Sylius

Jul 16, 2019

Contents

1 The Book 3
1.1 TheBoOK e e e e e e 5
2 The Customization Guide 89
2.1 The Customization Guide e e e e e e e 89
3 Sylius Plugins 133
3.1 Sylius Plugins o o o e e e e e e e e e e 133
4 The Cookbook 147
4.1 The Cookbook o e e e 147
5 The REST API Reference 245
5.1 The REST APIReference o o i i i i e e e e e e e e e e s e 245
6 The BDD Guide 495
6.1 TheBDD Guide o i i i i e e 495
7 The Contribution Guide 513
7.1 The Contribution Guide e e e e e e e 513
8 Support 545
.1 Support . . .o e e e e e e e e e 545
9 Components & Bundles 547
9.1 Components & Bundles e e 547
Index 791

Sylius

6 Sylius

Sylius is a modern e-commerce solution for PHP, based on Symfony Framework.

Note: This documentation assumes you have a working knowledge of the Symfony Framework. If you’re not familiar
with Symfony, please start with reading the Quick Tour from the Symfony documentation.

Tip: The Book, Customization Guide, REST API Reference, Cookbook, Contribution Guide and Behat Guide
are chapters describing the usage of the whole Sylius platform, on the examples for Sylius-Standard distribution.

For tips on using only some bundles of Sylius head to Bundles and Components docs.

Contents 1

http://sylius.com
http://symfony.com
http://symfony.com/doc/current/quick_tour

Sylius

2 Contents

CHAPTER 1

The Book

The Developer’s guide to leveraging the flexibility of Sylius
platform. The Book helps to understand how Sylius works.

introduction

What is Sylius about?

What are the
environments?

installation

How to install Sylius?

Sylius installation
via Vagrant

What are the
requirements?

How to
upgrade Sylius?

. Here you will find all the concepts used in the Sylius

http://docs.sylius.com/en/latest/book/introduction/index.html
http://docs.sylius.com/en/latest/book/installation/index.html

Sylius

architecture

Resources,
State Machines,
Events,
Translations,
Emails,
Contact,
Fixtures,
Events

configuration

Sylius basic concepts
configuration:
Channels,
Locales,
Currencies

customers

Customers
ShopUsers
AdminUsers
Addresses

products

Taxons,
Attributes,
Associations,
Reviews,
Inventory,
Pricing,
Search

4 Chapter 1. The Book

http://docs.sylius.com/en/latest/book/architecture/index.html
http://docs.sylius.com/en/latest/book/configuration/index.html
http://docs.sylius.com/en/latest/book/customers/index.html
http://docs.sylius.com/en/latest/book/products/index.html

Sylius

carts & orders

Orders,
Taxation,
Adjustments,
Promotions,
Coupons,
Payments,
Shipments,
Checkout

themes

What are themes?

When should |
use themes?

1.1 The Book

The Developer’s guide to leveraging the flexibility of Sylius. Here you will find all the concepts used in Sylius. The
Books helps to understand how Sylius works.

1.1.1 Introduction

Introduction aims to describe the philosophy of Sylius. It will also teach you about environments before you start
installing it.

Introduction

This is the beginning of the journey with Sylius. We will start with a basic insight into terms that we use in Sylius
Documentation.

Introduction to Sylius

Sylius is a game-changing e-commerce solution for PHP, based on the Symfony framework.

Philosophy

Sylius is completely open source (MIT license) and free, maintained by a diverse and creative community of developers
and companies.

‘What are our core values and what makes us different from other solutions?

» Components based approach

1.1. The Book 5

http://docs.sylius.com/en/latest/book/orders/index.html
http://docs.sylius.com/en/latest/book/themes/index.html

Sylius

* Unlimited flexibility and simple customization

* Developer-friendly, using latest technologies

* Developed using best practices and BDD approach
* Highest quality of code

And much more, but we will let you discover it yourself.

The Three Natures of Sylius

Sylius is constructed from fully decoupled and flexible e-commerce components for PHP. It is also a set of Symfony
bundles, which integrate the components into the full-stack framework. On top of that, Sylius is also a complete
e-commerce platform crafted from all these building blocks.

It is your choice how to use Sylius, you can benefit from the components with any framework, integrate selected
bundles into existing or new Symfony app or built your application on top of Sylius platform.

Sylius Platform

This book is about our full-stack e-commerce platform, which is a standard Symfony application providing the most
common webshop and a foundation for custom systems.

Leveraging Symfony Bundles

If you prefer to build your very custom system step by step and from scratch, you can integrate the standalone Symfony
bundles. For the installation instructions, please refer to the appropriate bundle documentation.

E-Commerce Components for PHP

If you use a different framework than Symfony, you are welcome to use Sylius components, which will make it much
easier to implement a webshop with any PHP application and project. They provide you with default models, services
and logic for all aspects of e-commerce, completely separated and ready to use.

Final Thoughts

Depending on how you want to use Sylius, continue reading The Book, which covers the usage of the full stack
solution, browse the Bundles Reference or learn about The Components.

Understanding Environments

Every Sylius application is the combination of code and a set of configuration that dictates how that code should
function. The configuration may define the database being used, whether or not something should be cached, or how
verbose logging should be. In Symfony, the idea of “environments” is the idea that the same codebase can be run using
multiple different configurations. For example, the dev environment should use configuration that makes development
easy and friendly, while the prod environment should use a set of configuration optimized for speed.

6 Chapter 1. The Book

https://scrutinizer-ci.com/g/Sylius/Sylius/

Sylius

Development

Development environment or dev, as the name suggests, should be used for development purposes. It is much slower
than production, because it uses much less aggressive caching and does a lot of processing on every request. However,
it allows you to add new features or fix bugs quickly, without worrying about clearing the cache after every change.

Sylius console runs in dev environment by default. You can access the website in dev mode via the /app_dev.php
file in the web/ directory. (under your website root)

Production

Production environment or prod is your live website environment. It uses proper caching and is much faster than
other environments. It uses live APIs and sends out all e-mails.

To run Sylius console in prod environment, add the following parameters to every command call:

$ bin/console —-—-env=prod --no-debug cache:clear

You can access the website in production mode via the /app . php file in your website root (web/) or just / path.
(on Apache)

Staging

Staging environment or staging is the last line before the shop will go to the production. Here you should test all
new features to ensure that everything works as expected. It’s almost an exact copy of production environment but
with different database and turned off e-mails.

To run Sylius console in st aging environment, add the following parameters to every command call:

$ bin/console —-—env=staging —--no-debug cache:clear

You can access the website in staging mode via the /app_staging.php file in your website root (web/) or just /
path. (on Apache)

Test

Test environment or test is used for automated testing. Most of the time you will not access it directly.

To run Sylius console in test environment, add the following parameters to every command call:

$ bin/console —--env=test cache:clear

Final Thoughts

You can read more about Symfony environments in this cookbook article.
e Introduction to Sylius
* Understanding Environments
e Introduction to Sylius

* Understanding Environments

1.1. The Book 7

http://symfony.com/doc/current/cookbook/configuration/environments.html

Sylius

1.1.2 Installation

The installation chapter is of course a comprehensive guide to installing Sylius on your machine, but it also provides
a general instruction on upgrading Sylius in your project.

Installation

The process of installing Sylius together with the requirements to run it efficiently.

System Requirements

Here you will find the list of system requirements that have to be adhered to be able to use Sylius. First of all have a

look at the requirements for running Symfony.

Read about the LAMP stack and the MAMP stack.
Operating Systems
The recommended operating systems for running Sylius are the Unix systems - Linux, MacOS.

Web server and configuration

In the production environment we do recommend using Apache web server 2.2.
While developing the recommended way to work with your Symfony application is to use PHP’s built-in web server.

Go there to see the full reference to the web server configuration.

PHP required modules and configuration

PHP version:

PHP extensions:

ed No specific configuration
exif No specific configuration
fileinfo | No specific configuration
intl No specific configuration

PHP configuration settings:

memory_limit | 1024M
date.timezone | Europe/Warsaw

Warning: Use your local timezone, for example America/Los_Angeles or Europe/Berlin. See http://php.net/
manual/en/timezones.php for the list of all available timezones.

8 Chapter 1. The Book

http://symfony.com/doc/current/reference/requirements.html
https://en.wikipedia.org/wiki/LAMP_(software_bundle)
https://en.wikipedia.org/wiki/MAMP
http://symfony.com/doc/current/cookbook/configuration/web_server_configuration.html
http://php.net/manual/en/book.fileinfo.php
http://php.net/manual/en/book.exif.php
http://php.net/manual/en/book.fileinfo.php
http://php.net/manual/en/book.intl.php
http://php.net/manual/en/timezones.php
http://php.net/manual/en/timezones.php

Sylius

Database

By default, the database connection is pre-configured to work with a following MySQL configuration:

Note: Of course you may use any other RDBMS for instance PostgreSQL.

Access rights

Most of the application folders and files require only read access, but a few folders need also the write access for the
Apache/Nginx user:

e var/cache
* var/logs
¢ web/media

You can read how to set these permissions in the Symfony - setting up permissions section.

Installation

The Sylius main application can serve as an end-user app, as well as a foundation for your custom e-commerce
application.

Warning: This article assumes you’re familiar with Composer, a dependency manager for PHP. It also assumes
you have Composer installed globally.

Note: If you downloaded the Composer phar archive, you should use php composer.phar where this guide uses
composer.

Note: In order to inform you about newest Sylius releases and be aware of shops based on Sylius, the Core Team uses
an internal statistical service called GUS. The only data that is collected and stored in its database are hostname, user
agent, locale, environment (test, dev or prod), current Sylius version and the date of last contact. If you do not want
your shop to send requests to GUS, please visit this guide for further instructions.

Initiating A New Sylius Project

To create a new project using Sylius Standard Edition, run this command:

$ composer create-project sylius/sylius-standard acme

Note: Make sure to use PHP ~7.1. Using an older PHP version will result in installing an older version of Sylius.

1.1. The Book 9

http://symfony.com/doc/current/setup/file_permissions.html
http://packagist.org
http://getcomposer.org/doc/00-intro.md#globally

Sylius

This will create a new Symfony project in acme directory. When all the dependencies are installed, you’ll be asked
to fill the parameters.yml file via interactive script. Please follow the steps. After everything is in place, run the
following commands:

$ cd acme # Move to the newly created directory
$ php bin/console sylius:install

This package has the whole sylius/sylius package in vendors, so you can easily update it and focus on your
custom development.

Warning: During the sylius:install command you will be asked to provide important information, but
also its execution ensures that the default currency (USD) and the default locale (English - US) are set they can
be later on changed in the parameters.yml file. From now on all the prices will be stored in the database in
USD as integers, and all the products will have to be added with a base american english name translation.

Installing assets

In order to see a fully functional frontend you will need to install its assets.

Sylius already has a gulpfile.babel. js, therefore you just need to get Gulp using Yarn.

Note: We recommend using stable versions (*1.0.0) of Yarn.

Having Yarn installed go to your project directory and run:

’$ yarn install

And now you can use gulp for installing views, by just running a simple command:

’$ yarn build

Accessing the Shop

Tip: We strongly recommend using the Symfony built-in web server by running the php bin/console
server:start —--docroot=web 127.0.0.1:8000 command and then accessing http://127.0.0.
1:8000 in your web browser to see the shop.

Note: The localhost’s 8000 port may be already occupied by some other process. If so you should try other ports,
like for instance: php bin/console server:start —--docroot=web 127.0.0.1:8081 Wantto know
more about using a built-in server, see here.

You can log in as an administrator, with the credentials you have provided during the installation process. Since now
you can play with your clean Sylius installation.

Accessing the Administration Panel

10 Chapter 1. The Book

http://gulpjs.com/
https://yarnpkg.com/lang/en/
https://yarnpkg.com/lang/en/
http://symfony.com/doc/current/cookbook/web_server/built_in.html

Sylius

Note: Have a look at the /admin url, where you will find the administration panel. Remember that you have to be
logged in as an administrator using the credentials provided while installing Sylius.

How to start developing? - Project Structure

After you have successfully gone through the installation process of Sylius-Standard you are probably going to start
developing within the framework of Sylius.

In the root directory of your project you will find these important subdirectories:

e app/config/ - here you will be adding the yaml configuration files including routing, security, state machines
configurations etc.

e var/logs/ - these are the logs of your application
* var/cache/ - this is the cache of you project
* src/ - this is where you will be adding all you custom logic in the AppBundle

* web/ - there you will be placing assets of your project

Tip: As it was mentioned before we are basing on Symfony, that is why we’ve adopted its approach to architecture.
Read more in the Symfony documentation. Read also about the best practices while structuring your project.

Contributing

Tip: If you would like to contribute to Sylius - please go to the Contribution Guide

Upgrading

Sylius is releasing new versions from time to time. Each release is supported with an UPGRADE file, which is meant
to help in the upgrading process, especially for the major versions, which can break the backwards compatibility.

Update the Sylius library version constraint by modifying the composer. json file:

"sylius/sylius": ""1.0@beta",

}y

}

Then run composer update command:

1.1. The Book 11

http://symfony.com/doc/current/quick_tour/the_architecture.html
http://symfony.com/doc/current/best_practices/creating-the-project.html#structuring-the-application
https://github.com/Sylius/Sylius/blob/1.0/UPGRADE-1.0.md

Sylius

’$ composer update sylius/sylius

If this results in a dependency error, it may mean that other Sylius dependencies also have to be upgraded. Using this
command may help you upgrade Sylius dependencies.

’$ composer update sylius/sylius --with-dependencies

If this does not help, it is a matter of debugging the conflicting versions and working out how your composer. json
should look after the upgrade.

Finally to make everything work check the UPGRADE file of Sylius for instructions.

One more important thing is running the database migrations:

$ bin/console doctrine:migrations:migrate

Tip: Check if the migrations (more than 1) are in your app/migrat ions directory. If not, then replace the contents
of this directory with the migrations from the vendor/sylius/sylius/app/migrations/ directory.

After fixing the project according to the upgrade and having run the migrations you are done!
* System Requirements
e Installation
e Upgrading
* System Requirements
e Installation

* Upgrading

1.1.3 Architecture

The key to understanding principles of Sylius internal organization. Here you will learn about the Resource layer, state
machines, events and general non e-commerce concepts adopted in the platform, like E-mails or Fixtures.

Architecture

Before we dive separately into every Sylius concept, you need to have an overview of how our main application is
structured. In this chapter we will sketch this architecture and our basic, cornerstone concepts, but also some supportive
approaches, that you need to notice.

Architecture Overview

Before we dive separately into every Sylius concept, you need to have an overview of how our main application is
structured. You already know that Sylius is built from components and Symfony bundles, which are integration layers
with the framework.

All bundles share the same conventions for naming things and the way of data persistence. Sylius, by default, uses the
Doctrine ORM for managing all entities.

For deeper understanding of how Doctrine works, please refer to the excellent documentation on their official website.

12 Chapter 1. The Book

http://doctrine-orm.readthedocs.org/en/latest/

Sylius

Fullstack Symfony

)

Symfony

Sylius is based on Symfony, which is a leading PHP framework to create web applications. Using Symfony allows
developers to work better and faster by providing them with certainty of developing an application that is fully compat-
ible with the business rules, that is structured, maintainable and upgradable, but also it allows to save time by providing
generic re-usable modules.

Learn more about Symfony.

Doctrine

b doctrine

Doctrine is a family of PHP libraries focused on providing data persistence layer. The most important are the object-
relational mapper (ORM) and the database abstraction layer (DBAL). One of Doctrine’s key features is the possibility
to write database queries in Doctrine Query Language (DQL) - an object-oriented dialect of SQL.

To learn more about Doctrine - see their documentation.

Twig

Twig is a modern template engine for PHP that is really fast, secure and flexible. Twig is being used by Symfony.

To read more about Twig, go here.

Architecture

On the below image you can see the symbolic representation of Sylius architecture.

1.1. The Book 13

http://symfony.com/what-is-symfony
http://www.doctrine-project.org/about.html
http://twig.sensiolabs.org/

Sylius

Keep on reading this chapter to learn more about each of its parts: Shop, Admin, API, Core, Components and Bundles.

Division into Components, Bundles, Platform
Components

Every single component of Sylius can be used standalone. Taking the Taxat ion component as an example, its only
responsibility is to calculate taxes, it does not matter whether these will be taxes for products or anything else, it is
fully decoupled. In order to let the Taxation component operate on your objects you need to have them implementing
the TaxableInterface. Since then they can have taxes calculated. Such approach is true for every component of

14 Chapter 1. The Book

Sylius

Sylius. Besides components that are strictly connected to the e-commerce needs, we have plenty of components that
are more general. For instance Attribute, Mailer, Locale etc.

All the components are packages available via Packagist.

Read more about the Components.

Bundles

These are the Symfony Bundles - therefore if you are a Symfony Developer, and you would like to use the Taxation
component in your system, but you do not want to spend time on configuring forms or services in the container. You
can include the TaxationBundle in your application with minimal or even no configuration to have access to all
the services, models, configure tax rates, tax categories and use that for any taxes you will need.

Read more about the Bundles.

Platform

This is a fullstack Symfony Application, based on Symfony Standard. Sylius Platform gives you the classic, quite
feature rich webshop. Before you start using Sylius you will need to decide whether you will need a full platform
with all the features we provide, or maybe you will use decoupled bundles and components to build something very
custom, maybe smaller, with different features. But of course the platform itself is highly flexible and can be easily
customized to meet all business requirements you may have.

Division into Core, Admin, Shop, Api
Core

The Core is another component that integrates all the other components. This is the place where for exam-
ple the ProductVariant finally learns that it has a TaxCategory. The Core component is where the
ProductVariant implements the TaxableInterface and other interfaces that are useful for its operation.
Sylius has here a fully integrated concept of everything that is needed to run a webshop. To get to know more about
concepts applied in Sylius - keep on reading 7he Book.

Admin

In every system with the security layer the functionalities of system administration need to be restricted to only some
users with a certain role - Administrator. This is the responsibility of our AdminBundle although if you do not need
it, you can turn it off. Views have been built using the SemanticUI.

Shop

Our ShopBundle is basically a standard B2C interface for everything that happens in the system. It is made mainly
of yaml configurations and templates. Also here views have been built using the SemanticUI.

1.1. The Book 15

https://packagist.org/
http://semantic-ui.com/
http://semantic-ui.com/

Sylius

Api

Our API uses the REST approach. Since our controllers are format agnostic they have become reusable in the APL
Therefore if you request products in the shop frontend you are using exactly the same action as when you are placing
the api request. Read more about our API in the Sylius API Guide.

Third Party Libraries

Sylius uses a lot of libraries for various tasks:
e Payum for payments
¢ KnpMenu - for shop and admin menus
* Gaufrette for filesystem abstraction (store images locally, Amazon S3 or external server)
» Imagine for images processing, generating thumbnails and cropping
» Pagerfanta for pagination

e Winzou State Machine - for the state machines handling

Resource Layer

We created an abstraction on top of Doctrine, in order to have a consistent and flexible way to manage all the resources.
By “resource” we understand every model in the application. Simplest examples of Sylius resources are “product”,

CLINY3 9% <.

“order”, “tax_category”,

ELINY3 CLINNT3

promotion”, “user”, “shipping_method” and so on...
There are two types of resources in Sylius:
* registered by default - their names begin with sylius. » for example: sylius.product

e custom resources, from your application which have a separate convention. ~We place them under
sylius_resource: resource_name: inthe config.yml. For these we recommend using the naming
convention of app . » for instance app .my_entity.

Sylius resource management system lives in the SyliusResourceBundle and can be used in any Symfony project.

Services

For every resource you have four essential services available:
* Factory
e Manager
* Repository
* Controller

Let us take the “product” resource as an example. By default, it is represented by an object of a class that implements
the Sylius\Component\Core\Model\ProductInterface.

Factory

The factory service gives you an ability to create new default objects. It can be accessed via the sylius.factory.product
id (for the Product resource of course).

16 Chapter 1. The Book

https://github.com/Payum/Payum
http://symfony.com/doc/current/bundles/KnpMenuBundle/index.html
https://github.com/KnpLabs/Gaufrette
https://github.com/liip/LiipImagineBundle
https://github.com/whiteoctober/Pagerfanta
https://github.com/winzou/StateMachineBundle

Sylius

<?php

public function myAction()
{

Sfactory = S$this->container->get ('sylius.factory.product');

/#*# @var ProductInterface Sproduct #x/
Sproduct = S$factory->createNew();

Note: Creating resources via this factory method makes the code more testable, and allows you to change the model
class easily.

Manager

The manager service is just an alias to appropriate Doctrine’s ObjectManager and can be accessed via the
sylius.manager.product id. API is exactly the same and you are probably already familiar with it:

<?php

public function myAction ()

{

Smanager = S$this->container->get ('sylius.manager.product');

// Assuming that the Sproductl exists in the database we can perform such,_
—operations:
Smanager—>remove (Sproductl) ;

// If we have created the Sproduct2 using a factory, we can persist it in the_
—database.
Smanager->persist (Sproduct?2) ;

// Before performing a flush, the changes we have made, are not saved. There 1is_,
—only the S$Sproductl in the database.
Smanager->flush(); // Saves changes in the database.

//After these operations we have only Sproduct2 in the database. The S$productl,,
—~has been removed.

}

Repository

Repository is defined as a service for every resource and shares the API with standard Doctrine ObjectRepository. It
contains two additional methods for creating a new object instance and a paginator provider.

The repository service is available via the sylius.repository.product id and can be used like all the repositories you
have seen before.

<?php

public function myAction()

{

(continues on next page)

1.1. The Book 17

http://www.doctrine-project.org/api/common/2.4/class-Doctrine.Common.Persistence.ObjectManager.html

Sylius

(continued from previous page)

Srepository = $this->container—->get ('sylius.repository.product');

Sproduct = Srepository->find(4); // Get product with id 4, returns null if not,

— found.
Sproduct = Srepository->findOneBy (['slug' => 'my-super-product'l]); // Get one_
—product by defined criteria.

Sproducts = S$repository->findAll(); // Load all the products!
Sproducts = $repository->findBy(['special' => truel); // Find products matching,,
—some custom criteria.

}

Tip: An important feature of the repositories are the add (Sresource) and remove ($resource) methods,
which take a resource as an argument and perform the adding/removing action with a flush inside.

These actions can be used when the performance of operations may be neglected. If you are willing to perform
operations on sets of data we are suggesting to use the manager instead.

Every Sylius repository supports paginating resources. To create a Pagerfanta instance use the createPaginator
method:

<?php

public function myAction (Request S$Srequest)
{

Srepository = $this->container->get ('sylius.repository.product');

Sproducts = Srepository->createPaginator();
Sproducts—->setMaxPerPage (3) ;
Sproducts->setCurrentPage (Srequest->query->get ('page', 1));

// Now you can return products to template and iterate over it to get products,
—from current page.

}

Paginator can be created for a specific criteria and with desired sorting:

<?php

public function myAction (Request Srequest)
{

Srepository = $this->container->get ('sylius.repository.product');
Sproducts = Srepository->createPaginator (['foo' => true], ['createdAt' => 'desc
='1);

Sproducts->setMaxPerPage (3);
Sproducts—->setCurrentPage ($Srequest->query->get ('page', 1));

Controller

This service is the most important for every resource and provides a format agnostic CRUD controller with the fol-
lowing actions:

18 Chapter 1. The Book

https://github.com/whiteoctober/Pagerfanta

Sylius

[GET] showAction() for getting a single resource

[GET] indexAction() for retrieving a collection of resources

[GET/POST] createAction() for creating new resource

[GET/PUT] updateAction() for updating an existing resource

[DELETE] deleteAction() for removing an existing resource

As you see, these actions match the common operations in any REST API and yes, they are format agnostic. This
means, all Sylius controllers can serve HTML, JSON or XML, depending on what you request.

Additionally, all these actions are very flexible and allow you to use different templates, forms, repository methods
per route. The bundle is very powerful and allows you to register your own resources as well. To give you some idea
of what is possible, here are some examples!

Displaying a resource with a custom template and repository methods:

routing.yml
app_product_show:
path: /products/{slug}
methods: [GET]
defaults:
_controller: sylius.controller.product:showAction
_sylius:
template: AppStoreBundle:Product:show.html.twig # Use a custom template.
repository:
method: findForStore # Use a custom repository method.
arguments: [$slug] # Pass the slug from the url to the repository.

Creating a product using custom form and a redirection method:

routing.yml
app_product_create:
path: /my-stores/{store}/products/new

methods: [GET, POST]

defaults:
_controller: sylius.controller.product:createAction
_sylius:

form: AppStoreBundle/Form/Type/CustomFormType # Use this form type!
template: AppStoreBundle:Product:create.html.twig # Use a custom template.
factory:
method: createForStore # Use a custom factory method to create a_
—product.

arguments: [Sstore] # Pass the store name from the url.
redirect:

route: app_product_index # Redirect the user to their products.

parameters: [Sstore]

All other methods have the same level of flexibility and are documented in the Resource Bundle Guide.

State Machine

In Sylius we are using the Winzou StateMachine Bundle. State Machines are an approach to handling changes occur-
ring in the system frequently, that is extremely flexible and very well organised.

Every state machine will have a predefined set of states, that will be stored on an entity that is being controlled by it.
These states will have a set of defined transitions between them, and a set of callbacks - a kind of events, that will
happen on defined transitions.

1.1. The Book 19

https://github.com/winzou/StateMachineBundle

Sylius

States

States of a state machine are defined as constants on the model of an entity that the state machine is controlling.

How to configure states? Let’s see on the example from Checkout state machine.

CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml
winzou_state machine:
sylius_order_checkout:
list of all possible states:
states:
cart: ~
addressed: ~
shipping selected: ~
payment_selected: ~
completed: ~

Transitions

On the graph it would be the connection between two states, defining that you can move from one state to another
subsequently.

How to configure transitions? Let’s see on the example of our Checkout state machine. Having states configured we
can have a transition between the cart state to the addressed state.

CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml
winzou_state_machine:
sylius_order_checkout:
transitions:
address:
from: [cart, addressed, shipping_selected, payment_selected] # here_,
—you specify which state is the initial
to: addressed # there,,
—you specify which state 1is final for that transition

Callbacks

Callbacks are used to execute some code before or after applying transitions. Winzou StateMachineBundle adds the
ability to use Symfony services in the callbacks.

How to configure callbacks? Having a configured transition, you can attach a callback to it either before or after the
transition. Callback is simply a method of a service you want to be executed.

CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml
winzou_state_machine:
sylius_order_checkout:
callbacks:
callbacks may be called before or after specified transitions, in,,
—the checkout state machine we've got callbacks only after transitions

after:
sylius_process_cart:
on: ["address", "select_shipping"”, "select_payment"]
do: ["@sylius.order_processing.order_processor", "process"]
args: ["object"]

20 Chapter 1. The Book

Sylius

Configuration

In order to use a state machine, you have to define a graph beforehand. A graph is a definition of states, transitions
and optionally callbacks - all attached on an object from your domain. Multiple graphs may be attached to the same
object.

In Sylius the best example of a state machine is the one from checkout. It has five states available: cart,
addressed, shipping_selected,payment_selectedand completed - which can be achieved by apply-
ing some transitions to the entity. For example, when selecting a shipping method during the shipping step of checkout
we should apply the select_shipping transition, and after that the state would become shipping_selected.

CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml
winzou_state _machine:
sylius_order_checkout:
class: "S$sylius.model.order.class%" # class of the domain object - in our,
—case Order
property path: checkoutState
graph: sylius_order_checkout

state_machine_class: "%sylius.state_machine.class%"
list of all possible states:
states:

cart: ~

addressed: ~

shipping_selected: ~
payment_selected: ~
completed: ~
list of all possible transitions:
transitions:
address:
from: [cart, addressed, shipping_selected, payment_selected] # here,
—you specify which state is the initial
to: addressed # there_,
—you specify which state 1is final for that transition
select_shipping:
from: [addressed, shipping_selected, payment_selected]
to: shipping_selected
select_payment:
from: [payment_selected, shipping_selected]
to: payment_selected
complete:
from: [payment_selected]
to: completed
list of all callbacks:
callbacks:
callbacks may be called before or after specified transitions, in the,
—checkout state machine we've got callbacks only after transitions
after:
sylius_process_cart:
on: ["address", "select_shipping", "select_payment"]
do: ["@sylius.order_processing.order_processor", "process"]
args: ["object"]
sylius_create_order:
on: ["complete"]
do: ["@sm.callback.cascade_transition", "apply"]
args: ["object", "event", "'create'", "'sylius_order'"]
sylius_hold_ inventory:
on: ["complete"]

(continues on next page)

1.1. The Book 21

Sylius

(continued from previous page)

do: ["@sylius.inventory.order_inventory_operator", "hold"]
args: ["object"]
sylius_assign_token:
on: ["complete"]
do: ["@sylius.unique_id_based_order_token_assigner",
—"assignTokenValueIfNotSet"]
args: ["object"]

Learn more

¢ Winzou StateMachine Bundle

» Customization guide: State machines

Translations

Sylius uses the approach of personal translations - where each entity is bound with a translation entity, that has
it’s own table (instead of keeping all translations in one table for the whole system). This results in having the
ProductTranslation class and sylius_product_translation table for the Product entity.

The logic of handling translations in Sylius is in the ResourceBundle

The fields of an entity that are meant to be translatable are saved on the translation entity, only their getters and setters
are also on the original model.

Let’s see an example:

Assuming that we would like to have a translatable model of a Supplier, we need a Supplier class and a Supplier-
Translation class.

<?php
namespace AppBundle\Entity;
use Sylius\Component\Resource\Model\AbstractTranslation;

class SupplierTranslation extends AbstractTranslation
{
J ok k
* @var string
*/
protected Sname;

VAT

* @return string

*/
public function getName ()
{

return Sthis->name;

/ x*
* @param string S$name
*/
public function setName ($name)

(continues on next page)

22 Chapter 1. The Book

https://github.com/winzou/StateMachineBundle

Sylius

(continued from previous page)

Sthis->name = S$name;

The actual entity has access to its translation by using the TranslatableTrait which provides the
getTranslation () method.

Warning: Remember that the Translations collection of the entity (from the TranslatableTrait) has to be initial-
ized in the constructor!

<?php
namespace AppBundle\Entity;

use Sylius\Component\Resource\Model\TranslatableInterface;
use Sylius\Component\Resource\Model\TranslatableTrait;

class Supplier implements TranslatableInterface
{

use TranslatableTrait {
__construct as private initializeTranslationsCollection;

public function __ construct ()

{

Sthis—->initializeTranslationsCollection();

J ok k

* @return string

*/
public function getName ()
{

return S$this->getTranslation()->getName () ;

J ok k

* @param string Sname

*/
public function setName (Sname)
{

Sthis->getTranslation () ->setName ($name) ;

Fallback Translations

The get Translation () method gets a translation for the current locale, while we are in the shop, but we can also
manually impose the locale - get Translation ('pl_PL') will return a polish translation if there is a translation
in this locale.

But when the translation for the chosen locale is unavailable, instead the translation for the fallback locale (the one

1.1. The Book 23

Sylius

that was either set in config.yml or using the setFallbackLocale () method from the TranslatableTrait on
the entity) is used.

How to add a new translation programmatically?

You can programmatically add a translation to any of the translatable resources in Sylius. Let’s see how to do it on the
example of a ProductTranslation.

// Find a product to add a translation to it

/+# @var ProductInterface Sproduct =/
Sproduct = Sthis->container->get ('sylius.repository.product')->findOneBy (['code' =>
—'radiohead-mug-code']);

// Create a new translation of product, give it a translated name and slug in the_
—chosen locale

/** @var ProductTranslation Stranslation %/
Stranslation = new ProductTranslation();

Stranslation—->setLocale('pl_PL'");
Stranslation—>setName ('Kubek Radiohead');
Stranslation->setSlug('kubek-radiohead');

// Add the translation to your product
Sproduct—->addTranslation (Stranslation);

// Remember to save the product after adding the translation
Sthis->container->get ('sylius.manager.product')->flush ($Sproduct);

Learn more

e Resource - translations documentation

* Locales - concept documentation

E-Mails

Sylius is sending various e-mails and this chapter is a reference about all of them. Continue reading to learn what e-
mails are sent, when and how to customize the templates. To understand how e-mail sending works internally, please
refer to SyliusMailerBundle documentation. And to learn more about mailer services configuration, read the dedicated
cookbook.

User Confirmation

Every time a customer registers via the registration form, a user registration e-mail is sent to them.
Code: user_registration

The default template: SyliusShopBundle:Email:userRegistration.html.twig
You also have the following parameters available:

e user: Instance of the user model

24 Chapter 1. The Book

Sylius

Email Verification

When a customer registers via the registration form, besides the User Confirmation an Email Verification is sent.
Code: verification_token

The default template: SyliusShopBundle:Email:verification.html.twig

You also have the following parameters available:

e user: Instance of the user model

Password Reset

This e-mail is used when the user requests to reset their password in the login form.

Code: reset_password_token

The default template: SyliusShopBundle:Email :passwordReset.html.twig
You also have the following parameters available:

e user: Instance of the user model

Order Confirmation

This e-mail is sent when order is placed.

Code: order_confirmation

The default template: SyliusShopBundle:Email:orderConfirmation.html.twig
You also have the following parameters available:

e order: Instance of the order, with all its data

Shipment Confirmation

This e-mail is sent when the order’s shipping process has started.
Code: shipment_confirmation
The default template: SyliusAdminBundle:Email:shipmentConfirmation.html.twig
You have the following parameters available:
e shipment: Shipment instance

e order: Instance of the order, with all its data

How to send an Email programmatically?

For sending emails Sylius is using a dedicated service - Sender. Additionally we have EmailManagers for Order
Confirmation(OrderEmailManager) and for Shipment Confirmation(ShipmentEmailManager).

Tip: While using Sender you have the available emails of Sylius available under constants in:

¢ Core - Emails

1.1. The Book 25

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ShopBundle/EmailManager/OrderEmailManager.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/AdminBundle/EmailManager/ShipmentEmailManager.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/CoreBundle/Mailer/Emails.php

Sylius

¢ User - Emails

Example using Sender:

/#*+ @var SenderInterface Ssender x/
Ssender = S$this->container->get ('sylius.email_sender');

Ssender—->send (\Sylius\Bundle\UserBundle\Mailer\Emails: :EMAIL_VERIFICATION_TOKEN, [
— 'bannanowa@gmail.com'], ['user' => Suser]);

Example using EmailManager:

/++ @var OrderEmailManagerInterface Ssender x/
SorderEmailManager = S$this->container->get ('sylius.email_manager.order');

SorderEmailManager->sendConfirmationEmail (Sorder);

Learn more

* Mailer - Component Documentation

e Mailer - Bundle Documentation

Contact

The functionality of contacting the shop support/admin is in Sylius very basic. Each Channel of your shop may have
acontactEmail configured on it. This will be the email address to support.

Contact form

The contact form can be found on the /contact route.

Note: When the contactEmail is not configured on the channel, the customer will see the following flash message:

x Error
A problem occurred while sending the contact request. Please try again later.

The form itself has only two fields email (which will be filled automatically for the logged in users) and message.

ContactEmailManager

The ContactEmailManager service is responsible for the sending of a contact request email. It can be found under
the sylius.email_manager.contact service id.

26 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/UserBundle/Mailer/Emails.php

Sylius

ContactController

The controller responsible for the request action handling is the ContactController. It has the sylius.
controller.shop.contact service id.

Configuration

The routing for contact can be found in the Sylius/Bundle/ShopBundle/Resources/config/routing/
contact .yml file. By overriding that routing you will be able to customize redirect url, error flash, success flash,
form and its template.

You can also change the template of the email that is being sent by simply overriding it in your project in the app/
Resources/SyliusShopBundle/views/Email/contactRequest.html.twig file.

Learn more

e Emails - Documentation

Fixtures

Fixtures are used mainly for testing, but also for having your shop in a certain state, having defined data - they ensure
that there is a fixed environment in which your application is working.

Note: They way Fixtures are designed in Sylius is well described in the FixturesBundle documentation.

What are the available fixtures in Sylius?

To check what fixtures are defined in Sylius run:

$ php bin/console sylius:fixtures:list

How to load Sylius fixtures?

The recommended way to load the predefined set of Sylius fixtures is here:

$ php bin/console sylius:fixtures:load

What data is loaded by fixtures in Sylius?

All files that serve for loading fixtures of Sylius are placed in the Sylius/Bundle/CoreBundle/Fixture/*
directory.

And the specified data for fixtures is stored in the Sylius/Bundle/CoreBundle/Resources/config/app/fixtures.yml file.

1.1. The Book 27

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/CoreBundle/Resources/config/app/fixtures.yml

Sylius

Learn more

e FixturesBundle documentation

Events

Tip: You can learn more about events in general in the Symfony documentation.

What is the naming convention of Sylius events?

The events that are designed for the entities have a general naming convention: sylius.entity_name.
event_name.

The examples of such events are: sylius.product.pre_update, sylius.shop_user.post_create,
sylius.taxon.pre_create.

Events reference

All Sylius bundles are using SyliusResourceBundle, which has some built-in events.

Event Description
sylius.<resource>.pre_create Before persist
sylius.<resource>.post_create After flush
sylius.<resource>.pre_update Before flush
sylius.<resource>.post_update After flush
sylius.<resource>.pre_delete Before remove
sylius.<resource>.post_delete After flush
sylius.<resource>.initialize_create | Before creating view
sylius.<resource>.initialize_update | Before creating view

CRUD events rules

As you should already know, every resource controller is represented by the sylius.controller.
<resource_name> service. Several useful events are dispatched during execution of every default action of this
controller. When creating a new resource via the createAct ion method, 2 events occur.

First, before the persist () is called on the resource, the sylius.<resource_name>.pre_create eventis
dispatched.

And after the data storage is updated, sylius.<resource_name>.post_create is triggered.

The same set of events is available for the update and delete operations. All the dispatches are using the
GenericEvent class and return the resource object by the get Sub ject method.

What events are already used in Sylius?

Even though Sylius has events as entry points to each resource only some of these points are already used in our
usecases.

28 Chapter 1. The Book

http://symfony.com/doc/current/event_dispatcher.html

Sylius

The events already used in Sylius are described in the Book alongside the concepts they concern.

Tip: What is more you can easily check all the Sylius events in your application by using this command:

$ php bin/console debug:event-dispatcher | grep sylius

Customizations

Note: Customizing logic via Events vs. State Machines

The logic in which Sylius operates can be customized in two ways. First of them is using the state machines: what is
really useful when you need to modify business logic for instance modify the flow of the checkout, and the second is
listening on the kernel events related to the entities, which is helpful for modifying the HTTP responses visible directly
to the user, like displaying notifications, sending emails.

Learn more

* Sylius Documentation: The Book
* Architecture Overview
* Resource Layer

e State Machine

» Translations

* E-Mails

* Contact

* Fixtures

o Events

* Architecture Overview
* Resource Layer

» State Machine

* Translations

* E-Mails

e Contact

* Fixtures

e Events

1.1.4 Configuration

Having knowledge about basics of our architecture we will introduce the three most important concepts - Channels,
Locales and Currencies. These things have to be configured before you will have a Sylius application up and running.

1.1. The Book 29

Sylius

Configuration

Having knowledge about basics of our architecture we will introduce the three most important concepts - Channels,
Locales and Currencies. These things have to be configured before you will have a Sylius application up and running.

Channels

In the modern world of e-commerce your website is no longer the only point of sale for your goods.
Channel model represents a single sales channel, which can be one of the following things:
* Webstore
* Mobile application
¢ Cashier in your physical store
Or pretty much any other channel type you can imagine.
What may differ between channels? Particularly anything from your shop configuration:
e products,
e currencies,
* locales (language),
e themes,
¢ hostnames,
* taxes,
» payment and shipping methods.
A Channel has a code, aname and a color.

In order to make the system more convenient for the administrator - there is just one, shared admin panel. Also users
are shared among the channels.

Tip: In the dev environment you can easily check what channel you are currently on in the Symfony debug toolbar.

Channels 1

Default localhost (change)

JC Default S8 0

How to get the current channel?

You can get the current channel from the channel context.

Schannel = $this->container->get ('sylius.context.channel')->getChannel ();

30 Chapter 1. The Book

Sylius

Warning: Beware! When using multiple channels, remember to configure hostname for each of them. If
missing, default context would not be able to provide appropriate channel and it will result in an error.

Note: The channel is by default determined basing on the hostname, but you can customize that behaviour. To do that
you have to implement the Sylius\Component\Channel\Context\ChannelContextInterface and
register it as a service under the sylius.context.channel tag. Optionally you can add apriority="-64"
since the default ChannelContext has a priority="-128", and by defaulta priority="0" is assigned.

Note: Moreover if the channel depends mainly on the request you can implement the
Sylius\Component\Channel\Context\RequestBased\RequestResolverInterface with its
findChannel (Request $request) method and register it under the sylius.context.channel.
request_based.resolver tag.

Learn more

* Channel - Component Documentation.

Note: In order to add a new locale to your store you have to assign it to a channel.

Locales

To support multiple languages we are using Locales in Sylius. Locales are language codes standardized by the ISO
15897.

Tip: In the dev environment you can easily check what locale you are currently using in the Symfony debug toolbar:

Syllus 1.0.0-dev

Extensions AP| Admin Shop

Currency LUSD
Locale en_US

Resources Sylius Documentation

1.0.0-dev

1.1. The Book 31

Sylius

Base Locale

During the installation you provided a default base locale. This is the language in which everything in your system
will be saved in the database - all the product names, texts on website, e-mails etc.

Locale Context

To manage the currently used language, we use the LocaleContext. You can always access it with the ID sylius.
context.locale in the container.

<?php

public function fooAction()
{

Slocale = S$this->get ('sylius.context.locale')->getLocaleCode () ;

The locale context can be injected into any of your services and give you access to the currently used locale.

Available Locales Provider

The Locale Provider service (sylius.locale_provider) is responsible for returning all languages available for
the current user. By default, returns all configured locales. You can easily modify this logic by overriding this service.

<?php
public function fooAction ()
Slocales = Sthis->get ('sylius.locale_provider')->getAvailableLocalesCodes|();

foreach ($
echo ¢

ales as Slocale) {

To get all languages configured in the store, regardless of your availability logic, use the locales repository:

<?php

$locales = S$this->get ('sylius.repository.locale')->findAll();

Learn more

* Locale - Component Documentation.

Currencies

Sylius supports multiple currencies per store and makes it very easy to manage them.

There are several approaches to processing several currencies, but we decided to use the simplest solution we are
storing all money values in the base currency per channel and convert them to other currencies with exchange rates.

32 Chapter 1. The Book

Sylius

Note: The base currency to the first channel is set during the installation of Sylius and it has the exchange rate
equal to “1.000.

Tip: In the dev environment you can easily check the base currency in the Symfony debug toolbar:

Sylius 1.0.0-dev
Extenslons APl Admin Shop

Currency LUSD

Locale en_US

Resources Sylius Documentation

1.0.0dev @) 286 X

Currency Context

By default, user can switch the current currency in the frontend of the store.

To manage the currently used currency, we use the CurrencyContext. You can always access it through the sylius.
context.currency id.

<?php

public function fooAction()
{
Scurrency = Sthis->get ('sylius.context.currency')->getCurrency();

}

Currency Converter

The Sylius\Component\Currency\Converter\CurrencyConverter is a service available under the
sylius.currency_converter id.

It allows you to convert money values from one currency to another.

This solution is used for displaying an approximate value of price when the desired currency is different from the base
currency of the current channel.

1.1. The Book 33

Sylius

Available Currencies Provider

The default menu for selecting currency is using a service - CurrencyProvider - with the sylius.
currency_provider id, which returns all enabled currencies. This is your entry point if you would like override
this logic and return different currencies for various scenarios.

<?php

public function fooAction ()
{

Scurrencies = Sthis->get ('sylius.currency_provider')->getAvailableCurrencies|();

Switching Currency of a Channel

We may of course change the currency used by a channel. For that we have the sylius.storage.currency ser-
vice, which implements the Sylius\Component\Core\Currency\CurrencyStorageInterface with
methods —>set (ChannelInterface S$channel, S$currencyCode) and —->get (ChannelInterface
S$channel).

Scontainer->get ('sylius.storage.currency')->set (Schannel, 'PLN');

Displaying Currencies in the templates

There are some useful helpers for rendering money values in the front end. Simply import the money macros of the
ShopBundle in your twig template and use the functions to display the value:

% import "@SyliusShop/Common/Macro/money.html.twig" as money $}

{{ money.format (price, 'EUR') }}

Sylius provides you with some handy Global Tivig variables to facilitate displaying money values even more.

Learn more

* Currency - Component Documentation
* Pricing Concept Documentation

* Channels

* Locales

* Currencies

* Channels

* Locales

e Currencies

34 Chapter 1. The Book

Sylius

1.1.5 Customers

This chapter will tell you more about the way Sylius handles users, customers and admins. There is also a subchapter
dedicated to addresses of your customers.

Customers

This chapter will tell you more about the way Sylius handles users, customers and admins. There is also a subchapter
dedicated to addresses of your customers.

Customer and ShopUser

For handling customers of your system Sylius is using a combination of two entities - Customer and ShopUser. The
difference between these two entities is simple: the Customer is a guest in your shop and the ShopUser is a user
registered in the system - they have an account.

Customer

The Customer entity was created to collect data about non-registered guests of the system - ones that has been buying
without having an account or that have somehow provided us their e-mail.

How to create a Customer programmatically?

As usual, use a factory. The only required field for the Customer entity is emai 1, provide it before adding it to the
repository.

/** @var CustomerInterface Scustomer #*/
Scustomer = S$this->container->get ('sylius.factory.customer')->createNew();

Scustomer—->setEmail ('customer@test.com');

Sthis->container->get ('sylius.repository.customer')->add(Scustomer);

The Customer entity can of course hold other information besides an email, it can be for instance firstName,
lastName or birthday.

Note: The relation between the Customer and ShopUser is bidirectional. Both entities hold a reference to each other.

ShopUser

ShopUser entity is designed for customers that have registered in the system - they have an account with both e-mail
and password. They can visit and modify their account.

While creating new account the existence of the provided email in the system is checked - if the email was present - it
will already have a Customer therefore the existing one will be assigned to the newly created ShopUser, if not - a new
Customer will be created together with the ShopUser.

1.1. The Book 35

Sylius

How to create a ShopUser programmatically?

Assuming that you have a Customer (either retrieved from the repository or a newly created one) - use a factory to
create a new ShopUser, assign the existing Customer and a password via the setPlainPassword () method.

/++ @var ShopUserInterface Suser =/
Suser = S$this->container->get ('sylius.factory.shop_user')->createNew();

// Now let's find a Customer by their e-mail:

/*% @var CustomerInterface Scustomer x*/

Scustomer = S$this->container->get ('sylius.repository.customer')->findOneBy (['email' =>

— 'customer@test.com']);

// and assign it to the ShopUser
Suser—->setCustomer (Scustomer) ;
Suser->setPlainPassword('pswd');

&

Sthis->container->get ('sylius.repository.shop_user')->add(Suser);

Changing the ShopUser password

The already set password of a ShopUser can be easily changed via the setPlainPassword () method.

Suser—->getPassword(); // returns encrypted password — 'pswd'

Suser—->setPlainPassword('resul');

// the password will now be 'resul' and will become encrypted while saving the user,,

—1in the database

Customer related events

Event id

Description

sylius.customer.post_register

dispatched when a new Customer is registered

sylius.customer.pre_update

dispatched when a Customer is updated

sylius.oauth_user.post_create

dispatched when an OAuthUser is created

sylius.oauth_user.post_update

dispatched when an OAuthUser is updated

sylius.shop_user.post_create

dispatched when a User is created

sylius.shop_user.post_update

dispatched when a User is updated

sylius.shop_user.pre_delete

dispatched before a User is deleted

sylius.user.email_verification.token

dispatched when a verification token is requested

sylius.user.password_reset.request.
token

dispatched when a reset password token is requested

sylius.user.pre_password_change

dispatched before user password is changed

sylius.user.pre_password_reset

dispatched before user password is reset

sylius.user.security.implicit_login

dispatched when an implicit login is done

security.interactive_login

dispatched when an interactive login is done

Learn more

* User - Component Documentation

36

Chapter 1. The Book

Sylius

AdminUser

The AdminUser entity extends the User entity. It is created to enable administrator accounts that have access to the
administration panel.

How to create an AdminUser programmatically?

The AdminUser is created just like every other entity, it has its own factory. By default it will have an administration
role assigned.

/** @var AdminUserInterface Sadmin */
Sadmin = $this->container->get ('sylius.factory.admin_user')->createNew();

$admin->setEmail ('administrator@test.com');
Sadmin->setPlainPassword('pswd');

Sthis->container->get ('sylius.repository.admin_user')->add($admin);

Administration Security

In Sylius by default you have got the administration panel routes (/admin/ «) secured by a firewall - its configuration
can be found in the security.yml file.

Only the logged in AdminUsers are eligible to enter these routes.

Learn more

e Customer & ShopUser - Documentation

Addresses
Countries

Countries are a part of the Addressing concept. The Country entity represents a real country that your shop is willing
to sell its goods in (for example the UK). It has an ISO code to be identified easily (ISO 3166-1 alpha-2).

Countries might also have Provinces, which is in fact a general name for an administrative division, within a country.
Therefore we understand provinces as states of the USA, voivodeships of Poland, cantons of Belgium or Bundeslidnder
of Germany.

How to add a country?

To give you a better insight into Countries, let’s have a look on how to prepare and add a Country to the system
programmatically. We will do it with a province at once.

You will need factories for countries and provinces in order to create them:

1.1. The Book 37

https://github.com/Sylius/Sylius/blob/master/app/config/security.yml
http://www.iso.org/iso/country_codes

Sylius

/#+* @var CountrylInterface Scountry */
Scountry = S$this->container->get ('sylius.factory.country')->createNew();

/%% @var ProvincelInterface Sprovince #*/
Sprovince = S$this->container->get ('sylius.factory.province')->createNew();

To the newly created objects assign codes.

// US - the United States of America
Scountry—->setCode ('US"'") ;

// US_CA - California
Sprovince->setCode ('US_CA"'");

Provinces may be added to a country via a collection. Create one and add the province object to it and using the
prepared collection add the province to the Country.

ovinces = new ArrayCollection();
~ovinces—->add ($province) ;

Scountry->setProvinces ($provinc

)i

You can of course simply add single province:

ountry->addProvince ($province) ;

Finally you will need a repository for countries to add the country to your system.

/#*% @var RepositoryInterface ScountryRepository =/
ScountryRepository = $this->get ('sylius.repository.country');

ScountryRepository->add ($country) ;

From now on the country will be available to use in your system.

Learn more

* Addressing - Bundle Documentation

* Addressing - Component Documentation

Zones

Zones are a part of the Addressing concept.

Zones and ZoneMembers

Zones consist of ZoneMembers. It can be any kind of zone you need - for instance if you want to have all the EU
countries in one zone, or just a few chosen countries that have the same taxation system in one zone, or you can even
distinguish zones by the ZIP code ranges in the USA.

Three different types of zones are available:
 country zone, which consists of countries.

* province zone, which is constructed from provinces.

38 Chapter 1. The Book

Sylius

* zone, which is a group of other zones.

How to add a Zone?

Let’s see how you can add a Zone to your system programmatically.

Firstly you will need a factory for zones - There is a specific one.

/** @var ZoneFactoryInterface SzoneFactory */
SzoneFactory = S$this->container->get ('sylius.factory.zone');

Using the ZoneFactory create a new zone with its members. Let’s take the UK as an example.

/++ @var ZonelInterface Szone x/
Szone = $zoneFactory->createWithMembers (['GB_ENG', 'GB_NIR', 'GB_SCT'. 'GB_WLS']);

Now give it a code, name and type:

Szone—->setCode ('GB') ;

Szone->setName ('United Kingdom');

// available types are the type constants from the Zonelnterface
Szone->setType (ZonelInterface: :TYPE_PROVINCE) ;

Finally get the zones repository from the container and add the newly created zone to the system.

/+# @var RepositoryInterface SzoneRepository =/

— &+

SzoneRepository = S$this->container->get ('sylius.repository.zone');

SzoneRepository->add($zone);

Matching a Zone

Zones are not very useful alone, but they can be a part of a complex taxation/shipping or any other system. A service
implementing the ZoneMatcherlInterface is responsible for matching the Address to a specific Zone.

/*+ @var ZoneMatcherInterface SzoneMatcher x/
SzoneMat

cher

Sthis—->get ('sylius.zone_matcher');
Szone = S$zoneMatcher->match ($Suser->getAddress());

ZoneMatcher can also return all matching zones. (not only the most suitable one)

/++ @var ZoneMatcherInterface SzoneMatcher #*/
SzoneMatcher = $this->get ('sylius.zone_matcher');
Szones SzoneMatcher->matchAll (Suser->getAddress());

Internally, Sylius uses this service to define the shipping and billing zones of an Order, but you can use it for many
different things and it is totally up to you.

Learn more

* Addressing - Bundle Documentation

* Addressing - Component Documentation

1.1. The Book 39

Sylius

Addresses

Every address in Sylius is represented by the Address model. It has a few important fields:
e firstName
* lastName
* phoneNumber
* company
e countryCode
* provinceCode
* street
e city

* postcode

Note: The Address has a relation to a Customer - which is really useful during the Checkout addressing step.

How to create an Address programmatically?

In order to create a new address, use a factory. Then complete your address with required data.

/** @var AddressInterface S$Saddress */
Saddress = Sthis->container->get ('sylius.factory.address')->createNew();

Saddress—->setFirstName ('Harry');
Saddress—>setLastName ('Potter');
Saddress—->setCompany ('Ministry of Magic');
Saddress—->setCountryCode ('UK"') ;
Saddress—>setProvinceCode ('UKJ"') ;
Saddress—->setCity ('Little Whinging');
Saddress—>setStreet ('4 Privet Drive');
Saddress—>setPostcode ('000001") ;

// and finally having the address you can assign it to any Order
Sorder—->setShippingAddress (Saddress) ;

Learn more

* Addressing - Component Documentation

* Addressing - Bundle Documentation

Address Book

The Address Book concept is a very convenient solution for the customers of your shop, that come back. Once they
provide an address it is saved in the system and can be reused the next time.

Sylius handles the address book in a not complex way:

40 Chapter 1. The Book

Sylius

The Addresses Collection on a Customer

On the Customer entity we are holding a collection of addresses:

J ok k
* @var Collection|AddressInterfacel[]
*/

protected Saddresses;

We can operate on it as usual - by adding and removing objects.

Besides the Customer entity has a default address field that is the default address used both for shipping and billing,
the one that will be filling the form fields by default.

How to add an address to the address book manually?

If you would like to add an address to the collection of Addresses of a chosen customer that’s all what you should do:

Create a new address:

/*+ @var AddressInterface Saddress */
Saddress = S$this->container->get ('sylius.factory.address')->createNew () ;

Saddress—->setFirstName ('Ronald') ;
Saddress—->setLastName ('Weasley');
Saddress->setCompany ('Ministry of Magic');
Saddress—>setCountryCode ('UK") ;
Saddress—>setProvinceCode ('UKJ'") ;
Saddress->setCity ('Otter St Catchpole');
Saddress—->setStreet ('The Burrow');
Saddress->setPostcode ('000001") ;

Then find a customer to which you would like to assign it, and add the address.

Scustomer = Sthis->container->get ('sylius.repository.customer')->findOneBy (['email' =>
— 'ron.weasley@magic.com']);

Scustomer—>addAddress (Saddress) ;

Remember to flush the customer’s manager to save this change.

Sthis->container->get ('sylius.manager.customer')->flush();

Learn more

* Customer & ShopUser Concept Documentation
* Addressing - Component Documentation

* Addressing - Bundle Documentation

* Countries

e Zones

* Addresses

* Address Book

1.1. The Book 41

Sylius

* Customer and ShopUser
* AdminUser

* Addresses

* Customer and ShopUser
* AdminUser

e Addresses

1.1.6 Products

This is a guide to understanding products handling in Sylius together with surrounding concepts. Read about Associ-
ations, Reviews, Attributes, Taxons etc.

Products

This is a guide to understanding products handling in Sylius together with surrounding concepts.

Products

Product model represents unique products in your Sylius store. Every product can have different variations and
attributes.

Warning: Each product has to have at least one variant to be sold in the shop.

How to create a Product?

Before we learn how to create products that can be sold, let’s see how to create a product without its complex depen-
dencies.

