

Suricata User Guide

This is the documentation for Suricata 8.0.0-dev.

	1. What is Suricata
	1.1. About the Open Information Security Foundation

	2. Quickstart guide
	2.1. Installation

	2.2. Basic setup

	2.3. Signatures

	2.4. Running Suricata

	2.5. Alerting

	2.6. EVE Json

	3. Installation
	3.1. Source

	3.2. Binary packages

	3.3. Advanced Installation

	4. Upgrading
	4.1. General instructions

	4.2. Upgrading 7.0 to 8.0

	4.3. Upgrading 6.0 to 7.0

	4.4. Upgrading 5.0 to 6.0

	4.5. Upgrading 4.1 to 5.0

	5. Security Considerations
	5.1. Running as a User Other Than Root

	5.2. Containers

	6. Support Status
	6.1. Levels of Support

	6.2. Distributions

	6.3. Architecture Support

	7. Command Line Options
	7.1. Unit Tests

	8. Suricata Rules
	8.1. Rules Format

	8.2. Meta Keywords

	8.3. IP Keywords

	8.4. TCP keywords

	8.5. UDP keywords

	8.6. ICMP keywords

	8.7. Payload Keywords

	8.8. Changes from PCRE1 to PCRE2

	8.9. Integer Keywords

	8.10. Transformations

	8.11. Prefiltering Keywords

	8.12. Flow Keywords

	8.13. Bypass Keyword

	8.14. HTTP Keywords

	8.15. File Keywords

	8.16. DNS Keywords

	8.17. SSL/TLS Keywords

	8.18. SSH Keywords

	8.19. JA3 Keywords

	8.20. Modbus Keyword

	8.21. DCERPC Keywords

	8.22. DHCP keywords

	8.23. DNP3 Keywords

	8.24. ENIP/CIP Keywords

	8.25. FTP/FTP-DATA Keywords

	8.26. Kerberos Keywords

	8.27. SMB Keywords

	8.28. SNMP keywords

	8.29. Base64 keywords

	8.30. SIP Keywords

	8.31. RFB Keywords

	8.32. MQTT Keywords

	8.33. IKE Keywords

	8.34. HTTP2 Keywords

	8.35. Quic Keywords

	8.36. NFS Keywords

	8.37. SMTP Keywords

	8.38. Generic App Layer Keywords

	8.39. Xbits Keyword

	8.40. Thresholding Keywords

	8.41. IP Reputation Keyword

	8.42. IP Addresses Match

	8.43. Config Rules

	8.44. Datasets

	8.45. Lua Scripting for Detection

	8.46. Differences From Snort

	8.47. Multiple Buffer Matching

	8.48. Tag

	9. Rule Management
	9.1. Rule Management with Suricata-Update

	9.2. Adding Your Own Rules

	9.3. Rule Reloads

	9.4. Rules Profiling

	10. Making sense out of Alerts

	11. Performance
	11.1. Runmodes

	11.2. Packet Capture

	11.3. Tuning Considerations

	11.4. Hyperscan

	11.5. High Performance Configuration

	11.6. Statistics

	11.7. Ignoring Traffic

	11.8. Packet Profiling

	11.9. Rule Profiling

	11.10. Tcmalloc

	11.11. Performance Analysis

	12. Configuration
	12.1. Suricata.yaml

	12.2. Global-Thresholds

	12.3. Exception Policies

	12.4. Snort.conf to Suricata.yaml

	12.5. Multi Tenancy

	12.6. Dropping Privileges After Startup

	12.7. Using Landlock LSM

	12.8. systemd notification

	12.9. Includes

	13. Reputation
	13.1. IP Reputation

	14. Init Scripts

	15. Setting up IPS/inline for Linux
	15.1. Setting up IPS with Netfilter

	15.2. Setting up IPS at Layer 2

	16. Setting up IPS/inline for Windows

	17. Output
	17.1. EVE

	17.2. Lua Output

	17.3. Syslog Alerting Compatibility

	17.4. Custom http logging

	17.5. Custom tls logging

	17.6. Log Rotation

	18. Lua support
	18.1. Lua usage in Suricata

	18.2. Lua functions

	19. File Extraction
	19.1. Architecture

	19.2. Settings

	19.3. Output

	19.4. Rules

	19.5. MD5

	19.6. Updating Filestore Configuration

	20. Public Data Sets

	21. Using Capture Hardware
	21.1. Endace DAG

	21.2. Napatech

	21.3. Myricom

	21.4. eBPF and XDP

	21.5. Netmap

	21.6. AF_XDP

	21.7. DPDK

	22. Interacting via Unix Socket
	22.1. Introduction

	22.2. Commands in standard running mode

	22.3. Commands on the cmd prompt

	22.4. PCAP processing mode

	22.5. Build your own client

	23. 3rd Party Integration
	23.1. Symantec SSL Visibility (BlueCoat)

	24. Man Pages
	24.1. Suricata

	24.2. Suricata Socket Control

	24.3. Suricata Control

	24.4. Suricata Control Filestore

	25. Acknowledgements

	26. Licenses
	26.1. GNU General Public License

	26.2. Creative Commons Attribution-NonCommercial 4.0 International Public License

	26.3. Suricata Source Code

	26.4. Suricata Documentation

	27. Suricata Developer Guide
	27.1. Working with the Codebase

	27.2. Contributing

	27.3. Suricata Internals

	27.4. Extending Suricata

	27.5. LibSuricata

	27.6. Upgrading

1. What is Suricata

Suricata is a high performance Network IDS, IPS and Network Security Monitoring engine. It is open source and owned by a community-run non-profit foundation, the Open Information Security Foundation (OISF [https://oisf.net]). Suricata is developed by the OISF.

1.1. About the Open Information Security Foundation

The Open Information Security Foundation is a non-profit foundation organized to build community and to support open-source security technologies like Suricata, the world-class IDS/IPS engine.

1.1.1. License

The Suricata source code is licensed under version 2 of the
GNU General Public License.

This documentation is licensed under the
Creative Commons Attribution-NonCommercial 4.0 International Public License.

2. Quickstart guide

This guide will give you a quick start to run Suricata and will focus only on
the basics. For more details, read through the more specific chapters.

2.1. Installation

It's assumed that you run a recent Ubuntu release as the official PPA can then
be used for the installation. To install the latest stable Suricata version, follow
the steps:

sudo apt-get install software-properties-common
sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt update
sudo apt install suricata jq

The dedicated PPA repository is added, and after updating the index, Suricata can
be installed. We recommend installing the jq tool at this time as it will help
with displaying information from Suricata's EVE JSON output (described later in
this guide).

For the installation on other systems or to use specific compile options see
Installation.

After installing Suricata, you can check which version of Suricata you have
running and with what options, as well as the service state:

sudo suricata --build-info
sudo systemctl status suricata

2.2. Basic setup

First, determine the interface(s) and IP address(es) on which Suricata should be inspecting network
packets:

$ ip addr

2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
link/ether 00:11:22:33:44:55 brd ff:ff:ff:ff:ff:ff
inet 10.0.0.23/24 brd 10.23.0.255 scope global noprefixroute enp1s0

Use that information to configure Suricata:

sudo vim /etc/suricata/suricata.yaml

There are many possible configuration options, we focus on the setup of
the HOME_NET variable and the network interface configuration. The
HOME_NET variable should include, in most scenarios, the IP address of
the monitored interface and all the local networks in
use. The default already includes the RFC 1918 networks. In this example
10.0.0.23 is already included within 10.0.0.0/8. If no other networks
are used the other predefined values can be removed.

In this example the interface name is enp1s0 so the interface name in the
af-packet section needs to match. An example interface config might
look like this:

Capture settings:

af-packet:
 - interface: enp1s0
 cluster-id: 99
 cluster-type: cluster_flow
 defrag: yes
 use-mmap: yes
 tpacket-v3: yes

This configuration uses the most recent recommended settings for the IDS
runmode for basic setups. There are many of possible configuration options
which are described in dedicated chapters and are especially relevant for high
performance setups.

2.3. Signatures

Suricata uses Signatures to trigger alerts so it's necessary to install those
and keep them updated. Signatures are also called rules, thus the name
rule-files. With the tool suricata-update rules can be fetched, updated and
managed to be provided for Suricata.

In this guide we just run the default mode which fetches the ET Open ruleset:

sudo suricata-update

Afterwards the rules are installed at /var/lib/suricata/rules which is also
the default at the config and uses the sole suricata.rules file.

2.4. Running Suricata

With the rules installed, Suricata can run properly and thus we restart it:

sudo systemctl restart suricata

To make sure Suricata is running check the Suricata log:

sudo tail /var/log/suricata/suricata.log

The last line will be similar to this:

<Notice> - all 4 packet processing threads, 4 management threads initialized, engine started.

The actual thread count will depend on the system and the configuration.

To see statistics, check the stats.log file:

sudo tail -f /var/log/suricata/stats.log

By default, it is updated every 8 seconds to show updated values with the current
state, like how many packets have been processed and what type of traffic was
decoded.

2.5. Alerting

To test the IDS functionality of Suricata it's best to test with a signature. The signature with
ID 2100498 from the ET Open ruleset is written specific for such test cases.

2100498:

alert ip any any -> any any (msg:"GPL ATTACK_RESPONSE id check returned root"; content:"uid=0|28|root|29|"; classtype:bad-unknown; sid:2100498; rev:7; metadata:created_at 2010_09_23, updated_at 2010_09_23;)

The syntax and logic behind those signatures is covered in other chapters. This
will alert on any IP traffic that has the content within its payload. This rule
can be triggered quite easy. Before we trigger it, start tail to see updates to
fast.log.

Rule trigger:

sudo tail -f /var/log/suricata/fast.log
curl http://testmynids.org/uid/index.html

The following output should now be seen in the log:

[1:2100498:7] GPL ATTACK_RESPONSE id check returned root [**] [Classification: Potentially Bad Traffic] [Priority: 2] {TCP} 217.160.0.187:80 -> 10.0.0.23:41618

This should include the timestamp and the IP of your system.

2.6. EVE Json

The more advanced output is the EVE JSON output which is explained in detail in
Eve JSON Output. To see what this looks like it's
recommended to use jq to parse the JSON output.

Alerts:

sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="alert")'

This will display more detail about each alert, including meta-data.

Stats:

sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="stats")|.stats.capture.kernel_packets'
sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="stats")'

The first example displays the number of packets captured by the kernel; the second
examples shows all of the statistics.

3. Installation

Before Suricata can be used it has to be installed. Suricata can be installed
on various distributions using binary packages: Binary packages.

For people familiar with compiling their own software, the Source method is
recommended.

Advanced users can check the advanced guides, see Arch Based.

3.1. Source

Installing from the source distribution files gives the most control over the Suricata installation.

Basic steps:

tar xzvf suricata-6.0.0.tar.gz
cd suricata-6.0.0
./configure
make
make install

This will install Suricata into /usr/local/bin/, use the default
configuration in /usr/local/etc/suricata/ and will output to
/usr/local/var/log/suricata

3.1.1. Common configure options

	
--disable-gccmarch-native

	Do not optimize the binary for the hardware it is built on. Add this
flag if the binary is meant to be portable or if Suricata is to be used in a VM.

	
--prefix=/usr/

	Installs the Suricata binary into /usr/bin/. Default /usr/local/

	
--sysconfdir=/etc

	Installs the Suricata configuration files into /etc/suricata/. Default /usr/local/etc/

	
--localstatedir=/var

	Setups Suricata for logging into /var/log/suricata/. Default /usr/local/var/log/suricata

	
--enable-lua

	Enables Lua support for detection and output.

	
--enable-geoip

	Enables GeoIP support for detection.

	
--enable-dpdk

	Enables DPDK [https://www.dpdk.org/] packet capture method.

3.1.2. Dependencies

For Suricata's compilation you'll need the following libraries and their development headers installed:

libjansson, libpcap, libpcre2, libyaml, zlib

The following tools are required:

make gcc (or clang) pkg-config rustc cargo

Rust support:

rustc, cargo

Some distros don't provide or provide outdated Rust packages.
Rust can also be installed directly from the Rust project itself::

 1) Install Rust https://www.rust-lang.org/en-US/install.html
 2) Install cbindgen - if the cbindgen is not found in the repository
 or the cbindgen version is lower than required, it can be
 alternatively installed as: cargo install --force cbindgen
 3) Make sure the cargo path is within your PATH environment
 e.g. echo 'export PATH=”${PATH}:~/.cargo/bin”' >> ~/.bashrc
 e.g. export PATH="${PATH}:/root/.cargo/bin"

3.1.2.1. Ubuntu/Debian

Note

The following instructions require sudo to be installed.

Minimal:

Installed Rust and cargo as indicated above
sudo apt-get install build-essential git libjansson-dev libpcap-dev \
 libpcre2-dev libtool libyaml-dev make pkg-config zlib1g-dev
On most distros installing cbindgen with package manager should be enough
sudo apt-get install cbindgen # alternative: cargo install --force cbindgen

Recommended:

Installed Rust and cargo as indicated above
sudo apt-get install autoconf automake build-essential ccache clang curl git \
 gosu jq libbpf-dev libcap-ng0 libcap-ng-dev libelf-dev \
 libevent-dev libgeoip-dev libhiredis-dev libjansson-dev \
 liblua5.1-dev libmagic-dev libnet1-dev libpcap-dev \
 libpcre2-dev libtool libyaml-0-2 libyaml-dev m4 make \
 pkg-config python3 python3-dev python3-yaml sudo zlib1g \
 zlib1g-dev
cargo install --force cbindgen

Extra for iptables/nftables IPS integration:

sudo apt-get install libnetfilter-queue-dev libnetfilter-queue1 \
 libnetfilter-log-dev libnetfilter-log1 \
 libnfnetlink-dev libnfnetlink0

3.1.2.2. CentOS, AlmaLinux, RockyLinux, Fedora, etc

Note

The following instructions require sudo to be installed.

To install all minimal dependencies, it is required to enable extra package
repository in most distros. You can enable it possibly by
one of the following ways:

sudo dnf -y update
sudo dnf -y install dnf-plugins-core
AlmaLinux 8
sudo dnf config-manager --set-enabled powertools
AlmaLinux 9
sudo dnf config-manager --set-enable crb
Oracle Linux 8
sudo dnf config-manager --set-enable ol8_codeready_builder
Oracle Linux 9
sudo dnf config-manager --set-enable ol9_codeready_builder

Minimal:

Installed Rust and cargo as indicated above
sudo dnf install -y gcc gcc-c++ git jansson-devel libpcap-devel libtool \
 libyaml-devel make pcre2-devel which zlib-devel
cargo install --force cbindgen

Recommended:

Installed Rust and cargo as indicated above
sudo dnf install -y autoconf automake diffutils file-devel gcc gcc-c++ git \
 jansson-devel jq libcap-ng-devel libevent-devel \
 libmaxminddb-devel libnet-devel libnetfilter_queue-devel \
 libnfnetlink-devel libpcap-devel libtool libyaml-devel \
 lua-devel lz4-devel make pcre2-devel pkgconfig \
 python3-devel python3-sphinx python3-yaml sudo which \
 zlib-devel
cargo install --force cbindgen

3.1.3. Compilation

Follow these steps from your Suricata directory:

./scripts/bundle.sh
./autogen.sh
./configure # you may want to add additional parameters here
./configure --help to get all available parameters
make -j8 # j is for paralleling, you may de/increase depending on your CPU
make install # to install your Suricata compiled binary

3.1.4. Auto-Setup

You can also use the available auto-setup features of Suricata:

./configure && make && sudo make install-conf

make install-conf would do the regular "make install" and then it would automatically
create/setup all the necessary directories and suricata.yaml for you.

./configure && make && sudo make install-rules

make install-rules would do the regular "make install" and then it would automatically
download and set up the latest ruleset from Emerging Threats available for Suricata.

./configure && make && sudo make install-full

make install-full would combine everything mentioned above (install-conf and install-rules)
and will present you with a ready-to-run (configured and set-up) Suricata.

3.2. Binary packages

3.2.1. Ubuntu from Personal Package Archives (PPA)

For Ubuntu, OISF maintains a PPA suricata-stable that always contains the
latest stable release.

Note

The following instructions require sudo to be installed.

Setup to install the latest stable Suricata:

sudo apt-get install software-properties-common
sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt-get update

Then, you can install the latest stable with:

sudo apt-get install suricata

After installing you can proceed to the Basic setup.

OISF launchpad: suricata-stable [https://launchpad.net/~oisf/+archive/suricata-stable].

3.2.1.1. Upgrading

To upgrade:

sudo apt-get update
sudo apt-get upgrade suricata

3.2.1.2. Remove

To remove Suricata from your system:

sudo apt-get remove suricata

3.2.1.3. Getting Debug or Pre-release Versions

Note

The following instructions require sudo to be installed.

If you want Suricata with built-in (enabled) debugging, you can install the
debug package:

sudo apt-get install suricata-dbg

If you would like to help test the Release Candidate (RC) packages, the same procedures
apply, just using another PPA: suricata-beta:

sudo add-apt-repository ppa:oisf/suricata-beta
sudo apt-get update
sudo apt-get upgrade

You can use both the suricata-stable and suricata-beta repositories together.
Suricata will then always be the latest release, stable or beta.

OISF launchpad: suricata-beta [https://launchpad.net/~oisf/+archive/suricata-beta].

3.2.1.4. Daily Releases

Note

The following instructions require sudo to be installed.

If you would like to help test the daily build packages from our latest git(dev)
repository, the same procedures as above apply, just using another PPA,
suricata-daily:

sudo add-apt-repository ppa:oisf/suricata-daily-allarch
sudo apt-get update
sudo apt-get upgrade

Note

Please have in mind that this is packaged from our latest development git master
and is therefore potentially unstable.

We do our best to make others aware of continuing development and items
within the engine that are not yet complete or optimal. With this in mind,
please refer to Suricata's issue tracker on Redmine [http://redmine.openinfosecfoundation.org/projects/suricata/issues]
for an up-to-date list of what we are working on, planned roadmap,
and to report issues.

OISF launchpad: suricata-daily [https://launchpad.net/~oisf/+archive/suricata-daily].

3.2.2. Debian

Note

The following instructions require sudo to be installed.

In Debian 9 (stretch) and later do:

sudo apt-get install suricata

In the "stable" version of Debian, Suricata is usually not available in the
latest version. A more recent version is often available from Debian backports,
if it can be built there.

To use backports, the backports repository for the current stable
distribution needs to be added to the system-wide sources list.
For Debian 10 (buster), for instance, run the following as root:

echo "deb http://http.debian.net/debian buster-backports main" > \
 /etc/apt/sources.list.d/backports.list
apt-get update
apt-get install suricata -t buster-backports

3.2.3. CentOS, AlmaLinux, RockyLinux, Fedora, etc

RPMs are provided for the latest release of Enterprise Linux. This
includes CentOS Linux and rebuilds such as AlmaLinux and RockyLinux.
Additionally, RPMs are provided for the latest supported versions of Fedora.

RPMs specifically for CentOS Stream are not provided, however the RPMs for their
related version may work fine.

3.2.3.1. Installing From Package Repositories

3.2.3.1.1. CentOS, RHEL, AlmaLinux, RockyLinux, etc Version 8+

Note

The following instructions require sudo to be installed.

sudo dnf install epel-release dnf-plugins-core
sudo dnf copr enable @oisf/suricata-7.0
sudo dnf install suricata

3.2.3.1.2. CentOS 7

sudo yum install epel-release yum-plugin-copr
sudo yum copr enable @oisf/suricata-7.0
sudo yum install suricata

3.2.3.1.3. Fedora

sudo dnf install dnf-plugins-core
sudo dnf copr enable @oisf/suricata-7.0
sudo dnf install suricata

3.2.3.2. Additional Notes for RPM Installations

	Suricata is pre-configured to run as the suricata user.

	Command line parameters such as providing the interface names can be
configured in /etc/sysconfig/suricata.

	Users can run suricata-update without being root provided they
are added to the suricata group.

	Directories:

	/etc/suricata: Configuration directory

	/var/log/suricata: Log directory

	/var/lib/suricata: State directory rules, datasets.

3.2.3.2.1. Starting Suricata On-Boot

The Suricata RPMs are configured to run from Systemd.

Note

The following instructions require sudo to be installed.

To start Suricata:

sudo systemctl start suricata

To stop Suricata:

sudo systemctl stop suricata

To have Suricata start on-boot:

sudo systemctl enable suricata

To reload rules:

sudo systemctl reload suricata

3.2.4. Arch Based

The ArchLinux AUR contains Suricata and suricata-nfqueue packages, with commonly
used configurations for compilation (may also be edited to your liking). You may
use makepkg, yay (sample below), or other AUR helpers to compile and build
Suricata packages.

yay -S suricata

3.3. Advanced Installation

If you are using Ubuntu, you can follow
Installation from GIT.

For other various installation guides for installing from GIT and for other operating
systems, please check (bear in mind that those may be somewhat outdated):
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation

4. Upgrading

4.1. General instructions

Suricata can be upgraded by simply installing the new version to the same
locations as the already installed version. When installing from source,
this means passing the same --prefix, --sysconfdir,
--localstatedir and --datadir options to configure.

$ suricata --build-info|grep -A 3 '\-\-prefix'
 --prefix /usr
 --sysconfdir /etc
 --localstatedir /var
 --datarootdir /usr/share

4.1.1. Configuration Updates

New versions of Suricata will occasionally include updated config files:
classification.config and reference.config. Since the Suricata
installation will not overwrite these if they exist, they must be manually
updated. If there are no local modifications they can simply be overwritten
by the ones Suricata supplies.

Major updates include new features, new default settings and often also remove
features. This upgrade guide covers the changes that might have an impact of
migrating from an older version and keeping the config. We encourage you to
also check all the new features that have been added but are not covered by
this guide. Those features are either not enabled by default or require
dedicated new configuration.

4.2. Upgrading 7.0 to 8.0

Note

stats.whitelist has been renamed to stats.score in eve.json

4.2.1. Major changes

	SIP parser has been updated to inspect traffic carried by TCP as well.
SIP keywords can still match on their respective fields in addition
to these improvements.
Transactions are logged with the same schema regardless of which
transport protocol is carrying the payload.
Also, SIP protocol is detected using pattern matching and not only
probing parser.

	SIP_PORTS variable has been introduced in suricata.yaml

	Application layer's sip counter has been split into sip_tcp and sip_udp
for the stats event.

4.3. Upgrading 6.0 to 7.0

4.3.1. Major changes

	Upgrade of PCRE1 to PCRE2. See Changes from PCRE1 to PCRE2 for more details.

	IPS users: by default various new "exception policies" are set to DROP
traffic. Please see Exception Policies for details
on the settings and their scope. For trouble shooting, please check My traffic gets
blocked after upgrading to Suricata 7 [https://forum.suricata.io/t/my-traffic-gets-blocked-after-upgrading-to-suricata-7].

	New protocols enabled by default: bittorrent-dht, quic, http2.

	The telnet protocol is also enabled by default, but only for the app-layer.

4.3.2. Security changes

	suricata.yaml now prevents process creation by Suricata by default with security.limit-noproc.
The suricata.yaml configuration file needs to be updated to enable this feature.
For more info, see Configuration hardening.

	Absolute filenames and filenames containing parent directory
traversal are no longer allowed by default for datasets when the
filename is specified as part of a rule. See Datasets Security and Datasets File Locations for more information.

	Lua rules are now disabled by default (change also introduced in 6.0.13), see Lua Scripting for Detection.

4.3.3. Removals

	The libprelude output plugin has been removed.

	EVE DNS v1 logging support has been removed. If still using EVE DNS v1 logging, see the manual section on DNS logging configuration for the current configuration options: DNS EVE Configuration

4.3.4. Logging changes

	IKEv2 Eve logging changed, the event_type has become ike which covers both protocol versions. The fields errors and notify have moved to
ike.ikev2.errors and ike.ikev2.notify.

	FTP DATA metadata for alerts are now logged in ftp_data instead of root.

	Alert xff field is now logged as alert.xff for alerts instead of at the root.

