Monolog\Processor\IntrospectionProcessor
 tags:
 - { name: monolog.processor }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="my_service" class="Monolog\Processor\IntrospectionProcessor">
 <tag name="monolog.processor" />
 </service>
 </services>
</container>

	PHP$container
 ->register('my_service', 'Monolog\Processor\IntrospectionProcessor')
 ->addTag('monolog.processor')
;

小技巧

If your service is not a callable (using __invoke) you can add the
method attribute in the tag to use a specific method.

You can add also a processor for a specific handler by using the handler
attribute:

	YAMLservices:
 my_service:
 class: Monolog\Processor\IntrospectionProcessor
 tags:
 - { name: monolog.processor, handler: firephp }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="my_service" class="Monolog\Processor\IntrospectionProcessor">
 <tag name="monolog.processor" handler="firephp" />
 </service>
 </services>
</container>

	PHP$container
 ->register('my_service', 'Monolog\Processor\IntrospectionProcessor')
 ->addTag('monolog.processor', array('handler' => 'firephp'))
;

You can also add a processor for a specific logging channel by using the channel
attribute. This will register the processor only for the security logging
channel used in the Security component:

	YAMLservices:
 my_service:
 class: Monolog\Processor\IntrospectionProcessor
 tags:
 - { name: monolog.processor, channel: security }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="my_service" class="Monolog\Processor\IntrospectionProcessor">
 <tag name="monolog.processor" channel="security" />
 </service>
 </services>
</container>

	PHP$container
 ->register('my_service', 'Monolog\Processor\IntrospectionProcessor')
 ->addTag('monolog.processor', array('channel' => 'security'))
;

注解

You cannot use both the handler and channel attributes for the
same tag as handlers are shared between all channels.

routing.loader

Purpose: Register a custom service that loads routes

To enable a custom routing loader, add it as a regular service in one
of your configuration, and tag it with routing.loader:

	YAMLservices:
 routing.loader.your_loader_name:
 class: Fully\Qualified\Loader\Class\Name
 tags:
 - { name: routing.loader }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service
 id="routing.loader.your_loader_name"
 class="Fully\Qualified\Loader\Class\Name">

 <tag name="routing.loader" />
 </service>
 </services>
</container>

	PHP$container
 ->register('routing.loader.your_loader_name', 'Fully\Qualified\Loader\Class\Name')
 ->addTag('routing.loader')
;

For more information, see How to Create a custom Route Loader.

security.remember_me_aware

Purpose: To allow remember me authentication

This tag is used internally to allow remember-me authentication to work. If
you have a custom authentication method where a user can be remember-me authenticated,
then you may need to use this tag.

If your custom authentication factory extends
AbstractFactory [http://api.symfony.com/master/Symfony/Bundle/SecurityBundle/DependencyInjection/Security/Factory/AbstractFactory.html]
and your custom authentication listener extends
AbstractAuthenticationListener [http://api.symfony.com/master/Symfony/Component/Security/Http/Firewall/AbstractAuthenticationListener.html],
then your custom authentication listener will automatically have this tagged
applied and it will function automatically.

security.voter

Purpose: To add a custom voter to Symfony’s authorization logic

When you call isGranted on Symfony’s security context, a system of “voters”
is used behind the scenes to determine if the user should have access. The
security.voter tag allows you to add your own custom voter to that system.

For more information, read the cookbook article: How to Implement your own Voter to Blacklist IP Addresses.

serializer.encoder

Purpose: Register a new encoder in the serializer service

The class that’s tagged should implement the EncoderInterface [http://api.symfony.com/master/Symfony/Component/Serializer/Encoder/EncoderInterface.html]
and DecoderInterface [http://api.symfony.com/master/Symfony/Component/Serializer/Encoder/DecoderInterface.html].

For more details, see How to Use the Serializer.

serializer.normalizer

Purpose: Register a new normalizer in the Serializer service

The class that’s tagged should implement the NormalizerInterface [http://api.symfony.com/master/Symfony/Component/Serializer/Normalizer/NormalizerInterface.html]
and DenormalizerInterface [http://api.symfony.com/master/Symfony/Component/Serializer/Normalizer/DenormalizerInterface.html].

For more details, see How to Use the Serializer.

swiftmailer.default.plugin

Purpose: Register a custom SwiftMailer Plugin

If you’re using a custom SwiftMailer plugin (or want to create one), you can
register it with SwiftMailer by creating a service for your plugin and tagging
it with swiftmailer.default.plugin (it has no options).

注解

default in this tag is the name of the mailer. If you have multiple
mailers configured or have changed the default mailer name for some reason,
you should change it to the name of your mailer in order to use this tag.

A SwiftMailer plugin must implement the Swift_Events_EventListener interface.
For more information on plugins, see SwiftMailer’s Plugin Documentation [http://swiftmailer.org/docs/plugins.html].

Several SwiftMailer plugins are core to Symfony and can be activated via
different configuration. For details, see SwiftmailerBundle Configuration (“swiftmailer”).

templating.helper

Purpose: Make your service available in PHP templates

To enable a custom template helper, add it as a regular service in one
of your configuration, tag it with templating.helper and define an
alias attribute (the helper will be accessible via this alias in the
templates):

	YAMLservices:
 templating.helper.your_helper_name:
 class: Fully\Qualified\Helper\Class\Name
 tags:
 - { name: templating.helper, alias: alias_name }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service
 id="templating.helper.your_helper_name"
 class="Fully\Qualified\Helper\Class\Name">

 <tag name="templating.helper" alias="alias_name" />
 </service>
 </services>
</container>

	PHP$container
 ->register('templating.helper.your_helper_name', 'Fully\Qualified\Helper\Class\Name')
 ->addTag('templating.helper', array('alias' => 'alias_name'))
;

translation.loader

Purpose: To register a custom service that loads translations

By default, translations are loaded from the filesystem in a variety of different
formats (YAML, XLIFF, PHP, etc).

参见

Learn how to load custom formats
in the components section.

Now, register your loader as a service and tag it with translation.loader:

	YAMLservices:
 main.translation.my_custom_loader:
 class: Acme\MainBundle\Translation\MyCustomLoader
 tags:
 - { name: translation.loader, alias: bin }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service
 id="main.translation.my_custom_loader"
 class="Acme\MainBundle\Translation\MyCustomLoader">

 <tag name="translation.loader" alias="bin" />
 </service>
 </services>
</container>

	PHP$container
 ->register('main.translation.my_custom_loader', 'Acme\MainBundle\Translation\MyCustomLoader')
 ->addTag('translation.loader', array('alias' => 'bin'))
;

The alias option is required and very important: it defines the file
“suffix” that will be used for the resource files that use this loader. For
example, suppose you have some custom bin format that you need to load.
If you have a bin file that contains French translations for the messages
domain, then you might have a file app/Resources/translations/messages.fr.bin.

When Symfony tries to load the bin file, it passes the path to your custom
loader as the $resource argument. You can then perform any logic you need
on that file in order to load your translations.

If you’re loading translations from a database, you’ll still need a resource
file, but it might either be blank or contain a little bit of information
about loading those resources from the database. The file is key to trigger
the load method on your custom loader.

translation.extractor

Purpose: To register a custom service that extracts messages from a file

2.1 新版功能: The ability to add message extractors was introduced in Symfony 2.1.

When executing the translation:update command, it uses extractors to
extract translation messages from a file. By default, the Symfony framework
has a TwigExtractor [http://api.symfony.com/master/Symfony/Bridge/Twig/Translation/TwigExtractor.html] and a
PhpExtractor [http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Translation/PhpExtractor.html], which
help to find and extract translation keys from Twig templates and PHP files.

You can create your own extractor by creating a class that implements
ExtractorInterface [http://api.symfony.com/master/Symfony/Component/Translation/Extractor/ExtractorInterface.html] and
tagging the service with translation.extractor. The tag has one required
option: alias, which defines the name of the extractor:

// src/Acme/DemoBundle/Translation/FooExtractor.php
namespace Acme\DemoBundle\Translation;

use Symfony\Component\Translation\Extractor\ExtractorInterface;
use Symfony\Component\Translation\MessageCatalogue;

class FooExtractor implements ExtractorInterface
{
 protected $prefix;

 /**
 * Extracts translation messages from a template directory to the catalogue.
 */
 public function extract($directory, MessageCatalogue $catalogue)
 {
 // ...
 }

 /**
 * Sets the prefix that should be used for new found messages.
 */
 public function setPrefix($prefix)
 {
 $this->prefix = $prefix;
 }
}

	YAMLservices:
 acme_demo.translation.extractor.foo:
 class: Acme\DemoBundle\Translation\FooExtractor
 tags:
 - { name: translation.extractor, alias: foo }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service
 id="acme_demo.translation.extractor.foo"
 class="Acme\DemoBundle\Translation\FooExtractor">

 <tag name="translation.extractor" alias="foo" />
 </service>
 </services>
</container>

	PHP$container->register(
 'acme_demo.translation.extractor.foo',
 'Acme\DemoBundle\Translation\FooExtractor'
)
 ->addTag('translation.extractor', array('alias' => 'foo'));

translation.dumper

Purpose: To register a custom service that dumps messages to a file

2.1 新版功能: The ability to add message dumpers was introduced in Symfony 2.1.

After an Extractor has extracted all messages from
the templates, the dumpers are executed to dump the messages to a translation
file in a specific format.

Symfony already comes with many dumpers:

	CsvFileDumper [http://api.symfony.com/master/Symfony/Component/Translation/Dumper/CsvFileDumper.html]

	IcuResFileDumper [http://api.symfony.com/master/Symfony/Component/Translation/Dumper/IcuResFileDumper.html]

	IniFileDumper [http://api.symfony.com/master/Symfony/Component/Translation/Dumper/IniFileDumper.html]

	MoFileDumper [http://api.symfony.com/master/Symfony/Component/Translation/Dumper/MoFileDumper.html]

	PoFileDumper [http://api.symfony.com/master/Symfony/Component/Translation/Dumper/PoFileDumper.html]

	QtFileDumper [http://api.symfony.com/master/Symfony/Component/Translation/Dumper/QtFileDumper.html]

	XliffFileDumper [http://api.symfony.com/master/Symfony/Component/Translation/Dumper/XliffFileDumper.html]

	YamlFileDumper [http://api.symfony.com/master/Symfony/Component/Translation/Dumper/YamlFileDumper.html]

You can create your own dumper by extending
FileDumper [http://api.symfony.com/master/Symfony/Component/Translation/Dumper/FileDumper.html] or implementing
DumperInterface [http://api.symfony.com/master/Symfony/Component/Translation/Dumper/DumperInterface.html] and tagging
the service with translation.dumper. The tag has one option: alias
This is the name that’s used to determine which dumper should be used.

	YAMLservices:
 acme_demo.translation.dumper.json:
 class: Acme\DemoBundle\Translation\JsonFileDumper
 tags:
 - { name: translation.dumper, alias: json }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service
 id="acme_demo.translation.dumper.json"
 class="Acme\DemoBundle\Translation\JsonFileDumper">

 <tag name="translation.dumper" alias="json" />
 </service>
 </services>
</container>

	PHP$container->register(
 'acme_demo.translation.dumper.json',
 'Acme\DemoBundle\Translation\JsonFileDumper'
)
 ->addTag('translation.dumper', array('alias' => 'json'));

参见

Learn how to dump to custom formats
in the components section.

twig.extension

Purpose: To register a custom Twig Extension

To enable a Twig extension, add it as a regular service in one of your
configuration, and tag it with twig.extension:

	YAMLservices:
 twig.extension.your_extension_name:
 class: Fully\Qualified\Extension\Class\Name
 tags:
 - { name: twig.extension }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service
 id="twig.extension.your_extension_name"
 class="Fully\Qualified\Extension\Class\Name">

 <tag name="twig.extension" />
 </service>
 </services>
</container>

	PHP$container
 ->register('twig.extension.your_extension_name', 'Fully\Qualified\Extension\Class\Name')
 ->addTag('twig.extension')
;

For information on how to create the actual Twig Extension class, see
Twig’s documentation [http://twig.sensiolabs.org/doc/advanced.html#creating-an-extension] on the topic or read the cookbook article:
How to Write a custom Twig Extension.

Before writing your own extensions, have a look at the
Twig official extension repository [https://github.com/twigphp/Twig-extensions] which already includes several
useful extensions. For example Intl and its localizeddate filter
that formats a date according to user’s locale. These official Twig extensions
also have to be added as regular services:

	YAMLservices:
 twig.extension.intl:
 class: Twig_Extensions_Extension_Intl
 tags:
 - { name: twig.extension }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service id="twig.extension.intl" class="Twig_Extensions_Extension_Intl">
 <tag name="twig.extension" />
 </service>
 </services>
</container>

	PHP$container
 ->register('twig.extension.intl', 'Twig_Extensions_Extension_Intl')
 ->addTag('twig.extension')
;

twig.loader

Purpose: Register a custom service that loads Twig templates

By default, Symfony uses only one Twig Loader [http://twig.sensiolabs.org/doc/api.html#loaders] -
FilesystemLoader [http://api.symfony.com/master/Symfony/Bundle/TwigBundle/Loader/FilesystemLoader.html]. If you need
to load Twig templates from another resource, you can create a service for
the new loader and tag it with twig.loader:

	YAMLservices:
 acme.demo_bundle.loader.some_twig_loader:
 class: Acme\DemoBundle\Loader\SomeTwigLoader
 tags:
 - { name: twig.loader }

	XML<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://symfony.com/schema/dic/services http://symfony.com/schema/dic/services/services-1.0.xsd">

 <services>
 <service
 id="acme.demo_bundle.loader.some_twig_loader"
 class="Acme\DemoBundle\Loader\SomeTwigLoader">

 <tag name="twig.loader" />
 </service>
 </services>
</container>

	PHP$container
 ->register('acme.demo_bundle.loader.some_twig_loader', 'Acme\DemoBundle\Loader\SomeTwigLoader')
 ->addTag('twig.loader')
;

validator.constraint_validator

Purpose: Create your own custom validation constraint

This tag allows you to create and register your own custom validation constraint.
For more information, read the cookbook article: How to Create a custom Validation Constraint.

validator.initializer

Purpose: Register a service that initializes objects before validation

This tag provides a very uncommon piece of functionality that allows you
to perform some sort of action on an object right before it’s validated.
For example, it’s used by Doctrine to query for all of the lazily-loaded
data on an object before it’s validated. Without this, some data on a Doctrine
entity would appear to be “missing” when validated, even though this is not
really the case.

If you do need to use this tag, just make a new class that implements the
ObjectInitializerInterface [http://api.symfony.com/master/Symfony/Component/Validator/ObjectInitializerInterface.html] interface.
Then, tag it with the validator.initializer tag (it has no options).

For an example, see the EntityInitializer class inside the Doctrine Bridge.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Reference Documents

Requirements for Running Symfony

To run Symfony, your system needs to adhere to a list of requirements. You can
easily see if your system passes all requirements by running the web/config.php
in your Symfony distribution. Since the CLI often uses a different php.ini
configuration file, it’s also a good idea to check your requirements from
the command line via:

$ php app/check.php

Below is the list of required and optional requirements.

Required

	PHP needs to be a minimum version of PHP 5.3.3

	JSON needs to be enabled

	ctype needs to be enabled

	Your php.ini needs to have the date.timezone setting

警告

Be aware that Symfony has some known limitations when using a PHP version
less than 5.3.8 or equal to 5.3.16. For more information see the
Requirements section of the README [https://github.com/symfony/symfony#requirements].