/++ @var ProductFactoryInterface SproductFactory *#*/
SproductFactory = S$this->get ('sylius.factory.product');

/+* @var ProductInterface Sproduct =/
Sproduct = SproductFactory->createNew () ;

Creating an empty product is not enough to save it in the database. It needs to have a name, a code and a slug.

product—->setName ('T-Shirt"');
product->setCode ('00001");
product->setSlug('t-shirt');

&)
-
S
&
ol

/*% @var RepositoryInterface SproductRepository #*/

&

SproductRepository = $this->get ('sylius.repository.product');

&

SproductRepository->add ($Sproduct) ;

After being added via the repository, your product will be in the system. But the customers won’t be able to buy it.

42 Chapter 1. The Book

Sylius

Variants

ProductVariant represents a unique kind of product and can have its own pricing configuration, inventory tracking
etc.

Variants may be created out of Options of the product, but you are also able to use product variations system without
the options at all.

Virtual Product Variants, that do not require shipping

Tip: On the ProductVariant there is a possibility to make a product virtual - by setting its shippingRequired
property to false. In such a way you can have products that will be downloadable or installable for instance.

How to create a Product with a Variant?

You may need to sell product in different Variants - for instance you may need to have books both in hardcover
and in paperback. Just like before, use a factory, create the product, save it in the Repository. And then using the
ProductVariantFactory create a variant for your product.

/%% @var ProductVariantFactoryInterface SproductVariantFactory x*/

&

SproductVariantFactory = $this->get ('sylius.factory.product_variant');

/*+ @var ProductVariantInterface SproductVariant #*/

&

SproductVariant = $productVariantFactory->createNew();

Having created a Variant, provide it with the required attributes and attach it to your Product.

SproductVariant—->setName ('Hardcover"') ;
ariant->setCode ('1001");
ariant—->setPosition (1) ;
SproductVariant->setProduct (S$Sproduct) ;

Sproduct

SproductV

Finally save your Variant in the database using a repository.

/%% @var RepositoryInterface SproductVariantRepository =*/

S$productVariantRepository = $this->get ('sylius.repository.product_variant');
SproductVariantRepository->add($variant);
Options

In many cases, you will want to have product with different variations. The simplest example would be a piece of
clothing, like a T-Shirt available in different sizes and colors or a glass available in different shapes or colors. In order
to automatically generate appropriate variants, you need to define options.

Every option type is represented by ProductOption and references multiple ProductOptionValue entities.
For example you can have two options - Size and Color. Each of them will have their own values.
* Size

-S

1.1. The Book 43

Sylius

- XXL
* Color

- Red

— Green

— Blue

After defining possible options for a product let’s move on to Variants which are in fact combinations of options.

How to create a Product with Options and Variants?

Firstly let’s learn how to prepare an exemplary Option and its values.

/#+* @var ProductOptionInterface Soption */

Soption = S$this->get ('sylius.factory.product_option')->createNew();
Soption->setCode ('t_shirt_color');

Soption—->setName ('T-Shirt Color');

// Prepare an array with values for your option, with codes, locale code and option,,
—values.

SvaluesData = [
'OvVl' => ['locale' => 'en_US', 'value' => 'Red'],
'OvV2' => ['locale' => 'en_US', 'value' => 'Blue'],
'Ov3' => ['locale' => 'en_US', 'value' => 'Green'],

17

foreach ($valuesData as Scode => Svalues) {
/##% @var ProductOptionValueInterface SoptionValue x/
SoptionValue = Sthis->get ('sylius.factory.product_option_value')->createNew();

SoptionValue->setCode ($code) ;
SoptionValue->setFallbackLocale ($values['locale']);
SoptionValue->setCurrentLocale (Svalues['locale']);
SoptionValue->setValue ($Svalues|'value']);

Soption->addvValue (SoptionValue) ;

After you have an Option created and you keep it as Soption variable let’s add it to the Product and generate
Variants.

// Assuming that you have a basic product let's add the previously created option to,
—1it.
Sproduct->addOption (Soption);

// Having option of a product you can generate variants. Sylius has a service for_
—that operation.

/*+ @var ProductVariantGeneratorInterface SvariantGenerator #*/

SvariantGenerator = S$this->get ('sylius.generator.product_variant');

(continues on next page)

44 Chapter 1. The Book

Sylius

(continued from previous page)

SvariantGenerator—->generate (Sproduct) ;
// And finally add the product, with its newly generated variants to the repository.
/*+ @var RepositoryInterface SproductRepository #*/

SproductRepository = $this->get ('sylius.repository.product');

SproductRepository->add ($product) ;

Learn more:

e Product - Bundle Documentation

* Product - Component Documentation

Product Reviews

Product Reviews are a marketing tool that let your customers give opinions about the products they buy in your shop.
They have a rat ing and comment.

Rating

The rating of a product review is required and must be between 1 and 5.

Product review state machine

When you look inside the CoreBundle/Resources/config/app/state_machine/
sylius_product_review.yml you will find out that a Review can have 3 different states:

* new,
* accepted,
* rejected

There are only two possible transitions: accept (from new to accepted) and re ject (from new to rejected).

1.1. The Book 45

Sylius

sylius_product_review

hew

accept reject

[accepted] [rejected]

When a review is accepted the average rating of a product is updated.

How is the average rating calculated?

The average rating is updated by the AverageRatingUpdater service.

It wraps the AverageRatingCalculator, and uses it inside the updateFromReview method.

How to add a ProductReview programmatically?

Create a new review using a factory:

/#*+ @var ReviewInterface Sreview x/

Sratri ow
sreview

$this->container->get ('sylius.factory.product_review')->createNew () ;

Fill the content of your review.

view->setTitle ('My Review');
view—>setRating(5);
Sreview->setComment ('This product is really great');

Then get a customer from the repository, which you would like to make an author of this review.

Scustomer = Sthis->container->get ('sylius.repository.customer')->findOneBy (['email' =>
— 'john.doeltest.com']);

Sreview—>setAuthor (Scustomer) ;

Remember to set the object that is the subject of your review and then add the review to the repository.

46 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ReviewBundle/Updater/AverageRatingUpdater.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Review/Calculator/AverageRatingCalculator.php

Sylius

Sreview->setReviewSubject (Sproduct) ;
Sthis->container->get ('sylius.repository.product_review')->add(Sreview);
Learn more

¢ Product - Bundle Documentation

* Product - Component Documentation

Product Associations

Associations of products can be used as a marketing tool for suggesting your customers, what products to buy together
with the one they are currently considering. Associations can increase your shop’s efficiency. You choose what strategy
you prefer. They are fully configurable.

Association Types

The type of an association can be different. If you sell food you can suggest inspiring ingredients, if you sell products
for automotive you can suggest buying some tools that may be useful for a home car mechanic. Exemplary association
types can be: up-sell, cross—sell, accessories, alternatives and whatever you imagine.

How to create a new Association Type?

Create a new Association Type using a dedicated factory. Give the association a code and a name to easily recognize
the type.

/##* @var ProductAssociationTypelInterface $associationType */
SassociationType = Sthis->container->get ('sylius.factory.product_association_type')->
—createNew () ;

SassociationType->setCode ('accessories');
SassociationType->setName ('Accessories');

To have the new association type in the system add it to the repository.

Sthis->container->get ('sylius.repository.product_association_type')->add(

sociationType);

How to add a new Association to a Product?

Find in your system a product to which you would like to add an association. We will use a Go Pro camera as an
example.

Sproduct = $this->container->get ('sylius.repository.product')->findOneBy(['code' =>
—'go—-pro—-camera'l);

Next create a new Association which will connect our camera with its accessories. Such an association needs the
AssociationType we have created in the previous step above.

1.1. The Book 47

Sylius

/*+ @var ProductAssociationInterface Sassociation #*/
Sassociation = $this->container->get ('sylius.factory.product_association')->
—~createNew () ;

/#** @var ProductAssociationTypelInterface SassociationType =/
SassociationType = S$this->container->get ('sylius.repository.product_association_type

—')->findOneBy (['code' => 'accessories']);

Sassociation->setType ($SassociationType);

Let’s add all products from a certain taxon to the association we have created. To do that find a desired taxon by code
and get all its products. Perfect accessories for a camera will be SD cards.

/** @var TaxonInterface Staxon #*/
Staxon = Sthis->container—->get ('sylius.repository.taxon')->findOneBy (['code' => 'sd-
—cards']);

SassociatedProducts = S$taxon->getProducts();

Having a collection of products from the SD cards taxon iterate over them and add them one by one to the association.

foreach ($SassociatedProducts as SassociatedProduct) {

Sassociation->addAssociatedProduct (SassociatedProduct) ;

Finally add the created association with SD cards to our Go Pro camera product.

Sproduct—->addAssociation (Sassociation);

And to save everything in the database you need to add the created association to the repository.

Sthis->container->get ('sylius.repository.product_association')->add($association);

Learn more:

* Product - Concept Documentation

Attributes

Attributes in Sylius are used to describe traits shared among entities. The best example are products, that may be of
the same category and therefore they will have many similar attributes such as number of pages for a book, brand
of a T-shirt or simply details of any product.

Attribute

The Attribute model has a translatable name (like for instance Book pages), code (book_pages) and type
(integer). There are a few available types of an Attribute:

* text (default)
¢ checkbox

* integer

48 Chapter 1. The Book

Sylius

* percent
* textarea
* date
* datetime
What these types may be useful for?
* text - brand of a T-Shirt
¢ checkbox - show whether a T-Shirt is made of cotton or not
* integer - number of elements when a product is a set of items.
* percent - show how much cotton is there in a piece of clothing
* textarea - display more detailed information about a product
* date - release date of a movie

e datetime - accurate date and time of an event

How to create an Attribute?

To give you a better insight into Attributes, let’s have a look how to prepare and add an Attribute with a Product to the
system programatically.

To assign Attributes to Products firstly you will need a factory for ProductAttributes. The AttributeFactory has a
special method createTyped($type), where $type is a string.

The Attribute needs a code and a name before it can be saved in the repository.

/++ @var AttributeFactoryInterface SattributeFactory #*/
SattributeFactory = $this->container->get ('sylius.factory.product_attribute');

/*% @var AttributelInterface Sattribute =/
Sattribute = SattributeFactory->createTyped('text');

ttribute->setName ('Book cover');
Sattribute->setCode ('book_cover');

Sthis->container->get ('sylius.repository.product_attribute')->add($attribute);

In order to assign value to your Attribute you will need a factory of ProductAttributeValues, use it to create a new
value object.

/#+* @var FactorylInterface SattributeValueFactory =*/
SattributeValueFactory = S$this->container->get ('sylius.factory.product_attribute_value

')

/*+ @var AttributeValuelInterface Shardcover x/
Shardcover = S$attributeValueFactory->createNew () ;

Attach the new AttributeValue to your Attribute and set its value, which is what will be rendered in frontend.

Shardcover—->setAttribute (Sattribute);

Shardcover—->setValue ('hardcover');

Finally let’s find a product that will have your newly created attribute.

1.1. The Book 49

Sylius

/++ @var ProductInterface Sproduct =/

Sproduct = Sthis->container->get ('sylius.repository.product')->findOneBy (['code' =>
—'code']);
Sproduct->addAttribute (Shardcover) ;

Now let’s see what has to be done if you would like to add an attribute of integer type. Let’s find such a one in the
repository, it will be for example the BOOK-PAGES attribute.

/++ @var AttributelInterface SbookPagesAttribute =/
SbookPagesAttribute = $this->container->get ('sylius.repository.product_attribute')->
—findOneBy (['code' => 'BOOK-PAGES']);

/+# @var AttributeValuelnterface Spages */
Spages = SattributeValueFactory->createNew () ;

Spages—->setAttribute ($bookPagesAttribute);
Spages->setValue (500) ;

S$product—>addAttribute (Spages) ;

After adding attributes remember to flush the product manager.

Sthis->container->get ('sylius.manager.product')->flush();

Your Product will now have two Attributes.

Learn more

* Attribute - Component Documentation

Pricing

Pricing is a part of Sylius responsible for providing the product prices per channel.

Note: All prices in Sylius are saved in the base currency of each channel separately.

Currency per Channel

As you already know Sylius operates on Channels.

Each channel has a base currency in which all prices are saved.

Note: Whenever you operate on concepts that have specified values per channel (like ProductVariant’s price, Promo-
tion’s fixed discount etc.)

50 Chapter 1. The Book

Sylius

Exchange Rates

Each currency defined in the system should have an ExchangeRate configured.
ExchangeRate is a separate entity that holds a relation between two currencies and specifies their exchange rate.

Exchange rates are used for viewing the approximate price in a currency different from the base currency of a channel.

Learn more

e Currency - Component Documentation

* Currencies Concept Documentation

Taxons

We understand Taxons in Sylius as you would normally define categories. Sylius gives you a possibility to categorize
your products in a very flexible way, which is one of the most vital functionalities of the modern e-commerce systems.
The Taxons system in Sylius works in a hierarchical way. Let’s see exemplary categories trees:

Category
\
[__ Clothes
\ _ T-Shirts

\ _ Shirts
| _ Dresses
\ _ Shoes
\
__ Books

_ Fantasy

_ Romance
_ Adventure
_ Other

Gender
\
_ Male
_ Female

How to create a Taxon?

As always with Sylius resources, to create a new object you need a factory. If you want to create a single, not nested
category:

/#** @var FactorylInterface StaxonFactory x/
StaxonFactory = S$this->get ('sylius.factory.taxon');

/#*+ @var TaxonInterface Staxon */
Staxon = S$taxonFactory->createNew () ;

$taxon—->setCode ('category');
Staxon->setName ('Category');

But if you want to have a tree of categories, create another taxon and add it as a child to the previously created one.

1.1. The Book 51

Sylius

/** @var TaxonInterface SchildTaxon =*/
SchildTaxon = S$taxonFactory->createNew();

SchildTaxon—->setCode ('clothes');
SchildTaxon->setName ('Clothes');

Staxon—->addChild ($SchildTaxon) ;

Finally the parent taxon has to be added to the system using a repository, all its child taxons will be added with it.

/#+# @var TaxonRepositorylInterface StaxonRepository #/
StaxonRepository = S$Sthis->get ('sylius.repository.taxon');

StaxonRepository—->add (Staxon) ;

How to assign a Taxon to a Product?

In order to categorize products you will need to assign your taxons to them - via the addProductTaxon () method
on Product.

/#+* @var ProductInterface Sproduct */

Sproduct = S$this->container->get ('sylius.factory.product')->createNew () ;
Sproduct->setCode ('product_test"');

Sproduct—->setName ('Test ') ;

/%% @var TaxonInterface Staxon #*/

Staxon = S$this->container->get ('sylius.factory.taxon')->createNew();
Staxon—>setCode ('food");

Staxon—->setName ('Food"') ;

/*+ @var RepositoryInterface StaxonRepository #*/
StaxonRepository = S$this->container->get ('sylius.repository.taxon');
StaxonRepository—->add ($Staxon) ;

/#** @var ProductTaxonInterface SproductTaxon */

SproductTaxon = S$this->container->get ('sylius.factory.product_taxon')->createNew () ;
SproductTaxon—->setTaxon ($taxon) ;

SproductTaxon->setProduct ($product) ;

Sproduct->addProductTaxon ($productTaxon) ;

/++ @var EntityManagerInterface SproductManager =/
SproductManager = $this->container->get ('sylius.manager.product');

SproductManager—>persist (Sproduct) ;
SproductManager—->flush () ;

What is the mainTaxon of a Product?

The product entity in Sylius core has a field mainTaxon. This field is used, for instance, for breadcrumbs generation.
But you can also use it for your own logic, like for instance links generation.

To set it on your product you need to use the setMainTaxon () method.

52 Chapter 1. The Book

Sylius

Learn more

» Taxonomy - Bundle Documentation

* taxonomy - Component Documentation

Inventory

Sylius leverages a very simple approach to inventory management. The current stock of an item is stored on the
ProductVariant entity as the onHand value.

InventoryUnit

InventoryUnit has a relation to a Stockable on it, in case of Sylius Core it will be a relation to the ProductVariant that
implements the Stockablelnterface on the OrderItemUnit that implements the InventoryUnitInterface.

It represents a physical unit of the product variant that is in the shop.

Inventory On Hold

Putting inventory items onHold is a way of reserving them before the customer pays for the order. Items are put on
hold when the checkout is completed.

Tip: Putting items onHold does not remove them from onHand yet. If a customer buys 2 tracked items out of 5
being in the inventory (5 onHand), after the checkout there willbe 5 onHand and 2 onHold.

Availability Checker

There is a service that will help you check the availability of items in the inventory - AvailabilityChecker.

It has two methods i sStockAvailable (is there at least one item available) and i sStockSufficient (is there
a given amount of items available).

Tip: There are two respective twig functions for checking inventory: sylius_inventory_is_available and
sylius_inventory_is_sufficient.

OrderinventoryOperator

Inventory Operator is the service responsible for managing the stock amounts of every ProductVariant on an Order
with the following methods:

* hold - is called when the order’s checkout is completed, it puts the inventory units onHold, while still not
removing them from onHand,

e sell - is called when the order’s payment are assigned with the state paid. The inventory items are then
removed from onHold and onHand,

* release - is a way of making onHold items of an order back to only onHand,

1.1. The Book 53

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Inventory/Model/StockableInterface.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Inventory/Checker/AvailabilityChecker.php

Sylius

* giveBack - is a way of returning sold items back to the inventory onHand,

e cancel - this method works both when the order is paid and unpaid. It uses both giveBack and release
methods.

How does Inventory work on examples?

Tip: You can see all use cases we have designed in Sylius in our Behat scenarios for inventory.

Learn more

* Order concept documentation
e Inventory Bundle documentation

* Inventory Component documentation

Search

Having a products search functionality in an eCommerce system is a very popular use case. Sylius provides a products
search functionality that is a grid filter.

Grid filters

For simple use cases of products search use the filters of grids. For example, the shop’s categories each have a
search filter in the products grid:

Sylius/Bundle/ShopBundle/Resources/config/grids/product.yml
filters:
search:
type: string
label: false
options:
fields: [translation.name]
form_options:
type: contains

It searches by product names that contains a string that the user typed in the search bar.

The search bar looks like below:

54 Chapter 1. The Book

https://github.com/Sylius/Sylius/tree/master/features/inventory

Sylius

guia Q Search x Clear

Display by position =

s

Book "quia" by Prof.
Maureen Nicolas V
$4.94

Customizing search filter

The search bar in many shops should be more sophisticated, than just a simple text search. You may need to add
searching by price, reviews, sizes or colors.

If you would like to extend this built-in functionality read this article about grids customizations, and the GridBundle
docs.

ElasticSearch

When the grids filtering is not enough for you, and your needs are more complex you should go for the ElasticSearch
integration.

There is the Sylius/SyliusElasticSearchPlugin integration extension, which you can use to extend Sylius functionalities
with ElasticSearch.

All you have to do is require the plugin in your project via composer, install the ElasticSearch server, and configure
ElasticSearch in your application. Everything is well described in the Sylius/SyliusElasticSearchPlugin’s readme.

Learn more

* SyliusElasticSearchPlugin

* Grid Bundle documentation

* Grid Component documentation
* Products

* Product Reviews

* Product Associations

o Attributes

* Pricing

e Taxons

1.1. The Book 55

https://www.elastic.co/products/elasticsearch
https://github.com/Sylius/SyliusElasticSearchPlugin
https://github.com/Sylius/SyliusElasticSearchPlugin

Sylius

Inventory

e Search

Products

Product Reviews

Product Associations

Attributes

e Pricing

Taxons

Inventory

e Search

1.1.7 Carts & Orders

In this chapter you will learn everything you need to know about orders in Sylius. This concept comes together with a
few additional ones, like promotions, payments, shipments or checkout in general.

You should also have a look here if you are looking for Cart, which is in Sylius an Order in the cart state.

Carts & Orders

In this chapter you will learn everything you need to know about orders in Sylius. This concept comes together with a
few additional ones, like promotions, payments, shipments or checkout in general.

Warning: Cart in Sylius is in fact an Order in the state cart.

Orders

Order model is one of the most important in Sylius, where many concepts of e-commerce meet. It represents an order
that can be either placed or in progress (cart).

Order holds a collection of OrderItem instances, which represent products from the shop, as its physical copies, with
chosen variants and quantities.

Each Order is assigned to the channel in which it has been created as well as the language the customer was using
while placing the order. The order currency code will be the base currency of the current channel by default.

How to create an Order programmatically?

To programmatically create an Order you will of course need a factory.

/*+ @var FactoryInterface Sorder */

SorderFactory = S$this->container->get ('sylius.factory.order');
/** @var OrderInterface Sorder =/

Sorder = S$orderFactory->createNew () ;

56 Chapter 1. The Book

Sylius

Then get a channel to which you would like to add your Order. You can get it from the context or from the repository
by code for example.

/%% @var ChannellInterface Schannel x*/
Schannel = S$this->container->get ('sylius.context.channel')->getChannel ();

Sorder—>setChannel ($Schannel) ;

Next give your order a locale code.

/+* @var string SlocaleCode #*/
SlocaleCode = $this->container->get ('sylius.context.locale')->getLocaleCode();

Sorder—>setLocaleCode ($SlocaleCode) ;

And a currency code:

ScurrencyCode = $this->container->get ('sylius.context.currency')->getCurrencyCode () ;

Sorder->setCurrencyCode ($ScurrencyCode) ;

What is more the proper Order instance should also have the Customer assigned. You can get it from the repository
by email.

/*+ @var CustomerInterface Scustomer #*/
Scustomer = S$this->container->get ('sylius.repository.customer')->findOneBy(['email' =>
— 'shoplexample.com']);

Sorder—->setCustomer (Scustomer) ;

A very important part of creating an Order is adding OrderItems to it. Assuming that you have a Product with a
ProductVariant assigned already in the system:

/#*# @var ProductVariantInterface Svariant +/
Svariant = Sthis->container->get ('sylius.repository.product_variant')->findOneBy ([]);

// Instead of getting a specific variant from the repository

// you can get the first variant of off a product by using Sproduct->getVariants()->
~first ()

// or use the x+VariantResolver+# service - either the default one or your own.

// The default product variant resolver is available at id - 'sylius.product_variant_
—resolver.default’

/%% @var OrderItemInterface SorderItem #*/
SorderItem = $this->container->get ('sylius.factory.order_item')->createNew() ;
SorderItem—>setVariant (Svariant);

In order to change the amount of items use the OrderItemQuantityModifier.

Sthis->container->get ('sylius.order_item_qguantity_modifier')->modify(SorderItem, 3);

Add the item to the order. And then call the CompositeOrderProcessor on the order to have everything recalculated.

Sorder—->addItem($SorderItem);

Sthis—->container->get ('sylius.order_processing.order_processor')->process ($order);

Finally you have to save your order using the repository.

1.1. The Book 57

Sylius

/+# @var OrderRepositorylInterface SorderRepository #/
SorderRepository = $this->container->get ('sylius.repository.order');

SorderRepository—->add(Sorder);

The Order State Machine

Order has also its own state, which can have the following values:
e cart - before the checkout is completed, it is the initial state of an Order,
* new - when checkout is completed the cart is transformed into a new order,
e fulfilled - when the order payments and shipments are completed,

e cancelled - when the order was cancelled.

sylius_order

([cat]

create

new

cancel fulfill

[cancelled] [fulfilled

J

Tip: The state machine of order is an obvious extension to the state machine of checkout.

58

Chapter 1. The Book

Sylius

Shipments of an Order

An Order in Sylius holds a collection of Shipments on it. Each shipment in that collection has its own shipping
method and has its own state machine. This lets you to divide an order into several different shipments that have own
shipping states (like sending physical objects via DHL and sending a link to downloadable files via e-mail).

Tip: If you are not familiar with the shipments concept check the documentation.

State machine of Shipping in an Order

sylius_order_shipping

[et]

request_shipping

partially ship ready) cancel
[.y

[cancelled]

ship

v | |
[partially_shipped]ﬂp[shipped]

How to add a Shipment to an Order?

You will need to create a shipment, give it a desired shipping method and add it to the order. Remember to process the
order using order processor and then flush the order manager.

/*+ @var ShipmentInterface $shipment x/
$shipment = $this->container->get ('sylius.factory.shipment')->createNew();

(continues on next page)

1.1. The Book 59

Sylius

(continued from previous page)

Sshipment->setMethod ($this->container->get ('sylius.repository.shipping_method')->
—findOneBy (['code' => 'UPS']));

Sorder->addShipment ($shipment) ;

Sthis->container->get ('sylius.order_processing.order_processor')->process (Sorder);
Sthis->container->get ('sylius.manager.order')->flush{();

Shipping costs of an Order

Shipping costs of an order are stored as Adjustments. When a new shipment is added to a cart the order processor
assigns a shipping adjustment to the order that holds the cost.

Shipping a Shipment with a state machine transition

Just like in every state machine you can execute its transitions manually. To ship a shipment of an order you have to
apply two transitions request_shipping and ship.

S$SstateMachineFactory = $this->container->get ('sm.factory');

SstateMachine = S$stateMachineFactory—->get (Sorder, OrderShippingTransitions::GRAPH);
SstateMachine->apply (OrderShippingTransitions: :TRANSITION_REQUEST_ SHIPPING);
SstateMachine->apply (OrderShippingTransitions: :TRANSITION_SHIP);

Sthis->container->get ('sylius.manager.order')->flush{();

After that the shippingState of your order will be shipped.

Payments of an Order

An Order in Sylius holds a collection of Payments on it. Each payment in that collection has its own payment method
and has its own payment state. It lets you to divide paying for an order into several different methods that have own
payment states.

Tip: If you are not familiar with the Payments concept check the documentation.

60 Chapter 1. The Book

Sylius

State machine of Payment in an Order

sylius_order_payment

transition to the same state

[cat]

request_payment

partially pay cancel

awaiting_payment

—lpanially_paid]
pay pay -b[partially_refunded}

[cancelled]

partially refund

paid

) refund
refund p[refunded Jii
refund T partially refund

How to add a Payment to an Order?

You will need to create a payment, give it a desired payment method and add it to the order. Remember to process the
order using order processor and then flush the order manager.

/#*+ @var PaymentInterface Spayment */
Spayment = S$this->container->get ('sylius.factory.payment')->createNew() ;

(continues on next page)

1.1. The Book 61

Sylius

(continued from previous page)

Spayment->setMethod ($Sthis->container->get ('sylius.repository.payment_method')->
—findOneBy (['code' => 'offline']));
$payment->setCurrencyCode ($currencyCode) ;

Sorder->addPayment ($Spayment) ;

Completing a Payment with a state machine transition

Just like in every state machine you can execute its transitions manually. To pay for a payment of an order you have
to apply two transitions request_payment and pay.

SstateMachineFactory = Sthis->container->get ('sm.factory');

[
>

SstateMachine = S$stateMachineFactory->get ($order, OrderPaymentTransitions::GRAPH) ;
ateMachine->apply (OrderPaymentTransitions: :TRANSITION_REQUEST_PAYMENT) ;

S
SstateMachine->apply (OrderPaymentTransitions: :TRANSITION_PAY) ;

Sthis->container->get ('sylius.manager.order')->flush();

If it was the only payment assigned to that order now the paymentState of your order will be paid.

Learn more

* Order - Component Documentation

¢ QOrder - Bundle Documentation

Taxation

Sylius’ taxation system allows you to apply appropriate taxes for different items, billing zones and using custom
calculators.

Tax Categories

In order to process taxes in your store, you need to configure at least one TaxCategory, which represents a specific
type of merchandise. If all your items are taxed with the same rate, you can have a simple “Taxable Goods” category
assigned to all items.

If you sell various products and some of them have different taxes applicable, you could create multiple categories.
For example, “Clothing”, “Books” and “Food”.

Additionally to tax categories, you can have different zones, in order to apply correct taxes for customers coming from
any country in the world.

How to create a TaxCategory programmatically?

In order to create a TaxCategory use the dedicated factory. Your TaxCategory requires a name and a code.

62 Chapter 1. The Book

Sylius

/*+ @var TaxCategoryInterface StaxCategory */
StaxCategory = S$this->container->get ('sylius.factory.tax_category')->createNew();

StaxCategory->setCode ('taxable_goods') ;
StaxCategory->setName ('Taxable Goods');

Sthis->container->get ('sylius.repository.tax_category')->add(staxCategory);

Since now you will have a new TaxCategory available.

How to set a TaxCategory on a ProductVariant?

In order to have taxes calculated for your products you have to set TaxCategories for each ProductVariant you create.
Read more about Products and Variants Zere.

/#*% @var TaxCategoryInterface StaxCategory x/

StaxCategory = Sthis->container->get ('sylius.repository.tax_category')->findOneBy ([
—'code' => 'taxable_goods']);

/** @var ProductVariantInterface Svariant x/

Svariant = $this>container->get ('sylius.repository.product_variant')->findOneBy (['code
="' => 'mug'l]);
Svariant->setTaxCategory ($taxCat

Tax Rates

A tax rate is essentially a percentage amount charged based on the sales price. Tax rates also contain other important
information:

¢ Whether product prices are inclusive of this tax
* The zone in which the order address must fall within
* The tax category that a product must belong to in order to be considered taxable

* Calculator to use for computing the tax

TaxRates included in price

The TaxRate entity has a field for configuring if you would like to have taxes included in the price of a subject or not.

If you have a TaxCategory with a 23% VAT TaxRate includedInPrice ($taxRate->isIncludedInPrice ()
returns t rue), then the price shown on the ProductVariant in that TaxCategory will be increased by 23% all the time.
See the Behat scenario below:

Given the store has included in price "VAT" tax rate of 23%
And the store has a product "T-Shirt" priced at "$10.00"
When I add product "T-Shirt" to my cart

Then my cart total should be "$10.00"

And my cart taxes should be "$1.87"

If the TaxRate will not be included ($taxRate->isIncludedInPrice () returns false) then the price of
ProductVariant will be shown without taxes, but when this ProductVariant will be added to cart taxes will be shown in
the Taxes Total in the cart. See the Behat scenario below:

1.1. The Book 63

Sylius

Given the store has excluded from price "VAT" tax rate of 23%
And the store has a product "T-Shirt" priced at "$10.00"

When I add product "T-Shirt" to my cart

Then my cart total should be "$12.30"

And my cart taxes should be "$2.30"

How to create a TaxRate programmatically?

Note: Before creating a tax rate you need to know that you can have different tax zones, in order to apply correct
taxes for customers coming from any country in the world. To understand how zones work, please refer to the Zones
chapter of this book.

Use a factory to create a new, empty TaxRate. Provide a code, a name. Set the amount of charge in float. Then
choose a calculator and zone (retrieved from the repository beforehand).

Finally you can set the TaxCategory of your new TaxRate.

/++ @var TaxRateInterface StaxRate */
StaxRate = Sthis->container->get ('sylius.factory.tax_rate')->createNew();

StaxRate—->setCode ('7%"');
StaxRate—>setName ('7%"');
StaxRate->setAmount (0.07);
StaxRate—->setCalculator ('default');

// Get a Zone from the repository, for example the 'US' zone

/%% @var ZonelInterface Szone x*/

Szone = Sthis->container->get ('sylius.repository.zone')->findOneBy (['code' => 'US']);
StaxRate—>setZone (Szone);

// Get a TaxCategory from the repository, for example the 'alcohol' category

/++ @var TaxCategorylInterface StaxCategory #*/

StaxCategory = Sthis->container->get ('sylius.repository.tax_category')->findOneBy ([
—'code' => 'alcohol']);

StaxRate—->setCategory (StaxCategory);

Sthis->container—->get ('sylius.repository.tax_rate')->add(StaxRate);

Default Tax Zone

The default tax zone concept is used for situations when we want to show taxes included in price even when we do
not know the address of the Customer, therefore we cannot choose a proper Zone, which will have proper TaxRates.

Since we are using the concept of Channels, we will use the Zone assigned to the Channel as default Zone for
Taxation.

Note: To understand how zones work, please refer to the Zones chapter of this book.

64 Chapter 1. The Book

http://docs.sylius.com/en/latest/book/customers/addresses/zones.html
http://docs.sylius.com/en/latest/book/customers/addresses/zones.html

Sylius

Applying Taxes

For applying Taxes Sylius is using the OrderTaxesProcessor, which has the services that implement the OrderTaxe-
sApplicatorInterface inside.

Calculators

For calculating Taxes Sylius is using the DefaultCalculator. You can create your custom calculator for taxes by
creating a class that implements the CalculatorInterface and registering it as a sylius.tax_calculator.
your_calculator_name service.

Learn more

e Taxation - Bundle Documentation

e taxation - Component Documentation

Adjustments

Adjustment is a resource closely connected to the Orders’ concept. It influences the order’s total.
Adjustments may appear on the Order, the OrderItems and the OrderItemUnits.
There are a few types of adjustments in Sylius:

* Order Promotion Adjustments,

* Orderltem Promotion Adjustments,

¢ OrderltemUnit Promotion Adjustments,

 Shipping Adjustments,

 Shipping Promotion Adjustments,

* Tax Adjustments

And they can be generally divided into three groups: promotion adjustments, shipping adjustments and taxes
adjustments.

Also note that adjustments can be either positive: charges (with a +) or negative: discounts (with a).

How to create an Adjustment programmatically?

The Adjustments alone are a bit useless. They should be created alongside Orders.

As usual, get a factory and create an adjustment. Then give it a type - you can find all the available types on the
AdjustmentInterface. The adjustment needs also the amount - which is the amount of money that will be added to
the orders total.

Note: The amount is always saved in the base currency.

Additionally you can set the 1abe1 that will be displayed on the order view and whether your adjustment is neutral
- neutral adjustments do not affect the order’s total (like for example taxes included in price).

1.1. The Book 65

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/OrderProcessing/OrderTaxesProcessor.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/Taxation/Applicator/OrderTaxesApplicatorInterface.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/Taxation/Applicator/OrderTaxesApplicatorInterface.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Taxation/Calculator/DefaultCalculator.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Taxation/Calculator/CalculatorInterface.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/Model/AdjustmentInterface.php

Sylius

/** @var AdjustmentInterface Sadjustment x/
Sadjustment = S$this->container->get ('sylius.factory.adjustment')->createNew () ;

Sadjustment->setType (AdjustmentInterface: :ORDER_PROMOTION_ADJUSTMENT) ;
Sadjustment->setAmount (200) ;

Sadjustment->setNeutral (false);

Sadjustment->setLabel ('Test Promotion Adjustment');

Sorder->addAdjustment ($adjustment) ;

Note: Remember that if you are creating Orderltem adjustments you have to add them on the Orderltem level. The
same happens with the OrderltemUnit adjustments, which have to be added on the OrderltemUnit level.

To see changes on the order you need to update it in the database.

Sthis->container->get ('sylius.manager.order')->flush{();

Learn more

* Promotions - Concept Documentation
» Taxation - Concept Documentation

* Shipments - Concept Documentation

Promotions

The system of Promotions in Sylius is really flexible. It is a combination of promotion rules and actions.

Promotions have a few parameters - a unique code, name, usageLimit, the period of time when it works. There
is a possibility to define exclusive promotions (no other can be applied if an exclusive promotion was applied) and
priority that is useful for them, because the exclusive promotion should get the top priority.

Tip: The usageLimit of a promotion is the total number of times this promotion can be used.

Tip: Promotion priorities are numbers that you assign to the promotion. The larger the number, the higher the
priority. So a promotion with priority 3 would be applied before a promotion with priority set to 1.

What can you use the priority for? Well, imagine that you have two different promotions, one’s action is to give 10%
discount on whole order and the other one gives 5$ discount from the order total. Business (and money) wise, which
one should we apply first? ;)

How to create a Promotion programmatically?

Just as usual, use a factory. The promotion needs a code and a name.

66 Chapter 1. The Book

Sylius

/%% @var PromotionInterface Spromotion #*/

Spromotion = S$this->container->get ('sylius.factory.promotion')->createNew () ;
Spromotion—->setCode ('simple_promotion_1");
Spromotion->setName ('Simple Promotion');

Of course an empty promotion would be useless - it is just a base for adding Rules and Actions. Let’s see how to
make it functional.

Promotion Rules

The promotion Rules restrict in what circumstances a promotion will be applied. An appropriate RuleChecker (each
Rule type has its own RuleChecker) may check if the Order:

* Contains a number of items from a specified taxon (for example: contains 4 products that are categorized as
t-shirts)

* Has a specified total price of items from a given taxon (for example: all mugs in the order cost 208 in total)
* Has total price of at least a defined value (for example: the orders’ items total price is equal at least 508)

And many more similar, suitable to your needs.

Rule Types

The types of rules that are configured in Sylius by default are:
¢ Cart Quantity - checks if there is a given amount of items in the cart,
* Item Total - checks if items in the cart cost a given amount of money,
» Taxon - checks if there is at least one item from given taxons in the cart,

* Items From Taxon Total - checks in the cart if items from a given taxon cost a given amount of money,

Nth Order - checks if this is for example the second order made by the customer,

 Shipping Country - checks if the order’s shipping address is in a given country.

How to create a new PromotionRule programmatically?

Creating a PromotionRule is really simple since we have the PromotionRuleFactory. It has dedicated methods for
creating all types of rules available by default.

In the example you can see how to create a simple Cart Quantity rule. It will check if there are at least 5 items in the
cart.

/%% @var PromotionRuleFactoryInterface SruleFactory */
SruleFactory = $this->container->get ('sylius.factory.promotion_rule');

SquantityRule = S$ruleFactory->createCartQuantity ('5");

// add your rule to the previously created Promotion
Spromotion->addRule ($SquantityRule) ;

1.1. The Book 67

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/Factory/PromotionRuleFactory.php

Sylius

Note: Rules are just constraints that have to be fulfilled by an order to make the promotion eligible. To make
something happen to the order you will need Actions.

PromotionRules configuration reference

Each PromotionRule type has a very specific structure of its configuration array:

PromotionRule type Rule Configuration Array

cart_quantity ['count' => S$count]

item_total [SchannelCode => ['amount' => $amount]]

has_taxon ['taxons' => S$taxons]

total_of_ items_from_takdchannelCode => ['taxon' => $taxonCode, 'amount' =>
Samount]]

nth_order ['nth' => $nth]

contains_product ['product_code' => S$SproductCode]

Promotion Actions

Promotion Action is basically what happens when the rules of a Promotion are fulfilled, what discount is applied on
the whole Order (or its Shipping cost).

There are a few kinds of actions in Sylius:
« fixed discount on the order (for example: -5$ off the order total)
* percentage discount on the order (for example: -10% on the whole order)
* fixed unit discount (for example: -1$ off the order total but distributed and applied on each order item unit)

* percentage unit discount (for example: -10% off the order total but distributed and applied on each order item
unit)

¢ add product (for example: gives a free bonus sticker)

* shipping discount (for example: -6$ on the costs of shipping)

Tip: Actions are applied on all items in the Order. If you are willing to apply discounts on specific items in the order
check Filters at the bottom of this article.

How to create an PromotionAction programmatically?

In order to create a new PromotionAction we can use the dedicated PromotionActionFactory.

It has special methods for creating all types of actions available by default. In the example below you can how to
create a simple Fixed Discount action, that reduces the total of an order by 10$.

/%% @var PromotionActionFactoryInterface SactionFactory */
SactionFactory = $this->container->get ('sylius.factory.promotion_action');

Saction = $actionFactory->createFixedDiscount (10);

(continues on next page)

68 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/Factory/PromotionActionFactory.php

Sylius

(continued from previous page)

// add your action to the previously created Promotion
$promotion->addAction(Saction);

Note: All Actions are assigned to a Promotion and are executed while the Promotion is applied. This happens via the
CompositeOrderProcessor service. See details of applying Promotions below.

And finally after you have an PromotionAction and a PromotionRule assigned to the Promeotion add it to the
repository.

Sthis->container->get ('sylius.repository.promotion')->add (Spromotion);

PromotionActions configuration reference

Each PromotionAction type has a very specific structure of its configuration array:

PromotionAction type Action Configuration Array
order_fixed_discount [SchannelCode => ['amount' => S$amount]]
unit_fixed_discount [SchannelCode => ['amount' => S$amount]]
order_percentage_discount ['percentage' => S$percentage]
unit_percentage_discount [SchannelCode => ['percentage' =>
Spercentage]]
shipping_percentage_discount | ['percentage' => Spercentage]

Applying Promotions

Promotions in Sylius are handled by the PromotionProcessor which inside uses the PromotionApplicator.
The PromotionProcessor’s method process () is executed on the subject of promotions - an Order:

* firstly it iterates over the promotions of a given Order and first reverts them all,

* then it checks the eligibility of all promotions available in the system on the given Order

« and finally it applies all the eligible promotions to that order.

How to apply a Promotion manually?

Let’s assume that you would like to apply a 10% discount on everything somewhere in your code.

To achieve that, create a Promotion with an PromotionAction that gives 10% discount. You don’t need rules.

/++ @var PromotionInterface Spromotion */
Spromotion = S$this->container->get ('sylius.factory.promotion')->createNew() ;

>tion->setCode ('discount_10%"');
ion->setName ('10% discount');

/+* @var PromotionActionFactorylInterface SactionFactory x/
SactionFactory = S$this->container->get ('sylius.factory.promotion_action');
(continues on next page)

1.1. The Book 69

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Order/Processor/CompositeOrderProcessor.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Promotion/Processor/PromotionProcessor.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Promotion/Action/PromotionApplicator.php

Sylius

(continued from previous page)

Saction = $actionFactory->createPercentageDiscount (10);

Spromotion—->addAction (Saction);

S$this->container->get ('sylius.repository.promotion')->add (Spromotion) ;

// and now get the PromotionApplicator and use it on an Order (assuming that you have,

—one)
Sthis->container->get ('sylius.promotion_applicator')->apply (Sorder, Spromotion);

Promotion Filters

Filters are really handy when you want to apply promotion’s actions to groups of products in an Order. For example if
you would like to apply actions only on products from a desired taxon - use the available by default TaxonFilter.

Read these scenarios regarding promotion filters to have a better understanding of them.

Learn more

* Promotion - Component Documentation
* Promotion - Bundle Documentation
* How to create a custom promotion rule?

* How to create a custom promotion action?

Coupons

The concept of coupons is closely connected to the Promotions Concept.

Coupon Parameters

A Coupon besides a code has a date when it expires, the usageLimit and it counts how many times it was already
used.

How to create a coupon with a promotion programmatically?

Warning: The promotion has to be couponBased = true in order to be able to hold a collection of Coupons
that belong to it.

Let’s create a promotion that will have a single coupon that activates the free shipping promotion.

/%% @var PromotionInterface Spromotion #*/
Spromotion = $this->container->get ('sylius.factory.promotion')->createNew () ;

Spromotion—->setCode ('free_shipping');
Spromotion—->setName ('Free Shipping');

70 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/Promotion/Filter/TaxonFilter.php
https://github.com/Sylius/Sylius/blob/master/features/promotion/receiving_discount/receiving_fixed_discount_on_products_from_specific_taxon.feature

Sylius

Remember to set a channel for your promotion and to make it couponBased!

Spromotion—->addChannel ($this->container->get ('sylius.repository.channel')->findOneBy ([
—'code' => 'US_Web_Store']));

&

Spromotion—->setCouponBased (true) ;

Then create a coupon and add it to the promotion:

/+# @var CouponInterface Scoupon */
Scoupon = S$this->container->get ('sylius.factory.promotion_coupon')->createNew /() ;

Scoupon->setCode ('FREESHIPPING') ;

Spromotion—->addCoupon ($coupon) ;

Now create an PromotionAction that will take place after applying this promotion - 100% discount on shipping

/%% @var PromotionActionFactoryInterface SactionFactory */
SactionFactory = S$this->container->get ('sylius.factory.promotion_action');

// Provide the amount 1in float (1 = 100%, 0.1 = 10%)
Saction = SactionFactory->createShippingPercentageDiscount (1) ;

Spromotion->addAction ($action);

Sthis->container->get ('sylius.repository.promotion')->add (Spromotion) ;

Finally to see the effects of your promotion with coupon you need to apply a coupon on the Order.

How to apply a coupon to an Order?

To apply your promotion with coupon that gives 100% discount on the shipping costs you need an order that has
shipments. Set your promotion coupon on that order - this is what happens when a customer provides a coupon code
during checkout.

And after that call the OrderProcessor on the order to have the promotion applied.

Sorder->setPromotionCoupon (Scoupon) ;

Sthis->container->get ('sylius.order_processing.order_processor')->process (Sorder);

Promotion Coupon Generator

Making up new codes might become difficult if you would like to prepare a lot of coupons at once. That is why Sylius
provides a service that generates random codes for you - CouponGenerator. In its PromotionCouponGeneratorIn-
struction you can define the amount of coupons that will be generated, the length of their codes, expiration date and
usage limit.

// Find a promotion you desire in the repository
Spromotion = S$this->container->get ('sylius.repository.promotion')->findOneBy (['code"'
—=> 'simple_promotion']);

// Get the CouponGenerator service

(continues on next page)

1.1. The Book 71

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Promotion/Generator/PromotionCouponGenerator.php

Sylius

(continued from previous page)

/#** @var CouponGeneratorInterface Sgenerator =/
Sgenerator = $this->container->get ('sylius.promotion_coupon_generator');

// Then create a new empty PromotionCouponGeneratorInstruction
/%% @var PromotionCouponGeneratorInstructionInterface Sinstruction =*/
Sinstruction = new PromotionCouponGeneratorInstruction();

// By default the instruction will generate 5 coupons with codes of length equal to 6
// You can easily change it with the ' ‘setAmount () ' and ' 'setLength() ' methods
Sinstruction->setAmount (10);

// Now use the ' ‘generate() ' method with your instruction on the promotion where you,,
—want to have Coupons
Sgenerator->generate ($promotion, $instruction);

The above piece of code will result in a set of 10 coupons that will work with the promotion identified by the
simple_promotion code.

Learn more

* Promotions Concept Documentation
* promotion - Component Documentation

e promotion - Bundle Documentation

Shipments

A Shipment is a representation of a shipping request for an Order. Sylius can attach multiple shipments to each single
Order.

How is a Shipment created for an Order?

Warning: Read more about creating Orders where the process of assigning Shipments is clarified.

The Shipment State Machine

A Shipment that is attached to an Order will have its own state machine with the following states available: cart,
ready, cancelled, shipped.

The allowed transitions between these states are:

transitions:
create:
from: [cart]
to: ready
ship:

from: [ready]
to: shipped
cancel:

(continues on next page)

72 Chapter 1. The Book

Sylius

(continued from previous page)

from: [ready]
to: cancelled

sylius_shipment

([cat]

create

ready

ship cancel

[shipped] [cancelled]

Shipping Methods
ShippingMethod in Sylius is an entity that represent the way an order can be shipped to a customer.
How to create a ShippingMethod programmatically?

As usual use a factory to create a new ShippingMethod. Give it a code, set a desired shipping calculator and set a
zone. It also need a configuration, for instance of the amount (cost). At the end add it to the system using a repository.

SshippingMethod = $this->container->get ('sylius.factory.shipping _method')—->
—createNew () ;

SshippingMethod->setCode ('DHL') ;
SshippingMethod->setCalculator (DefaultCalculators: :FLAT_RATE) ;
SshippingMethod->setConfiguration(['channel_code' => ['amount' => 50]1]);

Szone = S$this->container->get ('sylius.repository.zone')->findOneByCode ('US"'");

SshippingMethod->setZone ($Szone) ;

(continues on next page)

1.1. The Book 73

Sylius

(continued from previous page)

$this->container->get ('sylius.repository.shipping_method')->add ($shippingMethod) ;

In order to have your shipping method available in checkout add it to a desired channel.

$channel = $this->container->get ('sylius.repository.channel')->findOneByCode ('channel_
—code');
Schannel->addShippingMethod ($shippingMethod) ;

Shipping Zones

Sylius has an approach of Zones used also for shipping. As in each e-commerce you may be willing to ship only to
certain countries for example. Therefore while configuring your ShippingMethods pay special attention to the zones
you are assigning to them. You have to prepare methods for each zone, because the available methods are retrieved for
the zone the customer has basing on his address.

Shipping Cost Calculators

The shipping cost calculators are services that are used to calculate the cost for a given shipment.

The CalculatorInterface has a method calculate () that takes object with a configuration and returns infeger that
is the cost of shipping for that subject. It also has a get Type () method that works just like in the forms.

To select a proper service we have a one that decides for us - the DelegatingCalculator. Basing on the ShippingMethod
assigned on the Shipment it will get its calculator type and configuration and calculate the cost properly.

$shippingCalculator = $this->container->get ('sylius.shipping_calculator');

Scost = S$shippingCalculator->calculate ($shipment);

Built-in Calculators

The already defined calculators in Sylius are described as constants in the SyliusComponentShippingCalculatorDe-
faultCalculators

 FlatRateCalculator - just returns the amount from the ShippingMethod’s configuration.

* PerUnitRateCalculator - returns the amount from the ShippingMethod’s configuration multiplied by the
units count.

Shipment complete events

There are two events that are triggered on the shipment ship action:

Event id
sylius.shipment.pre_ship
sylius.shipment.post_ship

74 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Shipping/Calculator/CalculatorInterface.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Shipping/Calculator/DelegatingCalculator.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Shipping/Calculator/DefaultCalculators.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Shipping/Calculator/DefaultCalculators.php

Sylius

Learn more

» Shipping - Component Documentation

Payments

Sylius contains a very flexible payments management system with support for many gateways (payment providers).
We are using a payment abstraction library - Payum, which handles all sorts of capturing, refunding and recurring
payments logic.

On Sylius side, we integrate it into our checkout and manage all the payment data.

Payment

Every payment in Sylius, successful or failed, is represented by the Payment model, which contains basic information
and a reference to appropriate order.

Payment State Machine

A Payment that is assigned to an order will have it’s own state machine with a few available states: cart, new,
processing, completed, failed, cancelled, refunded

The available transitions between these states are:

transitions:
create:
from: [cart]
to: new
process:
from: [new]
to: processing
complete:
from: [new, processing]
to: completed
fail:
from: [new, processing]
to: failed
cancel:
from: [new, processing]
to: cancelled
refund:
from: [completed]

to: refunded

1.1. The Book 75

https://github.com/Payum/Payum

Sylius

sylius_payment

[et]

create complete

process (

fail

)
J

cancel

| cancel

Y

fail

p{ cancelled]

Y

[processing]mp[completed]q—

>[failed]q

refund

[refunded]

Of course, you can define your own states and transitions to create a workflow, that perfectly matches your needs. Full
configuration can be seen in the PaymentBundle/Resources/config/app/state_machine.yml.

Changes to payment happen through applying appropriate transitions.

How to create a Payment programmatically?

We cannot create a Payment without an Order, therefore let’s assume that you have an Order to which you will assign

a new payment.

76

Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/PaymentBundle/Resources/config/app/state_machine.yml

Sylius

Spayment = Sthis->container->get ('sylius.factory.payment')->createNew();

Spayment->setOrder (Sorder) ;
Spayment—->setCurrencyCode ('USD"') ;

Sthis->container->get ('sylius.repository.payment')->add ($payment) ;

Tip: Not familiar with the Order concept? Check rere.

Payment Methods

A PaymentMethod represents a way that your customer pays during the checkout process. It holds a reference to a
specific gateway with custom configuration. Gateway is configured for each payment method separately using the
payment method form.

How to create a PaymentMethod programmatically?

As usual, use a factory to create a new PaymentMethod and give it a unique code.

SpaymentMethod = $this->container->get ('sylius.factory.payment_method')->
—createWithGateway ('offline');
SpaymentMethod->setCode ("ALFAL"') ;

Sthis->container->get ('sylius.repository.payment_method')->add ($SpaymentMethod) ;

In order to have your new payment method available in the checkout remember to add your desired channel to the
payment method:

S$paymentMethod->addChannel (Schannel)

Payment Gateway configuration
Payment Gateways that already have a Sylius bridge

First you need to create the configuration form type for your gateway. Have a look at the configuration form types of
Paypal and Stripe.

Then you should register its configuration form type with sylius.gateway_configuration_type tag. After
that it will be available in the Admin panel in the gateway choice dropdown.

Tip: If you are not sure how your configuration form type should look like, head to Payum documentation.

Other Payment Gateways

Note: Learn more about integrating payment gateways in the Payum docs.

1.1. The Book 77

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/PayumBundle/Form/Type/PaypalGatewayConfigurationType.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/PayumBundle/Form/Type/StripeGatewayConfigurationType.php
https://github.com/Payum/Payum
https://github.com/Payum/Payum/blob/master/docs/index.md

Sylius

When the Payment Gateway you are trying to use does have a bridge available and you integrate them on your own,
use our guide on extension development.

Tip: You’ll probably need also this kind of configuration in your app/config/config.yml for the gateway’s
factory:

payum:
gateways:
yourgateway:
factory: yourgateway

Troubleshooting

Sylius stores the payment output inside the details column of the sylius_payment table. It can provide valuable
information when debugging the payment process.

PayPal Error Code 10409

The 10409 code, also known as the “Checkout token was issued for a merchant account other than yours” error. You
have most likely changed the PayPal credentials from config.yml during the checkout process. Clear the cache
and try again:

bin/console cache:clear

Payment complete events

There are two events that are triggered on the payment complete action:

Event id
sylius.payment .pre_complete
sylius.payment.post_complete

Learn more

* Payment - Component Documentation

e Payum - Project Documentation

Checkout

Checkout is a process that begins when the Customer decides to finish their shopping and pay for their order. The
process of specifying address, payment and a way of shipping transforms the Cart into an Order.

78 Chapter 1. The Book

https://github.com/Payum/Payum/blob/master/docs/index.md

Sylius

Checkout State Machine

The Order Checkout state machine has 5 states available: cart, addressed, shipping_selected,
payment_selected, completed and a set of defined transitions between them. These states are saved as the
checkoutState of the Order.

Besides the steps of checkout, each of them can be done more than once. For instance if the Customer changes their
mind and after selecting payment they want to change the shipping address they have already specified, they can of
course go back and readdress it.

The transitions on the order checkout state machine are:

transitions:
address:
from: [cart]
to: addressed
readdress:
from: [payment_selected, shipping_selected,

to: cart
select_shipping:

from: [addressed]

to: shipping_selected
reselect_shipping:

from: [payment_selected, shipping_selected]
to: addressed
select_payment:

from: [shipping_selected]

to: payment_selected
reselect_payment:

from: [payment_selected]

to: shipping_selected
complete:

from: [payment_selected]

to: completed

1.1. The Book 79

Sylius

Steps of Checkout

sylius_order_checkout

transition to the same state

address

r

[cart

r _I

address

—Lp[addressed Jq—

select_shipping
]

A

| shipping_selected]

select_payment

e

| p[payment_selected

PR

skip_payment

payment_skipped]

address

Checkout in Sylius is divided into 4 steps. Each of these steps occurs when the Order goes into a certain state. See the
Checkout state machine in the state_machine.yml together with the routing file for checkout: checkout.yml.

Note: Before performing Checkout you need to have an Order created.

Addressing

This is a step where the customer provides both shipping and billing addresses.

80

Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/CoreBundle/Resources/config/app/state_machine.yml
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ShopBundle/Resources/config/routing/checkout.yml

Sylius

Transition after step Template
cart->addressed | SyliusShopBundle:Checkout:addressing.html.twig

How to perform the Addressing Step programmatically?

Firstly if the Customer is not yet set on the Order it will be assigned depending on the case:

An already logged in User - the Customer is set for the Order using the CartBlamerListener, that determines the
user basing on the event.

An existent User that is not logged in - If there is an account in the system registered under the e-mail that has
been provided - they are asked for a password to log in before continuing inside the addressing form.

A Customer that was present in the system before (we’ve got their e-mail) - the Customer instance is updated
via cascade, the order is assigned to it.

A new Customer with unknown e-mail - a new Customer instance is created and assigned to the order.

Hint: If you do not understand the Users and Customers concept in Sylius go to the Users Concept documentation.

The typical Address consists of: country, city, street and postcode - to assign it to an Order either create it manually
or retrieve from the repository.

/*+ @var AddressInterface S$Saddress */

Saddress = $this->container->get ('sylius.factory.address')->createNew() ;
Saddress—->setFirstName ('Anne');
>setLastName ('Shirley');
address—->setStreet ('Avonlea');
address—>setCountryCode ('CA");
Saddress—>setCity ('Canada');
Saddress—>setPostcode ('COA 1INO'");

Saddress

w» A

rder—>setShippingAddress ($
>rder—->setBillingAddress ($:a

Having the Customer and the Address set you can apply a state transition to your order. Get the StateMachine for the

Order via the StateMachineFactory with a proper schema, and apply a transition and of course flush your order after
that via the manager.

