
Jacob Heldenbrand*, Azza Ahmed*, Yan Asmann, Faisal M. Fadlelmola, Daniel Katz, Katherine Kendig, Matthew C. Kendzior, Tiffany Li, Yingxue Ren,
Elliott Rodriguez, Matthew R. Weber, Jennie Zermeno, Liudmila S. Mainzer

NCSA Genomics, University of Illinois at Urbana-Champaign

Modular Genomic Variant Calling Workflow in Swift/T

Genomic variant discovery is widely performed using the GATK’s
Variant Calling Best Practices pipeline, a complex workflow with
multiple steps, fans/merges, and conditionals. Managing the
workflow can be difficult on a computer cluster, especially when
running in parallel on large batches of data. One potential
solution is monolithic implementations that replace the
multi-stage workflow with a single executable. While such
implementations exist, they may not be sufficiently flexible to
accommodate nuances of analysis particular to different species,
types of sequencing, and research objectives. Here, we present a
scalable GATK-based variant calling workflow written in the
Swift/T parallel scripting language. Key built-in features include
the flexibility to split by chromosome before variant calling, the
option to continue the analysis when faulty samples are detected,
and the ability to analyze multiple samples in parallel within each
node. With its modular design, execution can easily be separated
into multiple stages that request the resources optimal for each
portion of the pipeline. Swift/T’s ability to operate in multiple
cluster scheduling environments (OGE, PBS Torque, SLURM, etc.)
enables a workflow to be trivially portable across numerous
clusters. With these features, users have an efficient and portable
way to scale up their variant calling analyses to run in many
traditional HPC architectures.

Abstract

Swift/T language lends itself to creating highly portable, modular
and implicitly parallel workflows. It is very powerful, especially when
a workflow consists of raw code pieces written in C, C++, Fortran,
etc. However, it may be overkill in bioinformatics, where workflows
consist of pre-compiled executables glued together. Portability, the
main advantage of Swift/T, could perhaps be accomplished in
simpler ways. The lack of support for piping between applications is
a major drawback for big-data bioinformatics, resulting in a
proliferation of intermediary files.

Conclusion

Pros and Cons of Swift/T

1. Wozniak JM, Armstrong TG, Wilde M, Katz DS, Lusk E, Foster IT. Swift/T: Large-Scale Application
Composition via Distributed-Memory Dataflow Processing. In: 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing. IEEE; 2013. p. 95–102.
doi:10.1109/CCGrid.2013.99.

2. Lusk EL, Pieper SC, Butler RM. More scalability, less pain: A simple programming model and its
implementation for extreme computing. SciDAC Review. 2010.

3. Wozniak JM, Chan A, Armstrong TG, et al. A model for tracing and debugging large-scale
task-parallel programs with MPE. Proc LASH-C at 2013.

4. Wozniak JM, Armstrong TG, Maheshwari K, et al. Turbine: A distributed-memory dataflow engine
for extreme-scale many-task applications. Proceedings of the 1st 2012.

5. Wozniak JM. Swift/T Sites Guide. Swift/T Sites Guide. http://swift-lang.github.io/swift- t/sites.html.
Accessed 20 Aug 2017.

6. Wozniak JM, Wilde M, Foster IT. Language Features for Scalable Distributed-Memory Dataflow
Computing. In: Data-flow Execution Models for Extreme-scale Computing. 2014.

7. Armstrong TG, Wozniak JM, Wilde M, Foster IT. Compiler techniques for massively scalable
implicit task parallelism. In: SC14: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE; 2014. p. 299–310. doi:10.1109/SC.2014.30.

References

Key Design Principles

https://github.com/ncsa/Swift-T-Variant-Calling
http://swift-t-variant-calling.readthedocs.io/en/latest/

❖ Modularity – Independent sections linked together
❖ Option to split by chromosome
❖ Extensible function definitions
❖ Logical output structure
❖ Implicit parallelism driven by dataflow
❖ Compatible with many job schedulers (PBS Torque, SLURM,

Cray, etc.)
❖ Real-time Job Monitoring

Modularity

Extensible function definitions

Scheduling and Parallelization

Real-time Job Monitoring

Split by Chromosome

Modularity also ensures that
the implementation of
individual stages may be
altered without breaking the
workflow, as long as inputs and
outputs remain consistent. Thus
the workflow can be updated
with new methodologies and
tools as the field progresses. At
the end of each stage, there is
an implicit wait instruction that
ensures all samples have
completed that stage before
each batch begins the next
stage.

Our Swift/T [1] implementation is comprised of a series of
independent modules (“stages”) that are chained together by the
primary workflow script. At each stage, the user can set the
workflow to generate the output files necessary for the next stage,
or simply pass on the output generated from a previous run. With
this architecture, users may restart the workflow at a failed stage
without needing to recompute successful upstream calculations,
or run a portion of the workflow, requesting only the resources
optimal for each particular stage.

Acknowledgements

Swift/T runs as an MPI program that uses Turbine [4] and
Asynchronous Dynamic Load Balancing (ADLB) [2] libraries to
manage and distribute the workflow execution on local compute
resources (desktop/laptop), parallel computers (clusters/HPCs), and
distributed systems (grid/cloud). Its built-in wrappers can launch
jobs on many common resource schedulers, such as PBS Torque,
Cobalt, Cray/APRUN, and SLURM [5].

Testing

Step Program Options

Alignment BWA MEM or Novoalign
Sorting Novosort

Marking Duplicates Samblaster, Novosort or
Picard

Indel Realignment

GATK
Base Recalibration

Variant Calling
Joint Genotyping

Miscellaneous Samtools

Tools available for the
user to choose from in
our implementation, for
each stage of the
workflow.