Optional

	You need to have the PHP-XML module installed

	You need to have at least version 2.6.21 of libxml

	PHP tokenizer needs to be enabled

	mbstring functions need to be enabled

	iconv needs to be enabled

	POSIX needs to be enabled (only on *nix)

	Intl needs to be installed with ICU 4+

	APC 3.0.17+ (or another opcode cache needs to be installed)

	php.ini recommended settings
	short_open_tag = Off

	magic_quotes_gpc = Off

	register_globals = Off

	session.auto_start = Off

Doctrine

If you want to use Doctrine, you will need to have PDO installed. Additionally,
you need to have the PDO driver installed for the database server you want
to use.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

Contributing

	Code
	Bugs

	Patches

	The Core Team

	Security

	Tests

	Backwards Compatibility

	Coding Standards

	Code Conventions

	Git

	License

	Documentation
	Overview

	Format

	Documentation Standards

	Translations

	License

	Community
	Release Process

	Other Resources

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Contributing

Contributing Code

	Reporting a Bug

	Submitting a Patch
	Step 1: Setup your Environment

	Step 2: Work on your Patch

	Step 3: Submit your Patch

	Symfony Core Team
	Core Organization

	Code Development Rules

	Symfony Core Rules and Protocol Amendments

	Security Issues
	Reporting a Security Issue

	Resolving Process

	Collaborating with Downstream Open-Source Projects

	Security Advisories

	Running Symfony Tests
	PHPUnit

	Dependencies (optional)

	Running

	Code Coverage

	Our backwards Compatibility Promise
	Using Symfony Code

	Working on Symfony Code

	Coding Standards
	Structure

	Naming Conventions

	Documentation

	License

	Conventions
	Method Names

	Deprecations

	Git
	Pull Requests

	Symfony License
	The License

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Contributing

 	Contributing Code

Reporting a Bug

Whenever you find a bug in Symfony, we kindly ask you to report it. It helps
us make a better Symfony.

警告

If you think you’ve found a security issue, please use the special
procedure instead.

Before submitting a bug:

	Double-check the official documentation to see if you’re not misusing the
framework;

	Ask for assistance on the users mailing-list [http://groups.google.com/group/symfony2], the forum [http://forum.symfony-project.org/], or on the
#symfony IRC channel if you’re not sure if your issue is really a bug.

If your problem definitely looks like a bug, report it using the official bug
tracker [https://github.com/symfony/symfony/issues] and follow some basic rules:

	Use the title field to clearly describe the issue;

	Describe the steps needed to reproduce the bug with short code examples
(providing a unit test that illustrates the bug is best);

	If the bug you experienced affects more than one layer, providing a simple
failing unit test may not be sufficient. In this case, please fork the
Symfony Standard Edition [https://github.com/symfony/symfony-standard/] and reproduce your issue on a new branch;

	Give as much detail as possible about your environment (OS, PHP version,
Symfony version, enabled extensions, ...);

	(optional) Attach a patch.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Contributing

 	Contributing Code

Submitting a Patch

Patches are the best way to provide a bug fix or to propose enhancements to
Symfony.

Step 1: Setup your Environment

Install the Software Stack

Before working on Symfony, setup a friendly environment with the following
software:

	Git;

	PHP version 5.3.3 or above;

	PHPUnit [https://phpunit.de/manual/current/en/installation.html] 4.2 or above.

Configure Git

Set up your user information with your real name and a working email address:

$ git config --global user.name "Your Name"
$ git config --global user.email you@example.com

小技巧

If you are new to Git, you are highly recommended to read the excellent and
free ProGit [http://git-scm.com/book] book.

小技巧

If your IDE creates configuration files inside the project’s directory,
you can use global .gitignore file (for all projects) or
.git/info/exclude file (per project) to ignore them. See
GitHub’s documentation [https://help.github.com/articles/ignoring-files].

小技巧

Windows users: when installing Git, the installer will ask what to do with
line endings, and suggests replacing all LF with CRLF. This is the wrong
setting if you wish to contribute to Symfony! Selecting the as-is method is
your best choice, as Git will convert your line feeds to the ones in the
repository. If you have already installed Git, you can check the value of
this setting by typing:

$ git config core.autocrlf

This will return either “false”, “input” or “true”; “true” and “false” being
the wrong values. Change it to “input” by typing:

$ git config --global core.autocrlf input

Replace –global by –local if you want to set it only for the active
repository

Get the Symfony Source Code

Get the Symfony source code:

	Create a GitHub [https://github.com/signup/free] account and sign in;

	Fork the Symfony repository [https://github.com/symfony/symfony] (click on the “Fork” button);

	After the “forking action” has completed, clone your fork locally
(this will create a symfony directory):

$ git clone git@github.com:USERNAME/symfony.git

	Add the upstream repository as a remote:

$ cd symfony
$ git remote add upstream git://github.com/symfony/symfony.git

Check that the current Tests Pass

Now that Symfony is installed, check that all unit tests pass for your
environment as explained in the dedicated document.

Step 2: Work on your Patch

The License

Before you start, you must know that all the patches you are going to submit
must be released under the MIT license, unless explicitly specified in your
commits.

Choose the right Branch

Before working on a patch, you must determine on which branch you need to
work:

	2.3, if you are fixing a bug for an existing feature (you may have
to choose a higher branch if the feature you are fixing was introduced
in a later version);

	2.7, if you are adding a new feature which is backward compatible;

	master, if you are adding a new and backward incompatible feature.

注解

All bug fixes merged into maintenance branches are also merged into more
recent branches on a regular basis. For instance, if you submit a patch
for the 2.3 branch, the patch will also be applied by the core team on
the master branch.

Create a Topic Branch

Each time you want to work on a patch for a bug or on an enhancement, create a
topic branch:

$ git checkout -b BRANCH_NAME master

Or, if you want to provide a bugfix for the 2.3 branch, first track the remote
2.3 branch locally:

$ git checkout -t origin/2.3

Then create a new branch off the 2.3 branch to work on the bugfix:

$ git checkout -b BRANCH_NAME 2.3

小技巧

Use a descriptive name for your branch (ticket_XXX where XXX is the
ticket number is a good convention for bug fixes).

The above checkout commands automatically switch the code to the newly created
branch (check the branch you are working on with git branch).

Work on your Patch

Work on the code as much as you want and commit as much as you want; but keep
in mind the following:

	Read about the Symfony conventions and follow the
coding standards (use git diff --check to check for
trailing spaces – also read the tip below);

	Add unit tests to prove that the bug is fixed or that the new feature
actually works;

	Try hard to not break backward compatibility (if you must do so, try to
provide a compatibility layer to support the old way) – patches that break
backward compatibility have less chance to be merged;

	Do atomic and logically separate commits (use the power of git rebase to
have a clean and logical history);

	Squash irrelevant commits that are just about fixing coding standards or
fixing typos in your own code;

	Never fix coding standards in some existing code as it makes the code review
more difficult;

	Write good commit messages (see the tip below).

小技巧

When submitting pull requests, fabbot [http://fabbot.io] checks your code
for common typos and verifies that you are using the PHP coding standards
as defined in PSR-1 [http://www.php-fig.org/psr/psr-1/] and PSR-2 [http://www.php-fig.org/psr/psr-2/].

A status is posted below the pull request description with a summary
of any problems it detects or any Travis CI build failures.

小技巧

A good commit message is composed of a summary (the first line),
optionally followed by a blank line and a more detailed description. The
summary should start with the Component you are working on in square
brackets ([DependencyInjection], [FrameworkBundle], ...). Use a
verb (fixed ..., added ..., ...) to start the summary and don’t
add a period at the end.

Prepare your Patch for Submission

When your patch is not about a bug fix (when you add a new feature or change
an existing one for instance), it must also include the following:

	An explanation of the changes in the relevant CHANGELOG file(s) (the
[BC BREAK] or the [DEPRECATION] prefix must be used when relevant);

	An explanation on how to upgrade an existing application in the relevant
UPGRADE file(s) if the changes break backward compatibility or if you
deprecate something that will ultimately break backward compatibility.

Step 3: Submit your Patch

Whenever you feel that your patch is ready for submission, follow the
following steps.

Rebase your Patch

Before submitting your patch, update your branch (needed if it takes you a
while to finish your changes):

$ git checkout master
$ git fetch upstream
$ git merge upstream/master
$ git checkout BRANCH_NAME
$ git rebase master

小技巧

Replace master with the branch you selected previously (e.g. 2.3)
if you are working on a bugfix

When doing the rebase command, you might have to fix merge conflicts.
git status will show you the unmerged files. Resolve all the conflicts,
then continue the rebase:

$ git add ... # add resolved files
$ git rebase --continue

Check that all tests still pass and push your branch remotely:

$ git push --force origin BRANCH_NAME

Make a Pull Request

You can now make a pull request on the symfony/symfony GitHub repository.

小技巧

Take care to point your pull request towards symfony:2.3 if you want
the core team to pull a bugfix based on the 2.3 branch.

To ease the core team work, always include the modified components in your
pull request message, like in:

[Yaml] fixed something
[Form] [Validator] [FrameworkBundle] added something

The pull request description must include the following checklist at the top
to ensure that contributions may be reviewed without needless feedback
loops and that your contributions can be included into Symfony as quickly as
possible:

Q	A
Bug fix?	[yes
New feature?	[yes
BC breaks?	[yes
Deprecations?	[yes
Tests pass?	[yes
Fixed tickets	[comma separated list of tickets fixed by the PR]
License	MIT
Doc PR	[The reference to the documentation PR if any]

An example submission could now look as follows:

Q	A
Bug fix?	no
New feature?	no
BC breaks?	no
Deprecations?	no
Tests pass?	yes
Fixed tickets	#12, #43
License	MIT
Doc PR	symfony/symfony-docs#123

The whole table must be included (do not remove lines that you think are
not relevant). For simple typos, minor changes in the PHPDocs, or changes in
translation files, use the shorter version of the check-list:

Q	A
Fixed tickets	[comma separated list of tickets fixed by the PR]
License	MIT

Some answers to the questions trigger some more requirements:

	If you answer yes to “Bug fix?”, check if the bug is already listed in the
Symfony issues and reference it/them in “Fixed tickets”;

	If you answer yes to “New feature?”, you must submit a pull request to the
documentation and reference it under the “Doc PR” section;

	If you answer yes to “BC breaks?”, the patch must contain updates to the
relevant CHANGELOG and UPGRADE files;

	If you answer yes to “Deprecations?”, the patch must contain updates to the
relevant CHANGELOG and UPGRADE files;

	If you answer no to “Tests pass”, you must add an item to a todo-list with
the actions that must be done to fix the tests;

	If the “license” is not MIT, just don’t submit the pull request as it won’t
be accepted anyway.

If some of the previous requirements are not met, create a todo-list and add
relevant items:

- [] fix the tests as they have not been updated yet
- [] submit changes to the documentation
- [] document the BC breaks

If the code is not finished yet because you don’t have time to finish it or
because you want early feedback on your work, add an item to todo-list:

- [] finish the code
- [] gather feedback for my changes

As long as you have items in the todo-list, please prefix the pull request
title with “[WIP]”.

In the pull request description, give as much details as possible about your
changes (don’t hesitate to give code examples to illustrate your points). If
your pull request is about adding a new feature or modifying an existing one,
explain the rationale for the changes. The pull request description helps the
code review and it serves as a reference when the code is merged (the pull
request description and all its associated comments are part of the merge
commit message).

In addition to this “code” pull request, you must also send a pull request to
the documentation repository [https://github.com/symfony/symfony-docs] to update the documentation when appropriate.

Rework your Patch

Based on the feedback on the pull request, you might need to rework your
patch. Before re-submitting the patch, rebase with upstream/master or
upstream/2.3, don’t merge; and force the push to the origin:

$ git rebase -f upstream/master
$ git push --force origin BRANCH_NAME

注解

When doing a push --force, always specify the branch name explicitly
to avoid messing other branches in the repo (--force tells Git that
you really want to mess with things so do it carefully).

Often, moderators will ask you to “squash” your commits. This means you will
convert many commits to one commit. To do this, use the rebase command:

$ git rebase -i upstream/master
$ git push --force origin BRANCH_NAME

After you type this command, an editor will popup showing a list of commits:

pick 1a31be6 first commit
pick 7fc64b4 second commit
pick 7d33018 third commit

To squash all commits into the first one, remove the word pick before the
second and the last commits, and replace it by the word squash or just
s. When you save, Git will start rebasing, and if successful, will ask
you to edit the commit message, which by default is a listing of the commit
messages of all the commits. When you are finished, execute the push command.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Contributing

 	Contributing Code

Symfony Core Team

This document states the rules that govern the Symfony Core group. These rules
are effective upon publication of this document and all Symfony Core members
must adhere to said rules and protocol.

Core Organization

Symfony Core members are divided into three groups. Each member can only belong
to one group at a time. The privileges granted to a group are automatically
granted to all higher priority groups.

The Symfony Core groups, in descending order of priority, are as follows:

	Project Leader

	Elects members in any other group;

	Merges pull requests in all Symfony repositories.

	Mergers

	Merge pull requests for the component or components on which they have been
granted privileges.

	Deciders

	Decide to merge or reject a pull request.

Active Core Members

	Project Leader:
	Fabien Potencier (fabpot).

	Mergers (@symfony/mergers on GitHub):
	Bernhard Schussek (webmozart) can merge into the Form [https://github.com/symfony/Form],
Validator [https://github.com/symfony/Validator], Icu [https://github.com/symfony/Icu], Intl [https://github.com/symfony/Intl], Locale [https://github.com/symfony/Locale], OptionsResolver [https://github.com/symfony/OptionsResolver] and PropertyAccess [https://github.com/symfony/PropertyAccess]
components;

	Tobias Schultze (Tobion) can merge into the Routing [https://github.com/symfony/Routing]
component;

	Romain Neutron (romainneutron) can merge into the
Process [https://github.com/symfony/Process] component;

	Nicolas Grekas (nicolas-grekas) can merge into the Debug [https://github.com/symfony/Debug]
component;

	Christophe Coevoet (stof) can merge into the BrowserKit [https://github.com/symfony/BrowserKit],
Config [https://github.com/symfony/Config], Console [https://github.com/symfony/Console], DependencyInjection [https://github.com/symfony/DependencyInjection], DomCrawler [https://github.com/symfony/DomCrawler], EventDispatcher [https://github.com/symfony/EventDispatcher],
HttpFoundation [https://github.com/symfony/HttpFoundation], HttpKernel [https://github.com/symfony/HttpKernel], Serializer [https://github.com/symfony/Serializer], Stopwatch [https://github.com/symfony/Stopwatch], DoctrineBridge [https://github.com/symfony/DoctrineBridge],
MonologBridge [https://github.com/symfony/MonologBridge], and TwigBridge [https://github.com/symfony/TwigBridge] components;

	Kévin Dunglas (dunglas) can merge into the Serializer [https://github.com/symfony/Serializer]
component.

	Deciders (@symfony/deciders on GitHub):
	Jakub Zalas (jakzal);

	Jordi Boggiano (seldaek);

	Lukas Kahwe Smith (lsmith77);

	Ryan Weaver (weaverryan).

Core Membership Application

At present, new Symfony Core membership applications are not accepted.

Core Membership Revocation

A Symfony Core membership can be revoked for any of the following reasons:

	Refusal to follow the rules and policies stated in this document;

	Lack of activity for the past six months;

	Willful negligence or intent to harm the Symfony project;

	Upon decision of the Project Leader.

Should new Symfony Core memberships be accepted in the future, revoked
members must wait at least 12 months before re-applying.