S$stateMachineFactory = $this->container->get ('sm.factory');

SstateMachine = S$stateMachineFactory->get (Sorder, OrderCheckoutTransitions: :GRAPH) ;

sstateMachine—>apply (OrderCheckoutTransitions: :TRANSITION_ADDRESS) ;

Sthis->container->get ('sylius.manager.order')->flush();

What happens during the transition?

The method process ($Sorder) of the CompositeOrderProcessor is run.

1.1. The Book 81

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/CoreBundle/EventListener/CartBlamerListener.php
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Order/Processor/CompositeOrderProcessor.php

Sylius

Selecting shipping

It is a step where the customer selects the way their order will be shipped to them. Basing on the ShippingMethods
configured in the system the options for the Customer are provided together with their prices.

Transition after step Template
addressed-> shipping_selected | SyliusShopBundle:Checkout:shipping.html.twig

How to perform the Selecting shipping Step programmatically?

Before approaching this step be sure that your Order is in the addressed state. In this state your order will al-
ready have a default ShippingMethod assigned, but in this step you can change it and have everything recalculated
automatically.

Firstly either create new (see how in the Shipments concept) or retrieve a ShippingMethod from the repository to
assign it to your order’s shipment created defaultly in the addressing step.

// Let's assume you have a method with code 'DHL' that has everything set properly
$shippingMethod = S$this->container->get ('sylius.repository.shipping_method')->
—findOneByCode ('DHL") ;

// Shipments are a Collection, so even though you have one Shipment by default you,,

—have to iterate over them

foreach ($
Sshipment->setMethod ($shippingMethod) ;

er->getShipments () as $shipment) {

After that get the StateMachine for the Order via the StateMachineFactory with a proper schema, and apply a proper
transition and flush the order via the manager.

SstateMachineFactory = $this->container->get ('sm.factory');

&

SstateMachine = SstateMachineFactory->get (Sorder, OrderCheckoutTransitions: :GRAPH)
SstateMachine->apply (OrderCheckoutTransitions: :TRANSITION_SELECT_SHIPPING) ;

Sthis->container->get ('sylius.manager.order')->flush();

What happens during the transition?

The method process ($order) of the CompositeOrderProcessor is run. Here this method is responsible for:
controlling the shipping charges which depend on the chosen ShippingMethod, controlling the promeotions that
depend on the shipping method.

Skipping shipping step

What if in the order you have only products that do not require shipping (they are downloadable for example)?

Note: When all of the ProductVariants of the order have the shippingRequired property set to false, then
Sylius assumes that the whole order does not require shipping, and the shipping step of checkout will be skipped.

82 Chapter 1. The Book

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Order/Processor/CompositeOrderProcessor.php

Sylius

Selecting payment

This is a step where the customer chooses how are they willing to pay for their order. Basing on the PaymentMethods
configured in the system the possibilities for the Customer are provided.

Transition after step Template
shipping_selected-> SyliusShopBundle:Checkout :payment.html.
payment_selected twig

How to perform the Selecting payment step programmatically?

Before this step your Order should be in the shipping_selected state. It will have a default Payment selected
after the addressing step, but in this step you can change it.

Firstly either create new (see how in the Payments concept) or retrieve a PaymentMethod from the repository to
assign it to your order’s payment created defaultly in the addressing step.

// Let's assume that you have a method with code 'paypal' configured
SpaymentMethod = $this->container->get ('sylius.repository.payment_method')—->
—findOneByCode ('paypal');

// Payments are a Collection, so even though you hve one Payment by default you have_
—~to iterate over them
foreach (Sorder->getPayments () as Spayment) {

Spayment->setMethod (SpaymentMethod) ;

After that get the StateMachine for the Order via the StateMachineFactory with a proper schema, and apply a proper
transition and flush the order via the manager.

SstateMachineFactory = $this->container->get ('sm.factory');

teMachine = SstateMachineFactory->get (Sorder, OrderCheckoutTransitions::GRAPH)
teMachine->apply (OrderCheckoutTransitions: :TRANSITION_SELECT_PAYMENT) ;

Sthis->container->get ('sylius.manager.order')->flush();

What happens during the transition?

The method process ($Sorder) of the CompositeOrderProcessor is run and checks all the adjustments on the order.

Finalizing

In this step the customer gets an order summary and is redirected to complete the payment they have selected.

Transition after step Template
payment_selected->completed | SyliusShopBundle:Checkout:summary.html.twig

How to complete Checkout programmatically?

Before executing the completing transition you can set some notes to your order.

1.1. The Book 83

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Order/Processor/CompositeOrderProcessor.php

Sylius

Sorder->setNotes ('Thank you dear shop owners! I am allergic to tape so please use_
—something else for packaging.')

After that get the StateMachine for the Order via the StateMachineFactory with a proper schema, and apply a proper
transition and flush the order via the manager.

$stateMachineFactory = S$this->container->get ('sm.factory');

teMachine = S$stateMachineFactory->get (Sorder, OrderCheckoutTransitions: :GRAPH) ;
-Machine->apply (OrderCheckoutTransitions: :TRANSITION_COMPLETE) ;

Sthis->container->get ('sylius.manager.order')->flush();

What happens during the transition?
¢ The Order will have the checkoutState - completed,
* The Order will have the general state - new instead of cart it has had before the transition,

¢ When the Order is transitioned from cart to new the paymentState is set to awaiting_payment and the
shippingState to ready

The Checkout is finished after that.

Checkout related events

On each step of checkout a dedicated event is triggered.

Event id

sylius.order.pre_address
sylius.order.post_address
sylius.order.pre_select_shipping
sylius.order.post_select_shipping
sylius.order.pre_payment
sylius.order.post_payment
sylius.order.pre_complete
sylius.order.post_complete

Learn more

» State Machine - Documentation
* Orders - Concept Documentation
e Orders

e Taxation

* Adjustments

* Promotions

* Coupons

s Payments

* Shipments

84 Chapter 1. The Book

Sylius

* Checkout

* Orders

* Taxation

* Adjustments
* Promotions
* Coupons

e Payments

* Shipments

e Checkout

1.1.8 Themes

Here you will learn basics about the Theming concept of Sylius. How to change the theme of your shop? keep reading!

Themes

Themes

Theming is a method of customizing how your channels look like in Sylius. Each channel can have a different theme.

What is the purpose of using themes?

There are some criteria that you have to analyze before choosing either standard Symfony template overriding or
themes.

When you should choose standard template overriding:

* you have only one channel

* or you do not need different looks/themes on each of you channels

* you need only basic changes in the views (changing colors, some blocks rearranging)
When you should use Sylius themes:

 you have more than one channel for a single Sylius instance

* and you want each channel to have their own look and behaviour

* you change a lot of things in the views

How to enable themes in a project?

To use themes inside of your project you need to add these few lines to your app/config/config.yml.

sylius_theme:
sources:
filesystem: ~

1.1. The Book 85

Sylius

How to create themes?

Let’s see how to customize the login view inside of your custom theme.
1. Inside of the app/themes/ directory create a new directory for your theme:
Let it be CrimsonTheme/ for instance.

2. Create composer. json for your theme:

"name": "acme/crimson—-theme",
"authors": |
{
"name": "James Potter",
"email": "prongs@example.com"
}
] ’
"extra": {
"sylius—theme": {
"title": "Crimson Theme"

3. Install theme assets

Theme assets are installed by running the sylius:theme:assets:install command, which is supplementary
for and should be used after assets:install.

bin/console sylius:theme:assets:install

The command run with ——symlink or ——relative parameters creates symlinks for every installed asset file, not
for entire asset directory (eg. if AcmeBundle/Resources/public/asset. js exists, it creates symlink web/
bundles/acme/asset . js leading to AcmeBundle/Resources/public/asset. js instead of symlink
web/bundles/acme/ leading to AcmeBundle/Resources/public/). When you create a new asset or
delete an existing one, it is required to rerun this command to apply changes (just as the hard copy option works).

Note: Whenever you install a new bundle with assets you will need to run sylius:theme:assets:install
again to make sure they are accessible in your theme.

4. Customize a template:

In order to customize the login view you should take the content of @SyliusShopBundle/views/login.
html.twig file and paste it to your theme directory: app/themes/CrimsonTheme/SyliusShopBundle/
views/login.html.twig

Let’s remove the registration column in this example:

{% extends '(@SyliusShop/layout.html.twig' $}

~
o

form theme form 'SyliusUiBundle:Form:theme.html.twig' %}

-~
o

oo

}

import 'SyliusUiBundle:Macro:messages.html.twig' as messages

-~
oo

block content %}

o)

% include '@SyliusShop/Login/_header.html.twig' %}

(continues on next page)

86 Chapter 1. The Book

Sylius

(continued from previous page)

<div class="ui padded segment">
<div class="ui one column very relaxed stackable grid">
<div class="column">
<h4 class="ui dividing header">{{ 'sylius.ul.registered customers

—'|trans }}</h4d>
<p>{{ 'sylius.ui.if_you_have_an_account_sign_in_with_your_email_
—address' |trans }}.</p>
{{ form_start (form, {'action': path('sylius_shop_login_check'), 'attr
': {'class': 'ui loadable form', 'novalidate': 'novalidate'}}) }}
% include '@SyliusShop/Login/_form.html.twig' $}

°

<button type="submit" class="ui blue submit button">{{ 'sylius.ui.

—

—login'|trans }}</button>
<a href="{{ path('sylius_shop_request_password_reset_token') }}"_

—class="ui right floated button">{{ 'sylius.ui.forgot_password'|trans }}
{{ form_end(form, {'render_rest': false}) }}
</div>
</div>
</div>
% endblock %}

Tip: Learn more about customizing templates /ere.

5. Choose your new theme on the channel:

In the administration panel go to channels and change the theme of your desired channel to Crimson Theme.

1.1. The Book 87

Sylius

Administration Channels US_WEEB Edit

Code” Name *
US_WEB S Web Store
Description

@ eoebled

Hostname Contact email

http:// localhost: 8000

Color Theme

Crimson Crimson Theme

L1

6. If changes are not yet visible, clear the cache:

$ php bin/console cache:clear

Learn more

e Theme - Bundle Documentation.
e Themes

e Themes

88 Chapter 1. The Book

CHAPTER 2

The Customization Guide

The Customization Guide is helpful while wanting to adapt Sylius to your personal business needs.

2.1 The Customization Guide

The Customization Guide is helpful while wanting to adapt Sylius to your personal business needs.

2.1.1 Customizing Models

All models in Sylius are placed in the Sylius\Component \ *xComponentName x \Mode 1 namespaces alongside
with their interfaces.

Warning: Many models in Sylius are extended in the Core component. If the model you are willing to override
exists in the Core you should be extending the Core one, not the base model from the component.

Note: Note that there are translatable models in Sylius also. The guide to translatable entities can be found below
the regular one.

Why would you customize a Model?

To give you an idea of some purposes of models customizing have a look at a few examples:
* Add flag field to the Country
* Add secondNumber to the Customer

¢ Change the reviewSubject of a Review (in Sylius we have ProductReviews but you can imagine for
instance a CustomerReview)

89

Sylius

¢ Add icon to the PaymentMethod

And of course many similar operations limited only by your imagination. Let’s now see how you should perform such
customizations.

How to customize a Model?

Let’s take the Sylius\Component \Addressing\Country as an example. This one is not extended in Core.
How can you check that?

For the Country run:

$ php bin/console debug:container —-parameter=sylius.model.country.class

As a result you will get the Sylius\Component\Addressing\Model\Country - this is the class that you
need to be extending.

Assuming that you would want to add another field on the model - for instance a f1ag.

1. The first thing to do is to write your own class which will extend the base Country class.

<?php
namespace AppBundle\Entity;
use Sylius\Component\Addressing\Model\Country as BaseCountry;

class Country extends BaseCountry
{
/o k
* @var bool
*/

private $flag;

/& *

* @return bool[null

*/
public function getFlag(): ?bool
{

return Sthis->flag;

/o k
* @param bool Sflag
*/
public function setFlag(bool $flag): void
{
Sthis->flag = $flag;

2. Next define your entity’s mapping.

The file should be placed in AppBundle/Resources/config/doctrine/Country.orm.yml

AppBundle\Entity\Country:
type: entity
table: sylius_country

(continues on next page)

920 Chapter 2. The Customization Guide

Sylius

(continued from previous page)

fields:
flag:
type: boolean
nullable: true

3. Finally you’ll need to override the model’s class in the app/config/config.yml.

Under the sylius_+ where « is the name of the bundle of the model you are customizing, in our case it will be the
SyliusAddressingBundle -> sylius_addressing.

sylius_addressing:
resources:
country:
classes:
model: AppBundle\Entity\Country

4. Update the database. There are two ways to do it.

* via direct database schema update:

$ php bin/console doctrine:schema:update —-force

* via migrations:

Which we strongly recommend over updating the schema.

$ php bin/console doctrine:migrations:diff
$ php bin/console doctrine:migrations:migrate

Tip: Read more about the database modifications and migrations in the Symfony documentation here.

5. Additionally if you want to give the administrator an ability to add the £1ag to any of countries, you’ll need to
update its form type. Check how to do it here.

What happens while overriding Models?

e Parameter sylius.model.country.class contains AppBundle\Entity\Country.
* sylius.repository.country represents Doctrine repository for your new class.

e sylius.manager.country represents Doctrine object manager for your new class.

e sylius.controller.country represents the controller for your new class.

* All Doctrine relations to Sylius\Component \Addressing\Model\Country are using your new class
as target-entity, you do not need to update any mappings.

* CountryType form type is using your model as data_class.

e Sylius\Component\Addressing\Model\Country is automatically turned into Doctrine Mapped Su-
perclass.

How to customize a translatable Model?

One of translatable entities in Sylius is the Shipping Method. Let’s try to extend it with a new field. Shipping methods
may have different delivery time, let’s save it on the est imatedDeliveryTime field.

2.1. The Customization Guide 91

http://symfony.com/doc/current/book/doctrine.html#creating-the-database-tables-schema

Sylius

Just like for regular models you can also check the class of translatable models like that:

$ php bin/console debug:container —-parameter=sylius.model.shipping_method.class

1. The first thing to do is to write your own class which will extend the base ShippingMethod class.

<?php
namespace AppBundle\Entity;

use Sylius\Component\Core\Model\ShippingMethod as BaseShippingMethod;
use Sylius\Component\Shipping\Model\ShippingMethodTranslation;

class ShippingMethod extends BaseShippingMethod
{
J ok k
* @var string
*/

private SestimatedDeliveryTime;

Y

* @return string

*/
public function getEstimatedDeliveryTime(): string
{

return Sthis->estimatedDeliveryTime;

Y

* @param string SestimatedDeliveryTime

*/
public function setEstimatedDeliveryTime (string SestimatedDeliveryTime): void
{

Sthis->estimatedDeliveryTime = SestimatedDeliveryTime;

J ok k

* {@inheritdoc}

*/
protected function createTranslation(): ShippingMethodTranslation
{

return new ShippingMethodTranslation();

Note: Remember to set the translation class properly, just like above in the createTranslation () method.

2. Next define your entity’s mapping.

The file should be placed in AppBundle/Resources/config/doctrine/ShippingMethod.orm.yml

AppBundle\Entity\ShippingMethod:
type: entity
table: sylius_shipping_method
fields:
estimatedDeliveryTime:

(continues on next page)

92 Chapter 2. The Customization Guide

Sylius

(continued from previous page)

type: string
nullable: true

3. Finally you’ll need to override the model’s class in the app/config/config.yml.

Under the sylius_* where « is the name of the bundle of the model you are customizing, in our case it will be the
SyliusShippingBundle ->sylius_shipping.

sylius_shipping:
resources:
shipping_method:
classes:
model: AppBundle\Entity\ShippingMethod

4. Update the database. There are two ways to do it.

* via direct database schema update:

$ php bin/console doctrine:schema:update --force

* via migrations:

Which we strongly recommend over updating the schema.

$ php bin/console doctrine:migrations:diff
$ php bin/console doctrine:migrations:migrate

Tip: Read more about the database modifications and migrations in the Symfony documentation here.

5. Additionally if you need to add the estimatedDeliveryTime to any of your shipping methods in the admin
panel, you’ll need to update its form type. Check how to do it here.

Warning: If you want the new field of your entity to be translatable, you need to ex-
tend the Translation class of your entity. In case of the ShippingMethod it would be the
Sylius\Component\Shipping\Model\ShippingMethodTranslation. Also the form on which
you will add the new field should be the TranslationType.

How to customize translatable fields of a translatable Model?

Suppose you want to add a translatable property to a translatable entity, for example to the Shipping Method. Let’s
assume that you would like the Shipping method to include a message with the delivery conditions. Let’s save it on
the deliveryConditions field.

Just like for regular models you can also check the class of translatable models like that:

$ php bin/console debug:container —-parameter=sylius.model.shipping_method_
—translation.class

1. In order to add a translatable property to your entity you need to define it on the
AppBundle\Entity\ShippingMethodTranslation class of your bundle, that will extend the base
Sylius\Component\Shipping\Model\ShippingMethodTranslation.

2.1. The Customization Guide 93

http://symfony.com/doc/current/book/doctrine.html#creating-the-database-tables-schema

Sylius

<?php
namespace AppBundle\Entity;

use Sylius\Component\Shipping\Model\ShippingMethodTranslation as_,
—~BaseShippingMethodTranslation;

class ShippingMethodTranslation extends BaseShippingMethodTranslation
{
/% *
* @var string
*/

private SdeliveryConditions;

Jx*

* @return string

*/
public function getDeliveryConditions(): string
{

return Sthis->deliveryConditions;

VAT
* @param string SdeliveryConditions
*/
public function setDeliveryConditions(string SdeliveryConditions): void
{
Sthis->deliveryConditions = S$deliveryConditions;

2. Next define your translation entity’s mapping.

The translation’s entity file should be placed in AppBundle/Resources/config/doctrine/
ShippingMethodTranslation.orm.yml

AppBundle\Entity\ShippingMethodTranslation:
type: entity
table: sylius_shipping_method_translation
fields:
deliveryConditions:
type: string
nullable: true

3. You’ll need to provide access to the new fields in the ShippingMethod class by extending the base Shipping-
Method class.

<?php
namespace AppBundle\Entity;
use Sylius\Component\Core\Model\ShippingMethod as BaseShippingMethod;
class ShippingMethod extends BaseShippingMethod
{
J ok k

* @return string

(continues on next page)

94 Chapter 2. The Customization Guide

Sylius

(continued from previous page)

*/

public function getDeliveryConditions(): string

{

return Sthis->getTranslation()->getDeliveryConditions();

}
Ve

* @param string SdeliveryConditions

*/

public function setDeliveryConditions (string $deliveryConditions): void

{

Sthis->getTranslation()->setDeliveryConditions ($SdeliveryConditions);

Note: Remember that if the original entity is not translatable you will need to initialize the translations collection in
the constructor, and use the TranslatableTrait. Take a careful look at the Sylius translatable entities.

4. As we are overriding not only the translation class but also the base class, we need to create an emty mapping also
for this base class.

The mapping file should be placed in AppBundle/Resources/config/doctrine/ShippingMethod.
orm.yml

AppBundle\Entity\ShippingMethod:
type: entity
table: sylius_shipping_method

5. Finally you’ll need to override the model’s classes in the app/config/config.yml.

Under the sylius_* where « is the name of the bundle of the model you are customizing, in our case it will be the
SyliusShippingBundle ->sylius_shipping

sylius_shipping:
resources:
shipping_method:
classes:
model: AppBundle\Entity\ShippingMethod
translation:
classes:
model: AppBundle\Entity\ShippingMethodTranslation

6. Update the database. There are two ways to do it.

* via direct database schema update:

$ php bin/console doctrine:schema:update ——-force

* via migrations:

Which we strongly recommend over updating the schema.

$ php bin/console doctrine:migrations:diff
$ php bin/console doctrine:migrations:migrate

2.1. The Customization Guide 95

Sylius

Tip: Read more about the database modifications and migrations in the Symfony documentation here.

6. Additionally if you need to add the deliveryConditions to any of your shipping methods in the admin panel,
you’ll need to update its form type. Check how to do it /ere.

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.2 Customizing Forms

The forms in Sylius are placed in the Sylius\Bundle\+BundleName*\Form\Type namespaces and the ex-
tensions will be placed in AppBundleFormEXxtension.

Why would you customize a Form?
There are plenty of reasons to modify forms that have already been defined in Sylius. Your business needs may
sometimes slightly differ from our internal assumptions.
You can:
* add completely new fields,
* modify existing fields, make them required, change their HTML class, change labels etc.,

¢ remove fields that are not used.

How to customize a Form?
If you want to modify the form for the Customer Profile in your system there are a few steps that you should
take. Assuming that you would like to (for example):

¢ Add a contactHours field,

¢ Remove the gender field,

* Change the label for the lastName from sylius.form.customer.last_name to app.form.
customer.surname

These will be the steps that you will have to take to achieve that:

1. If you are planning to add new fields remember that beforehand they need to be added on the model that the form
type is based on.

In case of our example if you need to have the contactHours on the model and the entity mapping for
the Customer resource. To get to know how to prepare that go rhere.

2. Create a Form Extension.
Your form has to extend a proper base class. How can you check that?

For the CustomerProfileType run:

96 Chapter 2. The Customization Guide

http://symfony.com/doc/current/book/doctrine.html#creating-the-database-tables-schema

Sylius

$ php bin/console debug:container sylius.form.type.customer_profile

As a result you will get the Sylius\Bundle\CustomerBundle\Form\Type\CustomerProfileType -

this is the class that you need to be extending.

<?php
namespace AppBundle\Form\Extension;

use Sylius\Bundle\CustomerBundle\Form\Type\CustomerProfileType;
use Symfony\Component\Form\AbstractTypeExtension;

use Symfony\Component\Form\Extension\Core\Type\TextType;

use Symfony\Component\Form\FormBuilderInterface;

final class CustomerProfileTypeExtension extends AbstractTypeExtension
{
J ok k
* {@inheritdoc}
*/
public function buildForm (FormBuilderInterface Sbhuilder, array Soptions): void
{
// Adding new fields works just like in the parent form type.

Sbuilder->add('contactHours', TextType::class, [
'required' => false,
'label' => 'app.form.customer.contact_hours',

1)

// To remove a field from a form simply call —->remove (' fieldName').
Sbuilder—->remove ('gender') ;

// You can change the label by adding again the same field with a changed_,
— " label’ parameter.
Sbuilder->add('lastName', TextType::class, [

'label' => 'app.form.customer.surname',
1)
}
J ok k
* {@inheritdoc}
*/
public function getExtendedType(): string

{

return CustomerProfileType::class;

Note: Of course remember that you need to define new labels for your fields in
app\Resources\translations\messages.en.yml for english contents of your messages.

the

3. After creating your class, register this extension as a service in the app/config/services.yml:

services:
app.form.extension.type.customer profile:
class: AppBundle\Form\Extension\CustomerProfileTypeExtension
tags:

(continues on next page)

2.1. The Customization Guide

97

Sylius

(continued from previous page)

- { name: form.type extension, extended_type:
—Sylius\Bundle\CustomerBundle\Form\Type\CustomerProfileType }

Note: Of course remember that you need to render the new fields you have created, and remove the rendering of the
fields that you have removed in your views.

In our case you will need a new template: app/Resources/SyliusShopBundle/views/Account/profileUpdate.html.twig.

In Twig for example you can render your modified form in such a way:

<div class="two fields">
<div class="field">{{ form_row (form.birthday) }}</div>
<div class="field">{{ form_row (form.contactHours) }}</div>
</div>

Need more information?

Warning: Some of the forms already have extensions in Sylius. Learn more about Extensions here.

For instance the ProductVariant admin form is defined under Sylius/Bundle/ProductBundle/
Form/Type/ProductVariantType.php and later extended in Sylius/Bundle/CoreBundle/Form/
Extension/ProductVariantTypeExtension.php. If you again extend the base type form like this:

services:
app.form.extension.type.product_variant:
class: AppBundle\Form\Extension\ProductVariantTypeMyExtension
tags:
- { name: form.type extension, extended_type:
—Sylius\Bundle\ProductBundle\Form\T

e\ProductVariantType, priority: -5 }

your form extension will also be executed. Whether before or after the other extensions depends on priority tag set.

Having a look at the extensions and possible additionally defined event handlers can also be useful when form elements
are embedded dynamically, as is done in the ProductVariant TypeExtension by the CoreBundle:

<?php

final class ProductVariantTypeExtension extends AbstractTypeExtension
{
J ok k
* {@inheritdoc}
*/
public function buildForm (FormBuilderInterface Sbhuilder, array Soptions): void

{

Sbuilder->addEventListener (FormEvents: :PRE_SET_DATA, function (FormEvent
—Sevent) {

SproductVariant = Sevent->getData();

(continues on next page)

98 Chapter 2. The Customization Guide

http://symfony.com/doc/current/form/create_form_type_extension.html

Sylius

(continued from previous page)

Sevent->getForm() ->add ('channelPricings', ChannelCollectionType::class, [
'entry_type' => ChannelPricingType::class,
'entry_options' => function (ChannelInterface Schannel) use (
—SproductVariant) {
return |
'channel' => S$channel,
'product_variant' => S$productVariant,
'required' => false,
1;
}l
'label' => 'sylius.form.variant.price',
1)
})i

The channelPricings get added on FormEvents: :PRE_SET_DATA, so when you wish to remove or alter
this form definition, you will also have to set up an event listener and then remove the field:

<?php

final class ProductVariantTypeMyExtension extends AbstractTypeExtension
{
public function buildForm(FormBuilderInterface S$builder, array Soptions): void

{

. .
Sbuilder
—>addEventListener (FormEvents: :PRE_SET_DATA, function (FormEvent Sevent) {

Sevent->getForm() ->remove ('channelPricings');

)
—>addEventSubscriber (new AddCodeFormSubscriber (NULL, ['label' => 'app.

—form.my_other_code_label']))

’

Adding constraints inside a form extension

Warning: When adding your constraints dynamically from inside a form extension, be aware to add the correct

validation groups.

2.1. The Customization Guide 99

Sylius

Although it is advised to follow the Validation Customization Guide, it might happen that you want to define the form
constraints from inside the form extension. They will not be used unless the correct validation group(s) has been
added. The example below shows how to add the default sylius group to a constraint.

<?php

final class CustomerProfileTypeExtension extends AbstractTypeExtension
{

public function buildForm (FormBuilderInterface Sbhuilder, array Soptions): void

{

// Adding new fields works just like in the parent form type.
Sbuilder->add('contactHours', TextType::class, [
'required' => false,

'label' => 'app.form.customer.contact_hours',
'constraints' => [
new Range ([
'min' => 8,
'max' => 17,
'groups' => ['sylius'],

Overriding forms completely

Tip: If you need to create a new form type on top of an existing one - create this new alternative form type and define
getParent() to the old one. See details in the Symfony docs.

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.3 Customizing Repositories

Warning: In Sylius we are using both default Doctrine repositories and the custom ones. Often you will be
needing to add your very own methods to them. You need to check before which repository is your resource using.

100 Chapter 2. The Customization Guide

http://symfony.com/doc/current/form/create_custom_field_type.html

Sylius

Why would you customize a Repository?
Different sets of different resources can be obtained in various scenarios in your application. You may need for
instance:

* finding Orders by a Customer and a chosen Product

* finding Products by a Taxon

* finding Comments by a Customer

How to customize a Repository?

Let’s assume that you would want to find products that you are running out of in the inventory.

1. Create your own repository class under the AppBundle\Repository namespace. Remember that it has to
extend a proper base class. How can you check that?

For the ProductRepository run:

$ php bin/console debug:container sylius.repository.product

As aresult you will get the Sylius\Bundle\CoreBundle\Doctrine\ORM\ProductRepository - thisis
the class that you need to be extending.

<?php
namespace AppBundle\Repository;
use Sylius\Bundle\CoreBundle\Doctrine\ORM\ProductRepository as BaseProductRepository;

class ProductRepository extends BaseProductRepository
{
J %k
* @param int S$limit
*
* @return array
*/
public function findByOnHand(int $limit = 8): array
{
return Sthis->createQueryBuilder('o")
—>addSelect ('variant')
—>addSelect ('translation')
->leftJoin('o.variants', 'variant')
->leftJoin('o.translations', 'translation')
->addOrderBy ('variant.onHand', 'ASC'")
->setMaxResults ($1imit)
->getQuery ()
->getResult ()

We are using the Query Builder in the Repositories. As we are selecting Products we need to have a join to translations,
because they are a translatable resource. Without it in the query results we wouldn’t have a name to be displayed.

We are sorting the results by the count of how many products are still available on hand, which is saved on the onHand
field on the specific variant of each product. Then we are limiting the query to 8 by default, to get only 8 products
that are low in stock.

2.1. The Customization Guide 101

http://doctrine-orm.readthedocs.io/projects/doctrine-orm/en/latest/reference/query-builder.html

Sylius

2. In order to use your repository you need to configure it in the app/config/config.yml.

sylius_product:
resources:
product:
classes:
repository: AppBundle\Repository\ProductRepository

3. After configuring the sylius.repository.product service has your findByOnHand () method available.
You can form now on use your method in any Controller.

<?php
public function lowInStockAction()
{

SproductRepository = S$this->container->get ('sylius.repository.product');

SlowInStock = S$productRepository->findByOnHand() ;

What happens while overriding Repositories?

e The parameter sylius.repository.product.class contains AppBundle\Repository\ProductRepository.
* The repository service sylius.repository.product is using your new class.

e Underthe sylius.repository.product service you have got all methods from the base repository avail-
able plus the one you have added.

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.4 Customizing Factories

Warning: Some factories may already be decorated in the Sylius Core. You need to check before decorating
which factory (Component or Core) is your resource using.

Why would you customize a Factory?
Differently configured versions of resources may be needed in various scenarios in your application. You may need
for instance to:

* create a Product with a Supplier (which is your own custom entity)

e create a disabled Product (for further modifications)

* create a ProductReview with predefined description

and many, many more.

102 Chapter 2. The Customization Guide

Sylius

How to customize a Factory?

Let’s assume that you would want to have a possibility to create disabled products.

1. Create your own factory class in the AppBundle\Factory namespace. Remember that it has to implement a
proper interface. How can you check that?

For the ProductFactory run:

$ php bin/console debug:container sylius.factory.product

As a result you will get the Sylius\Component\Product\Factory\ProductFactory - this is the class

that you need to decorate. Take its interface (Sylius\Component \Product \Factory\ProductFactoryInterface)
and implement it.

<?php
namespace AppBundle\Factory;

use Sylius\Component\Product\Model\ProductInterface;
use Sylius\Component\Product\Factory\ProductFactoryInterface;

class ProductFactory implements ProductFactoryInterface
{
VAT
* @var ProductFactorylInterface
*/

private SdecoratedFactory;

/ x*
* @param ProductFactorylInterface $factory
*/
public function __ construct (ProductFactoryInterface S$Sfactory)

{

Sthis->decoratedFactory = S$factory;
}
J ok k
* {@inheritdoc}
*/
public function createNew(): ProductInterface

{

return S$Sthis->decoratedFactory->createNew () ;

VAT

* {@inheritdoc}

*/
public function createWithVariant (): ProductInterface
{

return Sthis->decoratedFactory—->createWithVariant () ;

J ok k
* @return ProductInterface
*/
public function createDisabled(): ProductInterface

{

(continues on next page)

2.1. The Customization Guide 103

Sylius

(continued from previous page)

/** @var ProductInterface Sproduct x/
Sproduct = $this->decoratedFactory->createWithVariant ();

Sproduct—->setEnabled (false);

return Sproduct;

2. In order to decorate the base ProductFactory with your implementation you need to configure it as a decorating
service in the app/Resources/config/services.yml.

services:
app. factory.product:
class: AppBundle\Factory\ProductFactory
decorates: sylius.factory.product
arguments: ['(app.factory.product.inner']
public: false

3. You can use the new method of the factory in routing.

After the sylius.factory.product has been decorated it has got the new createDisabled () method.
To actually use it overwrite sylius_admin_product_create_simple route like below in app/config/
routing/admin/product.yml:

app/config/routing/admin/product.yml
sylius_admin_product_create_simple:
path: /products/new/simple

methods: [GET, POST]
defaults:
_controller: sylius.controller.product:createAction
_sylius:
section: admin
factory:

method: createDisabled # like here for example
template: SyliusAdminBundle:Crud:create.html.twig
redirect: sylius_admin_product_update

vars:
subheader: sylius.ui.manage_your_product_catalog
templates:
form: SyliusAdminBundle:Product:_form.html.twig
route:

name: sylius_admin_product_create_simple

Create a new yaml file located at app/config/routing/admin.yml, if it does not exist yet.

app/config/routing/admin.yml
app_admin_product:
resource: 'admin/product.yml'

Remember to import the app/config/routing/admin.yml into the app/config/routing.yml.

app/config/routing.yml
app_admin:
resource: 'routing/admin.yml'
prefix: /admin

104 Chapter 2. The Customization Guide

Sylius

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

Learn more

* SyliusResourceBundle creating resources

2.1.5 Customizing Controllers

All Sylius resources use the Sylius/Bundle/ResourceBundle/Controller/ResourceController by default, but some of
them have already been extended in Bundles. If you want to override a controller action, check which controller you
should be extending.

Note: There are two types of controllers we can define in Sylius:

Resource Controllers - are based only on one Entity, so they return only the resources they have in their name. For
instance a ProductController should return only products.

Standard Controllers - non-resource; these may use many entities at once, they are useful on more general pages.
We are defining these controllers only if the actions we want cannot be done through yaml configuration - like sending
emails.

Why would you customize a Controller?

To add your custom actions you need to override controllers. You may need to:
* add a generic action that will render a list of recommended products with a product on its show page.

* render a partial template that cannot be done via yaml resource action.

How to customize a Resource Controller?

Imagine that you would want to render a list of best selling products in a partial template that will be reusable anywhere.
Assuming that you already have a method on the ProductRepository - you can see such an example iere. Having
this method you may be rendering its result in a new action of the ProductController using a partial template.

See example below:
1. Create a new Controller class under the AppBundle/Controller namespace.
Remember that it has to extend a proper base class. How can you check that?

For the ProductController run:

$ php bin/console debug:container sylius.controller.product

As a result you will get the Sylius\Bundle\ResourceBundle\Controller\ResourceController -
this is the class that you need to extend.

Now you have to create the controller that will have a generic action that is basically the showAction from the
ResourceController extended by getting a list of recommended products from your external api.

2.1. The Customization Guide 105

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ResourceBundle/Controller/ResourceController.php

Sylius

<?php
namespace AppBundle\Controller;

use FOS\RestBundle\View\View;

use Sylius\Bundle\ResourceBundle\Controller\ResourceController;
use Symfony\Component\HttpFoundation\Request;

use Symfony\Component\HttpFoundation\Response;

use Sylius\Component\Resource\ResourceActions;

class ProductController extends ResourceController
{
J ok k
* @param Request Srequest
*
* @return Response
*/
public function showAction (Request Srequest): Response
{
Sconfiguration = S$Sthis->requestConfigurationFactory->create ($this->metadata,
—$request) ;

Sthis->isGrantedOr403 (Sconfiguration, ResourceActions::SHOW) ;
Sproduct = $this->find0Or404 (Sconfiguration);

SrecommendationServiceApi = S$this->get ('app.recommendation_service_api');

SrecommendedProducts = $recommendationServiceApi->getRecommendedProducts (
—$product) ;

Sthis->eventDispatcher—>dispatch (ResourceActions: :SHOW, S$configuration,
—$product) ;

Sview = View::create (Sproduct);

if (Sconfiguration->isHtmlRequest ()) {
Sview
->setTemplate (Sconfiguration->getTemplate (ResourceActions: :SHOW . '.
—html'"))

->setTemplateVar ($Sthis->metadata—->getName ())

—>setData ([
'configuration' => S$configuration,
'metadata' => S$this->metadata,
'resource' => S$product,
'recommendedProducts' => $recommendedProducts,
Sthis->metadata->getName () => Sproduct,

return Sthis->viewHandler->handle ($configuration, S$view);

2. In order to use your controller and its actions you need to configure it in the app/config/config.yml.

sylius_product:

(continues on next page)

106 Chapter 2. The Customization Guide

Sylius

(continued from previous page)

resources:
product:
classes:
controller: AppBundle\Controller\ProductController

How to customize a Standard Controller:

Let’s assume that you would like to add some logic to the Homepage.
1. Create a new Controller class under the AppBundle/Controller/Shop namespace.

If you still need the methods of the original HomepageController, then copy its body to the new class.

<?php
namespace AppBundle\Controller\Shop;

use Symfony\Bundle\FrameworkBundle\Templating\EngineInterface;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

final class HomepageController
{
J %k
* @var Enginelnterface
*/
private StemplatingEngine;

J kk

* @param EnginelInterface StemplatingEngine

*/
public function __ construct (EnginelInterface StemplatingEngine)
{

Sthis->templatingEngine = S$templatingEngine;

J ok k
* @param Request Srequest
*
* @return Response
*/
public function indexAction (Request Srequest): Response
{
return Sthis->templatingEngine->renderResponse ('@SyliusShop/Homepage/index.
—html.twig');
}

J %k

* @param Request Srequest

*

* @return Response

*/
public function customAction (Request Srequest): Response
{

// Put your custom logic here

(continues on next page)

2.1. The Customization Guide 107

Sylius

(continued from previous page)

2. The next thing you have to do is to override the sylius.controller.shop.homepage service definition in
the app/config/services.yml.

app/config/services.yml
services:
sylius.controller.shop.homepage:
class: AppBundle\Controller\Shop\HomepageController
arguments: ['@templating']
public: true

Remember to import the app/config/services.yml into the app/config/config.yml.

app/config/config.yml
imports:
- { resource: "services.yml" }

Tip: Run $ php bin/console debug:container sylius.controller.shop.homepage tocheck
if the class has changed to your implementation.

From now on your customAction of the HomepageController will be available alongside the indexAction
from the base class.

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.6 Customizing Validation

The default validation group for all resources is sy1lius, but you can configure your own validation.

How to customize validation?

Let’s take the example of changing the length of name for the Product entity - watch out the field name is hold on
the ProductTranslation model.

In the sy1lius validation group the minimum length is equal to 2. What if you’d want to have at least 10 characters?
1. Create the AppBundle/Resources/config/validation.yml.

In this file you need to overwrite the whole validation of your field that you are willing to modify.
Take this configuration from the Sylius/Bundle/ProductBundle/Resources/config/validation/
ProductTranslation.xml - you can choose format xml or yaml.

Give it a new, custom validation group - [app_product].

108 Chapter 2. The Customization Guide

Sylius

Sylius\Component \Product\Model\ProductTranslation:

properties:
name:

- NotBlank:
message: sylius.product.name.not_blank
groups: [app_ product]

- Length:
min: 10
minMessage: sylius.product.name.min_length
max: 255
maxMessage: sylius.product.name.max_length
groups: [app_product]

Tip: When using custom validation messages see here how to add them.

2. Configure the new validation group in the app/config/services.yml.

app/config/services.yml

parameters:
sylius. form.type.product_translation.validation_groups: [app_ product]
sylius.form.type.product.validation_groups: [app product] # the product class,_

—also needs to be aware of the translation'a validation

Remember to import the app/config/services.yml into the app/config/config.yml.

app/config/config.yml
imports:
- { resource: "services.yml" }

Done. Now in all forms where the Product name is being used, your new validation group will be applied, not letting
users add products with name shorter than 10 characters.

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.7 Customizing Menus

Adding new positions in your menu is done via events.

You have got the Sylius\Bundle\UiBundle\Menu\Event\MenuBuilderEvent with
FactoryInterface and ItemInterface of KnpMenu, this lets you manipulate the whole menu.

You’ve got six events that you should be subscribing to:

sylius.menu.shop.account # For the menu of the MyAccount section in shop
sylius.menu.admin.main # For the Admin Panel menu

sylius.menu.admin.customer.show # For the buttons menu on top of the show page of the
—Customer (/admin/customers/{id})

sylius.menu.admin.order.show # For the buttons menu on top of the show page of the
—Order (/admin/orders/{id})

(continues on next page)

2.1. The Customization Guide 109

http://symfony.com/doc/current/validation/translations.html
https://github.com/KnpLabs/KnpMenu

Sylius

(continued from previous page)

sylius.menu.admin.product.form # For the tabular menu on the left hand side of the_
—new/edit pages of the Product (/admin/products/new & /admin/products/{id}/edit)
sylius.menu.admin.product_variant.form # For the tabular menu on the left hand side_,
—of the new/edit pages of the ProductVariant (/admin/products/{productId}/variants/
—new & /admin/products/{productId}/variants/{id}/edit)

How to customize Admin Menu?

Tip: Admin Panel menu is the one in the left expandable sidebar on the /admin/ url.

1. In order to add items to the Admin menu in Sylius you have to create a
AppBundle\Menu\AdminMenuListener class.

In the example below we are adding a one new item and sub-item to the Admin panel menu.

<?php
namespace AppBundle\Menu;
use Sylius\Bundle\UiBundle\Menu\Event\MenuBuilderEvent;

final class AdminMenulistener

{

J %k
* @param MenuBuilderEvent Sevent
*/
public function addAdminMenultems (MenuBuilderEvent Sevent): void
{
Smenu = S$Sevent->getMenu() ;
SnewSubmenu = $menu
->addChild ('new"')
->setLabel ('Custom Admin Submenu')
7
SnewSubmenu

—>addChild('new—subitem')
—>setLabel ('Custom Admin Menu Itemu')

2. After creating your class with a proper method for the menu customizations you need, subscribe your listener to the
sylius.menu.admin.main eventinthe AppBundle/Resources/config/services.yml.

AppBundle/Resources/config/services.yml
services:
app.listener.admin.menu_builder:
class: AppBundle\Menu\AdminMenuListener
tags:
- { name: kernel.event_listener, event: sylius.menu.admin.main, method:
—addAdminMenultems }

3. Result:

110 Chapter 2. The Customization Guide

Sylius

After these two steps your admin panel menu should look like that, the new items appear at the bottom:

Configuration

Custom Admin Submenu

How to customize Account Menu?

Tip: My Account panel menu is the one in the left sidebar on the /account /dashboard/ url.

1. In order to add items to the Account menu in Sylius you have to create a
AppBundle\Menu\AccountMenuListener class.

In the example below we are adding a one new item to the menu in the My Account section of shop.

<?php

namespace AppBundle\Menu;

(continues on next page)

2.1. The Customization Guide 111

Sylius

(continued from previous page)

use Sylius\Bundle\UiBundle\Menu\Event\MenuBuilderEvent;

final class AccountMenulistener
{
VAT
* @param MenuBuilderEvent Sevent
*/
public function addAccountMenultems (MenuBuilderEvent Sevent): void

{

Smenu = S$Sevent->getMenu() ;

Smenu
->addChild('new', ['route' => 'sylius_shop_account_dashboard'])
—>setLabel ('Custom Account Menu Item')
->setLabelAttribute('icon', 'star')

As you can see above the new item can be given a route, a label and an icon.

2. After creating your class with a proper method for the menu customizations you need, subscribe your listener to the
sylius.menu.shop.account eventinthe AppBundle/Resources/config/services.yml.

AppBundle/Resources/config/services.yml
services:
app.listener.shop.menu_builder:
class: AppBundle\Menu\AccountMenulListener
tags:
- { name: kernel.event listener, event: sylius.menu.shop.account, method:

—addAccountMenultems }

3. Result:

After these two steps your user account menu should look like that, the new item appears at the bottom:

112 Chapter 2. The Customization Guide

Sylius

Home / My account

Your account

Dashboard 1)
Personal information -
Change password =
Address book =)
Order history -
Custom Account Menu [tem *

How to customize Admin Customer Show Menu?

Tip: Admin customer menu is the set of buttons in the right top corner on the /admin/customers/{id} url.

1. In order to add buttons to the Admin Customer Show menu in Sylius you have to create a
AppBundle\Menu\AdminCustomerShowMenuListener class.

Note: This menu is build from buttons. There are a few button types available: edit, show, delete, 1ink
(default), and t ransition (for state machines).

Buttons (except for the link and transition types) already have a defined color, icon and la-
bel. The link and transition types buttons can be customized with the setLabel ('label'),
setLabelAttribute ('color', 'color') and setLabelAttribute('icon', 'icon') methods.

The delete button must have also the resource_id attribute set (for csrf token purposes).

In the example below, we are adding one new button to the Admin Customer Show Menu. It has the type set, even
though the 1ink type is default to make the example easily customizable.

<?php

namespace AppBundle\Menu;

(continues on next page)

2.1. The Customization Guide 113

Sylius

(continued from previous page)

use Sylius\Bundle\AdminBundle\Event\CustomerShowMenuBuilderEvent;

final class AdminCustomerShowMenulListener

{

VAT
* @param CustomerShowMenuBuilderEvent Sevent
*/
public function addAdminCustomerShowMenultems (CustomerShowMenuBuilderEvent
. Sevent): void
{
Smenu = S$Sevent->getMenu() ;
Scustomer = Sevent->getCustomer () ;
if (null !== Scustomer->getUser()) {
Smenu

->addChild ('impersonate', [
'route' => 'sylius_admin_impersonate_user',
'routeParameters' => ['username' => Scustomer->getUser ()->

—getEmailCanonical ()]

1)

—>setAttribute('type', 'link')

->setLabel ('Impersonate')

->setLabelAttribute('icon', 'unhide')

->setLabelAttribute('color', 'blue')

2. After creating your class with a proper method for the menu customizations you need, subscribe your listener to
the sylius.menu.admin.customer.show event in the AppBundle/Resources/config/services.
yml.

AppBundle/Resources/config/services.yml
services:
app.listener.admin.customer.show.menu_builder:
class: AppBundle\Menu\AdminCustomerShowMenuListener
tags:
- { name: kernel.event_listener, event: sylius.menu.admin.customer.show,
—method: addAdminCustomerShowMenultems }

How to customize Admin Order Show Menu?

Tip: Admin order show menu is the set of buttons in the right top corner on the /admin/orders/{id} url.

1. In order to add buttons to the Admin Order Show menu in Sylius you have to create a
AppBundle\Menu\AdminOrderShowMenuListener class.

Note: This menu is build from buttons. There are a few button types available: edit, show, delete, 1ink
(default), and t ransition (for state machines).

Buttons (except for the link and transition types) already have a defined color, icon and la-
bel. The link and transition types buttons can be customized with the setLabel ('label'),

114 Chapter 2. The Customization Guide

Sylius

setLabelAttribute ('color', 'color') and setLabelAttribute('icon', 'icon') methods.

The delete button must have also the resource_id attribute set (for csrf token purposes).

In the example below, we are adding one new button to the Admin Order Show Menu. Itis a transition type
button, that will let the admin fulfill the order.

Warning: There isno sylius_admin_order_fulfill route in Sylius. Create this route if you need it.

<?php
namespace AppBundle\Menu;

use Sylius\Bundle\AdminBundle\Event\OrderShowMenuBuilderEvent;
use Sylius\Component\Order\OrderTransitions;

final class AdminOrderShowMenuListener
{
J %k
* (@param OrderShowMenuBuilderEvent Sevent
*/
public function addAdminOrderShowMenulItems (OrderShowMenuBuilderEvent Sevent): void

{

Smenu = Sevent->getMenu() ;
Sorder = Sevent->getOrder();
SstateMachine = S$Sevent->getStateMachine();

if (SstateMachine->can (OrderTransitions: :TRANSITION_FULFILL)) {

Smenu
->addChild ('"fulfill"', [
'route' => 'sylius_admin_order_fulfill',
'routeParameters' => ['id' => Sorder->getId()]

1)

—->setAttribute('type', 'transition')
->setLabel ("Fulfill'")
->setLabelAttribute('icon', 'checkmark"')
—->setLabelAttribute('color', 'green')

2. After creating your class with a proper method for the menu customizations you need, subscribe your listener to the
sylius.menu.admin.order.show eventin the AppBundle/Resources/config/services.yml.

AppBundle/Resources/config/services.yml
services:
app.listener.admin.order.show.menu_builder:
class: AppBundle\Menu\AdminOrderShowMenulListener
tags:
- { name: kernel.event_listener, event: sylius.menu.admin.order.show,

—method: addAdminOrderShowMenultems }

How to customize Admin Product Form Menu?

2.1. The Customization Guide 115

Sylius

Tip: Admin product form menu is the set of tabs on your left hand side on the /admin/products/new and
/admin/products/{id}/edit urls.

Warning: This part of the guide assumes you already know how to customize models and forms.

1. In order to add a new tab to the Admin Product Form menu in Sylius you have to create a
AppBundle\Menu\AdminProductFormMenuListener class.

Note: This menu is build from tabs, each coupled with their own template containing the necessary part of the
form.

So lets say you want to add the product’s manufacturer details to the tabs. Provided
you have created a new template with all the required form fields and saved it etc. as
AppBundle\Resources\views\Admin\Product\Tab_manufacturer.html.twig, we will use it
in the example below.

<?php
namespace AppBundle\Menu;
use Sylius\Bundle\AdminBundle\Event\ProductMenuBuilderEvent;

final class AdminProductFormMenulistener
{
J kk
* @param ProductMenuBuilderEvent Sevent
*/
public function addItems (ProductMenuBuilderEvent S$Sevent): void
{
Smenu = S$event->getMenu() ;
Smenu
—>addChild('manufacturer')
->setAttribute ('template', '@App/Admin/Product/Tab/_manufacturer.html.twig

->setLabel ('"Manufacturer')

2. After creating your class with a proper method for the menu customizations you need, subscribe your listener to the
sylius.menu.admin.product.formeventinthe AppBundle/Resources/config/services.yml.

AppBundle/Resources/config/services.yml
services:
app.listener.admin.product.form.menu_builder:
class: AppBundle\Menu\AdminProductFormMenulListener
tags:
- { name: kernel.event_listener, event: sylius.menu.admin.product.form,
—method: addItems }

116 Chapter 2. The Customization Guide

Sylius

How to customize Admin Product Variant Form Menu?

Tip: Admin product variant form menu is the set of tabs on your left hand side on the /admin/product/
{productId}/variants/newand /admin/product/{productId}/variants/{id}/edit urls.

Warning: This part of the guide assumes you already know how to customize models and forms.

1. In order to add a new tab to the Admin Product Variant Form menu in Sylius you have to create a
AppBundle\Menu\AdminProductVariantFormMenuListener class.

Note: This menu is build from tabs, each coupled with their own template containing the necessary part of the
form.

So lets say you want to add the product variant’s media to the tabs. Provided you
have created a new template with the required form fields and saved it etc. as
AppBundle\Resources\views\Admin\ProductVariant\Tab_media.html.twig, we will use it
in the example below.

<?php
namespace AppBundle\Menu;
use Sylius\Bundle\AdminBundle\Event\ProductVariantMenuBuilderEvent;

final class AdminProductVariantFormMenuListener
{
J ok k
* @param ProductVariantMenuBuilderEvent Sevent
*/
public function addItems (ProductVariantMenuBuilderEvent Sevent): void
{

Smenu = S$Sevent->getMenul() ;
Smenu
->addChild('media')
->setAttribute ('template', '@App/Admin/ProductVariant/Tab/_media.html.twig

->setLabel ('Media')

2. After creating your class with a proper method for the menu customizations you need, subscribe your listener
to the sylius.menu.admin.product_variant.form event in the AppBundle/Resources/config/
services.yml.

AppBundle/Resources/config/services.yml
services:
app.listener.admin.product_variant.form.menu_builder:
class: AppBundle\Menu\AdminProductVariantFormMenuListener
tags:
- { name: kernel.event_listener, event: sylius.menu.admin.product_variant.

—form, method: addItems } (continues on next page)

2.1. The Customization Guide 117

Sylius

(continued from previous page)

|

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.8 Customizing Templates

Note: There are two kinds of templates in Sylius. Shop and Admin ones, plus you can create your own to satisfy
your needs.

Why would you customize a template?
The most important case for modifying the existing templates is of course integrating your own layout of the system.

Sometimes even if you have decided to stay with the default layout provided by Sylius, you need to slightly modify it
to meet your business requirements. You may just need to add your logo anywhere.

Methods of templates customizing

Warning: There are three ways of customizing templates of Sylius:

The first one is simple templates overriding inside of the app/Resources directory of your project. Using this
method you can completely change the content of templates.

The second method is templates customization via events. You are able to listen on these template events, and
by that add your own blocks without copying and pasting the whole templates. This feature is really useful when
creating Sylius Extensions.

The third method is using Sylius themes. Creating a Sylius theme requires a few more steps than basic template
overriding, but allows you to have a different design on multiple channels of the same Sylius instance. Learn more
about themes here.

How to customize templates by overriding?

Note: How do you know which template you should be overriding? Go to the page that you are going to modify, at
the bottom in the Symfony toolbar click on the route, which will redirect you to the profiler. In the Request Attributes
sectionunder _sylius [template => ...] you can check the path to the current template.

* Shop templates: customizing Login Page template:

The default login template is: SyliusShopBundle:login.html.twig. In order to override it you need to
create your own: app/Resources/SyliusShopBundle/views/login.html.twig.

Copy the contents of the original template to make your work easier. And then modify it to your needs.

118 Chapter 2. The Customization Guide

Sylius

{% extends '@SyliusShop/layout.html.twig' %}
{%$ import '@SyliusUi/Macro/messages.html.twig' as messages %}

{% block content %}
<div class="ui column stackable center page grid">
{% if last_error %}
{{ messages.error(last_error.messageKey|trans (last_error.messageData,
—'security')) }}
{% endif %}

{# You can add a headline for instance to see if you are changing things in the_
—correct place. #}
<hl>
This Is My Headline
</hl>

<div class="five wide column"></div>
<form class="ui six wide column form segment" action="{{ path('sylius_shop_login_
—check') }}" method="post" novalidate>
<div class="one field">
{{ form_row(form._username, {'value': last_username|default('")}) }}
</div>
<div class="one field">
{{ form_row(form._password) }}
</div>
<div class="one field">
<button type="submit" class="ui fluid large primary submit button">{{
—'sylius.ui.login_button'|trans }}</button>
</div>
</form>
</div>
{% endblock %}

Done! If you do not see any changes on the /shop/login url, clear your cache:

$ php bin/console cache:clear

* Admin templates: Customization of the Country form view.

The default template for the Country form is: SyliusAdminBundle:Country:_form.html.twig. In or-
der to override it you need to create your own: app/Resources/SyliusAdminBundle/views/Country/
_form.html.twig.

Copy the contents of the original template to make your work easier. And then modify it to your needs.

<div class="ui segment">

{{ form_errors(form) }}

{{ form_row (form.code) }}

{{ form_row (form.enabled) }}
</div>
<div class="ui segment">

{# You can add a headline for instance to see if you are changing things in the_
—correct place. #}

<h1>My Custom Headline</hl>

<h4 class="ui dividing header">{{ 'sylius.ui.provinces'|trans }}</h4d>

(continues on next page)

2.1. The Customization Guide 119

Sylius

(continued from previous page)

{{ form_row(form.provinces, {'label': false}) }}
</div>

Done! If you do not see any changes on the /admin/countries/new url, clear your cache:

$ php bin/console cache:clear

How to customize templates via events?

Sylius uses the Events mechanism provided by the SonataBlockBundle.

How to locate template events?

The events naming convention uses the routing to the place where we are adding it, but instead of _ we are us-
ing ., followed by a slot name (like sylius_admin_customer_show route results in the sylius.admin.
customer.show.slot_name events). The slot name describes where exactly in the template’s structure should
the event occur, it will be before or after certain elements.

Although when the resource name is not just one word (like product_variant) then the underscore stays in the
event prefix string. Then sylius_admin_product_variant_create route will have the sylius.admin.
product_variant.create.slot_name events.

Let’s see how the event is rendered in a default Sylius Admin template. This is the rendering of the event that occurs
on the create action of Resources, at the bottom of the page (after the content of the create form):

{# First we are setting the event_prefix based on route as it was mentioned before #}

% set event_prefix = metadata.applicationName ~ '.admin.' ~ metadata.name ~ '.create

' g
{# And then the slot name 1is appended to the event_prefix #}
{{ sonata_block_render_event (event_prefix ~ '.after_content', {'resource': resource})

= }}

Note: Besides the events that are named based on routing, Sylius also has some other general events: those that will
appear on every Sylius admin or shop. Examples: sylius.shop.layout.slot_name or sylius.admin.
layout.slot_name. They are rendered in the layout .html.twig views for both Admin and Shop.

