
L. S. Mainzer5,7, A. Ahmed11,12, S. Baheti3, M. A. Bockol4, P. Burra7, R. Campbell9, T. M. Drucker4, F. M. Fadlelmola11, S. N. Hart2, J. Heldenbrand7, M. Hernaez5, M. E. Hudson5,6, R. K. Iyer8,
M. T. Kalmbach4, K. I. Kendig7, E. W. Klee2, C. Liu7, N. R. Mattson4, O. Milenkovic5,8, C. A. Ross4, S. Sinha5,9, R. Venkatakrishnan7, M. R. Weber6,7, E. D. Wieben1, M. Wiepert4, D. E. Wildman5,10

Comparative Analysis of Genomic Sequencing Workflow Management Systems

Acknowledgements

This work was a product of the Mayo Clinic and Illinois Strategic Alliance for

Technology-Based Healthcare. Major funding was provided by the Mayo Clinic

Center for Individualized Medicine and the Todd and Karen Wanek Program for

Hypoplastic Left Heart Syndrome. We thank the Interdisciplinary Health Sciences

Institute, UIUC Institute for Genomic Biology and the National Center for

Supercomputing Applications for their generous support and access to resources.

We particularly acknowledge the support of Keith Stewart, M.B., Ch.B., Mayo

Clinic/Illinois Grand Challenge Sponsor and Director of the Mayo Clinic Center for

Individualized Medicine. Special gratitude to Amy Weckle for managing the

project. Finally we are grateful for the support of H3ABioNet, funded by the

National Institutes of Health Common Fund under grant number U41HG006941.

ORGANIZATIONS

Mayo Clinic, Rochester, Minnesota, USA

1. Department of Biochemistry and Molecular Biology

2. Department of Health Sciences Research

3. Department of Research Services

4. Department of IT Executive Administration

University of Illinois at Urbana-Champaign, Urbana, IL, USA

5. Carl R. Woese Institute for Genomic Biology

6. Department of Crop Sciences

7. National Center for Supercomputing Applications

8. Department of Electrical and Computer Engineering

9. Department of Computer Science

10.Department of Molecular and Integrative Physiology

University of Khartoum, Khartoum

11.Center for Bioinformatics and Systems Biology, Faculty of Science

12.Department of Electrical and Electronic Engineering, Faculty of Engineering

REFERENCES

1. WDL User Guide. Broad Institute.

https://software.broadinstitute.org/wdl/documentation/

2. Di Tommaso P., Chatzou M., Floden EW. et al. Nextflow enables reproducible

computational workflows. Nature Biotechnology 35, 316–319(2017).

doi:10.1038/nbt.3820

3. Wilde M, Hategan M, Wozniak JM, Clifford B, Katz DS, Foster I. Swift: A

language for distributed parallel scripting. Parallel Computing. 2011;37(9):633–

652. doi:10.1016/j.parco.2011.05.005.

4. Wozniak JM, Armstrong T, Maheshwari K, Lusk E, Katz D, Wilde M, et al.

Turbine: A distributed-memory dataflow engine for extreme-scale many-task

applications. Proceedings of 1st ACM SIGMOD Workshop on Scalable

Workflow Execution Engines and Technologies (SWEET’12); 2012.Available

from: http://dl.acm.org/citation.cfm?id=2443421.

Comparison aspects

User interface: the means by which the user interacts with

the software. Possible options include command-line

interface (CLI), read-eval-print-loop (REPL), and integrated

development environment (IDE) .

Containerization support: methods to virtualize an OS to

run on a host without separate virtual machines.

Checkpointing: ability to save workflow state periodically,

allowing for rerun from it upon failure.

Caching: ability to store frequently used data in memory to

reduce data retrieval time.

Portability: usability of software in a variety of different

operating environments.

Distributed execution engine: makes the computer cluster

look like a single machine. Circumvents the use of task

scheduler and resource manager.

Modularity: program implemented as a library of modules,

allowing for design flexibility and maintainability.

Error handling strategy: functionalities to address and

resolve errors that arise during program execution

Parallelization: methods to distribute data among multiple

compute nodes, allowing many instances of the same

function to run at the same time.

SPARK support: GATK is moving from being deployed on

the grid, to cloud-based analytics computation using

MapReduce in SPARK. Thus SPARK support will be required

of future variant calling workflows.