Code Development Rules

Symfony project development is based on pull requests proposed by any member
of the Symfony community. Pull request acceptance or rejection is decided based
on the votes cast by the Symfony Core members.

Pull Request Voting Policy

	-1 votes must always be justified by technical and objective reasons;

	+1 votes do not require justification, unless there is at least one
-1 vote;

	Core members can change their votes as many times as they desire
during the course of a pull request discussion;

	Core members are not allowed to vote on their own pull requests.

Pull Request Merging Policy

A pull request can be merged if:

	Enough time was given for peer reviews (a few minutes for typos or minor
changes, at least 2 days for “regular” pull requests, and 4 days for pull
requests with “a significant impact”);

	It is a minor change [1], regardless of the number of votes;

	At least the component’s Merger or two other Core members voted +1
and no Core member voted -1.

Pull Request Merging Process

All code must be committed to the repository through pull requests, except for
minor changes [1] which can be committed directly to the repository.

Mergers must always use the command-line gh tool provided by the
Project Leader to merge the pull requests.

Release Policy

The Project Leader is also the release manager for every Symfony version.

Symfony Core Rules and Protocol Amendments

The rules described in this document may be amended at anytime at the
discretion of the Project Leader.

	[1]	(1, 2) Minor changes comprise typos, DocBlock fixes, code standards
violations, and minor CSS, JavaScript and HTML modifications.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Contributing

 	Contributing Code

Security Issues

This document explains how Symfony security issues are handled by the Symfony
core team (Symfony being the code hosted on the main symfony/symfony Git
repository [https://github.com/symfony/symfony]).

Reporting a Security Issue

If you think that you have found a security issue in Symfony, don’t use the
mailing-list or the bug tracker and don’t publish it publicly. Instead, all
security issues must be sent to security [at] symfony.com. Emails sent to
this address are forwarded to the Symfony core-team private mailing-list.

Resolving Process

For each report, we first try to confirm the vulnerability. When it is
confirmed, the core-team works on a solution following these steps:

	Send an acknowledgement to the reporter;

	Work on a patch;

	Get a CVE identifier from mitre.org;

	Write a security announcement for the official Symfony blog [http://symfony.com/blog/] about the
vulnerability. This post should contain the following information:
	a title that always include the “Security release” string;

	a description of the vulnerability;

	the affected versions;

	the possible exploits;

	how to patch/upgrade/workaround affected applications;

	the CVE identifier;

	credits.

	Send the patch and the announcement to the reporter for review;

	Apply the patch to all maintained versions of Symfony;

	Package new versions for all affected versions;

	Publish the post on the official Symfony blog [http://symfony.com/blog/] (it must also be added to
the “Security Advisories [http://symfony.com/blog/category/security-advisories]” category);

	Update the security advisory list (see below).

注解

Releases that include security issues should not be done on Saturday or
Sunday, except if the vulnerability has been publicly posted.

注解

While we are working on a patch, please do not reveal the issue publicly.

注解

The resolution takes anywhere between a couple of days to a month depending
on its complexity and the coordination with the downstream projects (see
next paragraph).

Collaborating with Downstream Open-Source Projects

As Symfony is used by many large Open-Source projects, we standardized the way
the Symfony security team collaborates on security issues with downstream
projects. The process works as follows:

	After the Symfony security team has acknowledged a security issue, it
immediately sends an email to the downstream project security teams to
inform them of the issue;

	The Symfony security team creates a private Git repository to ease the
collaboration on the issue and access to this repository is given to the
Symfony security team, to the Symfony contributors that are impacted by
the issue, and to one representative of each downstream projects;

	All people with access to the private repository work on a solution to
solve the issue via pull requests, code reviews, and comments;

	Once the fix is found, all involved projects collaborate to find the best
date for a joint release (there is no guarantee that all releases will
be at the same time but we will try hard to make them at about the same
time). When the issue is not known to be exploited in the wild, a period
of two weeks seems like a reasonable amount of time.

The list of downstream projects participating in this process is kept as small
as possible in order to better manage the flow of confidential information
prior to disclosure. As such, projects are included at the sole discretion of
the Symfony security team.

As of today, the following projects have validated this process and are part
of the downstream projects included in this process:

	Drupal (releases typically happen on Wednesdays)

	eZPublish

Security Advisories

This section indexes security vulnerabilities that were fixed in Symfony
releases, starting from Symfony 1.0.0:

	July 15, 2014: Security releases: Symfony 2.3.18, 2.4.8, and 2.5.2 released [http://symfony.com/blog/security-releases-cve-2014-4931-symfony-2-3-18-2-4-8-and-2-5-2-released] (CVE-2014-4931 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4931])

	October 10, 2013: Security releases: Symfony 2.0.25, 2.1.13, 2.2.9, and 2.3.6 released [http://symfony.com/blog/security-releases-cve-2013-5958-symfony-2-0-25-2-1-13-2-2-9-and-2-3-6-released] (CVE-2013-5958 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-5958])

	August 7, 2013: Security releases: Symfony 2.0.24, 2.1.12, 2.2.5, and 2.3.3 released [http://symfony.com/blog/security-releases-symfony-2-0-24-2-1-12-2-2-5-and-2-3-3-released] (CVE-2013-4751 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4751] and CVE-2013-4752 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4752])

	January 17, 2013: Security release: Symfony 2.0.22 and 2.1.7 released [http://symfony.com/blog/security-release-symfony-2-0-22-and-2-1-7-released] (CVE-2013-1348 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1348] and CVE-2013-1397 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1397])

	December 20, 2012: Security release: Symfony 2.0.20 and 2.1.5 [http://symfony.com/blog/security-release-symfony-2-0-20-and-2-1-5-released] (CVE-2012-6431 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6431] and CVE-2012-6432 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6432])

	November 29, 2012: Security release: Symfony 2.0.19 and 2.1.4 [http://symfony.com/blog/security-release-symfony-2-0-19-and-2-1-4]

	November 25, 2012: Security release: symfony 1.4.20 released [http://symfony.com/blog/security-release-symfony-1-4-20-released] (CVE-2012-5574 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5574])

	August 28, 2012: Security Release: Symfony 2.0.17 released [http://symfony.com/blog/security-release-symfony-2-0-17-released]

	May 30, 2012: Security Release: symfony 1.4.18 released [http://symfony.com/blog/security-release-symfony-1-4-18-released] (CVE-2012-2667 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2667])

	February 24, 2012: Security Release: Symfony 2.0.11 released [http://symfony.com/blog/security-release-symfony-2-0-11-released]

	November 16, 2011: Security Release: Symfony 2.0.6 [http://symfony.com/blog/security-release-symfony-2-0-6]

	March 21, 2011: symfony 1.3.10 and 1.4.10: security releases [http://symfony.com/blog/symfony-1-3-10-and-1-4-10-security-releases]

	June 29, 2010: Security Release: symfony 1.3.6 and 1.4.6 [http://symfony.com/blog/security-release-symfony-1-3-6-and-1-4-6]

	May 31, 2010: symfony 1.3.5 and 1.4.5 [http://symfony.com/blog/symfony-1-3-5-and-1-4-5]

	February 25, 2010: Security Release: 1.2.12, 1.3.3 and 1.4.3 [http://symfony.com/blog/security-release-1-2-12-1-3-3-and-1-4-3]

	February 13, 2010: symfony 1.3.2 and 1.4.2 [http://symfony.com/blog/symfony-1-3-2-and-1-4-2]

	April 27, 2009: symfony 1.2.6: Security fix [http://symfony.com/blog/symfony-1-2-6-security-fix]

	October 03, 2008: symfony 1.1.4 released: Security fix [http://symfony.com/blog/symfony-1-1-4-released-security-fix]

	May 14, 2008: symfony 1.0.16 is out [http://symfony.com/blog/symfony-1-0-16-is-out]

	April 01, 2008: symfony 1.0.13 is out [http://symfony.com/blog/symfony-1-0-13-is-out]

	March 21, 2008: symfony 1.0.12 is (finally) out ! [http://symfony.com/blog/symfony-1-0-12-is-finally-out]

	June 25, 2007: symfony 1.0.5 released (security fix) [http://symfony.com/blog/symfony-1-0-5-released-security-fix]

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Contributing

 	Contributing Code

Running Symfony Tests

Before submitting a patch for inclusion, you need to run the
Symfony test suite to check that you have not broken anything.

PHPUnit

To run the Symfony test suite, install PHPUnit [https://phpunit.de/manual/current/en/installation.html] 4.2 (or later) first.

Dependencies (optional)

To run the entire test suite, including tests that depend on external
dependencies, Symfony needs to be able to autoload them. By default, they are
autoloaded from vendor/ under the main root directory (see
autoload.php.dist).

The test suite needs the following third-party libraries:

	Doctrine

	Swift Mailer

	Twig

	Monolog

To install them all, use Composer [http://getcomposer.org/]:

Step 1: Install Composer globally

Step 2: Install vendors.

$ composer install

注解

Note that the script takes some time to finish.

After installation, you can update the vendors to their latest version with
the follow command:

$ composer --dev update

Running

First, update the vendors (see above).

Then, run the test suite from the Symfony root directory with the following
command:

$ phpunit

The output should display OK. If not, you need to figure out what’s going on
and if the tests are broken because of your modifications.

小技巧

If you want to test a single component type its path after the phpunit
command, e.g.:

$ phpunit src/Symfony/Component/Finder/

小技巧

Run the test suite before applying your modifications to check that they
run fine on your configuration.

Code Coverage

If you add a new feature, you also need to check the code coverage by using
the coverage-html option:

$ phpunit --coverage-html=cov/

Check the code coverage by opening the generated cov/index.html page in a
browser.

小技巧

The code coverage only works if you have Xdebug enabled and all
dependencies installed.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Contributing

 	Contributing Code

Our backwards Compatibility Promise

Ensuring smooth upgrades of your projects is our first priority. That’s why
we promise you backwards compatibility (BC) for all minor Symfony releases.
You probably recognize this strategy as Semantic Versioning [http://semver.org/]. In short,
Semantic Versioning means that only major releases (such as 2.0, 3.0 etc.) are
allowed to break backwards compatibility. Minor releases (such as 2.5, 2.6 etc.)
may introduce new features, but must do so without breaking the existing API of
that release branch (2.x in the previous example).

警告

This promise was introduced with Symfony 2.3 and does not apply to previous
versions of Symfony.

However, backwards compatibility comes in many different flavors. In fact, almost
every change that we make to the framework can potentially break an application.
For example, if we add a new method to a class, this will break an application
which extended this class and added the same method, but with a different
method signature.

Also, not every BC break has the same impact on application code. While some BC
breaks require you to make significant changes to your classes or your
architecture, others are fixed as easily as changing the name of a method.

That’s why we created this page for you. The section “Using Symfony Code” will
tell you how you can ensure that your application won’t break completely when
upgrading to a newer version of the same major release branch.

The second section, “Working on Symfony Code”, is targeted at Symfony
contributors. This section lists detailed rules that every contributor needs to
follow to ensure smooth upgrades for our users.

Using Symfony Code

If you are using Symfony in your projects, the following guidelines will help
you to ensure smooth upgrades to all future minor releases of your Symfony
version.

Using our Interfaces

All interfaces shipped with Symfony can be used in type hints. You can also call
any of the methods that they declare. We guarantee that we won’t break code that
sticks to these rules.

警告

The exception to this rule are interfaces tagged with @internal. Such
interfaces should not be used or implemented.

If you want to implement an interface, you should first make sure that the
interface is an API interface. You can recognize API interfaces by the @api
tag in their source code:

/**
 * HttpKernelInterface handles a Request to convert it to a Response.
 *
 * @author Fabien Potencier <fabien@symfony.com>
 *
 * @api
 */
interface HttpKernelInterface
{
 // ...
}

If you implement an API interface, we promise that we won’t ever break your
code. Regular interfaces, by contrast, may be extended between minor releases,
for example by adding a new method. Be prepared to upgrade your code manually
if you implement a regular interface.

注解

Even if we do changes that require manual upgrades, we limit ourselves to
changes that can be upgraded easily. We will always document the precise
upgrade instructions in the UPGRADE file in Symfony’s root directory.

The following table explains in detail which use cases are covered by our
backwards compatibility promise:

	Use Case
	Regular
	API

	If you...
	Then we guarantee BC...

	Type hint against the interface
	Yes
	Yes

	Call a method
	Yes
	Yes

	If you implement the interface and...
	Then we guarantee BC...

	Implement a method
	No [1]
	Yes

	Add an argument to an implemented method
	No [1]
	Yes

	Add a default value to an argument
	Yes
	Yes

注解

If you think that one of our regular classes should have an @api tag,
put your request into a new ticket on GitHub [https://github.com/symfony/symfony/issues/new]. We will then evaluate
whether we can add the tag or not.

Using our Classes

All classes provided by Symfony may be instantiated and accessed through their
public methods and properties.

警告

Classes, properties and methods that bear the tag @internal as well as
the classes located in the various *\\Tests\\ namespaces are an
exception to this rule. They are meant for internal use only and should
not be accessed by your own code.

Just like with interfaces, we also distinguish between regular and API classes.
Like API interfaces, API classes are marked with an @api tag:

/**
 * Request represents an HTTP request.
 *
 * @author Fabien Potencier <fabien@symfony.com>
 *
 * @api
 */
class Request
{
 // ...
}

The difference between regular and API classes is that we guarantee full
backwards compatibility if you extend an API class and override its methods. We
can’t give the same promise for regular classes, because there we may, for
example, add an optional argument to a method. Consequently, the signature of
your overridden method wouldn’t match anymore and generate a fatal error.

注解

As with interfaces, we limit ourselves to changes that can be upgraded
easily. We will document the precise upgrade instructions in the UPGRADE
file in Symfony’s root directory.

In some cases, only specific properties and methods are tagged with the @api
tag, even though their class is not. In these cases, we guarantee full backwards
compatibility for the tagged properties and methods (as indicated in the column
“API” below), but not for the rest of the class.

To be on the safe side, check the following table to know which use cases are
covered by our backwards compatibility promise:

	Use Case
	Regular
	API

	If you...
	Then we guarantee BC...

	Type hint against the class
	Yes
	Yes

	Create a new instance
	Yes
	Yes

	Extend the class
	Yes
	Yes

	Access a public property
	Yes
	Yes

	Call a public method
	Yes
	Yes

	If you extend the class and...
	Then we guarantee BC...

	Access a protected property
	No [1]
	Yes

	Call a protected method
	No [1]
	Yes

	Override a public property
	Yes
	Yes

	Override a protected property
	No [1]
	Yes

	Override a public method
	No [1]
	Yes

	Override a protected method
	No [1]
	Yes

	Add a new property
	No
	No

	Add a new method
	No
	No

	Add an argument to an overridden method
	No [1]
	Yes

	Add a default value to an argument
	Yes
	Yes

	Call a private method (via Reflection)
	No
	No

	Access a private property (via Reflection)
	No
	No

注解

If you think that one of our regular classes should have an @api tag,
put your request into a new ticket on GitHub [https://github.com/symfony/symfony/issues/new]. We will then evaluate
whether we can add the tag or not.

Working on Symfony Code

Do you want to help us improve Symfony? That’s great! However, please stick
to the rules listed below in order to ensure smooth upgrades for our users.

