Modular Genomic Variant Calling Workflow in Swift/T

Jacob Heldenbrand*, Azza Ahmed?*, Yan Asmann, Faisal M. Fadlelmola, Daniel Katz, Katherine Kendig, Matthew C. Kendzior, Tiffany Li, Yingxue Ren,

Elliott Rodriguez, Matthew R. Weber, Jennie Zermeno, Liudmila S. Mainzer

*These authors contributed equally to the project

NCSA Genomics, University of lllinois at Urbana-Champaign

- B\ / \ - N
Abstract Split by Chromosome Pros and Cons of Swift/T

Genomic variant discovery is widely performed using the GATK's Alignment BWA MEM or Novoalign The user is given the option to . Th - of Swift/T e il 0
. . . ¢ *
Variant Calling Best Practices pipeline, a complex workflow with Sorting Novosort Table 1: split aligned reads by R gre.ater:,t sltrengt N Wlbt ey edlts portgd : 2 worf o
multiple steps, fans/merges, and conditionals. Managing the Marking Dubli Samblaster, Novosort or . chromosome before calling L written In the language can be executed on a wide variety o
R ’ . arking Duplicates Picard Tools available for the . - y A4 compute infrastructures without changing the code, and the user
workflow can be difficult on a computer cluster, especially when H from i variants, as this is more . "
. . Indel Realignment user to choose from In . :] W T does not need to know about the underlying scheduling
running in parallel on large batches of data. One potential . . efficient when analyzing WGS |
. Base Recalibration Our ImplemeﬂtatIOﬂ, -For SampleN.chr1.bam SampleN.chr2.bam SampleN.chrM.bam enV|ronment On the Cluster,
solution is monolithic implementations that replace the GATK cach stage of the samples. However, when ul ul ul . . L . r .
multi-stage workflow with a single executable. While such Variant Calling workfIOV\? analyzing WES samples, the N e R * V¥h',|e tTe implicit para||e||§m O.f S\lNl VT can Incrﬁass.;[?e zlamo:cmt
implementations exist, they may not be sufficiently flexible to Joint Genotyping | overhead of splitting by 3 Emu ’Fanesug cor;putlatlon, 't also Increases the diiculty o
accommodate nuances of analysis particular to different species, Miscellaneous Samtools chromosome often outweighs e A . TPew H991N3 L(ermgb e\l/<e ?Fgmfcn;r e its inabili
. . . . L X 4
types of sequencing, and research objectives. Here, we present a the performance gain through ¢ ne gregteﬂt rha\]év ac k?c Wit maé/ € Its mah | |t}:cto
scalable GATK-based variant calling workflow written in the increased parallelism. automa:[ucg Y S rl]t vC\j/or r})rT? oneBno € 1o r&:nczjt °r aftglr
Swift/T parallel scripting language. Key built-in features include Encoun Srng arkalr Waiﬁ A urer) ec]?uszl araware 1a l:r:.esl C of
the flexibility to split by chromosome before variant calling, the . . c ey eg:lc?me rrrorg ! ﬁy asl efnuml ero hno 3 |chee;§ebs|, 'S 1ack o
option to continue the analysis when faulty samples are detected, —EXtenS| ble fU nction def' nitions re3|f|enced|m.|tr¢,] ¢ g S.fca _T_ ° aEﬁ ysis that can be refiably
and the ability to analyze multiple samples in parallel within each : . : . FS)er.ff[)/rTmhe Wltt. a Switt/ ;/\}OF O\;V'rt. failing functions f
. L X 4
node. With its modular design, execution can easily be separated Our implementation makes multiple tool choices available to the SC_g—hed U | INg d nd Pa 'd I Iel 1Ization 0 re\/\;\Ison Tahsenraesll/aerfsuvpslﬁlor:a orerr?soi tLHSS:;Ag%O?eC E)ensafsreany
into multiple stages that request the resources optimal for each analyst at each stage of the workflow (Table 1). Although Indel Swift/T. is not hardware—failﬁfe resilient. However ﬂlwis is useful
portion of the pipeline. Swift/T's ability to operate in multiple realignment is not necessary past GATK version 3.6, it is included as Swift/T runs as an MP| program that uses Turbine [4] and when apolications fail for nondetermin}stic reaso;ws
cluster scheduling environments (OGE, PBS Torque, SLURM, etc.) an optional step to comply with legacy analyses, and to simplify the Asynchronous Dynamic Load Balancing (ADLB) [2] libraries to & The da’gc)low task parallelism framework has a subs.tantial
enables a workflow to be trivially portable across numerous future introduction of other variant callers (i.e. UnifiedGenotyper, manage and distribute the workflow execution on local compute ? learning curve aItPE)ou h it offers familiar control flow statements
clusters. With these features, users have an efficient and portable Samtools, or Platypus) that may require realignment. Additionally, resources (desktop/laptop), parallel computers (clusters/HPCs), and s exgressiorlws - C-I?ke syntax [6]. Interestingly, Swift/T dos
way to scale up their variant calling analyses to run in many the user is given the option to split aligned reads by chromosome distributed systems (grid/cloud). Its built-in wrappers can launch ot Su P ot DiniN betwee);m ~oolications thu?v}\//le Ut code
traditional HPC architectures. before calling variants, to speed up analysis. jobs on many common resource schedulers, such as PBS Torque, each sfep inchl)i\F/)idt?aII PP '
Cobalt, Cray/APRUN, and SLURM [5]. . ¥ FE) y: ow_level H as load balanc
https://github.com/ncsa/Swift-T-Variant-Calling Extensible Design * SV;” UT abstracts away ovg{— Ve ;onceLns SHC t.as ofat ka ancing,
. it variant-calli i The dataflow programming model of Swift/T implicitly allows for INter-process communication and synchronization or tasks
http://swift-t-variant-calling.readthedocs.io/en/latest/ The workflow was designed to be easily extensible as long as function Prog J P Y automatically through its compiler (stc) and runtime engine
inputs and outputs remain consistent. The choice of program to use for parallel execution of tasks. Statements are evaluated in parallel . y throug P f g f
Ke DESI N Pr| nC| Ies a given step is made in a function defined outside of the main logic of unless prohibited by a data dependency or resource constraints, (Tur.bme)' allowing the programmer to focus on the workflow
REy DesSIgn Frinciples the workflow. without the user needing to explicitly code parallelism or design [7].
synchronization. Within the variant calling workflow, implicit
% Modularity — Independent sections linked together @dispatch=WORKER parallelism ensures that the number of samples processed in
o .) app (file bam) bwa_mem(X,Y,Z) { bwa mem X Y Z; } . . . :
% Option to split by chromosome parallel is constrained only by the resources requested at runtime. Conclusion