	Protocol values and their names are built into Suricata instead of using the system's /etc/protocols file. Some names and casing may have changed
in the values proto in eve.json log entries and other logs containing protocol names and values.
See https://redmine.openinfosecfoundation.org/issues/4267 for more information.

	Logging of additional HTTP headers configured through the EVE
http.custom option will now be logged in the request_headers
and/or response_headers respectively instead of merged into the
existing http object. In Suricata 6.0, a configuration like:

http:
 custom: [Server]

would result in a log entry like:

"http": {
 "hostname": "suricata.io",
 "http_method": "GET",
 "protocol": "HTTP/1/1",
 "server": "nginx",
 ...
}

This merging of custom headers in the http object could result
in custom headers overwriting standard fields in the http
object, or a response header overwriting request header.

To prevent the possibility of fields being overwritten, all
custom headers are now logged into the request_headers and
response_headers arrays to avoid any chance of collision. This
also facilitates the logging of headers that may appear multiple
times, with each occurrence being logged in future releases (see
note below).

While these arrays are not new in Suricata 7.0, they had previously
been used exclusively for the dump-all-headers option.

As of Suricata 7.0, the above configuration example will now be
logged like:

"http": {
 "hostname": "suricata.io",
 "http_method": "GET",
 "protocol": "HTTP/1/1",
 "response_headers": [
 { "name": "Server", "value": "nginx" }
]
}

Effectively making the custom option a subset of the
dump-all-headers option.

If you've been using the custom option, this may represent a
breaking change. However, if you haven't used it, there will be no
change in the output.

Note

Currently, if the same HTTP header is seen multiple times, the
values are concatenated into a comma-separated value.

For more information, refer to:
https://redmine.openinfosecfoundation.org/issues/1275.

4.3.5. Deprecations

	Multiple "include" fields in the configuration file will now issue a
warning and in Suricata 8.0 will not be supported. See
Includes for documentation on including multiple files.

	For AF-Packet, the cluster_rollover setting is no longer supported. Configuration settings using cluster_rollover
will cause a warning message and act as though cluster_flow` was specified. Please update your configuration settings.

4.3.6. Other changes

	Experimental keyword http2.header is removed. http.header, http.request_header, and http.response_header are to be used.

	NSS is no longer required. File hashing and JA3 can now be used without the NSS compile time dependency.

	If installing Suricata without the bundled Suricata-Update, the default-rule-path has been changed from /etc/suricata/rules to /var/lib/suricata/rules to be consistent with Suricata when installed with Suricata-Update.

	FTP has been updated with a maximum command request and response line length of 4096 bytes. To change the default see FTP.

	SWF decompression in http has been disabled by default. To change the default see Configure HTTP (libhtp). Users with configurations from previous releases may want to modify their config to match the new default.
See https://redmine.openinfosecfoundation.org/issues/5632 for more information.

	The new option livedev is enabled by default with use-for-tracking being set to true. This should be disabled if multiple live devices are used to capture traffic from the same network.

4.4. Upgrading 5.0 to 6.0

	SIP now enabled by default

	RDP now enabled by default

	ERSPAN Type I enabled by default.

4.4.1. Major changes

	New protocols enabled by default: mqtt, rfb

	SSH Client fingerprinting for SSH clients

	Conditional logging

	Initial HTTP/2 support

	DCERPC logging

	Improved EVE logging performance

4.4.2. Removals

	File-store v1 has been removed. If using file extraction, the file-store configuration
will need to be updated to version 2. See Update File-store v1 Configuration to V2.

	Individual Eve (JSON) loggers have been removed. For example,
stats-json, dns-json, etc. Use multiple Eve logger instances
if this behavior is still required. See Multiple Logger Instances.

	Unified2 has been removed. See Unified2 Output Removed.

4.4.3. Performance

	In YAML files w/o a flow-timeouts.tcp.closed setting, the default went from 0 to 10 seconds.
This may lead to higher than expected TCP memory use:
https://redmine.openinfosecfoundation.org/issues/6552

4.5. Upgrading 4.1 to 5.0

4.5.1. Major changes

	New protocols enabled by default: snmp (new config only)

	New protocols disabled by default: rdp, sip

	New defaults for protocols: nfs, smb, tftp, krb5 ntp are all enabled
by default (new config only)

	VXLAN decoder enabled by default. To disable, set
decoder.vxlan.enabled to false.

	HTTP LZMA support enabled by default. To disable, set lzma-enabled
to false in each of the libhtp configurations in use.

	classification.config updated. ET 5.0 ruleset will use this.

	decoder event counters use 'decoder.event' as prefix now. This can
be controlled using the stats.decoder-events-prefix setting.

4.5.2. Removals

	dns-log, the text dns log. Use EVE.dns instead.

	file-log, the non-EVE JSON file log. Use EVE.files instead.

	drop-log, the non-EVE JSON drop log.

See https://suricata.io/about/deprecation-policy/

5. Security Considerations

Suricata is a security tool that processes untrusted network data, as
well as requiring elevated system privileges to acquire that
data. This combination deserves extra security precautions that we
discuss below.

Additionally, supply chain attacks, particularly around rule
distribution, could potentially target Suricata installations.

5.1. Running as a User Other Than Root

Note

If using the Suricata RPMs, either from the OISF COPR repo,
or the EPEL repo, the following is already configured for
you. The only thing you might want to do is add your
management user to the suricata group.

Many Suricata examples and guides will show Suricata running as the
root user, particularly when running on live traffic. As Suricata
generally needs low level read (and in IPS write) access to network
traffic, it is required that Suricata starts as root, however Suricata
does have the ability to drop down to a non-root user after startup,
which could limit the impact of a security vulnerability in Suricata
itself.

Note

Currently the ability to drop root privileges after startup
is only available on Linux systems.

5.1.1. Create User

Before running as a non-root user, you need to choose and possibly
create the user and group that will Suricata will run as. Typically
this user would be a sytem user with the name suricata. Such a
user can be created with the following command:

useradd --no-create-home --system --shell /sbin/nologin suricata

This will create a user and group with the name suricata.

5.1.2. File System Permissions

Before running Suricata as the user suricata, some directory
permissions will need to be updated to allow the suricata read and
write access.

Assuming your Suricata was installed from source using the recommended
configuration of:

./configure --prefix=/usr/ --sysconfdir=/etc/ --localstatedir=/var/

the following directories will need their permissions updated:

	Directory

	Permissions

	/etc/suricata

	Read

	/var/log/suricata

	Read, Write

	/var/lib/suricata

	Read, Write

	/var/run/suricata

	Read, Write

The following commands will setup the correct permissions:

	/etc/suricata:

chgrp -R suricata /etc/suricata
chmod -R g+r /etc/suricata

	/var/log/suricata:

chgrp -R suricata /var/log/suricata
chmod -R g+rw /var/log/suricata

	/var/lib/suricata:

chgrp -R suricata /var/lib/suricata
chmod -R g+srw /var/lib/suricata

	/var/lib/suricata:

chgrp -R suricata /var/run/suricata
chmod -R g+srw /var/run/suricata

5.1.3. Configure Suricata to Run as Suricata

Suricata can be configured to run as an alternate user by updating the
configuration file or using command line arguments.

	Using the configuration file, update the run-as section to look like:

run-as:
 user: suricata
 group: suricata

	Or if using command line arguments, add the following to your command:

--user suricata --group suricata

5.1.4. Starting Suricata

It is important to note that Suricata still needs to be started with
root permissions in most cases. Starting as root allows Suricata
to get access to the network interfaces and set the capabilities
required during runtime before it switches down to the configured
user.

5.1.5. Other Commands: Suricata-Update, SuricataSC

With the previous permissions setup, suricata-update and
suricatasc can also be run without root or sudo. To allow a user
to access these commands, add them to the suricata group.

5.2. Containers

Containers such as Docker and Podman are other methods to provide
isolation between Suricata and the host machine running Suricata.
However, we still recommend running as a non-root user, even in
containers.

5.2.1. Capabilities

For both Docker and Podman the following capabilities should be
provided to the container running Suricata for proper operation:

--cap-add=net_admin --cap-add=net_raw --cap-add=sys_nice

5.2.2. Podman

Unfortunately Suricata will not work with rootless Podman, this is
due to Suricata's requirement to start with root privileges to gain
access to the network interfaces. However, if started with the above
capabilities, and configured to run as a non-root user, it will drop
root privileges before processing network data.

6. Support Status

6.1. Levels of Support

The support tiers detailed below do not represent a binding
commitment. Instead, they serve as a framework that the OISF employs
to prioritize features and functionality.

6.1.1. Tier 1

Tier 1 supported items are developed and supported by the Suricata
team. These items receive full CI (continuous integration)
coverage, and functional failures block git merges and releases. Tier
1 features are enabled by default on platforms that support the
feature.

6.1.2. Tier 2

Tier 2 supported items are developed and supported by the Suricata
team, sometimes with help from community members. Major functional
failures block git merges and releases, however less major issues
may be documented as "known issues" and may go into a release. Tier 2
features and functionality may be disabled by default.

6.1.3. Community

When a feature of Suricata is community supported, it means the
OISF/Suricata development team won’t directly support it. This is to
avoid overloading the team.

When accepting a feature into the code base anyway, it will come with
a number of limits and conditions:

	submitter must commit to maintaining it:

	make sure code compiles and correctly functions after Suricata
and/or external (e.g. library) changes.

	support users when they encounter problems on forum and
redmine tickets.

	the code will be disabled by default and will not become part of the
QA setup. This means it will be enabled only by an --enable
configure flag.

	the code may not have CI coverage by the OISF infrastructure.

If the feature gets lots of traction, and/or if the team just
considers it very useful, it may get ‘promoted’ to being officially
supported.

On the other hand, the feature will be removed if the submitter stops
maintaining it and no-one steps up to take over.

6.1.4. Vendor

Vendor supported features are features specific to a certain vendor
and usually require software and/or hardware from that vendor. While
these features may exist in the main Suricata code, they rely on
support from the vendor to keep the feature in a functional state.

Vendor supported functionality will generally not have CI or QA
coverage by the OISF.

6.1.5. Unmaintained

When a feature is unmaintained it is very likely broken and may be
(partially) removed during cleanups and code refactoring. No end-user
support is done by the core team. If someone wants to help maintain
and support such a feature, we recommend talking to the core team
before spending a lot of time on it.

Please see Contributing to Suricata
for more information if you wish to contribute.

6.2. Distributions

6.2.1. Tier 1

These tier 1 supported Linux distributions and operating systems
receive full CI and QA, as well as documentation.

	Distribution

	Version

	Support

	QA

	Notes

	RHEL/CentOS

	7

	OISF

	
	

	RHEL/Alma/Rocky

	8

	OISF

	
	

	RHEL/Alma/Rocky

	9

	OISF

	
	

	Ubuntu

	20.04

	OISF

	
	

	Ubuntu

	22.04

	OISF

	
	

	Debian

	10 (Buster)

	OISF

	
	

	Debian

	11 (Bullseye)

	OISF

	
	Foundation of SELKS

	Debian

	12 (Bookworm)

	OISF

	
	

	FreeBSD

	12

	OISF

	
	Foundation of OPNsense, pfSense

	FreeBSD

	13

	OISF

	
	Foundation of OPNSense

6.2.2. Tier 2

These tier 2 supported Linux distributions and operating systems
receive CI but not full QA (functional testing).

	Distribution

	Version

	Support

	QA

	Notes

	CentOS

	Stream

	OISF

	
	

	Fedora

	Active

	OISF

	
	

	OpenBSD

	7.2

	OISF

	
	

	OpenBSD

	7.1

	OISF

	
	

	OSX/macOS

	??

	OISF

	
	

	Windows/MinGW64

	
	OISF

	
	

6.3. Architecture Support

6.3.1. Tier 1

	Architecture

	Support

	QA

	Notes

	x86_64

	OISF

	
	

	ARM8-64bit

	OISF

	
	

6.3.2. Tier 2

	Architecture

	Support

	QA

	Notes

	ARM7-32bit

	OISF

	
	

	i386

	OISF

	
	

6.3.3. Community

	Architecture

	Support

	QA

	Notes

	PPC64el

	
	Part of Fedora automated QA

	Access can be arranged through IBM dev cloud

	PPC64

	
	
	No access to working hardware

	PPC32

	
	
	No access to working hardware

	RISC-V

	
	
	

6.3.4. High Level Features

6.3.4.1. Capture support

6.3.4.1.1. Tier 1

	Capture Type

	Maintainer

	QA

	Notes

	AF_PACKET

	OISF

	
	Used by Security Onion, SELKS

	NETMAP (FreeBSD)

	OISF

	
	Used by OPNsense, PFsense

	NFQUEUE

	OISF

	
	

	libpcap

	OISF

	
	

6.3.4.1.2. Tier 2

	Capture Type

	Maintainer

	QA

	Notes

	PF_RING

	OISF

	
	

	NETMAP (Linux)

	OISF

	
	

	DPDK

	OISF

	
	

	AF_PACKET (eBPF/XDP)

	OISF

	
	

6.3.4.1.3. Community

	Capture Type

	Maintainer

	QA

	Notes

	NFLOG

	Community

	
	

	AF_XDP

	Community

	
	

6.3.4.1.4. Vendor

	Capture Type

	Maintainer

	QA

	Notes

	Napatech

	Napatech / Community

	
	

6.3.4.1.5. Unmaintained

	Capture Type

	Maintainer

	QA

	Notes

	IPFW

	
	
	

	Endace/DAG

	
	
	

6.3.4.2. Operation modes

6.3.4.2.1. Tier 1

	Mode

	Maintainer

	QA

	Notes

	IDS (passive)

	OISF

	
	

	IPS (active)

	OISF

	
	

	Offline pcap file

	OISF

	
	

6.3.4.2.2. Tier 2

	Mode

	Maintainer

	QA

	Notes

	Unix socket mode

	OISF

	
	

	IDS (active)

	OISF

	
	Active responses, reject keyword

7. Command Line Options

Suricata's command line options:

	
-h

	Display a brief usage overview.

	
-V

	Displays the version of Suricata.

	
-c <path>

	Path to configuration file.

	
--include <path>

	Additional configuration files to include. Multiple additional
configuration files can be provided and will be included in the
order specified on the command line. These additional configuration
files are loaded as if they existed at the end of the main
configuration file.

Example including one additional file:

--include /etc/suricata/other.yaml

Example including more than one additional file:

--include /etc/suricata/other.yaml --include /etc/suricata/extra.yaml

	
-T

	Test configuration.

	
-v

	Increase the verbosity of the Suricata application logging by
increasing the log level from the default. This option can be
passed multiple times to further increase the verbosity.

	-v: INFO

	-vv: PERF

	-vvv: CONFIG

	-vvvv: DEBUG

This option will not decrease the log level set in the
configuration file if it is already more verbose than the level
requested with this option.

	
-r <path>

	Run in pcap offline mode (replay mode) reading files from pcap file. If
<path> specifies a directory, all files in that directory will be processed
in order of modified time maintaining flow state between files.

	
--pcap-file-continuous

	Used with the -r option to indicate that the mode should stay alive until
interrupted. This is useful with directories to add new files and not reset
flow state between files.

	
--pcap-file-recursive

	Used with the -r option when the path provided is a directory. This option
enables recursive traversal into subdirectories to a maximum depth of 255.
This option cannot be combined with --pcap-file-continuous. Symlinks are
ignored.

	
--pcap-file-delete

	Used with the -r option to indicate that the mode should delete pcap files
after they have been processed. This is useful with pcap-file-continuous to
continuously feed files to a directory and have them cleaned up when done. If
this option is not set, pcap files will not be deleted after processing.

	
-i <interface>

	After the -i option you can enter the interface card you would like
to use to sniff packets from. This option will try to use the best
capture method available. Can be used several times to sniff packets from
several interfaces.

	
--pcap[=<device>]

	Run in PCAP mode. If no device is provided the interfaces
provided in the pcap section of the configuration file will be
used.

	
--af-packet[=<device>]

	Enable capture of packet using AF_PACKET on Linux. If no device is
supplied, the list of devices from the af-packet section in the
yaml is used.

	
--af-xdp[=<device>]

	Enable capture of packet using AF_XDP on Linux. If no device is
supplied, the list of devices from the af-xdp section in the
yaml is used.

	
-q <queue id>

	Run inline of the NFQUEUE queue ID provided. May be provided
multiple times.

	
-s <filename.rules>

	With the -s option you can set a file with signatures, which will
be loaded together with the rules set in the yaml.

It is possible to use globbing when specifying rules files.
For example, -s '/path/to/rules/*.rules'

	
-S <filename.rules>

	With the -S option you can set a file with signatures, which will
be loaded exclusively, regardless of the rules set in the yaml.

It is possible to use globbing when specifying rules files.
For example, -S '/path/to/rules/*.rules'

	
-l <directory>

	With the -l option you can set the default log directory. If you
already have the default-log-dir set in yaml, it will not be used
by Suricata if you use the -l option. It will use the log dir that
is set with the -l option. If you do not set a directory with
the -l option, Suricata will use the directory that is set in yaml.

	
-D

	Normally if you run Suricata on your console, it keeps your console
occupied. You can not use it for other purposes, and when you close
the window, Suricata stops running. If you run Suricata as daemon
(using the -D option), it runs at the background and you will be
able to use the console for other tasks without disturbing the
engine running.

	
--runmode <runmode>

	With the --runmode option you can set the runmode that you would
like to use. This command line option can override the yaml runmode
option.

Runmodes are: workers, autofp and single.

For more information about runmodes see Runmodes in the user guide.

	
-F <bpf filter file>

	Use BPF filter from file.

	
-k [all|none]

	Force (all) the checksum check or disable (none) all checksum
checks.

	
--user=<user>

	Set the process user after initialization. Overrides the user
provided in the run-as section of the configuration file.

	
--group=<group>

	Set the process group to group after initialization. Overrides the
group provided in the run-as section of the configuration file.

	
--pidfile <file>

	Write the process ID to file. Overrides the pid-file option in
the configuration file and forces the file to be written when not
running as a daemon.

	
--init-errors-fatal

	Exit with a failure when errors are encountered loading signatures.

	
--strict-rule-keywords[=all|<keyword>|<keywords(csv)]

	Applies to: classtype, reference and app-layer-event.

By default missing reference or classtype values are warnings and
not errors. Additionally, loading outdated app-layer-event events are
also not treated as errors, but as warnings instead.

If this option is enabled these warnings are considered errors.

If no value, or the value 'all', is specified, the option applies to
all of the keywords above. Alternatively, a comma separated list can
be supplied with the keyword names it should apply to.

	
--disable-detection

	Disable the detection engine.

	
--disable-hashing

	Disable support for hash algorithms such as md5, sha1 and sha256.

By default hashing is enabled. Disabling hashing will also disable some
Suricata features such as the filestore, ja3, and rule keywords that use hash
algorithms.

	
--dump-config

	Dump the configuration loaded from the configuration file to the
terminal and exit.

	
--dump-features

	Dump the features provided by Suricata modules and exit. Features
list (a subset of) the configuration values and are intended to
assist with comparing provided features with those required by
one or more rules.

	
--build-info

	Display the build information the Suricata was built with.

	
--list-app-layer-protos

	List all supported application layer protocols.

	
--list-keywords=[all|csv|<kword>]

	List all supported rule keywords.

	
--list-runmodes

	List all supported run modes.

	
--set <key>=<value>

	Set a configuration value. Useful for overriding basic
configuration parameters. For example, to change the default log
directory:

--set default-log-dir=/var/tmp

This option cannot be used to add new entries to a list in the
configuration file, such as a new output. It can only be used to
modify a value in a list that already exists.

For example, to disable the eve-log in the default
configuration file:

--set outputs.1.eve-log.enabled=no

Also note that the index values may change as the suricata.yaml
is updated.

See the output of --dump-config for existing values that could
be modified with their index.

	
--engine-analysis

	Print reports on analysis of different sections in the engine and
exit. Please have a look at the conf parameter engine-analysis on
what reports can be printed

	
--unix-socket=<file>

	Use file as the Suricata unix control socket. Overrides the
filename provided in the unix-command section of the
configuration file.

	
--reject-dev=<device>

	Use device to send out RST / ICMP error packets with
the reject keyword.

	
--pcap-buffer-size=<size>

	Set the size of the PCAP buffer (0 - 2147483647).

	
--netmap[=<device>]

	Enable capture of packet using NETMAP on FreeBSD or Linux. If no
device is supplied, the list of devices from the netmap section
in the yaml is used.

	
--pfring[=<device>]

	Enable PF_RING packet capture. If no device provided, the devices in
the Suricata configuration will be used.

	
--pfring-cluster-id <id>

	Set the PF_RING cluster ID.

	
--pfring-cluster-type <type>

	Set the PF_RING cluster type (cluster_round_robin, cluster_flow).

	
-d <divert-port>

	Run inline using IPFW divert mode.

	
--dag <device>

	Enable packet capture off a DAG card. If capturing off a specific
stream the stream can be select using a device name like
"dag0:4". This option may be provided multiple times read off
multiple devices and/or streams.

	
--napatech

	Enable packet capture using the Napatech Streams API.

	
--erf-in=<file>

	Run in offline mode reading the specific ERF file (Endace
extensible record format).

	
--simulate-ips

	Simulate IPS mode when running in a non-IPS mode.

7.1. Unit Tests

The builtin unittests are only available when Suricata has been configured and built with
--enable-unittests.

Running unittests does not require a configuration file. Use -l to supply
an output directory.:

sudo suricata -u

	
-u

	Run the unit tests and exit. Requires that Suricata be configured
with --enable-unittests.

	
-U, --unittest-filter=REGEX

	With the -U option you can select which of the unit tests you want
to run. This option uses REGEX. Example of use: suricata -u -U
http

	
--list-unittests

	Lists available unit tests.

	
--fatal-unittests

	Enables fatal failure on a unit test error. Suricata will exit
instead of continuing more tests.

	
--unittests-coverage

	Display unit test coverage report.