Changing Interfaces

This table tells you which changes you are allowed to do when working on
Symfony’s interfaces:

	Type of Change
	Regular
	API

	Remove entirely
	No
	No

	Change name or namespace
	No
	No

	Add parent interface
	Yes [2]
	Yes [3]

	Remove parent interface
	No
	No

	Methods
	
	

	Add method
	Yes [2]
	No

	Remove method
	No
	No

	Change name
	No
	No

	Move to parent interface
	Yes
	Yes

	Add argument without a default value
	No
	No

	Add argument with a default value
	Yes [2]
	No

	Remove argument
	Yes [4]
	Yes [4]

	Add default value to an argument
	Yes [2]
	No

	Remove default value of an argument
	No
	No

	Add type hint to an argument
	No
	No

	Remove type hint of an argument
	Yes [2]
	No

	Change argument type
	Yes [2] [5]
	No

	Change return type
	Yes [2] [6]
	No

Changing Classes

This table tells you which changes you are allowed to do when working on
Symfony’s classes:

	Type of Change
	Regular
	API

	Remove entirely
	No
	No

	Make final
	No
	No

	Make abstract
	No
	No

	Change name or namespace
	No
	No

	Change parent class
	Yes [7]
	Yes [7]

	Add interface
	Yes
	Yes

	Remove interface
	No
	No

	Public Properties
	
	

	Add public property
	Yes
	Yes

	Remove public property
	No
	No

	Reduce visibility
	No
	No

	Move to parent class
	Yes
	Yes

	Protected Properties
	
	

	Add protected property
	Yes
	Yes

	Remove protected property
	Yes [2]
	No

	Reduce visibility
	Yes [2]
	No

	Move to parent class
	Yes
	Yes

	Private Properties
	
	

	Add private property
	Yes
	Yes

	Remove private property
	Yes
	Yes

	Constructors
	
	

	Add constructor without mandatory arguments
	Yes [2]
	Yes [2]

	Remove constructor
	Yes [2]
	No

	Reduce visibility of a public constructor
	No
	No

	Reduce visibility of a protected constructor
	Yes [2]
	No

	Move to parent class
	Yes
	Yes

	Public Methods
	
	

	Add public method
	Yes
	Yes

	Remove public method
	No
	No

	Change name
	No
	No

	Reduce visibility
	No
	No

	Move to parent class
	Yes
	Yes

	Add argument without a default value
	No
	No

	Add argument with a default value
	Yes [2]
	No

	Remove argument
	Yes [4]
	Yes [4]

	Add default value to an argument
	Yes [2]
	No

	Remove default value of an argument
	No
	No

	Add type hint to an argument
	Yes [8]
	No

	Remove type hint of an argument
	Yes [2]
	No

	Change argument type
	Yes [2] [5]
	No

	Change return type
	Yes [2] [6]
	No

	Protected Methods
	
	

	Add protected method
	Yes
	Yes

	Remove protected method
	Yes [2]
	No

	Change name
	No
	No

	Reduce visibility
	Yes [2]
	No

	Move to parent class
	Yes
	Yes

	Add argument without a default value
	Yes [2]
	No

	Add argument with a default value
	Yes [2]
	No

	Remove argument
	Yes [4]
	Yes [4]

	Add default value to an argument
	Yes [2]
	No

	Remove default value of an argument
	Yes [2]
	No

	Add type hint to an argument
	Yes [2]
	No

	Remove type hint of an argument
	Yes [2]
	No

	Change argument type
	Yes [2] [5]
	No

	Change return type
	Yes [2] [6]
	No

	Private Methods
	
	

	Add private method
	Yes
	Yes

	Remove private method
	Yes
	Yes

	Change name
	Yes
	Yes

	Reduce visibility
	Yes
	Yes

	Add argument without a default value
	Yes
	Yes

	Add argument with a default value
	Yes
	Yes

	Remove argument
	Yes
	Yes

	Add default value to an argument
	Yes
	Yes

	Remove default value of an argument
	Yes
	Yes

	Add type hint to an argument
	Yes
	Yes

	Remove type hint of an argument
	Yes
	Yes

	Change argument type
	Yes
	Yes

	Change return type
	Yes
	Yes

	Static Methods
	
	

	Turn non static into static
	No
	No

	Turn static into non static
	No
	No

	[1]	(1, 2, 3, 4, 5, 6, 7, 8) Your code may be broken by changes in the Symfony code. Such changes will
however be documented in the UPGRADE file.

	[2]	(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28) Should be avoided. When done, this change must be documented in the
UPGRADE file.

	[3]	The added parent interface must not introduce any new methods that don’t
exist in the interface already.

	[4]	(1, 2, 3, 4, 5, 6) Only the last argument(s) of a method may be removed, as PHP does not
care about additional arguments that you pass to a method.

	[5]	(1, 2, 3) The argument type may only be changed to a compatible or less specific
type. The following type changes are allowed:

	Original Type
	New Type

	boolean
	any scalar type [http://php.net/manual/en/function.is-scalar.php] with equivalent boolean values [http://php.net/manual/en/function.boolval.php]

	string
	any scalar type [http://php.net/manual/en/function.is-scalar.php] or object with equivalent string values [http://www.php.net/manual/en/function.strval.php]

	integer
	any scalar type [http://php.net/manual/en/function.is-scalar.php] with equivalent integer values [http://www.php.net/manual/en/function.intval.php]

	float
	any scalar type [http://php.net/manual/en/function.is-scalar.php] with equivalent float values [http://www.php.net/manual/en/function.floatval.php]

	class <C>
	any superclass or interface of <C>

	interface <I>
	any superinterface of <I>

	[6]	(1, 2, 3) The return type may only be changed to a compatible or more specific
type. The following type changes are allowed:

	Original Type
	New Type

	boolean
	any scalar type [http://php.net/manual/en/function.is-scalar.php] with equivalent boolean values [http://php.net/manual/en/function.boolval.php]

	string
	any scalar type [http://php.net/manual/en/function.is-scalar.php] or object with equivalent string values [http://www.php.net/manual/en/function.strval.php]

	integer
	any scalar type [http://php.net/manual/en/function.is-scalar.php] with equivalent integer values [http://www.php.net/manual/en/function.intval.php]

	float
	any scalar type [http://php.net/manual/en/function.is-scalar.php] with equivalent float values [http://www.php.net/manual/en/function.floatval.php]

	array
	instance of ArrayAccess, Traversable and Countable

	ArrayAccess
	array

	Traversable
	array

	Countable
	array

	class <C>
	any subclass of <C>

	interface <I>
	any subinterface or implementing class of <I>

	[7]	(1, 2) When changing the parent class, the original parent class must remain an
ancestor of the class.

	[8]	A type hint may only be added if passing a value with a different type
previously generated a fatal error.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Contributing

 	Contributing Code

Coding Standards

When contributing code to Symfony, you must follow its coding standards. To
make a long story short, here is the golden rule: Imitate the existing
Symfony code. Most open-source Bundles and libraries used by Symfony also
follow the same guidelines, and you should too.

Remember that the main advantage of standards is that every piece of code
looks and feels familiar, it’s not about this or that being more readable.

Symfony follows the standards defined in the PSR-0 [http://www.php-fig.org/psr/psr-0/], PSR-1 [http://www.php-fig.org/psr/psr-1/] and PSR-2 [http://www.php-fig.org/psr/psr-2/]
documents.

Since a picture - or some code - is worth a thousand words, here’s a short
example containing most features described below:

<?php

/*
 * This file is part of the Symfony package.
 *
 * (c) Fabien Potencier <fabien@symfony.com>
 *
 * For the full copyright and license information, please view the LICENSE
 * file that was distributed with this source code.
 */

namespace Acme;

/**
 * Coding standards demonstration.
 */
class FooBar
{
 const SOME_CONST = 42;

 private $fooBar;

 /**
 * @param string $dummy Some argument description
 */
 public function __construct($dummy)
 {
 $this->fooBar = $this->transformText($dummy);
 }

 /**
 * @param string $dummy Some argument description
 * @param array $options
 *
 * @return string|null Transformed input
 *
 * @throws \RuntimeException
 */
 private function transformText($dummy, array $options = array())
 {
 $mergedOptions = array_merge(
 array(
 'some_default' => 'values',
 'another_default' => 'more values',
),
 $options
);

 if (true === $dummy) {
 return;
 }

 if ('string' === $dummy) {
 if ('values' === $mergedOptions['some_default']) {
 return substr($dummy, 0, 5);
 }

 return ucwords($dummy);
 }

 throw new \RuntimeException(sprintf('Unrecognized dummy option "%s"', $dummy));
 }

 private function reverseBoolean($value = null, $theSwitch = false)
 {
 if (!$theSwitch) {
 return;
 }

 return !$value;
 }
}

Structure

	Add a single space after each comma delimiter;

	Add a single space around binary operators (==, &&, ...), with
the exception of the concatenation (.) operator;

	Place unary operators (!, --, ...) adjacent to the affected variable;

	Add a comma after each array item in a multi-line array, even after the
last one;

	Add a blank line before return statements, unless the return is alone
inside a statement-group (like an if statement);

	Use braces to indicate control structure body regardless of the number of
statements it contains;

	Define one class per file - this does not apply to private helper classes
that are not intended to be instantiated from the outside and thus are not
concerned by the PSR-0 [http://www.php-fig.org/psr/psr-0/] standard;

	Declare class properties before methods;

	Declare public methods first, then protected ones and finally private ones.
The exceptions to this rule are the class constructor and the setUp and
tearDown methods of PHPUnit tests, which should always be the first methods
to increase readability;

	Use parentheses when instantiating classes regardless of the number of
arguments the constructor has;

	Exception message strings should be concatenated using sprintf [http://php.net/manual/en/function.sprintf.php].

Naming Conventions

	Use camelCase, not underscores, for variable, function and method
names, arguments;

	Use underscores for option names and parameter names;

	Use namespaces for all classes;

	Prefix abstract classes with Abstract. Please note some early Symfony classes
do not follow this convention and have not been renamed for backward compatibility
reasons. However all new abstract classes must follow this naming convention;

	Suffix interfaces with Interface;

	Suffix traits with Trait;

	Suffix exceptions with Exception;

	Use alphanumeric characters and underscores for file names;

	For type-hinting in PHPDocs and casting, use bool (instead of boolean
or Boolean), int (instead of integer), float (instead of
double or real);

	Don’t forget to look at the more verbose Conventions document for
more subjective naming considerations.

Service Naming Conventions

	A service name contains groups, separated by dots;

	The DI alias of the bundle is the first group (e.g. fos_user);

	Use lowercase letters for service and parameter names;

	A group name uses the underscore notation;

	Each service has a corresponding parameter containing the class name,
following the SERVICE NAME.class convention.

Documentation

	Add PHPDoc blocks for all classes, methods, and functions;

	Omit the @return tag if the method does not return anything;

	The @package and @subpackage annotations are not used.

License

	Symfony is released under the MIT license, and the license block has to be
present at the top of every PHP file, before the namespace.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Contributing

 	Contributing Code

Conventions

The Coding Standards document describes the coding standards for the Symfony
projects and the internal and third-party bundles. This document describes
coding standards and conventions used in the core framework to make it more
consistent and predictable. You are encouraged to follow them in your own
code, but you don’t need to.

Method Names

When an object has a “main” many relation with related “things”
(objects, parameters, ...), the method names are normalized:

	get()

	set()

	has()

	all()

	replace()

	remove()

	clear()

	isEmpty()

	add()

	register()

	count()

	keys()

The usage of these methods are only allowed when it is clear that there
is a main relation:

	a CookieJar has many Cookie objects;

	a Service Container has many services and many parameters (as services
is the main relation, the naming convention is used for this relation);

	a Console Input has many arguments and many options. There is no “main”
relation, and so the naming convention does not apply.

For many relations where the convention does not apply, the following methods
must be used instead (where XXX is the name of the related thing):

	Main Relation
	Other Relations

	get()
	getXXX()

	set()
	setXXX()

	n/a
	replaceXXX()

	has()
	hasXXX()

	all()
	getXXXs()

	replace()
	setXXXs()

	remove()
	removeXXX()

	clear()
	clearXXX()

	isEmpty()
	isEmptyXXX()

	add()
	addXXX()

	register()
	registerXXX()

	count()
	countXXX()

	keys()
	n/a

注解

While “setXXX” and “replaceXXX” are very similar, there is one notable
difference: “setXXX” may replace, or add new elements to the relation.
“replaceXXX”, on the other hand, cannot add new elements. If an unrecognized
key is passed to “replaceXXX” it must throw an exception.

Deprecations

From time to time, some classes and/or methods are deprecated in the
framework; that happens when a feature implementation cannot be changed
because of backward compatibility issues, but we still want to propose a
“better” alternative. In that case, the old implementation can simply be
deprecated.

A feature is marked as deprecated by adding a @deprecated phpdoc to
relevant classes, methods, properties, ...:

/**
 * @deprecated Deprecated since version 2.X, to be removed in 2.Y. Use XXX instead.
 */

The deprecation message should indicate the version when the class/method was
deprecated, the version when it will be removed, and whenever possible, how
the feature was replaced.

A PHP E_USER_DEPRECATED error must also be triggered to help people with
the migration starting one or two minor versions before the version where the
feature will be removed (depending on the criticality of the removal):

trigger_error('XXX() is deprecated since version 2.X and will be removed in 2.Y. Use XXX instead.', E_USER_DEPRECATED);

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Contributing

 	Contributing Code

Git

This document explains some conventions and specificities in the way we manage
the Symfony code with Git.

Pull Requests

Whenever a pull request is merged, all the information contained in the pull
request (including comments) is saved in the repository.

You can easily spot pull request merges as the commit message always follows
this pattern:

merged branch USER_NAME/BRANCH_NAME (PR #1111)

The PR reference allows you to have a look at the original pull request on
GitHub: https://github.com/symfony/symfony/pull/1111. But all the information
you can get on GitHub is also available from the repository itself.

The merge commit message contains the original message from the author of the
changes. Often, this can help understand what the changes were about and the
reasoning behind the changes.

Moreover, the full discussion that might have occurred back then is also
stored as a Git note (before March 22 2013, the discussion was part of the
main merge commit message). To get access to these notes, add this line to
your .git/config file:

fetch = +refs/notes/*:refs/notes/*

After a fetch, getting the GitHub discussion for a commit is then a matter of
adding --show-notes=github-comments to the git show command:

$ git show HEAD --show-notes=github-comments

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Contributing

 	Contributing Code

Symfony License

Symfony is released under the MIT license.

According to Wikipedia [http://en.wikipedia.org/wiki/MIT_License]:

“It is a permissive license, meaning that it permits reuse within
proprietary software on the condition that the license is distributed with
that software. The license is also GPL-compatible, meaning that the GPL
permits combination and redistribution with software that uses the MIT
License.”

The License

Copyright (c) 2004-2015 Fabien Potencier

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished
to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Contributing

Contributing Documentation

	Contributing to the Documentation
	Before Your First Contribution

	Your First Documentation Contribution

	Your Second Documentation Contribution

	Your Next Documentation Contributions

	Frequently Asked Questions

	Documentation Format
	reStructuredText

	Sphinx

	Documentation Standards
	Sphinx

	Code Examples

	Files and Directories

	English Language Standards

	Translations
	Contributing

	Joining the Translation Team

	Adding a new Language

	Maintenance

	Symfony Documentation License

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Contributing

 	Contributing Documentation

Contributing to the Documentation

One of the essential principles of the Symfony project is that documentation is
as important as code. That’s why a great amount of resources are dedicated to
documenting new features and to keeping the rest of the documentation up-to-date.

More than 700 developers all around the world have contributed to Symfony’s
documentation and we are glad that you are considering joining this big family.
This guide will explain everything you need to contribute to the Symfony
documentation.

Before Your First Contribution

Before contributing, you should consider the following:

	Symfony documentation is written using reStructuredText [http://docutils.sourceforge.net/rst.html] markup language.
If you are not familiar with this format, read this article
for a quick overview of its basic features.