Tip: In order to find events in Sylius templates you can simply search for the sonata_block_render_event
phrase in your project’s directory.

How to use template events for customizations?

When you have found an event in the place where you want to add some content, here’s what you have to do.

Let’s assume that you would like to add some content after the header in the Sylius shop views. You will need to look
at the /SyliusShopBundle/Resources/views/layout.html.twig template, which is the basic layout
of Sylius shop, and then in it find the appropriate event.

For the space below the header it will be sylius.shop.layout.after_header.

120 Chapter 2. The Customization Guide

https://sonata-project.org/bundles/block/master/doc/reference/events.html

Sylius

e Create an .html . twig file that will contain what you want to add.

{# AppBundle/Resources/views/block.html.twig #}

<hl> Test Block Title </hl>

* And register a listener for the chosen event:

Warning: The name of the event should be preceded by the sonata.block.event. string.

services:
app.block_event_listener.homepage.layout.after_ header:
class: Sylius\Bundle\UiBundle\Block\BlockEventListener
arguments:
- 'Q@App/block.html.twig'
tags:
- { name: kernel.event_listener, event: sonata.block.event.sylius.shop.
—layout.after_header, method: onBlockEvent }

Tip: While configuring it in yaml remember about having two @ for the argument reference to your template, just
like above '@Q@App/block.html.twig', what escapes the second @ and lets it not to be interpreted as a service.

In xm1 the double @ is not required: it would be just <argument>Q@App/block.html.twig</argument>

That’s it. Your new block should appear in the view.

Tip: Learn more about adding custom Admin JS & CSS in the cookbook /Zere.

How to use themes for customizations?

You can refer to the theme documentation available here: - Themes (The book) - SyliusThemeBundle (Bundle docu-
mentation)

Global Twig variables

Each of the Twig templates in Sylius is provided with the sy1lius variable, that comes from the ShopperContext.

The ShopperContext is composed of ChannelContext, CurrencyContext, LocaleContext and
CustomerContext. Therefore it has access to the current channel, currency, locale and customer.

The variables available in Twig are:

Twig variable ShopperContext method name
sylius.channel getChannel()

sylius.currencyCode | getCurrencyCode()
sylius.localeCode getLocaleCode()

sylius.customer getCustomer()

2.1. The Customization Guide 121

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Component/Core/Context/ShopperContext.php

Sylius

How to use these Twig variables?

You can check for example what is the current channel by dumping the sylius.channel variable.

{{ dump (sylius.channel) }}

That’s it, this will dump the content of the current Channel object.

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.9 Customizing Translations

Note: We’ve adopted a convention of overriding translations in the app\Resources\translations directory.

Why would you customize a translation?

If you would like to change any of the translation keys defined in Sylius in any desired language.
For example:

* change “Last name” into “Surname”

 change “Add to cart” into “Buy”

There are many other places where you can customize the text content of pages.

How to customize a translation?

In order to customize a translation in your project:

1. If you don’t have it yet, create app\Resources\translations\messages.en.yml for English transla-
tions.

Note: You can create different files for different locales (languages). For example messages.pl.yml should
hold only Polish translations, as they will be visible when the current locale is PL. Check the Locales docs for more
information.

2. In this file, configure the desired key and give it a translation.

If you would like to change the translation of “Email” into “Username” on the login form you have to override its
translation key which is sylius.form.customer.email.

sylius:
form:
customer:
email: Username

122 Chapter 2. The Customization Guide

Sylius

Tip: How to check what the proper translation key is for your message: When you are on the page where you
are trying to customize a translation, click the Translations icon in the Symfony Profiler. In this section you can see
all messages with their associated keys on that page.

Missing messages

Fallback messages 927

Defined messages ()

% 27 & anon

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.10 Customizing Flashes

Why would you customize a flash?

If you would like to change any of the flash messages defined in Sylius in any desired language.
For example:

* change the content of a flash when you add resource in the admin

* change the content of a flash when you register in the shop

and many other places where you can customize the text content of the default flashes.

How to customize a flash message?

In order to customize a resource flash in your project:

1. Create the app\Resources\translations\flashes.en.yml for english contents of your flashes.

Note: You can create different files for different locales (languages). For example flashes.pl.yml should hold
only polish flashes, as they will be visible when the current locale is PL. Check Locales docs for more information.

2. In this file configure the desired flash key and give it a translation.

If you would like to change the flash message while updating a Taxon, you will need to configure the flash under the
sylius.taxon.update key:

2.1. The Customization Guide 123

Sylius

sylius:
taxon:
update: This category has been successfully edited.

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1.11 Customizing State Machines

Warning: Not familiar with the State Machine concept? Read the docs here!

Note: Customizing logic via State Machines vs. Events

The logic in which Sylius operates can be customized in two ways. First of them is using the state machines: what is
really useful when you need to modify business logic for instance modify the flow of the checkout, and the second is
listening on the kernel events related to the entities, which is helpful for modifying the HTTP responses visible directly
to the user, like displaying notifications, sending emails.

How to customize a State Machine?

Tip: First of all if you are attempting to change anything in any state machine in Sylius you will need a special file:
app/config/state_machine.yml which has to be imported in the app/config/config.yml.

app/config/config.yml
imports:
- { resource: "state_machine.yml" }

How to add a new state?

Let’s assume that you would like to add a new state to the Order state machine. You will need to add these few lines
tothe state_machine.yml:

app/config/state_machine.yml
winzou_state_machine:
sylius_order:
states:
your_new_state: ~ # here name your state as you wish

After that your new step will be available alongside other steps that already were defined in that state machine.

124 Chapter 2. The Customization Guide

Sylius

Tip: Run $ php bin/console debug:winzou:state-machine sylius_order to check if the state
machine has changed to your implementation.

How to add a new transition?

Let’s assume that you would like to add a new transition to the Order state machine, that will allow moving from the
cancelled state backwards to new. Let’s call it “restoring”.

You will need to add these few lines to the state_machine.yml:

app/config/state_machine.yml
winzou_state machine:
sylius_order:
transitions:
restore:
from: [cancelled]
to: new

After that your new transition will be available alongside other transitions that already were defined in that state
machine.

Tip: Run $ php bin/console debug:winzou:state-machine sylius_order to check if the state
machine has changed to your implementation.

How to remove a state and its transitions?

Warning: If you are willing to remove a state or a transition you have to override the whole states/transitions
section of the state machine you are willing to modify. See how we do it in the customization of the Checkout
process.

How to add a new callback?

Let’s assume that you would like to add a new callback to the Order state machine, that will do something on an
already defined transition.

You will need to add these few lines to the state_machine.yml:

app/config/state_machine.yml
winzou_state_machine:
sylius_order:
callbacks:
after:
sylius_send _email:
here you are choosing the transition on which the action should,
—take place - we are using the one we have created before
on: ["cancel"]
it is just an example, use an existent service and its method
—here!

(continues on next page)

2.1. The Customization Guide 125

Sylius

(continued from previous page)

do: ["@service", "sendEmail"]
this will be the object of an Order here
args: ["object"]

After that your new callback will be available alongside other callbacks that already were defined in that state machine
and will be called on the desired transition

How to modify a callback?

If you would like to modify an existent callback of for example the state machine of ProductReviews, so that it does
not count the average rating but does something else - you need to add these few lines to the state_machine.yml:

app/config/state_machine.yml
winzou_state_machine:
sylius_review:
callbacks:
after:
update_price:
on: "accept"
here you can change the service and its method that is called,
—for your own service
do: ["@sylius.review.updater.your_service", update]
args: ["object"]

How to disable a callback?

If you would like to turn off a callback of a state machine you need to set its disabled option to true. On the
example of the state machine of ProductReview, we can turn off the update_price callback:

app/config/state_machine.yml
winzou_state_machine:
sylius_review:
callbacks:
after:
update_price:
disabled: true

Good to know

See also:
All the customizations can be done either in your application directly or in Plugins!
Learn more

¢ Winzou StateMachine Bundle

» State Machine Concept

126 Chapter 2. The Customization Guide

https://github.com/winzou/StateMachineBundle

Sylius

2.1.12 Customizing Grids

Note: We assume that you are familiar with grids. If not check the documentation of the Grid Bundle and Grid
Component first.

Why would you customize grids?
When you would like to change how the index view of an entity looks like in the administration panel, then you have
to override its grid.

* remove a field from a grid

* change a field of a grid

* reorder fields

* override an entire grid

How to customize grids?

Tip: One way to change anything in any grid in Sylius is to create a special file in the app/config/ directory:
app/config/grids.yml which has to be imported in the app/config/config.yml.

app/config/config.yml
imports:
- { resource: "grids.yml" }

How to customize fields of a grid?
How to remove a field from a grid?

If you would like to remove a field from an existing Sylius grid, you will need to disable it in the app/config/
grids.yml.

Let’s imagine that we would like to hide the title of product review field on the
sylius_admin_product_review grid.

app/config/grids.yml
sylius_grid:

grids:
sylius_admin_product_review:
fields:
title:

enabled: false

That’s all. Now the tit1e field will be disabled (invisible).

2.1. The Customization Guide 127

Sylius

How to modify a field of a grid?

If you would like to modify for instance a label of any field from a grid, that’s what you need to do:

app/config/grids.yml
sylius_grid:

grids:
sylius_admin_product_review:
fields:
date:

label: "When was it added?"

How to customize filters of a grid?
How to remove a filter from a grid?

If you would like to remove a filter from an existing Sylius grid, you will need to disable it in the app/config/
grids.yml.

Let’s imagine that we would like to hide the titles filter of product reviews on the
sylius_admin_product_review grid.

app/config/grids.yml
sylius_grid:

grids:
sylius_admin_product_review:
filters:
title:

enabled: false

That’s all. Now the t it le filter will be disabled.

How to customize actions of a grid?
How to remove an action from a grid?

If you would like to disable some actions in any grid, you just need to set its enabled option to false like below:

app/config/grids.yml
sylius_grid:

grids:
sylius_admin_product_review:
actions:
item:

delete:
type: delete
enabled: false

How to modify an action of a grid?

If you would like to change the link to which an action button is redirecting, this is what you have to do:

128 Chapter 2. The Customization Guide

Sylius

Warning: The show button does not exist in the sylius_admin_product grid by default. It is assumed that
you already have it customized, and your grid has the show action.

app/config/grids.yml
sylius_grid:

grids:
sylius_admin_product:
actions:
item:
show:
type: show
label: Show in the shop
options:
link:
route: sylius_shop_product_show
parameters:

slug: resource.slug

The above grid modification will change the redirect of the show action to redirect to the shop, instead of admin show.
Also the label was changed here.

How to modify positions of fields, filters and actions in a grid?

For fields, filters and actions it is possible to easily change the order in which they are displayed in the grid.

See an example of fields order modification on the sylius_admin_product_review grid below:

app/config/grids.yml
sylius_grid:

grids:
sylius_admin_product_review:
fields:
date:
position: 5
title:
position: 6
rating:
position: 3
status:
position: 1
reviewSubject:
position: 2
author:

position: 4

Customizing grids by events

There is also another way to customize grids: via events. Every grid configuration dispatches an event when its
definition is being converted.

For example, sylius_admin_product grid dispatches such an event:

sylius.grid.admin_product # For the grid of products in admin

2.1. The Customization Guide 129

Sylius

To show you an example of a grid customization using events, we will remove a field from a grid using that method.
Here are the steps, that you need to take:

1. In order to remove fields from the product grid in Sylius you have to create a
AppBundle\Grid\AdminProductsGridListener class.

In the example below we are removing the images field from the sylius_admin_product grid.

<?php
namespace AppBundle\Grid;
use Sylius\Component\Grid\Event\GridDefinitionConverterEvent;
final class AdminProductsGridListener
{
VAT
* @param GridDefinitionConverterEvent Sevent
*/
public function removelmageField(GridDefinitionConverterEvent Sevent)

Sgrid = Sevent->getGrid();

Sgrid->removeField('image');

2. After creating your class with a proper method for the grid customizations you need, subscribe your listener to the
sylius.grid.admin_product eventinthe AppBundle/Resources/config/services.yml.

AppBundle/Resources/config/services.yml
services:
app.listener.admin.products_grid:
class: AppBundle\Grid\AdminProductsGridListener
tags:
- { name: kernel.event listener, event: sylius.grid.admin product,

—method: removelmageField }

3. Result:

After these two steps your admin product grid should not have the image field.

How to override an entire grid?

Tip: This is the other way to customize grids. If you need to change more, than just slight adjustments we do
recommend to override an entire grid file in the app/Resources/ directory.

Let’s assume that you would like to modify the shipping_categories grid by removing filters and the delete
action from it.

* To achieve that you need to create the app/Resources/SyliusAdminBundle/config/grids/
shipping_category.yml file.

* Then into the created file copy the content of Sylius/Bundle/AdminBundle/Resources/config/
grids/shipping_category.yml.

* And moditfy it to your needs:

130 Chapter 2. The Customization Guide

Sylius

app/Resources/SyliusAdminBundle/config/grids/shipping _category.yml
sylius_grid:
grids:
sylius_admin_shipping category:
driver:
name: doctrine/orm
options:
class: "%sylius.model.shipping_category.class%
repository:
method: createlistQueryBuilder

fields:
code:
type: string
label: sylius.ui.code
name:
type: string
label: sylius.ui.name
createdAt:
type: datetime
label: sylius.ui.creation_date
options:
format: d-m-Y H:1i
updatedAt:
type: datetime
label: sylius.ui.updating_date
options:
format: d-m-Y H:1i

actions:
main:
create:
type: create
item:

update:
type: update

In the above example the delete action and the filters section have been removed.

e That’s it! The grid has been modified and it will look like that:

EE Shipping categories

Manage shipping categories for your store

Administration > Shipping categories

Code Name Creation date Updating date Actions
test Test 17-02-2017 09:04 17-02-2017 09:04 & Edit
small Small Items 17-02-2017 09:18 17-02-2017 09:18 4 Edit

Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

2.1. The Customization Guide

131

Sylius

Learn more

Grid - Component Documentation

Grid - Bundle Documentation
Customizing Models
Customizing Forms
Customizing Repositories
Customizing Factories
Customizing Controllers
Customizing Validation
Customizing Menus
Customizing Templates
Customizing Translations
Customizing Flashes
Customizing State Machines

Customizing Grids

2.1.13 Good to know

See also:

All the customizations can be done either in your application directly or in Plugins!

Customizing Models
Customizing Forms
Customizing Repositories
Customizing Factories
Customizing Controllers
Customizing Validation
Customizing Menus
Customizing Templates
Customizing Translations
Customizing Flashes
Customizing State Machines

Customizing Grids

132

Chapter 2. The Customization Guide

CHAPTER 3

Sylius Plugins

The collection of Sylius Plugins together with the guide on Plugins development. Remember that you can use all the
customization techniques in Plugins.

3.1 Sylius Plugins

Sylius as a platform has a lot of space for various customizations and extensions. It aims to provide a simple schema
for developing plugins. Anything you can imagine can be implemented and added to the Sylius framework as a plugin.

3.1.1 The official list of plugins

Tip: The official list of Sylius Plugins is available on the Sylius website here.

3.1.2 What are the plugins for?
The plugins either modify or extend Sylius default behaviour, providing useful features that are built on top of the
Sylius Core.

Exemplary features may be: Social media buttons, newsletter, wishlists, payment gateways integrations etc.

3.1.3 How to make a Sylius Plugin official?

Since Sylius is an open-source platform, there is a certain flow in order for the plugin to become officially adopted by
the community.

1. Develop the plugin using the official Plugin Development guide.

2. Remember about the tests and code quality!

133

http://sylius.com/developers/store/plugins

Sylius

3. Send it to the project maintainers. It can be via email to any member of the Sylius Core team, or the official Sylius
Slack.

4. Wait for your Plugin to be featured the list of plugins on the Sylius website.
How to create a plugin for Sylius?

Sylius plugin is nothing more but a regular Symfony bundle adding custom behaviour to the default Sylius application.

The best way to create your own plugin is to use Sylius plugin skeleton, which has built-in infrastructure for designing
and testing using Behat.

1. Create project using Composer.

$ composer create-project sylius/plugin-skeleton SyliusMyFirstPlugin

Note: The plugin can be created anywhere, not only inside a Sylius application, because it already has the test
environment inside.

2. Get familiar with basic plugin design.

The skeleton comes with simple application that greets a customer. There are feature scenarios in features direc-
tory; exemplary bundle with a controller, a template and a routing configuration in src; and the testing infrastructure
intests.

Note: The tests/Application directory contains a sample Symfony application used to test your plugin.

3. Remove boilerplate files and rename your bundle.

In most cases you don’t want your Sylius plugin to greet the customer like it is now, so feel free to re-
move unnecessary controllers, assets and features. You will also want to change the plugin’s namespace from
Acme\SyliusExamplePlugin to a more meaningful one. Keep in mind that these changes also need to be
done in tests/Application and composer. json.

Tip: Refer to chapter 5 for the naming conventions to be used.

4. Implement your awesome features.

Looking at existing Sylius plugins like
* Sylius/ShopAPIPlugin
* bitbag-commerce/PayUPlugin
* stefandoorn/sitemap-plugin

* bitbag-commerce/CmsPlugin

134 Chapter 3. Sylius Plugins

http://sylius.com/slack
http://sylius.com/slack
http://sylius.com/developers/store/plugins
https://github.com/Sylius/PluginSkeleton
http://behat.org/en/latest/
https://github.com/Sylius/SyliusShopApiPlugin
https://github.com/bitbag-commerce/PayUPlugin
https://github.com/stefandoorn/sitemap-plugin
https://github.com/bitbag-commerce/CmsPlugin

Sylius

is a great way to start developing your own plugins.

You are strongly encouraged to use BDD with Behat, phpspec and PhpUnit to ensure your plugin’s extraordinary
quality.

Tip: For the plugins, the suggested way of modifying Sylius is using the Customization Guide. There you will find a
lot of help while trying to modify templates, state machines, controllers and many, many more.

5. Naming conventions

Besides the way you are creating plugins (based on our skeleton or on your own), there are a few naming conventions
that should be followed:

* Repository name should use PascalCase, must have a Sylius« prefix and a Plugin suffix

* Project composer name should use dashes as a separator, must have a sylius prefix and a plugin suffix,
e.g.: sylius-invoice-plugin.

* Bundle class name should start with vendor name, followed by Sylius and suffixed by P1lugin (instead of
Bundle), e.g.: VendorNameSyliusInvoicePlugin.

* Bundle extension should be named similar, but suffixed by the Symfony standard Extension, e.g.:
VendorNameSyliusInvoiceExtension.

* Bundle class must use the Sylius\Bundle\CoreBundle\Application\SyliusPluginTrait
trait.

* Namespace should follow PSR-4. The top-level namespace should be the vendor name. The second-level should
be prefixed by Sylius and suffixed by Plugin (e.g. VendorName\SyliusInvoicePlugin)

Note: Following the naming strategy for the bundle class & extension class prevents configuration
key collision. Following the convention mentioned above generates the default configuration key as e.g.
vendor_name_sylius_invoice_plugin.

The rules are to be applied to all bundles which will provide an integration with the whole Sylius platform (sylius/
syliusor sylius/core-bundle as dependency).

Reusable components for the whole Symfony community, which will be based just on some Sylius bundles should
follow the regular Symfony conventions.

Example

Assuming you are creating the invoicing plugin as used above, this will result in the following set-up.
1. Name your repository: vendor-name/sylius-invoice-plugin.

2. Create bundle class in src/VendorNameSyliusInvoicePlugin.php:

<?php
declare (strict_types=1);

namespace VendorName\SyliusInvoicePlugin;

(continues on next page)

3.1. Sylius Plugins 135

https://www.agilealliance.org/glossary/bdd/
http://behat.org/en/latest/
http://www.phpspec.net/en/stable/
https://phpunit.de/
http://www.php-fig.org/psr/psr-4/

Sylius

(continued from previous page)

use Sylius\Bundle\CoreBundle\Application\SyliusPluginTrait;
use Symfony\Component\HttpKernel\Bundle\Bundle;

final class VendorNameSyliusInvoicePlugin extends Bundle

{

use SyliusPluginTrait;

3. Create extension class in src/DependencyInjection/VendorNameSyliusInvoiceExtension.
php:

<?php
declare (strict_types=1);
namespace VendorName\SyliusInvoicePlugin\DependencyInjection;

use Symfony\Component\Config\FileLocator;

use Symfony\Component\DependencyInjection\ContainerBuilder;

use Symfony\Component\DependencyInjection\Extension\Extension;
use Symfony\Component\DependencyInjection\Loader\XmlFileLoader;

final class VendorNameSyliusInvoiceExtension extends Extension

{

public function load(array Sconfig, ContainerBuilder Scontainer): void

=

s

-
Il

Sthis->processConfiguration ($Sthis->getConfiguration([], S$container),

Sloader = new XmlFileLoader (Scontainer, new FileLocator (e/
—Resources/config'));

}

4. In composer. json, define the correct namespacing for the PSR-4 autoloader:

{
"autoload": {

"psr—-4": {
"VendorName\\SyliusInvoicePlugin\\": "src/"
}
}I
"autoload-dev": {
"psr—-4": {
"Tests\\VendorName\\SyliusInvoicePlugin\\": "tests/"

by

Plugin Development Guide

Sylius plugins are one of the most powerful ways to extend Sylius functionalities. They’re not bounded by Sylius
release cycle and can be developed quicker and more effectively. They also allow sharing our (developers) work in an
open-source community, which is not possible with regular application customizations.

BDD methodology says the most accurate way to explain some process is using an example. With respect to that rule,
let’s create some simple first plugin together!

136 Chapter 3. Sylius Plugins

Sylius

Idea

The most important thing is a concept. You should be aware, that not every customization should be made as a plugin
for Sylius. If you:

* share the common logic between multiple projects

* think provided feature could be useful for the whole Sylius community and want to share it for free or sell it
then you should definitely consider the creation of a plugin. On the other hand, if:

* your feature is specific for your project

* you don’t want to share your work in the community (maybe yet)

then don’t be afraid to make a regular Sylius customization.

Tip: For needs of this tutorial, we will implement a simple plugin, making it possible to mark a product variant
available on demand.

How to start?

The first step is to create a new plugin using our PluginSkeleton.

$ composer create-project sylius/plugin-skeleton IronManSyliusProductOnDemandPlugin

Note: Remember about naming convention! Sylius plugin should start with your vendor name, followed by Sylius
prefix and with P1ugin suffix at the end. Let’s say your vendor name is IronMan. Come on IronMan, let’s create
your plugin!

Naming changes

PluginSkeleton provides some default classes and configurations. However, they must have some default val-
ues and names that should be changed to reflect your plugin functionality. Basing on the vendor and plugin names
established above, these are the changes that should be made:

* In composer. json:

— sylius/plugin-skeleton->iron-man/sylius-product-on-demand-plugin

Acme example plugin for Sylius. -> Plugin allowing to mark product
variants as available on demand in Sylius. (or sth similar)

Acme\\SyliusExamplePlugin\\ -> IronMan\\SyliusProductOnDemandPlugin\\ (the
same changes should be done in namespaces in src/ directory

Tests\\Acme\\SyliusExamplePlugin\\ ->Tests\\IronMan\\SyliusProductOnDemandPlugin\\
(the same changes should be done in namespaces in tests/ directory

e AcmeSyliusExamplePlugin should be renamed to IronManSyliusProductOnDemandPlugin
e AcmeSyliusExampleExtension should berenamedto IronManSyliusProductOnDemandExtension
e In src/DependencyInjection/Configuration.php:

— acme_sylius_example_plugin->iron_man_sylius_product_on_demand_plugin

3.1. Sylius Plugins 137

Sylius

e Intests/Application/app/AppKernel.php:

— \Acme\SyliusExamplePlugin\AcmeSyliusExamplePlugin () ->
\IronMan\SyliusProductOnDemandPlugin\SyliusProductOnDemandPlugin ()

e In phpspec.yml.dist (if you want to use PHPSpec in your plugin):
— Acme\SyliusExamplePlugin->IronMan\SyliusProductOnDemandPlugin

That’s it! All other files are just a boilerplate to show you what can be done in the Sylius plugin. They can be deleted
with no harm:

¢ All files from features/ directory

e src/Controller/GreetingController.php

* src/Resources/config/admin_routing.yml

* src/Resources/config/shop_routing.yml

* src/Resources/public/greeting. js

* src/Resources/views/dynamic_greeting.html.twig

* src/Resources/views/static_greeting.html.twig

e All files from tests/Behat /Page/Shop/ (with corresponding services)

* tests/Context/Ui/Shop/WelcomeContext .php (With corresponding service)

You should also delete Behat suite named greeting_customer from tests/Behat /Resources/suites.
yml.

Important: You don’t have to remove all these files mentioned above. They can be adapted to suit your plugin
functionality. However, as they provide default, dummy features only for the presentation reasons, it’s just easier to
delete them and implement new ones on your own.

Specification

We strongly encourage you to follow our BDD path in implementing Sylius plugins. In fact, proper tests are one of
the requirements to have your plugin officially accepted.

Attention: Even though we’re big fans of our Behat and PHPSpec-based workflow, we do not enforce you to use
the same libraries. We strongly believe that properly tested code is the biggest value, but everyone should feel well
with their own tests. If you’re not familiar with PHPSpec, but know PHPUnit (or anything else) by heart - keep
rocking with your favorite tool!

Scenario

Let’s start with describing how marking a product variant available on demand should work

@managing_product_variants

Feature: Marking a variant as available on demand
In order to inform customer about possibility to order a product variant on demand
As an Administrator
I want to be able to mark product variant as available on demand

(continues on next page)

138 Chapter 3. Sylius Plugins

Sylius

(continued from previous page)

Background:
Given the store operates on a single channel in "United States"
And the store has a "Iron Man Suite" configurable product
And the product "Iron Man Suite" has a "Mark XLVI" variant priced at "$400000"
And I am logged in as an administrator

@Qui
Scenario: Marking product variant as available on demand
When I want to modify the "Mark XLVI" product variant
And I mark it as available on demand
And I save my changes
Then I should be notified that it has been successfully edited
And this variant should be available on demand

What is really important, usually you don’t need to implement the whole Behat scenario on your own! In the example
above only 2 steps would need a custom implementation. Rest of them can be easily reused from Sylius Behat suite.

Important: If you’re not familiar with our BDD workflow with Behat, take a look at our BDD guide. All Behat
configurations (contexts, pages, services, suites etc.) are explained there in details.

Behavior implementation

<?php
declare (strict_types=1);
namespace Tests\IronMan\SyliusProductOnDemandPlugin\Behat\Context\Ui\Admin;

use Behat\Behat\Context\Context;

use IronMan\SyliusProductOnDemandPlugin\Entity\ProductVariantInterface;

use
—Tests\IronMan\SyliusProductOnDemandPlugin\Behat\Page\Ui\Admin\ProductVariantUpdatePags

—

use Webmozart\Assert\Assert;

final class ManagingProductVariantsContext implements Context
{

/#+# @var ProductVariantUpdatePageInterface #*/

private SproductVariantUpdatePage;

public function __ construct (ProductVariantUpdatePageInterface
—SproductVariantUpdatePage)
{
Sthis->productVariantUpdatePage = S$productVariantUpdatePage;

VEx:
* @When I mark it as available on demand
*/
public function markVariantAsAvailableOnDemand(): void

{
Sthis->productVariantUpdatePage->markAsAvailableOnDemand () ;

rInterface;

(continues on next page)

3.1. Sylius Plugins 139

Sylius

(continued from previous page)

J ok k
* @Then /" (this variant) should be available on demandS$S/
*/
public function thisVariantShouldBeAvailableOnDemand (ProductVariantInterface
—$productVariant) : void
{
Sthis->productVariantUpdatePage->open ([
'id' => S$productVariant->getId(),
'productId' => S$productVariant->getProduct ()->getId(),
1)
Assert::true(Sthis->productVariantUpdatePage->isAvailableOnDemand()) ;

First step is done - we have a failing test, that that is going to go green when we implement a desired functionality.

Implementation

The goal of our plugin is simple - we need to extend the ProductVariant entity and provide a new flag, that could
be set on the product variant form. Following customizations are done just like in the Sylius Customization Guide,
take a look at customizing models, form and template.

Attention: PluginSkeleton is focused on delivering the most friendly and testable environment. That’s why
in tests/Application directory, there is a tiny Sylius application placed, with your plugin already used.
Thanks to that, you can test your plugin with Behat scenarios within Sylius application without installing it to
any test app manually! There is, however, one important consequence of such an architecture. Everything that
should be done by a plugin user (configuration import, templates copying etc.) should also be done in tests/
Application to simulate the real developer behavior - and therefore make your new features testable.

Model

The only field we need to add is an additional $availableOnDemand boolean. We should start with the unit tests
(written with PHPSpec, PHPUnit, or any other unit testing tool):

<?php

// spec/Entity/ProductVariantSpec.php

declare (strict_types=1);

namespace spec\IronMan\SyliusProductOnDemandPlugin\Entity;

use IronMan\SyliusProductOnDemandPlugin\Entity\ProductVariantInterface;
use PhpSpec\ObjectBehavior;

use Sylius\Component\Core\Model\ProductVariant;

final class ProductVariantSpec extends ObjectBehavior
{

(continues on next page)

140 Chapter 3. Sylius Plugins

Sylius

(continued from previous page)

function it_is_sylius_product_variant(): void
{
Sthis->shouldHaveType (ProductVariant::class);

function it_implements_product_variant_interface(): void

{

Sthis->shouldImplement (ProductVariantInterface::class);

function it_can_be_available_on_demand () : void

{
Sthis—->isAvailableOnDemand () —>shouldReturn (false) ;

Sthis—->setAvailableOnDemand (true) ;
Sthis—->isAvailableOnDemand () —>shouldReturn (true) ;

<?php
// src/Entity/ProductVariant.php
declare (strict_types=1);
namespace IronMan\SyliusProductOnDemandPlugin\Entity;
use Sylius\Component\Core\Model\ProductVariant as BaseProductVariant;
class ProductVariant extends BaseProductVariant implements ProductVariantInterface
{
/*+ @var bool */
private SavailableOnDemand = false;
public function setAvailableOnDemand (bool SavailableOnDemand): void

{

Sthis—->availableOnDemand = $availableOnDemand;

public function isAvailableOnDemand(): bool

{

return Sthis->availableOnDemand;

<?php

// src/Entity/ProductVariantInterface.php

declare (strict_types=1);

namespace IronMan\SyliusProductOnDemandPlugin\Entity;

use Sylius\Component\Core\Model\ProductVariantInterface as_,
—BaseProductVariantInterface;

(continues on next page)

3.1. Sylius Plugins 141

Sylius

(continued from previous page)

interface ProductVariantInterface extends BaseProductVariantInterface

{

&

public function setAvailableOnDemand (bool Save

ilableOnDemand) : void;

public function isAvailableOnDemand(): bool;

Of course you need to remember about entity mapping customization as well:

src/Resources/config/doctrine/ProductVariant.orm.yml

IronMan\SyliusProductOnDemandPlugin\Entity\ProductVariant:
type: entity
table: sylius_product_variant
fields:
availableOnDemand:
type: boolean

Then our new entity should be configured as a resource model:

src/Resources/config/config.yml

sylius_product:
resources:
product_variant:
classes:
model: IronMan\SyliusProductOnDemandPlugin\Entity\ProductVariant

This configuration should be placed in src/Resources/config/config.yml. It also has to
be imported (- { resource: "@IronManSyliusProductOnDemandPlugin/Resources/config/
config.yml" })intests/Application/app/config/config.yml to make it work in Behat tests. And
at the end importing this file should be one of the steps described in plugin installation.

Warning: Remember that if you modify or add some mapping, you should either provide a migration for the
plugin user (that could be copied to their migration folder) or mention the requirement of migration generation in
the installation instructions!

Form

To make our new field available in Admin panel, a form extension is required:

<?php

// src/Form/Extension/ProductVariantTypeExtension.php
declare (strict_types=1);

namespace IronMan\SyliusProductOnDemandPlugin\Form\Extension;
use Symfony\Component\Form\AbstractTypeExtension;

use Symfony\Component\Form\Extension\Core\Type\CheckboxType;

use Sylius\Bundle\ProductBundle\Form\Type\ProductVariantType;
use Symfony\Component\Form\FormBuilderInterface;

(continues on next page)

142 Chapter 3. Sylius Plugins

Sylius

(continued from previous page)

final class ProductVariantTypeExtension extends AbstractTypeExtension
{
public function buildForm(FormBuilderInterface S$builder, array Soptions): void
{
Sbuilder->add('availableOnDemand', CheckboxType::class, [
'label' => 'iron_man_sylius_product_on_demand_plugin.ui.available_on_
—~demand',

1)

public function getExtendedType () : string
{

return ProductVariantType::class;

Translation keys placed in src/Resources/translations/message. {locale} .yml will be resolved au-
tomatically.

src/Resources/translations/message.en.yml

iron_man_sylius_product_on_demand_plugin:
ui:
available on_demand: Available on demand

And in your services.yml file:

src/Resources/config/services.yml

services:
iron_man_sylius_product_on_demand_plugin.form.extension.type.product_variant:
class:
—IronMan\SyliusProductOnDemandPlugin\Form\Extension\ProductVariantTypeExtension
tags:
- { name: form.type extension, extended_ type:

—Sylius\Bundle\ProductBundle\Form\Type\ProductVariantType }

Again, you must remember about importing src/Resources/config/services.yml in tests/
Application/app/Resources/config/config.yml.

Template

The last step is extending the template of a product variant form. It can be done in three ways:
* by overwriting template
* by using sonata block events
* by writing a theme

For the needs of this tutorial, we will go the first way. What’s crucial, we need to determine which template should
be overwritten. Naming for twig files in Sylius, both in ShopBundle and AdminBundle are pretty clear and straight-
forward. In this specific case, the template to override is src/Sylius/Bundle/AdminBundle/Resources/
views/ProductVariant/Tab/_details.html.twig. Itshould be copiedto src/Resources/views/
SyliusAdminBundle/ProductVariant/Tab/ directory, and additional field should be placed somewhere in
the template.

3.1. Sylius Plugins 143

Sylius

{# src/Resources/views/SyliusAdminBundle/ProductVariant/Tab/ _details.html.twig #}
{(#...#)}

<div class="ui segment">
<h4 class="ui dividing header">{{ 'sylius.ui.inventory'|trans }}</h4d>

{{ form_row(form.onHand) }}

{{ form_rc ack }}

{{ form_row }}

{{ form_row(form.availableOnDemand) }}
</div>
{#...#}

Warning: Beware! Implementing a new template on the plugin level is not everything! You must remember
that this template should be copied to app/Resources/views/SyliusAdminBundle/views/ directory
(with whole catalogs structure, means /ProductVariant/Tab in the application that uses your plugin - and
therefore it should be mentioned in installation instruction. The same thing should be done for your test appli-

cation (you should have tests/Application/views/SyliusAdminBundle/ catalog with this template
copied).

Take a look at customizing the templates section in the documentation, for a better understanding of this topic.

Summary

Congratulations! You’ve created your first, fully tested and documented, customization to Sylius inside a Sylius
plugin!

As a result, you should see a new field in product variant form:

Inventory

Current stock *

0

Tracked

(Available on demand

As you can see, there are some things to do at the beginning of development, but now, when you are already familiar
with the whole structure, each next feature can be provided faster than the previous ones.

What’s next?

Of course, it’s only the beginning. You could think about plenty of new features associated with this new product
variant field. What could be the next step?

* customizing a product variant grid, to see new field on the index page

* customizing template of product details page, to show information to customer if product is not available, but
can be ordered on demand

144 Chapter 3. Sylius Plugins

Sylius

* allowing to order not available yet, but available on demand variants and therefore customizing the whole
order processing and inventory operations

and even more. The limit is only your imagination (and business value, of course!). For more inspiration, we strongly
recommend our customizing guide.

At the end, do not hesitate to contact us at contact@sylius.com when you manage to implement a new plugin. We
would be happy to check it out and add it to our official plugins list!

Note: Beware, that to have your plugin officially accepted, it needs to be created with respect to clean-code principles
and properly tested!

Future

We are working hard to make creating Sylius plugins even more developer- and user-friendly. Be in touch with the
PluginSkeleton notifications and other announcements from Sylius community. Our plugins base is growing fast - why
not be a part of it?

* How to create a plugin for Sylius?
* Plugin Development Guide
* How to create a plugin for Sylius?

* Plugin Development Guide

3.1. Sylius Plugins 145

mailto:contact@sylius.com
https://sylius.com/plugins/
https://github.com/Sylius/PluginSkeleton

Sylius

146 Chapter 3. Sylius Plugins

CHAPTER 4

The Cookbook

The Cookbook is a collection of specific solutions for specific needs.

4.1 The Cookbook

The Sylius Cookbook is a collection of solution articles helping you with some specific, narrow problems.

4.1.1 Entities

How to add a custom model?

In some cases you may be needing to add new models to your application in order to cover unique business needs.
The process of extending Sylius with new entities is simple and intuitive.

As an example we will take a Supplier entity, which may be really useful for shop maintenance.

1. Define your needs

A Supplier needs three essential fields: name, description and enabled flag.

2. Generate the entity

Symfony, the framework Sylius uses, provides the SensioGeneratorBundle, that simplifies the process of adding a
model.

Warning: Remember to have the SensioGeneratorBundle imported in the AppKernel, as it is not there by
default.

147

http://symfony.com/doc/current/bundles/SensioGeneratorBundle/index.html

Sylius

You need to use such a command in your project directory.

$ php bin/console generate:doctrine:entity

The generator will ask you for the entity name and fields. See how it should look like to match our assumptions.

148 Chapter 4. The Cookbook

Welcome to the Doctrine2 entity generator

This command helps you generate Doctrine2 entities.

First, you need to give the entity name you want to generate.
You must use the shortcut notation like AcmeBlogBundle:Post.

The Entity shortcut name: AppBundle:Supplier
Determine the format to use for the mapping information.
Configuration format (yml, xml, php, or annotation) [annotation]: yml

Instead of starting with a blank entity, you can add some fields now.
Mote that the primary key will be added automatically (named -id).
Available types: array, simple_array, json_array, object,

boolean, integer, smallint, bigint, string, text, datetime, datetimetz,

date, time, decimal, float, binary, blob, guid.

Mew field name (press <return> to stop adding fields): name
Field type [string]:

Field length [255]:

Is nullable [false]:

Unique [false]: true

New field name (press <return> stop adding fields): description
Field type [string]: text

Iz nullable [false]: true

Unigue [false]:

Mew field name (press <return> stop adding fields): enabled
Field type [string]: boolean

Is nullable [Talse]:

Unique [Talse]:

Mew field name (press <return> to stop adding fields):

Entity generation

> Generating entity class srcfAppBundle/Entity/Supplier.php: OK!
> Generating repository class srcfAppBundle/Repository/SupplierRepository.php: OK!
> Generating mapping file srcfAppBundle/Resources/config/doctrine/Supplier.orm.yml: OK!

Everything is OK! Mow get to work :).

4.1. The Cookbook

Sylius

3. Update the database using migrations

Assuming that your database was up-to-date before adding the new entity, run:

’$ php bin/console doctrine:migrations:diff

This will generate a new migration file which adds the Supplier entity to your database. Then update the database
using the generated migration:

’$ php bin/console doctrine:migrations:migrate

4. Add Resourcelnterface to your model class

Go to the generated class file and make it implement the ResourceInterface:

<?php

namespace AppBundle\Entity;

use Sylius\Component\Resource\Model\ResourcelInterface;
class Supplier implements Resourcelnterface

{
/7

5. Register your entity as a Sylius resource

If you don’t have it yet create a file app/config/resources.yml, import it in the app/config/config.
yml.

app/config/config.yml
imports:
- { resource: "resources.yml" }

And add these few lines in the resources.yml file:

app/config/resources.yml
sylius_resource:
resources:
app.supplier:
driver: doctrine/orm # You can use also different driver here
classes:
model: AppBundle\Entity\Supplier

To check if the process was run correctly run such a command:

$ php bin/console debug:container | grep supplier

The output should be:

.controller. Sylius\Bundle\ResourceBundle\Controller\ResourceController
.factory. Sylius\Component\Resource\Factory\Factory

. form.type. Sylius\Bundle\ResourceBundle\Form\Type\DefaultResourceType
.manager . alias for "doctrine.orm.default_entity_manager"
.repository. Sylius\Bundle\ResourceBundle\Doctrine\ORM\EntityRepositor

150 Chapter 4. The Cookbook

Sylius

6. Optionally try to use Sylius API to create new resource

See how to work with API in the separate cookbook here.

Note: Using API is not mandatory. It is just a nice moment for you to try it out. If you are not interested go to the
next point of this cookbook.

7. Define grid structure for the new entity

To have templates for your Entity administration out of the box you can use Grids. Here you can see how to configure
a grid for the Supplier entity.

app/config/grids/admin/supplier.yml
sylius_grid:
grids:
app_admin_supplier:
driver:
name: doctrine/orm
options:
class: AppBundle\Entity\Supplier
fields:
name:
type: string
label: sylius.ui.name
description:
type: string
label: sylius.ui.description

enabled:
type: twig
label: sylius.ui.enabled
options:
template: "@SyliusUi/Grid/Field/enabled.html.twig"
actions:
main:
create:
type: create
item:
update:
type: update
delete:

type: delete

Remember to import your grid in the app/config/grids/grids.yml file which has to be imported in the
app/config/config.yml.

app/config/grids/grids.yml
imports:
- { resource: 'admin/supplier.yml' }

app/config/config.yml
imports:
- { resource: "grids/grids.yml" }

4.1. The Cookbook 151

Sylius

8. Define routing for entity administration

Having a grid prepared we can configure routing for the entity administration:

Create the app/config/routing/admin/supplier.yml file. Include it in the app/config/routing/
admin.yml, which should be also included in the app/config/routing.yml.

app/config/routing/admin/supplier.yml
app_admin_supplier:
resource: |
alias: app.supplier

admin
ates: SyliusAdminBundle:Crud
redirect: update
grid: app_admin_supplier

vars:
al
subheader: app.ui.supplier
index:
1 s

icon:

ile image outline'

type: sylius.resource

app/config/routing/admin.yml
app_admin_supplier:
resource: 'admin/supplier.yml'

app/config/routing.yml
app_admin:
resource: 'routing/admin.yml'
prefix: /admin

9. Add entity administration to the admin menu

Tip: See how to add links to your new entity administration in the administration menu.

9. Check the admin panel for your changes

Tip: To see what you can do with your new entity accessthe http://localhost:8000/admin/suppliers/
url.

Learn more

e GridBundle documentation
e ResourceBundle documentation

e Customization Guide

152 Chapter 4. The Cookbook

Sylius

How to add a custom translatable model?

In this guide we will create a new translatable model in our system, which is quite similar to adding a simple model,
although it requires some additional steps.

As an example we will take a translatable Supplier entity, which may be really useful for shop maintenance.

1. Define your needs

A Supplier needs three essential fields: name, description and enabled flag. The name and description fields
need to be translatable.

2. Generate the SupplierTranslation entity

Symfony, the framework Sylius uses, provides the SensioGeneratorBundle, that simplifies the process of adding a
model.

Warning: Remember to have the SensioGeneratorBundle imported in the AppKernel, as it is not there by
default.

You need to use such a command in your project directory.

$ php bin/console generate:doctrine:entity

The generator will ask you for the entity name and fields. See how it should look like to match our assumptions.

4.1. The Cookbook 153

http://symfony.com/doc/current/bundles/SensioGeneratorBundle/index.html

Welcome to the Doctrine2 entity generator

This command helps you generate Doctrine2 entities.

First, you need to give the entity name you want to generate.
You must use the shortcut notation like AcmeBlogBundle:Post.

The Entity shortcut name: AppBundle:SupplierTranslation
Determine the format to use for the mapping information.
Configuration format (yml, xml, php, or annotation) [annotation]: yml

Instead of starting with a blank entity, you can add some fields now.
Note that the primary key will be added automatically (named -id).

Available types: array, simple_array, json_array, object,

boolean, smallint, big ring, text, datetime, datetimetz,

date, time ecima it, binary, blob, pguid.

New field name (press <return> to stop adding fields): name

Field type [string]:

Field length [255]:

I= nullable [false]:

Unigue [false]: true

New field name (press <return> to stop adding fields): description
Field type [stringl: text

Is nullable [false]: true

Unigque [false]:

New field name (press <return> to stop adding fields):

Entity generation

created ./srcf/AppBundle/Entity/SupplierTranslation.php
created ./src/AppBundle/Resources/config/doctrine/SupplierTranslation.orm.yml
> Generating entity class src/AppBundle/Entity/SupplierTranslation.php: OK!
> Generating repository class src/AppBundle/Repository/SupplierTranslationRepository.php: OK!
> Generating mapping file src/AppBundle/Resources/config/doctrine/SupplierTranslation.orm.yml: OK!

Everything is OK! Mow get to work :).

As you can see we have provided only the desired translatable fields.

Below the final SupplierTranslation class is presented, it implements the ResourceInterface.
<?php
namespace AppBundle\Entity;

use Sylius\Component\Resource\Model\AbstractTranslation;

(continues on next page)

Chapter 4. The Cookbook

Sylius

(continued from previous page)

use Sylius\Component\Resource\Model\ResourceInterface;

class SupplierTranslation extends AbstractTranslation implements ResourcelInterface
{
J K *
* @var int
*/
private $id;

J kk
* @var string
*/

private Sname;

J x*
* @var string
*/

private Sdescription;

J K *

* @return int

*/
public function getId()
{

return Sthis->id;

Y
* @param string $name
*/
public function setName (Sname)

{

Sthis—->name = S$name;
}
J ok k
* @return string
*/

public function getName ()
{

return Sthis->name;

VER:
* @param string Sdescription
*/
public function setDescription(Sdescription)

{

Sthis->description = $description;
}
VAT
* @return string
*/

public function getDescription()

{

return Sthis->description;

(continues on next page)

4.1. The Cookbook 155

Sylius

(continued from previous page)

3. Generate the Supplier entity

While generating the entity, similarly to the way the translation was generated, we are providing only non-translatable
fields. In our case only the enabled field

Welcome to the Doctrine2 entity generator

This command helps you generate Doctrine2 entities.

First, you need to give the entity name you want to generate
You must use the shortcut notation like AcmeB dLe

The Entity shortcut name: AppBundle:Supplier

Determine the format to use for the mapping information.

Configuration format (yml, xml, php, or annotation) [annotation]: yml

Instead of starting with a blank entity, you can add some fields now.
Note that the primary key will be added automatically (named id).

855 <return® to stop adding fields): enabled
: boolean
I= nul L
Unigue [fa

Mew Tield name (press <return> to stop adding fields):

!

Entity generation

. fsref/AppBundle/Entity/Supplier.php
rd fsrcprpBundlefReseurcesfcunf1gfductr1nef5uppl1er orm. yml
> Generat1ng entity class src/App 1 p L1
> Generating repository class =

Everything is OK! Mow get to work :).

156 Chapter 4. The Cookbook

Sylius

Having the stubs generated, we need to extend our class with a connection to SupplierTranslation.

* implement the ResourceInterface,

* implement the TranslatableInterface,

e use the TranslatableTrait,

* initialize the translations collection in the constructor,

e add the createTranslation () method,

» implement getters and setters for the properties that are held on the translation model.

As a result you should get such a Supplier class:

<?php
namespace AppBundle\Entity;

use Sylius\Component\Resource\Model\ResourcelInterface;
use Sylius\Component\Resource\Model\TranslatableInterface;
use Sylius\Component\Resource\Model\TranslatableTrait;

class Supplier implements ResourcelInterface, TranslatablelInterface

{
use TranslatableTrait {
__construct as private initializeTranslationsCollection;

public function ___construct ()

{

Sthis—->initializeTranslationsCollection();

VAT
* @var int
*/

private $id;

J kk
* @var bool
*/

private Senabled;

J ok k

* @return int

*/
public function getId()
{

return S$Sthis->id;

/x*

* @param string Sname

*/
public function setName (Sname)
{

Sthis->getTranslation () —>setName ($name) ;

(continues on next page)

4.1. The Cookbook

157

Sylius

(continued from previous page)

J kk

* @return string

*/
public function getName ()
{

return Sthis->getTranslation()->getName () ;

}
J ok k

* @param string Sdescription

*/

public function setDescription(Sdescription)
{

Sthis->getTranslation()->setDescription($description);

VEx:

* @return string

*/
public function getDescription()
{

return Sthis->getTranslation()->getDescription();

VAT
* @param boolean Senabled
*/
public function setEnabled($Senabled)
{
Sthis—->enabled = S$enabled;

J ok k

* @return bool

*/
public function getEnabled()
{

return S$this->enabled;

VER:

* {@inheritdoc}

*/
protected function createTranslation ()
{

return new SupplierTranslation();

4. Update the database using migrations

Assuming that your database was up-to-date before adding the new entity, run:

$ php bin/console doctrine:migrations:diff

This will generate a new migration file which adds the Supplier entity to your database. Then update the database

158

Chapter 4. The Cookbook

Sylius

using the generated migration:

$ php bin/console doctrine:migrations:migrate

5. Register your entity together with translation as a Sylius resource

If you don’t have it yet create a file app/config/resources.yml, import it in the app/config/config.
yml.

app/config/config.yml
P g.vy
imports:
- { resource: '"resources.yml" }

And add these few lines in the resources.yml file:

app/config/resources.yml
sylius_resource:
resources:
app.supplier:
driver: doctrine/orm # You can use also different driver here
classes:
model: AppBundle\Entity\Supplier
translation:
classes:
model: AppBundle\Entity\SupplierTranslation

To check if the process was run correctly run such a command:

$ php bin/console debug:container | grep supplier

The output should be:

controller. Sylius\Bundle\ResourceBundle\Controller\ResourceController
.controller. _translation Sylius\Bundle\ResourceBundle\Controller\ResourceController
. factory. Sylius\Component\Resource\Factory\Factory

factory. _translation Sylius\Component\Resource\Factory\Factory

manager . alias for "doctrine.orm.default_entity_manager"
manager. _translation alias for "doctrine.orm.default_entity_manager"
.repository. Sylius\Bundle\ResourceBundle\Doctrine\ORM\EntityRepository
.repository. _translation Sylius\Bundle\ResourceBundle\Doctrine\ORM\EntityRepository

6. Prepare new forms for your entity, that will be aware of its translation

You will need both SupplierType and SupplierTranslationType.

Let’s start with the translation type, as it will be included into the entity type.

<?php

namespace AppBundle\Form\Type;

use Sylius\Bundle\ResourceBundle\Form\Type\AbstractResourceType;
use Symfony\Component\Form\Extension\Core\Type\TextareaType;

use Symfony\Component\Form\Extension\Core\Type\TextType;

use Symfony\Component\Form\FormBuilderInterface;

class SupplierTranslationType extends AbstractResourceType

(continues on next page)

4.1. The Cookbook 159

Sylius

(continued from previous page)

VAT
* {@inheritdoc}
*/
public function buildForm(FormBuilderInterface S$builder, array Soptions)
{
Sbuilder
—>add ('name', TextType::class)
—>add ('description', TextareaType::class, [
'required' => false,

1)

J ok k

* {@inheritdoc}

*/
public function getBlockPrefix()
{

return 'app_supplier_translation';

On the SupplierTranslationType we need to define only the translatable fields.

Then let’s prepare the entity type, that will include the translation type.

<?php

namespace AppBundle\Form\Type;

use
use
use
use
use
use
use

Sylius\Bundle\ResourceBundle\Form\Type\AbstractResourceType;
Sylius\Bundle\ResourceBundle\Form\Type\ResourceTranslationsType;
Sylius\Component\Resource\Translation\Provider\TranslationLocaleProviderInterface;
Symfony\Component\Form\Extension\Core\Type\CheckboxType;
Symfony\Component\Form\Extension\Core\Type\TextareaType;
Symfony\Component\Form\Extension\Core\Type\TextType;
Symfony\Component\Form\FormBuilderInterface;

class SupplierType extends AbstractResourceType

{

VAT
* {@inheritdoc}
*/
public function buildForm(FormBuilderInterface Sbuilder, array Soptions)
{
Sbuilder
—>add ('translations', ResourceTranslationsType::class, [
'entry_type' => SupplierTranslationType::class,
1)
—>add ('enabled', CheckboxType::class, [
'required' => false,

1)

VAT

(continues on next page)

160

Chapter 4. The Cookbook

Sylius

(continued from previous page)

* {@inheritdoc}

*/
public function getBlockPrefix()
{

return 'app_supplier';

7. Register the new forms as services

Before the newly created forms will be ready to use them, they need to be registered as services:

AppBundle/Resources/config/services.yml
services:
app.supplier.form.type:
class: AppBundle\Form\Type\SupplierType
tags:
- { name: form.type }
arguments: '$app.model.supplier.class%', ['sylius']]
app.supplier_ translation.form.type:
class: AppBundle\Form\Type\SupplierTranslationType
tags:
- { name: form.type }
arguments: ['%app.model.supplier_translation.class$%', ['sylius']]

8. Register the forms as resource forms of the Supplier entity

Extend the resource configuration of the app . supplier with forms:

app/config/resources.yml
sylius_resource:
resources:
app.supplier:
driver: doctrine/orm # You can use also different driver here
classes:
model: AppBundle\Entity\Supplier
form: AppBundle\Form\Type\SupplierType
translation:
classes:
model: AppBundle\Entity\SupplierTranslation
form: AppBundle\Form\Type\SupplierTranslationType

9. Define grid structure for the new entity

To have templates for your Entity administration out of the box you can use Grids. Here you can see how to configure
a grid for the Supplier entity.

app/config/grids/admin/supplier.yml
sylius_grid:
grids:
app_admin_supplier:

(continues on next page)

4.1. The Cookbook 161

Sylius

(continued from previous page)

driver:
name: doctrine/orm
options:
class: AppBundle\Entity\Supplier
fields:
name:
type: string
label: sylius.ui.name
sortable: translation.name
enabled:
type: twig
label: sylius.ui.enabled
options:
template: "@SyliusUi/Grid/Field/enabled.html.twig"
actions:
main:
create:
type: create
item:
update:
type: update
delete:
type: delete

Remember to import your grid in the app/config/grids/grids.yml file which has to be imported in the
app/config/config.yml.

app/config/grids/grids.yml
imports:
- { resource: 'admin/supplier.yml' }

app/config/config.yml
imports:
- { resource: "grids/grids.yml" }

10. Create template

AppBundle/Resources/views/Supplier/_form.html.twig
{%$ from '@SyliusAdmin/Macro/translationForm.html.twig' import translationForm %}

{{ form_errors (form) }}
{{ translationForm(form.translations) }}
{{ form_row(form.enabled) }}

11. Define routing for entity administration

Having a grid prepared we can configure routing for the entity administration:

Create the app/config/routing/admin/supplier.yml file. Include it in the app/config/routing/
admin/admin.yml, which should be also included in the app/config/routing.yml.

162 Chapter 4. The Cookbook

Sylius

app/config/routing/admin/supplier.yml
app_admin_supplier:

resource: |
alias: app.supplier
section: admin

templates: SyliusAdminBundle:Crud
redirect: update
grid: app_admin_supplier

vars:
all:
subheader: app.ui.supplier
templates:
form: AppBundle:Supplier:_form.html.twig
index:

icon: 'file image outline'
type: sylius.resource

app/config/routing/admin.yml
app_admin_supplier:
resource: 'admin/supplier.yml'

app/config/routing.yml
app_admin:
resource: 'routing/admin.yml'
prefix: /admin

12. Add entity administration to the admin menu

Tip: See how to add links to your new entity administration in the administration menu.

13. Check the admin panel for your changes

Tip: To see what you can do with your new entity accessthe http://localhost:8000/admin/suppliers/

url.

Learn more

* GridBundle documentation

* ResourceBundle documentation
* Customization Guide

* How to add a custom model?

e How to add a custom translatable model?

4.1. The Cookbook

163

Sylius

4.1.2 Api

How to use Sylius API?

In some cases you may be needing to manipulate the resources of your application via its APIL. This guide aims to
introduce you to the world of Sylius API. For more sophisticated examples and cases follow the API Guide.

