
SwitchTimeOpt.jl Documentation
Release 0.1

Bartolomeo Stellato

December 06, 2016

Contents

1 Installation 3

2 Quick Example 5

3 Optimization 7
3.1 Problem Definition . 7
3.2 Problem Solution . 9

4 Simulation 11
4.1 Additional Functions for Nonlinear Dynamics . 11

5 Citing this package 13

i

ii

SwitchTimeOpt.jl Documentation, Release 0.1

SwitchTimeOpt.jl is a Julia package to easily define and efficiently solve switching time optimization (STO) problems
for linear and nonlinear systems. SwitchTimeOpt.jl supports a wide variety of nonlinear solvers through MathProg-
Base.jl interface such as Ipopt, KNITRO, NLopt.

Contents 1

https://github.com/JuliaLang/julia/
https://github.com/JuliaOpt/MathProgBase.jl/
https://github.com/JuliaOpt/MathProgBase.jl/
https://github.com/JuliaOpt/Ipopt.jl/
https://github.com/JuliaOpt/KNITRO.jl/
https://github.com/JuliaOpt/NLopt.jl/

SwitchTimeOpt.jl Documentation, Release 0.1

2 Contents

CHAPTER 1

Installation

You can easily install the package by running

Pkg.add("SwitchTimeOpt")

This does not automatically install any nonblinear solver. To install, for example, Ipopt, just run

Pkg.add("Ipopt")

To install other solvers we refer the user to the JuliaOpt page.

3

https://github.com/JuliaOpt/Ipopt.jl/
http://www.juliaopt.org/

SwitchTimeOpt.jl Documentation, Release 0.1

4 Chapter 1. Installation

CHAPTER 2

Quick Example

Consider the switching time optimization problem in the form

minimize
𝜏

∫︀ 𝑡𝑓
𝑡0

‖𝑥(𝑡)‖22 d𝑡

subject to 𝑥̇(𝑡) =

{︃
𝐴0𝑥(𝑡) 𝑡 < 𝜏

𝐴1𝑥(𝑡) 𝑡 ≥ 𝜏

𝑥(0) = 𝑥0

0 ≤ 𝜏 ≤ 𝑇

with variable 𝜏 ∈ R, the dynamics defined by matrices 𝐴0, 𝐴1 ∈ R𝑛×𝑛 and the initial state 𝑥0 ∈ R𝑛.

This problem can be solved by SwitchTimeOpt.jl as follows

using SwitchTimeOpt
using Ipopt

Time Interval
t0 = 0.0; tf = 1.0

Initial State
x0 = [1.0; 1.0]

Dynamics
A = Array(Float64, 2, 2, 2)
A[:, :, 1] = randn(2, 2) # A_0 matrix
A[:, :, 2] = randn(2, 2) # A_1 matrix

Create Problem
m = stoproblem(x0, A, t0=t0, tf=tf)

Solve Problem
solve!(m)

Get optimal Solution
tauopt = gettau(m)

Get optimum value
objval = getobjval(m)

5

SwitchTimeOpt.jl Documentation, Release 0.1

6 Chapter 2. Quick Example

CHAPTER 3

Optimization

We now describe the interface for defining and solving switching time optimization problems.

3.1 Problem Definition

This package allows us to define and solve problems in the form

minimize
𝛿

∫︀ 𝑇𝛿

𝑡0
𝑥(𝑡)⊤𝑄𝑥(𝑡) d𝑡 + 𝑥(𝑇𝛿)⊤𝑄𝑥(𝑇𝛿)

subject to 𝑥̇(𝑡) = 𝑓𝑖(𝑥(𝑡)) 𝑡 ∈ [𝜏𝑖, 𝜏𝑖+1) 𝑖 = 0, . . . , 𝑁
𝑥(0) = 𝑥0

𝛿 ∈ ∆

where the decision variable is the vector of 𝑁 + 1 intervals 𝛿 =
[︀
𝛿0 . . . 𝛿𝑁

]︀⊤ ∈ R𝑁+1 such that 𝛿𝑖 = 𝜏𝑖+1 − 𝜏𝑖.
Each interval 𝛿𝑖 defines how long the 𝑖-th dynamics are active. The state trajectory is 𝑥(𝑡) ∈ R𝑛. The value 𝑇𝛿 is
defined as the final time when intervals 𝛿 are applied, i.e.

