

Welcome to Swift for Linux!

Swift for Linux is a project aiming at making the experience of using the
Swift programming language [https://swift.org/] from Linux easier.

What’s wrong?

A lot! Apple only provides Swift binaries that run well on Ubuntu, and users of other
distros will have a fun time trying to get them to work. It’s hard to share Swift
applications you’ve built, and the majority of the ecosystem, being Mac-and-iOS-focused,
tends to create libraries that don’t work under Linux. This guide is trying to be
a central point for people trying to get a great Swift experience on their Linux
systems.

If you have anything you’d like to add, or if you notice a problem in this guide, feel
free to submit an issue [https://github.com/swift-linux/swift-linux].

Also, if you need help, try stopping by the unofficial Swift Discord [http://discord.gg/kFRp2Q3].

Contents:

	Installing Swift
	Flatpak

	Ubuntu

	Fedora

	Arch Linux

	Others

	Navigating the Ecosystem
	Pure Swift

	Libraries

	Distributing Swift Applications
	Creating a Flatpak

	Extra Credit: Swift on Other Distros
	Using the Ubuntu Binaries

	Building from Source

Indices and tables

	Index

	Module Index

	Search Page

Installing Swift

Unfortunately, the official Swift binaries only work on Ubuntu, and they’re standalone
binaries independent of any package manager. Here are steps on getting it to work on
various distros/package tools.

Flatpak

The easiest way to get started using Swift is via the
Flatpak repo [https://flatpak.org/]. Make sure you’ve followed the
official Flatpak setup instructions [https://flatpak.org/setup/].

First, make sure you have the Freedesktop SDK installed:

$ flatpak --user install flathub org.freedesktop.Sdk

Add the Flatpak remote:

$ flatpak --user remote-add swift https://swift-flatpak.refi64.com/swift.flatpakrepo
Or, if you prefer to add it manually:
curl -sSL https://gpg.refi64.com/swift-flatpak | flatpak --user remote-add --gpg-import=- swift http://swift-flatpak.refi64.com

Then, install the SDK extension and live SDK:

$ flatpak --user install swift org.freedesktop.Sdk.Extension.swift4 org.freedesktop.Sdk.Extension.swift4.live

In order to run the Swift compiler via the Flatpak, you’ll need to use this command:

$ flatpak run -d org.freedesktop.Sdk.Extension.swift4.live swift ...

To shorten this, define an alias:

$ alias swiftpak='flatpak run -d org.freedesktop.Sdk.Extension.swift4.live swift'

Now, you can just use swiftpak:

$ swiftpak

Ubuntu

You can use the official Swift binaries [https://swift.org/download/]. If you want
to be able to upgrade Swift via apt, then try out the Vapor
PPA [https://docs.vapor.codes/3.0/install/ubuntu/]:

$ eval "$(curl -sL https://apt.vapor.sh)"

or:

curl -L https://repo.vapor.codes/apt/keyring.gpg | sudo apt-key add -
echo "deb https://repo.vapor.codes/apt $(lsb_release -sc) main" | sudo tee /etc/apt/sources.list.d/vapor.list
sudo apt update
sudo apt install swift

Fedora

An RPM is available here [https://github.com/corinnekrych/swift-rpm], though it
requires a build from source. The Ubuntu binaries should more-or-less work if you patch
them as mentioned in Using the Ubuntu Binaries.

Arch Linux

You can install Swift on Arch Linux using either the AUR
swift [https://aur.archlinux.org/packages/swift/] package or the
swift-bin [https://aur.archlinux.org/packages/swift-bin/] package. (The former builds
from source, whereas the latter uses patched versions of the Ubuntu binaries.)

Others

For other distros, see Extra Credit: Swift on Other Distros.

If you’ve gotten Swift working on your favorite distros, feel free to
create an issue to mention yours [https://github.com/swift-linux/swift-linux]!

Navigating the Ecosystem

Now that Swift is installed, there’s still a major problem: the ecosystem. Many Swift
libraries are designed with macOS and/or iOS in mind, meaning they rely (either
intentionally or accidentally) on Cocoa APIs and Darwin C library bindings.