	Symfony documentation is hosted on GitHub [https://github.com/]. You’ll need a GitHub user account
to contribute to the documentation.

	Symfony documentation is published under a
Creative Commons BY-SA 3.0 License
and all your contributions will implicitly adhere to that license.

Your First Documentation Contribution

In this section, you’ll learn how to contribute to the Symfony documentation for
the first time. The next section will explain the shorter process you’ll follow
in the future for every contribution after your first one.

Let’s imagine that you want to improve the installation chapter of the Symfony
book. In order to make your changes, follow these steps:

Step 1. Go to the official Symfony documentation repository located at
github.com/symfony/symfony-docs [https://github.com/symfony/symfony-docs] and fork the repository [https://help.github.com/articles/fork-a-repo] to your personal
account. This is only needed the first time you contribute to Symfony.

Step 2. Clone the forked repository to your local machine (this
example uses the projects/symfony-docs/ directory to store the documentation;
change this value accordingly):

$ cd projects/
$ git clone git://github.com/<YOUR GITHUB USERNAME>/symfony-docs.git

Step 3. Switch to the oldest maintained branch before making any change.
Nowadays this is the 2.3 branch:

$ cd symfony-docs/
$ git checkout 2.3

If you are instead documenting a new feature, switch to the first Symfony
version which included it: 2.5, 2.6, etc.

Step 4. Create a dedicated new branch for your changes. This greatly
simplifies the work of reviewing and merging your changes. Use a short and
memorable name for the new branch:

$ git checkout -b improve_install_chapter

Step 5. Now make your changes in the documentation. Add, tweak, reword and
even remove any content, but make sure that you comply with the
Documentation Standards.

Step 6. Push the changes to your forked repository:

$ git commit book/installation.rst
$ git push origin improve_install_chapter

Step 7. Everything is now ready to initiate a pull request. Go to your
forked repository at https//github.com/<YOUR GITHUB USERNAME>/symfony-docs
and click on the Pull Requests link located in the sidebar.

Then, click on the big New pull request button. As GitHub cannot guess the
exact changes that you want to propose, select the appropriate branches where
changes should be applied:º

[image: ../../_images/docs-pull-request-change-base.png]
In this example, the base repository should be symfony/symfony-docs and
the base branch should be the 2.3, which is the branch that you selected
to base your changes on. The compare repository should be your forked copy
of symfony-docs and the compare branch should be improve_install_chapter,
which is the name of the branch you created and where you made your changes.

Step 8. The last step is to prepare the description of the pull request.
To ensure that your work is reviewed quickly, please add the following table
at the beginning of your pull request description:

| Q | A
| ------------- | ---
| Doc fix? | [yes|no]
| New docs? | [yes|no] (PR # on symfony/symfony if applicable)
| Applies to | [Symfony version numbers this applies to]
| Fixed tickets | [comma separated list of tickets fixed by the PR]

In this example, this table would look as follows:

| Q | A
| ------------- | ---
| Doc fix? | yes
| New docs? | no
| Applies to | all
| Fixed tickets | #10575

Step 9. Now that you’ve successfully submitted your first contribution to the
Symfony documentation, go and celebrate! The documentation managers will
carefully review your work in short time and they will let you know about any
required change.

In case you need to add or modify anything, there is no need to create a new
pull request. Just make sure that you are on the correct branch, make your
changes and push them:

$ cd projects/symfony-docs/
$ git checkout improve_install_chapter

... do your changes

$ git push

Step 10. After your pull request is eventually accepted and merged in the Symfony
documentation, you will be included in the Symfony Documentation Contributors [http://symfony.com/contributors/doc]
list. Moreover, if you happen to have a SensioLabsConnect [https://connect.sensiolabs.com/] profile, you will
get a cool Symfony Documentation Badge [https://connect.sensiolabs.com/badge/36/symfony-documentation-contributor].

Your Second Documentation Contribution

The first contribution took some time because you had to fork the repository,
learn how to write documentation, comply with the pull requests standards, etc.
The second contribution will be much easier, except for one detail: given the
furious update activity of the Symfony documentation repository, odds are that
your fork is now out of date with the official repository.

Solving this problem requires you to sync your fork [https://help.github.com/articles/syncing-a-fork] with the original repository.
To do this, execute this command first to tell git about the original repository:

$ cd projects/symfony-docs/
$ git remote add upstream https://github.com/symfony/symfony-docs.git

Now you can sync your fork by executing the following command:

$ cd projects/symfony-docs/
$ git fetch upstream
$ git checkout 2.3
$ git merge upstream/2.3

This command will update the 2.3 branch, which is the one you used to
create the new branch for your changes. If you have used another base branch,
e.g. master, replace the 2.3 with the appropriate branch name.

Great! Now you can proceed by following the same steps explained in the previous
section:

create a new branch to store your changes based on the 2.3 branch
$ cd projects/symfony-docs/
$ git checkout 2.3
$ git checkout -b my_changes

... do your changes

submit the changes to your forked repository
$ git add xxx.rst # (optional) only if this is a new content
$ git commit xxx.rst
$ git push

go to GitHub and create the Pull Request
#
Include this table in the description:
| Q | A
| ------------- | ---
| Doc fix? | [yes|no]
| New docs? | [yes|no] (PR # on symfony/symfony if applicable)
| Applies to | [Symfony version numbers this applies to]
| Fixed tickets | [comma separated list of tickets fixed by the PR]

Your second contribution is now complete, so go and celebrate again!
You can also see how your ranking improves in the list of
Symfony Documentation Contributors [http://symfony.com/contributors/doc].

Your Next Documentation Contributions

Now that you’ve made two contributions to the Symfony documentation, you are
probably comfortable with all the Git-magic involved in the process. That’s
why your next contributions would be much faster. Here you can find the complete
steps to contribute to the Symfony documentation, which you can use as a
checklist:

sync your fork with the official Symfony repository
$ cd projects/symfony-docs/
$ git fetch upstream
$ git checkout 2.3
$ git merge upstream/2.3

create a new branch from the oldest maintained version
$ git checkout 2.3
$ git checkout -b my_changes

... do your changes

add and commit your changes
$ git add xxx.rst # (optional) only if this is a new content
$ git commit xxx.rst
$ git push

go to GitHub and create the Pull Request
#
Include this table in the description:
| Q | A
| ------------- | ---
| Doc fix? | [yes|no]
| New docs? | [yes|no] (PR # on symfony/symfony if applicable)
| Applies to | [Symfony version numbers this applies to]
| Fixed tickets | [comma separated list of tickets fixed by the PR]

(optional) make the changes requested by reviewers and commit them
$ git commit xxx.rst
$ git push

You guessed right: after all this hard work, it’s time to celebrate again!

Frequently Asked Questions

Why Do my Changes Take so Long to Be Reviewed and/or Merged?

Please be patient. It can take up to several days before your pull request can
be fully reviewed. After merging the changes, it could take again several hours
before your changes appear on the symfony.com website.

What If I Want to Translate Some Documentation into my Language?

Read the dedicated document.

Why Should I Use the Oldest Maintained Branch Instead of the Master Branch?

Consistent with Symfony’s source code, the documentation repository is split
into multiple branches, corresponding to the different versions of Symfony itself.
The master branch holds the documentation for the development branch of
the code.

Unless you’re documenting a feature that was introduced after Symfony 2.3,
your changes should always be based on the 2.3 branch. Documentation managers
will use the necessary Git-magic to also apply your changes to all the active
branches of the documentation.

What If I Want to Submit my Work without Fully Finishing It?

You can do it. But please use one of these two prefixes to let reviewers know
about the state of your work:

	[WIP] (Work in Progress) is used when you are not yet finished with your
pull request, but you would like it to be reviewed. The pull request won’t
be merged until you say it is ready.

	[WCM] (Waiting Code Merge) is used when you’re documenting a new feature
or change that hasn’t been accepted yet into the core code. The pull request
will not be merged until it is merged in the core code (or closed if the
change is rejected).

Would You Accept a Huge Pull Request with Lots of Changes?

First, make sure that the changes are somewhat related. Otherwise, please create
separate pull requests. Anyway, before submitting a huge change, it’s probably a
good idea to open an issue in the Symfony Documentation repository to ask the
managers if they agree with your proposed changes. Otherwise, they could refuse
your proposal after you put all that hard work into making the changes. We
definitely don’t want you to waste your time!

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Contributing

 	Contributing Documentation

Documentation Format

The Symfony documentation uses reStructuredText [http://docutils.sourceforge.net/rst.html] as its markup language and
Sphinx [http://sphinx-doc.org/] for generating the documentation in the formats read by the end users,
such as HTML and PDF.

reStructuredText

reStructuredText is a plaintext markup syntax similar to Markdown, but much
stricter with its syntax. If you are new to reStructuredText, take some time to
familiarize with this format by reading the existing Symfony documentation [https://github.com/symfony/symfony-docs]

If you want to learn more about this format, check out the reStructuredText Primer [http://sphinx-doc.org/rest.html]
tutorial and the reStructuredText Reference [http://docutils.sourceforge.net/docs/user/rst/quickref.html].

警告

If you are familiar with Markdown, be careful as things are sometimes very
similar but different:

	Lists starts at the beginning of a line (no indentation is allowed);

	Inline code blocks use double-ticks (``like this``).

Sphinx

Sphinx is a build system that provides tools to create documentation from
reStructuredText documents. As such, it adds new directives and interpreted text
roles to the standard reST markup. Read more about the Sphinx Markup Constructs [http://sphinx-doc.org/markup/].

Syntax Highlighting

PHP is the default syntax highlighter applied to all code blocks. You can
change it with the code-block directive:

.. code-block:: yaml

 { foo: bar, bar: { foo: bar, bar: baz } }

注解

Besides all of the major programming languages, the syntax highlighter
supports all kinds of markup and configuration languages. Check out the
list of supported languages [http://pygments.org/languages/] on the syntax highlighter website.

Configuration Blocks

Whenever you include a configuration sample, use the configuration-block
directive to show the configuration in all supported configuration formats
(PHP, YAML and XML). Example:

.. configuration-block::

 .. code-block:: yaml

 # Configuration in YAML

 .. code-block:: xml

 <!-- Configuration in XML -->

 .. code-block:: php

 // Configuration in PHP

The previous reST snippet renders as follow:

	YAML# Configuration in YAML

	XML<!-- Configuration in XML -->

	PHP// Configuration in PHP

The current list of supported formats are the following:

	Markup Format
	Use It to Display

	html
	HTML

	xml
	XML

	php
	PHP

	yaml
	YAML

	jinja
	Pure Twig markup

	html+jinja
	Twig markup blended with HTML

	html+php
	PHP code blended with HTML

	ini
	INI

	php-annotations
	PHP Annotations

Adding Links

The most common type of links are internal links to other documentation pages,
which use the following syntax:

:doc:`/absolute/path/to/page`

The page name should not include the file extension (.rst). For example:

:doc:`/book/controller`

:doc:`/components/event_dispatcher/introduction`

:doc:`/cookbook/configuration/environments`

The title of the linked page will be automatically used as the text of the link.
If you want to modify that title, use this alternative syntax:

:doc:`Spooling Email </cookbook/email/spool>`

注解

Although they are technically correct, avoid the use of relative internal
links such as the following, because they break the references in the
generated PDF documentation:

:doc:`controller`

:doc:`event_dispatcher/introduction`

:doc:`environments`

Links to the API follow a different syntax, where you must specify the type
of the linked resource (namespace, class or method):

:namespace:`Symfony\\Component\\BrowserKit`

:class:`Symfony\\Component\\Routing\\Matcher\\ApacheUrlMatcher`

:method:`Symfony\\Component\\HttpKernel\\Bundle\\Bundle::build`

Links to the PHP documentation follow a pretty similar syntax:

:phpclass:`SimpleXMLElement`

:phpmethod:`DateTime::createFromFormat`

:phpfunction:`iterator_to_array`

New Features or Behavior Changes

If you’re documenting a brand new feature or a change that’s been made in
Symfony, you should precede your description of the change with a
.. versionadded:: 2.X directive and a short description:

.. versionadded:: 2.3
 The ``askHiddenResponse`` method was introduced in Symfony 2.3.

You can also ask a question and hide the response. This is particularly [...]

If you’re documenting a behavior change, it may be helpful to briefly describe
how the behavior has changed.

.. versionadded:: 2.3
 The ``include()`` function is a new Twig feature that's available in
 Symfony 2.3. Prior, the ``{% include %}`` tag was used.

Whenever a new minor version of Symfony is released (e.g. 2.4, 2.5, etc),
a new branch of the documentation is created from the master branch.
At this point, all the versionadded tags for Symfony versions that have
reached end-of-life will be removed. For example, if Symfony 2.5 were released
today, and 2.2 had recently reached its end-of-life, the 2.2 versionadded
tags would be removed from the new 2.5 branch.

Testing Documentation

When submitting a new content to the documentation repository or when changing
any existing resource, an automatic process will check if your documentation is
free of syntax errors and is ready to be reviewed.

Nevertheless, if you prefer to do this check locally on your own machine before
submitting your documentation, follow these steps:

	Install Sphinx [http://sphinx-doc.org/];

	Install the Sphinx extensions using git submodules: $ git submodule update --init;

	Run make html and view the generated HTML in the build/ directory.

 版权所有 .
 由 Sphinx 1.2.2 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	Symfony Framework Documentation 文档

 	Contributing

 	Contributing Documentation

Documentation Standards

In order to help the reader as much as possible and to create code examples that
look and feel familiar, you should follow these standards.

Sphinx

	The following characters are chosen for different heading levels: level 1
is =, level 2 -, level 3 ~, level 4 . and level 5 ";

	Each line should break approximately after the first word that crosses the
72nd character (so most lines end up being 72-78 characters);

	The :: shorthand is preferred over .. code-block:: php to begin a PHP
code block (read the Sphinx documentation [http://sphinx-doc.org/rest.html#source-code] to see when you should use the
shorthand);

	Inline hyperlinks are not used. Separate the link and their target
definition, which you add on the bottom of the page;

	Inline markup should be closed on the same line as the open-string;

Example

Example
=======

When you are working on the docs, you should follow the
`Symfony Documentation`_ standards.