< Extensible function definitions @dispatch=WORKER
app (file bam) novoalign(X,Y,Z) { novoalign X Y Z; }

% Logical output structure Swift/T language lends itself to creating highly portable, modular

o . : . (string bam) performAlignment() { ... }] o] .
% Implicit parallelism driven by dataflow (File ban) performilignnent(string toolChoice, X,Y,Z) 1 (string sortedBan) performsort(string input) { ... } and implicitly parallel workflows. It is very powerful, especially when
& C ib| ith iob schedul , , Dataflow Model ,) | ,
(file outFile) performDedup() { ... } . T - .. . ' ' '
Cray, etc.) o 4 e bR A) In most cases, Workﬂow etc. However, it may be overkill in bioinformatics, where workflows
& Real-time Job Monitoring) functions are pure, i.e. : : -
* they have no side consist of pre-compiled executables glued together. Portability, the
effects, such as main advantage of Swift/T, could perhaps be accomplished in
Modula ntM s G o (e T A0 T 2l modifying variables file bam = performAlignment(A, B, C); simpler ways. The lack of support for piping between applications is
outside the function’s a major drawback for big-data bioinformatics, resulting in a
:]‘:’Copt.e' Hﬁweve.ra'f a file sortedBam = performSort(bam); proliferation of intermediary files.
Our Swift/T [1] implementation is comprised of a series of L}?C LO” as a S't edd
. 7} 17 . e1recCt, one must a an
mc;lependent modulgs (“stages”) that are chained together by the _ . . SNBSS (M i signal = createIndex(sortedBam) f
primary workflow script. At each stage, the user can set the Real-time Job Monitori ng code excerpt presents Reterences
workflow to generate the output files necessary for the next stage, an example where an
or simply pass on the output generated from a previous run. With : T : explicit wait command wait (signal) { 1. Wozniak JM, Armstrong TG, Wilde M, Katz DS, Lusk E, Foster IT. Swift/T: Large-Scale Application
thiS architecture users may restart the workﬂow at 3 falled stage When analyzmg many samples at once,. espec:|a||y In a pI’OdUCtIOﬂ IS necessary. (file outFile) performDedup(sortedBam) { ... } Composition via Distributed-Memory Dataflow Processing. In: 2013 13th IEEE/ACM International
hout needing to recomoute successful upstream calculations environment where the data flows continuously through the cluster, } Symposium on Cluster, Cloud, and Grid Computing. IEEE; 2013. p. 95-102.
Wi , . - N :10. id.2013.99.
N9 P PP it pays to have a good system for logging and monitoring progress o O O e s i A i) e
or run a pOI’tIOﬂ of the WOFI(ﬂOW, requestlng Oﬂly the resources) .) . Lus , Pieper SC, utler RM. ore scalabi ity, less pain: A simple programming model and its
of the jobs. At any moment in time the analyst should be able to implementation for extreme computing. SciDAC Review. 2010.