Pure Swift

The best indicator that a library will work on Linux is if it mentions pure Swift
somewhere in the name. This term basically means that it likely won’t depend on any
Cococa APIs, at minimum.

In addition, the presence of a Package.swift file, used by the Swift package
manager, means that it doesn’t require something like CocoaPods to build.

Note that when I say pure Swift, I’m not referring to this GitHub organization [https://github.com/PureSwift]. Although they create pure Swift libraries, that’s
about it.

Libraries

Here are some awesome libraries that work on Linux:

Web

	Vapor [https://vapor.codes/]: A popular backend web framework. The developers also
maintain the PPA mentioned in Installing Swift.

	Kitura [http://www.kitura.io/]: A web framework by IBM. Note that, although they
have Linux support, the documentation is very macOS-centric. It tends to assume you
develop on macOS and deploy to Linux.

CLI

	Console [https://github.com/vapor/console]: A fantastic CLI library that’s part
of the Vapor project.

	Progress.swift [https://github.com/jkandzi/Progress.swift]: Progress bars.

GUI

	SwiftGtk [https://github.com/rhx/SwiftGtk]: GTK+ bindings. These seem to be rather
complete and are auto-generated.

	Qlift [https://github.com/Longhanks/qlift]: Qt bindings. Not sure how complete these
are.

	Cacao [https://github.com/PureSwift/Cacao]: A UIKit implementation that works on
macOS and Linux. No commits since late 2017, and there are open bugs related to
building it [https://github.com/PureSwift/Cacao/issues/35].

Parsing

	Kanna [https://github.com/tid-kijyun/Kanna]: HTML parsing.

	SwiftSoup [https://github.com/scinfu/SwiftSoup]: HTML parsing.

	Yams [https://github.com/jpsim/Yams]: YAML parsing.

Miscellaneous

	Regex [https://github.com/crossroadlabs/Regex]: Regular expressions.

Submitting

Feel free to submit more libraries [https://github.com/swift-linux/swift-linux]!

Distributing Swift Applications

You’ve created your Swift application. Now, how do you get it to your users?

The easiest way is by using the Swift Flatpak. If you haven’t installed it yet,
now’s the time to do so.

Creating a Flatpak

First off, make sure you already know the basics of creating Flatpaks; see the
official developer guide [http://docs.flatpak.org/en/latest/first-build.html] for
more information.

Let’s use a simple Hello, world! project as our example. Create a Package.swift:

// swift-tools-version:4.0

import PackageDescription

let package = Package(
 name: "example",
 dependencies: [
],
 targets: [
 .target(
 name: "example",
 dependencies: []),
]
)

and Sources/example/main.swift:

print("Hello, world!")

Now, let’s assume the full application ID will be org.mysite.Hello (Flatpak uses
reverse domain name notation [https://en.wikipedia.org/wiki/Reverse_domain_name_notation] for application IDs).
Create org.mysite.Hello.json containing the following:

{
 "app-id": "org.mysite.Hello",
 "runtime": "org.freedesktop.Platform",
 "runtime-version": "1.6",
 "sdk": "org.freedesktop.Sdk",
 "sdk-extensions": [
 "org.freedesktop.Sdk.Extension.swift4"
],
 "command": "/app/bin/example",
 "modules": [
 {
 "name": "sdk",
 "buildsystem": "simple",
 "sources": [
 {
 "type": "git",
 "path": "https://github.com/myuser/myrepo.git",
 "tag": "HEAD"
 },
 {
 "type": "script",
 "commands": [
 ". /usr/lib/sdk/swift4/enable.sh",
 "swift build -c release",
 "install -Dm 755 .build/release/example /app/bin/example",
 "/usr/lib/sdk/swift4/set-runtime.sh /app/lib /app/bin example"
],
 "dest-filename": "build-example.sh"
 }
],
 "build-commands": [
 "./build-example.sh"
]
 }
]
}

Here’s a breakdown of the interesting parts of this file:

	sdk-extensions: This is where the Swift SDK extension is used. The SDK extension
“extends” the previously chosen SDK with the Swift compiler and libraries.

	sources: This is where the sources are chosen. The first is just the Git
repository of our application, but the second is far more interesting and will be
explained below.

	build-commands calls into ./build-example.sh to build our code.

build-example.sh does the following:

	Sources enable.sh to enable use of the Swift SDK extension.