Level 2

A PHP example would be::

 echo 'Hello World';

Level 3
~~~~~~~

.. code-block:: php

    echo 'You cannot use the :: shortcut here';

.. _`Symfony Documentation`: http://symfony.com/doc










Code Examples


	The code follows the Symfony Coding Standards
as well as the Twig Coding Standards [http://twig.sensiolabs.org/doc/coding_standards.html];

	To avoid horizontal scrolling on code blocks, we prefer to break a line
correctly if it crosses the 85th character;

	When you fold one or more lines of code, place ... in a comment at the point
of the fold. These comments are: // ... (php), # ... (yaml/bash), {# ... #}
(twig), <!-- ... --> (xml/html), ; ... (ini), ... (text);

	When you fold a part of a line, e.g. a variable value, put ... (without comment)
at the place of the fold;

	Description of the folded code: (optional)
If you fold several lines: the description of the fold can be placed after the ...
If you fold only part of a line: the description can be placed before the line;

	If useful to the reader, a PHP code example should start with the namespace
declaration;

	When referencing classes, be sure to show the use statements at the
top of your code block. You don’t need to show all use statements
in every example, just show what is actually being used in the code block;

	If useful, a codeblock should begin with a comment containing the filename
of the file in the code block. Don’t place a blank line after this comment,
unless the next line is also a comment;

	You should put a $ in front of every bash line.




Formats

Configuration examples should show all supported formats using
configuration blocks. The supported formats
(and their orders) are:


	Configuration (including services and routing): YAML, XML, PHP

	Validation: YAML, Annotations, XML, PHP

	Doctrine Mapping: Annotations, YAML, XML, PHP

	Translation: XML, YAML, PHP






Example

// src/Foo/Bar.php
namespace Foo;

use Acme\Demo\Cat;
// ...

class Bar
{
    // ...

    public function foo($bar)
    {
        // set foo with a value of bar
        $foo = ...;

        $cat = new Cat($foo);

        // ... check if $bar has the correct value

        return $cat->baz($bar, ...);
    }
}






警告

In YAML you should put a space after { and before } (e.g. { _controller: ... }),
but this should not be done in Twig (e.g.  {'hello' : 'value'}).








Files and Directories


	When referencing directories, always add a trailing slash to avoid confusions
with regular files (e.g. “execute the console script located at the app/
directory”).



	When referencing file extensions explicitly, you should include a leading dot
for every extension (e.g. “XML files use the .xml extension”).



	When you list a Symfony file/directory hierarchy, use your-project/ as the
top level directory. E.g.

your-project/
├─ app/
├─ src/
├─ vendor/
└─ ...












English Language Standards


	English Dialect: use the United States English dialect, commonly called
American English [http://en.wikipedia.org/wiki/American_English].



	Section titles: use a variant of the title case, where the first
word is always capitalized and all other words are capitalized, except for
the closed-class words (read Wikipedia article about headings and titles [http://en.wikipedia.org/wiki/Letter_case#Headings_and_publication_titles]).

E.g.: The Vitamins are in my Fresh California Raisins



	Punctuation: avoid the use of Serial (Oxford) Commas [http://en.wikipedia.org/wiki/Serial_comma];



	Pronouns: avoid the use of nosism [http://en.wikipedia.org/wiki/Nosism] and always use you instead of we.
(i.e. avoid the first person point of view: use the second instead);



	Gender-neutral language: when referencing a hypothetical person, such as
“a user with a session cookie”, use gender-neutral pronouns (they/their/them).
For example, instead of:
* he or she, use they
* him or her, use them
* his or her, use their
* his or hers, use theirs
* himself or herself, use themselves











          

      

      

    


    
         版权所有 .
      由 Sphinx 1.2.2 创建。
    

  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	Symfony Framework Documentation  文档 

          	Contributing 

          	Contributing Documentation 
 
      

    


    
      
          
            
  
Translations

The Symfony documentation is written in English and many people are involved
in the translation process.


注解

Symfony Project officially discourages starting new translations for the
documentation. As a matter of fact, there is an ongoing discussion [https://github.com/symfony/symfony-docs/issues/4078] in
the community about the benefits and drawbacks of community driven translations.




Contributing

First, become familiar with the markup language
used by the documentation.

Then, subscribe to the Symfony docs mailing-list [http://groups.google.com/group/symfony-docs], as collaboration happens
there.

Finally, find the master repository for the language you want to contribute
for. Here is the list of the official master repositories:


	English:  https://github.com/symfony/symfony-docs

	French:   https://github.com/symfony-fr/symfony-docs-fr

	Italian:  https://github.com/garak/symfony-docs-it

	Japanese: https://github.com/symfony-japan/symfony-docs-ja

	Portuguese (Brazilian):  https://github.com/andreia/symfony-docs-pt-BR




注解

If you want to contribute translations for a new language, read the
dedicated section.






Joining the Translation Team

If you want to help translating some documents for your language or fix some
bugs, consider joining us; it’s a very easy process:


	Introduce yourself on the Symfony docs mailing-list [http://groups.google.com/group/symfony-docs];

	(optional) Ask which documents you can work on;

	Fork the master repository for your language (click the “Fork” button on
the GitHub page);

	Translate some documents;

	Ask for a pull request (click on the “Pull Request” from your page on
GitHub);

	The team manager accepts your modifications and merges them into the master
repository;

	The documentation website is updated every other night from the master
repository.






Adding a new Language

This section gives some guidelines for starting the translation of the
Symfony documentation for a new language.

As starting a translation is a lot of work, talk about your plan on the
Symfony docs mailing-list [http://groups.google.com/group/symfony-docs] and try to find motivated people willing to help.

When the team is ready, nominate a team manager; they will be responsible for
the master repository.

Create the repository and copy the English documents.

The team can now start the translation process.

When the team is confident that the repository is in a consistent and stable
state (everything is translated, or non-translated documents have been removed
from the toctrees – files named index.rst and map.rst.inc), the team
manager can ask that the repository is added to the list of official master
repositories by sending an email to Fabien (fabien at symfony.com).




Maintenance

Translation does not end when everything is translated. The documentation is a
moving target (new documents are added, bugs are fixed, paragraphs are
reorganized, ...). The translation team need to closely follow the English
repository and apply changes to the translated documents as soon as possible.


警告

Non maintained languages are removed from the official list of
repositories as obsolete documentation is dangerous.









          

      

      

    


    
         版权所有 .
      由 Sphinx 1.2.2 创建。
    

  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	Symfony Framework Documentation  文档 

          	Contributing 

          	Contributing Documentation 
 
      

    


    
      
          
            
  
Symfony Documentation License

The Symfony documentation is licensed under a Creative Commons
Attribution-Share Alike 3.0 Unported License (CC BY-SA 3.0 [http://creativecommons.org/licenses/by-sa/3.0/]).

You are free:


	to Share — to copy, distribute and transmit the work;

	to Remix — to adapt the work.



Under the following conditions:


	Attribution — You must attribute the work in the manner specified by
the author or licensor (but not in any way that suggests that they
endorse you or your use of the work);

	Share Alike — If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same or similar license
to this one.



With the understanding that:


	Waiver — Any of the above conditions can be waived if you get
permission from the copyright holder;

	Public Domain — Where the work or any of its elements is in the public
domain under applicable law, that status is in no way affected by the
license;

	Other Rights — In no way are any of the following rights affected by the
license:
	Your fair dealing or fair use rights, or other applicable copyright exceptions
and limitations;

	The author’s moral rights;

	Rights other persons may have either in the work itself or in how the
work is used, such as publicity or privacy rights.





	Notice — For any reuse or distribution, you must make clear to others
the license terms of this work. The best way to do this is with a link
to this web page.



This is a human-readable summary of the Legal Code (the full license) [http://creativecommons.org/licenses/by-sa/3.0/legalcode].





          

      

      

    


    
         版权所有 .
      由 Sphinx 1.2.2 创建。
    

  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	Symfony Framework Documentation  文档 

          	Contributing 
 
      

    


    
      
          
            
  
Community



	The Release Process
	Development

	Maintenance

	Schedule

	Backwards Compatibility

	Deprecations

	Rationale





	Other Resources









          

      

      

    


    
         版权所有 .
      由 Sphinx 1.2.2 创建。
    

  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	Symfony Framework Documentation  文档 

          	Contributing 

          	Community 
 
      

    


    
      
          
            
  
The Release Process

This document explains the Symfony release process (Symfony being the code
hosted on the main symfony/symfony Git repository [https://github.com/symfony/symfony]).

Symfony manages its releases through a time-based model; a new Symfony minor
version comes out every six months: one in May and one in November.


小技巧

The meaning of “minor” comes from the Semantic Versioning [http://semver.org/] strategy.



Each minor version sticks to the same very well-defined process where we start
with a development period, followed by a maintenance period.


注解

This release process has been adopted as of Symfony 2.2, and all the
“rules” explained in this document must be strictly followed as of Symfony
2.4.




Development

The full development period lasts six months and is divided into two phases:


	Development: Four months to add new features and to enhance existing
ones;

	Stabilisation: Two months to fix bugs, prepare the release, and wait
for the whole Symfony ecosystem (third-party libraries, bundles, and
projects using Symfony) to catch up.



During the development phase, any new feature can be reverted if it won’t be
finished in time or if it won’t be stable enough to be included in the current
final release.




Maintenance

Each Symfony minor version is maintained for a fixed period of time, depending
on the type of the release. We have two maintenance periods:


	Bug fixes and security fixes: During this period, all issues can be fixed.
The end of this period is referenced as being the end of maintenance of a
release.

	Security fixes only: During this period, only security related issues can
be fixed. The end of this period is referenced as being the end of
life of a release.




Standard Versions

A standard minor version is maintained for an eight month period for bug
fixes, and for a fourteen month period for security issue fixes.




Long Term Support Versions

Every two years, a new Long Term Support Version (aka LTS version) is
published. Each LTS version is supported for a three year period for bug
fixes, and for a four year period for security issue fixes.


注解

Paid support after the three year support provided by the community can
also be bought from SensioLabs [http://sensiolabs.com/].








Schedule

Below is the schedule for the first few versions that use this release model:

[image: ../../_images/release-process.jpg]

	Yellow represents the Development phase

	Blue represents the Stabilisation phase

	Green represents the Maintenance period



This results in very predictable dates and maintenance periods:










	Version
	Feature Freeze
	Release
	End of Maintenance
	End of Life




	2.0
	05/2011
	07/2011
	03/2013 (20 months)
	09/2013


	2.1
	07/2012
	09/2012
	05/2013 (9 months)
	11/2013


	2.2
	01/2013
	03/2013
	11/2013 (8 months)
	05/2014


	2.3
	03/2013
	05/2013
	05/2016 (36 months)
	05/2017


	2.4
	09/2013
	11/2013
	09/2014 (10 months [1])
	01/2015


	2.5
	03/2014
	05/2014
	01/2015 (8 months)
	07/2015


	2.6
	09/2014
	11/2014
	07/2015 (8 months)
	01/2016


	2.7
	03/2015
	05/2015
	05/2018 (36 months [2])
	05/2019


	3.0
	09/2015
	11/2015
	07/2016 (8 months)
	01/2017


	3.1
	03/2016
	05/2016
	01/2017 (8 months)
	07/2017


	3.2
	09/2016
	11/2016
	07/2017 (8 months)
	01/2018


	3.3
	03/2017
	05/2017
	05/2020 (36 months)
	05/2021


	...
	...
	...
	...
	...








	[1]	Symfony 2.4 maintenance has been extended to September 2014 [http://symfony.com/blog/extended-maintenance-for-symfony-2-4].







	[2]	Symfony 2.7 is the last version of the Symfony 2.x branch.





小技巧

If you want to learn more about the timeline of any given Symfony version,
use the online timeline calculator [http://symfony.com/roadmap]. You can also get all data as a JSON
string via a URL like http://symfony.com/roadmap.json?version=2.x.




小技巧

Whenever an important event related to Symfony versions happens (a version
reaches end of maintenance or a new patch version is released for
instance), you can automatically receive an email notification if you
subscribed on the roadmap notification [http://symfony.com/roadmap] page.






Backwards Compatibility

Our Backwards Compatibility Promise is very
strict and allows developers to upgrade with confidence from one minor version
of Symfony to the next one.

Whenever keeping backward compatibility is not possible, the feature, the
enhancement or the bug fix will be scheduled for the next major version.


注解

The work on a new major version of Symfony starts whenever enough major
features breaking backward compatibility are waiting on the todo-list.






Deprecations

When a feature implementation cannot be replaced with a better one without
breaking backward compatibility, there is still the possibility to deprecate
the old implementation and add a new preferred one along side. Read the
conventions document to
learn more about how deprecations are handled in Symfony.




Rationale

This release process was adopted to give more predictability and
transparency. It was discussed based on the following goals:


	Shorten the release cycle (allow developers to benefit from the new
features faster);

	Give more visibility to the developers using the framework and Open-Source
projects using Symfony;

	Improve the experience of Symfony core contributors: everyone knows when a
feature might be available in Symfony;

	Coordinate the Symfony timeline with popular PHP projects that work well
with Symfony and with projects using Symfony;

	Give time to the Symfony ecosystem to catch up with the new versions
(bundle authors, documentation writers, translators, ...).



The six month period was chosen as two releases fit in a year. It also allows
for plenty of time to work on new features and it allows for non-ready
features to be postponed to the next version without having to wait too long
for the next cycle.

The dual maintenance mode was adopted to make every Symfony user happy. Fast
movers, who want to work with the latest and the greatest, use the standard
version: a new version is published every six months, and there is a two months
period to upgrade. Companies wanting more stability use the LTS versions: a new
version is published every two years and there is a year to upgrade.







          

      

      

    


    
         版权所有 .
      由 Sphinx 1.2.2 创建。
    

  

    
      导航

      
        	
          索引

        	
          上一页 |

        	Symfony Framework Documentation  文档 

          	Contributing 

          	Community 
 
      

    


    
      
          
            
  
Other Resources

In order to follow what is happening in the community you might find helpful
these additional resources:


	List of open pull requests [https://github.com/symfony/symfony/pulls]

	List of recent commits [https://github.com/symfony/symfony/commits/master]

	List of open bugs and enhancements [https://github.com/symfony/symfony/issues]

	List of open source bundles [http://knpbundles.com/]







          

      

      

    


    
         版权所有 .
      由 Sphinx 1.2.2 创建。
    

  

    
      导航

      
        	
          索引

        	Symfony Framework Documentation  文档 
 
      

    


    
      
          
            

索引



 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 


A


  	
      
  	Acme
  


      