8. Suricata Rules

	8.1. Rules Format
	8.1.1. Action

	8.1.2. Protocol

	8.1.3. Source and destination

	8.1.4. Ports (source and destination)

	8.1.5. Direction

	8.1.6. Rule options
	8.1.6.1. Modifier Keywords

	8.1.6.2. Normalized Buffers

	8.2. Meta Keywords
	8.2.1. msg (message)

	8.2.2. sid (signature ID)

	8.2.3. rev (revision)

	8.2.4. gid (group ID)

	8.2.5. classtype

	8.2.6. reference

	8.2.7. priority

	8.2.8. metadata

	8.2.9. target

	8.2.10. requires

	8.3. IP Keywords
	8.3.1. ttl

	8.3.2. ipopts

	8.3.3. sameip

	8.3.4. ip_proto

	8.3.5. ipv4.hdr

	8.3.6. ipv6.hdr

	8.3.7. id

	8.3.8. geoip

	8.3.9. fragbits (IP fragmentation)

	8.3.10. fragoffset

	8.3.11. tos

	8.4. TCP keywords
	8.4.1. tcp.flags

	8.4.2. seq

	8.4.3. ack

	8.4.4. window

	8.4.5. tcp.mss

	8.4.6. tcp.hdr

	8.5. UDP keywords
	8.5.1. udp.hdr

	8.6. ICMP keywords
	8.6.1. itype

	8.6.2. icode

	8.6.3. icmp_id

	8.6.4. icmp_seq

	8.6.5. icmpv4.hdr

	8.6.6. icmpv6.hdr

	8.6.7. icmpv6.mtu

	8.7. Payload Keywords
	8.7.1. content

	8.7.2. nocase

	8.7.3. depth

	8.7.4. startswith

	8.7.5. endswith

	8.7.6. offset

	8.7.7. distance

	8.7.8. within

	8.7.9. rawbytes

	8.7.10. isdataat

	8.7.11. bsize

	8.7.12. dsize

	8.7.13. byte_test

	8.7.14. byte_math

	8.7.15. byte_jump

	8.7.16. byte_extract

	8.7.17. rpc

	8.7.18. replace

	8.7.19. pcre (Perl Compatible Regular Expressions)
	8.7.19.1. Suricata's modifiers

	8.8. Changes from PCRE1 to PCRE2

	8.9. Integer Keywords
	8.9.1. Comparison modes

	8.9.2. Enumerations

	8.9.3. Bitmasks

	8.10. Transformations
	8.10.1. dotprefix

	8.10.2. strip_whitespace

	8.10.3. compress_whitespace

	8.10.4. to_lowercase

	8.10.5. to_md5

	8.10.6. to_uppercase

	8.10.7. to_sha1

	8.10.8. to_sha256

	8.10.9. pcrexform

	8.10.10. url_decode

	8.10.11. xor

	8.10.12. header_lowercase

	8.10.13. strip_pseudo_headers

	8.11. Prefiltering Keywords
	8.11.1. fast_pattern
	8.11.1.1. Suricata Fast Pattern Determination Explained
	8.11.1.1.1. Appendices
	8.11.1.1.1.1. Appendix A - Pattern Strength Algorithm

	8.11.1.2. fast_pattern:only

	8.11.1.3. fast_pattern:'chop'

	8.11.2. prefilter

	8.12. Flow Keywords
	8.12.1. flowbits

	8.12.2. flow

	8.12.3. flowint

	8.12.4. stream_size

	8.12.5. flow.age

	8.12.6. flow.pkts_toclient

	8.12.7. flow.pkts_toserver

	8.12.8. flow.bytes_toclient

	8.12.9. flow.bytes_toserver

	8.13. Bypass Keyword
	8.13.1. bypass

	8.14. HTTP Keywords
	8.14.1. HTTP Primer

	8.14.2. http.method

	8.14.3. http.uri and http.uri.raw

	8.14.4. uricontent

	8.14.5. urilen

	8.14.6. http.protocol

	8.14.7. http.request_line

	8.14.8. http.header and http.header.raw

	8.14.9. http.cookie

	8.14.10. http.user_agent
	8.14.10.1. Notes

	8.14.11. http.accept

	8.14.12. http.accept_enc

	8.14.13. http.accept_lang

	8.14.14. http.connection

	8.14.15. http.content_type

	8.14.16. http.content_len

	8.14.17. http.referer

	8.14.18. http.start

	8.14.19. http.header_names

	8.14.20. http.request_body

	8.14.21. http.stat_code

	8.14.22. http.stat_msg

	8.14.23. http.response_line

	8.14.24. http.response_body
	8.14.24.1. Notes

	8.14.25. http.server

	8.14.26. http.location

	8.14.27. http.host and http.host.raw

	8.14.28. http.request_header

	8.14.29. http.response_header
	8.14.29.1. Notes

	8.14.30. file.data
	8.14.30.1. Notes

	8.14.30.2. Multiple Buffer Matching

	8.14.31. file.name

	8.15. File Keywords
	8.15.1. file.data

	8.15.2. file.name

	8.15.3. fileext

	8.15.4. file.magic

	8.15.5. filestore

	8.15.6. filemd5

	8.15.7. filesha1

	8.15.8. filesha256

	8.15.9. filesize

	8.16. DNS Keywords
	8.16.1. dns.answer.name

	8.16.2. dns.opcode
	8.16.2.1. Syntax

	8.16.2.2. Examples

	8.16.3. dns.rcode
	8.16.3.1. Syntax

	8.16.3.2. Examples

	8.16.4. dns.rrtype
	8.16.4.1. Syntax

	8.16.4.2. Examples

	8.16.5. dns.query
	8.16.5.1. Normalized Buffer

	8.16.6. dns.query.name

	8.17. SSL/TLS Keywords
	8.17.1. tls.cert_subject
	8.17.1.1. tls.subject

	8.17.2. tls.cert_issuer
	8.17.2.1. tls.issuerdn

	8.17.3. tls.cert_serial

	8.17.4. tls.cert_fingerprint

	8.17.5. tls.sni

	8.17.6. tls_cert_notbefore

	8.17.7. tls_cert_notafter

	8.17.8. tls_cert_expired

	8.17.9. tls_cert_valid

	8.17.10. tls.certs

	8.17.11. tls.version

	8.17.12. ssl_version

	8.17.13. tls.fingerprint

	8.17.14. tls.store

	8.17.15. ssl_state

	8.17.16. tls.random

	8.17.17. tls.random_time

	8.17.18. tls.random_bytes

	8.17.19. tls.cert_chain_len

	8.18. SSH Keywords
	8.18.1. ssh.proto

	8.18.2. ssh.software

	8.18.3. ssh.protoversion

	8.18.4. ssh.softwareversion

	8.18.5. ssh.hassh

	8.18.6. ssh.hassh.string

	8.18.7. ssh.hassh.server

	8.18.8. ssh.hassh.server.string

	8.19. JA3 Keywords
	8.19.1. ja3.hash

	8.19.2. ja3.string

	8.19.3. ja3s.hash

	8.19.4. ja3s.string

	8.20. Modbus Keyword

	8.21. DCERPC Keywords
	8.21.1. dcerpc.iface

	8.21.2. dcerpc.opnum

	8.21.3. dcerpc.stub_data

	8.21.4. Additional information

	8.22. DHCP keywords
	8.22.1. dhcp.leasetime

	8.22.2. dhcp.rebinding_time

	8.22.3. dhcp.renewal_time

	8.23. DNP3 Keywords
	8.23.1. dnp3_func
	8.23.1.1. Syntax

	8.23.2. dnp3_ind
	8.23.2.1. Syntax

	8.23.2.2. Examples

	8.23.3. dnp3_obj
	8.23.3.1. Syntax

	8.23.4. dnp3_data
	8.23.4.1. Syntax

	8.23.4.2. Example

	8.24. ENIP/CIP Keywords

	8.25. FTP/FTP-DATA Keywords
	8.25.1. ftpdata_command

	8.25.2. ftpbounce

	8.25.3. file.name

	8.26. Kerberos Keywords
	8.26.1. krb5_msg_type

	8.26.2. krb5_cname

	8.26.3. krb5_sname

	8.26.4. krb5_err_code

	8.26.5. krb5.weak_encryption (event)

	8.26.6. krb5.malformed_data (event)

	8.26.7. krb5.ticket_encryption

	8.27. SMB Keywords
	8.27.1. smb.named_pipe

	8.27.2. smb.share

	8.27.3. smb.ntlmssp_user

	8.27.4. smb.ntlmssp_domain

	8.27.5. smb.version
	8.27.5.1. Matching in transition from SMBv1 to SMBv2

	8.27.5.2. Will smb.version match SMBv3 traffic?

	8.27.6. file.name

	8.28. SNMP keywords
	8.28.1. snmp.version

	8.28.2. snmp.community

	8.28.3. snmp.usm

	8.28.4. snmp.pdu_type

	8.29. Base64 keywords
	8.29.1. base64_decode

	8.29.2. base64_data

	8.29.3. Example

	8.30. SIP Keywords
	8.30.1. sip.method
	8.30.1.1. Syntax

	8.30.1.2. Examples

	8.30.2. sip.uri
	8.30.2.1. Syntax

	8.30.2.2. Examples

	8.30.3. sip.request_line
	8.30.3.1. Syntax

	8.30.3.2. Examples

	8.30.4. sip.stat_code
	8.30.4.1. Syntax

	8.30.4.2. Examples

	8.30.5. sip.stat_msg
	8.30.5.1. Syntax

	8.30.5.2. Examples

	8.30.6. sip.response_line
	8.30.6.1. Syntax

	8.30.6.2. Examples

	8.30.7. sip.protocol
	8.30.7.1. Syntax

	8.30.7.2. Example

	8.31. RFB Keywords
	8.31.1. rfb.name

	8.31.2. rfb.secresult

	8.31.3. rfb.sectype

	8.31.4. Additional information

	8.32. MQTT Keywords
	8.32.1. mqtt.protocol_version

	8.32.2. mqtt.type

	8.32.3. mqtt.flags

	8.32.4. mqtt.qos

	8.32.5. mqtt.reason_code

	8.32.6. mqtt.connack.session_present

	8.32.7. mqtt.connect.clientid

	8.32.8. mqtt.connect.flags

	8.32.9. mqtt.connect.password

	8.32.10. mqtt.connect.protocol_string

	8.32.11. mqtt.connect.username

	8.32.12. mqtt.connect.willmessage

	8.32.13. mqtt.connect.willtopic

	8.32.14. mqtt.publish.message

	8.32.15. mqtt.publish.topic

	8.32.16. mqtt.subscribe.topic

	8.32.17. mqtt.unsubscribe.topic

	8.32.18. Additional information

	8.33. IKE Keywords
	8.33.1. ike.init_spi, ike.resp_spi

	8.33.2. ike.chosen_sa_attribute

	8.33.3. ike.exchtype

	8.33.4. ike.vendor

	8.33.5. ike.key_exchange_payload

	8.33.6. ike.key_exchange_payload_length

	8.33.7. ike.nonce_payload

	8.33.8. ike.nonce_payload_length

	8.33.9. Additional information

	8.34. HTTP2 Keywords
	8.34.1. http2.frametype

	8.34.2. http2.errorcode

	8.34.3. http2.priority

	8.34.4. http2.window

	8.34.5. http2.size_update

	8.34.6. http2.settings

	8.34.7. http2.header_name

	8.34.8. Additional information

	8.35. Quic Keywords
	8.35.1. quic.cyu.hash

	8.35.2. quic.cyu.string

	8.35.3. quic.version

	8.35.4. Additional information

	8.36. NFS Keywords
	8.36.1. file.name

	8.37. SMTP Keywords
	8.37.1. file.name

	8.38. Generic App Layer Keywords
	8.38.1. app-layer-protocol
	8.38.1.1. Bail out conditions

	8.38.2. app-layer-event
	8.38.2.1. Protocol Detection
	8.38.2.1.1. applayer_mismatch_protocol_both_directions

	8.38.2.1.2. applayer_wrong_direction_first_data

	8.38.2.1.3. applayer_detect_protocol_only_one_direction

	8.38.2.1.4. applayer_proto_detection_skipped

	8.39. Xbits Keyword
	8.39.1. Notes
	8.39.1.1. YAML settings

	8.39.1.2. Threading

	8.39.1.3. Unix Socket

	8.39.1.4. Examples
	8.39.1.4.1. Creating a SSH blacklist

	8.40. Thresholding Keywords
	8.40.1. threshold
	8.40.1.1. type "threshold"

	8.40.1.2. type "limit"

	8.40.1.3. type "both"

	8.40.2. detection_filter

	8.41. IP Reputation Keyword
	8.41.1. iprep
	8.41.1.1. Compatibility with IP-only

	8.42. IP Addresses Match
	8.42.1. ip.src

	8.42.2. ip.dst

	8.43. Config Rules
	8.43.1. Keyword

	8.43.2. Action

	8.44. Datasets
	8.44.1. Global config (optional)

	8.44.2. Rule keywords
	8.44.2.1. dataset

	8.44.2.2. datarep

	8.44.3. Rule Reloads

	8.44.4. Unix Socket
	8.44.4.1. dataset-add

	8.44.4.2. dataset-remove

	8.44.4.3. dataset-clear

	8.44.4.4. dataset-lookup

	8.44.4.5. dataset-dump

	8.44.5. File formats
	8.44.5.1. data types

	8.44.5.2. dataset

	8.44.5.3. datarep

	8.44.6. File Locations

	8.44.7. Security

	8.45. Lua Scripting for Detection
	8.45.1. Init function

	8.45.2. Match function

	8.46. Differences From Snort
	8.46.1. Automatic Protocol Detection

	8.46.2. urilen Keyword

	8.46.3. http_uri Buffer

	8.46.4. http_header Buffer

	8.46.5. http_cookie Buffer

	8.46.6. New HTTP keywords

	8.46.7. byte_extract Keyword

	8.46.8. byte_jump Keyword

	8.46.9. byte_math Keyword

	8.46.10. byte_test Keyword

	8.46.11. isdataat Keyword

	8.46.12. Relative PCRE

	8.46.13. tls* Keywords

	8.46.14. dns_query Keyword

	8.46.15. IP Reputation and iprep Keyword

	8.46.16. Flowbits

	8.46.17. flowbits:noalert;

	8.46.18. Negated Content Match Special Case

	8.46.19. File Extraction

	8.46.20. Lua Scripting

	8.46.21. Fast Pattern

	8.46.22. Don't Cross The Streams

	8.46.23. Alerts

	8.46.24. Buffer Reference Chart

	8.47. Multiple Buffer Matching

	8.48. Tag
	8.48.1. Syntax

	8.48.2. Examples

	8.48.3. How to Use Tags
	8.48.3.1. EVE

	8.48.3.2. Conditional PCAP Logging

	8.48.4. Tracking by Host/Flow

8.1. Rules Format

Signatures play a very important role in Suricata. In most occasions
people are using existing rulesets.

The official way to install rulesets is described in Rule Management with Suricata-Update.

There are a number of free rulesets that can be used via suricata-update.
To aid in learning about writing rules, the Emerging Threats Open ruleset
is free and a good reference that has a wide range of signature examples.

This Suricata Rules document explains all about signatures; how to
read, adjust and create them.

A rule/signature consists of the following:

	The action, determining what happens when the rule matches.

	The header, defining the protocol, IP addresses, ports and direction of
the rule.

	The rule options, defining the specifics of the rule.

An example of a rule is as follows:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI"; flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown; sid:123; rev:1;)

In this example, red is the action,
green is the header and blue
are the options.

We will be using the above signature as an example throughout
this section, highlighting the different parts of the signature.

8.1.1. Action

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI"; flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown; sid:123; rev:1;)

Valid actions are:

	alert - generate an alert.

	pass - stop further inspection of the packet.

	drop - drop packet and generate alert.

	reject - send RST/ICMP unreach error to the sender of the matching packet.

	rejectsrc - same as just reject.

	rejectdst - send RST/ICMP error packet to receiver of the matching packet.

	rejectboth - send RST/ICMP error packets to both sides of the conversation.

Note

In IPS mode, using any of the reject actions also enables drop.

For more information see Action-order.

8.1.2. Protocol

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI"; flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown; sid:123; rev:1;)

This keyword in a signature tells Suricata which protocol it
concerns. You can choose between four basic protocols:

	tcp (for tcp-traffic)

	udp

	icmp

	ip (ip stands for 'all' or 'any')

There are a couple of additional TCP related protocol options:

	tcp-pkt (for matching content in individual tcp packets)

	tcp-stream (for matching content only in a reassembled tcp stream)

There are also a few so-called application layer protocols, or layer 7 protocols
you can pick from. These are:

	http (either HTTP1 or HTTP2)

	http1

	http2

	ftp

	tls (this includes ssl)

	smb

	dns

	dcerpc

	dhcp

	ssh

	smtp

	imap

	modbus (disabled by default)

	dnp3 (disabled by default)

	enip (disabled by default)

	nfs

	ike

	krb5

	bittorrent-dht

	ntp

	dhcp

	rfb

	rdp

	snmp

	tftp

	sip

The availability of these protocols depends on whether the protocol
is enabled in the configuration file, suricata.yaml.

If you have a signature with the protocol declared as 'http', Suricata makes
sure the signature will only match if the TCP stream contains http traffic.

8.1.3. Source and destination

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI"; flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown; sid:123; rev:1;)

The first emphasized part is the traffic source, the second is the traffic destination (note the direction of the directional arrow).

With the source and destination, you specify the source of the traffic and the
destination of the traffic, respectively. You can assign IP addresses,
(both IPv4 and IPv6 are supported) and IP ranges. These can be combined with
operators:

	Operator

	Description

	../..

	IP ranges (CIDR notation)

	!

	exception/negation

	[.., ..]

	grouping

Normally, you would also make use of variables, such as $HOME_NET and
$EXTERNAL_NET. The suricata.yaml configuration file specifies the IP addresses these
concern. The respective $HOME_NET and $EXTERNAL_NET settings will be used in place of the variables in your rules.

See Rule-vars for more information.

Rule usage examples:

	Example

	Meaning

	!1.1.1.1

	Every IP address but 1.1.1.1

	![1.1.1.1, 1.1.1.2]

	Every IP address but 1.1.1.1 and 1.1.1.2

	$HOME_NET

	Your setting of HOME_NET in yaml

	[$EXTERNAL_NET, !$HOME_NET]

	EXTERNAL_NET and not HOME_NET

	[10.0.0.0/24, !10.0.0.5]

	10.0.0.0/24 except for 10.0.0.5

	[..., [....]]

	

	[..., ![.....]]

	

Warning

If you set your configuration to something like this:

HOME_NET: any
EXTERNAL_NET: !$HOME_NET

You cannot write a signature using $EXTERNAL_NET because it evaluates to
'not any', which is an invalid value.

Note

Please note that the source and destination address can also be matched via the ip.src and ip.dst keywords (See IP Addresses Match). These
keywords are mostly used in conjunction with the dataset feature (Datasets).

8.1.4. Ports (source and destination)

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI"; flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown; sid:123; rev:1;)

The first emphasized part is the source port, the second is the destination port (note the direction of the directional arrow).

Traffic comes in and goes out through ports. Different protocols have
different port numbers. For example, the default port for HTTP is 80 while 443 is
typically the port for HTTPS. Note, however, that the port does not
dictate which protocol is used in the communication. Rather, it determines which
application is receiving the data.

The ports mentioned above are typically the destination ports. Source ports,
i.e. the application that sent the packet, typically get assigned a random
port by the operating system. When writing a rule for your own HTTP service,
you would typically write any -> 80, since that would mean any packet from
any source port to your HTTP application (running on port 80) is matched.

In setting ports you can make use of special operators as well. Operators such as:

	Operator

	Description

	:

	port ranges

	!

	exception/negation

	[.., ..]

	grouping

Rule usage examples:

	Example

	Meaning

	[80, 81, 82]

	port 80, 81 and 82

	[80: 82]

	Range from 80 till 82

	[1024:]

	From 1024 till the highest port-number

	!80

	Every port but 80

	[80:100,!99]

	Range from 80 till 100 but 99 excluded

	[1:80,![2,4]]

	Range from 1-80, except ports 2 and 4

	[.., [..,..]]

	

8.1.5. Direction

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI"; flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown; sid:123; rev:1;)

The directional arrow indicates which way the signature will be evaluated.
In most signatures an arrow to the right (->) is used. This means that only
packets with the same direction can match. However, it is also possible to
have a rule match both directions (<>):

source -> destination
source <> destination (both directions)

The following example illustrates direction. In this example there is a client
with IP address 1.2.3.4 using port 1024. A server with IP address 5.6.7.8,
listening on port 80 (typically HTTP). The client sends a message to the server
and the server replies with its answer.

[image: ../_images/TCP-session.png]
Now, let's say we have a rule with the following header:

alert tcp 1.2.3.4 1024 -> 5.6.7.8 80

Only the traffic from the client to the server will be matched by this rule,
as the direction specifies that we do not want to evaluate the response packet.

Warning

There is no 'reverse' style direction, i.e. there is no <-.

8.1.6. Rule options

The rest of the rule consists of options. These are enclosed by parenthesis
and separated by semicolons. Some options have settings (such as msg),
which are specified by the keyword of the option, followed by a colon,
followed by the settings. Others have no settings; they are simply the
keyword (such as nocase):

<keyword>: <settings>;
<keyword>;

Rule options have a specific ordering and changing their order would change the
meaning of the rule.

Note

The characters ; and " have special meaning in the
Suricata rule language and must be escaped when used in a
rule option value. For example:

msg:"Message with semicolon\;";

As a consequence, you must also escape the backslash, as it functions
as an escape character.

The rest of this chapter in the documentation documents the use of the various
keywords.

Some generic details about keywords follow.

8.1.6.1. Modifier Keywords

Some keywords function act as modifiers. There are two types of modifiers.

	The older style 'content modifiers' look back in the rule, e.g.:

alert http any any -> any any (content:"index.php"; http_uri; sid:1;)

In the above example the pattern 'index.php' is modified to inspect the HTTP uri buffer.

	The more recent type is called the 'sticky buffer'. It places the buffer
name first and all keywords following it apply to that buffer, for instance:

alert http any any -> any any (http_response_line; content:"403 Forbidden"; sid:1;)

In the above example the pattern '403 Forbidden' is inspected against the HTTP
response line because it follows the http_response_line keyword.

8.1.6.2. Normalized Buffers

A packet consists of raw data. HTTP and reassembly make a copy of
those kinds of packets data. They erase anomalous content, combine
packets etcetera. What remains is a called the 'normalized buffer':

[image: ../_images/normalization1.png]
Because the data is being normalized, it is not what it used to be; it
is an interpretation. Normalized buffers are: all HTTP-keywords,
reassembled streams, TLS-, SSL-, SSH-, FTP- and dcerpc-buffers.

Note that there are some exceptions, e.g. the http_raw_uri keyword.
See http.uri and http.uri.raw for more information.

8.2. Meta Keywords

Meta keywords have no effect on Suricata's inspection of network traffic;
they do have an effect on the way Suricata reports events/alerts.

8.2.1. msg (message)

The keyword msg gives contextual information about the signature and the possible alert.

The format of msg is:

msg: "some description";

Examples:

msg:"ET MALWARE Win32/RecordBreaker CnC Checkin";
msg:"ET EXPLOIT SMB-DS DCERPC PnP bind attempt";

To continue the example from the previous chapter, the msg component of the
signature is emphasized below:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI"; flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown; sid:123; rev:1;)

Tip

It is a standard practice in rule writing to make the first part of the
signature msg uppercase and to indicate the class of the signature.

It is also standard practice that msg is the first keyword in the signature.

Note

The following characters must be escaped inside the msg:
; \ "

8.2.2. sid (signature ID)

The keyword sid gives every signature its own id. This id is stated with a number
greater than zero. The format of sid is:

sid:123;

Example of sid in a signature:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI"; flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown; sid:123; rev:1;)

Tip

It is a standard practice in rule writing that the signature sid is
provided as the last keyword (or second-to-last if there is a rev)
of the signature.

There are reserved ranges of sids, the reservations are recorded
at https://sidallocation.org/ .

Note

This value must be unique for all rules within the same rule group (gid).

As Suricata-update currently considers the rule's sid only (cf. Bug#5447 [https://redmine.openinfosecfoundation.org/issues/5447]), it is advisable
to opt for a completely unique sid altogether.

8.2.3. rev (revision)

The sid keyword is commonly accompanied by the rev keyword. Rev
represents the version of the signature. If a signature is modified,
the number of rev will be incremented by the signature writers. The
format of rev is:

rev:123;

Example of rev in a signature:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI"; flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown; sid:123; rev:1;)

Tip

It is a standard practice in rule writing that the rev keyword
is expressed after the sid keyword. The sid and rev keywords
are commonly put as the last two keywords in a signature.

8.2.4. gid (group ID)

The gid keyword can be used to give different groups of
signatures another id value (like in sid). Suricata by default uses gid 1.
It is possible to modify the default value. In most cases, it will be
unnecessary to change the default gid value. Changing the gid value
has no technical implications, the value is only noted in alert data.

Example of the gid value in an alert entry in the fast.log file.
In the part [1:123], the first 1 is the gid (123 is the sid and 1 is the rev).

07/12/2022-21:59:26.713297 [**] [1:123:1] HTTP GET Request Containing Rule in URI [**] [Classification: Potentially Bad Traffic] [Priority: 2] {TCP} 192.168.225.121:12407 -> 172.16.105.84:80

8.2.5. classtype

The classtype keyword gives information about the classification of
rules and alerts. It consists of a short name, a long name and a
priority. It can tell for example whether a rule is just informational
or is about a CVE. For each classtype, the classification.config has a
priority that will be used in the rule.

Example classtype definition:

config classification: web-application-attack,Web Application Attack,1
config classification: not-suspicious,Not Suspicious Traffic,3

Once we have defined the classification in the configuration file,
we can use the classtypes in our rules. A rule with classtype web-application-attack
will be assigned a priority of 1 and the alert will contain 'Web Application Attack'
in the Suricata logs:

	classtype

	Alert

	Priority

	web-application-attack

	Web Application Attack

	1

	not-suspicious

	Not Suspicious Traffic

	3

Our continuing example also has a classtype: bad-unknown:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI"; flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown; sid:123; rev:1;)

Tip

It is a standard practice in rule writing that the classtype keyword comes
before the sid and rev keywords (as shown in the example rule).