Authentication

Creating OAuth client:

$ php bin/console sylius:ocauth-server:create-client —--grant-type="password" --grant-
—type="refresh_token" -—-—-grant-type="token"

It will give you such a response:

’A new client with public id XYZ, secret ABC has been added

Run your application on a built-in server:

’$ php bin/console server:start localhost:8000 ‘

Tip:

Some test fixtures are provided with a default Sylius fixture suite(which can be obtain by executing: $ php bin/console s:

* Sample user: api@example.com

* Sample password: sylius-api

* Sample random client: demo_client
* Sample client secret: demo_client

* Sample access token: SampleToken

To obtain authorization token for the default user run:

$ curl http://localhost:8000/api/ocauth/v2/token —-d "client_id"=XYZ -d "client_secret
—"=ABC -d "grant_type"=password -d "username"=apil@example.com -d "password"=sylius-
—api

This will give you such a response:

{"access_token":"DEF", "expires_in":3600, "token_type":"bearer", "scope":null, "refresh_
—~token":"GHI"}

Creating a new resource instance via API

Use the access_token in the request that will create a new Supplier (that we were creating in another cookbook).

$ curl -i -X POST -H "Content-Type: application/json" -H "Authorization: Bearer DEF" -
—d '{"name": "Example", "description": "Lorem ipsum", "enabled": true}' http://
—localhost:8000/api/suppliers/

164 Chapter 4. The Cookbook

mailto:api@example.com

Sylius

Tip: Read more about authorizing in API Zere.

Viewing a single resource instance via API

If you would like to show details of a resource use this command with object’s id as {1d). Remember to use the
authorization token.

Assuming that you have created a supplier in the previous step, it will have id = 1.

$ curl -1 —-H "Authorization: Bearer DEF" http://localhost:8000/api/suppliers/{id}

Viewing an index of resource via API

If you would like to see a list of all instances of your resource use such a command (provide the authorization token!):

$ curl -i —-H "Authorization: Bearer DEF" http://localhost:8000/api/suppliers/

Updating a single resource instance via API

If you would like to modify the whole existing resource use such a command (with a valid authorization token of
course):

$ curl -1 -X PUT -H "Content-Type: application/json" -H "Authorization: Bearer DEF" -
—d '"{"name": "Modified Name", "description": "Modified description", "enabled":
—false}' http://localhost:8000/api/suppliers/1

Partially updating a single resource instance via API

If you would like to update just one field of a resource use the PATCH method with such a command:

$ curl -i -X PATCH -H "Content-Type: application/json" —-H "Authorization: Bearer DEF" |
—-d '"{"enabled": true}' http://localhost:8000/api/suppliers/1

Deleting a single resource instance via API

To delete a resource instance you need to call such a command (with an authorization token):

$ curl -i -X DELETE -H "Authorization: Bearer DEF" http://localhost:8000/artists/1

Learn more

e API Guide
e ResourceBundle documentation

e Customization Guide

4.1. The Cookbook 165

Sylius

¢ The Lionframe docs

* How to use Sylius API?

4.1.3 Shop

How to customize Sylius Checkout?

Why would you override the Checkout process?

This is a common problem for many Sylius users. Sometimes the checkout process we have designed is not suitable
for your custom business needs. Therefore you need to learn how to modify it, when you will need to for example:

* remove shipping step - when you do not ship the products you sell,
* change the order of checkout steps,

» merge shipping and addressing step into one common step,

 or even make the whole checkout a one page process.

See how to do these things below:

How to remove a step from checkout?

Let’s imagine that you are trying to create a shop that does not need shipping - it sells downloadable files only.

To meet your needs you will need to adjust checkout process. What do you have to do then? See below:

Overwrite the state machine of Checkout

Open the CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml and place its content in the
app/Resources/SyliusCoreBundle/config/app/state_machine/sylius_order_checkout.
yml which is a standard procedure of overriding configs in Symfony. Remove the shipping_ selected
and shipping_skipped states, select_shipping and skip_shipping transitions. = Remove the
select_shipping and skip_shipping transition from the sylius_process_cart callback.

app/Resources/SyliusCoreBundle/config/app/state_machine/sylius_order._checkout.yml
winzou_state machine:
sylius_order_checkout:
class: "%sylius.model.order.class%"
property path: checkoutState
graph: sylius_order_checkout
state_machine_class: "%sylius.state_machine.class%"
states:
cart: ~
addressed: ~
payment_skipped: ~
payment_selected: ~
completed: ~
transitions:
address:
from: [cart, addressed, payment_selected, payment_skipped]
to: addressed
skip_payment:

(continues on next page)

166 Chapter 4. The Cookbook

http://lakion.com/lionframe
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/CoreBundle/Resources/config/app/state_machine/sylius_order_checkout.yml
http://symfony.com/doc/current/bundles/inheritance.html#overriding-resources-templates-routing-etc

Sylius

(continued from previous page)

from: [addressed]
to: payment_skipped
select_payment:
from: [addressed, payment_selected]
to: payment_selected
complete:
from: [payment_selected, payment_skipped]
to: completed
callbacks:
after:
sylius_process_cart:
on: ["address", "select_payment"]
do: ["@sylius.order_processing.order_processor", "process"]
args: ["object"]
sylius_create_order:
on: ["complete"]
do: ["@sm.callback.cascade_transition", "apply"]
args: ["object", "event", "'create'", "'sylius_order'"]
sylius_save_checkout_completion_date:
on: ["complete"]
do: ["object", "completeCheckout"]
args: ["object"]
sylius_skip_ shipping:
on: ["address"]
do: ["@sylius.state_resolver.order_checkout", "resolve"]
args: ["object"]
priority: 1
sylius_skip_payment:
on: ["address"]
do: ["@sylius.state_resolver.order_checkout", "resolve"]
args: ["object"]
priority: 1

Tip: To check if your new state machine configuration is overriding the old one run: $ php bin/console
debug:winzou:state-machine and check the configuration of sylius_order_checkout.

Adjust Checkout Resolver

The next step of customizing Checkout is to adjust the Checkout Resolver to match the changes you have made in the
state machine. Make these changes in the config. yml.

app/config/config.yml
sylius_shop:
checkout_resolver:
pattern: /checkout/.+
route_map:
cart:
route: sylius_shop_checkout_address
addressed:
route: sylius_shop_checkout_select_payment
payment_selected:
route: sylius_shop_checkout_complete

(continues on next page)

4.1. The Cookbook 167

Sylius

(continued from previous page)

payment_skipped:
route: sylius_shop_checkout_complete

Adjust Checkout Templates

After you have got the resolver adjusted, modify the templates for checkout. You have to remove shipping from steps
and disable the hardcoded ability to go back to the shipping step and the number of steps being displayed in the
checkout navigation. You will achieve that by overriding two files:

* ShopBundle/Resources/views/Checkout/_steps.html.twig

» ShopBundle/Resources/views/Checkout/SelectPayment/_navigation.html.twig

{# app/Resources/SyliusShopBundle/views/Checkout/_steps.html.twig #}

{%$ if active is not defined or active == 'address' %}

{% set steps = {'address': 'active', 'select_payment': 'disabled', 'complete':
—'disabled'} %}
{% elseif active == 'select_payment' %}

{% set steps = {'address': 'completed',K 'select_payment': 'active', 'complete':

—'disabled'} %}
{% else %}
{% set steps = {'address': 'completed',K 'select_payment': 'completed', 'complete
—': 'active'} %}
{% endif %}

{% set order_requires_payment = sylius_is_payment_required(order) %}
{% set steps_count = 'three' %}
{% 1f not order_requires_payment %}

{% set steps_count = 'two' %}

{%$ endif %}

<div class="ui {{ steps_count }} steps">
<a class="{{ steps['address'] }} step" href="{{ path('sylius_shop_checkout_address
<) s
<i class="map icon"></i>
<div class="content">
<div class="title">{{ 'sylius.ui.address'|trans }}</div>
<div class="description">{{ 'sylius.ui.fill_in_your_billing_and_shipping_
—saddresses' |trans }}</div>
</div>

{% if order_requires_payment %}
<a class="{{ steps['select_payment'] }} step" href="{{ path('sylius_shop_checkout_
—select_payment') }}">
<i class="payment icon"></i>
<div class="content">
<div class="title">{{ 'sylius.ui.payment' |trans }}</div>
<div class="description">{{ 'sylius.ui.choose_how_you_will_pay'|trans }}</
—div>
</div>

{% endif %}
<div class="{{ steps|['complete'] }} step" href="{{ path('sylius_shop_checkout_
—complete') }}">

(continues on next page)

168 Chapter 4. The Cookbook

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ShopBundle/Resources/views/Checkout/_steps.html.twig
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ShopBundle/Resources/views/Checkout/SelectPayment/_navigation.html.twig

Sylius

(continued from previous page)

<i class="checkered flag icon"></i>
<div class="content">
<div class="title">{{ 'sylius.ui.complete'|trans }}</div>
<div class="description">{{ 'sylius.ui.review_and_confirm_your_order
—'|trans }}</div>
</div>
</div>
</div>

{# app/Resources/SyliusShopBundle/views/Checkout/SelectPayment/_navigation.html.twig
)

{% set enabled = order.payments|length %}

<div class="ui two column grid">
<div class="column">
<a href="{{ path('sylius_shop_checkout_address') }}" class="ui large icon,,
—labeled button"><i class="arrow left icon"></i> {{ 'sylius.ui.change_address'|trans,
~}i
</div>
<div class="right aligned column">
<button type="submit" id="next-step" class="ui large primary icon labeled{%_
—1f not enabled %} disabled{% endif %} button">
<i class="arrow right icon"></i>
{{ 'sylius.ui.next'|trans }}
</button>
</div>
</div>

Overwrite routing for Checkout

Unfortunately there is no better way - you have to overwrite the whole routing for Checkout.
To do that copy the content of ShopBundle/Resources/config/routing/checkout.yml to the app/
Resources/SyliusShopBundle/config/routing/checkout.yml file. Remove routing of

sylius_shop_checkout_select_shipping. The rest should remain the same.

app/Resources/SyliusShopBundle/config/routing/checkout.yml
sylius_shop_checkout_start:
path: /
methods: [GET]
defaults:
_controller: FrameworkBundle:Redirect:redirect
route: sylius_shop_checkout_address

sylius_shop_checkout_address:
path: /address
methods: [GET, PUT]
defaults:
_controller: sylius.controller.order:updateAction
_sylius:
event: address
flash: false
template: SyliusShopBundle:Checkout:address.html.twig
form:

type: Sylius\Bundle\CoreBundle\Form\Type\Checkout\AddressType

(continues on next page)

4.1. The Cookbook 169

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ShopBundle/Resources/config/routing/checkout.yml

Sylius

(continued from previous page)

options:
customer: expr:service('sylius.context.customer') .getCustomer ()
repository:
method: find
arguments:
- "expr:service('sylius.context.cart').getCart ()"

state_machine:
graph: sylius_order_checkout
transition: address

sylius_shop_checkout_select_payment:
path: /select-payment
methods: [GET, PUT]
defaults:
_controller: sylius.controller.order:updateAction
_sylius:
event: payment
flash: false
template: SyliusShopBundle:Checkout:selectPayment.html.twig
form: Sylius\Bundle\CoreBundle\Form\Type\Checkout\SelectPaymentType

repository:
method: find
arguments:

- "expr:service('sylius.context.cart').getCart ()"
state_machine:
graph: sylius_order_checkout
transition: select_payment

sylius_shop_checkout_complete:
path: /complete
methods: [GET, PUT]
defaults:
_controller: sylius.controller.order:updateAction
_sylius:
event: complete
flash: false
template: SyliusShopBundle:Checkout:complete.html.twig

repository:
method: find
arguments:

- "expr:service('sylius.context.cart').getCart ()"
state _machine:
graph: sylius_order_checkout
transition: complete
redirect:
route: sylius_shop_order_pay
parameters:
tokenValue: resource.tokenValue
form:
type: Sylius\Bundle\CoreBundle\Form\Type\Checkout\CompleteType
options:
validation_groups: 'sylius_checkout_complete'

Tip: If you do not see any changes run $ php bin/console cache:clear

170 Chapter 4. The Cookbook

Sylius

Learn more

* Checkout - concept Documentation
e State Machine - concept Documentation

e Customization Guide

How to change a redirect after the add to cart action?

Currently Sylius by default is using route definition and sylius-add-to-cart.js script to handle redirect after successful
add to cart action.

sylius_shop_partial_cart_add item:
path: /add-item
methods: [GET]

defaults:
_controller: sylius.controller.order_item:addAction
_sylius:
template: S$template
factory:
method: createForProduct
arguments: [expr:service('sylius.repository.product') .find(
—S$productId)]
form:
type: Sylius\Bundle\CoreBundle\Form\Type\Order\AddToCartType
options:
product: expr:service('sylius.repository.product') .find(
—$productId)
redirect:

route: sylius_shop_cart_summary
parameters: {}

S.fn.extend ({

addToCart: function () {
var element = $(this);
var href = $(element) .attr('action');
var redirectUrl = $(element) .data('redirect');
var validationElement = $('#sylius—-cart-validation-error');

S (element) .api ({
method: 'POST',

on: 'submit',

cache: false,

url: href,

beforeSend: function (settings) {
settings.data = $(this) .serialize();

return settings;

by

onSuccess: function (response) {
validationElement.addClass ('hidden');
window.location.replace (redirectUrl);

}l

onFailure: function (response) {
validationElement.removeClass ('hidden');
var validationMessage = '';

(continues on next page)

4.1. The Cookbook 171

Sylius

(continued from previous page)

$.each (response.errors.errors, function (key, message) {
validationMessage += message;

1)

validationElement.html (validationMessage) ;

$ (element) .removeClass ('loading');

If you want to have custom logic after cart add action you can use ResourceControllerEvent to set your custom
response.

Let’s assume that you would like such a feature in your system:

<?php

final class ChangeRedirectAfterAddingToCartListener
{
J ok k
* @var RouterInterface
*/

private Srouter;

VEZ:
* @param RouterInterface Srouter
*/
public function __ construct (RouterInterface Srouter)

{

Sthis->router = S$router;
}
/ x
* @param ResourceControllerEvent Sevent
*/

public function onSuccessfulAddToCart (ResourceControllerEvent Sevent)

{

if (!Sevent->getSubject () instanceof OrderItemInterface) ({
throw new \LogicException (
sprintf ('This listener operates only on order item, got "$s"', get_
—class (Sevent—->getSubject ()))
)i
}
SnewUrl = S$this->router->generate ('your_new_route_name', []);

Sevent->setResponse (new RedirectResponse (Snewlrl));

<service id="sylius.listener.change_redirect_after_adding_to_cart" class=
—"Sylius\Bundle\ShopBundle\EventListener\ChangeRedirectAfterAddingToCartListener">
<argument type="service" id="router" />
<tag name="kernel.event_listener" event="sylius.order_item.post_add" method=
—"onSuccessfulAddToCart" />
</service>

172 Chapter 4. The Cookbook

Sylius

Next thing to do is handling it by your frontend application.

How to disable guest checkout?

Sometimes, depending on your use case, you may want to resign from the guest checkout feature provided by Sylius.

In order to require users to have an account and be logged in before they can make an order in your shop, you have to
turn on the firewalls on the /checkout urls.

To achieve that simple add this path to access_control inthe security.yml file.

app/config/security.yml
security:
access_control:
- { path: "%$sylius.security.shop_regex%/checkout", role: ROLE_USER }

That will do the trick. Now, when a guest user tries to click the checkout button in the cart, they will be redirected to
the login/registration page, where after they sign in/sign up they will be redirected to the checkout addressing step.

Learn more

* Sylius Checkout

How to disable localised URLs?

URLs in Sylius are localised, this means they contain the /1ocale prefix with the current locale. For example when
the English (United States) locale is currently chosen in the channel, the URL of homepage will look like
that localhost:8000/en_US/.

If you do not need localised URLs, this guide will help you to disable this feature.
1. Customise the application routing in the app/config/routing.yml.

Replace:

app/config/routing.yml

sylius_shop:
resource: "(@SyliusShopBundle/Resources/config/routing.yml"
prefix: /{_locale}
requirements:
locale: "[a—-z]{2}(?:[A-Z]1{2})2S

sylius_shop_default_locale:
path: /
methods: [GET]
defaults:
_controller: sylius.controller.shop.locale_switch:switchAction

With:

app/config/routing.yml

sylius_shop:
resource: "(@SyliusShopBundle/Resources/config/routing.yml"

4.1. The Cookbook 173

Sylius

2. Customise the security settings in the app/config/security.yml.

Replace:

app/config/security.yml

parameters:
#o...
sylius.security.shop_regex: "/ (?!admin|api) [*/]++"

With:

app/config/security.yml

parameters:
...
sylius.security.shop_regex: """

3. Customise SyliusShopBundle to use storage-based locale switching by adding the following lines at the end of the
app/config/config.yml.

app/config/config.yml

sylius_shop:
locale_switcher: storage

How to render a menu of taxons (categories) in a view?

The way of rendering a menu of taxons is a supereasy reusable action, that you can adapt into any place you need.

How does it look like?

That’s a menu that you will find on the default Sylius homepage:

S Sylius

Mugs Stickers Books T-Shirts -

Men

Women

174 Chapter 4. The Cookbook

Sylius

How to do it?

You can render such a menu wherever you have access to a category variable in the view, but also anywhere else.
The findChildren method of TaxonRepository takes a parentCode and nullable locale.
If 1ocale parameter is not null the method returns also taxon’s translation based on given locale.

To render a simple menu of categories in any twig template use:

{{ render (url ('sylius_shop_partial_taxon_index_by_code', {'code': 'category',
—'template': '@SyliusShop/Taxon/_horizontalMenu.html.twig'})) }}

You can of course customize the template or enclose the menu into html to make it look better.

That’s all. Done!

Learn more

e The Customization Guide

How to embed a list of products into a view?

Let’s imagine that you would like to render a list of 5 latest products by a chosen taxon. Such an action can take
place on the category page. Here are the steps that you will need to take:

Create a new method for the product repository

To cover the usecase we have imagined we will need a new method on the product repository:
findLatestByChannelAndTaxonCode ().

Tip: First learn how to customize repositories in the customization docs here.

The new repository method will take a channel object (retrieved from channel context), a taxon code and the count of
items that you want to find.

Your extending repository class should look like that:

<?php
namespace AppBundle\Repository;

use Sylius\Bundle\CoreBundle\Doctrine\ORM\ProductRepository as BaseProductRepository;
use Sylius\Component\Core\Model\ChannelInterface;

class ProductRepository extends BaseProductRepository
{
VL
* {@inheritdoc}
*/
public function findLatestByChannelAndTaxonCode (ChannelInterface Schannel, S$Scode,
—~Scount)

{

(continues on next page)

4.1. The Cookbook 175

Sylius

(continued from previous page)

return Sthis->createQueryBuilder('o"')
->innerJoin('o.channels', 'channel')
—>andWhere ('o.enabled = true')
->andWhere ('channel = :channel')
—>innerJoin ('o.productTaxons', 'productTaxons')
—->addOrderBy ('productTaxons.position', 'asc')
->innerJoin ('productTaxons.taxon', 'taxon')
—>andWhere ('taxon.code = :code')
->setParameter ('code', S$Scode)
->setParameter ('channel', S$channel)
->setMaxResults (Scount)
—->getQuery ()
->getResult () ;

And should be registered in the app/config/config.yml just like that:

sylius_product:
resources:
product:
classes:
repository: AppBundle\Repository\ProductRepository

Configure routing for the action of products rendering

To be able to render a partial with the retrieved products configure routing for it in the app/config/routing.
yml:

app/config/routing.yml
app_shop_partial product_index latest_by taxon_code:
path: /latest/{code}/{count} # configure a new path that has all the needed
—variables
methods: [GET]
defaults:
controller: sylius.controller.product:indexAction # you make a call on the
—Product Controller's index action
_sylius:
template: S$template
repository:
method: findLatestByChannelAndTaxonCode # here use the new repository,,
—method
arguments:
- "expr:service ('sylius.context.channel').getChannel ()"
- $code
- Scount

Render the result of your new path in a template

Having a new path, you can call it in a twig template that has acces to a taxon. Remember that you need to have your
taxon as a variable available there. Render the list using a simple built-in template to try it out.

176 Chapter 4. The Cookbook

Sylius

{{ render (url ('app_shop_partial_ product_index_latest_by_taxon_code', {'code': taxon.
—code, 'count': 5, 'template': '@SyliusShop/Product/_horizontalList.html.twig'})) }}

Done. In the taxon view where you have rendered the new url you will see a simple list of 5 products from this taxon,
ordered by position.

Learn more

¢ The Customization Guide

How to add Facebook login?

For integrating social login functionalities Sylius uses the HWIOAuthBundle. Here you will find the tutorial for
integrating Facebook login into Sylius:

Set up the HWIOAuthBundle

¢ Add HWIOAuthBundle to your project:

$ composer require hwi/oauth-bundle

 Enable the bundle in the AppKernel . php:

// app/AppKernel .php

public function registerBundles ()
{
Sbundles = array (
V2
new HWI\Bundle\OAuthBundle\HWIOAuthBundle (),
)i

* Import the routing:

app/config/routing.yml

hwi_oauth_redirect:
resource: "QHWIOAuthBundle/Resources/config/routing/redirect.xml"
prefix: /connect

hwi_oauth_connect:
resource: "@HWIOAuthBundle/Resources/config/routing/connect.xml"
prefix: /connect

hwi_oauth_login:
resource: "Q@HWIOAuthBundle/Resources/config/routing/login.xml"
prefix: /login

facebook:
path: "/login/check-facebook"

4.1. The Cookbook 177

https://github.com/hwi/HWIOAuthBundle/blob/master/Resources/doc/index.md

Sylius

Configure the connection to Facebook

Note: To properly connect to Facebook you will need a Facebook developer account. Having an account create a new
app for your website. In your app dashboard you will have the client_id (App ID) and the client_secret
(App Secret), which are needed for the configuration.

app/config/config.yml
hwi oauth:
firewall names: [shop]
resource_owners:
facebook:
type: facebook
client_id: <client_id>
client secret: <client_secret>
scope: "email"

Sylius uses email as the username, that’s why we choose emails as scope for this connection.

Tip: If you cannot connect to your localhost with the Facebook app, configure its settings in such a way:
* App Domain: localhost
* Click +Add Platform and choose “Website” type.

e Provide the Site URL of the platform - your local server on which you run Sylius: http://
localhost:8000

Configure the security layer

As Sylius already has a service that implements the OAuthAwareUserProviderInterface - sylius.oauth.
user_provider - we can only configure the oauth firewall. Under the security: firewalls: shop:
keys in the security.yml configure like below:

app/config/security.yml
security:
firewalls:
shop:
oauth:
resource_owners:
facebook: "/login/check-facebook"

login_path: /login
use_forward: false
failure_path: /login

oauth_user_provider:

service: sylius.oauth.user_provider
anonymous: true

Add facebook login button

You can for instance override the login template (SyliusShopBundle/Resources/views/login.html.
twig)in the app/Resources/SyliusShopBundle/views/login.html.twig and add these lines to be

178 Chapter 4. The Cookbook

http://developers.facebook.com
https://developers.facebook.com/quickstarts/?platform=web

Sylius

able to login via Facebook.

Login with Facebook

Done!

Learn more

¢ HWIOAuthBundle documentation

How to manage content in Sylius?

Why do you need content management system?

Content management is one of the most important business aspects of modern eCommerce apps. Providing store
updates like new blog pages, banners and promotion images is responsible for building the conversion rate either for
new and existing clients.

Content management in Sylius

Sylius standard app does not come with a content management system. Our community has taken care of it. As Sylius
does have a convenient dev oriented plugin environment, the developers from BitBag decided to develop their flexible
CMS module. You can find it here.

Tip: The whole plugin has its own demo page with specific use cases. You can access the admin panel with login:
sylius, password: sylius credentials.

Inside the plugin, you will find:
 HTML, image and text blocks you can place in each Twig template
* Page resources
* Sections which you can use to create a blog, customer information, etc.
* FAQ module

A very handy feature of this plugin is that you can customize it for your specific needs like you do with each Sylius
model.

Installation & usage

Find out more about how to install the plugin on GitHub in the README file.

Learn more

* How to create a plugin for Sylius?

* BitBag plugins

4.1. The Cookbook 179

https://github.com/hwi/HWIOAuthBundle/blob/master/Resources/doc/index.md
https://bitbag.shop
https://github.com/BitBagCommerce/SyliusCmsPlugin
https://cms.bitbag.shop/
https://cms.bitbag.shop/admin/
https://github.com/BitBagCommerce/SyliusCmsPlugin
https://github.com/BitBagCommerce

Sylius

* FriendsOfSylius plugins

* How to customize Sylius Checkout?

* How to disable guest checkout?

* How to add Facebook login?

* How to change a redirect after the add to cart action?

* How to render a menu of taxons (categories) in a view?
* How to embed a list of products into a view?

* How to disable localised URLs?

* How to manage content in Sylius?

4.1.4 Payments

How to configure PayPal Express Checkout?

One of the most frequently used payment methods in e-commerce is PayPal. Its configuration in Sylius is really
simple.

Add a payment method with the Paypal Expresss gateway in the Admin Panel

Note: To test this configuration properly you will need a developer account on Paypal.

* Create a new payment method choosing Paypal Express Checkout gateway from the gateways choice
dropdown and enable it for chosen channels.

Go to the http://localhost:8000/admin/payment-methods/new/paypal_express_checkout
url.

.l. New payment method

Manage payment methods available to your customers
Administration Payment methods New

Code* Position

Gateway name * Factory name "

Gateway configuration

Username * Password *

Signature”
@ Eneblec?

 Fill in the Paypal configuration form with your developer account data (username, password and
signature).

 Save the new payment method.

180 Chapter 4. The Cookbook

https://github.com/FriendsOfSylius/SyliusGoose
https://developer.paypal.com

Sylius

Choosing Paypal Express method in Checkout

From now on Paypal Express will be available in Checkout in the channel you have created it for.
V Addressing V Shipping E Payment

Item Quantity Subtotal

Payment #1 Sticker "rerum” 1 $30.99

Cash on delivery

Iste odio aliguam et nulla delectus.
Bank transfer

Id reiciendis et officia voluptatem.

* Paypal Express

&~ Change shipping method > Next
Done!
Learn more

* Payments concept documentation

e Payum - Project Documentation

How to configure Stripe Credit Card payment?

One of very important payment methods in e-commerce are credit cards. Payments via credit card are in Sylius
supported by Stripe.

Install Stripe

Stripe is not available by default in Sylius, to have it you need to add its package via composer.

$ php composer require stripe/stripe-php:~4.1

Add a payment method with the Stripe gateway in the Admin Panel

Note: To test this configuration properly you will need a developer account on Stripe.

e Create a new payment method, choosing the Stripe Credit Card gateway from the gateways choice
dropdown and enable it for chosen channels.

Gotothe http://localhost:8000/admin/payment-methods/new/stripe_checkout url.

e Fill in the Stripe configuration form with your developer account data (publishable_ key and
secret_key).

4.1. The Cookbook 181

https://github.com/Payum/Payum/blob/master/src/Payum/Core/Resources/docs/index.md
http://stripe.com/docs
https://dashboard.stripe.com/register

Sylius

* Save the new payment method.

Tip: If your are not sure how to do it check how we do it for Paypal in this cookbook.

Warning: When your project is behind a loadbalancer and uses https you probably need to configure trusted
proxies. Otherwise the payment will not succeed and the user will endlessly loopback to the payment page without
any notice.

Choosing Stripe Credit Card method in Checkout

From now on Stripe Credit Card will be available in Checkout in the channel you have added it to.

Done!

Learn more

* Payments concept documentation

e Payum - Project Documentation

How to encrypt gateway config stored in the database?

1. Add defuse/php-encryption to your project .. code-block:

composer require defuse/php-encryption

2. Generate your Defuse Secret Key by executing the following script:

<?php
use Defuse\Crypto\Key;
require_once 'vendor/autoload.php';

var_dump (Key: :createNewRandomKey () —>saveToAsciiSafeString());

3. Store your generated key in a parameter in app/config/parameters.yml.

app/config/parameters.yml

parameters:
#o...
defuse_secret: "YOUR_GENERATED_KEY"

4. Add the following code to the application configuration in the app/config/config.yml.

app/config/config.yml

payum:
dynamic_gateways:

(continues on next page)

182 Chapter 4. The Cookbook

http://symfony.com/doc/current/deployment/proxies.html
http://symfony.com/doc/current/deployment/proxies.html
https://github.com/Payum/Payum/blob/master/src/Payum/Core/Resources/docs/index.md

Sylius

(continued from previous page)

encryption:
defuse_secret_key: "%defuse_secretd"

5. Existing gateway configs will be automatically encrypted when updated. New gateway configs will be encrypted
by default.

* How to configure PayPal Express Checkout?
* How to configure Stripe Credit Card payment?

* How to encrypt gateway config stored in the database?

4.1.5 Emails

How to send a custom e-mail?

Note: This cookbook is suitable for a clean sylius-standard installation. For more general tips, while using Sylius-
MailerBundle go to Sending configurable e-mails in Symfony Blogpost.

Currently Sylius is sending e-mails only in a few “must-have” cases - see E-mails documentation. Of course these
cases may not be sufficient for your business needs. If so, you will need to create your own custom e-mails inside the
system.

On a basic example we will now teach how to do it.

Let’s assume that you would like such a feature in your system:

Feature: Sending a notification email to the administrator when a product is out of
—stock

In order to be aware which products become out of stock

As an Administrator

I want to be notified via email when products become out of stock

To achieve that you will need to:

1. Create a new e-mail that will be sent:

* prepare a template for your email in the app/Resources/views/Email.

{# app/Resources/views/Email/out_of_stock.html.twig #}
block subject %}

One of your products has become out of stock.
endblock %)

-~
oo

~
S

~
o

block body %}
% autoescape %}
The {{ variant.name }} variant is out of stock!
{% endautoescape 35}
endblock %}

~
S

e configure the email under sylius_mailer: in the app/config/emails.yml included in app/
config/yml.

4.1. The Cookbook 183

http://sylius.com/blog/sending-configurable-e-mails-in-symfony

Sylius

app/config/emails.yml
sylius_mailer:
sender:
name: Example.com
address: no-reply@example.com
emails:
out_of stock:
subject: "A product has become out of stock!"
template: "AppBundle:Email:out_of_stock.html.twig"

app/config/config.yml
imports:
- { resource: "emails.yml" }

2. Create an Email Manager class:

¢ It will need the EmailSender, the AvailabilityChecker and the AdminUser Repository.

« It will operate on the Order where it needs to check each Orderltem, get their ProductVariants and check if
they are available.

<?php
namespace AppBundle\EmailManager;

use Sylius\Component\Core\Model\OrderInterface;

use Sylius\Component\Inventory\Checker\AvailabilityCheckerInterface;
use Sylius\Component\Mailer\Sender\SenderInterface;

use Sylius\Component\Resource\Repository\RepositoryInterface;

class OutOfStockEmailManager
{
/% *
* @var SenderInterface
*/

private SemailSender;

J x*
* @var AvailabilityCheckerInterface SavailabilityChecker
*/

private SavailabilityChecker;

VAT
* @var RepositoryInterface SadminUserRepository
*/

private SadminUserRepository;

J x*
* @param SenderInterface SemailSender
* @param AvailabilityCheckerInterface $SavailabilityChecker
* @param RepositoryInterface SadminUserRepository
*/
public function __ construct (
SenderInterface SemailSender,
AvailabilityCheckerInterface SavailabilityChecker,

(continues on next page)

184 Chapter 4. The Cookbook

Sylius

(continued from previous page)

RepositoryInterface SadminUserRepository

Sthis->emailSender = SemailSender;
Sthis—->availabilityChecker = $availabilityChecker;
Sthis->adminUserRepository = $adminUserRepository;
}
J x*
* @param OrderInterface Sorder
*/

public function sendOutOfStockEmail (OrderInterface Sorder)

{

// get all admins, but remember to put them into an array
Sadmins = $this->adminUserRepository->findAll () ->toArray();

foreach (Sorder—->getItems () as Sitem) {
Svariant = S$item->getVariant();

SstockIsSufficient = S$this->availabilityChecker->isStockSufficient (
—S$variant, 1);

if (SstockIsSufficient) {
continue;
}
foreach (Sadmins as Sadmin) {
Sthis->emailSender->send('out_of_stock', [$admin->getEmail ()], [
—'variant' => S$variant]);

}

3. Register the manager as a service:

app/config/services.yml
services:

app.email manager.out_of_ stock:

class: AppBundle\EmailManager\OutOfStockEmailManager

arguments: ['(@sylius.email_sender', '@sylius.availability_checker', '@sylius.
—repository.admin_user']

4. Customize the state machine callback of Order’s Payment:

app/config/state_machine.yml
winzou_state_machine:
sylius_order_ payment:
callbacks:
after:
app_out_of stock_email:
on: ["pay"]
do: ["W@app.email_manager.out_of_stock", "sendOutOfStockEmail"]
args: ["object"]

4.1. The Cookbook 185

Sylius

app/config/config.yml
imports:
- { resource: "state_machine.yml" }

Done!

Learn More

e Emails Concept
e State Machine Concept
* Customization Guide - State Machine

* Sending configurable e-mails in Symfony Blogpost

How to disable the order confirmation email?
In some usecases you may be wondering if it is possible to completely turn off the order confirmation email after the
order complete.
This is a complicated situation, because we need to be precise what is our expected result:
* to disable that email in the system completely,
e to send a different email on the complete action of an order instead of the order confirmation email,

Below a few ways to disable that email are presented:

Disabling the email in the configuration

There is a pretty straightforward way to disable an e-mail using just a few lines of yaml:

app/config/config.yml
sylius_mailer:
emails:
order_confirmation:
enabled: false

That’s all. With that configuration placed in your app/config/config.yml the order confirmation email will
not be sent.

Disabling the listener responsible for that action

To easily turn off the sending of the order confirmation email you will need to disable the
OrderCompleteListener service. This can be done via a CompilerPass.

<?php
namespace AppBundle\DependencyInjection\Compiler;

use Symfony\Component\DependencyInjection\Compiler\CompilerPassInterface;
use Symfony\Component\DependencyInjection\ContainerBuilder;

(continues on next page)

186 Chapter 4. The Cookbook

http://sylius.com/blog/sending-configurable-e-mails-in-symfony

Sylius

(continued from previous page)

class MailPass implements CompilerPassInterface

{

public function process (ContainerBuilder Scontainer)

{

Scontainer->removeDefinition('sylius.listener.order_complete');

The above compiler pass needs to be added to your bundle in the AppBundle/AppBundle. php file:

<?php
namespace AppBundle;

use AppBundle\DependencyInjection\Compiler\MailPass;
use Symfony\Component\HttpKernel\Bundle\Bundle;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class AppBundle extends Bundle
{

public function build(ContainerBuilder Scontainer)

{

parent: :build(Scontainer);

Scontainer—->addCompilerPass (new MailPass ());

That’s it, we have removed the definition of the listener that is responsible for sending the order confirmation email.

Learn more

* Compiler passes in the Symfony documentation

How to configure mailer?
There are many services used for sending transactional emails in web applications. You can find for instance Mailjet,
Mandrill or SendGrid among them.

In Sylius emails are configured the Symfony way, so you can get inspired by the Symfony guides to those mailing
services.

Basically to start sending emails via a mailing service you will need to:

1. Create an account on a mailing service. 2. In the app/config/parameters.yml modify such parameters:

By default it is set to "swiftmailer", we need to have "smtp" here
mailer transport: smtp

The mailer host may be called "SMTP Server" for some services. Copy its name from,,
—your mailing provider and paste here.
mailer host:

These are Username and Password provided by the service for your account
mailer user:

(continues on next page)

4.1. The Cookbook 187

http://symfony.com/doc/current/service_container/compiler_passes.html
https://www.mailjet.com
http://www.mandrill.com
https://sendgrid.com

Sylius

(continued from previous page)

mailer_password: ~

Here you provide a Mailing port suggested by your service. It can be 25, 465 or 587
This parameter 1is not there by default, you need to add it.
mailer port: 25

3. **Remember not to have the disable_delivery: true parameter in the app/config/config_prod.yml for your pro-
duction environment.

Emails delivery is disable for test, dev and stage environments by default. The prod environment has delivery turned
on by default, so there is nothing to worry about if you did not change anything about it.

That’s pretty much all! All the other issues are dependent on the service you are using.

Warning: Remember that the parameters like username or password must not be commited publicly to your
repository. Save them as environment variables on your server.

Learn More

* Emails Concept

 Sending configurable e-mails in Symfony Blogpost
* How to configure mailer?

* How to send a custom e-mail?

* How to disable the order confirmation email ?

4.1.6 Promotions

How to add a custom promotion rule?

Adding new, custom rules to your shop is a common usecase. You can imagine for instance, that you have some
customers in your shop that you distinguish as premium. And for these premium customers you would like to give
special promotions. For that you will need a new PromotionRule that will check if the customer is premium or not.

Create a new promotion rule

The new Rule needs a RuleChecker class:

<?php
namespace AppBundle\Promotion\Checker\Rule;

use Sylius\Component\Promotion\Checker\Rule\RuleCheckerInterface;
use Sylius\Component\Promotion\Model\PromotionSubjectInterface;

class PremiumCustomerRuleChecker implements RuleCheckerInterface
{

const = 'premium_customer';

(continues on next page)

188 Chapter 4. The Cookbook

http://sylius.com/blog/sending-configurable-e-mails-in-symfony

Sylius

(continued from previous page)

J x*
* {@inheritdoc}
*/
public function isEligible (PromotionSubjectInterface Ssubject, array
—Sconfiguration)
{

return Ssubject->getCustomer () ->isPremium() ;

Prepare a configuration form type for your new rule

To be able to configure a promotion with your new rule you will need a form type for the admin panel.

Create the configuration form type class:

<?php
namespace AppBundle\Form\Type\Rule;
use Symfony\Component\Form\AbstractType;

class PremiumCustomerConfigurationType extends AbstractType
{
VET:
* {@inheritdoc}
*/
public function getBlockPrefix()
{

return 'app_promotion_rule_premium_customer_configuration';

And configure it in the app/config/services.yml:

app/config/services.yml
app.form.type.promotion_rule.premium_ customer_configuration:
class: AppBundle\Form\Type\Rule\PremiumCustomerConfigurationType
tags:
- { name: form.type }

Register the new rule checker as a service in the app/config/services.yml:

apps/config/services.yml
app.promotion_rule_ checker.premium_customer:
class: AppBundle\Promotion\Checker\Rule\PremiumCustomerRuleChecker
tags:
- { name: sylius.promotion_rule_checker, type: premium customer, form_ type:
—AppBundle\Form\Type\Rule\PremiumCustomerConfigurationType, label: Premium customer }

That’s all. You will now be able to choose the new rule while creating a new promotion.

Tip: Depending on the type of rule that you would like to configure you may need to configure its form fields. See
how we do it here for example.

4.1. The Cookbook 189

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/PromotionBundle/Form/Type/Rule/ItemTotalConfigurationType.php

Sylius

Learn more

e Customization Guide

* Promotions Concept Documentation
How to add a custom promotion action?
Let’s assume that you would like to have a promotion that gives 100% discount on the cheapest item in the cart.

See what steps need to be taken to achieve that:

Create a new promotion action

You will need a new class CheapestProductDiscountPromotionActionCommand.

It will give a discount equal to the unit price of the cheapest item. That’s why it needs to have the Proportional
Distributor and the Adjustments Applicator. The execute method applies the discount and distributes it properly on
the totals. This class needs also a isConfigurationvalid () method which was omitted in the snippet below.

<?php

namespace AppBundle\Promotion\Action;

use AppBundle\Promotion\Action\CheapestProductDiscountPromotionActionCommand;
class CheapestProductDiscountPromotionActionCommand extends

—DiscountPromotionActionCommand

{

const TYPE = 'cheapest_item_discount';
J ok k
* @var ProportionallntegerDistributorInterface
*/
private SproportionalDistributor;
J %k
* @var UnitsPromotionAdjustmentsApplicatorInterface
*/

private SunitsPromotionAdjustmentsApplicator;

/%A
* @param ProportionallIntegerDistributorInterface SproportionallntegerDistributor
* @param UnitsPromotionAdjustmentsApplicatorInterface
—SunitsPromotionAdjustmentsApplicator
*/
public function __construct (
ProportionalIntegerDistributorInterface SproportionallntegerDistributor,
UnitsPromotionAdjustmentsApplicatorInterface
—S$unitsPromotionAdjustmentsApplicator
) A
Sthis->proportionalDistributor = $proportionallntegerDistributor;
Sthis->unitsPromotionAdjustmentsApplicator =
—S$unitsPromotionAdjustmentsApplicator;

}

(continues on next page)

190 Chapter 4. The Cookbook

Sylius

(continued from previous page)

J kk
* {@inheritdoc}

*/

public function execute (PromotionSubjectInterface Ssubject, array Sconfiguration,
—PromotionInterface Spromotion)

{

if (!Ssubject instanceof OrderInterface) {
throw new UnexpectedTypeException (Ssubject, OrderInterface::class);
Sitems = S$subject->getItems();
ScheapestItem = S$items—->first();
SitemsTotals = [];

foreach (Sitems as Sitem) {

SitemsTotals[] = $item—->getTotal();
ScheapestItem = ($item—->getVariant ()->getPrice() < $cheapestItem->
—getVariant () ->getPrice()) ? Sitem : Scheapestltem;
}
$splitPromotion = $this->proportionalDistributor->distribute($itemsTotals, -1
—* ScheapestItem->getVariant () ->getPrice());

Sthis->unitsPromotionAdjustmentsApplicator->apply ($subject, S$promotion,

—$splitPromotion) ;

}

J ok k

* {@inheritdoc}

*/
public function getConfigurationFormType ()
{

return CheapestProductDiscountPromotionActionCommand: :class;

Prepare a configuration form type for the admin panel

The new action needs a form type to be available in the admin panel, while creating a new promotion.

<?php
namespace AppBundle\Form\Type\Action;
use Symfony\Component\Form\AbstractType;

class CheapestProductDiscountConfigurationType extends AbstractType
{
J x*
* {@inheritdoc}
*/
public function getBlockPrefix()
{

(continues on next page)

4.1. The Cookbook 191

Sylius

(continued from previous page)

return 'app_promotion_action_cheapest_product_discount_configuration';

Register the action as a service

In the app/config/services.yml configure:

app/config/services.yml
app.promotion_action.cheapest_product_discount:
class: AppBundle\Promotion\Action\CheapestProductDiscountPromotionActionCommand

arguments: ['(Gsylius.proportional_integer_distributor', '@sylius.promotion.units_
—promotion_adijustments_applicator']
tags:

- { name: sylius.promotion action, type: cheapest product_discount, form_
—type: AppBundle\Form\Type\Action\CheapestProductDiscountConfigurationType, label:
—Cheapest product discount }

Register the form type as a service

In the app/config/services.yml configure:

app/config/services.yml
app.form.type.promotion_action.cheapest_product_discount_configuration:
class: AppBundle\Form\Type\Action\CheapestProductDiscountConfigurationType
tags:
- { name: form.type }

Create a new promotion with your action

Go to the admin panel of your system. On the /admin/promotions/new url you can create a new promotion.
In its configuration you can choose your new “Cheapest product discount” action.

That’s all. Done!

Learn more

* Customization Guide
* Promotions Concept Documentation
* How to add a custom promotion action?

* How to add a custom promotion rule?

4.1.7 Images

How to resize images?

In Sylius we are using the LiipImagineBundle for handling images.

192 Chapter 4. The Cookbook

http://symfony.com/doc/current/bundles/LiipImagineBundle/index.html

Sylius

Tip: You will find a reference to the types of filters in the LiipImagineBundle in their documentation.

There are three places in the Sylius platform where the configuration for images can be found:
* AdminBundle
e ShopBundle
e CoreBundle

These configs provide you with a set of filters for resizing images to thumbnails.

sylius_admin_product_tiny_thumbnail | size: [64, 64]
sylius_admin_product_thumbnail size: [50, 50]
sylius_shop_product_tiny_thumbnail size: [64, 64]
sylius_shop_product_small_thumbnail | size: [150, 112]

sylius_shop_product_thumbnail size: [260, 260]
sylius_shop_product_large_thumbnail | size: [550, 412]
sylius_small size: [120, 90]

sylius_medium size: [240, 180]
sylius_large size: [640, 480]

How to resize images with filters?

Knowing that you have filters out of the box you need to also know how to use them with images in Twig templates.

The imagine_filter ('name') is a twig filter. This is how you would get an image path for on object item
with a thumbnail applied:

Note: Sylius stores images on entities by saving a path to the file in the database. The imagine_filter root path is
/web/media/image.

How to add custom image resizing filters?

If the filters we have in Sylius by deafult are not suitable for your needs, you can easily add your own.

All you need to do is to configure new filter in the app/config/config.yml file. For example you can create a
filter for advertisement banners:

app/config/config.yml
liip imagine:
filter_ sets:
advert banner:
filters:
thumbnail: { size: [800, 200], mode: inset }

How to use your new filter in Twig?

4.1. The Cookbook 193

http://symfony.com/doc/current/bundles/LiipImagineBundle/filters.html
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/AdminBundle/Resources/config/app/config.yml
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/ShopBundle/Resources/config/app/config.yml
https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/CoreBundle/Resources/config/app/config.yml

Sylius

Learn more

e The LiipImagineBundle documentation

How to store images in MongoDB GridFS?

This guide will show you how to store product images in MongoDB GridFS using the DoctrineMongoDBBundle.
We’re assuming that you already enabled and configured the bundle accordingly.

Prerequisite: data structure

First of all a document class to store an image is required. To make GridFS files easily reusable, we introduce a
mapped superclass which will store the basic file information.

<?php
namespace AppBundle\Document;
use Doctrine\MongoDB\GridFSFile;

abstract class File
{
VAT
* @var string
*/
protected $id;

J ok k
* @var GridFSFile
*/

protected $file;

J ok k
* @var int
*/
protected Slength;

/& *
* @var int
*/
protected SchunkSize;

J kk
* @var \DateTime
*/
protected SuploadDate;

J ok k
* @var string
*/

protected Smd5;

J %k
* @var string

*/

(continues on next page)

194 Chapter 4. The Cookbook

http://symfony.com/doc/current/bundles/LiipImagineBundle/index.html
https://symfony.com/doc/current/bundles/DoctrineMongoDBBundle/index.html

Sylius

protected $filename;

(continued from previous page)

J %k

* @var string

*/
protected ScontentType;
J K *

* @return string

*/

public function getId()
{
return (string) Sthis->id;

J ok k

* The file can either be a string if the document isn't persisted yet, or a,
—GridFSFile
* 1f the document has already been persisted.
*

* @return GridFSFile|string

*/
public function getFile()
{
return Sthis->file;
}
Y

* @param string $file
*

* @return File

*/

public function setFile($file)
{

Sthis—>file = S$file;
if (!Sthis->contentType) {
Sthis->contentType

mime_content_type (Sfile);

return Sthis;

J K *
* @return int
*/

public function getLength/()
{

return (int) S$this->length;

J ok *
* @return int
*/

public function getChunkSize ()
{

return (int) S$this->chunkSize;

(continues on next page)

4.1. The Cookbook

195

Sylius

(continued from previous page)

J %k

* @return \DateTime

*/

public function getUploadDate ()
{

return Sthis->uploadDate;

J ok *

* @return string

*/

public function getMdb ()
{

return (string) S$this->md5;

VET:
* @return string
*/

public function getFilename ()

{

return (string) Sthis->filename;
}

J ok k

* @param string Sfilename
*

* @return File
*/

public function setFilename (Sfilename)

{

if (Sfilename === '") {

S$filename = null;

Sthis->filename = $filename;

return Sthis;

VAT
* @return string

*/

public function getContentType ()
{

return (string) S$this->contentType;
}

J ok k

* @param string ScontentType
*

* @return File

*/

public function setContentType (ScontentType)
{

196

(continues on next page)

Chapter 4. The Cookbook

Sylius

(continued from previous page)

if (ScontentType === '') {
ScontentType = null;

Sthis->contentType = $contentType;

return Sthis;

J kk

* @return string

*/
public function __ _toString()
{

return Sthis->getFilename ();

<!—-- @AppBundle/Resources/doctrine/model/File.odm.xml ——>
<?xml version="1.0" encoding="UTF-8"?>
<doctrine—-mongo-mapping xmlns="http://doctrine-project.org/schemas/odm/doctrine-mongo—
—mapping"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://doctrine-project.org/schemas/odm/doctrine-
—mongo-mapping
http://doctrine-project.org/schemas/odm/doctrine-mongo-mapping.xsd">

<mapped-superclass name="AppBundle\Document\File">
<field fieldName="id" id="true" />
<field fieldName="file" type="file" />
<field fieldName="length" type="int" />
<field fieldName="chunkSize" type="int" />
<field fieldName="uploadDate" type="date" />
<field fieldName="md5" type="string" />
<field fieldName="filename" type="string" index="true" order="asc" />
<field fieldName="contentType" type="string" />

</mapped-superclass>

</doctrine-mongo-mapping>

After creating the base File class, we're able to create the concrete product image documents for the original
and cached images. They will be stored in the same collection, but can be differentiated by it’s type field (see
DiscriminatorFieldand DiscriminatorMap).

<?php

namespace AppBundle\Document\Product;
use AppBundle\Document;

class Image extends Document\File

{
}

<!-- @AppBundle/Resources/doctrine/model/ProductImage.odm.xml ——>
<?xml version="1.0" encoding="UTF-8"?>
<doctrine-mongo-mapping xmlns="http://doctrine-project.org/schemas/odm/doctrine-mongo—

—mapping"” (continues on next page)

4.1. The Cookbook 197

Sylius

(continued from previous page)

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://doctrine-project.org/schemas/odm/
—doctrine-mongo-mapping
http://doctrine-project.org/schemas/odm/doctrine-mongo—-mapping.xsd

>

<document name="AppBundle\Document\Product\Image" collection="product_image"
—inheritance-type="SINGLE_COLLECTION">
<discriminator-field name="type" />
<discriminator—-map>
<discriminator-mapping value="image" class=
—"AppBundle\Document\Product\Image" />
<discriminator-mapping value="cache" class=
—"AppBundle\Document\Product \Image\Cache" />
</discriminator-map>
<default-discriminator-value value="image" />
</document>
</doctrine-mongo-mapping>

Note: The image cache file stores its £i1ter property in an embedded metadata object.

<?php
namespace AppBundle\Document\Product\Image;
use AppBundle\Document;

final class Cache extends Document\Product\Image
{
J ok k
* @var Cache\Metadata
*/

private Smetadata;

VER:
* @param string S$file
* @param string ScontentType
* @param string $filename
* @param string Sfilter
*/
public function __ construct ($file, ScontentType, S$filename, S$filter)
{
Sthis
->setContentType (ScontentType)
->setFile($file)
—>setFilename ($Sfilename)

Sthis—->metadata = new Cache\Metadata (Sfilter);

J %A
* @return Cache\Metadata

*/

(continues on next page)

198 Chapter 4. The Cookbook

Sylius

(continued from previous page)

public function getMetadata ()
{

return Sthis->metadata;

<!-— (@AppBundle/Resources/doctrine/model/ProductImageCache.odm.xml —->
<?xml version="1.0" encoding="UTF-8"?>
<doctrine-mongo-mapping xmlns="http://doctrine-project.org/schemas/odm/doctrine-mongo-
—mapping"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://doctrine-project.org/schemas/odm/
—doctrine-mongo-mapping

http://doctrine-project.org/schemas/odm/doctrine-mongo-
—mapping.xsd">

<document name="AppBundle\Document\Product\Image\Cache">
<embed-one field="metadata" target-document=
—"AppBundle\Document \Product\Image\Cache\Metadata" />
</document>
</doctrine-mongo-mapping>

<?php
namespace AppBundle\Document\Product\Image\Cache;

final class Metadata
{
J x*
* @var string
*/
private Sfilter;

J *k
* @param string Sfilter
*/
public function __ construct ($filter)
{
Sthis->filter = $filter;

J ok k

* @return string

*/
public function getFilter()
{

return Sthis->filter;

<!-— @AppBundle/Resources/doctrine/model/Product ImageCacheMetadata.odm.xml ——>
<?xml version="1.0" encoding="UTF-8"?>
<doctrine-mongo—-mapping xmlns="http://doctrine-project.org/schemas/odm/doctrine-mongo-
—mapping"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

(continues on next page)

4.1. The Cookbook 199

Sylius

(continued from previous page)

xsi:schemalocation="http://doctrine-project.org/schemas/odm/
—doctrine-mongo-mapping

http://doctrine-project.org/schemas/odm/doctrine-mongo-—
—mapping.xsd">

<embedded—-document name="AppBundle\Document\Product\Image\Cache\Metadata">
<field fieldName="filter" type="string" index="true" order="asc" />
</embedded-document>
</doctrine-mongo-mapping>

How to store images in MongoDB GridFS?

In Sylius the KnpGaufretteBundle is used to store images. In order to store images in MongoDB GridFS, we have to
create new GridFS loader services for Gaufrette:

First of all a new service is configured.

<!-- @AppBundle/Resources/config/services.xml —->

<?xml version="1.0" encoding="UTF-8" ?>

<container xmlns="http://symfony.com/schema/dic/services"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://symfony.com/schema/dic/services
http://symfony.com/schema/dic/services/services—1.0.xsd">

<services>
<service id="app.gaufrette_loader.doctrine_grid_fs" class=
—"Doctrine\MongoDB\GridFS" public="false">
<factory service="doctrine.odm.mongodb.document_manager" method=
—"getDocumentCollection" />
<argument>AppBundle\Document \Product \Image</argument>
</service>

<service id="app.gaufrette_loader.grid_fs" class="MongoGridFS">
<factory service="app.gaufrette_loader.doctrine_grid_fs" method=
—"getMongoCollection" />
</service>

<l—— .. ==
</services>
</container>

Now we can override the Gaufrette configuration in app/config/config.yml to use the newly created loader
service app.gaufrette_loader.grid_fs.

knp_gaufrette:
adapters:
sylius_image:
gridfs:
mongogridfs_id: app.gaufrette_loader.grid_fs

Once this configuration is changed, newly uploaded images are already stored in MongoDB GridFS.

200 Chapter 4. The Cookbook

https://github.com/KnpLabs/KnpGaufretteBundle

Sylius

How to load images from MongoDB GridFS?

Loading images from MongoDB GridFS is a bit more complicated and requires some custom classes.

First of all we have to create a new data_loader for the LiipImagineBundle.

<?php
namespace AppBundle\Imagine\Binary\Loader;

use Doctrine\ODM\MongoDB\DocumentManager;
use Liip\ImagineBundle\Binary\Loader\LoaderInterface ;
use Liip\ImagineBundle\Exception\Binary\Loader\NotLoadableException;

final class GridFSLoader implements LoaderInterface
{
J ok k
* @var DocumentManager
*/
protected Sdm;

J %k
* @var string
*/

protected Sclass;

VAT
* @param DocumentManager $dm
* @param string Sclass
*/
public function __ construct (DocumentManager S$dm, string Sclass)
{
$Sthis—>dm = $dm;
Sthis—->class = S$class;

VEZ:

* {@inheritdoc}

*/
public function find($filename)
{

$image = $this->dm
->getRepository (Sthis->class)
—->findOneBy (['filename' => S$filename]);

if (!Simage) {
throw new NotLoadableException (sprintf ('Source image was not found with
—~filename "%s"', Sfilename));

}

return Simage->getFile () ->getBytes();

Now we can create the service definition for the data loader:

<!-- @AppBundle/Resources/config/services.xml ——>
<?xml version="1.0" encoding="UTF-8" ?>

(continues on next page)

4.1. The Cookbook 201

Sylius

(continued from previous page)

<container xmlns="http://symfony.com/schema/dic/services"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://symfony.com/schema/dic/services
http://symfony.com/schema/dic/services/services—1.0.xsd">

<services>
<service id="app.imagine_loader.grid_fs" class=
—"AppBundle\Imagine\Binary\Loader\GridFSLoader">
<argument type="service" id="doctrine.odm.mongodb.document_manager" />
<argument>AppBundle\Document \Product\Image</argument>
<tag name="liip_imagine.binary.loader" loader="app.imagine_loader.grid_fs

" />
</service>
e
</services>
</container>

The LiipImagineBundle still doesn’t know that we’re storing our images in GridFS, which is why we have to
create a custom resolver class that can find an image for a given filename and store new cached filter types of an image.

Note: The route product_cache_image is defined via an annotation on the
ImagineController: :imageAction class method below this example.