	Builds the application.

	Installs it to /app/bin/example via the install command. Note that Flatpak
requires your application to be installed to the /app prefix.

	Calls a script called set-runtime.sh. This script will copy the Swift runtime
libraries to the application directory, and it will set the dynamic linker of
your application binaries to the library directory. The arguments are as follows:

	The first is the directory to store the Swift runtime libraries and patched
dynamic linker (see Version Warnings for information on why that is
necessary).

	The second is the directory where your application binaries are stored.

	Any other arguments passed are assumed to be paths to binaries, relative to the
second argument (the application directory). These binaries will all have their
dynamic linker set to the patched one that doesn’t emit version warnings.

Extra Credit: Swift on Other Distros

Both Swift’s sources and official binaries tend to assume a Ubuntu-like system. This is
a guide on how to make Swift run well on other distros, too.

Using the Ubuntu Binaries

Shared Libraries

Swift’s binaries depend on the following shared libraries that may not be easily
available:

	ICU [http://site.icu-project.org/] 55. Many distros come with newer versions. If
that is the case for you, you’ll have to either find a package providing ICU 55
(AUR has icu55 [https://aur.archlinux.org/packages/icu55/], which is what I use
in swift-bin), use precompiled binaries (ICU provides some for RHEL6 [http://site.icu-project.org/download/55#TOC-ICU4C-Download]), or build ICU 55
yourself.

	libcurl.so.3. The 3 here is important! When libcurl underwent an API changes,
many distros updated the version from libcurl 3 to libcurl 4, even though the ABI
remained unchanged (source [https://askubuntu.com/questions/469360]). As Swift was
built on Ubuntu distros that still run libcurl 3, running it on other distros may
result is issues regarding libcurl.so.3 being missing. In most cases, you can just
run sed -i 's/libcurl.so.3/libcurl.so.4' on all the binaries in the Swift
distribution. (You may still encounter version information warnings, described below
in ref:Version Warnings:.)

	A similar issue exists with Swift requiring libedit.so.2, which in most other distros
is (properly) named libedit.so.0. Again, a sed call should do the trick.

	Swift requires ncurses5, but many distros now carry version 6. However, they also
usually will carry a package provided ncurses5 binaries; for instance, Fedora carries
ncurses-compat-libs, and Arch has ncurses5-compat-libs.

Version Warnings

After making any necessary changes as detailed above, you may also encounter these
dreaded warnings:

usr/bin/swift: /usr/lib/libtinfo.so.5: no version information available (required by usr/bin/swift)

The reason for these is that some Linux distros encode version information into their
shared libraries (Ubuntu and Fedora do this), whereas others do not (rolling release
distros such as Arch fall into this category). As the Swift binaries where built on
Ubuntu, they expect your shared libraries to have version information, and on a distro
where they don’t, you’ll get the above warnings.

Unfortunately, this is compounded by two facts:

	These warnings are emitted by your dynamic linker, which is the program that runs
ELF binaries. They are toggled by a verbosity option which, oddly enough, is hardcoded
into the glibc source code. There is no way to turn them off.

	Swift tends to assume that any output to standard error by helper tools means that
the tool failed. This makes it virtually impossible to build Swift code, since the
compiler will see that the version warnings were printed to standard error and abort
the compilation process.

The only solution is to created a patched copy of the dynamic linker that does not
emit these warnings. I created qldv [https://github.com/kirbyfan64/qldv] to accomplish
this task. (I also described the process a bit
here [https://refi64.com/posts/qldv.html], though qldv now uses a different algorithm
that is compatible with more distros.)