8.2.6. reference

The reference keyword is used to document where information about the
signature and about the problem the signature tries to address can be
found. The reference keyword can appear multiple times in a signature.
This keyword is meant for signature-writers and analysts who
investigate why a signature has matched. It has the following format:

reference:type,reference

A typical reference to www.info.com would be:

reference:url,www.info.com

There are several systems that can be used as a reference. A
commonly known example is the CVE-database, which assigns numbers to
vulnerabilities, to prevent having to type the same URL over and over
again. An example reference of a CVE:

reference:cve,CVE-2014-1234

This would make a reference to http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1234.

All the reference types are defined in the reference.config configuration file.

8.2.7. priority

The priority keyword comes with a mandatory numeric value which can
range from 1 to 255. The values 1 through 4 are commonly used.
The highest priority is 1. Signatures with a higher priority will
be examined first. Normally signatures have a priority determined through
a classtype definition. The classtype definition can be overridden
by defining the priority keyword in the signature.
The format of priority is:

priority:1;

8.2.8. metadata

The metadata keyword allows additional, non-functional, information to
be added to the signature. While the format is free-form, it is
recommended to stick to [key, value] pairs as Suricata can include these
in eve alerts. The format is:

metadata: key value;
metadata: key value, key value;

8.2.9. target

The target keyword allows the rules writer to specify which side of the
alert is the target of the attack. If specified, the alert event is enhanced
to contain information about source and target.

The format is:

target:[src_ip|dest_ip]

If the value is src_ip then the source IP in the generated event (src_ip
field in JSON) is the target of the attack. If target is set to dest_ip
then the target is the destination IP in the generated event.

8.2.10. requires

The requires keyword allows a rule to require specific Suricata
features to be enabled, or the Suricata version to match an
expression. Rules that do not meet the requirements will by ignored,
and Suricata will not treat them as errors.

When parsing rules, the parser attempts to process the requires
keywords before others. This allows it to occur after keywords that
may only be present in specific versions of Suricata, as specified by
the requires statement. However, the keywords preceding it must
still adhere to the basic known formats of Suricata rules.

The format is:

requires: feature geoip, version >= 7.0.0

To require multiple features, the feature sub-keyword must be
specified multiple times:

requires: feature geoip, feature lua

Alternatively, and expressions may be expressed like:

requires: version >= 7.0.4 < 8

and or expressions may expressed with | like:

requires: version >= 7.0.4 < 8 | >= 8.0.3

to express that a rules requires version 7.0.4 or greater, but less
than 8, OR greater than or equal to 8.0.3. Which could be useful
if a keyword wasn't added until 7.0.4 and the 8.0.3 patch releases, as
it would not exist in 8.0.1.

This can be extended to multiple release branches:

requires: version >= 7.0.10 < 8 | >= 8.0.5 < 9 | >= 9.0.3

If no minor or patch version component is provided, it will
default to 0.

The version may only be specified once, if specified more than
once the rule will log an error and not be loaded.

The requires keyword was introduced in Suricata 7.0.3 and 8.0.0.

8.3. IP Keywords

8.3.1. ttl

The ttl keyword is used to check for a specific IP time-to-live value
in the header of a packet. The format is:

ttl:<number>;

For example:

ttl:10;

ttl uses an unsigned 8-bit integer.

At the end of the ttl keyword you can enter the value on which you
want to match. The Time-to-live value determines the maximal amount
of time a packet can be in the Internet-system. If this field is set
to 0, then the packet has to be destroyed. The time-to-live is based
on hop count. Each hop/router the packet passes subtracts one from the
packet TTL counter. The purpose of this mechanism is to limit the
existence of packets so that packets can not end up in infinite
routing loops.

Example of the ttl keyword in a rule:

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"IP Packet With TTL 0";
ttl:0; classtype:misc-activity; sid:1; rev:1;)

8.3.2. ipopts

With the ipopts keyword you can check if a specific IP option is
set. Ipopts has to be used at the beginning of a rule. You can only
match on one option per rule. There are several options on which can
be matched. These are:

	IP Option

	Description

	rr

	Record Route

	eol

	End of List

	nop

	No Op

	ts

	Time Stamp

	sec

	IP Security

	esec

	IP Extended Security

	lsrr

	Loose Source Routing

	ssrr

	Strict Source Routing

	satid

	Stream Identifier

	any

	any IP options are set

Format of the ipopts keyword:

ipopts: <name>;

For example:

ipopts: ts;

Example of ipopts in a rule:

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"IP Packet with timestamp option"; ipopts:ts; classtype:misc-activity; sid:2; rev:1;)

8.3.3. sameip

Every packet has a source IP-address and a destination IP-address. It
can be that the source IP is the same as the destination IP. With the
sameip keyword you can check if the IP address of the source is the
same as the IP address of the destination. The format of the sameip
keyword is:

sameip;

Example of sameip in a rule:

alert ip any any -> any any (msg:"IP Packet with the same source and destination IP"; sameip; classtype:bad-unknown; sid:3; rev:1;)

8.3.4. ip_proto

With the ip_proto keyword you can match on the IP protocol in the
packet-header. You can use the name or the number of the protocol.
You can match for example on the following protocols:

 1 ICMP Internet Control Message
 6 TCP Transmission Control Protocol
17 UDP User Datagram
47 GRE General Routing Encapsulation
50 ESP Encap Security Payload for IPv6
51 AH Authentication Header for Ipv6
58 IPv6-ICMP ICMP for Ipv6

For the complete list of protocols and their numbers see
http://en.wikipedia.org/wiki/List_of_IP_protocol_numbers

Example of ip_proto in a rule:

alert ip any any -> any any (msg:"IP Packet with protocol 1"; ip_proto:1; classtype:bad-unknown; sid:5; rev:1;)

The named variant of that example would be:

ip_proto:ICMP;

8.3.5. ipv4.hdr

Sticky buffer to match on content contained within an IPv4 header.

Example rule:

alert ip any any -> any any (msg:"IPv4 header keyword example"; ipv4.hdr; content:"|06|"; offset:9; depth:1; sid:1; rev:1;)

This example looks if byte 10 of IPv4 header has value 06, which indicates that
the IPv4 protocol is TCP.

8.3.6. ipv6.hdr

Sticky buffer to match on content contained within an IPv6 header.

Example rule:

alert ip any any -> any any (msg:"IPv6 header keyword example"; ipv6.hdr; content:"|06|"; offset:6; depth:1; sid:1; rev:1;)

This example looks if byte 7 of IP64 header has value 06, which indicates that
the IPv6 protocol is TCP.

8.3.7. id

With the id keyword, you can match on a specific IP ID value. The ID
identifies each packet sent by a host and increments usually with one
with each packet that is being send. The IP ID is used as a fragment
identification number. Each packet has an IP ID, and when the packet
becomes fragmented, all fragments of this packet have the same ID. In
this way, the receiver of the packet knows which fragments belong to
the same packet. (IP ID does not take care of the order, in that case
offset is used. It clarifies the order of the fragments.)

Format of id:

id:<number>;

Example of id in a rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"id keyword example"; id:1; content:"content|3a 20|"; fast_pattern; classtype:misc-activity; sid:12; rev:1;)

8.3.8. geoip

The geoip keyword enables matching on the source, destination or
source and destination IPv4 addresses of network traffic, and to see to
which country it belongs. To be able to do this, Suricata uses the GeoIP2
API of MaxMind.

The syntax of geoip:

geoip: src,RU;
geoip: both,CN,RU;
geoip: dst,CN,RU,IR;
geoip: both,US,CA,UK;
geoip: any,CN,IR;

	Option

	Description

	both

	Both source and destination have to match with the given geoip(s)

	any

	Either the source or the destination has to match with the given geoip(s).

	dest

	The destination matches with the given geoip.

	src

	The source matches with the given geoip.

geoip currently only supports IPv4. As it uses the GeoIP2 API of MaxMind,
libmaxminddb must be compiled in. You must download and install the
GeoIP2 or GeoLite2 database editions desired. Visit the MaxMind site
at https://dev.maxmind.com/geoip/geolite2-free-geolocation-data for details.

You must also supply the location of the GeoIP2 or GeoLite2 database
file on the local system in the YAML-file configuration (for example):

geoip-database: /usr/local/share/GeoIP/GeoLite2-Country.mmdb

8.3.9. fragbits (IP fragmentation)

With the fragbits keyword, you can check if the fragmentation and
reserved bits are set in the IP header. The fragbits keyword should be
placed at the beginning of a rule. Fragbits is used to modify the
fragmentation mechanism. During routing of messages from one Internet
module to the other, it can occur that a packet is bigger than the
maximal packet size a network can process. In that case, a packet can
be send in fragments. This maximum of the packet size is called
Maximal Transmit Unit (MTU).

You can match on the following bits:

M - More Fragments
D - Do not Fragment
R - Reserved Bit

Matching on this bits can be more specified with the following
modifiers:

+ match on the specified bits, plus any others
* match if any of the specified bits are set
! match if the specified bits are not set

Format:

fragbits:[*+!]<[MDR]>;

Example of fragbits in a rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"fragbits keyword example non-fragmented packet with fragment offset>0"; fragbits:M; fragoffset:>0; classtype:bad-unknown; sid:123; rev:1;)

8.3.10. fragoffset

With the fragoffset keyword you can match on specific decimal values
of the IP fragment offset field. If you would like to check the first
fragments of a session, you have to combine fragoffset 0 with the More
Fragment option. The fragmentation offset field is convenient for
reassembly. The id is used to determine which fragments belong to
which packet and the fragmentation offset field clarifies the order of
the fragments.

You can use the following modifiers:

< match if the value is smaller than the specified value
> match if the value is greater than the specified value
! match if the specified value is not present

Format of fragoffset:

fragoffset:[!|<|>]<number>;

Example of fragoffset in a rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"fragoffset keyword example invalid non-fragmented packet with fragment offset>0"; fragbits:M; fragoffset:>0; classtype:bad-unknown; sid:13; rev:1;)

8.3.11. tos

The tos keyword can match on specific decimal values of the IP header TOS
field. The tos keyword can have a value from 0 - 255. This field of the
IP header has been updated by rfc2474 [https://tools.ietf.org/html/rfc2474]
to include functionality for
Differentiated services [https://en.wikipedia.org/wiki/Differentiated_services].
Note that the value of the field has been defined with the right-most 2 bits having
the value 0. When specifying a value for tos, ensure that the value follows this.

E.g, instead of specifying the decimal value 34 (hex 22), right shift twice and use
decimal 136 (hex 88).

You can specify hexadecimal values with a leading x, e.g, x88.

Format of tos:

tos:[!]<number>;

Example of tos in a rule:

alert ip any any -> any any (msg:"tos keyword example tos value 8"; flow:established; tos:8; classtype:not-suspicious; sid:123; rev:1;)

Example of tos with a negated value:

alert ip any any -> any any (msg:"tos keyword example with negated content"; flow:established,to_server; tos:!8; classtype:bad-unknown; sid:14; rev:1;)

8.4. TCP keywords

8.4.1. tcp.flags

The tcp.flags keyword checks for specific TCP flag bits [https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure].

The following flag bits may be checked:

	Flag

	Description

	F

	FIN - Finish

	S

	SYN - Synchronize sequence numbers

	R

	RST - Reset

	P

	PSH - Push

	A

	ACK - Acknowledgment

	U

	URG - Urgent

	C

	CWR - Congestion Window Reduced

	E

	ECE - ECN-Echo

	0

	No TCP Flags Set

The following modifiers can be set to change the match criteria:

	Modifier

	Description

	+

	match on the bits, plus any others

	*

	match if any of the bits are set

	!

	match if the bits are not set

To handle writing rules for session initiation packets such as ECN where a SYN
packet is sent with CWR and ECE flags set, an option mask may be used by
appending a comma and masked values. For example, a rule that checks for a SYN
flag, regardless of the values of the reserved bits is tcp.flags:S,CE;

Format of tcp.flags:

tcp.flags:[modifier]<test flags>[,<ignore flags>];
tcp.flags:[!|*|+]<FSRPAUCE0>[,<FSRPAUCE>];

Example:

 alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"Example tcp.flags sig"; \
:example-rule-emphasis:`tcp.flags:FPU,CE;` classtype:misc-activity; sid:1; rev:1;)

It is also possible to use the tcp.flags content as a fast_pattern by using the prefilter keyword. For more information on prefilter usage see Prefiltering Keywords

Example:

 alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"Example tcp.flags sig"; \
:example-rule-emphasis:`tcp.flags:FPU,CE; prefilter;` classtype:misc-activity; sid:1; rev:1;)

8.4.2. seq

The seq keyword can be used in a signature to check for a specific TCP
sequence number. A sequence number is a number that is generated
practically at random by both endpoints of a TCP-connection. The
client and the server both create a sequence number, which increases
with one with every byte that they send. So this sequence number is
different for both sides. This sequence number has to be acknowledged
by both sides of the connection. Through sequence numbers, TCP
handles acknowledgement, order and retransmission. Its number
increases with every data-byte the sender has send. The seq helps
keeping track of to what place in a data-stream a byte belongs. If the
SYN flag is set at 1, than the sequence number of the first byte of
the data is this number plus 1 (so, 2).

Example:

seq:0;

Example of seq in a signature:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"GPL SCAN NULL"; flow:stateless; ack:0; flags:0; seq:0; reference:arachnids,4; classtype:attempted-recon; sid:2100623; rev:7;)

Example of seq in a packet (Wireshark):

[image: ../_images/Wireshark_seq.png]

8.4.3. ack

The ack is the acknowledgement of the receipt of all previous
(data)-bytes send by the other side of the TCP-connection. In most
occasions every packet of a TCP connection has an ACK flag after the
first SYN and a ack-number which increases with the receipt of every
new data-byte. The ack keyword can be used in a signature to check
for a specific TCP acknowledgement number.

Format of ack:

ack:1;

Example of ack in a signature:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"GPL SCAN NULL"; flow:stateless; ack:0; flags:0; seq:0; reference:arachnids,4; classtype:attempted-recon; sid:2100623; rev:7;)

Example of ack in a packet (Wireshark):

[image: ../_images/Wireshark_ack.png]

8.4.4. window

The window keyword is used to check for a specific TCP window size.
The TCP window size is a mechanism that has control of the
data-flow. The window is set by the receiver (receiver advertised
window size) and indicates the amount of bytes that can be
received. This amount of data has to be acknowledged by the receiver
first, before the sender can send the same amount of new data. This
mechanism is used to prevent the receiver from being overflowed by
data. The value of the window size is limited and can be 2 to 65.535
bytes. To make more use of your bandwidth you can use a bigger
TCP-window.

The format of the window keyword:

window:[!]<number>;

Example of window in a rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"GPL DELETED typot trojan traffic"; flow:stateless; flags:S,12; window:55808; reference:mcafee,100406; classtype:trojan-activity; sid:2182; rev:8;)

8.4.5. tcp.mss

Match on the TCP MSS option value. Will not match if the option is not
present.

tcp.mss uses an unsigned 16-bit integer.

The format of the keyword:

tcp.mss:<min>-<max>;
tcp.mss:[<|>]<number>;
tcp.mss:<value>;

Example rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (flow:stateless; flags:S,12; tcp.mss:<536; sid:1234; rev:5;)

8.4.6. tcp.hdr

Sticky buffer to match on the whole TCP header.

Example rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (flags:S,12; tcp.hdr; content:"|02 04|"; offset:20; byte_test:2,<,536,0,big,relative; sid:1234; rev:5;)

This example starts looking after the fixed portion of the header, so
into the variable sized options. There it will look for the MSS option
(type 2, option len 4) and using a byte_test determine if the value of
the option is lower than 536. The tcp.mss option will be more efficient,
so this keyword is meant to be used in cases where no specific keyword
is available.

8.5. UDP keywords

8.5.1. udp.hdr

Sticky buffer to match on the whole UDP header.

Example rule:

alert udp any any -> any any (udp.hdr; content:"|00 08|"; offset:4; depth:2; sid:1234; rev:5;)

This example matches on the length field of the UDP header. In this
case the length of 8 means that there is no payload. This can also
be matched using dsize:0;.

8.6. ICMP keywords

ICMP (Internet Control Message Protocol) is a part of IP. IP at itself
is not reliable when it comes to delivering data (datagram). ICMP
gives feedback in case problems occur. It does not prevent problems
from happening, but helps in understanding what went wrong and
where. If reliability is necessary, protocols that use IP have to take
care of reliability themselves. In different situations ICMP messages
will be send. For instance when the destination is unreachable, if
there is not enough buffer-capacity to forward the data, or when a
datagram is send fragmented when it should not be, etcetera. More can
be found in the list with message-types.

There are four important contents of a ICMP message on which can be
matched with corresponding ICMP-keywords. These are: the type, the
code, the id and the sequence of a message.

8.6.1. itype

The itype keyword is for matching on a specific ICMP type (number).
ICMP has several kinds of messages and uses codes to clarify those
messages. The different messages are distinct by different names, but
more important by numeric values. For more information see the table
with message-types and codes.

itype uses an unsigned 8-bit integer.

The format of the itype keyword:

itype:min<>max;
itype:[<|>]<number>;

Example
This example looks for an ICMP type greater than 10:

itype:>10;

Example of the itype keyword in a signature:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"GPL SCAN Broadscan Smurf Scanner"; dsize:4; icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:2100478; rev:4;)

The following lists all ICMP types known at the time of writing. A recent table can be found at the website of IANA [https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml]

	ICMP Type

	Name

	0

	Echo Reply

	3

	Destination Unreachable

	4

	Source Quench

	5

	Redirect

	6

	Alternate Host Address

	8

	Echo

	9

	Router Advertisement

	10

	Router Solicitation

	11

	Time Exceeded

	12

	Parameter Problem

	13

	Timestamp

	14

	Timestamp Reply

	15

	Information Request

	16

	Information Reply

	17

	Address Mask Request

	18

	Address Mask Reply

	30

	Traceroute

	31

	Datagram Conversion Error

	32

	Mobile Host Redirect

	33

	IPv6 Where-Are-You

	34

	IPv6 I-Am-Here

	35

	Mobile Registration Request

	36

	Mobile Registration Reply

	37

	Domain Name Request

	38

	Domain Name Reply

	39

	SKIP

	40

	Photuris

	41

	Experimental mobility protocols such as Seamoby

8.6.2. icode

With the icode keyword you can match on a specific ICMP code. The
code of a ICMP message clarifies the message. Together with the
ICMP-type it indicates with what kind of problem you are dealing with.
A code has a different purpose with every ICMP-type.

icode uses an unsigned 8-bit integer.

The format of the icode keyword:

icode:min<>max;
icode:[<|>]<number>;

Example:
This example looks for an ICMP code greater than 5:

icode:>5;

Example of the icode keyword in a rule:

alert icmp $HOME_NET any -> $EXTERNAL_NET any (msg:"GPL MISC Time-To-Live Exceeded in Transit"; icode:0; itype:11; classtype:misc-activity; sid:2100449; rev:7;)

The following lists the meaning of all ICMP types. When a code is not listed,
only type 0 is defined and has the meaning of the ICMP code, in the table above.
A recent table can be found at the website of IANA [https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml]

	ICMP Code

	ICMP Type

	Description

	3

	0

	Net Unreachable

	1

	Host Unreachable

	2

	Protocol Unreachable

	3

	Port Unreachable

	4

	Fragmentation Needed and Don't Fragment was Set

	5

	Source Route Failed

	6

	Destination Network Unknown

	7

	Destination Host Unknown

	8

	Source Host Isolated

	9

	Communication with Destination Network is Administratively Prohibited

	10

	Communication with Destination Host is Administratively Prohibited

	11

	Destination Network Unreachable for Type of Service

	12

	Destination Host Unreachable for Type of Service

	13

	Communication Administratively Prohibited

	14

	Host Precedence Violation

	15

	Precedence cutoff in effect

	5

	0

	Redirect Datagram for the Network (or subnet)

	1

	Redirect Datagram for the Host

	2

	Redirect Datagram for the Type of Service and Network

	3

	Redirect Datagram for the Type of Service and Host

	9

	0

	Normal router advertisement

	16

	Doesn't route common traffic

	11

	0

	Time to Live exceeded in Transit

	1

	Fragment Reassembly Time Exceeded

	12

	0

	Pointer indicates the error

	1

	Missing a Required Option

	2

	Bad Length

	40

	0

	Bad SPI

	1

	Authentication Failed

	2

	Decompression Failed

	3

	Decryption Failed

	4

	Need Authentication

	5

	Need Authorization

8.6.3. icmp_id

With the icmp_id keyword you can match on specific ICMP id-values.
Every ICMP-packet gets an id when it is being send. At the moment the
receiver has received the packet, it will send a reply using the same
id so the sender will recognize it and connects it with the correct
ICMP-request.

Format of the icmp_id keyword:

icmp_id:<number>;

Example:
This example looks for an ICMP ID of 0:

icmp_id:0;

Example of the icmp_id keyword in a rule:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"GPL SCAN Broadscan Smurf Scanner"; dsize:4; icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:2100478; rev:4;)

8.6.4. icmp_seq

You can use the icmp_seq keyword to check for a ICMP sequence number.
ICMP messages all have sequence numbers. This can be useful (together
with the id) for checking which reply message belongs to which request
message.

Format of the icmp_seq keyword:

icmp_seq:<number>;

Example:
This example looks for an ICMP Sequence of 0:

icmp_seq:0;

Example of icmp_seq in a rule:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"GPL SCAN Broadscan Smurf Scanner"; dsize:4; icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:2100478; rev:4;)

8.6.5. icmpv4.hdr

Sticky buffer to match on the whole ICMPv4 header.

8.6.6. icmpv6.hdr

Sticky buffer to match on the whole ICMPv6 header.

8.6.7. icmpv6.mtu

Match on the ICMPv6 MTU optional value. Will not match if the MTU is not
present.

icmpv6.mtu uses an unsigned 32-bit integer.

The format of the keyword:

icmpv6.mtu:<min>-<max>;
icmpv6.mtu:[<|>]<number>;
icmpv6.mtu:<value>;

Example rule:

alert ip $EXTERNAL_NET any -> $HOME_NET any (icmpv6.mtu:<1280; sid:1234; rev:5;)

8.7. Payload Keywords

Payload keywords inspect the content of the payload of a packet or
stream.

8.7.1. content

The content keyword is very important in signatures. Between the
quotation marks you can write on what you would like the signature to
match. The most simple format of content is:

content: "............";

It is possible to use several contents in a signature.

Contents match on bytes. There are 256 different values of a byte
(0-255). You can match on all characters; from a till z, upper case
and lower case and also on all special signs. But not all of the bytes
are printable characters. For these bytes heximal notations are
used. Many programming languages use 0x00 as a notation, where 0x
means it concerns a binary value, however the rule language uses
|00| as a notation. This kind of notation can also be used for
printable characters.

Example:

|61| is a
|61 61| is aa
|41| is A
|21| is !
|0D| is carriage return
|0A| is line feed

There are characters you can not use in the content because they are
already important in the signature. For matching on these characters
you should use the heximal notation. These are:

" |22|
; |3B|
: |3A|
| |7C|

It is a convention to write the heximal notation in upper case characters.

To write for instance http:// in the content of a signature, you
should write it like this: content: "http|3A|//"; If you use a
heximal notation in a signature, make sure you always place it between
pipes. Otherwise the notation will be taken literally as part of the
content.

A few examples:

content:"a|0D|bc";
content:"|61 0D 62 63|";
content:"a|0D|b|63|";

It is possible to let a signature check the whole payload for a match with the content or to let it check specific parts of the payload. We come to that later.
If you add nothing special to the signature, it will try to find a match in all the bytes of the payload.

drop tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"ET TROJAN Likely Bot Nick in IRC (USA +..)"; flow:established,to_server; flowbits:isset,is_proto_irc; content:"NICK "; pcre:"/NICK .*USA.*[0-9]{3,}/i"; reference:url,doc.emergingthreats.net/2008124; classtype:trojan-activity; sid:2008124; rev:2;)

By default the pattern-matching is case sensitive. The content has to
be accurate, otherwise there will not be a match.

