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Modular Genomic Variant Calling Workflow in Swift/T

Genomic variant discovery is widely performed using the GATK’s 
Variant Calling Best Practices pipeline, a complex workflow with 
multiple steps, fans/merges, and conditionals. Managing the 
workflow can be difficult on a computer cluster, especially when 
running in parallel on large batches of data. One potential 
solution is monolithic implementations that replace the 
multi-stage workflow with a single executable. While such 
implementations exist, they may not be sufficiently flexible to 
accommodate nuances of analysis particular to different species, 
types of sequencing, and research objectives. Here, we present a 
scalable GATK-based variant calling workflow written in the 
Swift/T parallel scripting language. Key built-in features include 
the flexibility to split by chromosome before variant calling, the 
option to continue the analysis when faulty samples are detected, 
and the ability to analyze multiple samples in parallel within each 
node. With its modular design, execution can easily be separated 
into multiple stages that request the resources optimal for each 
portion of the pipeline. Swift/T’s ability to operate in multiple 
cluster scheduling environments (OGE, PBS Torque, SLURM, etc.) 
enables a workflow to be trivially portable across numerous 
clusters. With these features, users have an efficient and portable 
way to scale up their variant calling analyses to run in many 
traditional HPC architectures. 

Abstract

Swift/T language lends itself to creating highly portable, modular 
and implicitly parallel workflows. It is very powerful, especially when 
a workflow consists of raw code pieces written in C, C++, Fortran, 
etc. However, it may be overkill in bioinformatics, where workflows 
consist of pre-compiled executables glued together. Portability, the 
main advantage of Swift/T, could perhaps be accomplished in 
simpler ways. The lack of support for piping between applications is 
a major drawback for big-data bioinformatics, resulting in a 
proliferation of intermediary files. 

Conclusion

Pros and Cons of Swift/T
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Key Design Principles

https://github.com/ncsa/Swift-T-Variant-Calling 
http://swift-t-variant-calling.readthedocs.io/en/latest/ 

❖ Modularity – Independent sections linked together
❖ Option to split by chromosome
❖ Extensible function definitions
❖ Logical output structure
❖ Implicit parallelism driven by dataflow
❖ Compatible with many job schedulers (PBS Torque, SLURM, 

Cray, etc.)
❖ Real-time Job Monitoring

Modularity

Extensible function definitions

Scheduling and Parallelization

Real-time Job Monitoring

Split by Chromosome

Modularity also ensures that 
the implementation of 
individual stages may be 
altered without breaking the 
workflow, as long as inputs and 
outputs remain consistent. Thus 
the workflow can be updated 
with new methodologies and 
tools as the field progresses. At 
the end of each stage, there is 
an implicit wait instruction that 
ensures all samples have 
completed that stage before 
each batch begins the next 
stage. 

Our Swift/T [1] implementation is comprised of a series of 
independent modules (“stages”) that are chained together by the 
primary workflow script. At each stage, the user can set the 
workflow to generate the output files necessary for the next stage, 
or simply pass on the output generated from a previous run. With 
this architecture, users may restart the workflow at a failed stage 
without needing to recompute successful upstream calculations, 
or run a portion of the workflow, requesting only the resources 
optimal for each particular stage.
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Swift/T runs as an MPI program that uses Turbine [4] and 
Asynchronous Dynamic Load Balancing (ADLB) [2] libraries to 
manage and distribute the workflow execution on local compute 
resources (desktop/laptop), parallel computers (clusters/HPCs), and 
distributed systems (grid/cloud). Its built-in wrappers can launch 
jobs on many common resource schedulers, such as PBS Torque, 
Cobalt, Cray/APRUN, and SLURM [5].

Testing

Step Program Options 

Alignment BWA MEM or Novoalign 
Sorting Novosort 

Marking Duplicates Samblaster, Novosort or 
Picard 

Indel Realignment 

GATK 
Base Recalibration 

Variant Calling 
Joint Genotyping 

Miscellaneous Samtools  

Tools available for the 
user to choose from in 
our implementation, for 
each stage of the 
workflow.

Table 1: 

Our implementation makes multiple tool choices available to the 
analyst at each stage of the workflow (Table 1). Although Indel 
realignment is not necessary past GATK version 3.6, it is included as 
an optional step to comply with legacy analyses, and to simplify the 
future introduction of other variant callers (i.e. UnifiedGenotyper, 
Samtools, or Platypus) that may require realignment. Additionally, 
the user is given the option to split aligned reads by chromosome 
before calling variants, to speed up analysis. 