<?php
namespace AppBundle\Imagine\Cache\Resolver;

use AppBundle\Document\Product\Image\Cache;

use Doctrine\ODM\MongoDB\DocumentManager;

use Doctrine\ODM\MongoDB\DocumentRepository;

use Liip\ImagineBundle\Binary\BinaryInterface;

use Liip\ImagineBundle\Imagine\Cache\Resolver\ResolverInterface;
use Symfony\Component\Routing\RouterInterface;

final class GridFSResolver implements ResolverInterface
{
VAT
* @var DocumentManager
*/

private SdocumentManager;

J ok k
* @var string
*/

private Sclass;

J %k
* @var RouterInterface
*/

private Srouter;

/& *
* @param DocumentManager $documentManager
* @param string $Sclass

(continues on next page)

202 Chapter 4. The Cookbook

Sylius

(continued from previous page)

* @param RouterInterface Srouter
*/
public function __construct (DocumentManager S$documentManager, string Sclass,
—RouterInterface Srouter)

{

Sthis->documentManager = $documentManager;
Sthis—->class = Sclass;
Sthis—->router = S$router;
}
J k%
* {@inheritdoc}
*/

public function isStored($path, Sfilter)

{
return Sthis->findCacheFile (Spath, S$filter) !== null;

/ x*
* {@inheritdoc}
*/
public function resolve (Spath, S$filter)
{
Scache = S$this->findCacheFile (Spath, $filter);

return S$this->router->generate ('product_cache_image', ['id' => S$cache->
—getId()], RouterInterface::ABSOLUTE_URL);
}

J ok k

* {@inheritdoc}

*

* @throws GridFSException

*/
public function store(BinaryInterface S$binary, S$path, S$filter)
{

Sfile = tempnam(sys_get_temp_dir(), 'GridFSResolver');

if (file_put_contents($file, S$binary->getContent ()) === false) {
// We're using a custom exception to make it explicit catchable
throw new GridFSException ("Could not write cache file '{$file}' to disk");

try {
Scache = new Cache($file, S$binary->getMimeType(), Spath, $filter);

Sthis->documentManager->persist ($Scache);
Sthis->documentManager—->flush () ;

} finally {
@Qunlink (Sfile);

J ok k
* {@inheritdoc}
*/

public function remove (array Spaths, array Sfilters)

(continues on next page)

4.1. The Cookbook 203

Sylius

(continued from previous page)

if (empty (Spaths) && empty(Sfilters)) {
return;

SqueryBuilder = S$this->getRepository()->createQueryBuilder () ;

SqueryBuilder
->remove ()
—>multiple ()
—>field('metadata.filter"')
->in($Sfilters)

if (!empty(Spaths)) {
SqueryBuilder
->field('filename')
—->in ($Spaths)

SqueryBuilder—->getQuery () —>execute () ;

/o k

* @param string Spath

* @param string Sfilter

*

* @return Cachel/null

*/
private function findCacheFile (Spath, string S$filter)
{

return Sthis->getRepository()->findOneBy (['filename' => S$path, 'metadata.
—~filter' => S$filter]);

}

J xk
* @return DocumentRepository
*/
private function getRepository ()
{

return S$this->documentManager—>getRepository ($this->class);

<?php
namespace AppBundle\Imagine\Cache\Resolver;
class GridFSException extends \RuntimeException

{
}

Create the service definition for the resolver:

<!-- @AppBundle/Resources/config/services.xml —->

(continues on next page)

204 Chapter 4. The Cookbook

Sylius

(continued from previous page)

<?xml version="1.0" encoding="UTF-8" ?>
<container xmlns="http://symfony.com/schema/dic/services"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://symfony.com/schema/dic/services
http://symfony.com/schema/dic/services/services—1.0.xsd">

<services>
<service id="app.imagine_resolver.grid_fs" class=
—"AppBundle\Imagine\Cache\Resolver\GridFSResolver">
<argument type="service" id="doctrine.odm.mongodb.document_manage" />
<argument>AppBundle\Document \Product\Image\Cache</argument>
<argument type="service" id="router" />
<tag name="liip_imagine.cache.resolver" resolver="app.imagine_resolver.
—grid_fs" />
</service>

<= ... >
</services>
</container>

Last but not least we have to override the 11 ip_imagine configuration in the app/config/config.yml file
to use the new data loader and resolver.

liip imagine:
data_loader: app.imagine_loader.grid_fs
cache: app.imagine_resolver.grid_fs

Now we’re going to add a new controller action which can resolve a cached product image and it’s route.

Note: This implementation uses the Symfony Doctrine param converter.

<!-- app/config/routing.xml —->
<?xml version="1.0" encoding="UTF-8" ?>
<routes xmlns="http://symfony.com/schema/routing"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://symfony.com/schema/routing
http://symfony.com/schema/routing/routing-1.0.xsd">

<route id="product_cache_image" path="/product/media/cache/{id}" />

<l—= .. -
</routes>

<?php
namespace AppBundle\Controller;

use AppBundle\Document\Product\Image\Cache;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Request;

use Symfony\Component\HttpFoundation\Response;

use Symfony\Component\HttpFoundation\ResponseHeaderBag;

class ImagineController extends Controller

(continues on next page)

4.1. The Cookbook 205

https://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/converters.html#doctrine-converter

Sylius

(continued from previous page)

/% *
* @param Cache Scache
* @param Request Srequest
*
* @return Response
*/
public function imageAction (Cache Scache, Request Srequest)
{
Sresponse = new Response();
Sresponse->setEtag ($cache->getMd5());

if (Sresponse->isNotModified($Srequest)) {

return Sresponse;

Sdisposition = $response->headers->

—makeDisposition (ResponseHeaderBag: :DISPOSITION_INLINE, Scache->getId());
Sresponse->headers—->set ('Content-Disposition', $disposition);
Sresponse->headers->set ('Content-Type', S$cache->getContentType());

Sresponse->setContent (Scache->getFile () ->getBytes());

return Sresponse;

Learn more

e The MongoDB GridFS documentation
* The Doctrine MongoDB ODM documentation

* The DoctrineMongoDBBundle documentation

How to add images to an entity?

Extending entities with an images field is quite a popular use case. In this cookbook we will present how to add
image to the Shipping Method entity.

Instructions:
1. Extend the ShippingMethod class with the ImagesAwarelnterface

In order to override the ShippingMethod that lives inside of the SyliusCoreBundle, you have to create your own
ShippingMethod class that will extend it:

<?php
declare (strict_types=1);

namespace AppBundle\Entity;

(continues on next page)

206 Chapter 4. The Cookbook

https://docs.mongodb.com/manual/core/gridfs/
http://docs.doctrine-project.org/projects/doctrine-mongodb-odm/en/latest/
https://symfony.com/doc/current/bundles/DoctrineMongoDBBundle/index.html

Sylius

(continued from previous page)

use Doctrine\Common\Collections\ArrayCollection;

use Doctrine\Common\Collections\Collection;

use Sylius\Component\Core\Model\ImagesAwarelnterface;

use Sylius\Component\Core\Model\ImageInterface;

use Sylius\Component\Core\Model\ShippingMethod as BaseShippingMethod;

class ShippingMethod extends BaseShippingMethod implements ImagesAwarelInterface
{
J kk
* @var Collection|ImagelInterfacel]
*/
protected Simages;

public function __construct ()
{

parent::__construct();

Sthis->images = new ArrayCollection();

J ok k

* {@inheritdoc}

*/
public function getImages(): Collection
{

return Sthis->images;

J ok k

* {@inheritdoc}

*/
public function getImagesByType (string Stype): Collection
{

return Sthis->images->filter (function (ImagelInterface S$image) use (Stype) {

return Stype === Simage->getType();
1)
}
VET:
* {@inheritdoc}
*/
public function hasImages(): bool

{

return !Sthis->images—->isEmpty();

J ok k

* {@inheritdoc}

*/
public function hasImage (ImageInterface S$image): bool
{

return Sthis->images->contains ($Simage);

J x*
* {@inheritdoc}

(continues on next page)

4.1. The Cookbook 207

Sylius

(continued from previous page)

*/
public function addImage (ImagelInterface Simage): void
{
Simage->setOwner (Sthis);
Sthis->images->add ($image) ;
}
VAT
* {@inheritdoc}
*/
public function removelImage (Imagelnterface Simage): void
{
if (Sthis->hasImage ($Simage)) {

Simage->setOwner (null) ;
Sthis->images—->removeElement (Simage) ;

Tip: Read more about customizing models in the docs /ere.

2. Register your extended ShippingMethod as a resource’s model class

With such a configuration in the config. yml you will register your ShippingMethod class in order to override the
default one:

app/config/config.yml
sylius_shipping:
resources:
shipping_method:
classes:
model: AppBundle\Entity\ShippingMethod

3. Create the ShippingMethodimage class

In the AppBundle\Ent ity namespace place the ShippingMethodImage class which should look like this:

<?php

declare (strict_types=1);

namespace AppBundle\Entity;

use Sylius\Component\Core\Model\Image;
class ShippingMethodImage extends Image

{
}

208 Chapter 4. The Cookbook

Sylius

4. Add the mapping file for the ShippingMethodimage

Your new entity will be saved in the database, therefore it needs a mapping file, where you will set the

ShippingMethod as the owner of the ShippingMethodImage.

AppBundle/Resources/config/doctrine/ShippingMethodImage.orm.yml
AppBundle\Entity\ShippingMethodImage:
type: entity
table: app_shipping _method_image
manyToOne:
owner:
targetEntity: AppBundle\Entity\ShippingMethod
inversedBy: images
joinColumn:
name: owner_id
referencedColumnName: id
nullable: false
onDelete: CASCADE

5. Modify the ShippingMethod’s mapping file

The newly added images field has to be added to the mapping, with a relation to the ShippingMethodImage:

AppBundle/Resources/config/doctrine/ShippingMethod.orm. yml
AppBundle\Entity\ShippingMethod:
type: entity
table: sylius_shipping_method
oneToMany :
images:
targetEntity: AppBundle\Entity\ShippingMethodImage
mappedBy: owner
orphanRemoval: true
cascade:
- all

6. Register the ShippingMethodimage as a resource

The ShippingMethodImage class needs to be registered as a Sylius resource:

app/config/config.yml
sylius_resource:
resources:
app.shipping method image:
classes:
model: AppBundle\Entity\ShippingMethodImage

7. Create the ShippingMethodimageType class

This is how the class for ShippingMethodImageType should look like.

AppBundle\Form\Type\ directory.

Place it in the

4.1. The Cookbook

209

Sylius

<?php

declare (strict_types=1);

namespace AppBundle\Form\Type;

use Sylius\Bundle\CoreBundle\Form\Type\ImageType;

final class ShippingMethodImageType extends ImageType
{
Y
* {@inheritdoc}
*/
public function getBlockPrefix(): string
{

return 'app_shipping_method_image';

8. Register the ShippingMethodimageType as a service

After creating the form type class, you need to register it as a form. t ype service like below:

services.yml
services:
app.form.type.shipping method image:
class: AppBundle\Form\Type\ShippingMethodImageType
tags:
- { name: form.type }
arguments: '$app.model.shipping_method_image.class$']

9. Add the ShippingMethodimageType to the resource form configuration

What is more the new form type needs to be configured as the resource form of the ShippingMethodImage:

app/config/config.yml
sylius_resource:
resources:
app.shipping method_ image:
classes:
form: AppBundle\Form\Type\ShippingMethodImageType

10. Extend the ShippingMethodType with the images field

Tip: Read more about customizing forms via extensions in the dedicated guide.

Create the form extension class for the Sylius\Bundle\ShippingBundle\Form\Type\ShippingMethodType:

It needs to have the images field as a CollectionType.

210 Chapter 4. The Cookbook

Sylius

<?php
declare (strict_types=1);
namespace AppBundle\Form\Extension;

use AppBundle\Form\Type\ShippingMethodImageType;
use Sylius\Bundle\ShippingBundle\Form\Type\ShippingMethodType;
use Symfony\Component\Form\AbstractTypeExtension;
use Symfony\Component\Form\Extension\Core\Type\CollectionType;
use Symfony\Component\Form\FormBuilderInterface;

final class ShippingMethodTypeExtension extends AbstractTypeExtension
{
J %k
* {@inheritdoc}
*/
public function buildForm(FormBuilderInterface Sbuilder, array Soptions): void
{
Sbuilder->add('images', CollectionType::class, [
'entry_type' => ShippingMethodImageType::class,
'allow_add' => true,
'allow_delete' => true,
'by_reference' => false,
'label' => 'sylius.form.shipping_method.images',

/x*
* {@inheritdoc}
*/
public function getExtendedType(): string

{
return ShippingMethodType::class;

Tip: In case you need only a single image upload, this can be done in 2 very easy steps.
First, in the code for the form provided above set allow_add and allow_delete to false

Second, in the ___construct method of the ShippingMethod entity you defined earlier add the following:

public function __construct ()

{
parent::___construct();
Sthis->images = new ArrayCollection();
Sthis->addImage (new ShippingMethodImage ()) ;

Register the form extension as a service:

services.yml
services:
app.form.extension.type.shipping method:
class: AppBundle\Form\Extension\ShippingMethodTypeExtension

(continues on next page)

4.1. The Cookbook 211

Sylius

(continued from previous page)

tags:
- { name: form.type extension, extended_ type:
—Sylius\Bundle\ShippingBundle\Form\Type\ShippingMethodType }

11. Declare the ImagesUploadListener service

In order to handle the image upload you need to attach the ImagesUploadListener to the ShippingMethod
entity events:

services.yml
services:
app.listener.images_upload:
class: Sylius\Bundle\CoreBundle\EventListener\ImagesUploadListener
parent: sylius.listener.images_upload
autowire: true
autoconfigure: false
public: false
tags:
— { name: kernel.event_listener, ewvent: sylius.shipping method.pre_create,
— method: uploadlimages }
— { name: kernel.event_listener, event: sylius.shipping _method.pre_update,
— method: uploadImages }

12. Render the images field in the form view

In order to achieve that you will need to customize the form view from the SyliusAdminBundle/views/
ShippingMethod/_form.html.twig file.

Copy and paste its contents into your own app/Resources/SyliusAdminBundle/views/
ShippingMethod/_form.html.twig file, and render the { { form_row (form.images) }} field.

{# app/Resources/SyliusAdminBundle/views/ShippingMethod/_form.html.twig #}
{% from '@SyliusAdmin/Macro/translationForm.html.twig' import translationForm %}

<div class="ui two column stackable grid">
<div class="column">
<div class="ui segment">
{{ form_errors (form) }}
<div class="three fields">
{{ form_row(form.code) }}
{{ form_row(form.zone) }}
{{ form_row(form.position) }}
</div>
{{ form_row(form.enabled) }}
<h4 class="ui dividing header">{{ 'sylius.ui.availability'|[trans }}</h4>
{{ form_row(form.channels) }}
<h4 class="ui dividing header">{{ 'sylius.ui.category_ requirements'|trans,
— }}</hd>
{{ form_row(form.category) }}
{% for categoryRequirementChoiceForm in form.categoryRequirement %}
{{ form_row(categoryRequirementChoiceForm) }}
% endfor %}

(continues on next page)

212 Chapter 4. The Cookbook

Sylius

(continued from previous page)

<h4 class="ui dividing header">{{ 'sylius.ui.taxes'|trans }}</h4>

{{ form_row(form.taxCategory) }}

<h4 class="ui dividing header">{{ 'sylius.ui.shipping_charges'|trans }}</

—hd>
{{ form_row(form.calculator) }}
% for name, calculatorConfigurationPrototype in form.vars.prototypes %}
<div id="{{ form.calculator.vars.id }}_{{ name }}" data-container=".
—configuration"

data-prototype="{{ form_
—widget (calculatorConfigurationPrototype) |e }}">
</div>
% endfor %}

{# Here you go! #}
{{ form_row(form.images) }}

<div class="ui segment configuration">
% if form.configuration is defined %}
{% for field in form.configuration %}
{{ form_row(field) }}
% endfor %)}
{% endif %}
</div>
</div>
</div>
<div class="column">
{{ translationForm(form.translations) }}

</div>

</div>

Tip: Learn more about customizing templates here.

13. Validation

Your form so far is working fine, but don’t forget about validation. The easiest way is using validation config files

under the AppBundle/Resources/config/validation folder.

This could look like this e.g.:

AppBundle\Resources\config\validation\ShippingMethodImage.yml
AppBundle\Entity\ShippingMethodImage:
properties:
file:
- Image:
groups: [sylius]
maxHeight: 1000
maxSize: 10240000
maxWidth: 1000
mimeTypes:
- "image/png"
- "image/jpg"
- "image/jpeg"
- "image/gif"

(continues on next page)

4.1. The Cookbook

213

Sylius

(continued from previous page)

mimeTypesMessage: 'This file format is not allowed. Please use PNG, JPG or,
—GIF files.'

minHeight: 200

minWidth: 200

This defines the validation constraints for each image entity. Now connecting the validation of the ShippingMethod
to the validation of each single Image Entity is left:

AppBundle\Resources\config\validation\ShippingMethod. yml
AppBundle\Entity\ShippingMethod:
properties:

images:
- Valid: ~

Learn more

e GridBundle documentation

¢ ResourceBundle documentation

e Customization Guide

* How to resize images?

* How to store images in MongoDB GridFS?

* How to add images to an entity?

4.1.8 Deployment

How to deploy Sylius to Platform.sh?

Tip: Start with reading Platform.sh documentation. Also Symfony provides a guide on deploying projects to Plat-
form.sh.

The process of deploying Sylius to Platform.sh is based on the guidelines prepared for Symfony projects in general.
In this guide you will find sufficient instructions to have your application up and running on Platform.sh.

1. Prepare a Platform.sh project

If you do not have it yet, go to the Platform.sh store, choose development plan and go through checkout. Then, when
you will have a project ready, give it a name and proceed to Import an existing site.

Tip: To investigate if Platform.sh suits your needs, you can use their free trial, which you can choose as a develop-
ment plan.

214 Chapter 4. The Cookbook

https://docs.platform.sh/frameworks/symfony.html
http://symfony.com/doc/current/deployment/platformsh.html
http://symfony.com/doc/current/deployment/platformsh.html
https://accounts.platform.sh/platform/buy-now

Sylius

2. Make the application ready to deploy

e Addthe .platform.app.yaml file at the root of your project repository

This is how this file should look like for Sylius (tuned version of the default Platform.sh example):

.platform.app.yaml

name: app

type: "php:7.1"

build:
flavor: composer

relationships:
database:
redis:

"mysgl:mysqgl"
"redis:redis"

runtime:
extensions:
- msgpack
- igbinary
- memcached
- redis

dependencies:
nodejs:

yarn:

gulp-cli:

wyn

L

web:
locations:
v/v:
root: "web"
passthru: "/app.php"
allow: true
expires: -1
scripts: true
'/assets/shop':
expires: 2w
passthru: true
allow: false
rules:
Only allow static files from the assets directories.
"\. (css|js|jpe?glpnglgif|svgz?|ico|bmp|tiff?
— |wbmp|icol| jng|bmp|html |pdf|otf|woff2|woff|eot|ttf|jar|swf|ogx|avi|wmv]asf|asx|mngl|flv|
—g|mp4 | 3gpp |weba|ra|mda|mp3 |mp2 |mpe?ga |midi?)$"':
allow: true
' /media/image’:
expires: 2w
passthru: true
allow: false
rules:
Only allow static files from the assets directories.
"\. (jpe?glpng|gif|svgz?)$"':
allow: true
' /media/cache/resolve’:
passthru: "/app.php"
expires: -1

(continues on next page)

4.1. The Cookbook 215

webm|mov | ogv

Sylius

(continued from previous page)

allow: true
scripts: true
' /media/cache’':
expires: 2w
passthru: true
allow: false
rules:
Only allow static files from the assets directories.
"\. (Jpe?glpnglgif|svgz?)$':
allow: true

disk: 4096

mounts:
"/wvar/cache": "shared:files/cache"
"/var/logs": "shared:files/logs"
"/web/uploads": "shared:files/uploads"
"/web/media": "shared:files/media"

hooks:

build: |
rm web/app_dev.php
rm web/app_test.php
rm web/app_test_cached.php
rm —-rf var/cache/x
php bin/console --env=prod --no-debug --ansi cache:clear —--no-warmup
php bin/console —--env=prod --no-debug --ansi cache:warmup
php bin/console env=prod no-debug ansi assets:install
Next command is only needed if you are using themes
php bin/console —--env=prod --no-debug --ansi sylius:theme:assets:install
yarn install
GULP_ENV=prod yarn build

deploy: |

rm —-rf

php bin/console --env=prod doctrine:migrations:migrate --no-interaction

The above configuration includes tuned cache expiration headers for static files. The cache lifetimes can be adjusted

for your site if desired.

e Add .platform/routes.yaml file:

.platform/routes.yaml

"http://{default}/":
type: upstream
upstream: "app:http"

"http://www. {default}/":
type: redirect
to: "http://{default}/"

* Add .platform/services.yaml file:

This file will load mysqgl and redis on your Platform.sh server.

.platform/services.yaml
mysql:
type: mysqgl

(continues on next page)

216 Chapter 4. The Cookbook

Sylius

(continued from previous page)

disk: 1024

redis:
type: redis:3.0

» Configure the access to the database:

In the app/config/parameters_platform.php file, put the following code:

// app/config/parameters_platform.php
<?php

Srelationships = getenv ("PLATFORM_RELATIONSHIPS");
if (!Srelationships) {
return;
Srelationships = json_decode (base64_decode (Srelationships), true);

foreach ($relationships['database'] as S$endpoint) {

if (empty (Sendpoint['query']['is_master'])) {

continue;
}
Scontainer->setParameter ('database_driver', 'pdo_' . $endpoint|['scheme'l]);
Scontainer—->setParameter ('database_host', S$endpoint['host']);
Scontainer->setParameter ('database_port', S$endpoint['port']l);

Scontainer->setParameter ('database_name', S$Sendpoint['path'l);
Scontainer—->setParameter ('database_user', S$endpoint['username']);
Scontainer->setParameter ('database_password', S$endpoint]['password']);
Scontainer->setParameter ('database_path', '');

}
foreach (S$relationships|['redis'] as Sendpoint) {

Scontainer—->setParameter ('redis_dsn', 'redis://'.S$Sendpoint['host'].':'.Sendpoint/|[
—'port']);
}
Scontainer->setParameter ('sylius.cache', array('type' => 'array'));

ini_set ('session.save_path', '/tmp/sessions');

if (getenv ('PLATFORM_PROJECT_ENTROPY')) {
Scontainer->setParameter ('secret', getenv ('PLATFORM_PROJECT_ENTROPY')) ;

Remember to have it imported in the config:

app/config/config.yml

imports:
— { resource: parameters.yml } <- Has to be placed before our new file
- { resource: parameters_platform.php }

Warning: It is important to place newly created file after importing regular parameters.yml file. Otherwise your
database connection will not work. Also this will be the file where you should set your required parameters. Its
value will be fetched from environmental variables.

4.1. The Cookbook 217

Sylius

The application secret is used in several places in Sylius and Symfony. Platform.sh allows you to deploy an environ-
ment for each branch you have, and therefore it makes sense to have a secret automatically generated by the Platform.sh
system. The last 3 lines in the sample above will use the Platform.sh-provided random value as the application secret.

3. Add Platform.sh as a remote to your repository:

Use the below command to add your Platform.sh project as the plat form remote:

$ git remote add platform [PROJECT-ID]Q@git.[CLUSTER].platform.sh: [PROJECT-ID].git

The PROJECT-1ID is the unique identifier of your project, and CLUSTER can be eu or us - depending on where are
you deploying your project.

4. Commit the Platform.sh specific files:

git add .platform.app.yaml

git add .platform/=*

git add app/config/parameters_platform.php

git add app/config/config.yml

git commit -m "Platform.sh deploy configuration files."

vy Wy A

5. Push your project to the platform remote:

$ git push platform master

The output of this command shows you on which URL your online store can be accessed.

6. Connect to the project via SSH and install Sylius

The SSH command can be found in your project data on Platform.sh. Alternatively use the Platform CLI tool.

When you get connected please run:

$ php bin/console sylius:install --env prod

Warning: By default platform.sh creates only one instance of a database with the main name. Platform.sh works
with the concept of an environment per branch if activated. The idea is to mimic production settings per each
branch.

7. Dive deeper

Learn some more specific topics related to Sylius & Symfony on our Advanced Platform.sh Cookbook

Learn more

¢ Platform.sh documentation: Configuring Symfony projects for Platform.sh

218 Chapter 4. The Cookbook

https://docs.platform.sh/gettingstarted/cli.html
https://docs.platform.sh/frameworks/symfony.html

Sylius

* Symfony documentation: Deploying Symfony to Platform.sh

e Installation Guide

Advanced Platform.sh configurations
The basic set-up let’s you easily set-up a Platform.sh project running your Sylius application. It should give you an
environment suitable for testing Platform.sh in combination with Sylius.

In this guide additional tips will be given in order to benefit in a production environment.

Keep sessions between deployments

The default configuration saves PHP sessions into /tmp/sessions. Platform.sh functions in such way that each
deployment spins up a new container instance and therefore the temporary folder holding sessions will be gone.

In order to save the PHP sessions on disk, the following steps need to be followed:

e Inplatform.app.yml add the following under the mount property:

mount :
"/app/sessions": "shared:files/sessions"

e Inthe app/config/parameters_platform.php replace the session path:

ini_set ('session.save_path', '/app/app/sessions');

Alternatively you can use a php.ini" file in the root of your project:

session.save_path = "/app/app/sessions"

Use Redis for Doctrine caching:

Want to use the metacache, query cache or result cache Symfony and Doctrine have to offer? It comes with a caveat.
Platform.sh doesn’t allow you to connect to all your services yet from inside the build hook. The following tutorial
will guide you through this and make use of Redis. In the default example Redis is already activated.

* Inyour app/config/parameters.yml.dist add:

parameters:
metacache_driver: []
querycache_driver: []
resultcache_driver: []
redis_dsn: ~
redis_host: ~
redis_port: ~

e Inthe app/config/parameters_platform.php file, under the part where the database credentials are
set, add:

foreach (Srelationships['redis'] as Sendpoint) {
Scontainer—->setParameter ('metacache_driver', 'redis');

ontainer->setParameter ('querycache_driver', 'redis');
ntainer—->setParameter ('resultcache_driver', 'redis');

(continues on next page)

4.1. The Cookbook 219

http://symfony.com/doc/current/deployment/platformsh.html

Sylius

(continued from previous page)

Scontainer—->setParameter ('redis_dsn', 'redis://'.S$Sendpoint['host'].':'.Sendpoint/|[
—'port']);
Scontainer->setParameter ('redis_host', Sendpoint['host']);

Scontainer—->setParameter ('redis_port', S$endpoint['port']);

Tip: Your Redis connection credentials are now available, which you can also use for the default Symfony cache.

* Inyour app/config/config_prod.yml file add:

doctrine:
orm:
metadata_cache_driver:
type: "Smetacache_driver%"
database: 1
host: "%redis _host%"
port: "%redis_port%"
query_cache_driver:
type: "%querycache_drivers"

database: 2

host: "%redis_host%"

port: "Sredis_ports"
result_cache_driver:

type: "%resultcache_driver$"

database: 3

host: "%$redis_host%"
port: "Sredis_ports"

* If you want to empty the cache on deployment, adjust the deploy hook in .platform.app.yaml:

hooks:
deploy: |
rm —-rf var/cache/~*

php bin/console --env=prod doctrine:cache:clear-metadata

php bin/console --env=prod doctrine:cache:clear—-query

php bin/console env=prod doctrine:cache:clear-result

php ——env=prod doctrine:migrations:migrate --no-interaction

Add default Sylius cronjobs:

Add the example below to your .platform.app.yanml file. This runs these cronjobs every 6 hours.

crons:
cleanup_cart:
spec: '0 %/6 % *x x'
emd: '/usr/bin/flock -n /tmp/lock.app.cleanup_cart bin/console sylius:remove-—
—expired-carts —-—-env=prod —--verbose'

cleanup_order:
spec: '0 %/6 % *x x'
emd: '/usr/bin/flock -n /tmp/lock.app.cleanup_order bin/console sylius:cancel-
—unpaid-orders —--env=prod —--verbose'

220 Chapter 4. The Cookbook

Sylius

Additional tips:

 Platform.sh can serve gzipped versions of your static assets. Make sure to save your assets in the same folder, but with
a .gz suffix. The gulp-gzip node package comes very helpful integrating saving of .gz versions of your
assets.

* Platform.sh comes with a New Relic integration.

¢ Platform.sh comes with a Blackfire.io integration

How to deploy Sylius to Cloudways PHP Hosting?

Cloudways is a managed hosting platform for custom PHP apps and PHP frameworks such as Symfony, Laravel,
Codeigniter, Yii, CakePHP and many more. You can launch the servers on any of the five providers including Digi-
talOcean, Vultr, AWS, GCE and KYUP containers.

The deployment process of Sylius on Cloudways is pretty much straightforward and easy.

Now to install Sylius you need to go through series of few steps:

1. Launch Server with Custom PHP App

You should signup at Cloudways to buy the PHP servers from the above mentioned providers. Simply go to the
pricing page and choose your required plan. You then need to go through the verification process. Once it done login
to platform and launch your first Custom PHP application. You can follow the Gif too.

Now let’s start the process of installing Sylius on Cloudways.

2. Install the latest version of Sylius via SSH

Open the SSH terminal from the Server Management tab. You can also use PuTTY for this purpose. Find the SSH
credentials under the Master Credentials heading and login to the SSH terminal:

; Servers Applications Team Projects e= 4+ Q searchSewerorAppication 2 oE [55)

Servers
9 servers > Cloudways Server ¥ wowid @ o
2GB 45 GB Disk 46.1015233 DigitalOcean (London)
Server Management
MASTER CREDENTIALS
Master Credentials SFTP and 55H access details for all applications
Monitoring %
Public IP 46.101.5.233 QOn the left, you have Master credentials to gain the access for s
Manage Services SFTP or 55H (e g using Putty) Alternatively, you can upload ﬁ
Username B e multiple 55H Public Keys to your Cloudways server to access it 3
Settings & Packages Password cessest without password prompts. g

Secumy m

Vertical Scaling
Or, launch 55H terminal in your browser by clicking the button
Backups below.

SMTP _— LAUNCH SSH TERMINAL

4.1. The Cookbook 221

https://docs.platform.sh/administration/integrations/new-relic.html
https://docs.platform.sh/administration/integrations/blackfire.html
https://platform.cloudways.com/signup

Sylius

After the login, move to the application folder using the cd command and run the following command to start installing
Sylius:

$ composer create-project sylius/sylius-standard myshop ‘

The command will start installing the long list of dependencies for Sylius. Once the installation finishes, Sylius will
ask for the database credentials. You can find the database username and password in the Application Access Details.

20 8

£) Cloudways Server ¥ myshop v 0 0
Application Management
Access Detalls Information related to the several ways you can interact with your application
Domain Management
Cron Job Management APPLICATION URL APPLICATION CREDENTIALS
Application credentials for SFTP

SSL Certificate ;
More Details

H/SFTP access to ation. Read this
Restore 461015233
Deployment Via Git
MYSQL ACCESS U shahroze nawaz@cloudway
Application Settings DB Name revd
LLLTTTTTY ADD
© 2011-2017 Cloudways Ltd. All rights reserved

Enter the database details in the SSH terminal:

Some parameters are missing. Please provide them.
(pdo mysql):
(127.0.0.1):
(null):
{(sylius): rcvdfdcpwa
{(root): rcvdfdcpwa
{null): PN
{smtp):
(127.8.8.1):
(null):
(null):
(EDITME):
{en_US):
*> Sensio\Bundle\DistributionBundle\Composer\ScriptHandler: :buildBootstrap
> Sensio\Bundle\DistributionBundle\Composer\ScriptHandler: :clearCache

Keep the rest of the values to default so that the config file will have the defaults Sylius settings. If the need arises,
you can obviously change these settings later.

222 Chapter 4. The Cookbook

Sylius

3. Install Node Dependencies

Sylius requires several Node packages, which also needs to be installed and updated before setting up the shop. In
addition, I also need to start and setup Gulp.

Now move to the myshop folder by using cd myshop and run the following command yarn install. Once the
command finishes, run the next command, yarn build.

4. Install Sylius for the production environment

Now run the following command:

$ bin/console sylius:install -e prod

5. Update The Webroot of the Application

Finally, the last step is to update the webroot of the application in the Platform. Move to the Application Settings tab
and update it.

APPLICATION SETTINGS

Configure several application specific settings for your web app.

GENERAL PHP SETTINGS VARNISH SETTINGS

Folder
revdfdcpwa

Webroot
public_html/myshop/web

Now open the application URL as shown in the Access Details tab.

Learn more

* Cloudways PHP Hosting documentation: How to host PHP applications on DigitalOcean via Cloudways
* PHP FAQs And Features: Know more about PHP Hosting
e What You As A User Can Do With Cloudways PHP Stack

How to prepare simple CRON jobs?

What are CRON jobs?

This is what we call scheduling repetitive task on the server. In web applications this will be mainly repetitively
running specific commands.

4.1. The Cookbook 223

https://cloudways.com/blog/host-php-on-digitalocean
https://cloudways.com/en/php-cloud-hosting.php
https://cloudways.com/blog/php-stack-user-guide

Sylius

CRON jobs in Sylius

Sylius has two vital, predefined commands designed to be run as cron jobs on your server.
* sylius:remove-expired-carts - to remove carts that have expired after desired time

* sylius:cancel-unpaid-orders - to cancel orders that are still unpaid after desired time

How to configure a CRON job ?

Tip: Learn more here: Cron and Crontab usage and examples.

* How to deploy Sylius to Platform.sh?

Advanced Platform.sh configurations
* How to deploy Sylius to Cloudways PHP Hosting?
* How to prepare simple CRON jobs?

4.1.9 Configuration

How to disable default shop, admin or API of Sylius?

When you are using Sylius as a whole you may be needing to remove some of its parts. It is possible to remove for
example Sylius shop to have only administration panel and API. Or the other way, remove API if you do not need it.

Therefore you have this guide that will help you when wanting to disable shop, admin or API of Sylius.

How to disable Sylius shop?

1. Remove SyliusShopBundle from app/AppKernel.

// # app/AppKernel.php

public function registerBundles ()
{
Sbundles = [
new \Sylius\Bundle\AdminBundle\SyliusAdminBundle (),
// new \Sylius\Bundle\ShopBundle\SyliusShopBundle (), // - remove or leave_
—~this line commented

new \FOS\OAuthServerBundle\FOSOAuthServerBundle (),
new \Sylius\Bundle\AdminApiBundle\SyliusAdminApiBundle(),

new \AppBundle\AppBundle (),
1i

return array_merge (parent::registerBundles (), Sbundles);

2. Remove SyliusShopBundle’s config import from app/config/config.yml.

Here you’ve got the line that should disappear from imports:

224 Chapter 4. The Cookbook

http://www.pantz.org/software/cron/croninfo.html

Sylius

imports:
- { resource: "@SyliusShopBundle/Resources/config/app/config.yml" } # remove or,
—~leave this line commented

3. Remove SyliusShopBundle routing configuration from app/config/routing.yml.

sylius_shop:
resource: "@SyliusShopBundle/Resources/config/routing.yml" # remove or leave,,
—~these lines commented

4. Remove security configuration from app/config/security.yml.

The part that has to be removed from this file is shown below:

parameters:
sylius.security.shop _regex: "~/ (?!admin|api/.*|apiS) [~/]++"

security:
firewalls:

Delete or leave this part commented

shop:

switch_user: { role: ROLE_ALLOWED TO _SWITCH }

context: shop

pattern: "$sylius.security.shop_regexg"

form _login:

success_handler: sylius.authentication.success_handler

failure_handler: sylius.authentication.failure_handler

provider: sylius_shop user_provider

login_path: sylius_shop_login

check_path: sylius_shop_login_check

failure path: sylius_shop_login

default_target_path: sylius_shop_homepage

use_ forward: false

use_referer: true

csrf_token_generator: security.csrf.token_manager

csrf_parameter: _csrf_shop_security_token

csrf_token_id: shop_authenticate

remember_me:

secret: "$secretg"

name: APP_SHOP_REMEMBER ME

lifetime: 31536000

remember._me_parameter: _remember._me

logout:

path: sylius_shop_logout

target: sylius_shop_login

invalidate_session: false

success_handler: sylius.handler.shop_user._logout

anonymous: true

access_control:

- { path: "$sylius.security.shop_regex$%/_partial", role: IS_AUTHENTICATED
—~ANONYMOUSLY, ips: [127.0.0.1, =::1] }

- { path: "$sylius.security.shop _regex$%/_partial", role: ROLE_NO_ACCESS }
- { path: "$sylius.security.shop_regex$%$/login", role: IS_AUTHENTICATED_

—~ANONYMOUSLY }

- { path: "$sylius.security.shop_regex$%$/register", role: IS_AUTHENTICATED_

—~ANONYMOUSLY } (continues on next page)

4.1. The Cookbook 225

Sylius

(continued from previous page)

- { path: "$sylius.security.shop_regex$%$/verify", role: IS AUTHENTICATED_
—~ANONYMOUSLY }

- { path: "$sylius.security.shop_regex$%$/account", role: ROLE_USER }
- { path: "$sylius.security.shop_regex$%/seller/register", role: ROLE_USER }

Done! There is no shop in Sylius now, just admin and API.

How to disable Sylius Admin?

1. Remove SyliusAdminBundle from app/AppKernel.

// # app/AppKernel.php

public function registerBundles|()
{
Sbundles = [
// new \Sylius\Bundle\AdminBundle\SyliusAdminBundle (), // - remove or leave,,
—this line commented
new \Sylius\Bundle\ShopBundle\SyliusShopBundle (),

new \FOS\OAuthServerBundle\FOSOAuthServerBundle (),
new \Sylius\Bundle\AdminApiBundle\SyliusAdminApiBundle (),

new \AppBundle\AppBundle (),
1i

return array_merge (parent::registerBundles (), Sbundles);

2. Remove SyliusAdminBundle’s config import from app/config/config.yml.

Here you’ve got the line that should disappear from imports:

imports:
- { resource: "@SyliusAdminBundle/Resources/config/app/config.yml" } # remove or,
—leave this line commented

3. Remove SyliusAdminBundle routing configuration from app/config/routing.yml.

sylius_admin:
resource: "@SyliusAdminBundle/Resources/config/routing.yml"”

4. Remove security configuration from app/config/security.yml.

The part that has to be removed from this file is shown below:

parameters:
Delete or leave this part commented
sylius.security.admin_regex: "*/admin"
sylius.security.shop_regex: "/ (?!api/.*|api$) ["/]++" # Remove ‘“admin| from the_,
—pattern
security:
firewalls:

Delete or leave this part commented

(continues on next page)

226 Chapter 4. The Cookbook

Sylius

(continued from previous page)

admin:
switch_user: true
context: admin
pattern: "$sylius.security.admin_regex$"
form_login:
provider: sylius_admin_user_provider
login_path: sylius_admin_login
check_path: sylius_admin_login_check
failure_path: sylius_admin_login
default_target_path: sylius_admin_dashboard
use_forward: false
use_referer: true
csrf_token_generator: security.csrf.token_manager
csrf_parameter: _csrf_admin_security_token
csrf token _id: admin_authenticate
remember_me:
secret: "%secretg"
path: /admin
name: APP_ADMIN REMEMBER_ME
lifetime: 31536000
remember._me_parameter: _remember._me
logout:
path: sylius_admin_logout
target: sylius_admin_login
anonymous: true

S oH o H R Y H R O H R O H R O H R R R R R R R

access_control:
Delete or leave this part commented

- { path: "8sylius.security.admin_regex$%/_partial", role: IS AUTHENTICATED_
—~ANONYMOUSLY, ips: [127.0.0.1, =::1] }

- { path: "$sylius.security.admin_ regex$%/_partial", role: ROLE_NO_ACCESS }
- { path: "$sylius.security.admin _regex$/login", role: IS _AUTHENTICATED_

—~ANONYMOUSLY }

- { path: "%sylius.security.admin_regex$%", role: ROLE_ADMINISTRATION_ACCESS }

Done! There is no admin in Sylius now, just api and shop.

How to disable Sylius API?

1. Remove SyliusAdminApiBundle & FOSOAuthServerBundle from app/AppKernel.

// # app/AppKernel.php

public function registerBundles ()
{
Sbundles = [
new \Sylius\Bundle\AdminBundle\SyliusAdminBundle (),
new \Sylius\Bundle\ShopBundle\SyliusShopBundle (),

// new \FOS\OAuthServerBundle\FOSOAuthServerBundle (),
// new \Sylius\Bundle\AdminApiBundle\SyliusAdminApiBundle (), // — remove or,_
—leave this line commented

(continues on next page)

4.1. The Cookbook 227

Sylius

(continued from previous page)

new \AppBundle\AppBundle (),
1i

return array_merge (parent::registerBundles (), Sbundles);

2. Remove SyliusAdminApiBundle’s config import from app/config/config.yml.

Here you’ve got the line that should disappear from imports:

imports:
- { resource: "@SyliusAdminApiBundle/Resources/config/app/config.yml" } # remove
—or leave this line commented

3. Remove SyliusAdminApiBundle routing configuration from app/config/routing.yml.

sylius_api:
resource: "@SyliusAdminApiBundle/Resources/config/routing.yml" # remove or leave,
—these lines commented

4. Remove security configuration from app/config/security.yml.

The part that has to be removed from this file is shown below:

parameters:
Delete or leave this part commented
sylius.security.api_regex: ""/api"
sylius.security.shop_regex: "~/ (?!admin$) [~/]++" # Remove |api/.*|api from the_
—pattern
security:
firewalls:
Delete or leave this part commented
oauth_token:
pattern: "gsylius.security.api_regex$%/oauth/v2/token"
security: false
api:
pattern: "¢sylius.security.api_regex$%/.*"
fos _oauth: true
stateless: true
anonymous: true

access_control:

Delete or leave this part commented

- { path: "$sylius.security.api_regex$%$/login", role: IS AUTHENTICATED_
—~ANONYMOUSLY }

- { path: "$sylius.security.api_regex%/.*", role: ROLE_API_ACCESS }

5. Remove fos_rest config from app/config/config.yml.

fos_rest:
format_listener:
rules:
- { path: '~/api', priorities: ['json', 'xml'], fallback_ format: json,_

—prefer_extension: true } # remove or leave this line commented

Done! There is no API in Sylius now, just admin and shop.

228 Chapter 4. The Cookbook

Sylius

Learn more

* Architecture: Division into Core, Shop, Admin and API

How to use installer commands?

Sylius platform ships with the sylius:install command, which takes care of creating the database, schema,
dumping the assets and basic store configuration.

This command actually uses several other commands behind the scenes and each of those is available for you:

Checking system requirements

You can quickly check all your system requirements and possible recommendations by calling the following command:

$ php bin/console sylius:install:check-requirements

Database configuration

Sylius can create or even reset the database/schema for you, simply call:

$ php bin/console sylius:install:database

The command will check if your database schema exists. If yes, you may decide to recreate it from scratch, otherwise
Sylius will take care of this automatically. It also allows you to load sample data.

Loading sample data

You can load sample data by calling the following command:

$ php bin/console sylius:install:sample-data

Basic store configuration

To configure your store, use this command and answer all questions:

$ php bin/console sylius:install:setup

Installing assets

You can reinstall all web assets by simply calling:

$ php bin/console sylius:install:assets

4.1. The Cookbook 229

Sylius

How to extend SyliusBundles and link those to an existing Sylius’s Project Database?

In some cases and from another Symfony project (non Sylius/Sylius-Standard Il Sylius/Sylius installation) you may be

needing to be able to access/manipulate existing Sylius’s data.

To be able to achieve this, you will need to install the desired Sylius’s bundles, extend those, and link those to another

Entity Manager which point to your existing Sylius’s database.

For the sake of this guide, let’s assume we want to access Sylius’s users and addresses. In this way we are going to

use SyliusCustomerBundle, SyliusUserBundle, SyliusAddressingBundle.

Installing the SyliusBundles

¢ Install SyliusCustomerBundle
¢ Install SyliusUserBundle
* Install SyliusAddressingBundle

Tip: Read more about how to install SyliusCustomerBundle /ere.

Tip: Read more about how to install SyliusUserBundle /ere.

Tip: Read more about how to install SyliusAddressingBundle /ere.

Extending the SyliusBundles

1. Generating our own bundles:
¢ Generate CustomerBundle
¢ Generate UserBundle

* Generate AddressingBundle

Tip: Read more about how to generate your own Symfony’s bundle here.

2. Extending the Sylius’s bundles:

<?php
namespace CustomerBundle;
use Symfony\Component\HttpKernel\Bundle\Bundle;

class CustomerBundle extends Bundle
{

public function getParent ()

{

return 'SyliusCustomerBundle';

(continues on next page)

230

Chapter 4. The Cookbook

https://symfony.com/doc/current/bundles/SensioGeneratorBundle/commands/generate_bundle.html

Sylius

(continued from previous page)

<?php
namespace UserBundle;
use Symfony\Component\HttpKernel\Bundle\Bundle;

class UserBundle extends Bundle

{

public function getParent ()

{

return 'SyliusUserBundle';

<?php
namespace AddressingBundle;
use Symfony\Component\HttpKernel\Bundle\Bundle;

class AddressingBundle extends Bundle

{
public function getParent ()

{

return 'SyliusAddressingBundle';

3. Override the Sylius’s bundles config and link our models to some_other_em:

<?php
namespace CustomerBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\TreeBuilder;
use Symfony\Component\Config\Definition\ConfigurationInterface;

final class Configuration implements ConfigurationInterface

{
public function getConfigTreeBuilder ()

{
StreeBuilder = new TreeBuilder();
SrootNode = StreeBuilder->root ('sylius_customer');

return StreeBuilder;

<?php

namespace CustomerBundle\DependencyInjection;

(continues on next page)

4.1. The Cookbook 231

Sylius

(continued from previous page)

use Symfony\Component\Config\FileLocator;

use Symfony\Component\DependencyInjection\ContainerBuilder;

use Symfony\Component\DependencyInjection\Loader;

use Symfony\Component\HttpKernel\DependencyInjection\Extension;

class CustomerExtension extends Extension
{
public function load(array Sconfigs, ContainerBuilder Scontainer)

{

Sconfiguration = new Configuration();
Sconfig = S$this->processConfiguration($configuration, S$configs);
Sloader = new Loader\YamlFileLoader (Scontainer, new FileLocator (A

oa
—Resources/config'));
Sloader->load('services.yml');

src/CustomerBundle/Resources/config/config.yml

sylius_customer:
driver: doctrine/orm
resources:
customer:
options:
object_manager: some_other_em
classes:
model: CustomerBundle\Entity\Customer
interface: Sylius\Component\Customer\Model\CustomerInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory
customer_group:
options:
object_manager: some_other_em
classes:
model: Sylius\Component\Customer\Model\CustomerGroup
interface: Sylius\Component\Customer\Model\CustomerGroupInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory

<?php
namespace UserBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\TreeBuilder;
use Symfony\Component\Config\Definition\ConfigurationInterface;

final class Configuration implements ConfigurationInterface
{
public function getConfigTreeBuilder ()
{
StreeBuililder = new TreeBuilder ();
SrootNode = StreeBuilder->root ('sylius_user');

return StreeBuilder;

(continues on next page)

232 Chapter 4. The Cookbook

Sylius

(continued from previous page)

<?php
namespace UserBundle\DependencyInjection;

use Symfony\Component\Config\FileLocator;

use Symfony\Component\DependencyInjection\ContainerBuilder;

use Symfony\Component\DependencyInjection\Loader;

use Symfony\Component\HttpKernel\DependencyInjection\Extension;

class UserExtension extends Extension
{
public function load(array Sconfigs, ContainerBuilder Scontainer)

{

Sconfiguration = new Configuration();
Sconfig = S$this->processConfiguration($configuration, S$configs);
Sloader = new Loader\YamlFileLoader (Scontainer, new FileLocator (LAY

—Resources/config'));
Sloader->load('services.yml');

src/UserBundle/Resources/config/config.yml

sylius_user:
driver: doctrine/orm

resources:
shop:
user:
options:
object_manager: some_other_em
classes:
model: UserBundle\Entity\ShopUser
repository: Sylius\Bundle\UserBundle\Doctrine\ORM\UserRepository
interface: Sylius\Component\User\Model\UserInterface
controller: Sylius\Bundle\UserBundle\Controller\UserController
factory: Sylius\Component\Resource\Factory\Factory
templates: 'SyliusUserBundle:User'
resetting:
token:
ttl: P1D
length: 16
field name: passwordResetToken
pin:
length: 4
field name: passwordResetToken
verification:
token:
length: 16
field name: emailVerificationToken
oauth:
user:
options:

object_manager: some_other_em

(continues on next page)

4.1. The Cookbook 233

Sylius

(continued from previous page)

classes:
model: Sylius\Component\User\Model\UserOAuth
interface: Sylius\Component\User\Model\UserOAuthInterface
controller:
—Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\UserBundle\Form\Type\UserType
templates: 'SyliusUserBundle:User'

resetting:
token:
ttl: P1D
length: 16
field name: passwordResetToken
pin:
length: 4
field name: passwordResetToken
verification:
token:
length: 16

field name: emailVerificationToken

<?php
namespace AddressingBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\TreeBuilder;
use Symfony\Component\Config\Definition\ConfigurationInterface;

final class Configuration implements ConfigurationInterface

{
public function getConfigTreeBuilder ()

treeBuilder = new TreeBuilder();

rootNode = S$StreeBuilder->root ('sylius_addressing');

0]

return StreeBuilder;

<?php
namespace AddressingBundle\DependencyInjection;

use Symfony\Component\Config\FileLocator;

use Symfony\Component\DependencyInjection\ContainerBuilder;

use Symfony\Component\DependencyInjection\Loader;

use Symfony\Component\HttpKernel\DependencyInjection\Extension;

class AddressingExtension extends Extension

{

public function load(array Sconfigs, ContainerBuilder Scontainer)

{

Sconfiguration = new Configuration();

Sconfig = S$this->processConfiguration(Sconfiguration, $configs);

Sloader = new Loader\YamlFileLoader (Scontainer, new FileLocator (AN
—REeSOUrCes/Contig JJ; (continues on next page)

234 Chapter 4. The Cookbook

Sylius

(continued from previous page)

sder—->load('services.yml'");

src/AddressingBundle/Resources/config/config.yml

sylius_addressing:
driver: doctrine/orm
resources:
address:
options:
object_manager: some_other_em
classes:
model: AddressingBundle\Entity\Address
interface: Sylius\Component\Addressing\Model\AddressInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory

form: Sylius\Bundle\AddressingBundle\Form\Type\AddressType
country:

options:
object_manager: some_other_em

classes:
model: Sylius\Component\Addressing\Model\Country
interface: Sylius\Component\Addressing\Model\CountryInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory

form: Sylius\Bundle\AddressingBundle\Form\Type\CountryType
province:

options:
object_manager: some_other_em
classes:
model: Sylius\Component\Addressing\Model\Province

interface: Sylius\Component\Addressing\Model\ProvincelInterface
controller:

—Sylius\Bundle\AddressingBundle\Controller\ProvinceController
factory: Sylius\Component\Resource\Factory\Factory

form: Sylius\Bundle\AddressingBundle\Form\Type\ProvinceType
zone:

options:
object_manager: some_other_em
classes:
model: Sylius\Component\Addressing\Model\Zone
interface: Sylius\Component\Addressing\Model\ZonelInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory

form: Sylius\Bundle\AddressingBundle\Form\Type\ZoneType
zone_member :

options:
object_manager: some_other_em

classes:
model: Sylius\Component\Addressing\Model\ZoneMember
interface: Sylius\Component\Addressing\Model\ZoneMemberInterface
controller: Sylius\Bundle\ResourceBundle\Controller\ResourceController
factory: Sylius\Component\Resource\Factory\Factory
form: Sylius\Bundle\AddressingBundle\Form\Type\ZoneMemberType

4. Import our new config files to the global config

4.1. The Cookbook 235

Sylius

app/config/config.yml

imports:
- { resource: "(@CustomerBundle/Resources/config/config.yml" }
- { resource: "(@UserBundle/Resources/config/config.yml" }
- { resource: "@AddressingBundle/Resources/config/config.yml" }

5. Add the proper ORM mapping in the global config

app/config/config.yml

Doctrine Configuration
doctrine:
orm:
auto_generate_proxy_ classes: 'Skernel.debug%'
default_entity manager: default
resolve_target_entities:
Sylius\Component\User\Model\CustomerInterface:
—CustomerBundle\Entity\Customer
Sylius\Component\User\Model\UserInterface: UserBundle\Entity\ShopUser
Sylius\Component\Addressing\Model\AddressInterface:
—AddressingBundle\Entity\Address
entity managers:
default:

some_other_em:
naming_strategy: doctrine.orm.naming_strategy.underscore
connection: some_other connexion
auto_mapping: false

mappings:
SyliusCustomerBundle:
type: xml
dir: "%kernel.project_dir%/vendor/sylius/customer-bundle/

—Resources/config/doctrine/model"
prefix: Sylius\Component\Customer\Model
is_bundle: false
CustomerBundle: ~

SyliusUserBundle:
type: xml
dir: "%$kernel.project_dir%/vendor/sylius/user-bundle/

—Resources/config/doctrine/model"
prefix: Sylius\Component\User\Model
is bundle: false
UserBundle: ~
SyliusAddressingBundle:
type: xml
dir: "S$kernel.project_dir%/vendor/sylius/addressing-bundle/
—Resources/config/doctrine/model"
prefix: Sylius\Component\Addressing\Model
is_bundle: false
AddressingBundle: ~

6. Override the Sylius’s models and add the missing relations:

As the Sylius’s models which hold the declaration and the mapping of the relations between, in our case, SyliusCus-
tomer, SyliusUser and SyliusAddressing are provided by the SyliusCoreBundle and as we don’t have access to it we
need to redefine the relations and their related mapping on our bundles.

236 Chapter 4. The Cookbook

Sylius

<?php

namespace CustomerBundle\Entity;

use
use
use
use
use

Sylius\Component\Customer\Model\Customer as BaseCustomer;
Doctrine\Common\Collections\Collection;
Doctrine\Common\Collections\ArrayCollection;
AddressingBundle\Entity\Address;
UserBundle\Entity\ShopUser;

class Customer extends BaseCustomer

{

private SdefaultAddress;
private Suser;
private Saddresses;

public function __ construct ()

{

parent::__construct();

Sthis->addresses = new ArrayCollection();

J %k
* Set defaultAddress

*

* @param Address SdefaultAddress

*
* @return Customer
*/
public function setDefaultAddress (Address SdefaultAddress
{
Sthis—->defaultAddress = $defaultAddress;

if (null !== S$defaultAddress)

{
Sthis->addAddress (SdefaultAddress) ;

return Sthis;

J ok k

* Get defaultAddress

*

* @return Address

*/
public function getDefaultAddress ()
{

return Sthis->defaultAddress;

VT
* Set user
*
* @param ShopUser Suser
*

null)

(continues on next page)

4.1.