[image: ../_images/content2.png]
Legend:

[image: ../_images/Legenda_rules1.png]
It is possible to use the ! for exceptions in contents as well.

For example:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"Outdated Firefox on
Windows"; content:"User-Agent|3A| Mozilla/5.0 |28|Windows|3B| ";
content:"Firefox/3."; distance:0; content:!"Firefox/3.6.13";
distance:-10; sid:9000000; rev:1;)

You see content:!"Firefox/3.6.13";. This means an alert will be
generated if the used version of Firefox is not 3.6.13.

Note

The following characters must be escaped inside the content:
; \ "

8.7.2. nocase

If you do not want to make a distinction between uppercase and
lowercase characters, you can use nocase. The keyword nocase is a
content modifier.

The format of this keyword is:

nocase;

You have to place it after the content you want to modify, like:

content: "abc"; nocase;

Example nocase:

[image: ../_images/content3.png]
It has no influence on other contents in the signature.

8.7.3. depth

The depth keyword is a absolute content modifier. It comes after the
content. The depth content modifier comes with a mandatory numeric
value, like:

depth:12;

The number after depth designates how many bytes from the beginning of
the payload will be checked.

Example:

[image: ../_images/content4.png]

8.7.4. startswith

The startswith keyword is similar to depth. It takes no arguments
and must follow a content keyword. It modifies the content to match
exactly at the start of a buffer.

Example:

content:"GET|20|"; startswith;

startswith is a short hand notation for:

content:"GET|20|"; depth:4; offset:0;

startswith cannot be mixed with depth, offset, within or
distance for the same pattern.

8.7.5. endswith

The endswith keyword is similar to isdataat:!1,relative;. It takes no
arguments and must follow a content keyword. It modifies the content to
match exactly at the end of a buffer.

Example:

content:".php"; endswith;

endswith is a short hand notation for:

content:".php"; isdataat:!1,relative;

endswith cannot be mixed with offset, within or
distance for the same pattern.

8.7.6. offset

The offset keyword designates from which byte in the payload will be
checked to find a match. For instance offset:3; checks the fourth
byte and further.

[image: ../_images/content5.png]
The keywords offset and depth can be combined and are often used together.

For example:

content:"def"; offset:3; depth:3;

If this was used in a signature, it would check the payload from the
third byte till the sixth byte.

[image: ../_images/content6.png]

8.7.7. distance

The keyword distance is a relative content modifier. This means it
indicates a relation between this content keyword and the content
preceding it. Distance has its influence after the preceding match.
The keyword distance comes with a mandatory numeric value. The value
you give distance, determines the byte in the payload from which will
be checked for a match relative to the previous match. Distance only
determines where Suricata will start looking for a pattern. So,
distance:5; means the pattern can be anywhere after the previous
match + 5 bytes. For limiting how far after the last match Suricata
needs to look, use 'within'.

The absolute value for distance must be less than or equal to 1MB (1048576).

Examples of distance:

[image: ../_images/distance5.png]
[image: ../_images/distance4.png]
[image: ../_images/distance.png]
[image: ../_images/distance1.png]
Distance can also be a negative number. It can be used to check for
matches with partly the same content (see example) or for a content
even completely before it. This is not very often used though. It is
possible to attain the same results with other keywords.

[image: ../_images/distance3.png]

8.7.8. within

The keyword within is relative to the preceding match. The keyword
within comes with a mandatory numeric value. Using within makes sure
there will only be a match if the content matches with the payload
within the set amount of bytes. Within can not be 0 (zero)

The absolute value for within must be less than or equal to 1MB (1048576).

Example:

[image: ../_images/within2.png]
Example of matching with within:

[image: ../_images/within1.png]
The second content has to fall/come 'within 3 ' from the first content.

As mentioned before, distance and within can be very well combined in
a signature. If you want Suricata to check a specific part of the
payload for a match, use within.

[image: ../_images/within_distance.png]
[image: ../_images/within_distance2.png]

8.7.9. rawbytes

The rawbytes keyword has no effect but is included to be compatible with
signatures that use it, for example signatures used with Snort.

8.7.10. isdataat

The purpose of the isdataat keyword is to look if there is still data
at a specific part of the payload. The keyword starts with a number
(the position) and then optional followed by 'relative' separated by a
comma and the option rawbytes. You use the word 'relative' to know if
there is still data at a specific part of the payload relative to the
last match.

So you can use both examples:

isdataat:512;

isdataat:50, relative;

The first example illustrates a signature which searches for byte 512
of the payload. The second example illustrates a signature searching
for byte 50 after the last match.

You can also use the negation (!) before isdataat.

[image: ../_images/isdataat1.png]

8.7.11. bsize

With the bsize keyword, you can match on the length of the buffer. This adds
precision to the content match, previously this could have been done with isdataat.

bsize uses an unsigned 64-bit integer.

An optional operator can be specified; if no operator is present, the operator will
default to '='. When a relational operator is used, e.g., '<', '>' or '<>' (range),
the bsize value will be compared using the relational operator. Ranges are exclusive.

If one or more content keywords precedes bsize, each occurrence of content
will be inspected and an error will be raised if the content length and the bsize
value prevent a match.

Format:

bsize:<number>;
bsize:=<number>;
bsize:<<number>;
bsize:><number>;
bsize:<lo-number><><hi-number>;

Examples of bsize in a rule:

alert dns any any -> any any (msg:"bsize exact buffer size"; dns.query; content:"google.com"; bsize:10; sid:1; rev:1;)

alert dns any any -> any any (msg:"bsize less than value"; dns.query; content:"google.com"; bsize:<25; sid:2; rev:1;)

alert dns any any -> any any (msg:"bsize buffer less than or equal value"; dns.query; content:"google.com"; bsize:<=20; sid:3; rev:1;)

alert dns any any -> any any (msg:"bsize buffer greater than value"; dns.query; content:"google.com"; bsize:>8; sid:4; rev:1;)

alert dns any any -> any any (msg:"bsize buffer greater than or equal value"; dns.query; content:"google.com"; bsize:>=8; sid:5; rev:1;)

alert dns any any -> any any (msg:"bsize buffer range value"; dns.query; content:"google.com"; bsize:8<>20; sid:6; rev:1;)

alert dns any any -> any any (msg:"test bsize rule"; dns.query; content:"short"; bsize:<10; sid:124; rev:1;)

alert dns any any -> any any (msg:"test bsize rule"; dns.query; content:"longer string"; bsize:>10; sid:125; rev:1;)

alert dns any any -> any any (msg:"test bsize rule"; dns.query; content:"middle"; bsize:6<>15; sid:126; rev:1;)

To emphasize how range works: in the example above, a match will occur if
bsize is greater than 6 and less than 15.

8.7.12. dsize

With the dsize keyword, you can match on the size of the packet
payload/data. You can use the keyword for example to look for abnormal
sizes of payloads which are equal to some n i.e. 'dsize:n'
not equal 'dsize:!n' less than 'dsize:<n' or greater than 'dsize:>n'
This may be convenient in detecting buffer overflows.

dsize cannot be used when using app/streamlayer protocol keywords (i.e. http.uri)

dsize uses an unsigned 16-bit integer.

Format:

dsize:[<>!]number; || dsize:min<>max;

Examples of dsize values:

alert tcp any any -> any any (msg:"dsize exact size"; dsize:10; sid:1; rev:1;)

alert tcp any any -> any any (msg:"dsize less than value"; dsize:<10; sid:2; rev:1;)

alert tcp any any -> any any (msg:"dsize less than or equal value"; dsize:<=10; sid:3; rev:1;)

alert tcp any any -> any any (msg:"dsize greater than value"; dsize:>8; sid:4; rev:1;)

alert tcp any any -> any any (msg:"dsize greater than or equal value"; dsize:>=10; sid:5; rev:1;)

alert tcp any any -> any any (msg:"dsize range value"; dsize:8<>20; sid:6; rev:1;)

alert tcp any any -> any any (msg:"dsize not equal value"; dsize:!9; sid:7; rev:1;)

8.7.13. byte_test

The byte_test keyword extracts <num of bytes> and performs an operation selected
with <operator> against the value in <test value> at a particular <offset>.
The <bitmask value> is applied to the extracted bytes (before the operator is applied),
and the final result will be right shifted one bit for each trailing 0 in
the <bitmask value>.

Format:

byte_test:<num of bytes> | <variable_name>, [!]<operator>, <test value>, <offset> [,relative] \
[,<endian>][, string, <num type>][, dce][, bitmask <bitmask value>];

	<num of bytes>

	The number of bytes selected from the packet to be converted
or the name of a byte_extract/byte_math variable.

	<operator>

	
	[!] Negation can prefix other operators

	< less than

	> greater than

	= equal

	<= less than or equal

	>= greater than or equal

	& bitwise AND

	^ bitwise OR

	<value>

	Value to test the converted value against [hex or decimal accepted]

	<offset>

	Number of bytes into the payload

	[relative]

	Offset relative to last content match

	[endian]

	Type of number being read:
- big (Most significant byte at lowest address)
- little (Most significant byte at the highest address)

	[string] <num>

	
	hex - Converted string represented in hex

	dec - Converted string represented in decimal

	oct - Converted string represented in octal

	[dce]

	Allow the DCE module to determine the byte order

	[bitmask]

	Applies the AND operator on the bytes converted

Example:

alert tcp any any -> any any \
 (msg:"Byte_Test Example - Num = Value"; \
 content:"|00 01 00 02|"; byte_test:2,=,0x01,0;)

alert tcp any any -> any any \
 (msg:"Byte_Test Example - Num = Value relative to content"; \
 content:"|00 01 00 02|"; byte_test:2,=,0x03,2,relative;)

alert tcp any any -> any any \
 (msg:"Byte_Test Example - Num != Value"; content:"|00 01 00 02|"; \
 byte_test:2,!=,0x06,0;)

alert tcp any any -> any any \
 (msg:"Byte_Test Example - Detect Large Values"; content:"|00 01 00 02|"; \
 byte_test:2,>,1000,1,relative;)

alert tcp any any -> any any \
 (msg:"Byte_Test Example - Lowest bit is set"; \
 content:"|00 01 00 02|"; byte_test:2,&,0x01,12,relative;)

alert tcp any any -> any any (msg:"Byte_Test Example - Compare to String"; \
 content:"foobar"; byte_test:4,=,1337,1,relative,string,dec;)

8.7.14. byte_math

The byte_math keyword adds the capability to perform mathematical operations on extracted values with
an existing variable or a specified value.

When relative is included, there must be a previous content or pcre match.

Note: if oper is / and the divisor is 0, there will never be a match on the byte_math keyword.

The result can be stored in a result variable and referenced by
other rule options later in the rule.

	Keyword

	Modifier

	content

	offset,depth,distance,within

	byte_test

	offset,value

	byte_jump

	offset

	isdataat

	offset

Format:

byte_math:bytes <num of bytes> | <variable-name> , offset <offset>, oper <operator>, rvalue <rvalue>, \
 result <result_var> [, relative] [, endian <endian>] [, string <number-type>] \
 [, dce] [, bitmask <value>];

	<num of bytes>

	The number of bytes selected from the packet
or the name of a byte_extract variable.

	<offset>

	Number of bytes into the payload

	oper <operator>

	Mathematical operation to perform: +, -, *, /, <<, >>

	rvalue <rvalue>

	Value to perform the math operation with

	result <result-var>

	Where to store the computed value

	[relative]

	Offset relative to last content match

	[endian <type>]

	
	big (Most significant byte at lowest address)

	little (Most significant byte at the highest address)

	dce (Allow the DCE module to determine the byte order)

	[string <num_type>]

	
	hex Converted data is represented in hex

	dec Converted data is represented in decimal

	oct Converted data is represented as octal

	[dce]

	Allow the DCE module to determine the byte order

	[bitmask] <value>

	The AND operator will be applied to the extracted value
The result will be right shifted by the number of bits equal to the
number of trailing zeros in the mask

Example:

alert tcp any any -> any any \
 (msg:"Testing bytemath_body"; \
 content:"|00 04 93 F3|"; \
 content:"|00 00 00 07|"; distance:4; within:4; \
 byte_math:bytes 4, offset 0, oper +, rvalue \
 248, result var, relative;)

alert udp any any -> any any \
 (byte_extract: 1, 0, extracted_val, relative; \
 byte_math: bytes 1, offset 1, oper +, rvalue extracted_val, result var; \
 byte_test: 2, =, var, 13; \
 msg:"Byte extract and byte math with byte test verification";)

8.7.15. byte_jump

The byte_jump keyword allows for the ability to select a <num of bytes> from an <offset> and moves the detection pointer to that position. Content matches will then be based off the new position.

Format:

byte_jump:<num of bytes> | <variable-name>, <offset> [, relative][, multiplier <mult_value>] \
 [, <endian>][, string, <num_type>][, align][, from_beginning][, from_end] \
 [, post_offset <value>][, dce][, bitmask <value>];

	<num of bytes>

	The number of bytes selected from the packet to be converted
or the name of a byte_extract/byte_math variable.

	<offset>

	Number of bytes into the payload

	[relative]

	Offset relative to last content match

	[multiplier] <value>

	Multiple the converted byte by the <value>

	[endian]

	
	big (Most significant byte at lowest address)

	little (Most significant byte at the highest address)

	[string] <num_type>

	
	hex Converted data is represented in hex

	dec Converted data is represented in decimal

	oct Converted data is represented as octal

	[align]

	Rounds the number up to the next 32bit boundary

	[from_beginning]

	Jumps forward from the beginning of the packet, instead of
where the detection pointer is set

	[from_end]

	Jump will begin at the end of the payload, instead of
where the detection point is set

	[post_offset] <value>

	After the jump operation has been performed, it will
jump an additional number of bytes specified by <value>

	[dce]

	Allow the DCE module to determine the byte order

	[bitmask] <value>

	The AND operator will be applied by <value> and the
converted bytes, then jump operation is performed

Example:

alert tcp any any -> any any \
 (msg:"Byte_Jump Example"; \
 content:"Alice"; byte_jump:2,0; content:"Bob";)

alert tcp any any -> any any \
 (msg:"Byte_Jump Multiple Jumps"; \
 byte_jump:2,0; byte_jump:2,0,relative; content:"foobar"; distance:0; within:6;)

alert tcp any any -> any any \
 (msg:"Byte_Jump From the End -8 Bytes"; \
 byte_jump:0,0, from_end, post_offset -8; \
 content:"|6c 33 33 74|"; distance:0 within:4;)

8.7.16. byte_extract

The byte_extract keyword extracts <num of bytes> at a particular <offset> and stores it in <var_name>. The value in <var_name> can be used in any modifier that takes a number as an option and in the case of byte_test it can be used as a value.

Format:

byte_extract:<num of bytes>, <offset>, <var_name>, [,relative] [,multiplier <mult-value>] \
 [,<endian>] [, dce] [, string [, <num_type>] [, align <align-value];

	<num of bytes>

	The number of bytes selected from the packet to be extracted

	<offset>

	Number of bytes into the payload

	<var_name>

	The name of the variable in which to store the value

	[relative]

	Offset relative to last content match

	multiplier <value>

	multiply the extracted bytes by <mult-value> before storing

	[endian]

	Type of number being read:
- big (Most significant byte at lowest address)
- little (Most significant byte at the highest address)

	[string] <num>

	
	hex - Converted string represented in hex

	dec - Converted string represented in decimal

	oct - Converted string represented in octal

	[dce]

	Allow the DCE module to determine the byte order

	align <align-value>

	Round the extracted value up to the next
<align-value> byte boundary post-multiplication (if any)
; <align-value> may be 2 or 4

	Keyword

	Modifier

	content

	offset,depth,distance,within

	byte_test

	offset,value

	byte_math

	rvalue

	byte_jump

	offset

	isdataat

	offset

Example:

alert tcp any any -> any any \
 (msg:"Byte_Extract Example Using distance"; \
 content:"Alice"; byte_extract:2,0,size; content:"Bob"; distance:size; within:3; sid:1;)
alert tcp any any -> any any \
 (msg:"Byte_Extract Example Using within"; \
 flow:established,to_server; content:"|00 FF|"; \
 byte_extract:1,0,len,relative; content:"|5c 00|"; distance:2; within:len; sid:2;)
alert tcp any any -> any any \
 (msg:"Byte_Extract Example Comparing Bytes"; \
 flow:established,to_server; content:"|00 FF|"; \
 byte_extract:2,0,cmp_ver,relative; content:"FooBar"; distance:0; byte_test:2,=,cmp_ver,0; sid:3;)

8.7.17. rpc

The rpc keyword can be used to match in the SUNRPC CALL on the RPC
procedure numbers and the RPC version.

You can modify the keyword by using a wild-card, defined with * With
this wild-card you can match on all version and/or procedure numbers.

RPC (Remote Procedure Call) is an application that allows a computer
program to execute a procedure on another computer (or address
space). It is used for inter-process communication. See
http://en.wikipedia.org/wiki/Inter-process_communication

Format:

rpc:<application number>, [<version number>|*], [<procedure number>|*]>;

Example of the rpc keyword in a rule:

alert udp $EXTERNAL_NET any -> $HOME_NET 111 (msg:"RPC portmap request yppasswdd"; rpc:100009,*,*; reference:bugtraq,2763; classtype:rpc-portmap-decode; sid:1296; rev:4;)

8.7.18. replace

The replace content modifier can only be used in ips. It adjusts
network traffic. It changes the content it follows ('abc') into
another ('def'), see example:

[image: ../_images/replace.png]
[image: ../_images/replace1.png]
The replace modifier has to contain as many characters as the content
it replaces. It can only be used with individual packets. It will not
work for Normalized Buffers like HTTP uri or a content match in
the reassembled stream.

The checksums will be recalculated by Suricata and changed after the
replace keyword is being used.

8.7.19. pcre (Perl Compatible Regular Expressions)

The keyword pcre matches specific on regular expressions. More
information about regular expressions can be found here
http://en.wikipedia.org/wiki/Regular_expression.

The complexity of pcre comes with a high price though: it has a
negative influence on performance. So, to mitigate Suricata from
having to check pcre often, pcre is mostly combined with 'content'. In
that case, the content has to match first, before pcre will be
checked.

Format of pcre:

pcre:"/<regex>/opts";

Example of pcre. In this example there will be a match if the payload contains six
numbers following:

pcre:"/[0-9]{6}/";

Example of pcre in a signature:

drop tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"ET TROJAN Likely Bot Nick in IRC (USA +..)"; flow:established,to_server; flowbits:isset,is_proto_irc; content:"NICK "; pcre:"/NICK .*USA.*[0-9]{3,}/i"; reference:url,doc.emergingthreats.net/2008124; classtype:trojan-activity; sid:2008124; rev:2;)

There are a few qualities of pcre which can be modified:

	By default pcre is case-sensitive.

	The . (dot) is a part of regex. It matches on every byte except for
newline characters.

	By default the payload will be inspected as one line.

These qualities can be modified with the following characters:

i pcre is case insensitive
s pcre does check newline characters
m can make one line (of the payload) count as two lines

These options are perl compatible modifiers. To use these modifiers,
you should add them to pcre, behind regex. Like this:

pcre: "/<regex>/i";

Pcre compatible modifiers

There are a few pcre compatible modifiers which can change the
qualities of pcre as well. These are:

	A: A pattern has to match at the beginning of a buffer. (In pcre
^ is similar to A.)

	E: Ignores newline characters at the end of the buffer/payload.

	G: Inverts the greediness.

Note

The following characters must be escaped inside the content:
; \ "

8.7.19.1. Suricata's modifiers

Suricata has its own specific pcre modifiers. These are:

	R: Match relative to the last pattern match. It is similar to distance:0;

	U: Makes pcre match on the normalized uri. It matches on the
uri_buffer just like uricontent and content combined with http_uri.U
can be combined with /R. Note that R is relative to the previous
match so both matches have to be in the HTTP-uri buffer. Read more
about HTTP URI Normalization.

[image: ../_images/pcre3.png]
[image: ../_images/pcre4.png]
[image: ../_images/pcre5.png]
[image: ../_images/pcre6.png]

	I: Makes pcre match on the HTTP-raw-uri. It matches on the same
buffer as http_raw_uri. I can be combined with /R. Note that R is
relative to the previous match so both matches have to be in the
HTTP-raw-uri buffer. Read more about HTTP URI Normalization.

	P: Makes pcre match on the HTTP- request-body. So, it matches on
the same buffer as http_client_body. P can be combined with /R. Note
that R is relative to the previous match so both matches have to be
in the HTTP-request body.

	Q: Makes pcre match on the HTTP- response-body. So, it matches
on the same buffer as http_server_body. Q can be combined with
/R. Note that R is relative to the previous match so both matches
have to be in the HTTP-response body.

	H: Makes pcre match on the HTTP-header. H can be combined with
/R. Note that R is relative to the previous match so both matches have
to be in the HTTP-header body.

	D: Makes pcre match on the unnormalized header. So, it matches
on the same buffer as http_raw_header. D can be combined with
/R. Note that R is relative to the previous match so both matches
have to be in the HTTP-raw-header.

	M: Makes pcre match on the request-method. So, it matches on the
same buffer as http_method. M can be combined with /R. Note that R
is relative to the previous match so both matches have to be in the
HTTP-method buffer.

	C: Makes pcre match on the HTTP-cookie. So, it matches on the
same buffer as http_cookie. C can be combined with /R. Note that R
is relative to the previous match so both matches have to be in the
HTTP-cookie buffer.

	S: Makes pcre match on the HTTP-stat-code. So, it matches on the
same buffer as http_stat_code. S can be combined with /R. Note that
R is relative to the previous match so both matches have to be in
the HTTP-stat-code buffer.

	Y: Makes pcre match on the HTTP-stat-msg. So, it matches on the
same buffer as http_stat_msg. Y can be combined with /R. Note that
R is relative to the previous match so both matches have to be in
the HTTP-stat-msg buffer.

	B: You can encounter B in signatures but this is just for
compatibility. So, Suricata does not use B but supports it so it
does not cause errors.

	O: Overrides the configures pcre match limit.

	V: Makes pcre match on the HTTP-User-Agent. So, it matches on
the same buffer as http_user_agent. V can be combined with /R. Note
that R is relative to the previous match so both matches have to be
in the HTTP-User-Agent buffer.

	W: Makes pcre match on the HTTP-Host. So, it matches on the same
buffer as http_host. W can be combined with /R. Note that R is
relative to the previous match so both matches have to be in the
HTTP-Host buffer.

8.8. Changes from PCRE1 to PCRE2

The upgrade from PCRE1 to PCRE2 changes the behavior for some
PCRE expressions.

	\I is a valid pcre in PCRE1, with a useless escape, so
equivalent to I, but it is no longer the case in PCRE2.
There are other characters than I exhibiting this pattern

	[\d-a] is a valid pcre in PCRE1, with either a digit,
a dash or the character a, but the dash must now be escaped
with PCRE2 as [\d\-a] to get the same behavior

	pcre2_substring_copy_bynumber now returns an error
PCRE2_ERROR_UNSET instead of pcre_copy_substring returning
no error and giving an empty string. If the behavior of some use
case is no longer the expected one, please let us know.

8.9. Integer Keywords

Many keywords will match on an integer value on the network traffic.
These are unsigned integers that can be 8, 16, 32 or 64 bits.

Simple example:

bsize:integer value;

The integer value can be written as base-10 like 100 or as
an hexadecimal value like 0x64.

The most direct example is to match for equality, but there are
different modes.

8.9.1. Comparison modes

Integers can be matched for
* Equality
* Inequality
* Greater than
* Less than
* Range
* Negated range
* Bitmask
* Negated Bitmask

Note

Comparisons are strict by default. Ranges are thus exclusive.
That means a range between 1 and 4 will match 2 and 3, but neither 1 nor 4.
Negated range !1-4 will match for 1 or below and for 4 or above.