The user is given the option to 
split aligned reads by 
chromosome before calling 
variants, as this is more 
efficient when analyzing WGS 
samples. However, when 
analyzing WES samples, the 
overhead of splitting by 
chromosome often outweighs 
the performance gain through 
increased parallelism.

❖ The greatest strength of Swift/T may be its portability: a workflow 
written in the language can be executed on a wide variety of 
compute infrastructures without changing the code, and the user 
does not need to know about the underlying scheduling 
environment on the cluster.

❖ While the implicit parallelism of Swift/T can increase the amount 
of simultaneous computation, it also increases the difficulty of 
debugging during development.

❖ The greatest drawback of Swift/T may be its inability to 
automatically shift work from one node to another after 
encountering a hardware failure. Because hardware failures 
become more likely as the number of nodes increases, this lack of 
resilience limits the scale of analysis that can be reliably 
performed with a Swift/T workflow. 

❖ Swift/T has native support for restarting failing functions for any 
reason. The restarts will happen on the same node, because 
Swift/T is not hardware-failure resilient. However, this is useful 
when applications fail for nondeterministic reasons.

❖ The dataflow task parallelism framework has a substantial 
learning curve, although it offers familiar control flow statements 
and expressions in C-like syntax [6]. Interestingly, Swift/T does 
not support piping between applications, thus we must code 
each step individually. 

❖ Swift/T abstracts away low-level concerns such as load balancing, 
inter-process communication and synchronization of tasks 
automatically through its compiler (stc) and runtime engine 
(Turbine), allowing the programmer to focus on the workflow 
design [7]. 

We successfully tested our workflow on a variety of HPC systems with 
a range of job schedulers and test datasets (Table 2). Swift/T does 
deliver on its promise of portability and parallelization. 

When analyzing many samples at once, especially in a production 
environment where the data flows continuously through the cluster, 
it pays to have a good system for logging and monitoring progress 
of the jobs. At any moment in time the analyst should be able to 
assess:

❖ Which stage of the workflow is running for every sample batch
❖ Which samples may have failed and why
❖ Which nodes the analyses are running on, and their health status. 

The underlying MPI-based implementation of Swift/T logic makes it 
possible to leverage standard MPI logging libraries to collect such 
details. We used the Message Passing Environment (MPE) library [2] 
to log the usage of the MPI library itself and ADLB calls [3], and 
implemented visualization in Jumpshot viewer. To enable such 
logging requires installation of the MPE library in addition to the 
standard Swift/T components (C-utils, ADLB library, Turbine and 
STC).

Another approach to tracking the workflow run time execution is to 
manually implement Swift/T leaf functions such that the start and 
end timing of each function are logged and a timing graph is 
generated, showing the analysis steps across samples, 
chromosomes and specific applications. This approach permits one 
to view the patterns of pipeline execution even if it fails, and partial 
logs can similarly be viewed as the pipeline is running.
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  Resource 
Manager Node Type # 

Nodes/Run Node Sharing Test Data

iForge PBS Torque
IvyBridge

1;12 No Soy NAM20 cores
256 GB RAM

Blue Waters PBS Torque

AMD Bulldozer

1;101 No

Synthetic chr 1 exome 
seq 50X32 integer cores

64 GB RAM ADSP WES 100 
samples

XSEDE 
Stampede2 Slurm

KNL

1 Yes NA12878 sample, 
(GIAB)

68 cores
4 hardware threads/core

96 GB DDR4
16 GB MCDRAM

Biocluster2 Slurm
Dell PowerEdge R620

1;3 Yes
Synthetic WES 30X

24 cores Synthetic WES 50X
384 GB RAM Synthetic WES 70X

Single server 
at CBSB. H3A 

Africa
N/A

HP Proliant dl380p gen 8
1 Yes Synthetic chr1 exome 

seq 50X24 cores
125 GRAM

Table 2: Testing Information

The dataflow programming model of Swift/T implicitly allows for 
parallel execution of tasks. Statements are evaluated in parallel 
unless prohibited by a data dependency or resource constraints, 
without the user needing to explicitly code parallelism or 
synchronization. Within the variant calling workflow, implicit 
parallelism ensures that the number of samples processed in 
parallel is constrained only by the resources requested at runtime.

Dataflow Model

In most cases, workflow 
functions are pure, i.e. 
they have no side 
effects, such as 
modifying variables 
outside the function’s 
scope. However, if a 
function has a side 
effect, one must add an 
explicit wait signal. This 
code excerpt presents 
an example where an 
explicit wait command 
is necessary.

Extensible Design

The workflow was designed to be easily extensible as long as function 
inputs and outputs remain consistent. The choice of program to use for 
a given step is made in a function defined outside of the main logic of 
the workflow.
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