Introduction

As genomic sequencing becomes common in academic,

clinical and commercial settings, workflow management

systems are being developed to manage the large volume of

data and the complexity of analyses. Here, we compare three

popular workflow management systems for large-scale

genomic sequencing analyses: Cromwell/WDL [1], Nextflow

[2], and Swift/T [3,4], on the example of the GATK Best

Practices for variant calling. Though all three serve the same

general purpose, their inbuilt functionalities lend them to

different usages. We present a qualitative comparison of the

three and a delineation of key comparison metrics, to aid

users in selecting the best workflow management system for

their high-performance computational needs.

Supporting code can be found at:

https://github.com/ncsa/MayomicsVC

https://github.com/ncsa/Genomics_MGC_VariantCalling_Nextflow

https://github.com/ncsa/Swift-T-Variant-Calling

Workflow Management Systems

Cromwell/WDL: intended to serve as a bridge between

complex domain-specific languages and simple scripts.

WDL=Workflow Definition Language; Cromwell is the

execution engine for WDL workflows. Emphasis is placed on

user-friendly coding suitable for non-programmers.

Nextflow: based on common programming languages

Groovy and Ruby. It is incredibly user-friendly with inbuilt

functionalities for error handling and metadata compilation.

Swift/T: intended for computation on a massive scale. Swift is

a powerful C-like language. Turbine is the execution engine

for Swift workflows. Though Swift/T contains many unique

features like load-balancing, the programming is not intuitive

and may be overwhelming to novice programmers.

Conclusions

Swift/T is a powerful language that gives utmost flexibility and freedom

in developing workflows. With its ability to rapidly perform thousands of

small processes, it is ideal for exascale analyses. However, the

learning curve may be steep and debugging difficult.

Nextflow is intuitive, mature and provides all features necessary for

robust code development and maintenance for the Clinic: transparent

inclusion of subprocesses, progress tracking, loggery. Unfortunately, it

does not yet provide an option for deployment on Spark.

Cromwell/WDL is extremely similar to Nextflow in spirit, syntax and

structure, but lacks many useful features and can be verbose. Using

JSON as config files adds chores and complexity. Built-in Spark

functionality will enable seamless deployment of GATK4.

Comparison Aspect
Cromwell/

WDL
Nextflow Swift/T

User interface CLI CLI, REPL, IDE CLI

Containerization support Docker Docker, Singularity None

Checkpointing & caching Yes Yes No

Portability
LSF, HTCondor,

Google JES

LSF, NQSII,

HTCondor,

Kubernetes, Ignite,

DNAnexus

Cray aprun

Distributed execution engine Spark Apache Ignite/ MPI MPI-based

Modularity Yes Yes Yes

Retry on error No Yes Yes, if failed QC

Error handling strategy Continue

Continue, retry,

terminate, organized

finish

Continue upon failing

quality control

User notifications Easy Bash addition Built-in Easily implemented

Parallelization Scatter-gather
Implicit within

channels
Implicit & complete

Documentation & community
Extensive, supported

by Broad Institute

Extensive, with online

forums

Extensive

documentation &

tutorials

Ease of use
Easy, but requires

Bash knowledge
Easy

Difficult, but with

many unique features

Tracing & visualization No
Yes

Some

SPARK support Yes No ?

Nextflow error handling commands:

• terminate: terminates execution as soon as error emerges, kills

pending processes (default condition)

• finish: orderly shutdown of workflow; waits for completion of any

submitted processes

• ignore: ignores execution errors from processes, sends message

to user that event has occurred

• retry: re-submit/re-execute process that returned an error

condition. Can specify maxErrors and maxRetries (these are

disabled as a default)

Nextflow has built-in functionality to create

execution, trace, and timeline reports, and

vidualize DAGs. Execution reports consist of a

workflow summary, a resource usage graph, and

a list of tasks alongside their respective runtime

metadata. The DAG visualization will create a

direct acyclic graph of the workflow, with

processes illustrated as nodes.