Examples:

bsize:19; # equality
bsize:=0x13; # equality
bsize:!0x14; # inequality
bsize:!=20; # inequality
bsize:>21; # greater than
bsize:>=21; # greater than or equal
bsize:<22; # lesser than
bsize:<=22; # lesser than or equal
bsize:19-22; # range between value1 and value2
bsize:!19-22; # negated range between value1 and value2
bsize:&0xc0=0x80; # bitmask mask is compared to value for equality
bsize:&0xc0!=0; # bitmask mask is compared to value for inequality

8.9.2. Enumerations

Some integers on the wire represent an enumeration, that is, some values
have a string/meaning associated to it.
Rules can be written using one of these strings to check for equality.
This is meant to make rules more human-readable and equivalent for matching.

Examples:

websocket.opcode:text;
websocket.opcode:1; # behaves the same

8.9.3. Bitmasks

Some integers on the wire represent multiple bits.
Some of these bits have a string/meaning associated to it.
Rules can be written using a list (comma-separated) of these strings,
where each item can be negated.

There is no right shift for trailing zeros applied here (even if there is one
for byte_test and byte_math). That means a rule with
websocket.flags:&0xc0=2 will be rejected as invalid as it can never match.

Examples:

websocket.flags:fin,!comp;
websocket.flags:&0xc0=0x80; # behaves the same

8.10. Transformations

Transformation keywords turn the data at a sticky buffer into something else. Some transformations
support options for greater control over the transformation process

Example:

alert http any any -> any any (file_data; strip_whitespace; \
 content:"window.navigate("; sid:1;)

This example will match on traffic even if there are one or more spaces between
the navigate and (.

The transforms can be chained. They are processed in the order in which they
appear in a rule. Each transform's output acts as input for the next one.

Example:

alert http any any -> any any (http_request_line; compress_whitespace; to_sha256; \
 content:"|54A9 7A8A B09C 1B81 3725 2214 51D3 F997 F015 9DD7 049E E5AD CED3 945A FC79 7401|"; sid:1;)

Note

not all sticky buffers support transformations yet

8.10.1. dotprefix

Takes the buffer, and prepends a . character to help facilitate concise domain checks. For example,
an input string of hello.google.com would be modified and become .hello.google.com. Additionally,
adding the dot allows google.com to match against content:".google.com"

Example:

alert dns any any -> any any (dns.query; dotprefix; \
 content:".microsoft.com"; sid:1;)

This example will match on windows.update.microsoft.com and
maps.microsoft.com.au but not windows.update.fakemicrosoft.com.

This rule can be used to match on the domain only; example:

alert dns any any -> any any (dns.query; dotprefix; \
 content:".microsoft.com"; endswith; sid:1;)

This example will match on windows.update.microsoft.com but not
windows.update.microsoft.com.au.

Finally, this rule can be used to match on the TLD only; example:

alert dns any any -> any any (dns.query; dotprefix; \
 content:".co.uk"; endswith; sid:1;)

This example will match on maps.google.co.uk but not
maps.google.co.nl.

8.10.2. strip_whitespace

Strips all whitespace as considered by the isspace() call in C.

Example:

alert http any any -> any any (file_data; strip_whitespace; \
 content:"window.navigate("; sid:1;)

8.10.3. compress_whitespace

Compresses all consecutive whitespace into a single space.

8.10.4. to_lowercase

Converts the buffer to lowercase and passes the value on.

This example alerts if http.uri contains this text has been converted to lowercase

Example:

alert http any any -> any any (http.uri; to_lowercase; \
 content:"this text has been converted to lowercase"; sid:1;)

8.10.5. to_md5

Takes the buffer, calculates the MD5 hash and passes the raw hash value
on.

Example:

alert http any any -> any any (http_request_line; to_md5; \
 content:"|54 A9 7A 8A B0 9C 1B 81 37 25 22 14 51 D3 F9 97|"; sid:1;)

8.10.6. to_uppercase

Converts the buffer to uppercase and passes the value on.

This example alerts if http.uri contains THIS TEXT HAS BEEN CONVERTED TO LOWERCASE

Example:

alert http any any -> any any (http.uri; to_uppercase; \
 content:"THIS TEXT HAS BEEN CONVERTED TO UPPERCASE"; sid:1;)

8.10.7. to_sha1

Takes the buffer, calculates the SHA-1 hash and passes the raw hash value
on.

Example:

alert http any any -> any any (http_request_line; to_sha1; \
 content:"|54A9 7A8A B09C 1B81 3725 2214 51D3 F997 F015 9DD7|"; sid:1;)

8.10.8. to_sha256

Takes the buffer, calculates the SHA-256 hash and passes the raw hash value
on.

Example:

alert http any any -> any any (http_request_line; to_sha256; \
 content:"|54A9 7A8A B09C 1B81 3725 2214 51D3 F997 F015 9DD7 049E E5AD CED3 945A FC79 7401|"; sid:1;)

8.10.9. pcrexform

Takes the buffer, applies the required regular expression, and outputs the first captured expression.

Note

this transform requires a mandatory option string containing a regular expression.

This example alerts if http.request_line contains /dropper.php
Example:

alert http any any -> any any (msg:"HTTP with pcrexform"; http.request_line; \
 pcrexform:"[a-zA-Z]+\s+(.*)\s+HTTP"; content:"/dropper.php"; sid:1;)

8.10.10. url_decode

Decodes url-encoded data, ie replacing '+' with space and '%HH' with its value.
This does not decode unicode '%uZZZZ' encoding

8.10.11. xor

Takes the buffer, applies xor decoding.

Note

this transform requires a mandatory option which is the hexadecimal encoded xor key.

This example alerts if http.uri contains password= xored with 4-bytes key 0d0ac8ff
Example:

alert http any any -> any any (msg:"HTTP with xor"; http.uri; \
 xor:"0d0ac8ff"; content:"password="; sid:1;)

8.10.12. header_lowercase

This transform is meant for HTTP/1 HTTP/2 header names normalization.
It lowercases the header names, while keeping untouched the header values.

The implementation uses a state machine :
- it lowercases until it finds :`
- it does not change until it finds a new line and switch back to first state

This example alerts for both HTTP/1 and HTTP/2 with a authorization header
Example:

alert http any any -> any any (msg:"HTTP authorization"; http.header_names; \
 header_lowercase; content:"authorization:"; sid:1;)

8.10.13. strip_pseudo_headers

This transform is meant for HTTP/1 HTTP/2 header names normalization.
It strips HTTP2 pseudo-headers (names and values).

The implementation just strips every line beginning by :.

This example alerts for both HTTP/1 and HTTP/2 with only a user agent
Example:

alert http any any -> any any (msg:"HTTP ua only"; http.header_names; \
 bsize:16; content:"|0d 0a|User-Agent|0d 0a 0d 0a|"; nocase; sid:1;)

8.11. Prefiltering Keywords

8.11.1. fast_pattern

	8.11.1.1. Suricata Fast Pattern Determination Explained
	8.11.1.1.1. Appendices
	8.11.1.1.1.1. Appendix A - Pattern Strength Algorithm

Only one content of a signature will be used in the Multi Pattern
Matcher (MPM). If there are multiple contents, then Suricata uses the
'strongest' content. This means a combination of length, how varied a
content is, and what buffer it is looking in. Generally, the longer
and more varied the better. For full details on how Suricata
determines the fast pattern match, see Suricata Fast Pattern Determination Explained.

Sometimes a signature writer concludes he wants Suricata to use
another content than it does by default.

For instance:

User-agent: Mozilla/5.0 Badness;

content:"User-Agent|3A|";
content:"Badness"; distance:0;

In this example you see the first content is longer and more varied
than the second one, so you know Suricata will use this content for
the MPM. Because 'User-Agent:' will be a match very often, and
'Badness' appears less often in network traffic, you can make Suricata
use the second content by using 'fast_pattern'.

content:"User-Agent|3A|";
content:"Badness"; distance:0; fast_pattern;

The keyword fast_pattern modifies the content previous to it.

[image: ../_images/fast_pattern.png]
Fast-pattern can also be combined with all previous mentioned
keywords, and all mentioned HTTP-modifiers.

8.11.1.2. fast_pattern:only

Sometimes a signature contains only one content. In that case it is
not necessary Suricata will check it any further after a match has
been found in MPM. If there is only one content, the whole signature
matches. Suricata notices this automatically. In some signatures this
is still indicated with 'fast_pattern:only;'. Although Suricata does
not need fast_pattern:only, it does support it.

8.11.1.3. fast_pattern:'chop'

If you do not want the MPM to use the whole content, you can use
fast_pattern 'chop'.

For example:

content: "aaaaaaaaabc"; fast_pattern:8,4;

This way, MPM uses only the last four characters.

8.11.2. prefilter

The prefilter engines for other non-MPM keywords can be enabled in specific rules by using the 'prefilter' keyword.

In the following rule the TTL test will be used in prefiltering instead of the single byte pattern:

alert ip any any -> any any (ttl:123; prefilter; content:"a"; sid:1;)

For more information on how to configure the prefilter engines, see Prefilter Engines

8.11.1.1. Suricata Fast Pattern Determination Explained

If the 'fast_pattern' keyword is explicitly set in a rule, Suricata
will use that as the fast pattern match. The 'fast_pattern' keyword
can only be set once per rule. If 'fast_pattern' is not set, Suricata
automatically determines the content to use as the fast pattern match.

The following explains the logic Suricata uses to automatically
determine the fast pattern match to use.

Be aware that if there are positive (i.e. non-negated) content
matches, then negated content matches are ignored for fast pattern
determination. Otherwise, negated content matches are considered.

The fast_pattern selection criteria are as follows:

	Suricata first identifies all content matches that have the highest
"priority" that are used in the signature. The priority is based
off of the buffer being matched on and generally application layer buffers
have a higher priority (lower number is higher priority). The buffer
http_method is an exception and has lower priority than the general
content buffer.

	Within the content matches identified in step 1 (the highest
priority content matches), the longest (in terms of character/byte
length) content match is used as the fast pattern match.

	If multiple content matches have the same highest priority and
qualify for the longest length, the one with the highest
character/byte diversity score ("Pattern Strength") is used as the
fast pattern match. See Appendix A for details on the algorithm
used to determine Pattern Strength.

	If multiple content matches have the same highest priority, qualify
for the longest length, and the same highest Pattern Strength, the
buffer ("list_id") that was registered last is used as the fast
pattern match.

	If multiple content matches have the same highest priority, qualify
for the longest length, the same highest Pattern Strength, and have
the same list_id (i.e. are looking in the same buffer), then the
one that comes first (from left-to-right) in the rule is used as
the fast pattern match.

It is worth noting that for content matches that have the same
priority, length, and Pattern Strength, 'http_stat_msg',
'http_stat_code', and 'http_method' take precedence over regular
'content' matches.

8.11.1.1.1. Appendices

8.11.1.1.1.1. Appendix A - Pattern Strength Algorithm

From detect-engine-mpm.c. Basically the Pattern Strength "score"
starts at zero and looks at each character/byte in the passed in byte
array from left to right. If the character/byte has not been seen
before in the array, it adds 3 to the score if it is an alpha
character; else it adds 4 to the score if it is a printable character,
0x00, 0x01, or 0xFF; else it adds 6 to the score. If the
character/byte has been seen before it adds 1 to the score. The final
score is returned.

/** \brief Predict a strength value for patterns
 *
 * Patterns with high character diversity score higher.
 * Alpha chars score not so high
 * Other printable + a few common codes a little higher
 * Everything else highest.
 * Longer patterns score better than short patters.
 *
 * \param pat pattern
 * \param patlen length of the pattern
 *
 * \retval s pattern score
 */
 uint32_t PatternStrength(uint8_t *pat, uint16_t patlen) {
 uint8_t a[256];
 memset(&a, 0 ,sizeof(a));
 uint32_t s = 0;
 uint16_t u = 0;
 for (u = 0; u < patlen; u++) {
 if (a[pat[u]] == 0) {
 if (isalpha(pat[u]))
 s += 3;
 else if (isprint(pat[u]) || pat[u] == 0x00 || pat[u] == 0x01 || pat[u] == 0xFF)
 s += 4;
 else
 s += 6;
 a[pat[u]] = 1;
 } else {
 s++;
 }
 }
 return s;
 }

8.12. Flow Keywords

8.12.1. flowbits

Flowbits consists of two parts. The first part describes the action it
is going to perform, the second part is the name of the flowbit.

There are multiple packets that belong to one flow. Suricata keeps
those flows in memory. For more information see
Flow Settings. Flowbits can make sure an alert
will be generated when for example two different packets match. An
alert will only be generated when both packets match. So, when the
second packet matches, Suricata has to know if the first packet was a
match too. Flowbits marks the flow if a packet matches so Suricata
'knows' it should generate an alert when the second packet matches as
well.

Flowbits have different actions. These are:

	flowbits: set, name
	Will set the condition/'name', if present, in the flow.

	flowbits: isset, name
	Can be used in the rule to make sure it generates an alert when the
rule matches and the condition is set in the flow.

	flowbits: toggle, name
	Reverses the present setting. So for example if a condition is set,
it will be unset and vice-versa.

	flowbits: unset, name
	Can be used to unset the condition in the flow.

	flowbits: isnotset, name
	Can be used in the rule to make sure it generates an alert when it
matches and the condition is not set in the flow.

	flowbits: noalert
	No alert will be generated by this rule.

Example:

[image: ../_images/Flowbit_3.png]
When you take a look at the first rule you will notice it would
generate an alert if it would match, if it were not for the 'flowbits:
noalert' at the end of that rule. The purpose of this rule is to check
for a match on 'userlogin' and mark that in the flow. So, there is no
need for generating an alert. The second rule has no effect without
the first rule. If the first rule matches, the flowbits sets that
specific condition to be present in the flow. Now with the second rule
there can be checked whether or not the previous packet fulfills the
first condition. If at that point the second rule matches, an alert
will be generated.

It is possible to use flowbits several times in a rule and combine the
different functions.

It is also possible to perform an OR operation with flowbits with | op.

	Example::
	alert http any any -> any any (msg: "User1 or User2 logged in"; content:"login"; flowbits:isset,user1|user2; sid:1;)

This can be used with either isset or isnotset action.

8.12.2. flow

The flow keyword can be used to match on direction of the flow, so to/from
client or to/from server. It can also match if the flow is established or not.
The flow keyword can also be used to say the signature has to match on stream
only (only_stream) or on packet only (no_stream).

So with the flow keyword you can match on:

	to_client
	Match on packets from server to client.

	to_server
	Match on packets from client to server.

	from_client
	Match on packets from client to server (same as to_server).

	from_server
	Match on packets from server to client (same as to_client).

	established
	Match on established connections.

	not_established
	Match on packets that are not part of an established connection.

	stateless
	Match on packets that are and are not part of an established connection.

	only_stream
	Match on packets that have been reassembled by the stream engine.

	no_stream
	Match on packets that have not been reassembled by the stream
engine. Will not match packets that have been reassembled.

	only_frag
	Match packets that have been reassembled from fragments.

	no_frag
	Match packets that have not been reassembled from fragments.

Multiple flow options can be combined, for example:

flow:to_client, established
flow:to_server, established, only_stream
flow:to_server, not_established, no_frag

The determination of established depends on the protocol:

	For TCP a connection will be established after a three way
handshake.

[image: ../_images/Flow1.png]

	For other protocols (for example UDP), the connection will be
considered established after seeing traffic from both sides of the
connection.

[image: ../_images/Flow2.png]

8.12.3. flowint

Flowint allows storage and mathematical operations using variables. It
operates much like flowbits but with the addition of mathematical
capabilities and the fact that an integer can be stored and
manipulated, not just a flag set. We can use this for a number of very
useful things, such as counting occurrences, adding or subtracting
occurrences, or doing thresholding within a stream in relation to
multiple factors. This will be expanded to a global context very soon,
so users can perform these operations between streams.

The syntax is as follows:

flowint: name, modifier[, value];

Define a var (not required), or check that one is set or not set.

flowint: name, < +,-,=,>,<,>=,<=,==, != >, value;
flowint: name, (isset|isnotset);

Compare or alter a var. Add, subtract, compare greater than or less
than, greater than or equal to, and less than or equal to are
available. The item to compare with can be an integer or another
variable.

For example, if you want to count how many times a username is seen in
a particular stream and alert if it is over 5.

alert tcp any any -> any any (msg:"Counting Usernames"; content:"jonkman"; \
 flowint: usernamecount, +, 1; noalert;)

This will count each occurrence and increment the var usernamecount
and not generate an alert for each.

Now say we want to generate an alert if there are more than five hits
in the stream.

alert tcp any any -> any any (msg:"More than Five Usernames!"; content:"jonkman"; \
 flowint: usernamecount, +, 1; flowint:usernamecount, >, 5;)

So we'll get an alert ONLY if usernamecount is over five.

So now let's say we want to get an alert as above but NOT if there
have been more occurrences of that username logging out. Assuming this
particular protocol indicates a log out with "jonkman logout", let's
try:

alert tcp any any -> any any (msg:"Username Logged out"; content:"logout jonkman"; \
 flowint: usernamecount, -, 1; flowint:usernamecount, >, 5;)

So now we'll get an alert ONLY if there are more than five active
logins for this particular username.

This is a rather simplistic example, but I believe it shows the power
of what such a simple function can do for rule writing. I see a lot of
applications in things like login tracking, IRC state machines,
malware tracking, and brute force login detection.

Let's say we're tracking a protocol that normally allows five login
fails per connection, but we have vulnerability where an attacker can
continue to login after that five attempts and we need to know about
it.

alert tcp any any -> any any (msg:"Start a login count"; content:"login failed"; \
 flowint:loginfail, notset; flowint:loginfail, =, 1; noalert;)

So we detect the initial fail if the variable is not yet set and set
it to 1 if so. Our first hit.

alert tcp any any -> any any (msg:"Counting Logins"; content:"login failed"; \
 flowint:loginfail, isset; flowint:loginfail, +, 1; noalert;)

We are now incrementing the counter if it's set.

alert tcp any any -> any any (msg:"More than Five login fails in a Stream"; \
 content:"login failed"; flowint:loginfail, isset; flowint:loginfail, >, 5;)

Now we'll generate an alert if we cross five login fails in the same
stream.

But let's also say we also need alert if there are two successful
logins and a failed login after that.

alert tcp any any -> any any (msg:"Counting Good Logins"; \
 content:"login successful"; flowint:loginsuccess, +, 1; noalert;)

Here we're counting good logins, so now we'll count good logins
relevant to fails:

alert tcp any any -> any any (msg:"Login fail after two successes"; \
 content:"login failed"; flowint:loginsuccess, isset; \
 flowint:loginsuccess, =, 2;)

Here are some other general examples:

alert tcp any any -> any any (msg:"Setting a flowint counter"; content:"GET"; \
 flowint:myvar, notset; flowint:maxvar,notset; \
 flowint:myvar,=,1; flowint: maxvar,=,6;)

alert tcp any any -> any any (msg:"Adding to flowint counter"; \
 content:"Unauthorized"; flowint:myvar,isset; flowint: myvar,+,2;)

alert tcp any any -> any any (msg:"when flowint counter is 3 create new counter"; \
 content:"Unauthorized"; flowint:myvar, isset; flowint:myvar,==,3; \
 flowint:cntpackets,notset; flowint:cntpackets, =, 0;)

alert tcp any any -> any any (msg:"count the rest without generating alerts"; \
 flowint:cntpackets,isset; flowint:cntpackets, +, 1; noalert;)

alert tcp any any -> any any (msg:"fire this when it reach 6"; \
 flowint: cntpackets, isset; \
 flowint: maxvar,isset; flowint: cntpackets, ==, maxvar;)

8.12.4. stream_size

The stream size option matches on traffic according to the registered
amount of bytes by the sequence numbers. There are several modifiers
to this keyword:

> greater than
< less than
= equal
!= not equal
>= greater than or equal
<= less than or equal

Format

stream_size:<server|client|both|either>, <modifier>, <number>;

Example of the stream-size keyword in a rule:

alert tcp any any -> any any (stream_size:both, >, 5000; sid:1;)

8.12.5. flow.age

Flow age in seconds (integer)
This keyword does not wait for the end of the flow, but will be checked at each packet.

flow.age uses an unsigned 32-bit integer.

Syntax:

flow.age: [op]<number>

The time can be matched exactly, or compared using the _op_ setting:

flow.age:3 # exactly 3
flow.age:<3 # smaller than 3 seconds
flow.age:>=2 # greater or equal than 2 seconds

Signature example:

alert tcp any any -> any any (msg:"Flow longer than one hour"; flow.age:>3600; flowbits: isnotset, onehourflow; flowbits: onehourflow, name; sid:1; rev:1;)

In this example, we combine flow.age and flowbits to get an alert on the first packet after the flow's age is older than one hour.

8.12.6. flow.pkts_toclient

Flow number of packets to client (integer)
This keyword does not wait for the end of the flow, but will be checked at each packet.

flow.pkts_toclient uses an unsigned 32-bit integer.

Syntax:

flow.pkts_toclient: [op]<number>

The number of packets can be matched exactly, or compared using the _op_ setting:

flow.pkts_toclient:3 # exactly 3
flow.pkts_toclient:<3 # smaller than 3
flow.pkts_toclient:>=2 # greater than or equal to 2

Signature example:

alert ip any any -> any any (msg:"Flow has 20 packets"; flow.pkts_toclient:20; sid:1;)

8.12.7. flow.pkts_toserver

Flow number of packets to server (integer)
This keyword does not wait for the end of the flow, but will be checked at each packet.

flow.pkts_toserver uses an unsigned 32-bit integer.

Syntax:

flow.pkts_toserver: [op]<number>

The number of packets can be matched exactly, or compared using the _op_ setting:

flow.pkts_toserver:3 # exactly 3
flow.pkts_toserver:<3 # smaller than 3
flow.pkts_toserver:>=2 # greater than or equal to 2

Signature example:

alert ip any any -> any any (msg:"Flow has 20 packets"; flow.pkts_toserver:20; sid:1;)

8.12.8. flow.bytes_toclient

Flow number of bytes to client (integer)
This keyword does not wait for the end of the flow, but will be checked at each packet.

flow.bytes_toclient uses an unsigned 64-bit integer.

Syntax:

flow.bytes_toclient: [op]<number>

The number of packets can be matched exactly, or compared using the _op_ setting:

flow.bytes_toclient:3 # exactly 3
flow.bytes_toclient:<3 # smaller than 3
flow.bytes_toclient:>=2 # greater than or equal to 2

Signature example:

alert ip any any -> any any (msg:"Flow has less than 2000 bytes"; flow.bytes_toclient:<2000; sid:1;)

8.12.9. flow.bytes_toserver

Flow number of bytes to server (integer)
This keyword does not wait for the end of the flow, but will be checked at each packet.

flow.bytes_toserver uses an unsigned 64-bit integer.

Syntax:

flow.bytes_toserver: [op]<number>

The number of packets can be matched exactly, or compared using the _op_ setting:

flow.bytes_toserver:3 # exactly 3
flow.bytes_toserver:<3 # smaller than 3
flow.bytes_toserver:>=2 # greater than or equal to 2

Signature example:

alert ip any any -> any any (msg:"Flow has less than 2000 bytes"; flow.bytes_toserver:<2000; sid:1;)

8.13. Bypass Keyword

Suricata has a bypass keyword that can be used in signatures to exclude traffic from further evaluation.

The bypass keyword is useful in cases where there is a large flow expected (e.g. Netflix, Spotify, YouTube).

The bypass keyword is considered a post-match keyword.

8.13.1. bypass

Bypass a flow on matching http traffic.

Example:

alert http any any -> any any (content:"suricata.io"; \
 http_host; bypass; sid:10001; rev:1;)

8.14. HTTP Keywords

Using the HTTP specific sticky buffers provides a way to efficiently
inspect specific fields of the HTTP protocol. After specifying a
sticky buffer in a rule it should be followed by one or more Payload Keywords.

Many of the sticky buffers have legacy variants in the older "content modifier"
notation. See Modifier Keywords for more information. As a
refresher:

	'sticky buffers' are placed first and all keywords following it apply to that buffer, for instance:

alert http any any -> any any (http.response_line; content:"403 Forbidden"; sid:1;)

Sticky buffers apply to all "payload" keywords following it. E.g. content, isdataat, byte_test, pcre.