The Cookbook

237

Sylius

(continued from previous page)

* @return Customer

*/
public function setUser (ShopUser Suser = null)
{

Sthis—->user = Suser;

return Sthis;

J kk

* Get user

*

* @return ShopUser

*/
public function getUser ()
{

return Sthis->user;

Add address

*
*
*
* @param Address Saddress
*
*

@return Customer
*/

public function addAddress (Address Saddress)

{

if (!Sthis->hasAddress ($Saddress))

{
Sthis->addresses[] = $address;
Saddress—>setCustomer (Sthis);

return Sthis;

Ve
* Remove address
*
* @param Address Saddress
*/
public function removeAddress (Address Saddress)
{
Sthis—->addresses—>removeElement ($Saddress) ;
Saddress->setCustomer (null) ;

J ok *
* Get addresses
*
* @return \Doctrine\Common\Collections\Collection
*/
public function getAddresses|()
{

return Sthis->addresses;

(continues on next page)

238

Chapter 4. The Cookbook

Sylius

(continued from previous page)

public function hasAddress (Address Saddress)
{

return Sthis->addresses—->contains ($Saddress);

<?php
namespace UserBundle\Entity;
use Sylius\Component\User\Model\User as BaseUser;

class ShopUser extends BaseUser
{

private Scustomer;

J %k

* Get customer

* @return

*/

public function getCustomer ()
{

return S$this->customer;

J %k

* Set customer

* @return Sthis

*/

public function setCustomer (Scustomer)

{
Sthis—->customer = S$Scustomer;
return Sthis;

<?php
namespace AddressingBundle\Entity;

use Sylius\Component\Addressing\Model\Address as BaseAddress;
use CustomerBundle\Entity\Customer;

class Address extends BaseAddress

{

private Scustomer;

J %k
* Set customer
*
* @param Customer Scustomer
*
* @return Address
*/
public function setCustomer (Customer Scustomer = null)

(continues on next page)

4.1. The Cookbook 239

Sylius

(continued from previous page)

Sthis->customer = S$customer;

return Sthis;

J ok k

* Get customer

*

* @return Customer

*/
public function getCustomer ()
{

return Sthis->customer;

7. Add the proper ORM mapping to our models:

src/CustomerBundle/Resources/config/doctrine/Customer.orm.yml

CustomerBundle\Entity\Customer:
type: entity
table: sylius_customer

oneToOne:
defaultAddress:
targetEntity: AddressingBundle\Entity\Address
joinColumn:
name: default_address_id
onDelete: SET NULL
cascade: ["persist"]
user:

targetEntity: UserBundle\Entity\ShopUser
mappedBy: customer
cascade: ["persist"]
oneToMany :
addresses:
targetEntity: AddressingBundle\Entity\Address
mappedBy: customer
cascade: ["all"]

src/UserBundle/Resources/config/doctrine/ShopUser.orm.yml

UserBundle\Entity\ShopUser:
type: entity
table: sylius_shop_user
oneToOne:
customer:
targetEntity: CustomerBundle\Entity\Customer
inversedBy: user
joinColumn:
name: customer_id
referencedColumnName: id
nullable: false
cascade: ["persist"]

240 Chapter 4. The Cookbook

Sylius

src/AddressingBundle/Resources/config/doctrine/Address.orm.yml

AddressingBundle\Entity\Address:
type: entity
table: sylius_address
manyToOne:
customer:
targetEntity: CustomerBundle\Entity\Customer
inversedBy: addresses
joinColumn:
name: customer_id
referencedColumnName: id
nullable: true
onDelete: CASCADE

8. Final steps:
¢ Clear both caches

At this point you should be able to test the ORM mapping of our “some_other_em” entity manager by calling:

’$ php bin/console doctrine:schema:update —--dump-sgl -—-em=some_other_em

It should returns(as we did not add any new property to our models):

’Nothing to update - your database is already in sync with the current entity metadata.

9. An “issue”:

If you try in another hand to call a schema update on the default EM:

’$ php bin/console doctrine:schema:update —--dump-sgl

It should returns:

[Doctrine\Common\Persistence\Mapping\MappingException]

The class 'UserBundle\Entity\ShopUser' was not found in the chain configured,
—namespaces AppBundle\Entity, Sylius\Component\Customer\Model,
—Sylius\Component\User\Model, Sylius\Component\Ad

dressing\Model

This seems to be a “known issue” related to the shema-tool CLI command, as obviously this command uses all the
metadata collected across all mapping drivers.

To fix this I overriden the UpdateSchemaDoctrineCommand and excluded all the Sylius metadatas when the default
entity manager is specified.

<?php
namespace AppBundle\Command;

use Symfony\Component\Console\Input\InputOption;

use Symfony\Component\Console\Input\InputArgument;

use Symfony\Component\Console\Input\InputInterface;

use Symfony\Component\Console\Output\OutputInterface;

use Doctrine\ORM\Tools\SchemaTool;

use Doctrine\Bundle\DoctrineBundle\Command\Proxy\UpdateSchemaDoctrineCommand;

(continues on next page)

4.1. The Cookbook 241

Sylius

(continued from previous page)

class DoctrineUpdateCommand extends UpdateSchemaDoctrineCommand

{

protected function executeSchemaCommand (InputInterface S$input, OutputInterface
—Soutput, SchemaTool S$schemaTool, array Smetadatas)

{
SnewMetadatas = array/();
foreach (Smetadatas as Smetadata)

{
if (empty (Sinput->getOption('em')) || S$input->getOption('em') == 'default

if (explode('\\', Smetadata->getName())[0] != 'Sylius"')
{

array_push ($newMetadatas, Smetadata);

}

else

{

array_push ($newMetadatas, S$metadata);

parent: :executeSchemaCommand ($input, $output, S$schemaTool, S$newMetadatas);

How to disable admin version notifications?

By default Sylius sends checks from the admin whether you are running the latest version. In case you are not running
the latest version, a notification will be shown in the admin panel (top right).

This guide will instruct you how to disable this check & notification.

How to disable notifications?

Add the following configuration to app/config/config.yml.

sylius_admin:
notifications:
enabled: false

* How to use installer commands?
* How to disable default shop, admin or API of Sylius?
* How to extend SyliusBundles and link those to an existing Sylius’s Project Database?

* How to disable admin version notifications?

4.1.10 Frontend

242 Chapter 4. The Cookbook

Sylius

How to customize Admin JS & CSS?

It is sometimes required to add your own JSS and CSS files for Sylius Admin. Achieving that is really straightforward.

We will now teach you how to do it!

How to add custom JS to Admin?

1. Prepare your own JS file:

As an example we will use a popup window script, it is easy for manual testing.

// web/assets/admin/js/custom. js
window.confirm("Your custom JS was loaded correctly!");

2. Prepare a file with your JS include, you can use the include template from SyliusUiBundle:

{# src/AppBundle/Resources/views/Admin/_javascripts.html.twig #}

% include 'SyliusUiBundle::_javascripts.html.twig' with {'path': 'assets/admin/Jjs/
—custom.js'} %}

3. Use the Sonata block event to insert your javascripts:

Tip: Learn more about customizing templates via events in the customization guide /ere.

src/AppBundle/Resources/config/services.yml
services:
app.block _event_listener.admin.layout.javascripts:
class: Sylius\Bundle\UiBundle\Block\BlockEventListener
arguments:
- '"@@App/Admin/_javascripts.html.twig'
tags:
- { name: kernel.event_ listener, event: sonata.block.event.sylius.admin.

—layout.javascripts, method: onBlockEvent }

4. Additionally, to make sure everything is loaded run gulp:

$ yarn build

5. Go to Sylius Admin and check the results!

How to add custom CSS to Admin?

1. Prepare your own CSS file:

As an example we will change the sidebar menu background color, what is clearly visible at first sight.

// web/assets/admin/css/custom.css
#sidebar {
background-color: #labb9c;

2. Prepare a file with your CSS include, you can use the include template from SyliusUiBundle:

4.1. The Cookbook 243

Sylius

{# src/AppBundle/Resources/views/Admin/_stylesheets.html.twig #}

% include 'SyliusUiBundle::_stylesheets.html.twig' with {'path': 'assets/admin/css/
—custom.css'} %}

3. Use the Sonata block event to insert your stylesheets:

Tip: Learn more about customizing templates via events in the customization guide /ere.

src/AppBundle/Resources/config/services.yml
services:
app.block_event_listener.admin.layout.stylesheets:
class: Sylius\Bundle\UiBundle\Block\BlockEventListener
arguments:
- '"@@App/Admin/_stylesheets.html.twig'
tags:
- { name: kernel.event_listener, event: sonata.block.event.sylius.admin.
—layout.stylesheets, method: onBlockEvent }

4. Additionally, to make sure everything is loaded run gulp:

$ yarn build

5. Go to Sylius Admin and check the results!

Learn more

e Templates customizing

e How to customize Admin JS & CSS?

244 Chapter 4. The Cookbook

CHAPTER B

The REST API Reference

The API guide covers the REST API of Sylius platform.

5.1 The REST API Reference

5.1.1 Introduction to Sylius REST API

This part of the documentation is about RESTful JSON/XML API for the Sylius platform.

Note: This documentation assumes you have at least some experience with REST APIs.

Tip: We strongly recommend starting with our basic guide to Sylius API in the Cookbook: “How to use Sylius API?”.

5.1.2 Authorization

This part of documentation is about authorization to Sylius platform through API. In order to check this configuration,
please set up your local copy of Sylius platform and change sylius.test to your address.

OAuth2

Sylius has the OAuth2 authorization configured. The authorization process is a standard procedure. Authorize as
admin and enjoy the API!

Note: User has to have the ROLE_API_ACCESS role in order to access /api resources

245

https://en.wikipedia.org/wiki/Representational_state_transfer

Sylius

Create OAuth client

Use Sylius command:

php bin/console sylius:oauth-server:create-client \

-—grant-type="password" \
—-—grant-type="refresh_token" \

—-—grant-type="token"

You will receive client public id and client secret

Exemplary Result

A new client with public id 3e2igilg2ygwkOccgogkcwco8oosckkkk4gkocOk4s8s044wss,
—secret 44ectenmudus8g88widwkws84044ckwlk4wdkgOsokoss840ko8 has been added

Tip: If you use Guzzle check out OAuth2 plugin and use Password Credentials.

Obtain access token

Send the request with the following parameters:

Definition

GET /api/oauth/v2/token

Parame- Parameter Description

ter type

client_id query Client public id generated in the previous step

client_secref query Client secret generated in the previous step

grant_type | query We will use ‘password’ to authorize as user. Other available options are token and
refresh-token

username | query User name

password query User password

Note: This action can be done by POST method as well.

Example

curl http://sylius.test/api/oauth/v2/token \
—-d "client id"=demo_client \
-d "client secret"=secret_demo_client \
-d "grant_type"=password \
-d "username"=apil@example.com \
—-d "password"=sylius-api

246

Chapter 5. The REST API Reference

https://github.com/Sainsburys/guzzle-oauth2-plugin

Sylius

Tip: In a developer environment there is a default API user and client data. To use this credentials you have to load
data fixtures. Otherwise you have to use your user data and replace client id and client secret with data generated in a
previous step.

Exemplary Response

"access_token":
S "NzFiYTM4ZTEWMjcwZTecyZWIZZTAONmMY3NJESMTIyMjMIY2NIMMNINWEYyMTAZzY2UzYmYOYWIxYmUzZNTkyMDcyNQ

7
"expires_in": 3600,
"token_type": "bearer",
"scope": null,
"refresh_token":

< "MDk2ZmIwODBKYmE3YJNJZWQ4ZTk2NTk2N2ImNjkyZDQ4NzA3YzhiZDQzMjJFODI5MmMQ4ZmYxZ 1k ZmU1 ZDNKNQ

n
—

}

Request for a resource

Put access token in the request header:

Authorization: Bearer
—NzFiYTM4ZTEWMjcwZTcyZWIZZTAONMY3NJE3MTIyMjMIY2NIMmMNINWEYMTAZzY2UzYmYOYWIxYmUzZNTkyMDcyNQ

You can now access any resource you want under /api prefix.

Example

curl http://sylius.test/api/vl/users/
-H "Authorization: Bearer
SNzFiYTMAZTEWMjewZTecyZWIZzZTAONMY3NJESMTIyMIMIY2NIMMNINWEYyMTAZzY2UzYmYOYWIxYmUzZNTkyMDcyN(

n
—

Note: You have to refresh your token after it expires.

Refresh Token

Send request with the following parameters

Definition

GET /api/oauth/v2/token

5.1. The REST API Reference 247

Sylius

Parameter Parameter type | Description

client_id query Public client id

client_secret | query Client secret

grant_type query We will use ‘refresh_token’ to authorize as user
refresh_token | query Refresh token generated during authorization

Example

curl http://sylius.test/api/ocauth/v2/token \
—-d "client_ id"=demo_client \
-d "client secret"=secret_demo_client \
-d "grant_type"=refresh_token \
—d "refresh_token
—"=MDk2ZmIwODBKYmME3YJNJZWQ4ZTk2NTk2N2JmN jkyZDQ4NzA3YzhiZDQzMjJjODISMmMQ47ZmYxZ j1kZmUl ZDNKMQ

Exemplary Response

You can now use new token to send requests

{
"access_token'":
— "MWExXMWMONzE1NmUyZDgyZDJiMjEzMmEF 1MjQ4MzgwMmE4ZTkxYzM0Y Jjd1N2U2Yz1iNDIyMTk1ZDh1INDYXYWE4Ng

("
—

"expires_in": 3600,
"token_type": "bearer",
"scope": null,
"refresh token":

S "MWI4NZVKNThJZDc2Y2MIN2JiNzBmOTQOMDFmY2U0YzVijYz11MDE1IOTUSOWFiMzJiZTYSNGU4NzYyODUIN2Z3YQ

"
—

}

Default values in dev environment

In a developer environment there are default client id, client secret and default access token provided to allow you to
test our API just out-of-the-box. In order to access them, please use the following values:

Parameter Value

client_id demo_client
client_secret | secret_demo_client
grant_type password

access_token | SampleToken

These values will be used later on to make it easier for you to check, how our API works.

5.1.3 Admin Users API

These endpoints will allow you to easily manage admin users. Base URI is /api/vI/users.

248 Chapter 5. The REST API Reference

Sylius

Admin User API response structure

If you request an admin user via API, you will receive an object with the following fields:

Field Description

id Admin user’s id

username | Admin user’s name

email Admin user’s email

enabled Flag set if the user is enabled

If you request for more detailed data, you will receive an object with the following fields:

Field Description

id Admin user’s id

username Admin user’s name

email Admin user’s email

enabled Flag set if the user is enabled
usernameCanonical | Username of the admin user in canonical form
emailCanonical Email of the admin user in canonical form
roles Roles of the admin user

firstName The admin user’s first name

lastName The admin user’s last name

localeCode Code of the language, which is used by the admin user

Note: Read more about User model in the component docs.

Creating an Admin User

To create a new admin user you will need to call the /api/v1/users/ endpoint with the POST method.

Definition

POST /api/vl/users/

Parameter Parameter type | Description

Authorization | header Token received during authentication

username request Admin user name

email request Admin user email

plainPassword | request Admin user password

localeCode request Code of the language, which is used by the admin user

Example

To create a new admin user use the below method:

5.1. The REST API Reference 249

$ curl http://demo.sylius.com/api/vl/users/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \

-X POST \
-—-data '
{
"username": "Balrog",
"email": "teamEvil@middleearth.com",
"plainPassword": "youShallNotPass",
"localeCode": "en_US"

Exemplary Response

STATUS: 201 CREATED

"id" . 7

. ’

"username": "Balrog",
"usernameCanonical": "balrog",
"roles": |

"ROLE_ADMINISTRATION_ACCESS"
]I
"email": "teamEvil@middleearth.com",
"emailCanonical": "teamevil@middleearth.com",
"enabled": false

Warning: If you try to create an admin user without username, email, password or locale’s code, you will receive
a 400 Bad Request error, that will contain validation errors.

Example

$ curl http://demo.sylius.com/api/vl/users/ \
-H "Authorization: Bearer SampleToken" \
—-H "Content-Type: application/json" \
—-X POST

Exemplary Response

STATUS: 400 Bad Request

"code": 400,
"message": "Validation Failed",
"errors": {

"children": {

(continues on next page)

250 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"username": {
"errors": |
"Please enter your name."

}I
"email": {
"errors": |
"Please enter your email."

by
"plainPassword": {
"errors": [
"Please enter your password."

}I
"enabled": {},
"firstName": {},
"lastName": {},
"localeCode": {
"errors": |
"Please choose a locale."

You can also create an admin user with additional (not required) fields:

Parameter | Parameter type | Description

enabled request Flag set if the user is enabled
firstName request The admin user’s first name
lastName request The admin user’s last name

Example

$ curl http://demo.sylius.com/api/vl/users/ \

—-H "Authorization: Bearer SampleToken" \
—-H "Content-Type: application/json" \
-X POST \
—-—data '
{
"firstName": "Balrog",
"lastName": "of Morgoth",
"username": "Balrog",
"email": "teamEvil@middleearth.com",
"plainPassword": "youShallNotPass",
"localeCode": "en_US",
"enabled": "true"

5.1. The REST API Reference

251

Sylius

Exemplary Response

STATUS: 201 CREATED

"id" . 9

. ’

"username": "Balrog",
"usernameCanonical": "balrog",
"roles": |

"ROLE_ADMINISTRATION_ACCESS"
]I
"email": "teamEvil@middleearth.com",
"emailCanonical": "teamevil@middleearth.com",
"enabled": true,
"firstName": "Balrog",
"lastName": "of Morgoth"

Getting a Single Admin User

To retrieve the details of an admin user you will need to call the /api/v1/users/{id} endpoint with the GET
method.

Definition

GET /api/vl/users/{id}

Parameter Parameter type | Description
Authorization | header Token received during authentication
id url attribute Id of the admin user

Example

To see the details for the admin user with id = 9 use the below method:

$ curl http://demo.sylius.com/api/vl/users/9 \
-H "Authorization: Bearer SampleToken" \
—-H "Accept: application/json"

Note: The 9 id is an exemplary value. Your value can be different. Check in the list of all admin users if you are not
sure which id should be used.

Exemplary Response

STATUS: 200 OK

252 Chapter 5. The REST API Reference

Sylius

"id" . 9

. 4

"username": "Balrog",
"usernameCanonical": "balrog",
"roles": |

"ROLE_ADMINISTRATION_ACCESS"
]I
"email": "teamEvil@middleearth.com",
"emailCanonical": "teamevil@middleearth.com",
"enabled": true,
"firstName": "Balrog",
"lastName": "of Morgoth"

Collection of Admin Users

To retrieve a paginated list of admin users you will need to call the /api/v1/users/ endpoint with the GET
method.

Definition

GET /api/v1l/users/

Parameter Parameter type | Description
Authorization | header Token received during authentication
limit query (optional) Number of items to display per page, by default = 10

To see the first page of all admin users use the below method:

Example

$ curl http://demo.sylius.com/api/vl/users/ \
-H "Authorization: Bearer SampleToken" \
—-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

"page": 1,
"limit": 4,
"pages": 1,
"total": 3,
" _links": {
"self": {
"href": "\/api\/vl1\/users\/?sorting%5Bcode%5D=desc&page=1&limit=4"
}’

(continues on next page)

5.1. The REST API Reference 253

Sylius

(continued from previous page)

"first": {
"href":

}I

"last": {
"href":

b
"_embedded": {

"items": |

{
"id": 5,
"username": "sylius",
"email": "sylius@example.com",
"enabled": true

}I

{
"id": o6,
"username": "api",
"email": "apilexample.com",
"enabled": true

}I

{
"id": 9,
"username": "Balrog",
"email": "teamEvil@middleearth.
"enabled": true

"\/api\/v1\/users\/?2sorting%5Bcode%5D=desc&page=1&limit=4"

"\/api\/v1\/users\/?2sorting%5Bcode%5D=desc&page=1&limit=4"

com",

Updating an Admin User

To fully update an admin user you will need to call the /api/v1/users/{id} endpoint with the PUT method.

Definition

PUT /api/vl/users/{id}

Parameter Parameter type | Description

Authorization | header Token received during authentication

id url attribute Id of the admin user

username request Admin user name

email request Admin user email

plainPassword | request Admin user password

localeCode request Code of the language, which is used by the admin user

Example

To fully update the admin user with id =

9 use the below method:

254

Chapter 5. The REST API Reference

Sylius

$ curl http://demo.sylius.com/api/vl/users/9 \
—-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \

-X PUT \
—-—-data '
{
"firstName": "Gollum",
"lastName": "Gollum!",
"username": "Smeagol",
"email": "smeagol@middleearth.com",
"plainPassword": "myPrecious",
"localeCode": "en_US"

Exemplary Response

STATUS: 204 No Content

If you try to perform a full admin user update without all the required fields specified, you will receive a 400 Bad
Request error.

Example

$ curl http://demo.sylius.com/api/vl/users/9 \
—-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT

Exemplary Response

STATUS: 400 Bad Request

"code": 400,
"message": "Validation Failed",
"errors": {
"children": {
"username": {
"errors": [
"Please enter your name."

}I
"email": {
"errors": [
"Please enter your email."

b

"plainPassword": {},
"enabled": {},
"firstName": {},

(continues on next page)

5.1. The REST API Reference 255

Sylius

(continued from previous page)
"lastName": {},
"localeCode": ({
"errors": [

"Please choose a locale."

To update an admin user partially you will need to call the /api/v1/users/{id} endpoint with the PATCH
method.

Definition

PATCH /api/vl/users/{id}

Parameter Parameter type | Description
Authorization | header Token received during authentication
id url attribute Id of the admin user

Example

To partially update the admin user with id = 9 use the below method:

$ curl http://demo.sylius.com/api/vl/users/9 \
-H "Authorization: Bearer SampleToken" \
—-H "Content-Type: application/json" \
-X PATCH \
-—-data '
{

"email": "smeagol@ring.com"

Exemplary Response

STATUS: 204 No Content

Deleting an Admin User
To delete an admin user you will need to call the /api/v1/users/{id} endpoint with the DELETE method.

Definition

DELETE /api/vl1/users/{id}

256 Chapter 5. The REST API Reference

Sylius

Parameter Parameter type | Description
Authorization | header Token received during authentication
id url attribute Id of the admin user

Example

To delete the admin user with id = 9 use the below method:

$ curl http://demo.sylius.com/api/vl/users/9 \
-H "Authorization: Bearer SampleToken" \
—-H "Accept: application/json" \
—-X DELETE

Exemplary Response

STATUS: 204 No Content

Warning: If you try to delete the admin user which is currently logged in, you will receive a 422
Unprocessable Entity error.

Example

$ curl http://demo.sylius.com/api/vl/users/6 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
—-X DELETE

Exemplary Response

STATUS: 422 Unprocessable Entity

"code": 422,
"message": "Cannot remove currently logged in user."

5.1.4 Carts API

These endpoints will allow you to easily manage cart and cart items. Base URI is /api/vi/carts/.

Note: Remember that a Cart in Sylius is an Order in the state cart.

If you don’t understand the difference between Cart and Order concepts in Sylius yet, please read this article carefully.

5.1. The REST API Reference 257

Sylius

Cart API response structure

If you request a cart via API, you will receive an object with the following fields:

Field Description

id Id of the cart

items List of items in the cart

itemsTotal Sum of all items prices

adjustments List of adjustments related to the cart
adjustmentsTotal | Sum of all cart adjustments values

total Sum of items total and adjustments total

customer The customer object serialized with the default data for cart
channel The channel object serialized with the default data
currencyCode Currency of the cart

localeCode Locale of the cart

checkoutState State of the checkout process of the cart

Cartltem API response structure

Each Cartltem in an API response will be build as follows:

Field Description

id Id of the cart item

quantity Quantity of item units

unitPrice Price of each item unit

total Sum of units total and adjustments total of that cart item
units A collection of units related to the cart item

unitsTotal Sum of all units prices of the cart item

adjustments List of adjustments related to the cart item
adjustmentsTotal | Sum of all item adjustments related to that cart item
variant The product variant object serialized with the default data
_link[product] Relative link to product

_link[variant] Relative link to variant

_link[order] Relative link to order

CartltemUnit API response structure

Each CartltemUnit API response will be build as follows:

Field Description

id Id of the cart item unit

adjustments List of adjustments related to the unit
adjustmentsTotal | Sum of all units adjustments of the unit

Adjustment API response structure

And each Adjustment will be build as follows:

258 Chapter 5. The REST API Reference

Sylius

Field Description

id Id of the adjustment

type Type of the adjustment (E.g. order_promotion or tax)
label Label of the adjustment

amount | Amount of the adjustment (value)

Note: If it is confusing to you, learn more about Carts (Orders) in the component docs and Adjustments concept.

Creating a Cart

To create a new cart you will need to call the /api/v1/carts/ endpoint with the POST method.

Definition

POST /api/vl/carts/

Parameter Parameter type | Description

Authorization | header Token received during authentication

customer request Email of the related customer

channel request Code of the related channel

localeCode request Code of the locale in which the cart should be created

Example

To create a new cart for the shop@example . com user in the US_WEB channel with the en_US locale use the below
method:

Warning: Remember, that it doesn’t replicate the environment of shop usage. It is more like an admin part of cart
creation, which will allow you to manage the cart from the admin perspective. ShopAPI is still an experimental
concept.

$ curl http://demo.sylius.com/api/vl/carts/ \
—-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \

-X POST \
—-—data '
{
"customer": "shop@example.com",
"channel": "US_WEB",
"localeCode": "en_US"

5.1. The REST API Reference 259

Sylius

Exemplary Response

STATUS: 201 Created

"id":21,
"items": [

1,
"itemsTotal": o0,
"adjustments": [

]I

"adjustmentsTotal": 0,

"total": o0,

"customer": {
"id":l,
"email":"shop@example.com",
"firstName":"John",
"lastName":"Doe",

"user": {
"id":1,
"username": "shoplexample.com",
"usernameCanonical": "shoplexample.com"
}I
" links":{
"self": {

"href":"\/api\/v1\/customers\/1"

}I
"channel": {
"code":"US_WEB",
" links":{
"self":{
"href":"\/api\/v1\/channels\/US_WEB"

b
"currencyCode":"USD",
"localeCode":"en_US",
"checkoutState":"cart"

Note: A currency code will be added automatically based on the channel settings. Read more about channels /ere.

Warning: If you try to create a resource without localeCode, channel or customer, you will receive a 400 Bad
Request error, that will contain validation errors.

260 Chapter 5. The REST API Reference

Sylius

Example

$ curl http://demo.sylius.com/api/vl/carts/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST

Exemplary Response

STATUS: 400 Bad Request

"code":400,
"message":"Validation Failed",
"errors": {
"children": {
"customer": {
"errors": [
"This value should not be blank."

by
"localeCode": {
"errors": |
"This value should not be blank."

b
"channel": {
"errors": |
"This value should not be blank."

Collection of Carts

To retrieve a paginated list of carts you will need to call the /api/v1/carts/ endpoint with the GET method.

Definition

GET /api/vl/carts/

Parameter Parameter type | Description

Authorization | header Token received during authentication

page query (optional) Number of the page, by default = 1

paginate query (optional) Number of carts displayed per page, by default = 10

5.1. The REST API Reference

261

Sylius

Example

To see the first page of the paginated carts collection use the below method:

$ curl http://demo.sylius.com/api/vl/carts/ \
—-H "Authorization: Bearer SampleToken" \
—-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

"page":1,
"limit":10,
"pages":1,
"total":1,
" _links": {
"self": {
"href":"\/api\/v1\/carts\/?page=1&1limit=10"
}I
"first":{
"href":"\/api\/v1\/carts\/?page=1&1limit=10"
}I
"last": {
"href":"\/api\/v1\/carts\/?page=1&limit=10"

}I
" _embedded" : {
"items": [
{
"id":21,
"items": [

1,
"itemsTotal": o0,
"adjustments": [

]I
"adjustmentsTotal": o0,
"total": 0,
"customer" : {
"id":1,
"email":"shop@example.com",
"firstName":"John",
"lastName":"Doe",
"user": {
"id":1,
"username": "shoplexample.con",
"enabled" :true
}I
" links":{
"self":{
"href":"\/api\/vl1\/customers\/1"

(continues on next page)

262 Chapter 5.

The REST API Reference

Sylius

(continued from previous page)

}I
"channel": {
"id":1,
"code":"US_WEB",
" links":{
"self": {
"href":"\/api\/v1\/channels\/US_WEB"

}y
"currencyCode":"USD",

"localeCode":"en_US",
"checkoutState":"cart"

Getting a Single Cart

To retrieve details of the cart you will need to call the /api/v1/carts/{id} endpoint with GET method.

Definition

GET /api/vl/carts/{id}

Parameter Parameter type | Description
Authorization | header Token received during authentication
id url attribute 1d of the requested cart

Example

To see details of the cart with id = 21 use the below method:

$ curl http://demo.sylius.com/api/vl/carts/21 \
—-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The 2/ value was taken from the previous create response. Your value can be different. Check in the list of all
carts if you are not sure which id should be used.

Exemplary Response

STATUS: 200 OK

5.1. The REST API Reference 263

Sylius

"id":21,
"items": [

1,
"itemsTotal": o0,
"adjustments": [

1,
"adjustmentsTotal": 0,
"total":0,
"customer": {

"id":1,

"email":"shoplexample.comn",

"firstName":"John",

"lastName":"Doe",

"user": {
"id":1,
"username": "shoplexample.com",
"usernameCanonical":"shoplexample.com"
}I
" links":{
"self": {

"href":"\/api\/v1\/customers\/1"

}I
"channel": {
"code":"US_WEB",
" links":{
"self":{

"href":"\/api\/v1\/channels\/US_WEB"

bo
"currencyCode":"USD",
"localeCode":"en_US",
"checkoutState":"cart"

Deleting a Cart

To delete a cart you will need to call the /api/v1/carts/{id} endpoint with the DELETE method.

Definition

DELETE /api/vl/carts/{id}

Parameter

Parameter type

Description

Authorization

header

Token received during authentication

id

url attribute

1d of the requested cart

264

Chapter 5. The REST API Reference

Sylius

Example

To delete the cart with id = 21 use the below method:

$ curl http://demo.sylius.com/api/vl/carts/21 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
—X DELETE

Note: Remember the 2/ value comes from the previous example. Here we are deleting a previously fetched cart, so
it is the same id.

Exemplary Response

STATUS: 204 No Content

Creating a Cart Item

To add a new cart item to an existing cart you will need to call the /api/v1/carts/{cartId}/items/ endpoint
with POST method.

Definition

POST /api/vl/carts/{cartId}/items/

Parameter Parameter type | Description

Authorization | header Token received during authentication

cartld url attribute 1d of the requested cart

variant request Code of the item you want to add to the cart

quantity request Amount of variants you want to add to the cart (cannot be < 1)
Example

To add a new item of a variant with code MEDIUM_MUG_CUP to the cart with id = 21 (assuming, that we didn’t
remove it in the previous example) use the below method:

$ curl http://demo.sylius.com/api/vl/carts/21/items/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
——data '
{
"variant": "MEDIUM_MUG_CUP",
"quantity": 1

5.1. The REST API Reference 265

Sylius

Exemplary Response

STATUS: 201 Created

"id":57,
"quantity":1,
"unitPrice":250,
"total":250,
"units": [
{
"id":165,
"adjustments": [

I
"adjustmentsTotal": 0

1,
"unitsTotal":250,
"adjustments": [

] 14
"adjustmentsTotal": 0,
"variant": {
"id":331,
"code":"MEDIUM MUG_CUP",
"optionValues": [
{
"code" : "mug_type_medium",
"translations": {
"en_US": {
"id":1,
"value": "Medium mug"

1,
"position":2,
"translations": {

"en_US": {
"id":331,
"name" : "Medium Mug"
}

by
"tracked":false,
"channelPricings": {

"US_WEB": {
"channelCode": "US_WER",
"price":250
}
}
} 4
" _links":{
"order": {

"href":"\/api\/v1l\/orders\/21"
by
"product": {

(continues on next page)

266 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"href":"\/api\/v1\/products\/07£2044a-855d-3c56-9274-b5167c2d5809"

br
"variant": {
"href":"\/api\/v1\/products\/07f2044a-855d-3c56-9274-b5167c2d5809\/
—variants\/MEDIUM_MUG_CUP"
}

Tip: In Sylius the prices are stored as an integers (1059 represents 10 . 595). So in order to present a proper amount
to the end user, you should divide price by 100 by default.

Updating a Cart ltem

To change the quantity of a cart item you will need to call the /api/vl/carts/{cartId}/items/
{cartItemId} endpoint with the PUT or PATCH method.

Definition

PUT /api/vl/carts/{cartId}/items/{cartItemId}

Parameter Parameter type | Description

Authorization | header Token received during authentication

cartld url attribute Id of the requested cart

cartltemlId url attribute Id of the requested cart item

quantity request Amount of items you want to have in the cart (cannot be < 1)
Example

To change the quantity of the cart item with id = 57 inthe cart of id = 21 to 3 use the below method:

$ curl http://demo.sylius.com/api/vl/carts/21/items/57 \
-H "Authorization: Bearer SampleToken" \
—-H "Content-Type: application/json" \
-X PUT \
—--data '{"quantity": 3}'

Tip: If you are not sure where does the value 58 come from, check the previous response, and look for the cart item
id.

Exemplary Response

STATUS: 204 No Content

Now we can check how does the cart look like after changing the quantity of a cart item.

5.1. The REST API Reference 267

Sylius

$ curl http://demo.sylius.com/api/vl/carts/21 \

—-H "Authorization:
—-H "Accept:

Bearer SampleToken" \
application/json"

Exemplary Response

STATUS: 200 OK
{
"id":21,
"items": [
{
"id":57,
"quantity":3,
"unitPrice":250,
"total":750,
"units": [
{
"id":165,
"adjustments": [
J ’
"adjustmentsTotal": 0
} ’
{
"id":166,
"adjustments": [
J 4
"adjustmentsTotal": 0
} 4
{
"id":167,
"adjustments": [
] ’
"adjustmentsTotal": 0
}
] 4
"unitsTotal":750,
"adjustments": [
] 4
"adjustmentsTotal": o0,
"wvariant": {
"id":331,
"code" :"MEDIUM_MUG_CUP",
"optionValues": [
{
"code": "mug_type_medium",
"translations": {
"en_US": {
"id":1,
"value": "Medium mug"
}
(continues on next page)
268 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

]I
"position":2,
"translations": {
"en US": {
"id":331,
"name" : "Medium Mug"

b
"tracked": false,
"channelPricings": {

"US_WEB": {
"channelCode": "US_WEB",
"price":250
}
}
}l
" links":{
"order": {

"href":"\/api\/v1\/orders\/21"

by
"product": {

"href":"\/api\/v1\/products\/07£f2044a-855d-3c56-9274-b5167c2d5809"

I
"wvariant": {

"href":"\/api\/v1\/products\/07£2044a-855d-3c56-9274~

—b5167¢c2d5809\ /variants\/MEDIUM_MUG_CUP"
}

1,
"itemsTotal":750,
"adjustments": [
{
"id":181,
"type":"shipping",
"label":"UPS",
"amount":157

]l

"adjustmentsTotal":157,

"total":907,

"customer": {
"id":l,
"email":"shop@example.com",
"firstName":"John",
"lastName":"Doe",

"user": {
"id":1,
"username": "shoplexample.com",
"usernameCanonical": "shoplexample.com"
}I
" _links":{
"self":{

"href":"\/api\/v1\/customers\/1"

(continues on next page)

5.1. The REST API Reference

269

Sylius

(continued from previous page)

}I
"channel": {
"code":"US_WEB",
" links":{
"self": {
"href":"\/api\/v1\/channels\/US_WEB"

b
"currencyCode":"USD",
"localeCode":"en_US",
"checkoutState":"cart"

Tip: In this response you can see that promotion and shipping have been taken into account to calculate the appropriate
price.

Deleting a Cart ltem

To delete a cart item from a cart you will need to call the /api/v1/carts/{cartId}/items/{cartItemId}
endpoint with the DELETE method.

Definition

To delete the cart item with id = 58 from the cart with id = 21 use the below method:

DELETE /api/vl/carts/{cartId}/items/{cartItemId}

Parameter Parameter type | Description

Authorization | header Token received during authentication
cartld url attribute Id of the requested cart

cartltemlId url attribute Id of the requested cart item

Example

$ curl http://demo.sylius.com/api/vl/carts/21/items/58 \
—-H "Authorization: Bearer SampleToken" \
—-H "Accept: application/json" \
—X DELETE

Exemplary Response

STATUS: 204 No Content

270 Chapter 5. The REST API Reference

Sylius

5.1.5 Channels API

These endpoints will allow you to easily manage channels. Base URI is /api/vi/channels.

Channel API response structure

If you request a channel via API, you will receive an object with the following fields:

Field | Description
id Id of the channel
code | Unique channel identifier

If you request for more detailed data, you will receive an object with the following fields:

Field Description

id Id of the channel

code Unique channel identifier
taxCalculationStrategy | Strategy which will be applied during processing orders in the channel
name Name of the channel

hostname Name of the host for the channel

enabled Gives an information about channel availability
description Description of the channel

color Allows to recognize orders made in the channel
createdAt The channel’s creation date

updatedAt The channel’s last updating date

Note: Read more about Channels docs.

Getting a Single Channel

To retrieve the details of a specific channel you will need to call the /api/v1/channels/{code} endpoint with
the GET method.

Definition

GET /api/vl/channels/{code}

Parameter Parameter type | Description
Authorization | header Token received during authentication
code url attribute Code of requested channel

Example

To see the details of the channel with code = US_WEB use the below method:

5.1. The REST API Reference 271

Sylius

$ curl http://demo.sylius.com/api/vl/channels/US_WEB \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/Jjson"

Note: The US_WEB code is just an example. Your value can be different.

Exemplary Response

STATUS: 200 OK

"id": 1,
"code": "US_WEB",
"name": "US Web Store",
"hostname": "localhost",
"color": "Wheat",
"createdAt": "2017-02-10T13:14:20+0100",
"updatedAt": "2017-02-10T13:14:20+0100",
"enabled": true,
"taxCalculationStrategy": "order_items_based",
" links": {
"self": {
"href": "\/api\/v1l\/channels\/US_WEB"

5.1.6 Checkout API

These endpoints will allow you to go through the order checkout from the admin perspective. It can be useful for
integrations with tools like Twillo or an inspiration for your custom Shop API. Base URI is /api/v1/checkouts/.

After you create a cart (an empty order) and add some items to it, you can start the checkout via API. This basically
means updating the order with concrete information, step by step, in a correct order.

Sylius checkout flow is built from 4 steps, which have to be done in a certain order (unless you will customize it).

Step Description

addressing | Shipping and billing addresses are assigned to the cart
shipping Choosing a shipping method from the available ones
payment Choosing a payment method from the available ones
finalize The order is built and its data can be confirmed

Tip: If you are not familiar with the concept of checkout in Sylius, please carefully read this article first.

Note: We do not present the order serialization in this chapter, because it is the same order serialization as described
in the article about orders.

272 Chapter 5. The REST API Reference

https://www.twilio.com/docs/

Sylius

Addressing step

After you added some items to the cart, to start the checkout you simply need to provide a shipping address. You can
also specify a different billing address if needed.

Definition

PUT /api/vl/checkouts/addressing/{id}

Parameter Parameter Description

type
Authorization header Token received during authentication
id url attribute Id of the requested cart
differentBillingAd- request If false, the billing address fields are not required and data from the ship-
dress ping address is copied
shippingAd- request First name for the shipping address
dress[firstName]
shippingAd- request Last name for the shipping address
dress[lastName]
shippingAd- request City name
dress][city]
shippingAd- request Postcode
dress[postcode]
shippingAd- request Street
dress[street]
shippingAd- request Id of the country
dress[country]
shippingAd- request (optional) 1d of the province
dress[province]
billingAd- request (optional) First name for the billing address
dress[firstName]
billingAd- request (optional) Last name for the billing address
dress[lastName]
billingAddress|city] request (optional) City name
billingAd- request (optional) Postcode
dress[postcode]
billingAddress[street] | request (optional) Street
billingAd- request (optional) 1d of the country
dress[country]
billingAd- request (optional) 1d of the province
dress[province]

Note: Remember a cart with id = 21 for the Cart API documentation? We will take the same cart as an exemplary

cart for checkout process.

Example

To address the cart for a user that lives in Los Angeles in the United States, the following snippet can be used:

5.1. The REST API Reference

273

$ curl http://demo.sylius.com/api/vl/checkouts/addressing/21 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
—-—data '
{

"shippingAddress": {

"firstName": "Elon",
"lastName": "Musk",
"street": "10941 Savona Rd",
"countryCode": "US",

"city": "’Los Angeles",
"postcode": "CA 90077"

}I
"differentBillingAddress": false

Exemplary Response

STATUS: 204 No Content

Now you can check the state of the order, by asking for the checkout summary:
Example

To check the checkout process state for the cart with id = 21, we need to execute this command:

$ curl http://demo.sylius.com/api/vl/checkouts/21 \
-H "Authorization: Bearer SampleToken" \
—-H "Accept: application/json"

Exemplary Response

STATUS: 200 Ok

"id":21,
"items": [
{
"id":74,
"quantity":1,
"unitPrice":100000,
"total":100000,
"units": [
{
"id":228,
"adjustments": [
] ’
"adjustmentsTotal": 0

(continues on next page)

274 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

] ’
"unitsTotal":100000,
"adjustments": [
] 14
"adjustmentsTotal": 0,
"wvariant": {

"id":331,

"code" :"MEDIUM_MUG_CUP",

"optionValues": [

{

"code" : "mug_type_medium"

]I
"position":2,
"translations": {
"en_US": {
}
}I
"onHold": O,
"onHand":10,
"tracked":false,
"channelPricings": {
"US_WEB" : {
"channelCode": "US_WER",
"price":100000

}I
"_links":{
"product": {
"href":"\/api\/v1\/products\/5"
b
"variant": {
"href":"\/api\/v1\/products\/5\/variants\/331"

1,
"itemsTotal":100000,
"adjustments": [
{
"id":249,
"type":"shipping",
"label":"UPS",
"amount" :8787

1,
"adjustmentsTotal":8787,
"total":108787,
"state":"cart",
"customer": {

"id" - 1,
"email":"shoplexample.com",
"emailCanonical":"shop@example.com",

"firstName":"John",
"lastName":"Doe",
llgenderll . Hu " ,

(continues on next page)

5.1. The REST API Reference

275

Sylius

(continued from previous page)

"user": {
"id":1,
"username": "shoplexample.com",
"usernameCanonical":"shop@example.com",
"roles": [
"ROLE_USER"

]I
"enabled":true
}I
" links":{
"self":{
"href":"\/api\/vl\/customers\/1"

} ’

"channel": {
"id":1,
"code":"US_WEB",
"name" :"US Web Store",
"hostname":"localhost",
"color":"MediumPurple",
"createdAt":"2017-02-14T11:10:02+0100",
"updatedAt":"2017-02-14T11:10:02+0100",
"enabled":true,
"taxCalculationStrategy":"order items_based",
" _links": {

"self":{
"href":"\/api\/v1\/channels\/1"

}I
"shippingAddress": {
"firstName":"Elon",
"lastName": "Musk",
"countryCode":"US",
"street":"10941 Savona Rd",
"eity":"\u2019Los Angeles",
"postcode":"CA 90077"
}I
"billingAddress": {
"firstName":"Elon",
"lastName":"Musk",
"countryCode":"US",
"street":"10941 Savona Rd",
"eity":"\u2019Los Angeles",
"postcode":"CA 90077"
s
"payments": [
{
"id":21,
"method": {
"id":1,
"code":"cash_on_delivery"
}I
"amount":108787,
"state":"cart"

(continues on next page)

276

Chapter 5.

The REST API Reference

Sylius

(continued from previous page)

1,

"shipments": [
{
"id":21,
"state":"cart",
"method": {

"code": "ups n ,
"enabled" :true

1,

"currencyCode":"USD",
"localeCode":"en_US",
"checkoutState":"addressed"

Of course, you can specify different shipping and billing addresses. If our user Elon would like to send a gift to the
NASA administrator, Frederick D. Gregory, he could send the following request:

$ curl http://demo.sylius.com/api/vl/checkouts/addressing/21 \
—-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
—-—data '
{
"shippingAddress": {

"firstName": " Frederick D.",
"lastName": "Gregory",
"street": "300 E St Sw",
"countryCode": "US",

"city": "’Washington",
"postcode": "DC 20546"

}I
"differentBillingAddress": true,
"pillingAddress": {

"firstName": "Elon",
"lastName": "Musk",
"street": "10941 Savona Rd",
"countryCode": "US",

"city": "’'Los Angeles",
"postcode": "CA 90077"

Exemplary Response

STATUS: 204 No Content

Shipping step

When the order contains the address information, we are able to determine the available shipping methods. First, we
need to get the available shipping methods to have our choice list:

5.1. The REST API Reference 277

Sylius

Definition

GET /api/vl/checkouts/select-shipping/{id}

Parameter Parameter type | Description
Authorization | header Token received during authentication
id url attribute Id of the requested cart

Example

To check available shipping methods for the previously addressed cart, you can use the following command:

$ curl http://demo.sylius.com/api/vl/checkouts/select-shipping/21 \
—-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/Jjson"

STATUS: 200 OK

"shipments": [
{
"methods": [
{
"id":1,
"code":"ups",
"name" :"UPS",
"description":"Dolorem consequatur itagque neque non voluptas,
—dolor.",
"price":8787

"id":2,

"code":"dhl_express",

"name" :"DHL Express",

"description":"Voluptatem ipsum dolor vitae corrupti eum repellat.

"price":3549

"id":3,

"code":"fedex",

"name":"FedEx",

"description":"Qui nostrum minus accusantium molestiae voluptatem
—eaque.",

"price":3775

The response contains proposed shipments and for each of them, it has a list of the available shipping methods along-
side their calculated prices.

278 Chapter 5. The REST API Reference

Sylius

Warning: Because of the custom calculation logic, the regular rules of overriding do not apply for this endpoint.
In order to have a different response, you have to provide a custom controller and build the message on your own.
Exemplary implementation can be found here

Next step is updating the order with the types of shipping methods that have been selected. A PUT request has to be
send for each available shipment.

Definition

PUT /api/vl/checkouts/select-shipping/{id}

Parameter Parameter Description
type
Authorization header Token received during authentication
id url attribute Id of the requested cart
ship- request Code of the chosen shipping method (Where X is the number of shipment
ments[X][‘method’] in the returned array)
Example

To choose the DHL Express method for our shipment (the cheapest one), we can use the following snippet:

$ curl http://demo.sylius.com/api/vl/checkouts/select-shipping/21 \
-H "Authorization: Bearer SampleToken" \
—-H "Content-Type: application/json" \
-X PUT \
—-—data '
{
"shipments": [
{
"method": "dhl_express"
}

Exemplary Response

STATUS: 204 No Content

While checking for the checkout process state of the cart with id = 21, you will get the following response:

Exemplary Response

STATUS: 200 OK

(continues on next page)

5.1. The REST API Reference 279

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/AdminApiBundle/Controller/ShowAvailableShippingMethodsController.php

Sylius

(continued from previous page)

"id":21,
"items": [
{
"id":74,
"quantity":1,
"unitPrice":100000,
"total":100000,
"units": [
{
"id":228,
"adjustments": [
] 14
"adjustmentsTotal":0

] 14
"unitsTotal":100000,
"adjustments": [
] r
"adjustmentsTotal":0,
"variant": {
"id":331,
"code":"MEDIUM_MUG_CUP",
"optionValues": [
{

"code":"mug_type_medium"

] ’
"position":2,
"translations": {
"en US":{
}
I
"onHold":0,
"onHand":10,
"tracked":false,
"channelPricings": {
"US_WEB" : {
"channelCode": "US_WEBR",
"price":100000

}7
" _links":{
"product":{
"href":"\/api\/v1\/products\/5"
}I
"variant": {
"href":"\/api\/v1\/products\/5\/variants\/331"

]I
"itemsTotal":100000,
"adjustments": [
{
"id":251,
"type":"shipping",

(continues on next page)

280 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"label":"DHL Express",
"amount":3549

]I
"adjustmentsTotal":3549,
"total":103549,
"state":"cart",
"customer": {
"id":1,
"email":"shop@example.com",
"emailCanonical":"shoplexample.con",
"firstName":"John",
"lastName":"Doe",
"gender":"u",
"user": {
"id":1,
"username":"shop@example.com",
"usernameCanonical":"shop@example.com",
"roles": [
"ROLE_USER"
]I
"enabled":true
br
" links":{
"self":{
"href":"\/api\/v1\/customers\/1"

b

"channel": {
"id":1,
"code":"US_WEB",
"name" :"US Web Store",
"hostname":"localhost",
"color":"MediumPurple",
"createdAt":"2017-02-14T11:10:02+0100",
"updatedAt":"2017-02-14T11:10:02+0100",
"enabled":true,

"taxCalculationStrategy":"order_items_based",
" links":{
"self":{

"href":"\/api\/v1\/channels\/1"

}I

"shippingAddress": {
"firstName":"Frederick D.",
"lastName":"Gregory",
"countryCode":"US",
"street":"300 E St sw",
"city":"\u2019Washington",
"postcode":"DC 20546"

}I

"billingAddress": {
"firstName":"Frederick D.",
"lastName":"Gregory",
"countryCode":"US",

(continues on next page)

5.1. The REST API Reference 281

Sylius

(continued from previous page)

"street":"300 E St Sw",
"city":"\u2019Washington",
"postcode":"DC 20546"

by

"payments": [
{
"id":21,
"method": {
"id":1,
"code":"cash_on_delivery"

by
"amount":103549,

"state":"cart"
}
]I
"shipments": [
{
"id":21,
"state":"cart",
"method" : {

"code":"dhl_express",
"enabled":true

1,

"currencyCode":"USD",
"localeCode":"en_US",
"checkoutState":"shipping_selected"

Payment step

When we are done with shipping choices and we know the final price of an order, we can select a payment method.

Definition

GET /api/vl/checkouts/select-payment/{id}

Parameter Parameter type | Description
Authorization | header Token received during authentication
id url attribute Id of the requested cart

Warning: Similar to the shipping step, this one has its own controller, which has to be replaced if you want to
make some changes. Exemplary implementation can be found here

Example

To check available payment methods for the cart that has a shipping methods assigned, we need to execute this curl

command:

282 Chapter 5. The REST API Reference

https://github.com/Sylius/Sylius/blob/master/src/Sylius/Bundle/AdminApiBundle/Controller/ShowAvailablePaymentMethodsController.php

Sylius

$ curl http://demo.sylius.com/api/vl/checkouts/select-payment/21 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/Jjson"

STATUS: 200 OK

"payments": [
{
"methods": [
{

"id":1,
"code":"cash_on_delivery",
"name":"Cash on delivery",
"description":"Ipsum dolor non esse quia sit."

"id":2,
"code":"bank_transfer",
"name":"Bank transfer",

"description":"Perspiciatis itaque earum quisquam ut dolor."

With that information, another PUT request with the id of payment method is enough to proceed:

Definition

PUT /api/vl/checkouts/select-payment/{id}

Parameter Parameter type | Description

Authorization header Token received during authentication
id url attribute Id of the requested cart
payment[X][‘method’] | request Code of chosen payment method

Example

To choose the Bank transfer method for our shipment, simply use the following code:

$ curl http://demo.sylius.com/api/vl/checkouts/select-payment/21 \

—-H "Authorization: Bearer SampleToken" \

-H "Content-Type: application/json" \

-X PUT \

——data '

{
"payments": [
{

"method": "bank_transfer"

(continues on next page)

5.1. The REST API Reference

283

Sylius

(continued from previous page)

Exemplary Response

STATUS: 204 No Content

Finalize step

After choosing the payment method we are ready to finalize the cart and make an order. Now, you can get its snapshot
by calling a GET request:

Tip: The same definition has been used over this chapter, to see the current state of the order.

Definition

GET /api/vl/checkouts/{id}

Parameter Parameter type | Description
Authorization | header Token received during authentication
id url attribute Id of the requested cart

Example

To check the fully constructed cart with id = 21, use the following command:

$ curl http://demo.sylius.com/api/vl/checkouts/21 \
-H "Authorization: Bearer SampleToken" \
—-H "Content-Type: application/json"

STATUS: 200 OK

"id":21,
"items": [
{
"id":74,
"quantity":1,
"unitPrice":100000,
"total":100000,
"units": [
{
"id":228,
"adjustments": [

(continues on next page)

284 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

1,
"adjustmentsTotal": 0

] 14
"unitsTotal":100000,
"adjustments": [
] ’
"adjustmentsTotal": 0,
"variant": {

"id":331,

"code" :"MEDIUM_MUG_CUP",

"optionValues": [

{

"code" : "mug_type_medium"

]I
"position":2,
"translations": {
"en_US": {
}
}I
"onHold": O,
"onHand":10,
"tracked":false,
"channelPricings": {
"US_WEB" : {
"channelCode":"US_WER",
"price":100000

}I
"_links":{
"product": {
"href":"\/api\/v1\/products\/5"
b
"variant": {
"href":"\/api\/v1\/products\/5\/variants\/331"

1,
"itemsTotal":100000,
"adjustments": [
{
"id":252,
"type":"shipping",
"label":"DHL Express",
"amount" :3549

]I
"adjustmentsTotal":3549,
"total":103549,
"state":"cart",
"customer": {

"id":1,
"email":"shoplexample.com",
"emailCanonical":"shoplexample.comn",

(continues on next page)

5.1. The REST API Reference 285

Sylius

(continued from previous page)

"firstName":"John",
"lastName":"Doe",
llgenderll . n u n ,

"user": {
"id":1,
"username": "shoplexample.com",
"usernameCanonical":"shop@example.com",
"roles": [
"ROLE_USER"

]I
"enabled":true
}I
" links":{
"self":{
"href":"\/api\/vl\/customers\/1"

} ’

"channel": {
"id":1,
"code":"US_WEB",
"name" :"US Web Store",
"hostname":"localhost",
"color":"MediumPurple",
"createdAt":"2017-02-14T11:10:02+0100",
"updatedAt":"2017-02-14T11:10:02+0100",
"enabled":true,
"taxCalculationStrategy":"order items_based",
" _links": {

"self": {

"href":"\/api\/v1\/channels\/1"

}I

"shippingAddress": {
"firstName":"Frederick D.",
"lastName":"Gregory",
"countryCode":"US",
"street":"300 E St sw",
"eity":"\u2019Washington",
"postcode":"DC 20546"

}I

"billingAddress": {
"firstName":"Frederick D.",
"lastName":"Gregory",
"countryCode":"US",
"street":"300 E St Sw",
"eity":"\u2019Washington",

"postcode":"DC 20546"
}I
"payments": [
{
"id":21,
"method": {
"id":2,

"code":"bank_transfer"
by

(continues on next page)

286

Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"amount":103549,
"state":"cart"

1,

"shipments": [
{
"id":21,
"state":"cart",
"method": {

"code":"dhl_express",
"enabled" :true

]I
"currencyCode":"USD",

"localeCode":"en_US",
"checkoutState":"payment_selected"

This is how your final order will look like. If you are satisfied with that response, simply call another PUT request to

confirm the checkout, which will become a real order and appear in the backend.

Definition

PUT /api/vl/checkouts/complete/{id}

Parameter Parameter type | Description

Authorization | header Token received during authentication

id url attribute Id of the requested cart

notes request (optional) Notes that should be attached to the order

Example

To finalize the previously built order, execute the following command:

$ curl http://demo.sylius.com/api/vl/checkouts/complete/21 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT

Exemplary Response

STATUS: 204 No Content

The order has been placed, from now on you can manage it only via orders endpoint.

Of course the same result can be achieved when the order will be completed with some additional notes:

5.1. The REST API Reference

287

Sylius

Example

To finalize the previously built order (assuming that, the previous example has not been executed), try the following
command:

$ curl http://demo.sylius.com/api/vl/checkouts/complete/21 \
—-H "Authorization: Bearer SampleToken" \
—-H "Content-Type: application/json" \
-X PUT \
—-—data '
{
"notes": "Please, call me before delivery"

}

Exemplary Response

STATUS: 204 No Content

5.1.7 Countries API

These endpoints will allow you to easily manage countries. Base URI is /api/vI/countries.

Country API response structure

If you request a country via API, you will receive an object with the following fields:

Field | Description
id 1d of the country
code | Unique country identifier

If you request for more detailed data, you will receive an object with the following fields:

Field Description

id Id of the country

code Unique country identifier

enabled Information says if the country is enabled (default: false)
provinces | Collection of the country’s provinces

Note: Read more about Countries in the component docs.

Creating a Country

To create a new country you will need to call the /api/v1/countries/ endpoint with the POST method.

288 Chapter 5. The REST API Reference

Sylius

Definition

POST /api/vl/countries/

Parameter Parameter type | Description
Authorization | header Token received during authentication
code request (unique) Country identifier

Example

$ curl http://demo.sylius.com/api/vl/countries/ \
—-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST \
—-—data '
{

"code": "PL"

Exemplary Response

STATUS: 201 CREATED

"id": 2,
"code": "PL",
"provinces": [],
"enabled": false,
" _links": {
"self": {
"href": "\/api\/v1\/countries\/PL"

If you try to create a country without code you will receive a 400 Bad Request error.

Example

$ curl http://demo.sylius.com/api/vl/countries/ \
—-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
—X POST

5.1. The REST API Reference 289

Sylius

Exemplary Response

STATUS: 400 Bad Request

"code": 400,
"message": "Validation Failed",
"errors": {
"children": ({
"provinces": {},
"enabled": {},
"code": {
"errors": |
"Please enter country ISO code."