Of course, there’s still the task of making the Swift binaries use the patched linker.
Luckily, patchelf [https://nixos.org/patchelf.html] handles this job quite nicely.

The TL;DR of this whole thing is that you’ll need to use qldv, combined with patchelf,
in order to silence the version information warnings. Here is an example:

Create a patched copy of the dynamic linker, and save it to /usr/lib/swift/ld.so.
(qldv -find is to locate the dynamic linker; it's usually somewhere like
/lib/ld-linux-x86-64.so.2.)
$ qldv `qldv -find` /usr/lib/swift/ld.so
Patch all the Swift binaries to use this new linker.
(Except for liblldb-intel-mpxtable.so, which doesn't need to be patched and
doesn't work with patchelf.)
$ find usr/bin -type f -not -name liblldb-intel-mpxtable.so -exec patchelf --set-interpreter /usr/lib/swift/ld.so {} \;

However, there’s still one more issue: any binaries you compile will still emit version
warnings. The solution to this is to trick Swift into running patchelf on any binaries
it builds. The easiest way I’ve found to do this is to replace clang++ (which Swift
uses to link binaries) with a shell script that calls the real clang++ and then
runs patchelf on the result.

I’ve toyed with various methods to do this (using
bubblewrap [https://github.com/projectatomic/bubblewrap]) was an interesting one,
but the best option I’ve found is to do this:

	Install Swift to a prefix other than /usr. This is because Swift first tries to
locate clang++ in the same directory as the other Swift binaries, and only then does
it refer to your PATH. From here on out, I’ll assume you picked /usr/lib/swift, and
that you had saved the patched ld.so to the same directory.

	Symlink all the Swift binaries from /usr/lib/swift/bin to /usr/bin.

	Create a shell script /usr/lib/swift/bin/clang++ containing the following:

#!/bin/bash
/usr/bin/clang++ "$@" && patchelf --set-interpreter /usr/lib/swift/ld.so "${@: -1}"

This just calls the real clang++ and then calls patchelf on the result (the last
argument passed by Swift is always the output file).

Now, Swift will call the fake, shell script clang++, which calls the real clang++ and
patches the output binaries.

Include Directories

You may still exhibit some issues regarding missing headers. This is simply because
Swift looks for system headers in /usr/include/x86_64-linux-gnu, but on some distros,
they’re all in /usr/include. To fix this, again refer to trusty sed:

$ sed -i 's|x86_64-linux-gnu/||' usr/lib/swift/linux/x86_64/glibc.modulemap
$ sed -i 's|x86_64-linux-gnu/||' usr/lib/swift_static/linux/static-stdlib-args.lnk

Building from Source

Building from source is far easier, surprisingly enough, but it also makes upgrades take
far longer. However, you’ll still probably have to patch the sources a bit.

One thing you may have to change are references of /usr/bin/python to /usr/bin/python2,
since many distros now set /usr/bin/python to point to Python 3, which isn’t
backwards-compatible with Python 2. You can see this being done in the
AUR swift package [https://aur.archlinux.org/cgit/aur.git/tree/PKGBUILD?h=swift-language#n45].

Outside of that change, other ones are far more distro-specific. For a great starting
point, check out the changes needed to build Swift on Fedora [https://github.com/corinnekrych/swift-rpm/blob/master/swift.spec#L61].

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Swift for Linux!

 		
 Installing Swift

 		
 Flatpak

 		
 Ubuntu

 		
 Fedora

 		
 Arch Linux

 		
 Others

 		
 Navigating the Ecosystem

 		
 Pure Swift

 		
 Libraries

 		
 Web

 		
 CLI

 		
 GUI

 		
 Parsing

 		
 Miscellaneous

 		
 Submitting

 		
 Distributing Swift Applications

 		
 Creating a Flatpak

 		
 Extra Credit: Swift on Other Distros

 		
 Using the Ubuntu Binaries

 		
 Shared Libraries

 		
 Version Warnings

 		
 Include Directories

 		
 Building from Source

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