	'content modifiers' look back in the rule, e.g.:

alert http any any -> any any (content:"index.php"; http_uri; sid:1;)

Content modifiers only apply to the preceding content keyword.

The following request keywords are available:

	Keyword

	Legacy Content Modifier

	Direction

	http.uri

	http_uri

	Request

	http.uri.raw

	http_raw_uri

	Request

	http.method

	http_method

	Request

	http.request_line

	http_request_line (*)

	Request

	http.request_body

	http_client_body

	Request

	http.header

	http_header

	Both

	http.header.raw

	http_raw_header

	Both

	http.cookie

	http_cookie

	Both

	http.user_agent

	http_user_agent

	Request

	http.host

	http_host

	Request

	http.host.raw

	http_raw_host

	Request

	http.accept

	http_accept (*)

	Request

	http.accept_lang

	http_accept_lang (*)

	Request

	http.accept_enc

	http_accept_enc (*)

	Request

	http.referer

	http_referer (*)

	Request

	http.connection

	http_connection (*)

	Both

	file.data

	file_data (*)

	Both

	file.name

	filename (*)

	Request

	http.content_type

	http_content_type (*)

	Both

	http.content_len

	http_content_len (*)

	Both

	http.start

	http_start (*)

	Both

	http.protocol

	http_protocol (*)

	Both

	http.header_names

	http_header_names (*)

	Both

*) sticky buffer

The following response keywords are available:

	Keyword

	Legacy Content Modifier

	Direction

	http.stat_msg

	http_stat_msg

	Response

	http.stat_code

	http_stat_code

	Response

	http.response_line

	http_response_line (*)

	Response

	http.header

	http_header

	Both

	http.header.raw

	http_raw_header

	Both

	http.cookie

	http_cookie

	Both

	http.response_body

	http_server_body

	Response

	http.server

	N/A

	Response

	http.location

	N/A

	Response

	file.data

	file_data (*)

	Both

	http.content_type

	http_content_type (*)

	Both

	http.content_len

	http_content_len (*)

	Both

	http.start

	http_start (*)

	Both

	http.protocol

	http_protocol (*)

	Both

	http.header_names

	http_header_names (*)

	Both

*) sticky buffer

8.14.1. HTTP Primer

It is important to understand the structure of HTTP requests and
responses. A simple example of a HTTP request and response follows:

HTTP request

GET /index.html HTTP/1.0\r\n

GET is the request method. Examples of methods are: GET, POST, PUT,
HEAD, etc. The URI path is /index.html and the HTTP version is
HTTP/1.0. Several HTTP versions have been used over the years; of
the versions 0.9, 1.0 and 1.1, 1.0 and 1.1 are the most commonly used
today.

Example request with keywords:

	HTTP

	Keyword

	GET /index.html HTTP/1.1\r\n

	http.request_line

	Host: www.oisf.net\r\n

	http.header

	Cookie: <cookie data>

	http.cookie

Example request with finer grained keywords:

	HTTP

	Keyword

	GET /index.html HTTP/1.1\r\n

	http.method
http.uri
http.protocol

	Host: www.oisf.net\r\n

User-Agent: Mozilla/5.0\r\n

	http.host

	http.user_agent

	Cookie: <cookie data>

	http.cookie

HTTP response

HTTP/1.0 200 OK\r\n
<html>
<title> some page </title>
</HTML>

In this example, HTTP/1.0 is the HTTP version, 200 the response status
code and OK the response status message.

Although cookies are sent in an HTTP header, you can not match on them
with the http.header keyword. Cookies are matched with their own
keyword, namely http.cookie.

Each part of the table belongs to a so-called buffer. The HTTP
method belongs to the method buffer, HTTP headers to the header buffer
etc. A buffer is a specific portion of the request or response that
Suricata extracts in memory for inspection.

All previous described keywords can be used in combination with a
buffer in a signature. The keywords distance and within are
relative modifiers, so they may only be used within the same
buffer. You can not relate content matches against different buffers
with relative modifiers.

8.14.2. http.method

With the http.method sticky buffer, it is possible to match
specifically and only on the HTTP method buffer. The keyword can be
used in combination with all previously mentioned content modifiers
such as: depth, distance, offset, nocase and within.

Examples of methods are: GET, POST, PUT, HEAD,
DELETE, TRACE, OPTIONS, CONNECT and PATCH.

Example of a method in a HTTP request:

[image: ../_images/method2.png]
Example of the purpose of method:

[image: ../_images/method.png]
[image: ../_images/Legenda_rules.png]
[image: ../_images/method1.png]

8.14.3. http.uri and http.uri.raw

With the http.uri and the http.uri.raw sticky buffers, it
is possible to match specifically and only on the request URI
buffer. The keyword can be used in combination with all previously
mentioned content modifiers like depth, distance, offset,
nocase and within.

The uri has two appearances in Suricata: the uri.raw and the
normalized uri. The space for example can be indicated with the
heximal notation %20. To convert this notation in a space, means
normalizing it. It is possible though to match specific on the
characters %20 in a uri. This means matching on the uri.raw. The
uri.raw and the normalized uri are separate buffers. So, the uri.raw
inspects the uri.raw buffer and can not inspect the normalized buffer.

Note

uri.raw never has any spaces in it.
With this request line GET /uid=0(root) gid=0(root) HTTP/1.1,
the http.uri.raw will match /uid=0(root)
and http.protocol will match gid=0(root) HTTP/1.1
Reference: https://redmine.openinfosecfoundation.org/issues/2881

Example of the URI in a HTTP request:

[image: ../_images/uri1.png]
Example of the purpose of http.uri:

[image: ../_images/uri.png]

8.14.4. uricontent

The uricontent keyword has the exact same effect as the
http.uri sticky buffer. uricontent is a deprecated
(although still supported) way to match specifically and only on the
request URI buffer.

Example of uricontent:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"ET TROJAN Possible Vundo Trojan Variant reporting to Controller"; flow:established,to_server; content:"POST "; depth:5; uricontent:"/frame.html?"; urilen: > 80; classtype:trojan-activity; reference:url,doc.emergingthreats.net/2009173; reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/VIRUS/TROJAN_Vundo; sid:2009173; rev:2;)

The difference between http.uri and uricontent is the syntax:

[image: ../_images/uricontent1.png]
[image: ../_images/http_uri.png]
When authoring new rules, it is recommended that the http.uri
content sticky buffer be used rather than the deprecated uricontent
keyword.

8.14.5. urilen

The urilen keyword is used to match on the length of the request
URI. It is possible to use the < and > operators, which
indicate respectively smaller than and larger than.

urilen uses an unsigned 64-bit integer.

The format of urilen is:

urilen:3;

Other possibilities are:

urilen:1;
urilen:>1;
urilen:<10;
urilen:10<>20; (bigger than 10, smaller than 20)

Example:

[image: ../_images/urilen.png]
Example of urilen in a signature:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"ET TROJAN Possible Vundo Trojan Variant reporting to Controller"; flow:established,to_server; content:"POST "; depth:5; uricontent:"/frame.html?"; urilen: > 80; classtype:trojan-activity; reference:url,doc.emergingthreats.net/2009173; reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/VIRUS/TROJAN_Vundo; sid:2009173; rev:2;)

You can also append norm or raw to define what sort of buffer you want
to use (normalized or raw buffer).

8.14.6. http.protocol

The http.protocol inspects the protocol field from the HTTP request or
response line. If the request line is 'GET / HTTP/1.0rn', then this buffer
will contain 'HTTP/1.0'.

Example:

alert http any any -> any any (flow:to_server; http.protocol; content:"HTTP/1.0"; sid:1;)

http.protocol replaces the previous keyword name: `http_protocol. You may continue to use the previous name, but it's recommended that rules be converted to use the new name.

Example:

alert http any any -> any any (flow:to_server; http.protocol; content:"HTTP/1.0"; sid:1;)

8.14.7. http.request_line

The http.request_line forces the whole HTTP request line to be inspected.

Example:

alert http any any -> any any (http.request_line; content:"GET / HTTP/1.0"; sid:1;)

8.14.8. http.header and http.header.raw

With the http.header sticky buffer, it is possible to match
specifically and only on the HTTP header buffer. This contains all of
the extracted headers in a single buffer, except for those indicated
in the documentation that are not able to match by this buffer and
have their own sticky buffer (e.g. http.cookie). The sticky buffer
can be used in combination with all previously mentioned content
modifiers, like depth, distance, offset, nocase and
within.

Note: the header buffer is normalized. Any trailing
whitespace and tab characters are removed. See:
https://lists.openinfosecfoundation.org/pipermail/oisf-users/2011-October/000935.html.
If there are multiple values for the same header name, they are
concatenated with a comma and space (", ") between each of them.
See RFC 2616 4.2 Message Headers.
To avoid that, use the http.header.raw keyword.

Example of a header in a HTTP request:

[image: ../_images/header.png]
Example of the purpose of http.header:

[image: ../_images/header1.png]

8.14.9. http.cookie

With the http.cookie sticky buffer it is possible to match
specifically on the HTTP cookie contents. Keywords like depth,
distance, offset, nocase and within can be used
with http.cookie.

Note that cookies are passed in HTTP headers but Suricata extracts
the cookie data to http.cookie and will not match cookie content
put in the http.header sticky buffer.

Example of a cookie in a HTTP request:

Examples:

GET / HTTP/1.1
User-Agent: Mozilla/5.0
Host: www.example.com
Cookie: PHPSESSIONID=1234
Connection: close

Example http.cookie keyword in a signature:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Request
with Cookie"; flow:established,to_server; http.method; content:"GET";
http.uri; content:"/"; fast_pattern; http.cookie;
content:"PHPSESSIONID="; startswith; classtype:bad-unknown; sid:123;
rev:1;)

8.14.10. http.user_agent

The http.user_agent sticky buffer is part of the HTTP request
header. It makes it possible to match specifically on the value of the
User-Agent header. It is normalized in the sense that it does not
include the _"User-Agent: "_ header name and separator, nor does it
contain the trailing carriage return and line feed (CRLF). The keyword
can be used in combination with all previously mentioned content
modifiers like depth, distance, offset, nocase and
within. Note that the pcre keyword can also inspect this
buffer when using the /V modifier.

Normalization: leading spaces are not part of this buffer. So
"User-Agent: rn" will result in an empty http.user_agent buffer.

Example of the User-Agent header in a HTTP request:

[image: ../_images/user_agent.png]
Example of the purpose of http.user_agent:

[image: ../_images/user_agent_match.png]

8.14.10.1. Notes

	The http.user_agent buffer will NOT include the header name,
colon, or leading whitespace. i.e. it will not include
"User-Agent: ".

	The http.user_agent buffer does not include a CRLF (0x0D
0x0A) at the end. If you want to match the end of the buffer, use a
relative isdataat or a PCRE (although PCRE will be worse on
performance).

	If a request contains multiple "User-Agent" headers, the values will
be concatenated in the http.user_agent buffer, in the order
seen from top to bottom, with a comma and space (", ") between each
of them.

Example request:

GET /test.html HTTP/1.1
User-Agent: SuriTester/0.8
User-Agent: GGGG

http.user_agent buffer contents:

SuriTester/0.8, GGGG

	Corresponding PCRE modifier: V

	Using the http.user_agent buffer is more efficient when it
comes to performance than using the http.header buffer (~10%
better).

	https://blog.inliniac.net/2012/07/09/suricata-http_user_agent-vs-http_header/

8.14.11. http.accept

Sticky buffer to match on the HTTP Accept header. Only contains the header
value. The \r\n after the header are not part of the buffer.

Example:

alert http any any -> any any (http.accept; content:"image/gif"; sid:1;)

8.14.12. http.accept_enc

Sticky buffer to match on the HTTP Accept-Encoding header. Only contains the
header value. The \r\n after the header are not part of the buffer.

Example:

alert http any any -> any any (http.accept_enc; content:"gzip"; sid:1;)

8.14.13. http.accept_lang

Sticky buffer to match on the HTTP Accept-Language header. Only contains the
header value. The \r\n after the header are not part of the buffer.

Example:

alert http any any -> any any (http.accept_lang; content:"en-us"; sid:1;)

8.14.14. http.connection

Sticky buffer to match on the HTTP Connection header. Only contains the
header value. The \r\n after the header are not part of the buffer.

Example:

alert http any any -> any any (http.connection; content:"keep-alive"; sid:1;)

8.14.15. http.content_type

Sticky buffer to match on the HTTP Content-Type headers. Only contains the
header value. The \r\n after the header are not part of the buffer.

Use flow:to_server or flow:to_client to force inspection of request or response.

Examples:

alert http any any -> any any (flow:to_server; \
 http.content_type; content:"x-www-form-urlencoded"; sid:1;)

alert http any any -> any any (flow:to_client; \
 http.content_type; content:"text/javascript"; sid:2;)

8.14.16. http.content_len

Sticky buffer to match on the HTTP Content-Length headers. Only contains the
header value. The \r\n after the header are not part of the buffer.

Use flow:to_server or flow:to_client to force inspection of request or response.

Examples:

alert http any any -> any any (flow:to_server; \
 http.content_len; content:"666"; sid:1;)

alert http any any -> any any (flow:to_client; \
 http.content_len; content:"555"; sid:2;)

To do a numeric inspection of the content length, byte_test can be used.

Example, match if C-L is equal to or bigger than 8079:

alert http any any -> any any (flow:to_client; \
 http.content_len; byte_test:0,>=,8079,0,string,dec; sid:3;)

8.14.17. http.referer

Sticky buffer to match on the HTTP Referer header. Only contains the
header value. The \r\n after the header are not part of the buffer.

Example:

alert http any any -> any any (http.referer; content:".php"; sid:1;)

8.14.18. http.start

Inspect the start of a HTTP request or response. This will contain the
request/response line plus the request/response headers. Use flow:to_server
or flow:to_client to force inspection of request or response.

Example:

alert http any any -> any any (http.start; content:"HTTP/1.1|0d 0a|User-Agent"; sid:1;)

The buffer contains the normalized headers and is terminated by an extra
\r\n to indicate the end of the headers.

8.14.19. http.header_names

Inspect a buffer only containing the names of the HTTP headers. Useful
for making sure a header is not present or testing for a certain order
of headers.

Buffer starts with a \r\n and ends with an extra \r\n.

Example buffer:

\\r\\nHost\\r\\n\\r\\n

Example rule:

alert http any any -> any any (http.header_names; content:"|0d 0a|Host|0d 0a|"; sid:1;)

Example to make sure only Host is present:

alert http any any -> any any (http.header_names; \
 content:"|0d 0a|Host|0d 0a 0d 0a|"; sid:1;)

Example to make sure User-Agent is directly after Host:

alert http any any -> any any (http.header_names; \
 content:"|0d 0a|Host|0d 0a|User-Agent|0d 0a|"; sid:1;)

Example to make sure User-Agent is after Host, but not necessarily directly after:

alert http any any -> any any (http.header_names; \
 content:"|0d 0a|Host|0d 0a|"; content:"|0a 0d|User-Agent|0d 0a|"; \
 distance:-2; sid:1;)

8.14.20. http.request_body

With the http.request_body sticky buffer, it is possible to
match specifically and only on the HTTP request body. The keyword can
be used in combination with all previously mentioned content modifiers
like distance, offset, nocase, within, etc.

Example of http.request_body in a HTTP request:

[image: ../_images/client_body.png]
Example of the purpose of http.client_body:

[image: ../_images/client_body1.png]
Note: how much of the request/client body is inspected is controlled
in the libhtp configuration section via the request-body-limit
setting.

http.request_body replaces the previous keyword name: `http_client_body. You may continue
+to use the previous name, but it's recommended that rules be converted to use
+the new name.

8.14.21. http.stat_code

With the http.stat_code sticky buffer, it is possible to match
specifically and only on the HTTP status code buffer. The keyword can
be used in combination with all previously mentioned content modifiers
like distance, offset, nocase, within, etc.

Example of http.stat_code in a HTTP response:

[image: ../_images/stat_code.png]
Example of the purpose of http.stat_code:

[image: ../_images/stat-code1.png]

8.14.22. http.stat_msg

With the http.stat_msg sticky buffer, it is possible to match
specifically and only on the HTTP status message buffer. The keyword
can be used in combination with all previously mentioned content
modifiers like depth, distance, offset, nocase and
within.

Example of http.stat_msg in a HTTP response:

[image: ../_images/stat_msg.png]
Example of the purpose of http.stat_msg:

[image: ../_images/stat_msg_1.png]

8.14.23. http.response_line

The http.response_line forces the whole HTTP response line to be inspected.

Example:

alert http any any -> any any (http.response_line; content:"HTTP/1.0 200 OK"; sid:1;)

8.14.24. http.response_body

With the http.response_body sticky buffer, it is possible to
match specifically and only on the HTTP response body. The keyword can
be used in combination with all previously mentioned content modifiers
like distance, offset, nocase, within, etc.

Note: how much of the response/server body is inspected is controlled
in your libhtp configuration section via the response-body-limit
setting.

8.14.24.1. Notes

	Using http.response_body is similar to having content matches
that come after file.data except that it doesn't permanently
(unless reset) set the detection pointer to the beginning of the
server response body. i.e. it is not a sticky buffer.

	http.response_body will match on gzip decoded data just like
file.data does.

	Since http.response_body matches on a server response, it
can't be used with the to_server or from_client flow
directives.

	Corresponding PCRE modifier: Q

	further notes at the file.data section below.

http.response_body replaces the previous keyword name: `http_server_body. You may continue
+to use the previous name, but it's recommended that rules be converted to use
+the new name.

8.14.25. http.server

Sticky buffer to match on the HTTP Server headers. Only contains the
header value. The \r\n after the header are not part of the buffer.

Example:

alert http any any -> any any (flow:to_client; \
 http.server; content:"Microsoft-IIS/6.0"; sid:1;)

8.14.26. http.location

Sticky buffer to match on the HTTP Location headers. Only contains the
header value. The \r\n after the header are not part of the buffer.

Example:

alert http any any -> any any (flow:to_client; \
 http.location; content:"http://www.google.com"; sid:1;)

8.14.27. http.host and http.host.raw

With the http.host sticky buffer, it is possible to
match specifically and only the normalized hostname.
The http.host.raw inspects the raw hostname.

The keyword can be used in combination with most of the content modifiers
like distance, offset, within, etc.

The nocase keyword is not allowed anymore. Keep in mind that you need
to specify a lowercase pattern.

8.14.28. http.request_header

Match on the name and value of a HTTP request header (HTTP1 or HTTP2).

For HTTP2, name and value get concatenated by ": ", colon and space.
To detect if a http2 header name contains ':',
the keyword http2.header_name can be used.

Examples:

http.request_header; content:"agent: nghttp2";
http.request_header; content:"custom-header: I love::colons";

http.request_header is a 'sticky buffer'.

http.request_header can be used as fast_pattern.

8.14.29. http.response_header

Match on the name and value of a HTTP response header (HTTP1 or HTTP2).

For HTTP2, name and value get concatenated by ": ", colon and space.
To detect if a http2 header name contains ':',
the keyword http2.header_name can be used.

Examples:

http.response_header; content:"server: nghttp2";
http.response_header; content:"custom-header: I love::colons";

http.response_header is a 'sticky buffer'.

http.response_header can be used as fast_pattern.

8.14.29.1. Notes

	http.host does not contain the port associated with
the host (i.e. abc.com:1234). To match on the host and port
or negate a host and port use http.host.raw.

	The http.host and http.host.raw buffers are populated
from either the URI (if the full URI is present in the request like
in a proxy request) or the HTTP Host header. If both are present, the
URI is used.

	The http.host and http.host.raw buffers will NOT
include the header name, colon, or leading whitespace if populated
from the Host header. i.e. they will not include "Host: ".

	The http.host and http.host.raw buffers do not
include a CRLF (0x0D 0x0A) at the end. If you want to match the end
of the buffer, use a relative 'isdataat' or a PCRE (although PCRE
will be worse on performance).

	The http.host buffer is normalized to be all lower case.

	The content match that http.host applies to must be all lower
case or have the nocase flag set.

	http.host.raw matches the unnormalized buffer so matching
will be case-sensitive (unless nocase is set).

	If a request contains multiple "Host" headers, the values will be
concatenated in the http.host and http.host.raw
buffers, in the order seen from top to bottom, with a comma and space
(", ") between each of them.

Example request:

GET /test.html HTTP/1.1
Host: ABC.com
Accept: */*
Host: efg.net

http.host buffer contents:

abc.com, efg.net

http.host.raw buffer contents:

ABC.com, efg.net

	Corresponding PCRE modifier (http_host): W

	Corresponding PCRE modifier (http_raw_host): Z

8.14.30. file.data

With file.data, the HTTP response body is inspected, just like
with http.response_body. The file.data keyword is a sticky buffer.
file.data also works for HTTP request body and can be used in other
protocols than HTTP1.

Example:

alert http any any -> any any (file.data; content:"abc"; content:"xyz";)

[image: ../_images/file_data.png]
The file.data keyword affects all following content matches, until
the pkt_data keyword is encountered or it reaches the end of the
rule. This makes it a useful shortcut for applying many content
matches to the HTTP response body, eliminating the need to modify each
content match individually.

As the body of a HTTP response can be very large, it is inspected in
smaller chunks.

How much of the response/server body is inspected is controlled
in your libhtp configuration section via the response-body-limit
setting.

If the HTTP body is a flash file compressed with 'deflate' or 'lzma',
it can be decompressed and file.data can match on the decompress data.
Flash decompression must be enabled under libhtp configuration:

Decompress SWF files.
2 types: 'deflate', 'lzma', 'both' will decompress deflate and lzma
compress-depth:
Specifies the maximum amount of data to decompress,
set 0 for unlimited.
decompress-depth:
Specifies the maximum amount of decompressed data to obtain,
set 0 for unlimited.
swf-decompression:
 enabled: yes
 type: both
 compress-depth: 0
 decompress-depth: 0

8.14.30.1. Notes

	file.data is the preferred notation, however, file_data is still
recognized by the engine and works as well.

	If a HTTP body is using gzip or deflate, file.data will match
on the decompressed data.

	Negated matching is affected by the chunked inspection. E.g.
'content:!"<html";' could not match on the first chunk, but would
then possibly match on the 2nd. To avoid this, use a depth setting.
The depth setting takes the body size into account.
Assuming that the response-body-minimal-inspect-size is bigger
than 1k, 'content:!"<html"; depth:1024;' can only match if the
pattern '<html' is absent from the first inspected chunk.

	Refer to File Keywords for additional information.

8.14.30.2. Multiple Buffer Matching

file.data supports multiple buffer matching, see Multiple Buffer Matching.

8.14.31. file.name

The file.name keyword can be used at the HTTP application level.

Example:

alert http any any -> any any (msg:"http layer file.name keyword usage"; \
file.name; content:"picture.jpg"; classtype:bad-unknown; sid:1; rev:1;)

For additional information on the file.name keyword, see File Keywords.

8.15. File Keywords

Suricata comes with several rule keywords to match on various file
properties. They depend on properly configured
File Extraction.

8.15.1. file.data

The file.data sticky buffer matches on contents of files that are
seen in flows that Suricata evaluates. The various payload keywords can
be used (e.g. startswith, nocase and bsize) with file.data.

Example:

 alert smtp any any -> any any (msg:"smtp app layer file.data example"; \
file.data; content:"example file content"; sid:1; rev:1)

 alert http any any -> any any (msg:"http app layer file.data example"; \
file.data; content:"example file content"; sid:2; rev:1)

 alert http2 any any -> any any (msg:"http2 app layer file.data example"; \
file.data; content:"example file content"; sid:3; rev:1;)

 alert nfs any any -> any any (msg:"nfs app layer file.data example"; \
file.data; content:" "; sid:5; rev:1)

 alert ftp-data any any -> any any (msg:"ftp app layer file.data example"; \
file.data; content:"example file content"; sid:6; rev:1;)

 alert tcp any any -> any any (msg:"tcp file.data example"; \
file.data; content:"example file content"; sid:4; rev:1)

Note file_data is the legacy notation but can still be used.