  	Action
  


      
  	Apache Router
  


      
  	
    APC
  


      	
        
  	ApcClassLoader
  


      


  

  	
      
  	Application
  


      
  	Asset
  


      
  	
    Assetic
  


      	
        
  	Apply filters
  


        
  	Configuration reference
  


        
  	Image optimization
  


        
  	Introduction
  


        
  	UglifyJS
  


        
  	YUI Compressor
  


      


      
  	
    Autoloading
  


      	
        
  	Class Map Generator
  


      


  





B


  	
      
  	Bundle
  


      	
        
  	Best practices
  


        
  	Extension configuration, [1], [2]
  


        
  	Inheritance, [1]
  


        
  	Installation
  


        
  	Naming conventions
  


        
  	Removing AcmeDemoBundle
  


      


  





C


  	
      
  	Cache
  


      	
        
  	CSRF; Forms
  


        
  	Cache-Control header, [1]
  


        
  	Conditional get
  


        
  	Configuration
  


        
  	ESI
  


        
  	Etag header
  


        
  	Expires header
  


        
  	Gateway
  


        
  	HTTP
  


        
  	HTTP expiration
  


        
  	Invalidation
  


        
  	Last-Modified header
  


        
  	Proxy
  


        
  	Reverse proxy
  


        
  	Safe methods
  


        
  	Symfony reverse proxy
  


        
  	Twig
  


        
  	Types of
  


        
  	Validation
  


        
  	Varnish
  


        
  	Vary
  


      


      
  	CHANGELOG
  


      
  	
    ClassLoader
  


      	
        
  	ApcClassLoader
  


        
  	Cache
  


        
  	Class Map Generator
  


        
  	DebugClassLoader
  


        
  	MapClassLoader
  


        
  	PSR-0 Class Loader
  


        
  	XcacheClassLoader
  


      


      
  	
    CLI
  


      	
        
  	Doctrine ORM
  


      


      
  	
    Components
  


      	
        
  	ClassLoader
  


        
  	Config
  


        
  	Console
  


        
  	CssSelector
  


        
  	Debug
  


        
  	DependencyInjection
  


        
  	DomCrawler
  


        
  	EventDispatcher
  


        
  	Finder
  


        
  	Form
  


        
  	HttpFoundation
  


        
  	HttpKernel
  


        
  	Installation
  


        
  	Intl
  


        
  	OptionsResolver
  


        
  	Process
  


        
  	PropertyAccess
  


        
  	Routing
  


        
  	Serializer
  


        
  	Stopwatch
  


        
  	Templating
  


        
  	Translation
  


        
  	Usage
  


        
  	Yaml
  


      


      
  	
    Composer
  


      	
        
  	Installation
  


      


      
  	Config
  


      	
        
  	Caching based on resources
  


        
  	Defining and processing configuration values
  


        
  	Loading resources
  


      


  

  	
      
  	Configuration
  


      	
        
  	Cache
  


        
  	Debug mode
  


        
  	Doctrine DBAL
  


        
  	PHPUnit
  


        
  	Semantic, [1], [2]
  


        
  	Tests
  


        
  	Validation
  


      


      
  	
    Configuration reference
  


      	
        
  	Assetic
  


        
  	Doctrine ORM
  


        
  	Framework
  


        
  	Kernel class
  


        
  	Monolog
  


        
  	Swift Mailer
  


        
  	Twig
  


        
  	WebProfiler
  


      


      
  	
    Console
  


      	
        
  	CLI
  


        
  	Console Helpers
  


        
  	Console arguments
  


        
  	Create commands
  


        
  	Enabling logging
  


        
  	Events
  


        
  	Generating URLs
  


        
  	Sending emails
  


        
  	Single command application
  


        
  	Usage, [1]
  


      


      
  	
    Console Helpers
  


      	
        
  	Dialog Helper
  


        
  	Formatter Helper
  


        
  	Progress Helper
  


        
  	Table Helper
  


      


      
  	Controller, [1]
  


      	
        
  	404 pages
  


        
  	Accessing services
  


        
  	As Services
  


        
  	Base controller class
  


        
  	Controller arguments
  


        
  	Customize error pages
  


        
  	Forwarding
  


        
  	Managing errors
  


        
  	Redirecting
  


        
  	Rendering templates
  


        
  	Request object
  


        
  	Request-controller-response lifecycle
  


        
  	Response object
  


        
  	Routes and controllers
  


        
  	Simple example
  


        
  	String naming format
  


        
  	The session
  


      


      
  	CssSelector
  


  





D


  	
      
  	
    DBAL
  


      	
        
  	Doctrine
  


      


      
  	Debug
  


      
  	Debugging
  


      
  	Dependency Injection
  


      	
        
  	Lazy Services
  


      


      
  	DependencyInjection
  


      	
        
  	Advanced configuration
  


        
  	Compilation
  


        
  	Compiler passes
  


        
  	Container
  


        
  	Factories
  


        
  	Injection types
  


        
  	Parameters
  


        
  	Parent services
  


        
  	Scopes
  


        
  	Service configurators
  


        
  	Service definitions
  


        
  	Tags
  


        
  	Workflow
  


      


  

  	
      
  	
    Deployment
  


      	
        
  	Deploying to Heroku Cloud
  


        
  	Deploying to Microsoft Azure Website Cloud
  


        
  	Deploying to Platform.sh
  


        
  	Deployment tools
  


      


      
  	Directory Structure
  


      
  	Distribution
  


      
  	Doctrine
  


      	
        
  	Adding mapping metadata
  


        
  	Common extensions
  


        
  	Custom DQL functions
  


        
  	DBAL
  


        
  	DBAL configuration
  


        
  	Define relationships with abstract classes and interfaces
  


        
  	Event listeners and subscribers
  


        
  	File uploads
  


        
  	Forms
  


        
  	Generating entities from existing database
  


        
  	Mapping Model classes
  


        
  	Multiple entity managers
  


        
  	ORM configuration reference
  


        
  	ORM console commands
  


        
  	Resolving target entities
  


        
  	Simple Registration Form
  


      


      
  	DomCrawler
  


  





E


  	
      
  	Emails
  


      	
        
  	Gmail
  


        
  	In development
  


        
  	Spooling
  


        
  	Testing
  


        
  	Using the cloud
  


      


      
  	Environment
  


      
  	Environments
  


      	
        
  	Cache directory
  


        
  	Configuration
  


        
  	Configuration files
  


        
  	Creating a new environment
  


        
  	Executing different environments
  


        
  	External parameters
  


        
  	Introduction
  


      


      
  	Error pages
  


  

  	
      
  	ESI
  


      
  	
    Event
  


      	
        
  	Kernel
  


        
  	kernel.controller
  


        
  	kernel.exception
  


        
  	kernel.request
  


        
  	kernel.response
  


        
  	kernel.terminate
  


        
  	kernel.view
  


      


      
  	EventDispatcher, [1], [2], [3], [4], [5]
  


      	
        
  	Creating and dispatching an event
  


        
  	Debug
  


        
  	Dispatcher shortcuts
  


        
  	Event name introspection
  


        
  	Event subclasses
  


        
  	Event subscribers
  


        
  	EventDispatcher aware events and listeners
  


        
  	Events
  


        
  	Immutable
  


        
  	Listeners
  


        
  	Naming conventions
  


        
  	Service container aware
  


        
  	Stopping event flow
  


        
  	Traceable
  


      


      
  	
    Events
  


      	
        
  	Create listener
  


      


  





F


  	
      
  	Filesystem
  


      
  	Finder
  


      
  	Firewall
  


  

  	
      
  	
    Form
  


      	
        
  	Custom field type
  


        
  	Custom form rendering
  


        
  	Data transformers
  


        
  	Embed collection of forms
  


        
  	Empty data
  


        
  	Events
  


        
  	Form testing
  


        
  	Form type extension
  


        
  	Form::submit()
  


        
  	Simple Registration Form
  


        
  	The "inherit_data" option
  


      


      
  	Forms, [1]
  


      	
        
  	Basic template rendering
  


        
  	Built-in field types
  


        
  	CSRF protection
  


        
  	Changing the action and method
  


        
  	Create a form in a controller
  


        
  	Create a simple form
  


        
  	Creating form classes
  


        
  	Custom Type Guesser
  


        
  	Customizing fields
  


        
  	Disabling validation
  


        
  	Doctrine
  


        
  	Embedded forms
  


        
  	Field type guessing, [1]
  


        
  	Field type options
  


        
  	Fields; birthday
  


        
  	Fields; button
  


        
  	Fields; checkbox
  


        
  	Fields; choice, [1]
  


        
  	Fields; collection
  


        
  	Fields; country
  


        
  	Fields; currency
  


        
  	Fields; date
  


        
  	Fields; datetime
  


        
  	Fields; email
  


        
  	Fields; file
  


        
  	Fields; form
  


        
  	Fields; hidden
  


        
  	Fields; integer
  


        
  	Fields; language
  


        
  	Fields; locale
  


        
  	Fields; money
  


        
  	Fields; number
  


        
  	Fields; password
  


        
  	Fields; percent
  


        
  	Fields; radio
  


        
  	Fields; repeated
  


        
  	Fields; reset
  


        
  	Fields; search
  


        
  	Fields; submit
  


        
  	Fields; text
  


        
  	Fields; textarea
  


        
  	Fields; time
  


        
  	Fields; timezone
  


        
  	Fields; url
  


        
  	Form Events
  


        
  	Global Theming
  


        
  	Handling form submissions
  


        
  	Multiple Submit Buttons
  


        
  	Rendering each field by hand
  


        
  	Rendering in a template
  


        
  	Template fragment inheritance
  


        
  	Template fragment naming
  


        
  	Theming
  


        
  	Twig form function reference
  


        
  	Types Reference
  


        
  	Validation
  


        
  	Validation groups
  


        
  	Validation groups based on clicked button
  


        
  	Validation groups based on submitted data
  


        
  	With no class
  


      


      
  	Front Controller
  


  





H


  	
      
  	How the front controller, ``AppKernel`` and environments
  


      
  	HTTP, [1], [2], [3], [4], [5]
  


      	
        
  	304
  


        
  	Request-response paradigm
  


      


      
  	
    HTTP headers
  


      	
        
  	Cache-Control, [1]
  


        
  	Etag
  


        
  	Expires
  


        
  	Last-Modified
  


        
  	Vary
  


      


      
  	HTTP Specification
  


  

  	
      
  	HttpFoundation
  


      
  	HttpFoundation, Sessions, [1], [2], [3]
  


      
  	HttpKernel
  


  





I


  	
      
  	Installation
  


      	
        
  	Composer
  


      


      
  	Internals
  


      	
        
  	Controller resolver
  


        
  	Internal requests
  


        
  	Kernel
  


        
  	Request handling
  


      


  

  	
      
  	Intl
  


  





J


  	
      
  	
    JavaScript
  


      	
        
  	Including JavaScripts
  


      


  





K


  	
      
  	Kernel
  


      	
        
  	Event
  


      


  





L


  	
      
  	Layout
  


  

  	
      
  	Logging, [1], [2]
  


      	
        
  	Emailing errors
  


        
  	Exclude 404 Errors
  


      


  





M


  	
      
  	
    Monolog
  


      	
        
  	Configuration reference
  


        
  	Exclude 404 Errors
  


      


  





N


  	
      
  	
    Naming conventions
  


      	
        
  	Bundle
  


        
  	EventDispatcher
  


      


  





O


  	
      
  	OptionsResolver
  


  

  	
      
  	Override Symfony
  


  





P


  	
      
  	Page creation
  


      	
        
  	Environments & Front Controllers
  


        
  	Example
  


      


      
  	
    Performance
  


      	
        
  	Autoloader
  


        
  	Bootstrap files
  


        
  	Byte code cache
  


      


      
  	PHP Templates
  


      
  	
    PHPUnit
  


      	
        
  	Configuration
  


      


      
  	Process
  


  

  	
      
  	Profiler
  


      	
        
  	Using the profiler service
  


        
  	Visualizing, [1]
  


      


      
  	
    Profiling
  


      	
        
  	Data collector
  


        
  	Matchers
  


        
  	Storage Configuration
  


      


      
  	Project
  


      
  	Propel
  


      
  	PropertyAccess
  


  





R


  	
      
  	
    Request
  


      	
        
  	Add a request format and mime type
  


        
  	Trusted Proxies
  


      


      
  	Requirements
  


  

  	
      
  	Routing, [1]
  


      	
        
  	Absolute URLs
  


        
  	Advanced example
  


        
  	Allow / in route parameter
  


        
  	Basics
  


        
  	Controllers
  


        
  	Creating routes
  


        
  	Custom route loader
  


        
  	Debugging
  


        
  	Extra Information
  


        
  	Generating URLs
  


        
  	Generating URLs in a template
  


        
  	Importing routing resources
  


        
  	Matching on Hostname
  


        
  	Method requirement
  


        
  	Placeholders
  


        
  	Redirect URLs with a trailing slash
  


        
  	Redirect using Framework:RedirectController
  


        
  	Requirements
  


        
  	Scheme requirement
  


        
  	Service Container Parameters
  


        
  	Under the hood
  


        
  	_format parameter
  


        
  	methods
  


      


  





S


  	
      
  	Security, [1]
  


      	
        
  	"Remember me"
  


        
  	Access Control Lists (ACLs)
  


        
  	Advanced ACL concepts
  


        
  	CSRF Protection in the Login Form
  


        
  	Configuration reference
  


        
  	Custom authentication provider
  


        
  	Customizing form login
  


        
  	Data Permission Voters
  


        
  	Entity provider
  


        
  	Force HTTPS
  


        
  	Impersonating User
  


        
  	Pre authenticated providers
  


        
  	Securing any method
  


        
  	Securing any service
  


        
  	Target redirect path
  


        
  	User Provider
  


        
  	User provider
  


        
  	Voters
  


      


      
  	Security, Authentication
  


      
  	Security, Authorization
  


      
  	Security, Firewall
  


      
  	Serializer, [1]
  


      
  	Service
  


      
  	Service Container, [1]
  


      	
        
  	Compiler passes
  


        
  	Configuring services
  


        
  	Extension configuration
  


        
  	Imports
  


        
  	Referencing services
  


        
  	What is a service container?
  


        
  	What is a service?
  


      


      
  	Session
  


      	
        
  	Database Storage
  


        
  	Flash messages
  


      


      
  	Sessions
  


      
  	Sessions, cookies
  


      
  	Sessions, saving locale
  


  

  	
      
  	Sessions, Session Proxy, Proxy
  


      
  	Sessions, sessions directory
  


      
  	Slot
  


      
  	Stopwatch
  


      
  	
    Stylesheets
  


      	
        
  	Including stylesheets
  


      


      
  	Symfony Components
  


      
  	Symfony Framework Best Practices
  


      
  	Symfony Fundamentals
  


      	
        
  	Requests and responses
  


      


      
  	Symfony Twig extensions
  


      
  	symfony1
  


  





T


  	
      
  	
    Template
  


      	
        
  	Overriding exception templates
  


        
  	Overriding templates
  


      


      
  	Templating, [1]
  


      	
        
  	Embedding action
  


        
  	Embedding pages
  


        
  	File locations
  


        
  	Formats
  


        
  	Global variables
  


        
  	Helpers, [1]
  


        
  	Include
  


        
  	Including other templates
  


        
  	Including stylesheets and JavaScripts
  


        
  	Inheritance
  


        
  	Layout
  


        
  	Linking to assets
  


        
  	Linking to pages
  


        
  	Namespaced Twig Paths
  


        
  	Naming conventions
  


        
  	Output escaping
  


        
  	Render template without custom controller
  


        
  	Slot
  


        
  	Tags and helpers
  


        
  	Templating Helpers
  


        
  	The templating service
  


        
  	Three-level inheritance pattern
  


        
  	What is a template?
  


      


      
  	
    Templating Helpers
  


      	
        
  	Assets Helper
  


        
  	Slots Helper
  


      


      
  	Tests, [1]
  


      	
        
  	Assertions
  


        
  	Client
  


        
  	Configuration
  


        
  	Crawler
  


        
  	Database
  


        
  	Doctrine
  


        
  	Functional tests
  


        
  	HTTP authentication
  


        
  	Insulating clients
  


        
  	Profiling
  


        
  	Simulating authentication
  


        
  	Unit tests
  


      


  

  	
      
  	Translation
  


      	
        
  	Adding Custom Format Support
  


        
  	Usage
  


      


      