𝑇𝛿 =

𝑁∑︁
𝑖=0

𝛿𝑖.

The set ∆ defines the set of feasible intervals

∆ =
{︀
𝛿 ∈ R𝑁+1

⃒⃒
𝑇𝛿 = 𝑇 ∧ 0 ≤ 𝑙𝑏𝑖 ≤ 𝛿𝑖 ≤ 𝑢𝑏𝑖 ∀𝑖

}︀
The variable 𝑇 defines the desired final time of the interval. The scalars 𝑙𝑏𝑖 and 𝑢𝑏𝑖 define additional constraints on
the interval in case we would like to have a minimum or a maximum time in which the 𝑖-th dynamics are active.

3.1.1 Linear Dynamics

In case when the dynamics are linear of the form

𝑥̇(𝑡) = 𝐴𝑖𝑥(𝑡), 𝑡 ∈ [𝜏𝑖, 𝜏𝑖+1)

we can define a 3-dimensional matrix A whose slices A[:,:,i] represent dynamics 𝐴𝑖−1:

A = Array(Float64, n, n, N+1)
A[:, :, i] = ... # Dynamics A_{i-1}
...

The switching time optimization problem can be quickle defined as

7

SwitchTimeOpt.jl Documentation, Release 0.1

p = stoproblem(x0, A)

Where x0 is the initial state vector 𝑥0 and A is the 3-dimensional matrix defining the dynamics.

3.1.2 Noninear Dynamics

Given a nonlinear system defined by dynamics

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))

where 𝑢(𝑡) the input vector assuming integer values 𝑢𝑖 between switching instants

𝑢(𝑡) = 𝑢𝑖 𝑡 ∈ [𝜏𝑖, 𝜏𝑖+1),

we can define our switched nonlinear system as

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢𝑖) = 𝑓𝑖(𝑥(𝑡)) 𝑡 ∈ [𝜏𝑖, 𝜏𝑖+1).

To create the optimization problem we need to define the nonlinear dynamics by means of an additional function

function nldyn(x, ui)
...

end

returning the vector of states derivatives. The variable x is the state 𝑥(𝑡) and ui is the input vector 𝑢𝑖. Moreover, we
need to define the jacobian of the switched dynamics with respect to the system states

𝐽𝑓𝑖 =
𝜕𝑓𝑖(𝑥(𝑡))

𝜕𝑥(𝑡)

by means of an additional function

function jac_nldyn(x, ui)
...

end

Note that the function jac_nldyn returns a matrix having in each row the gradient of every component of the
function 𝑓𝑖(𝑥(𝑡)) with respect to each state component. Last element necessary to construct the matrix U having a
column each integer input vector ui. Then, we can define the switching time optimization problem as:

p = stoproblem(x0, nldyn, jac_nldyn, U)

Note: The nonliner switched system optimization operates by introducing additional linearization points at an equally
spaced linearization grid. To set the number of linearization points to 100 for example, it is just necessary to add an
extra argument to the previous function call as follows:

p = stoproblem(x0, nldyn, jac_nldyn, U, ngrid = 100)

where ngrid defines the number of linearization points.

3.1.3 Optional Arguments

There are many additional keyword arguments that can be be passed to the stoproblem(...) function to cus-
tomize the optimization problem.