optimal for each Pa rticular stage. 3. Wozniak JM, Chan A, Armstrong TG, et al. A model for tracing and debugging large-scale

dSSEesSS. Te Stl n g task-parallel programs with MPE. Proc LASH-C at 2013.

nich stage of the workflow is running for every sample batch 4. Wozniak JM, Armstrong TG, Maheshwari K, et al. Turbine: A distributed-memory dataflow engine

=

o
- - : for extreme-scale many-task applications. Proceedings of the 1st 2012.
VariantCalling.swift : : : : y PP 9
/a lantCalling SWI . \ Modularity also ensures that < Which samples may have failed and Why We successfully tested our workflow on a variety of HPC systems with 5. Wozniak JM. Swift/T Sites Guide. Swift/T Sites Guide. http://swift-lang.github.io/swift- t/sites.html.
Fm' . . <% ‘ i ' a range of job schedulers and test datasets (Table 2). Swift/T does Accessed 20 Aug 2017.
e Align the |mp|ementat|on Of ¢ Which nodes the analyses are running on, and thelr health status. deIivegr on :tS promise of portability and pargllelizati)on 6. Wozniak JM, Wilde M, Foster IT. Language Features for Scalable Distributed-Memory Dataflow
SR : _ : : : : : ' Computing. In: Data-flow Execution Models for Extreme-scale Computing. 2014.
ortRun() IndIVIdual. stages may. be The gnderlylng MPI-based |mp|ementat.|on Of SWIft/T |OgIC makes it 7. Armstrong TG, Wozniak JM, Wilde M, Foster IT. Compiler techniques for massively scalable
=T — altered without breaking the ossible to leverage standard MPI lo ing libraries to collect such implicit task parallelism. In: SC14: International Conference for High Performance Computing,
i . . P P g P
e Sort : :
: workflow, as long as inputs and details. We used the Message Passing Environment (MPE) library [2] Table 2: Testing Information Networking, Storage and Analysis. IEEE; 2014. p. 299-310. doi:10.1109/5C.2014.30.
_ outputs remain consistent. Thus to log the usage of the MPI library itself and ADLB calls [3], and
TSIy A the workflow can be updated implemented visualization in Jumpshot viewer. To enable such ACknOWIEdgementS
splitByChrRun lvyBrid
+ Split by Chromosome with new methodologies and logging requires installation of the MPE library in addition to the Forge | PBS Torque S0 e 112 No Soy NAM
tools as the field progresses. At standard Swift/T components (C-utils, ADLB library, Turbine and (250 BB RAM. Syt chr T oS We are grateful for the support of the Blue Waters team, NCSA Industry, and the
VCSplitRun() VCNoSplitRun() the end of each stage, there is STC). Blue Waters | PBS Toraue 32 integer cores 1101 No seq 50X Argonne/U. Chicago Swift/T developer team during the implementation, testing and
an implicit wait instruction that L 64 GB RAM ' ADSP WES 100 scalability efforts in this project. Special thanks to Justin Wozniak.
- Realign - Realign Another approach to tracking the workflow run time execution is to samples -
o em—— VST ensures all samples have , . _ KNL This research is part of the Blue Waters sustained-petascale computing project, which is
« Call Variants « Call Variants leted th hef manually implement Swift/T leaf functions such that the start and YSEDE 68 cores NA12878 sample supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993)
(Split Version) (Non-Split Version) COmp ete t at Stage ertore Slurm 4 hardware threads/core 1 Yes Ple, . . . -
h batch beains th ' end timing of each function are Iogged and a timing graph 1S Stampede2 9 GB DDRA (GIAB) and the State of lllinois. Blue Waters is a joint effort of the University of lllinois at
- each batch begins the nex . .] o
combinevariantsRung g generated, showmg the ana|y5|s steps across samples, 16 GB MCDRAM | Urbana-Champaign and its National Center for Supercomputing Applications.
Combine Variants Stage, Dell PowerEdge R620 Synthetic WES 30X
Combinevariants switN__ chromosomes and specrﬁc apphca’uons. This approach perm|ts one Biocluster? Slurm 24 cores 1:3 Yes Synthetic WES 50X ThI.S Wprk used the Extrem.e SCIen(?e and Englnegrlng Discovery Environment (XSEDE),
to view the oatterns of pipeline execution even if it fails, and partial e - Prjl?aith?SAol\s — Synthetic WES 70X which is supported by National Science Foundation grant number ACI-1548562.
'eO |OgS can similarly be viewed as the pipeline i running. 2t CBSB. H3A NJ/A 24 cores 1 Yes Synthezgchgxexome AA, FMF are H3ABioNet members supported by the National Institutes of Health
k JointGenotyping swift j Africa 125 GRAM Common Fund under grant number U41THG006941