Table 1:

Our implementation makes multiple tool choices available to the
analyst at each stage of the workflow (Table 1). Although Indel
realignment is not necessary past GATK version 3.6, it is included as
an optional step to comply with legacy analyses, and to simplify the
future introduction of other variant callers (i.e. UnifiedGenotyper,
Samtools, or Platypus) that may require realignment. Additionally,
the user is given the option to split aligned reads by chromosome
before calling variants, to speed up analysis.

The user is given the option to
split aligned reads by
chromosome before calling
variants, as this is more
efficient when analyzing WGS
samples. However, when
analyzing WES samples, the
overhead of splitting by
chromosome often outweighs
the performance gain through
increased parallelism.

❖ The greatest strength of Swift/T may be its portability: a workflow
written in the language can be executed on a wide variety of
compute infrastructures without changing the code, and the user
does not need to know about the underlying scheduling
environment on the cluster.

❖ While the implicit parallelism of Swift/T can increase the amount
of simultaneous computation, it also increases the difficulty of
debugging during development.

❖ The greatest drawback of Swift/T may be its inability to
automatically shift work from one node to another after
encountering a hardware failure. Because hardware failures
become more likely as the number of nodes increases, this lack of
resilience limits the scale of analysis that can be reliably
performed with a Swift/T workflow.

❖ Swift/T has native support for restarting failing functions for any
reason. The restarts will happen on the same node, because
Swift/T is not hardware-failure resilient. However, this is useful
when applications fail for nondeterministic reasons.

❖ The dataflow task parallelism framework has a substantial
learning curve, although it offers familiar control flow statements
and expressions in C-like syntax [6]. Interestingly, Swift/T does
not support piping between applications, thus we must code
each step individually.

❖ Swift/T abstracts away low-level concerns such as load balancing,
inter-process communication and synchronization of tasks
automatically through its compiler (stc) and runtime engine
(Turbine), allowing the programmer to focus on the workflow
design [7].

We successfully tested our workflow on a variety of HPC systems with
a range of job schedulers and test datasets (Table 2). Swift/T does
deliver on its promise of portability and parallelization.

When analyzing many samples at once, especially in a production
environment where the data flows continuously through the cluster,
it pays to have a good system for logging and monitoring progress
of the jobs. At any moment in time the analyst should be able to
assess:

❖ Which stage of the workflow is running for every sample batch
❖ Which samples may have failed and why
❖ Which nodes the analyses are running on, and their health status.

The underlying MPI-based implementation of Swift/T logic makes it
possible to leverage standard MPI logging libraries to collect such
details. We used the Message Passing Environment (MPE) library [2]
to log the usage of the MPI library itself and ADLB calls [3], and
implemented visualization in Jumpshot viewer. To enable such
logging requires installation of the MPE library in addition to the
standard Swift/T components (C-utils, ADLB library, Turbine and
STC).

Another approach to tracking the workflow run time execution is to
manually implement Swift/T leaf functions such that the start and
end timing of each function are logged and a timing graph is
generated, showing the analysis steps across samples,
chromosomes and specific applications. This approach permits one
to view the patterns of pipeline execution even if it fails, and partial
logs can similarly be viewed as the pipeline is running.

We are grateful for the support of the Blue Waters team, NCSA Industry, and the
Argonne/U. Chicago Swift/T developer team during the implementation, testing and
scalability efforts in this project. Special thanks to Justin Wozniak.

This research is part of the Blue Waters sustained-petascale computing project, which is
supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993)
and the State of Illinois. Blue Waters is a joint effort of the University of Illinois at
Urbana-Champaign and its National Center for Supercomputing Applications.

This work used the Extreme Science and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation grant number ACI-1548562.

AA, FMF are H3ABioNet members supported by the National Institutes of Health
Common Fund under grant number U41HG006941

 Resource
Manager Node Type #

Nodes/Run Node Sharing Test Data

iForge PBS Torque
IvyBridge

1;12 No Soy NAM20 cores
256 GB RAM

Blue Waters PBS Torque

AMD Bulldozer

1;101 No

Synthetic chr 1 exome
seq 50X32 integer cores

64 GB RAM ADSP WES 100
samples

XSEDE
Stampede2 Slurm

KNL

1 Yes NA12878 sample,
(GIAB)

68 cores
4 hardware threads/core

96 GB DDR4
16 GB MCDRAM

Biocluster2 Slurm
Dell PowerEdge R620

1;3 Yes
Synthetic WES 30X

24 cores Synthetic WES 50X
384 GB RAM Synthetic WES 70X

Single server
at CBSB. H3A

Africa
N/A

HP Proliant dl380p gen 8
1 Yes Synthetic chr1 exome

seq 50X24 cores
125 GRAM

Table 2: Testing Information

The dataflow programming model of Swift/T implicitly allows for
parallel execution of tasks. Statements are evaluated in parallel
unless prohibited by a data dependency or resource constraints,
without the user needing to explicitly code parallelism or
synchronization. Within the variant calling workflow, implicit
parallelism ensures that the number of samples processed in
parallel is constrained only by the resources requested at runtime.

Dataflow Model

In most cases, workflow
functions are pure, i.e.
they have no side
effects, such as
modifying variables
outside the function’s
scope. However, if a
function has a side
effect, one must add an
explicit wait signal. This
code excerpt presents
an example where an
explicit wait command
is necessary.

Extensible Design

The workflow was designed to be easily extensible as long as function
inputs and outputs remain consistent. The choice of program to use for
a given step is made in a function defined outside of the main logic of
the workflow.

*These authors contributed equally to the project