Swift/T logging, user error notifications:

file alignBams[] =
alignRun(sampleLines, variables, failureLog) =>
logging(variables[“TMPDIR”], timingLog, “alignlogs”);

assert(
size(alignBams) != 0,
“FAILURE: The aligned bam array was empty:
none of the samples finished properly”

);

Nextflow data-level parallelization via “channels”:

inputFiles = Channel
.fromPath(params.inputFiles)
.splitText()
.splitCsv(sep: "\t")

Cromwell/WDL error handling:

runtime {
continueOnReturnCode: {true|false|array-of-integers}
failOnStderr: {true|false}

}

Cromwell/WDL scatter task for parallel read mapping:

import “BWAMemSamtoolView.wdl” as BWASAMTOOLVIEW

Workflow CallReadMappingTask {
define inputs

scatter(sample in inputsamples) {
call BWASAMTOOLSORT.ReadMappingTask {

input : sampleName = sample[0]
}}}

Swift/T implicit parallelization:

Statements are evaluated in parallel unless prohibited by a data

dependency or resource constraints, without the developer needing

to explicitly code parallelism or synchronization. Swift/T will

automatically wait on a process to finish if the next step depends on

its output. When a stage must wait on another, yet a direct data

dependency does not exist, the wait can be forced:

mkdir(LogDir) =>
mkdir(AlignDir) =>
void mkdirSignal = mkdir(tmpLogDir);

wait (mkdirSignal) {
alignedsam = alignReads(vars, sampleName, reads, rgheader);

}

Swift/T modularity via “workers”:

Individual Swift functions are chained together by the primary

workflow script, as subroutines in most computer languages.

@dispatch=WORKER
app (file output, file outLog) bwa_mem (string bwaexe, string read1,

string read2, string INDEX, string bwamemparams[], int PBSCORES,
string rgheader)

{
bwaexe "mem" "-M" bwamemparams "-t" PBSCORES "-R" rgheader

INDEX read1 read2 @stdout=output @stderr=outLog;
}

import bioapps.align_dedup;

Bash script

Calls executables

WDL Task script

Calls Bash

WDL Master Workflow script

Calls WDL Tasks
Modularity in WDL and Nextflow:

✓ Bash script for each analysis step

✓ WDL or nf task for each analysis step, calls the Bash script

✓ Unit workflow to test each WDL task or nf script

✓ Workflow of tasks for the entire Design Block

WDL “Task” == Nextflow “Process”

Tasks in Nextflow:

outputDir = file(params.folder)

process alignReads {
//perform bwa mem alignment on sample reads

input:
first_read+fastq=file(params.LeftReads)
second_read_fastq=file(params.RightReads)
fasta_ref = file(params.fasta_ref)
// Etc …

output:
file 'set5Aligned.bam' into alignedFiles

script:
template 'bwaMemSamtools.sh'

}
alignedFiles.subscribe{it.copyTo(outputDir)}

Master wflow in Nextflow:

outputFile = file(params.folder)
process bwaMem {

"""
nextflow run ${params.bwaMem}
"""

}
process Novosort {

"""
nextflow run ${params.run_novosort}
"""

}

Tasks in WDL:

task alignmentTask {
File Ref # Reference Genome
File InputRead1 # Input Read File
String InputRead2 # Input Read File
Etc …

command {
/bin/bash ${AlignmentScript}
-L ${SentieonLicense} -P ${PairedEnd}
-g ${Group} -l ${InputRead1} -r ${InputRead2}
-s ${SampleName} -p ${Platform} -G ${Ref}
-S ${Sentieon} -t ${Threads} ${DebugMode}

}

output {
File AlignedSortedBam ="${SampleName}.aligned.sorted.bam"
File AlignedSortedBamIdx = "${SampleName}.aligned.sorted.bam.bai"

}}

Master workflow in WDL:

import “some/path/alignment.wdl" as ALIGNMENT
import " some/path /dedup.wdl" as DEDUP

workflow CallBlock1Tasks {
call ALIGNMENT.alignmentTask as align

call DEDUP.dedupTask as dedup {
input:

InputAlignedSortedBam = align.AlignedSortedBam,
InputAlignedSortedBamIdx = align.AlignedSortedBamIdx

}}

https://software.broadinstitute.org/wdl/documentation/
http://dl.acm.org/citation.cfm?id=2443421
https://github.com/ncsa/Swift-T-Variant-Calling
https://github.com/ncsa/Swift-T-Variant-Calling
https://github.com/ncsa/Swift-T-Variant-Calling