  	Translations
  


      	
        
  	Fallback and default locale
  


      


      
  	
    Twig
  


      	
        
  	Cache
  


        
  	Configuration reference
  


        
  	Introduction
  


      


      
  	Twig extensions
  


  





U


  	
      
  	Using Parameters within a Dependency Injection Class
  


  





V


  	
      
  	Validation
  


      	
        
  	Configuration
  


        
  	Constraint targets
  


        
  	Constraints
  


        
  	Constraints configuration
  


        
  	Custom constraints
  


        
  	Getter constraints
  


        
  	Property constraints
  


        
  	The basics
  


        
  	Using the validator
  


        
  	Validating raw values
  


        
  	Validation with forms
  


      


      
  	
    Varnish
  


      	
        
  	Invalidation
  


        
  	configuration
  


      


  

  	
      
  	Vendor
  


  





W


  	
      
  	Web Server
  


      	
        
  	Built-in Web Server
  


      


      
  	
    Web Services
  


      	
        
  	SOAP
  


      


  

  	
      
  	work together
  


      
  	
    Workflow
  


      	
        
  	Git
  


        
  	Subversion
  


      


  





X


  	
      
  	
    XCache
  


      	
        
  	XcacheClassLoader
  


      


  





Y


  	
      
  	YAML
  


  

  	
      
  	Yaml
  


      	
        
  	YAML Format
  


      


  







          

      

      

    


    
         版权所有 .
      由 Sphinx 1.2.2 创建。
    

  _images/10-kernel-view.png
Sub-Request

sub-response” content s v






_images/step-13.png
[Imm———

[ ECT————

" 8 i 1+t B o

intl

=

1o

GE3

ison

[Eonsumper

[onveren

Tizs

libxmi

o compieavorion

mbstring

TP gt ncn et






_images/doctrine_image_1.png
w1 id name price description
name: Bike 12 Bie _ $80000 _ fixed gear, bive fast

price: $800.00 13 Helmet §2099 black,fits most

Goscripion: fixed goar, bue fast T Y —r—rrrr






_images/doctrine_web_debug_toolbar.png
@ Symfony.

Welcome!






_images/serializer_workflow.png
Object

deserialize

denormalize I l normalize

decode I l encode

serialize

Format (JSON, XML)






_images/profiler.png
CONFIG

REQUEST

EXCEPTION

EVENTS

LOGS

TIMELINE

ROUTING

FORMS

ET=XD) Profile for: GET hitpi/flocalhost8000) by ::1 at Fri, 31 Jan 2014 09:55:41 +0100

Project Configuration

Key
Symfony version
Application name

Environment

PHP configuration

Key
PHP version

Xdebug

Value

244

app

dev

Value

54.16

disabled

oK





_images/doctrine_image_3.png
Table: product
User asks
for product 12
id na price descrip category
12_Bi $30000 fxed g 2

Cockina ret 13 He S2099  back.fit 6
ine roturns 14 Jer/SI00 womens 7
product object Jsss!

without category data

‘$product->getCategory()->getName()
Doctrine lazly populates s Fainas

the category data





_images/step-16.png
o e mm  eewn — - 5s

4o 062014 135931

10 = 18082014 162450

10 » 1e0sz0 125832

is0 B oo 18082014 135929 e v
va

kriswallswich/as uggests installing leafo/scssphp (Assetic provides the integration with the scssphp SCSS compil

kriswallswich/as: uggests installing leafo/scssphp-conpass (Assetic provides the integration with the SCSS compas
s plugin
krfewalamith/assetic sugoests installing ptachoire/cssesbed (Assetic provides the intearation with phpcssesbed

uris)
monalog suggests installing ams/aws-sck-pho (AT1ow sending Tog messages o Ans services Tike Oymancos)
monalon uggests fnstalling doctrine/couchds (xT1ow sending 10 nessages o & Couchos
monalon suggests installing ext-anap (Allow sending 10g messages to an AP server
monlo suggests installing ext-rongo (AT1ow sending log ressages o a wengeds server)
monlo suggests installing araylog2/ge1f-ohp (ATlow sending 10g sessages to a Graykog? server)
monalo suggests installing raven/raven (Allow sending log sessages to 3 Sentry server’
monalog 2uggests installing rollbar/rallbar (ATlow sending Tog messages to Rollbar)
monalo suggests installing ruflin/alsstica (ATlon sending Tog messages to an Elastic Search server)
e parasetars are missing. Please provide then.






_images/07-controller-arguments.png
v





_images/sub-request.png
v

“Sub-response”content.

L, ] s esponse





_images/step-04.png
Gt repository






_images/step-14.png
mysymfonywebsite

o ossoments

i
i

Your Git repository s ready

Osa Windows Azure will build and deploy your web site on your
next push.

i un | tps/sernabstogmysymionywetstescmsz|

Push my local files to Windows Azure

Download Git

Getithere fyou dort aesdy have i

Commit your local files
At e command pramp, change o o your a9, a0 hen e

PETFOHaPEEGH






_images/http-xkcd.png
Hey manl Con T see today's conic?

Server prepares the page's HTAL

Sure dude] Here's that page's HTAL.

www.websequencediagrams.com





_images/step-15.png
et - PuTTY






_images/06-kernel-controller.png
expection

sub-response” content g v

exception

terminate






_images/09-controller-returns-response.png
response?





glossary.html


    
      导航


      
        		
          索引


        		Symfony Framework Documentation  文档 »

 
      


    


    
      
          
            
  
Glossary



		Acme


		Acme is a sample company name used in Symfony demos and documentation.
It’s used as a namespace where you would normally use your own company’s
name (e.g. Acme\BlogBundle).


		Action


		An action is a PHP function or method that executes, for example,
when a given route is matched. The term action is synonymous with
controller, though a controller may also refer to an entire PHP
class that includes several actions. See the Controller Chapter.


		Application


		An Application is a directory containing the configuration for a
given set of Bundles.


		Asset


		An asset is any non-executable, static component of a web application,
including CSS, JavaScript, images and video. Assets may be placed
directly in the project’s web directory, or published from a Bundle
to the web directory using the assets:install console task.


		Bundle


		A Bundle is a directory containing a set of files (PHP files,
stylesheets, JavaScripts, images, ...) that implement a single
feature (a blog, a forum, etc). In Symfony, (almost) everything
lives inside a bundle. (see The Bundle System)


		Controller


		A controller is a PHP function that houses all the logic necessary
to return a Response object that represents a particular page.
Typically, a route is mapped to a controller, which then uses information
from the request to process information, perform actions, and ultimately
construct and return a Response object.


		Dependency Injection


		The Dependency Injection is a design pattern highly used in the Symfony Framework.
It encourages loosely coupled and more maintainable architecture of an application.
The main principle of this pattern is that it allows developers to inject objects
(also known as services) in other objects, generally passing them as parameters.
Different levels of coupling between these objects can be established
depending on the method used to inject objects together.
The Dependency Injection pattern is the more often associated
to another specific type of object: the Service Container.


		Distribution


		A Distribution is a package made of the Symfony Components, a
selection of bundles, a sensible directory structure, a default
configuration, and an optional configuration system.


		Environment


		An environment is a string (e.g. prod or dev) that corresponds
to a specific set of configuration. The same application can be run
on the same machine using different configuration by running the application
in different environments. This is useful as it allows a single application
to have a dev environment built for debugging and a prod environment
that’s optimized for speed.


		Firewall


		In Symfony, a Firewall doesn’t have to do with networking. Instead,
it defines the authentication mechanisms (i.e. it handles the process
of determining the identity of your users), either for the whole
application or for just a part of it. See the
Security chapters.


		Front Controller


		A Front Controller is a short PHP script that lives in the web directory
of your project. Typically, all requests are handled by executing
the same front controller, whose job is to bootstrap the Symfony
application.


		HTTP Specification


		The HTTP Specification is a document that describes the Hypertext
Transfer Protocol - a set of rules laying out the classic client-server
request-response communication. The specification defines the format
used for a request and response as well as the possible HTTP headers
that each may have. For more information, read the HTTP Wikipedia [http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol]
article or the HTTP 1.1 RFC [http://www.w3.org/Protocols/rfc2616/rfc2616.html].


		Kernel


		The Kernel is the core of Symfony. The Kernel object handles HTTP
requests using all the bundles and libraries registered to it. See
The Architecture: The Application Directory and the
Internals chapter.


		Project


		A Project is a directory composed of an Application, a set of
bundles, vendor libraries, an autoloader, and web front controller
scripts.


		Service


		A Service is a generic term for any PHP object that performs a
specific task. A service is usually used “globally”, such as a database
connection object or an object that delivers email messages. In Symfony,
services are often configured and retrieved from the service container.
An application that has many decoupled services is said to follow
a service-oriented architecture [http://wikipedia.org/wiki/Service-oriented_architecture].


		Service Container


		A Service Container, also known as a Dependency Injection Container,
is a special object that manages the instantiation of services inside
an application. Instead of creating services directly, the developer
trains the service container (via configuration) on how to create
the services. The service container takes care of lazily instantiating
and injecting dependent services. See Service Container
chapter.


		Vendor


		A vendor is a supplier of PHP libraries and bundles including Symfony
itself. Despite the usual commercial connotations of the word, vendors
in Symfony often (even usually) include free software. Any library you
add to your Symfony project should go in the vendor directory. See
The Architecture: Using Vendors.


		YAML


		YAML is a recursive acronym for “YAML Ain’t a Markup Language”. It’s a
lightweight, humane data serialization language used extensively in
Symfony’s configuration files. See the The Yaml Component
chapter.









          

      

      

    


    
        © 版权所有 .
      由 Sphinx 1.2.2 创建。
    

  

search.html


    
      导航


      
        		
          索引


        		Symfony Framework Documentation  文档 »

 
      


    


    
      
          
            
  搜索


  
  
  
    请激活 JavaScript 以开启搜索功能
  


  

  
    在这儿，你可以对这些文档进行搜索。向搜索框中输入你所要搜索的关键字并点击“搜索”。注意：搜索引擎会自动搜索所有的关键字。将不会搜索到部分关键字的页面.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © 版权所有 .
      由 Sphinx 1.2.2 创建。
    

  

_images/03-kernel-request-response.png
Sub-Request

expection

“sub-response” content o v

Qll
controller Controller

exception

terminate

response?





_images/table.png
| 1SBN | Title | Author

99921-58-10-7
9971-5-0210-0
960-425-059-0
80-902734-1-6

Divine Comedy

Dante Alighieri
A Tale of Two Cities

Charles Dickens

I
I

The Lord of the Rings | J. R. R. Tolkien
| Agatha Christie

And Then There Were None

B






_images/set_data_flow.png
setData(smodelData)

Normalization

posrserom
E






_images/http-xkcd-request.png
www.websequencediagrams.com





_images/symfony_loggedin_wdt.png
Authenticated (23

Token class UsernamePasswordToken

@ G ED 6 @ OED





_images/step-10.png
YTy T—————
x s i st [

Environment
Bud 12730816988 s1362122)

Stoup tme. 0000011093608

Stofoder oinome

Tomp foldor C1DMASFiesiSsesimysymionywebste Tamp

REST AP (vorks best when using a JSON viewer extension

- hgp Setngs
- Doployments

- Processes and minkdumps

- Runtme versons

+ S0 Extansons: nstasad | 000
 Souc contol o

- Web ks

- Webjobs; [ iggerd | contros





_images/progress.png





_images/submission_flow.png
handleRequest($request)

\

Normal

Denorr

i

ization

ization





_images/request-response-flow.png
The web in action

The User asksfora - in a Browser
The Browser sends a Request to the Server

Symfony gives the Developer a Request Object
The Developer“converts” the Request Object toa Response Object

The Server sends back a Response to the Browser
The Browser displays the '~ to the User





_images/02-kernel-request.png
Sub-Request

expection ;

“sub-response” content - v
exception

v

Gll
controller Controller fesponse

view—

response?

Response

terminate





_images/general_flow.png
SetData(Saata)

handleRequest($r





_images/request-flow.png





_images/release-process.jpg
symfony 2.0

SMmfuny 21 i

i Symfony.2.2
i l Symfony 2.3
H Symfony. 2.4 _

- Symfony.2.5
i Symfony. 2.6

= - symfony27

Symfony 2.8

‘ 2012 | ;l 2013 | I 2014 I l2015 ’ l 2016 | | 2017 |






_images/11-kernel-exception.png
Sub-Request

“sub-response” content

al
request controller @il

view

v

terminate

response?





_images/DataTransformersTypes.png
p— m:>

transform

transform

reverseTransform

reverseTransform






_images/security_http_basic_popup.png
X | [ localhost:8000/app_dev.php/admin

Authentication Required

The server http://localhost:8000 requires a username and
password. The server says: Secured Area.

Password:

[ cancel || togm |






_images/step-17.png
e

e B e o





_images/04-resolve-controller.png
Sub-Request
expection -

‘sub-response” content : v

exception

resolve Gl
=l e e

view

v

terminate

response?





_images/step-02.png
Cretenew e hosting pin

2 publs rom e conrl






_images/web_debug_toolbar.png
@ Symfony o

Demo Home

Hello Fabien!

CODE BEHIND THIS PAGE

Controller Code

Jxx
* @Route("/hello/{name}", name="_demo_hello")
* @Template()

*/
public function helloAction($name)
{
return array('name' => $name);
}

PoN 200 oermoconiraler - netioaction IR e o






_images/step-06.png
This web site has been
successfully created

There's nothing here yet, but Microsoft
Azure makes it simple to publish
content with GIT, ETP or your favorite
development tool such as Visual Studio,
Visual Studio Online or WebMatrix

Tell me more





_images/step-11.png
io »

)
) 2012 wicrosoft AT rignes reserved

va






_images/step-18.png
<

i0
10 =
10 »
is0 B gt

monclog suggests installing
onolog sugpests installing
Creating the "spp,confg/paranete
database_host (127.0.0.1)
database_port (nuT1)
database_password (nu11)
natlerhost €127.0.0.1)

bafsonez

maler_user (1)
maler password (1T
Tocale ¢

cecret (hisTokens

062014 135931

18082014 135929
va

aray1on2/ge1f-ohp (ATlow sending 10g messages o 3 GrayLogd zerver

FolTbar/rollbar GA1low sending 1og messages to Rollbar)

= o an Elastic search server)

e
ce then.

ym1

eu-cdbr-azure-norch-c.cloudspp. net

xup? (skhsVan 6> Les?r (cJast





_images/step-08.png
mysymfonywebsite

& owswoo  oeoments  won v coniURE NGDRESOUACES  SACRLPS v

general

) @ E ] @ B

:

s PIATOOMA





_images/step-09.png
« |6 Ermm————— ooc)
8 i 7+t B

Zend OPcache






_images/doctrine_image_2.png
Table: product Table: category.
id na price nhwy id name
128 $80000 ﬁx-d 2 Bkes
18 He $2099 black,fit 6 Hoimets

14 |Jer$35.00  women's 7 derseys





_images/step-01.png
Microsoft Azure

@

W e
B oo
rag—

Create a web site ith additional
options, such as a new or existing
R N
deployment from source control






_images/step-05.png
ame and pa






_images/step-07.png
mysymfonywebsite
3 DASBOMD DIIOWENS  NOWIOR  WEMORS mevew | CONTGURE SCAL

Qoumk O omn ©omon O HsEARERS © RasTs

web endpoint status e

CONFIGURE Wes ENDSOIT MONITORNG ()

autoscale status

conncure avroscate @

LT )

quick glance

@ v opstic st ors
© v cooecionsige
[or e r—

@ setu dtormen et
[CYmr——






_images/step-03.png





_images/08-call-controller.png
v

esponse?

v

Response

terminate





_images/welcome.png
0 Q

@ Symfony o

Welcome!

Congratulations! You have successfully installed a new Symfony application.

B & «o

READ THE QUICK TOUR m RUN THE DEMO

Documentation Sensio Community

o D (TR @ o [ 2o [ O ER @ = D






_images/01-workflow.png
Workflow






_static/down.png





_static/down-pressed.png





_static/ajax-loader.gif





_static/comment-close.png





_static/plus.png





_static/up.png





_static/file.png





_static/comment-bright.png





_static/up-pressed.png





_static/comment.png





_static/minus.png





_images/security_anonymous_wdt.png
Loggedinas D
Authenticated

Token class AnonymeusToken

Qo1 G (D CTTTBLTTD oo omense. @ 1227 | EH O 2D






_images/form-simple2.png
Task
Duedate





_images/step-12.png
app settings
WEBSITE NODE DEFAULT.VERSION otz
P xENsons econp ot x| x

connection strings

Thecomncton ring v idn.Snon Connacin S

DetoutCommecion rRT——— wysaL

i VA SQLowsbwse |

PEPOOHaOPEEGH





_images/docs-pull-request-change-base.png
L1 base fork symfonylsymfony-docs ~  base 22 ~ head fork- WouterJ/symfony-docs ~  compare: improving_foo_and_bar ~





_images/form-simple.png
frrpyrevea]
Task Write a blog post
Due date
| 2014

| Create Post |

[Aug ¢ (6