You can also create a country with additional (not required) fields:

Parameter | Parameter type | Description
enabled request Information says if the country is enabled (default: false)
provinces request Collection of the country’s provinces

Example

$ curl http://demo.sylius.com/api/vl/countries/ \
-H "Authorization: Bearer SampleToken" \
—-H "Content-Type: application/json" \
-X POST \
-—-data '
{

"code": "PLH,

"enabled": true,
"provinces": [
{
"name": "mazowieckie",
"code": "PL-MZ"

Exemplary Response

STATUS: 201 CREATED

"id": 4,

(continues on next page)

290 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"code" : "PLH ,
"provinces": [
{
nid": 1 ,
"code": "PL-MZ",
"name": "mazowieckie",
" links": {
"self": {

"href": "\/api\/v1l\/countries\/PL\/provinces\/PL-MZ"

by
"country": {

"href": "\/api\/v1l\/countries\/PL"
}
}
}
]I
"enabled": true,
" links": {
"self": {
"href": "\/api\/v1\/countries\/PL"

Getting a Single Country

To retrieve the details of a country you will need to call the /api/v1/countries/{code} endpoint with the GET
method.

Definition

GET /api/vl/countries/{code}

Parameter Parameter type | Description
Authorization | header Token received during authentication
code url attribute Code of the requested country

Example

To see the details of the country with code = US use the below method:

$ curl http://demo.sylius.com/api/vl/countries/US \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The US code is just an example. Your value can be different.

5.1. The REST API Reference 291

Sylius

Exemplary Response

STATUS: 200 OK

"id": 1,
"code": "US",
"provinces":
"enabled":
" _links": {
"self": {
"href":

[1,
true,

"\ /api\/v1\/countries\/US"

Collection of Countries

To retrieve a paginated list of countries you will need to call the /api/v1/countries/ endpoint with the GET
method.

Definition

GET /api/vl/countries/

Parameter Parameter type | Description

Authorization | header Token received during authentication

page query (optional) Number of the page, by default = 1

paginate query (optional) Number of items to display per page, by default = 10

To see the first page of all countries use the below method:

Example

$ curl http://demo.sylius.com/api/vl/countries/ \
-H "Authorization: Bearer SampleToken" \
—-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

{
"page": 1,
"limit": 10,
"pages": 1,
"total": 2,

(continues on next page)

292 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

" _links": {
"self": {
"href": "\/api\/vl1\/countries\/?page=1ls&limit=10"
}’
"first": {
"href": "\/api\/vl\/countries\/?page=1l&limit=10"
}’
"last": {
"href": "\/api\/vl\/countries\/?page=l&limit=10"

}/
" _embedded": {
"items": [
{
"id": 1,
"code": "US",
" links": {
"self": {
"href": "\/api\/v1\/countries\/US"

"id": 4,
"code" . "PL" ,
" _links": {
"self": ({
"href": "\/api\/v1\/countries\/PL"

Deleting a Country

To delete a country you will need to call the /api/v1/countries/{code} endpoint with the DELETE method.

Definition

DELETE /api/vl/countries/{code}

Parameter Parameter type | Description
Authorization | header Token received during authentication
code url attribute Code of the removed country

Example

5.1. The REST API Reference

293

$ curl http://demo.sylius.com/api/vl/countries/PL \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \

—X DELETE

Exemplary Response

STATUS: 204 No Content

5.1.8 Currencies API

These endpoints will allow you to easily manage currencies. Base URI is /api/vi/currencies.

Currency API response structure

If you request a currency via API, you will receive an object with the following fields:

Field | Description

id Id of the currency

code | Unique currency identifier

If you request for more detailed data, you will receive an object with the following fields:

Field Description
id Id of the currency
code Unique currency identifier

updatedAt | Last update date of the currency

createdAt | Creation date of the currency

Note: Read more about Currencies in the component docs.

Creating a Currency

To create a new currency you will need to call the /api/v1/currencies/ endpoint with the POST method.

Definition

POST /api/vl/currencies/

Parameter Parameter type | Description
Authorization | header Token received during authentication
code request (unique) Currency identifier

294

Chapter 5. The REST API Reference

Sylius

Example

$ curl http://demo.sylius.com/api/vl/currencies/ \
-H "Authorization: Bearer SampleToken" \
—-H "Content-Type: application/json" \
-X POST \
-—-data '
{
"code": "PLN"

Exemplary Response

STATUS: 201 CREATED

"id": 4,
"code": "PLN",
"createdAt": "2017-02-14T11:38:40+0100",
"updatedAt": "2017-02-14T11:38:41+0100",
" _links": {

"self": {

"href": "\/api\/vl\/currencies\/PLN"

If you try to create a currency without code you will receive a 400 Bad Request error.

Example

$ curl http://demo.sylius.com/api/vl/currencies/ \
—-H "Authorization: Bearer SampleToken" \
—-H "Content-Type: application/json" \
-X POST

Exemplary Response

STATUS: 400 Bad Request

"code": 400,
"message": "Validation Failed",
"errors": {
"children": {
"code": {
"errors": [
"Please choose currency code."

(continues on next page)

5.1. The REST API Reference 295

Sylius

(continued from previous page)

Getting a Single Currency

To retrieve the details of a currency you will need to call the /api/v1l/currencies/{code} endpoint with the
GET method.

Definition

GET /api/vl/currencies/{code}

Parameter Parameter type | Description
Authorization | header Token received during authentication
code url attribute Code of the requested currency

Example

To see the details of the currency with code = PLN use the below method:

$ curl http://demo.sylius.com/api/vl/currencies/PLN \
—-H "Authorization: Bearer SampleToken" \
-H "Accept: application/Jjson"

Note: The PLN code is just an example. Your value can be different.

Exemplary Response

STATUS: 200 OK

"id": 4,
"code": "PLN",
"createdAt": "2017-02-14T11:38:40+0100",
"updatedAt": "2017-02-14T11:38:41+0100",
" _links": {
"self": {
"href": "\/api\/v1\/currencies\/PLN"

296 Chapter 5. The REST API Reference

Sylius

Collection of Currencies

To retrieve a paginated list of currencies you will need to call the /api/v1/currencies/ endpoint with the GET
method.

Definition

GET /api/vl/currencies/

Parameter Parameter type | Description

Authorization | header Token received during authentication

page query (optional) Number of the page, by default = 1

paginate query (optional) Number of items to display per page, by default = 10

To see the first page of all currencies use the below method:

Example

$ curl http://demo.sylius.com/api/vl/currencies/ \

—-H "Accept:

-H "Authorization: Bearer SampleToken" \
application/json"

Exemplary Response

STATUS:

200 OK

"page": 1,

"limit": 10,

"pages": 1,

"total": 3,

" links": {
"self": {

"href":

by
"first": {

"href":

br
"last": {

"href":

bo
" embedded": {
"items": [

{

"\/api\/v1\/currencies\/?page=1l&limit=10"

"\/api\/v1\/currencies\/?page=1l&limit=10"

"id": 3,

"code":

"ysp" ,

"_links": {

"self": {
"href":

"\/api\/v1\/currencies\/?page=1&limit=10"

"\ /api\/v1\/currencies\/USD"

(continues on next page)

5.1.

The REST API Reference

297

Sylius

(continued from previous page)

"id": 4,
"code":
" _links":

"self":
"href":

"id": 5,
"code":
" _links":

"self":
"href":

"PLN",

{

"EUR" ,

{

"\/api\/v1l\/currencies\/PLN"

"\/api\/v1l\/currencies\/EUR"

Deleting a Currency

To delete a currency you will need to call the /api/v1/currencies/{code} endpoint with the DELETE method.

Definition

DELETE /api/vl/currencies/{code}

Parameter

Parameter type

Description

Authorization

header

Token received during authentication

code

url attribute

Code of the removed currency

Example

$ curl
—-H "Authorization:
—-H "Accept:
—X DELETE

http://demo.sylius.com/api/vl/currencies/PLN \
Bearer SampleToken"
application/json" \

\

Exemplary Response

STATUS: 204 No Content

298

Chapter 5. The REST API Reference

Sylius

5.1.9 Customers API

These endpoints will allow you to easily manage customers. Base URI is /api/vi/customers. The Customer class is
strongly coupled with the User class. Because of that we recommend these endpoints to manage all related to user
actions.

When you get a collection of resources, “Default” serialization group will be used and the following fields will be
exposed:

Field Description

id Id of customer

user[id] (optional) 1d of related user
user[username] | (optional) Users username
user[enabled] (optional) Flag set if user is enabled
email Customers email

firstName Customers first name

lastName Customers last name

If you request for a more detailed data, you will receive an object with following fields:

Field Description

id Id of customer

user[id] (optional) 1d of related user
user[username] (optional) Users username
user[usernameCanonical] | (optional) Canonicalized users username
user[roles] (optional) Array of users roles
user[enabled] (optional) Flag set if user is enabled
email Customers email

emailCanonical Canonicalized customers email
firstName Customers first name

lastName Customers last name

gender Customers gender

birthday Customers birthday

group Customer group code

Note: Read more about Customers and Users.

Creating a Customer

Definition

POST /api/vl/customers/

5.1. The REST API Reference 299

Sylius

Parameter Parameter | Description

type
Authorization header Token received during authentication
email request (unique) Customer’s email
firstName request Customer’s first name
lastName request Customer’s last name

group | request | (optional) Customer group code

gender request Customer’s gender
birthday request (optional) Customer’s birthday
user[plainPassword]| request (optional) Users plain password. Required if user account should be created
together with customer
user[authorizationRolesjuest (optional) Array of users roles
user[enabled] request (optional) Flag set if user is enabled
Example
$ curl http://demo.sylius.com/api/vl/customers/ \

Bearer SampleToken" \
application/json" \

"Authorization:
"Content-Type:
POST \

—-—data '

{

"firstName": "John",
"Dj_gqle",

"john.diggle@yahoo.com",

"lastName":
"email":
"gender":
"user": {

"plainPassword"

nean
m~,

"testPassword"

Exemplary Response

STATUS: 201 Created

"id":409,
"user": {

"id":405,

"username":" john.digglel@yahoo.com",

"roles": [

"ROLE_USER"

] 4

"enabled": false
3y
"email":"john.diggle@yahoo.com",
"emailCanonical":" john.diggle@yahoo.com",
"firstName":"John",
"lastName":"Diggle",

"gender" s 'm" ,

(continues on next page)

300 Chapter 5.

The REST API Reference

Sylius

(continued from previous page)

"group":{}

If you try to create a customer without email or gender, you will receive a 400 Bad Request error.

Example

$ curl http://demo.sylius.com/api/vl/customers/ \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST

Exemplary Response

STATUS:

400 Bad Request

"code": 400,
"message": "Validation Failed",
"errors": {

"children": ({
"firstName": {},
"lastName": {},
"email": {
"errors": |
"Please enter your email."

}I
"birthday": {},
"gender": {
"errors": |
"Please choose your gender."

I

"phoneNumber": {},
"subscribedToNewsletter": {},
"group": {}

Getting a Single Customer

You can request detailed customer information by executing the following request:

Definition

GET /api/vl/customers/{id}

5.1. The REST API Reference 301

Sylius

Example

Parameter Parameter type | Description
Authorization | header Token received during authentication
id url attribute Id of the requested resource

$ curl http://demo.sylius.com/api/vl/customers/399 \

-H
—-H

"Authorization:
"Accept:

Bearer SampleToken" \
application/json"

Exemplary Response

STATUS:

200 OK

"id":399,
"user": {

"id":398,

"username":"cgulgowski@example.com",

"usernameCanonical":"cgulgowskilexample.com",

"roles": [
"ROLE_USER"

J 4

"enabled":false

by

"email":"cgulgowski@example.com",
"emailCanonical":"cgulgowski@example.com",

"firstName":
"lastName":
" gender " . n u n ,
"group":{}

"Levi",
"Friesen",

Collection of Customers

You can retrieve the full customers list by making the following request:

Definition

GET /api/vl/customers/

Parameter Parameter type | Description

Authorization | header Token received during authentication

page query (optional) Number of the page, by default = 1

limit query (optional) Number of items to display per page, by default = 10

302

Chapter 5. The REST API Reference

Sylius

Example

$ curl http://demo.sylius.com/api/vl/customers/ \
—-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

"page":1,
"limit":10,
"pages":21,
"total":205,
" _links": {
"self":{

"href":

by

"first":{

"href":

s
"last":{

"href":

by

"next": {

"href":

b
"_embedded" : {
"items": [

{

"\/api\/customers\/?page=1&limit=10"

"\/api\/customers\/?page=1&limit=10"

"\/api\/customers\/?page=21&limit=10"

"\/api\/customers\/?page=2&limit=10"

"id":407,
"email":"random@gmail.com",
"firstName":"Random",
"lastName": "Doe"

"id":406,
"email":"customer@email.com",
"firstName":"Alexanne",
"lastName":"Blick"

"id":405,
"user": {
"id":404,

"username":"gaylord.bins@example.com",

"enabled" :true
}I
"email":"gaylord.bins@example.com",
"firstName":"Dereck",
"lastName": "McDermott"

(continues on next page)

5.1. The REST API Reference

303

Sylius

(continued from previous page)

"id":404,

"user": {
"id":403,
"username":"lehner.gerhardl@example.com",

"enabled":false
}I
"email":"lehner.gerhard@example.com",
"firstName":"RBenton",
"lastName":"Satterfield"

"id":403,
"user": {
"id":402,
"username": "raheem.ratkelexample.com",

"enabled": false
}V
"email":"raheem.ratke@example.com",
"firstName":"Rusty",
"lastName":"Jerde"

"id":402,

"user": {
"id":401,
"username":"litzy.morissettel@example.com",

"enabled":false
}I
"email":"litzy.morissette@example.com",
"firstName":"Omer",
"lastName":"Schaden"

"id":401,
"user": {
"id":400,
"username": "bbeer@example.com",
"enabled" :true
}I
"email":"bbeerlexample.con",
"firstName":"wWillard",
"lastName": "Hand"

"id":400,

"user": {
"id":399,
"username":"gtrantowl@example.com",

"enabled":false
}I
"email":"gtrantowlexample.com",
"firstName":"Caterina',
"lastName": "Koelpin"

"id":399,
"user": {

(continues on next page)

304

Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"id":398,
"username":"cgulgowskilexample.comn",
"enabled":false

br

"email":"cgulgowski@example.com",
"firstName":"Levi",
"lastName":"Friesen"

Updating a Customer

You can request full or partial update of resource. For full customer update, you should use PUT method.

Definition

PUT /api/vl/customers/{id}

Parameter Parameter Description
type
Authorization header Token received during authentication
id url attribute Id of the requested resource
email request (unique) Customers email
firstName request Customers first name
lastName request Customers last name
group request (optional) Customer group code
gender request Customers gender
birthday request (optional) Customers birthday
user[plainPassword] request (optional) Users plain password. Required if any of user fields is
defined
user[authorizationRoles]| request (optional) Array of users roles.
user[enabled] request (optional) Flag set if user is enabled.
Example

$ curl http://demo.sylius.com/api/vl/customers/399 \
—-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \

-X PUT \
—-—data '
{
"firstName": "John",
"lastName": "Diggle",
"email": "john.diggle@example.com",
"gender": "m"

5.1. The REST API Reference 305

Sylius

Exemplary Response

STATUS: 204 No Content

If you try to perform full customer update without all required fields specified, you will receive a 400 error.

Example

$ curl http://demo.sylius.com/api/vl/customers/399 \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT

Exemplary Response

STATUS: 400 Bad Request

"code": 400,
"message": "Validation Failed",
"errors": {
"children": ({

"firstName": {},

"lastName": {},

"email": {

"errors": |
"Please enter your email."

}I
"birthday": {},
"gender": {
"errors": |
"Please choose your gender."

by

"phoneNumber": {},
"subscribedToNewsletter": {},
"group": {}

In order to perform a partial update, you should use a PATCH method.

Definition

PATCH /api/vl/customers/{id}

306 Chapter 5. The REST API Reference

Sylius

Parameter Parameter type | Description

Authorization header Token received during authentication
id url attribute Id of the requested resource

email request (optional) (unique) Customers email
firstName request (optional) Customers first name
lastName request (optional) Customers last name
group request (optional) Customer group code
gender request (optional) Customers gender
birthday request (optional) Customers birthday
user[plainPassword] request (optional) Users plain password.
user[authorizationRoles] | request (optional) Array of users roles.
user[enabled] request (optional) Flag set if user is enabled.

Example

$ curl http://demo.sylius.com/api/vl/customers/399 \
—-H "Authorization: Bearer SampleToken" \
—-H "Content-Type: application/json" \
-X PATCH \
——data '{"firstName": "Joe"}'

Exemplary Response

STATUS: 204 No Content

Deleting a Customer

Definition

DELETE /api/vl/customers/{id}

Parameter Parameter type | Description
Authorization | header Token received during authentication
id url attribute Id of the requested resource

Example

$ curl http://demo.sylius.com/api/vl/customers/399 \
-H "Authorization: Bearer SampleToken" \
—-H "Accept: application/json" \
—X DELETE

5.1. The REST API Reference

307

Sylius

Exemplary Response

STATUS: 204 No Content

Collection of all customer orders

To browse all orders for specific customer, you can do the following call:

Definition

GET /api/vl/customers/{id}/orders/

Parameter Parameter type | Description

Authorization | header Token received during authentication

page query (optional) Number of the page, by default = 1

paginate query (optional) Number of items to display per page, by default = 10
Example

$ curl http://demo.sylius.com/api/vl/customers/7/orders/ \
-H "Authorization: Bearer SampleToken" \
—-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

"page":1,
"limit":10,
"pages":1,
"total":1,
" _links":{
"self":{
"href":"\/api\/v1\/customers\/2\/orders\/?page=1&limit=10"
}I
"first":{
"href":"\/api\/vl\/customers\/2\/orders\/?page=1&limit=10"
}I
"last":{
"href":"\/api\/v1\/customers\/2\/orders\/?page=1&limit=10"

}I
"_embedded": {
"items": [
{
"id":2,
"checkoutCompletedAt":"2017-02-23T14:53:11+0100",

(continues on next page)

308 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"number":"000000002",
"items": [
{
"id":4,
"quantity":2,
"unitPrice":101,
"total":123,
"units": [

{
"id":11,
"adjustments": [
{
"id":12,
"type":"order_promotion",
"label":"Christmas",
"amount":-40
}
] 14
"adjustmentsTotal":-40
}o
{
"id":12,
"adjustments": [
{
"id":13,
"type":"order_promotion",

"label":"Christmas",
"amount":-39

1,
"adjustmentsTotal":-39

1/
"unitsTotal":123,
"adjustments": [

]I
"adjustmentsTotal":0,
"variant":{
"id":181,
"code":"MEDIUM_MUG_CUP",
"optionValues": [
{
"code":"t_shirt_color_red",
"translations": {
"en_US": {
"locale":"en_US",
"id":7,
"value":"Red"

"code":"t_shirt_size_s",
"translations": {
"en_US":{
"locale":"en_US",

(continues on next page)

5.1. The REST API Reference 309

Sylius

(continued from previous page)

—MEDIUM_MUG_CUP"

"id":10,
"value":"3S"
}
}
}
]I
"position":0,
"translations": {
"en_US":{
"locale":"en_US",
"id":181,
"name":"tempore"
}
b
"onHold":0,

"onHand": 6,
"tracked":false,
"channelPricings": {
"US_WEB": {
"channelCode": "US_WEB",
"price":101

s
" links":{
"self":{
"href":"\/api\/v1\/products\/MUG\/variants\/

s
"product": {
"href":"\/api\/v1\/products\/MUG"

" _links":{

"order": {
"href":"\/api\/v1\/orders\/2"

}I

"product":{
"href":"\/api\/v1\/products\/MUG"

}/

"variant":{
"href":"\/api\/v1\/products\/MUG\/variants\/MEDIUM_

—MUG_CUP"
}
} 4
{
"id":5,
"quantity":4,
"unitPrice":840,
"total":2050,
"units": [
{
"id":13,
"adjustments": [
{
"id":14,
(continues on next page)
310 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"type":"order_promotion",
"label":"Christmas",
"amount" :-328

1,
"adjustmentsTotal":-328

"id":14,
"adjustments": [
{
"id":15,
"type":"order_promotion",
"label":"Christmas",
"amount" :-328

:| 14
"adjustmentsTotal":-328

"id":15,
"adjustments": [
{
"id":16,
"type":"order_promotion",
"label":"Christmas",
"amount" :-327

J ’
"adjustmentsTotal":-327

"id":1e6,
"adjustments": [
{
"id":17,
"type":"order_promotion",
"label":"Christmas",
"amount" :-327

J 14
"adjustmentsTotal":-327

]I
"unitsTotal":2050,
"adjustments": [

]I

"adjustmentsTotal":0,

"variant":{
"id":97,
"code":"cd843634-6c85-3be0-9c84-T7ce7786a394d-variant-0",
"optionValues": [

1,
"position":0,
"translations": {

(continues on next page)

5.1. The REST API Reference 311

Sylius

(continued from previous page)

"en US":{
"locale":"en_Us",
"id":97,
"name":"sequi"

}

}I
"onHold":O0,

"onHand":5,
"tracked":false,
"channelPricings": {
"US_WEB": {
"channelCode": "US_WER",
"price":840

}I
" _links":{
"self":{
"href":"\/api\/v1\/products\/cd843634-6c85-3bel-
—9c84-T7ce7786a394d\/variants\/cd843634-6c85-3be0-9c84-7ce7786a394d-variant-0"
b
"product": {
"href":"\/api\/v1\/products\/cd843634-6c85-3bel—
—9c84-T7ce7786a3944d"

}I
" links":{
"order": {
"href":"\/api\/v1\/orders\/2"
}I
"product": {
"href":"\/api\/v1l\/products\/cd843634-6c85-3be0-9c84-
—7ce7786a394d"
}I
"variant": {
"href":"\/api\/v1\/products\/cd843634-6c85-3be0-9c84-
—7ce7786a394d\ /variants\/cd843634-6c85-3be0-9c84-7ce7786a394d-variant-0"
}

"id":e6,
"quantity":4,
"unitPrice":660,
"total":1610,

"units": [
{
"id":17,
"adjustments": [
{

"id":18,
"type":"order_promotion",
"label":"Christmas",
"amount":-258

1,
"adjustmentsTotal":-258

(continues on next page)

312 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"id":18,
"adjustments": [
{
"id":19,
"type":"order_promotion",
"label":"Christmas",
"amount":-258

1,
"adjustmentsTotal":-258

"id":19,
"adjustments": [
{
"id":20,
"type":"order_promotion",
"label":"Christmas",
"amount" :-257

J r
"adjustmentsTotal":-257

"id":20,
"adjustments": [
{
"id":21,
"type":"order_promotion",
"label":"Christmas",
"amount" :-257

J 14
"adjustmentsTotal":-257

]I
"unitsTotal":1610,
"adjustments": [

]I
"adjustmentsTotal":0,
"variant": {
"id":45,
"code":"c38fef5d-ddf9-31e2-8e05-71618605f381~-variant-2",
"optionValues": [
{
"code":"mug_type_monster",
"translations":{
"en_ US":{
"locale":"en_US",
"id":3,
"value":"Monster mug"

(continues on next page)

5.1. The REST API Reference 313

Sylius

(continued from previous page)

1,
"position":2,
"translations": {

"en_US": {
"locale":"en_US",
"id":45,
"name" : "quod"

}

}I
"onHold":0,

"onHand":7,
"tracked":false,
"channelPricings": {
"US_WEB": {
"channelCode" :"US_WEB"
"price":660

}I
" _links":{
"self":{
"href":"\/api\/v1\/products\/c38fef5d-ddf9-31e2-
—8e05-71618605f381\/variants\/c38fef5d-ddf9-31e2-8e05-71618605f381-variant-2"
b
"product": {

"href":"\/api\/v1\/products\/c38fef5d-ddf9-31e2—-
—8e05-71618605£381"

b
" links":{
"order": {
"href":"\/api\/v1\/orders\/2"
}I
"product": {
"href":"\/api\/v1l\/products\/c38fef5d-ddf9-31e2-8e05-
—71618605£381"
}I
"variant":{
"href":"\/api\/v1\/products\/c38fef5d-ddf9-31e2-8e05~
—71618605f381\/variants\/c38fef5d-ddf9-31e2-8e05-71618605f381-variant-2"
}

"id":7,
"quantity":1,
"unitPrice":430,
"total":262,
"units": [

{

"id":21,
"adjustments": [
{
"id":22,
"type":"order_promotion",
"label":"Christmas",
"amount":-168

(continues on next page)

314 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

1,
"adjustmentsTotal":-168

1,
"unitsTotal":262,
"adjustments": [

1,
"adjustmentsTotal": 0,
"variant": {

"id":20,

"code":"4d4ba2e2-7138-3256-a88f-0caabdc3bb8l-variant-1",

"optionValues": [
{
"code":"mug_type_double",
"translations": {

"en_US":{
"locale":"en_US",
"id":2,
"value":"Double mug"

}

1,
"position":1,
"translations": {

"en_US":{
"locale":"en_US",
"id":20,
"name":"nisi"

}

}I
"onHold":0,

"onHand":2,
"tracked":false,
"channelPricings": {
"US_WEB": {
"channelCode":"US_WER",
"price":430

b
" links":{
"self":{

"href":"\/api\/v1\/products\/4d4ba2e2-7138-3256~-

—a88f-0caabdc3bb81\/variants\/4d4ba2e2-7138-3256-a88f-0caabdc3bb8l-variant—-1"

}I
"product":{

"href":"\/api\/v1\/products\/4d4ba2e2-7138-3256—

—a88f-0caabdc3bb81"

by
" _links":{
"order": {
"href":"\/api\/v1\/orders\/2"
}o

(continues on next page)

5.1. The REST API Reference

315

Sylius

(continued from previous page)

"product": {
"href":"\/api\/v1l\/products\/4d4ba2e2-7138-3256-a88f—
—0caabdc3bb81"
}I
"variant": {
"href":"\/api\/v1l\/products\/4d4ba2e2-7138-3256-a88f—
—0caa5dc3bb81\/variants\/4d4ba2e2-7138-3256-a88f-0caa5dc3bb8l-variant—-1"
}

"id":8,
"quantity":4,
"unitPrice":665,
"total":1623,

"units": [
{
"id":22,
"adjustments": [
{

"id":23,
"type":"order_promotion",
"label":"Christmas",
"amount" :-260

J 14
"adjustmentsTotal":-260

"id":23,
"adjustments": [
{
"id":24,
"type":"order_promotion",
"label":"Christmas",
"amount":-259

J ’
"adjustmentsTotal":-259

"id":24,
"adjustments": [
{
"id":25,
"type":"order_promotion",
"label":"Christmas",
"amount":-259

1,
"adjustmentsTotal":-259

"id":25,
"adjustments": [

{
"id":26,

(continues on next page)

316 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"type":"order_promotion",
"label":"Christmas",
"amount" :-259

1,
"adjustmentsTotal":-259

1,
"unitsTotal":1623,
"adjustments": [

]I

"adjustmentsTotal":0,

"variant": {
"id":91,
"code":"6864f798-e0e5-339d-91c9-e6036befadld-variant-0",
"optionValues": [

1,
"position":0,
"translations": {

"en_US":{
"locale":"en_US",
"id":91,

"name" :"maiores"

}

}I
"onHold":0,

"onHand":7,
"tracked":false,
"channelPricings": {
"US_WEB": {
"channelCode":"US_WER",
"price":665

}I
" links":{
"self":({
"href":"\/api\/vl1\/products\/6864£798-e0e5-339d~-
—+91c9-e6036befadld\/variants\/6864f798-e0e5-339d-91c9-e6036befadld-variant-0"
bo
"product":{
"href":"\/api\/v1\/products\/6864£f798-e0e5-339d-
—91c9-e6036befadll"

by
" links":{
"order": {
"href":"\/api\/v1\/orders\/2"
}I
"product": {
"href":"\/api\/v1l\/products\/6864£798-e0e5-339d-91c9-
—e6036befadld"”
}/
"variant": {
"href":"\/api\/v1l\/products\/6864£798-e0e5-339d-91c9~-

—e6036befadld\/variants\/6864f798-e0e5-339d-91c9-e6036befadli—variant-0 '{continues on next page)

5.1. The REST API Reference 317

Sylius

(continued from previous page)

]I
"itemsTotal":5668,
"adjustments": [
{
"id":27,
"type":"shipping",
"label":"FedEx",
"amount":1530

] 14
"adjustmentsTotal":1530,
"total":7198,
"state":"new",
"customer": {
"id":2,
"email":"metz.ted@beer.com",
"emailCanonical":"metz.ted@beer.com",
"firstName":"Dangelo",
"lastName":"Graham",
"gender":"u",
"user": {
"id":2,
"username" :"metz.ted@beer.com",
"usernameCanonical":"metz.ted@beer.com",
"roles": [
"ROLE_USER"
] r
"enabled":true
s
" links":{
"self":{
"href":"\/api\/v1l\/customers\/2"

bo

"channel": {
"id":1,
"code":"US_WEB",
"name" :"US Web Store",
"hostname":"localhost",
"color":"Plum",
"createdAt":"2017-02-23T14:53:04+0100",
"updatedAt":"2017-02-23T14:53:04+0100",
"enabled":true,

"taxCalculationStrategy":"order_items_based",
" links":{
"self":{

"href":"\/api\/v1\/channels\/US_WEB"

},

"shippingAddress": {
"id":4,
"firstName":"Kay",

(continues on next page)

318 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"lastName" :"Abbott",
"countryCode":"US",
"street":"Walsh Ford",
"city":"New Devante",
"postcode":"39325"

}I

"billingAddress": {
"id":5,
"firstName":"Kay",
"lastName" :"Abbott",
"countryCode":"US",
"street":"Walsh Ford",
"city":"New Devante",
"postcode":"39325"

}I

"payments": [
{
"id":2,
"method": {
"id":1,
"code":"cash_on_delivery",
"channels": [
{
"id":1,
"code":"US_WEB",
"name" :"US Web Store",
"hostname":"localhost",
"color":"Plum",
"createdAt":"2017-02-23T14:53:04+0100",
"updatedAt":"2017-02-23T14:53:04+0100",
"enabled":true,
"taxCalculationStrategy":"order_items_based",
" links":{
"self":{
"href":"\/api\/v1\/channels\/US_WEB"
}
}
}
]I
" links":{
"self":{

"href":"\/api\/vl\/payment-methods\/cash_on_
—delivery"

by
"amount":7198,

"state":"new",
" _links":{
"self":{

"href":"\/api\/v1\/payments\/2"
}I
"payment-method": {
"href":"\/api\/v1l\/payment-methods\/cash_on_delivery"
}I
"order": {
"href":"\/api\/v1\/orders\/2"

(continues on next page)

5.1. The REST API Reference 319

Sylius

(continued from previous page)

}
1,

"shipments": [
{
"id":2,
"state":"ready",
"method": {
"id":3,
"code":"fedex",
"enabled":true,
" _links":{
"self":{
"href":"\/api\/v1\/shipping-methods\/fedex"
}I
"zone": {
"href":"\/api\/v1\/zones\/US"
}
}
}I
" _links":{
"self":({

"href":"\/api\/v1\/shipments\/2"
}I
"method" : {
"href":"\/api\/v1l\/shipping-methods\/fedex"
}I
"order": {
"href":"\/api\/v1\/orders\/2"
}

}
]I
"currencyCode":"USD",
"localeCode":"en_Us",
"checkoutState":"completed"

5.1.10 Exchange Rates API

These endpoints will allow you to easily manage exchange rates. Base URI is /api/vi/exchange-rates.

Exchange Rate API response structure

If you request an exchange rate via API, you will receive an object with the following fields:

320 Chapter 5. The REST API Reference

Sylius

Field Description

id Id of the exchange rate

ratio Exchange rate’s ratio

sourceCurrency | The currency object serialized with the default data
targetCurrency | The currency object serialized with the default data
updatedAt Last update date of the exchange rate

If you request for more detailed data, you will receive the default data with the additional field:

Field Description
createdAt | Creation date date of the exchange rate

Creating an Exchange Rate

To create a new exchange rate you will need to call the /api/v1/exchange-rates/ endpoint with the POST
method.

Definition

POST /api/vl/exchange-rates/

Example

Parameter Parameter type | Description

Authorization header Token received during authentication
ratio request Ratio of the Exchange Rate
sourceCurrency | request The source currency

targetCurrency | request The target currency

$ curl http://demo.sylius.com/api/vl/exchange-rates/ \

—-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \

-X POST \
—-—-data '
{
"ratio": "0,8515706",
"sourceCurrency": "EUR",
"targetCurrency": "GBP"

Tip: Remember that before you will be able to add a new exchange rate, both currencies have to be already defined.

5.1. The REST API Reference 321

Sylius

Exemplary Response

STATUS: 201 CREATED

nidn: 1,
"ratio":0.85157,
"sourceCurrency": {

nid":2 ,

"code" : "EUR" ,

" links":{

"self":{
"href":"\/api\/v1\/currencies\/EUR"

by
"targetCurrency": {
"id":3,
"code":"GBP",
" links":{
"self": {
"href":"\/api\/v1l\/currencies\/GBP"

}I
"updatedAt":"2017-02-23T15:00:53+0100",
" _links":{
"self":{
"href":"\/api\/vl\/exchange-rates\/EUR-GBP"

If you try to create an exchange rate without required fields you will receive a 400 Bad Request error.

Example

$ curl http://demo.sylius.com/api/vl/exchange-rates/ \
—-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X POST

Exemplary Response

STATUS: 400 Bad Request

{

"code":400,

"message":"Validation Failed",

"errors": {

"errors": [
"The source and target currencies must differ."
(continues on next page)

322

Chapter 5. The REST API Reference

Sylius

(continued from previous page)

J 14
"children": {
"ratio": {
"errors": [
"Please enter exchange rate ratio."

by
"sourceCurrency": {
"errors": |
"This value is not valid."

by
"targetCurrency": {
"errors": [
"This value is not valid."

Getting a Single Exchange Rate

To retrieve the details of an exchange rate you will need to call the /api/vl/exchange-rates/
{firstCurrencyCode}-{secondCurrencyCode} endpoint with the GET method.

Definition

GET /api/vl/exchange-rates/{firstCurrencyCode}-{secondCurrencyCode}

Parameter Parameter type | Description

Authorization header Token received during authentication
firstCurrencyCode url attribute First currency code
secondCurrencyCode | url attribute Second currency code

Example

To see the details of the exchange rate between Euro (code = EUR) and British Pound (code = GBP)
use the below method:

$ curl http://demo.sylius.com/api/vl/exchange-rates/EUR-GBP \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The EUR and GBP codes are just an example.

5.1. The REST API Reference 323

Sylius

Exemplary Response

STATUS: 200 OK

"id":1,
"ratio":0.85157,
"sourceCurrency": {

"id":2,

"code":"EUR",

" links":{

"self": {
"href":"\/api\/v1l\/currencies\/EUR"

}l
"targetCurrency": {
"id":3,
"code":"GBP",
" links":{
"self": {
"href":"\/api\/v1l\/currencies\/GBP"

}l
"updatedAt":"2017-02-23T15:00:53+0100",
"_links":{
"self": {
"href":"\/api\/vl\/exchange-rates\/EUR-GBP"

Warning: The order of currencies in a request is not important. It doesn’t matter if you will request the exchange
rate for EUR-GBP or GBP-EUR the response will always be the same (including source and target currencies).

Collection of Currencies

To retrieve a paginated list of exchange rates you will need to call the /api/v1/exchange-rates/ endpoint with
the GET method.

Definition

GET /api/vl/exchange-rates/

Parameter Parameter type | Description

Authorization | header Token received during authentication

page query (optional) Number of the page, by default = 1

paginate query (optional) Number of items to display per page, by default = 10

To see the first page of all exchange rates use the below method:

324 Chapter 5. The REST API Reference

Sylius

Example

$ curl http://demo.sylius.com/api/vl/exchange-rates/ \
—-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

"page":1,
"limit":10,
"pages":1,
"total":1,
" _links": {
"self":{
"href":"\/api\/vl\/exchange-rates\/?page=1l&limit=10"
}I
"first":{
"href":"\/api\/vl\/exchange-rates\/?page=1&limit=10"
}I
"last":{
"href":"\/api\/vl\/exchange-rates\/?page=1&limit=10"

}I
"_embedded" : {
"items": [
{
"id":1,
"ratio":0.85157,
"sourceCurrency": {
"id":2,
"code":"EUR",
" links":{
"self":{
"href":"\/api\/v1l\/currencies\/EUR"

}I
"targetCurrency": {
"id":3,
"code":"GBP",
" links":{
"self":{
"href":"\/api\/v1l\/currencies\/GBP"

b
"updatedAt":"2017-02-23T15:00:53+0100",

" _links":{
"self":{
"href":"\/api\/vl\/exchange-rates\/EUR-GBP"

(continues on next page)

5.1. The REST API Reference

325

Sylius

(continued from previous page)

Updating an Exchange Rate

To update an exchange rate you will need to «call the /api/vl/exchange-rates/
firstCurrencyCode-secondCurrencyCode endpoint with the PUT method.

Definition

PUT /api/vl/exchange-rates/{firstCurrencyCode}—-{secondCurrencyCode}

Parameter Parameter type | Description

Authorization header Token received during authentication
firstCurrencyCode url attribute First currency code
secondCurrencyCode | url attribute Second currency code

ratio request Ratio of the Exchange Rate

Example

$ curl http://demo.sylius.com/api/vl/exchange-rates/EUR-GBP \
-H "Authorization: Bearer SampleToken" \
-H "Content-Type: application/json" \
-X PUT \
—-—-data '
{
"ratio": "0,9515706"

Exemplary Response

STATUS: 204 No Content

If you try to update an exchange rate without the required fields you will receive a 400 Bad Request error.

Example

$ curl http://demo.sylius.com/api/vl/exchange-rates/EUR-GBP \
—-H "Authorization: Bearer SampleToken" \
—-H "Content-Type: application/json" \
-X PUT

326 Chapter 5. The REST API Reference

Sylius

Exemplary Response

STATUS: 400 Bad Request

"code":400,
"message":"Validation Failed",
"errors": {
"children": {
"ratio": {
"errors": |
"Please enter exchange rate ratio."

I
"sourceCurrency": {

}y
"targetCurrency": {

Deleting an Exchange Rate

To delete an exchange rate you will need to «call the /api/vl/exchange-rates/
firstCurrencyCode-secondCurrencyCode endpoint with the DELETE method.

Definition

DELETE /api/vl/exchange-rates/{firstCurrencyCode}—-{secondCurrencyCode}

Parameter Parameter type | Description

Authorization header Token received during authentication
firstCurrencyCode url attribute First currency code
secondCurrencyCode | url attribute Second currency code

Example

$ curl http://demo.sylius.com/api/vl/exchange-rates/EUR-GBP \
-H "Authorization: Bearer SampleToken" \
—-H "Accept: application/json" \
-X DELETE

Exemplary Response

5.1. The REST API Reference 327

Sylius

STATUS: 204 No Content

5.1.11 Locales API

These endpoints will allow you to easily manage locales. Base URI is /api/vI/locales.

Locale API response structure

If you request a locale via API, you will receive an object with the following fields:

Field | Description
id Id of the locale
code | Unique locale identifier

If you request for more detailed data, you will receive an object with the following fields:

Field Description
id Id of the locale
code Unique locale identifier

updatedAt | Last update date of the locale
createdAt | Creation date of the locale

Note: Read more about Locales in the component docs.

Creating a Locale

To create a new locale you will need to call the /api/v1/locales/ endpoint with the POST method.

Definition

POST /api/vl/locales/

Parameter Parameter type | Description
Authorization | header Token received during authentication
code request (unique) Locale identifier

Example

$ curl http://demo.sylius.com/api/vl/locales/ \
-H "Authorization: Bearer SampleToken" \
—-H "Content-Type: application/json" \
-X POST \
-—-data '

(continues on next page)

328 Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"code": "pl"

Exemplary Response

STATUS: 201 CREATED

"id": 4,
"code": "pl",
"createdAt": "2017-02-14T12:49:38+0100",
"updatedAt": "2017-02-14T12:49:39+0100",
" links": {
"self": {
"href": "\/api\/v1\/locales\/pl"

If you try to create a locale without code you will receive a 400 Bad Request error.

Example

$ curl http://demo.sylius.com/api/vl/locales/ \
-H "Authorization: Bearer SampleToken" \
—-H "Content-Type: application/json" \
—X POST

Exemplary Response

STATUS: 400 Bad Request

"code": 400,
"message": "Validation Failed",
"errors": {
"children": {
"code": {
"errors": |
"Please enter locale code."

5.1. The REST API Reference 329

Sylius

Getting a Single Locale

To retrieve the details of a locale you will need to call the /api/v1/locales/code endpoint with the GET method.

Definition

GET /api/vl/locales/{code}

Parameter Parameter type | Description
Authorization | header Token received during authentication
code url attribute Code of the requested locale

Example

To see the details of the locale with code = pl use the below method:

$ curl http://demo.sylius.com/api/vl/locales/pl \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The pl code is just an example. Your value can be different.

Exemplary Response

STATUS: 200 OK

"id": 4,
"code": "pl",
"createdAt": "2017-02-14T12:49:38+0100",
"updatedAt": "2017-02-14T12:49:39+0100",
" links": {
"self": {
"href": "\/api\/vl1\/locales\/pl"

Collection of Locales

To retrieve a paginated list of locales you will need to call the /api/v1/locales/ endpoint with the GET method.

Definition

GET /api/vl/locales/

330 Chapter 5. The REST API Reference

Sylius

Parameter Parameter type

Description

Authorization | header

Token received during authentication

page query

(optional) Number of the page, by default = 1

paginate query

(optional) Number of items to display per page, by default = 10

To see the first page of all locales use the below method:

Example

$ curl http://demo.sylius.com/api/vl/locales/ \
—-H "Authorization: Bearer SampleToken" \

-H "Accept: application/json"

Exemplary Response

STATUS: 200 OK

"page": 1,

"limit": 10,

"pages": 1,

"total": 3,

" links": {
"self": {

"href": "\/api\/vl\/locales\/?page=1&limit=10"

b
"first": {

"href": "\/api\/vl\/locales\/?page=1&limit=10"

b
"last": {

"href": "\/api\/vl\/locales\/?page=1&limit=10"

}I
" _embedded": {
"items": [
{
"id": 2,
"code": "en_US",
" links": {
"self": {
"href":

"id": 3,
llcodell : "af"’
" links": {
"self": {
"href":

"\/api\/v1\/locales\/en_US"

"\/api\/v1\/locales\/af"

(continues on next page)

5.1. The REST API Reference

331

Sylius

(continued from previous page)

nid": 4,
"code" . "pl " ,
" _links": {
"self": {
"href": "\/api\/vl1\/locales\/pl"

Deleting a Locale

To delete a locale you will need to call the /api/v1/locales/code endpoint with the DELETE method.

Definition

DELETE /api/vl/locales/{code}

Parameter Parameter type | Description
Authorization | header Token received during authentication
code url attribute Code of the removed locale

Example

$ curl http://demo.sylius.com/api/vl/locales/pl \
—-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
—X DELETE

Exemplary Response

STATUS: 204 No Content

5.1.12 Orders API

Sylius orders API endpoint is /api/vi/orders.

If you request an order via API, you will receive an object with the following fields:

332 Chapter 5. The REST API Reference

Sylius

Field Description

id 1d of the order

items List of items related to the order

itemsTotal Sum of all items prices

adjustments List of adjustments related to the order
adjustmentsTotal Sum of all order adjustments

total Sum of items total and adjustments total
customer Customer detailed serialization for order
channel Default channel serialization

currencyCode Currency of the order

checkoutState State of the checkout process

state State of the order

checkoutCompletedAt | Date when the checkout has been completed
number Serial number of the order

shippingAddress Detailed address serialization
billingAddress Detailed address serialization

shipments Detailed serialization of all related shipments
payments Detailed serialization of all related payments

Orders endpoint gives an access point to finalized carts, so to the orders that have been placed. At this moment only
certain actions are allowed:

Action Description

Show Presenting of the order
Cancelling Cancelling of the order
Shipping Shipping of the order
Completing the payment | Complete the order’s payment

Show Action

You can request detailed order information by executing the following request:

Definition

GET /api/vl/orders/{id}

Parameter Parameter type | Description
Authorization | header Token received during authentication
id url attribute 1d of the requested order

Example

$ curl http://demo.sylius.com/api/vl/orders/21 \
-H "Authorization: Bearer SampleToken" \
—-H "Accept: application/json"

5.1. The REST API Reference 333

Sylius

Note: The value 2/ was taken from previous responses, where we managed the cart and proceed the checkout. Your

value can be different. If you need more information about Cart API please, check this article.

Exemplary Response

STATUS:

200 OK

nidvio1,

"checkoutCompletedAt":"2017-02-15T13:31:33+0100",
"number":"000000021",
"items": [

{

"id":74,
"quantity":1,
"unitPrice":100000,
"total":100000,
"units": [
{
"id":228,
"adjustments": [

J 4
"adjustmentsTotal": 0,
" links":{
"order": {
"href":"\/api\/v1\/orders\/21"

I
"unitsTotal":100000,
"adjustments": [

]I
"adjustmentsTotal": 0,
"variant": {
"id":331,
"code" :"MEDIUM_ MUG_CUP",
"optionValues": [
{
"name":"Mug type",
"code": "mug_type_medium"

]I
"position":2,
"translations": {

"en US": {
"locale":"en_US",
"id":331,
"name" : "Medium Mug"

bo
"version": 1,

(continues on next page)

334

Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"onHold": O,
"onHand":10,
"tracked":false,
"channelPricings": {
"US_WEB" : {
"channelCode":"US_WER",
"price":100000

}o
" links":{
"self": {
"href":"\/api\/vl1\/products\/5\/variants\/331"
s
"product": {
"href":"\/api\/vl1\/products\/5"

by
" links":{
"product": {
"href":"\/api\/v1l\/products\/5"
by
"variant": {
"href":"\/api\/v1\/products\/5\/variants\/331"

]I
"itemsTotal":100000,
"adjustments": [
{
"id":252,
"type":"shipping",
"label":"DHL Express",
"amount" :3549

]I
"adjustmentsTotal":3549,
"total":103549,
"state":"new",
"customer": {

"id":1,
"email":"shop@example.com",
"emailCanonical":"shoplexample.com",

"firstName":"John",
"lastName":"Doe",
llgenderll : llu n ,

"user": {
"id":1,
"username": "shoplexample.com",
"usernameCanonical":"shop@example.com",
"roles": [
"ROLE_USER"

1,
"enabled" :true
by

" links":{

(continues on next page)

5.1. The REST API Reference

335

Sylius

(continued from previous page)

by

"self":{

"href":"\/api\/v1\/customers\/1"

"channel": {
"id":1,

"code":"US_WEB",

"name" :"US Web Store",
"hostname":"localhost",

"color":

"MediumPurple",

"createdAt":"2017-02-14T11:10:02+0100",

"updatedAt":
"enabled" :true,

"2017-02-14T11:10:02+0100",

"taxCalculationStrategy":"order_ items_based",
" links":{

}y

"shippingAddress": {

"self": {

"href":"\/api\/v1\/channels\/1"

"id":71,
"firstName":"Frederick D.",
"lastName":"Gregory",
"countryCode":"US",

"street":"300 E St sw",
"eity":"\u2019Washington",
"postcode":"DC 20546",
"createdAt":"2017-02-14T11:55:40+0100",

"updatedAt":

b

"billingAddress": {

"id":72,
"firstName":"Frederick D.",
"lastName":"Gregory",

"countryCode":

"2017-02-14T17:00:17+0100"

"US",

"street":"300 E St sw",

"city":
"postcode":

"\u2019Washington",
"DC 20546",

"createdAt":"2017-02-14T11:55:40+0100",
"updatedAt":"2017-02-14T17:00:17+0100"

}I
"payments": [
{
"id":21,
"method" : {
"id":2,
"code":"bank_transfer",
"createdAt":"2017-02-14T11:10:02+0100",

"updatedAt":"2017-02-14T11:10:02+0100",

"channels": [

{

"id":1,
"code":"US_WEB",
"name":"US Web Store",
"hostname":"localhost",

(continues on next page)

336

Chapter 5. The REST API Reference

Sylius

(continued from previous page)

"color":"MediumPurple",
"createdAt":"2017-02-14T11:10:02+0100",
"updatedAt":"2017-02-14T11:10:02+0100",
"enabled":true,
"taxCalculationStrategy":"order items_based",
" _links":{
"self": {
"href":"\/api\/vl\/channels\/1"

1,
" links":{
"self":{
"href":"\/api\/vl\/payment-methods\/bank_transfer"

}l
"amount":103549,
"state":"new",
"createdAt":"2017-02-14T11:53:41+0100",
"updatedAt":"2017-02-15T13:31:33+0100",
"_links":{
"self": {
"href":"\/api\/v1\/payments\/21"
}o
"payment-method" : {
"href":"\/api\/vl\/payment-methods\/bank_transfer"
o
"order": {
"href":"\/api\/v1\/orders\/21"

1,

"shipments": [
{
"id":21,
"state":"ready",
"method": {

"id":2,
"code":"dhl_ express",
"category requirement":1,
"calculator":"flat_rate",
"configuration": {
"US_WEB" : {
"amount" :3549

}’
"createdAt":"2017-02-14T11:10:02+0100",
"updatedAt":"2017-02-14T11:10:02+0100",
"enabled" :true,
" _links": {
"self":{
"href":"\/api\/v1\/shipping-methods\/dhl_express"
}I

"zone": {

(continues on next page)

5.1. The REST API Reference 337

Sylius

(continued from previous page)

"href":"\/api\/v1\/zones\/US"

by

"createdAt":"2017-02-14T11:53:41+0100",
"updatedAt":"2017-02-15T13:31:33+0100",
" links":{

"self":{

"href":"\/api\/v1\/shipments\/21"
by
"method" : {

by
"order" : {
"href":"\/api\/v1l\/orders\/21"

1,

"currencyCode":"USD",
"localeCode":"en_US",
"checkoutState":"completed"

"href":"\/api\/v1\/shipping-methods\/dhl_express"

Cancel Action

You can cancel an already placed order by executing the following request:

Definition

PUT /api/vl/orders/{id}/cancel

Parameter Parameter type | Description

Authorization | header Token received during authentication

id url attribute 1d of the requested order

Example

$ curl http://demo.sylius.com/api/vl/orders/21/cancel \
—-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json" \
-X PUT

Exemplary Response

STATUS: 204 NO CONTENT

338 Chapter 5. The REST API Reference

Sylius

Ship Action

You can ship an already placed order by executing the following request:

Definition

PUT /api/vl/orders/{orderId}/shipments/{id}/ship

Parameter Parameter type | Description

Authorization | header Token received during authentication
orderld url attribute Id of the requested order

id url attribute Id of the shipped shipment

tracking request (optional) The tracking code of the shipment

Example

$ curl http://demo.sylius.com/api/vl/orders/21/shipments/21/ship \
-H "Authorization: Bearer SampleToken" \
—-H "Accept: application/json" \
-X PUT

Exemplary Response

STATUS:

204 No Content

Note: It is important to emphasise that in this example the shipment id is the same value as for the order, but it is a
coincidence rather than a rule.

Complete The Payment Action

You can complete the payment of an already placed order by executing the following request:

Definition

PUT /api/vl/orders/{orderId}/payments/{id}/complete

Parameter

Parameter type | Description

Authorization | header

Token received during authentication

orderld

url attribute

1d of the requested order

id

url attribute

Id of payment to complete

5.1. The REST API Reference

339

Sylius

Example

$ curl http://demo.sylius.com/api/vl/orders/21/payments/21/complete \
-H "Authorization: Bearer SampleToken" \
—-H "Accept: application/json" \

-X PUT

Exemplary Response

STATUS: 204 No content

5.1.13 Payment Methods API

These endpoints will allow you to easily manage payment methods. Base URI is /api/vi/payment-methods.

Payment Method API response structure

If you request a payment method via API, you will receive an object with the following fields:

Field

Description

id

Unique id of the payment method

code

Unique code of the payment method

name

The payment method’s name

createdAt

Date of creation

updatedAt

Date of the last update

Note: Read more about Payment Methods in the component docs.

Getting a Single Payment Method

To retrieve the details of a payment method you will need to call the /api/v1/payment-methods/code end-

point with the GET method.

Definition

GET /api/vl/payment-methods/{code}

Parameter Parameter type | Description
Authorization | header Token received during authentication
code url attribute Code of the requested payment method

340

Chapter 5. The REST API Reference

Sylius

Example

To see the details of the payment method with code = cash_on_delivery use the below method:

$ curl http://demo.sylius.com/api/vl/payment-methods/cash_on_delivery \

-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The cash_on_delivery code is just an example. Your value can be different.

Exemplary Response

STATUS: 200 OK

"id": 1,

"code": "cash_on_delivery",

"position": O,

"createdAt": "2017-02-24T16:14:03+0100",

"updatedAt": "2017-02-24T16:14:03+0100",
"enabled": true,

"translations": {
"en_US": {
"locale": "en_US",
"id": 1,
"name": "Cash on delivery",
"description": "Rerum expedita sit aut praesentium soluta
}
}I
"channels": |
{
"id": 1,
"code": "US_WEB",
"name": "US Web Store",
"hostname": "localhost",
"color": "SlateBlue",
"createdAt": "2017-02-24T16:14:03+0100",

"updatedAt": "2017-02-24T16:14:03+0100",
"enabled": true,

"taxCalculationStrategy": "order_ items_based",
" _links": {
"self": {
"href": "\/api\/v1l\/channels\/US_WEB"
}
}
}
]I
" links": {
"self": {
"href": "\/api\/v1l\/payment-methods\/cash_on_delivery"

sint aperiam.

5.1. The REST API Reference

341

Sylius

5.1.14 Payments API

These endpoints will allow you to easily present payments. Base URI is /api/v1/payments.

Payment API response structure

If you request a payment via API, you will receive an object with the following fields:

Field Description

id Unique id of the payment

method The payment method object serialized for the cart
amount The amount of payment

state State of the payment process

_links[self] Link to itself

_links[payment-method] | Link to the related payment method

_links[order] Link to the related order

Note: Read more about Payments in the component docs.

Getting a Single Payment

To retrieve the details of a payment you will need to call the /api/v1l/payments/{id} endpoint with the GET

method.

Definition

GET /api/vl/payments/{id}

Parameter Parameter type | Description
Authorization | header Token received during authentication
id url attribute 1d of the requested payment

Example

To see the details of the payment with id = 20 use the below method:

$ curl http://demo.sylius.com/api/vl/payments/20 \
-H "Authorization: Bearer SampleToken" \
-H "Accept: application/json"

Note: The 20 id is just an example. Your value can be different.

342 Chapter 5. The REST API Reference

Sylius

Exemplary Response

STATUS: 200 OK

"id":20,
"method" : {
"id":2,
"code":"bank_transfer",
"channels": [
{
"id":1,
"code":"US_WEBR",
"name" :"US Web Store",
"hostname":"localhost",
"color":"DeepSkyBlue",
"createdAt":"2017-02-26T11:31:19+0100",
"updatedAt":"2017-02-26T11:31:19+0100",
"enabled" :true,
"taxCalculationStrategy":"order_ items_based",
" links":{
"self": {
"href":"\/api\/vl\/channels\/US_WEB"
}
}
}
J 14
" links":{

"self":{
"href":"\/api\/v1\/payment-methods\/bank_transfer"

b
"amount":4507,

"state":"new",
" _links": {
"self":{
"href":"\/api\/v1\/payments\/20"
}V
"payment-method" : {
"href":"\/api\/v1\/payment-methods\/bank_transfer"
}V
"order": {
"href":"\/api\/v1\/orders\/20"

Collection of Payments

To retrieve a paginated list of payments you will need to call the /api/v1/payments/ endpoint with the GET
method.

5.1. The REST API Reference 343

Sylius

Definition

GET /api/vl/payments/

Parameter Parameter type | Description

Authorization header Token received during authentication

page query (optional) Number of the page, by default = 1

limit query (optional) Number of items to display per page, by default = 10

sorting[amount] query (optional) Sorting direction on the amount field (DESC/ASC)

sorting[createdAt] | query (optional) Sorting direction on the createdAt field (ASC by default)

sorting[updatedAt] | query (optional) Sorting direction on the updatedAt field (DESC/ASC)
Example

To see the first page of the paginated list of payments with two payments on each page use the below snippet:

$ curl http://demo.sylius.com/api/vl/payments/\?1limit\=2 \

-H "Authorization:
—-H "Accept:

application/json"

Bearer Sam