8 Chapter 3. Optimization

SwitchTimeOpt.jl Documentation, Release 0.1

Parameter Description Default value
t0 Initial Time 𝑡0 0.0
tf Final Time 𝑡0 1.0
Q Cost matrix 𝑄 eye(n)
lb Vector of lower bounds 𝑙𝑏𝑖 zeros(N+1)
ub Vector of lower bounds 𝑢𝑏𝑖 Inf*ones(N+1)
tau0ws Warm starting initial switching times Equally spaced between t0 and tf
solver MathProgbase.jl solver IpoptSolver()

3.2 Problem Solution

Once the problem is defined, it can be solved by simply running

solve!(p)

3.2.1 Choosing Solver

Any NLP solver supported by JuliaOpt may be used through MathProgBase.jl interface. The default solver is Ipopt.
To use KNITRO solver with the linear example, it is just necessary to specify an AbstractMathProgSolver
object (see here for more details) when the problem is created

using KNITRO
p = stoproblem(x0, A, solver = KnitroSolver())

All the solver-specific options can be passed when creating the AbstractMathProgSolver object: algorithm
types (first/second order methods), tolerances, verbosity and so on.

3.2.2 Obtaining Results

The optimal cost function and the optimal switching times and intervals can be obtained as follows:

objval = getobjval(p)
tauopt = gettau(p)
deltaopt = getdelta(p)

We can get the execution time (including the time for the function calls) and the status of the solver by executing:

stat = getstat(p)
soltime = getsoltime(p)

3.2.3 Optimizing in a Loop

The toolbox is suited for receeding horizon implementations. To run the optimization in a loop it is just necessary to
update the value of the current state x0 and to update the warm starting point tau0ws which is usually chosen as the
optimal solution at the previous optimizaton.

To set the initial state at x0 it is just necessary to return

setx0!(m, x0)

We can set the warm starting point at tau0ws with

3.2. Problem Solution 9

http://www.juliaopt.org/
https://github.com/JuliaOpt/MathProgBase.jl/
https://github.com/JuliaOpt/Ipopt.jl/
https://github.com/JuliaOpt/KNITRO.jl/
http://mathprogbasejl.readthedocs.io/en/latest/solvers.html

SwitchTimeOpt.jl Documentation, Release 0.1

setwarmstart!(m, tau0ws)

10 Chapter 3. Optimization

CHAPTER 4

Simulation

The system can be simulated with the obtained switching times by running

x, xsw, optval, t = simulate(m)
x, xsw, optval, t = simulate(m, tau) # Specify switching time vector
x, xsw, optval, t = simulate(m, tau, t) # Specify switching times and time vectors

The outputs of the simulation are

• x State trajectory. Each 𝑥(𝑡) can be obtained as x[:, i]

• xsw States at each switching time. Each 𝑥(𝜏𝑖) can be obtained as xsw[:, i]

• optval Simulated value function optimum

• t Time vector during the simulation

4.1 Additional Functions for Nonlinear Dynamics

In case of nonlinear dynamics it is possible to simulate the system linearized at the linearization points obtained after
the optimization

x, xsw, optval, t = simulatelinearized(m)
x, xsw, optval, t = simulatelinearized(m, tau, t) # Specify switching times time vector

In addition, it is possible to easily obtain the input vector trajectory at each time instant by running

u, t = simulateinput(m)
u, t = simulateinput(m, t) # Specify time vector

Each vector 𝑢(𝑡) can be obtained by slicing the output u[:, i].

11

SwitchTimeOpt.jl Documentation, Release 0.1

12 Chapter 4. Simulation

CHAPTER 5

Citing this package

If you use SwitchTimeOpt.jl for published work, we encourage you to cite the following paper:

@article{2016arXiv160808597S,
author = {{Stellato}, B. and {Ober-Bl{\"o}baum}, S. and {Goulart}, P.~J.},
title = "{Second-Order Switching Time Optimization for Switched Dynamical Systems}",
journal = {ArXiv e-prints},
archivePrefix = "arXiv",
eprint = {1608.08597},
primaryClass = "math.OC",
keywords = {Mathematics - Optimization and Control},
year = 2016,
month = aug

}

13

http://arxiv.org/abs/1608.08597/

	Installation
	Quick Example
	Optimization
	Problem Definition
	Problem Solution

	Simulation
	Additional Functions for Nonlinear Dynamics

	Citing this package