8.15.2. file.name

file.name is a sticky buffer that is used to look at filenames
that are seen in flows that Suricata evaluates. The various payload
keywords can be used (e.g. startswith, nocase and bsize)
with file.name.

Example:

file.name; content:"examplefilename";

file.name supports multiple buffer matching, see Multiple Buffer Matching.

Note filename can still be used. A notable difference between
file.name and filename is that filename assumes nocase
by default. In the example below the two signatures are considered
the same.

Example:

filename:"examplefilename";

file.name; content:"examplefilename"; nocase;

8.15.3. fileext

fileext is used to look at individual file extensions that are
seen in flows that Suricata evaluates.

Example:

fileext:"pdf";

Note: fileext does not allow partial matches. For example, if
a PDF file (.pdf) is seen by a Suricata signature with
fileext:"pd"; the signature will not produce an alert.

Note: fileext assumes nocase by default. This means
that a file with the extension .PDF will be seen the same as if
the file had an extension of .pdf.

Note: fileext and file.name can both be used to match on
file extensions. In the example below the two signatures are
considered the same.

Example:

fileext:"pdf";

file.name; content:".pdf"; nocase; endswith;

Note: While``fileeext`` and file.name can both be used
to match on file extensions, file.name allows for partial
matching on file extensions. The following would match on a file
with the extension of .pd as well as .pdf.

Example:

file.name; content:".pd";

8.15.4. file.magic

Matches on the information libmagic returns about a file.

Example:

file.magic; content:"executable for MS Windows";

Note filemagic can still be used. The only difference between
file.magic and file.magic is that filemagic assumes nocase
by default. In the example below the two signatures are considered
the same.

Example:

filemagic:"executable for MS Windows";

file.magic; content:"executable for MS Windows"; nocase;

Note: Suricata currently uses its underlying operating systems
version/implementation of libmagic. Different versions and
implementations of libmagic do not return the same information.
Additionally there are varying Suricata performance impacts
based on the version and implementation of libmagic.
Additional information about Suricata and libmagic can be found
here: https://redmine.openinfosecfoundation.org/issues/437

file.magic supports multiple buffer matching, see Multiple Buffer Matching.

8.15.5. filestore

Stores files to disk if the signature matched.

Syntax:

filestore:<direction>,<scope>;

direction can be:

	request/to_server: store a file in the request / to_server direction

	response/to_client: store a file in the response / to_client direction

	both: store both directions

scope can be:

	file: only store the matching file (for filename,fileext,filemagic matches)

	tx: store all files from the matching HTTP transaction

	ssn/flow: store all files from the TCP session/flow.

If direction and scope are omitted, the direction will be the same as
the rule and the scope will be per file.

8.15.6. filemd5

Match file MD5 against list of MD5 checksums.

Syntax:

filemd5:[!]filename;

The filename is expanded to include the rule dir. In the default case
it will become /etc/suricata/rules/filename. Use the exclamation mark
to get a negated match. This allows for white listing.

Examples:

filemd5:md5-blacklist;
filemd5:!md5-whitelist;

File format

The file format is simple. It's a text file with a single md5 per
line, at the start of the line, in hex notation. If there is extra
info on the line it is ignored.

Output from md5sum is fine:

2f8d0355f0032c3e6311c6408d7c2dc2 util-path.c
b9cf5cf347a70e02fde975fc4e117760 util-pidfile.c
02aaa6c3f4dbae65f5889eeb8f2bbb8d util-pool.c
dd5fc1ee7f2f96b5f12d1a854007a818 util-print.c

Just MD5's are good as well:

2f8d0355f0032c3e6311c6408d7c2dc2
b9cf5cf347a70e02fde975fc4e117760
02aaa6c3f4dbae65f5889eeb8f2bbb8d
dd5fc1ee7f2f96b5f12d1a854007a818

Memory requirements

Each MD5 uses 16 bytes of memory. 20 Million MD5's use about 310 MiB of memory.

See also: https://blog.inliniac.net/2012/06/09/suricata-md5-blacklisting/

8.15.7. filesha1

Match file SHA1 against list of SHA1 checksums.

Syntax:

filesha1:[!]filename;

The filename is expanded to include the rule dir. In the default case
it will become /etc/suricata/rules/filename. Use the exclamation mark
to get a negated match. This allows for white listing.

Examples:

filesha1:sha1-blacklist;
filesha1:!sha1-whitelist;

File format

Same as md5 file format.

8.15.8. filesha256

Match file SHA256 against list of SHA256 checksums.

Syntax:

filesha256:[!]filename;

The filename is expanded to include the rule dir. In the default case
it will become /etc/suricata/rules/filename. Use the exclamation mark
to get a negated match. This allows for white listing.

Examples:

filesha256:sha256-blacklist;
filesha256:!sha256-whitelist;

File format

Same as md5 file format.

8.15.9. filesize

Match on the size of the file as it is being transferred.

filesize uses an unsigned 64-bit integer.

Syntax:

filesize:<value>;

Possible units are KB, MB and GB, without any unit the default is bytes.

Examples:

filesize:100; # exactly 100 bytes
filesize:100<>200; # greater than 100 and smaller than 200
filesize:>100MB; # greater than 100 megabytes
filesize:<100MB; # smaller than 100 megabytes

Note: For files that are not completely tracked because of packet
loss or stream.reassembly.depth being reached on the "greater than" is
checked. This is because Suricata can know a file is bigger than a
value (it has seen some of it already), but it can't know if the final
size would have been within a range, an exact value or smaller than a
value.

8.16. DNS Keywords

Suricata supports sticky buffers as well as keywords for efficiently
matching on specific fields in DNS messages.

Note that sticky buffers are expected to be followed by one or more
Payload Keywords.

8.16.1. dns.answer.name

dns.answer.name is a sticky buffer that is used to look at the
name field in DNS answer resource records.

dns.answer.name will look at both requests and responses, so
flow is recommended to confine to a specific direction.

The buffer being matched on contains the complete re-assembled
resource name, for example "www.suricata.io".

dns.answer.name supports Multiple Buffer Matching.

dns.answer.name was introduced in Suricata 8.0.0.

8.16.2. dns.opcode

This keyword matches on the opcode found in the DNS header flags.

dns.opcode uses an unsigned 8-bit integer.

8.16.2.1. Syntax

dns.opcode:[!]<number>
dns.opcode:[!]<number1>-<number2>

8.16.2.2. Examples

Match on DNS requests and responses with opcode 4:

dns.opcode:4;

Match on DNS requests where the opcode is NOT 0:

dns.opcode:!0;

Match on DNS requests where the opcode is between 7 and 15, exclusively:

dns.opcode:7-15;

Match on DNS requests where the opcode is not between 7 and 15:

dns.opcode:!7-15;

8.16.3. dns.rcode

This keyword matches on the rcode field found in the DNS header flags.

dns.rcode uses an unsigned 8-bit integer.

Currently, Suricata only supports rcode values in the range [0-15], while
the current DNS version supports rcode values from [0-23] as specified in
RFC 6895 [https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-6].

We plan to extend the rcode values supported by Suricata according to RFC 6895
as tracked by the ticket: https://redmine.openinfosecfoundation.org/issues/6650

8.16.3.1. Syntax

dns.rcode:[!]<number>
dns.rcode:[!]<number1>-<number2>

8.16.3.2. Examples

Match on DNS requests and responses with rcode 4:

dns.rcode:4;

Match on DNS requests and responses where the rcode is NOT 0:

dns.rcode:!0;

8.16.4. dns.rrtype

This keyword matches on the rrtype (integer) found in the DNS message.

dns.rrtype uses an unsigned 16-bit integer.

8.16.4.1. Syntax

dns.rrtype:[!]<number>

8.16.4.2. Examples

Match on DNS requests and responses with rrtype 4:

dns.rrtype:4;

Match on DNS requests and responses where the rrtype is NOT 0:

dns.rrtype:!0;

8.16.5. dns.query

dns.query is a sticky buffer that is used to inspect DNS query
names in DNS request messages. Example:

alert dns any any -> any any (msg:"Test dns.query option"; dns.query; content:"google"; nocase; sid:1;)

Being a sticky buffer, payload keywords such as content are to be used after dns.query:

[image: ../_images/dns_query.png]
The dns.query keyword affects all following contents, until
pkt_data is used or it reaches the end of the rule.

Note

dns.query is equivalent to the older dns_query.

Note

dns.query will only match on DNS request messages, to
also match on DNS response message, see
dns.query.name.

dns.query.name supports Multiple Buffer Matching.

8.16.5.1. Normalized Buffer

Buffer contains literal domain name

	<length> values (as seen in a raw DNS request)
are literal '.' characters

	no leading <length> value

	No terminating NULL (0x00) byte (use a negated relative isdataat
to match the end)

Example DNS request for "mail.google.com" (for readability, hex
values are encoded between pipes):

DNS query on the wire (snippet):

|04|mail|06|google|03|com|00|

dns.query buffer:

mail.google.com

8.16.6. dns.query.name

dns.query.name is a sticky buffer that is used to look at the name
field in DNS query (question) resource records. It is nearly identical
to dns.query but supports both DNS requests and responses.

dns.query.name will look at both requests and responses, so
flow is recommended to confine to a specific direction.

The buffer being matched on contains the complete re-assembled
resource name, for example "www.suricata.io".

dns.query.name supports Multiple Buffer Matching.

dns.query.name was introduced in Suricata 8.0.0.

8.17. SSL/TLS Keywords

Suricata comes with several rule keywords to match on various properties of TLS/SSL handshake. Matches are string inclusion matches.

8.17.1. tls.cert_subject

Match TLS/SSL certificate Subject field.

Examples:

tls.cert_subject; content:"CN=*.googleusercontent.com"; isdataat:!1,relative;
tls.cert_subject; content:"google.com"; nocase; pcre:"/google\.com$/";

tls.cert_subject is a 'sticky buffer'.

tls.cert_subject can be used as fast_pattern.

tls.cert_subject supports multiple buffer matching, see Multiple Buffer Matching.

8.17.1.1. tls.subject

Legacy keyword to match TLS/SSL certificate Subject field.

example:

tls.subject:"CN=*.googleusercontent.com"

Case sensitive, can't use 'nocase', or other modifiers.

Note: tls.cert_subject replaces the following legacy keywords: tls_cert_subject and tls.subject.
It's recommended that rules be converted to use the new one.

8.17.2. tls.cert_issuer

Match TLS/SSL certificate Issuer field.

Examples:

tls.cert_issuer; content:"WoSign"; nocase; isdataat:!1,relative;
tls.cert_issuer; content:"StartCom"; nocase; pcre:"/StartCom$/";

tls.cert_issuer is a 'sticky buffer'.

tls.cert_issuer can be used as fast_pattern.

8.17.2.1. tls.issuerdn

Legacy keyword to match TLS/SSL certificate IssuerDN field

example:

tls.issuerdn:!"CN=Google-Internet-Authority"

Case sensitive, can't use 'nocase', or other modifiers.

Note: tls.cert_issuer replaces the following legacy keywords: tls_cert_issuer and tls.issuerdn.
It's recommended that rules be converted to use the new one.

8.17.3. tls.cert_serial

Match on the serial number in a certificate.

Example:

alert tls any any -> any any (msg:"match cert serial"; \
 tls.cert_serial; content:"5C:19:B7:B1:32:3B:1C:A1"; sid:200012;)

tls.cert_serial is a 'sticky buffer'.

tls.cert_serial can be used as fast_pattern.

tls.cert_serial replaces the previous keyword name: tls_cert_serial. You may continue
to use the previous name, but it's recommended that rules be converted to use
the new name.

8.17.4. tls.cert_fingerprint

Match on the SHA-1 fingerprint of the certificate.

Example:

alert tls any any -> any any (msg:"match cert fingerprint"; \
 tls.cert_fingerprint; \
 content:"4a:a3:66:76:82:cb:6b:23:bb:c3:58:47:23:a4:63:a7:78:a4:a1:18"; \
 sid:200023;)

tls.cert_fingerprint is a 'sticky buffer'.

tls.cert_fingerprint can be used as fast_pattern.

tls.cert_fingerprint replaces the previous keyword name: tls_cert_fingerprint may continue
to use the previous name, but it's recommended that rules be converted to use
the new name.

8.17.5. tls.sni

Match TLS/SSL Server Name Indication field.

Examples:

tls.sni; content:"oisf.net"; nocase; isdataat:!1,relative;
tls.sni; content:"oisf.net"; nocase; pcre:"/oisf.net$/";

tls.sni is a 'sticky buffer'.

tls.sni can be used as fast_pattern.

tls.sni replaces the previous keyword name: tls_sni. You may continue
to use the previous name, but it's recommended that rules be converted to use
the new name.

8.17.6. tls_cert_notbefore

Match on the NotBefore field in a certificate.

Example:

alert tls any any -> any any (msg:"match cert NotBefore"; \
 tls_cert_notbefore:1998-05-01<>2008-05-01; sid:200005;)

8.17.7. tls_cert_notafter

Match on the NotAfter field in a certificate.

Example:

alert tls any any -> any any (msg:"match cert NotAfter"; \
 tls_cert_notafter:>2015; sid:200006;)

8.17.8. tls_cert_expired

Match returns true if certificate is expired. It evaluates the validity date
from the certificate.

Usage:

tls_cert_expired;

8.17.9. tls_cert_valid

Match returns true if certificate is not expired. It only evaluates the
validity date. It does not do cert chain validation. It is the opposite
of tls_cert_expired.

Usage:

tls_cert_valid;

8.17.10. tls.certs

Do a "raw" match on each of the certificates in the TLS certificate chain.

Example:

alert tls any any -> any any (msg:"match bytes in TLS cert"; tls.certs; \
 content:"|06 09 2a 86|"; sid:200070;)

tls.certs is a 'sticky buffer'.

tls.certs can be used as fast_pattern.

tls.certs supports multiple buffer matching, see Multiple Buffer Matching.

8.17.11. tls.version

Match on negotiated TLS/SSL version.

Supported values: "1.0", "1.1", "1.2", "1.3"

It is also possible to match versions using a hex string.

Examples:

tls.version:1.2;
tls.version:0x7f12;

The first example matches TLSv1.2, whilst the last example matches TLSv1.3
draft 16.

8.17.12. ssl_version

Match version of SSL/TLS record.

Supported values "sslv2", "sslv3", "tls1.0", "tls1.1", "tls1.2", "tls1.3"

Example:

alert tls any any -> any any (msg:"match TLSv1.2"; \
 ssl_version:tls1.2; sid:200030;)

It is also possible to match on several versions at the same time.

Example:

alert tls any any -> any any (msg:"match SSLv2 and SSLv3"; \
 ssl_version:sslv2,sslv3; sid:200031;)

8.17.13. tls.fingerprint

match TLS/SSL certificate SHA1 fingerprint

example:

tls.fingerprint:!"f3:40:21:48:70:2c:31:bc:b5:aa:22:ad:63:d6:bc:2e:b3:46:e2:5a"

Case sensitive, can't use 'nocase'.

The tls.fingerprint buffer is lower case so you must use lower case letters for this to match.

8.17.14. tls.store

store TLS/SSL certificate on disk.
The location can be specified in the output.tls-store.certs-log-dir parameter of the yaml configuration file, cf TLS parameters and certificates logging (tls.log)..

8.17.15. ssl_state

The ssl_state keyword matches the state of the SSL connection. The possible states
are client_hello, server_hello, client_keyx, server_keyx and unknown.
You can specify several states with | (OR) to check for any of the specified states.

8.17.16. tls.random

Matches on the 32 bytes of the TLS random field.

Example:

alert tls any any -> any any (msg:"TLS random test"; \
 tls.random; content:"|9b ce 7a 5e 57 5d 77 02 07 c2 9d be 24 01 cc f0 5d cd e1 d2 a5 86 9c 4a 3e ee 38 db 55 1a d9 bc|"; sid: 200074;)

tls.random is a sticky buffer.

8.17.17. tls.random_time

Matches on the first 4 bytes of the TLS random field.

Example:

alert tls any any -> any any (msg:"TLS random_time test"; \
 tls.random_time; content:"|9b ce 7a 5e|"; sid: 200075;)

tls.random_time is a sticky buffer.

8.17.18. tls.random_bytes

Matches on the last 28 bytes of the TLS random field.

Example:

alert tls any any -> any any (msg:"TLS random_bytes test"; \
 tls.random_bytes; content:"|57 5d 77 02 07 c2 9d be 24 01 cc f0 5d cd e1 d2 a5 86 9c 4a 3e ee 38 db 55 1a d9 bc|"; sid: 200076;)

tls.random_bytes is a sticky buffer.

8.17.19. tls.cert_chain_len

Matches on the TLS certificate chain length.

tls.cert_chain_len uses an unsigned 32-bit integer.

tls.cert_chain_len supports <, >, <>, ! and using an exact value.

Example:

 alert tls any any -> any any (msg:"cert chain exact value"; \
tls.cert_chain_len:1; classtype:misc-activity; sid:1; rev:1;)

 alert tls any any -> any any (msg:"cert chain less than value"; \
tls.cert_chain_len:<2; classtype:misc-activity; sid:2; rev:1;)

 alert tls any any -> any any (msg:"cert chain greater than value"; \
tls.cert_chain_len:>0; classtype:misc-activity; sid:2; rev:1;)

 alert tls any any -> any any (msg:"cert chain greater than less than value";\
tls.cert_chain_len:0<>2; classtype:misc-activity; sid:3; rev:1;)

 alert tls any any -> any any (msg:"cert chain not value"; \
tls.cert_chain_len:!2; classtype:misc-activity; sid:4; rev:1;)

8.18. SSH Keywords

Suricata has several rule keywords to match on different elements of SSH
connections.

8.18.1. ssh.proto

Match on the version of the SSH protocol used. ssh.proto is a sticky buffer,
and can be used as a fast pattern. ssh.proto replaces the previous buffer
name: ssh_proto. You may continue to use the previous name, but it's
recommended that existing rules be converted to use the new name.

Format:

ssh.proto;

Example:

alert ssh any any -> any any (msg:"match SSH protocol version"; ssh.proto; content:"2.0"; sid:1000010;)

The example above matches on SSH connections with SSH version 2.0.

8.18.2. ssh.software

Match on the software string from the SSH banner. ssh.software is a sticky
buffer, and can be used as fast pattern.

ssh.software replaces the previous keyword names: ssh_software &
ssh.softwareversion. You may continue to use the previous name, but it's
recommended that rules be converted to use the new name.

Format:

ssh.software;

Example:

alert ssh any any -> any any (msg:"match SSH software string"; ssh.software; content:"openssh"; nocase; sid:1000020;)

The example above matches on SSH connections where the software string contains
"openssh".

8.18.3. ssh.protoversion

Matches on the version of the SSH protocol used. A value of 2_compat
includes SSH version 1.99.

Format:

ssh.protoversion:[0-9](\.[0-9])?|2_compat;

Example:

alert ssh any any -> any any (msg:"SSH v2 compatible"; ssh.protoversion:2_compat; sid:1;)

The example above matches on SSH connections with SSH version 2 or 1.99.

alert ssh any any -> any any (msg:"SSH v1.10"; ssh.protoversion:1.10; sid:1;)

The example above matches on SSH connections with SSH version 1.10 only.

8.18.4. ssh.softwareversion

This keyword has been deprecated. Please use ssh.software instead. Matches
on the software string from the SSH banner.

Example:

alert ssh any any -> any any (msg:"match SSH software string"; ssh.softwareversion:"OpenSSH"; sid:10000040;)

Suricata comes with a Hassh integration (https://github.com/salesforce/hassh). Hassh is used to fingerprint ssh clients and servers.

Hassh must be enabled in the Suricata config file (set 'app-layer.protocols.ssh.hassh' to 'yes').

8.18.5. ssh.hassh

Match on hassh (md5 of of hassh algorithms of client).

Example:

alert ssh any any -> any any (msg:"match hassh"; \
 ssh.hassh; content:"ec7378c1a92f5a8dde7e8b7a1ddf33d1";\
 sid:1000010;)

ssh.hassh is a 'sticky buffer'.

ssh.hassh can be used as fast_pattern.

8.18.6. ssh.hassh.string

Match on Hassh string (hassh algorithms of client).

Example:

alert ssh any any -> any any (msg:"match hassh-string"; \
 ssh.hassh.string; content:"none,zlib@openssh.com,zlib"; \
 sid:1000030;)

ssh.hassh.string is a 'sticky buffer'.

ssh.hassh.string can be used as fast_pattern.

8.18.7. ssh.hassh.server

Match on hassh (md5 of hassh algorithms of server).

Example:

alert ssh any any -> any any (msg:"match SSH hash-server"; \
 ssh.hassh.server; content:"b12d2871a1189eff20364cf5333619ee"; \
 sid:1000020;)

ssh.hassh.server is a 'sticky buffer'.

ssh.hassh.server can be used as fast_pattern.

8.18.8. ssh.hassh.server.string

Match on hassh string (hassh algorithms of server).

	Example::
	
	alert ssh any any -> any any (msg:"match SSH hash-server-string";
	ssh.hassh.server.string; content:"umac-64-etm@openssh.com,umac-128-etm@openssh.com"; sid:1000040;)

ssh.hassh.server.string is a 'sticky buffer'.

ssh.hassh.server.string can be used as fast_pattern.

8.19. JA3 Keywords

Suricata comes with a JA3 integration (https://github.com/salesforce/ja3). JA3 is used to fingerprint TLS clients.

JA3 must be enabled in the Suricata config file (set 'app-layer.protocols.tls.ja3-fingerprints' to 'yes').

8.19.1. ja3.hash

Match on JA3 hash (md5).

Example:

alert tls any any -> any any (msg:"match JA3 hash"; \
 ja3.hash; content:"e7eca2baf4458d095b7f45da28c16c34"; \
 sid:100001;)

ja3.hash is a 'sticky buffer'.

ja3.hash can be used as fast_pattern.

ja3.hash replaces the previous keyword name: ja3_hash. You may continue
to use the previous name, but it's recommended that rules be converted to use
the new name.

8.19.2. ja3.string

Match on JA3 string.

Example:

alert tls any any -> any any (msg:"match JA3 string"; \
 ja3.string; content:"19-20-21-22"; \
 sid:100002;)

ja3.string is a 'sticky buffer'.

ja3.string can be used as fast_pattern.

ja3.string replaces the previous keyword name: ja3_string. You may continue
to use the previous name, but it's recommended that rules be converted to use
the new name.

8.19.3. ja3s.hash

Match on JA3S hash (md5).

Example:

alert tls any any -> any any (msg:"match JA3S hash"; \
 ja3s.hash; content:"b26c652e0a402a24b5ca2a660e84f9d5"; \
 sid:100003;)

ja3s.hash is a 'sticky buffer'.

ja3s.hash can be used as fast_pattern.

8.19.4. ja3s.string

Match on JA3S string.

Example:

alert tls any any -> any any (msg:"match on JA3S string"; \
 ja3s.string; content:"771,23-35"; sid:100004;)

ja3s.string is a 'sticky buffer'.

ja3s.string can be used as fast_pattern.

8.20. Modbus Keyword

The modbus keyword can be used for matching on various properties of
Modbus requests.

There are three ways of using this keyword:

	matching on functions properties with the setting "function";

	matching on directly on data access with the setting "access";

	matching on unit identifier with the setting "unit" only or with the previous setting "function" or "access".

With the setting function, you can match on:

	an action based on a function code field and a sub-function code when applicable;

	one of three categories of Modbus functions;

	public functions that are publicly defined (setting "public")

	user-defined functions (setting "user")

	reserved functions that are dedicated to proprietary extensions of Modbus (keyword "reserved")

	one of the two sub-groups of public functions:

	assigned functions whose definition is already given in the Modbus specification (keyword "assigned");

	unassigned functions, which are reserved for future use (keyword "unassigned").

Syntax:

modbus: function <value>
modbus: function <value>, subfunction <value>
modbus: function [!] <assigned | unassigned | public | user | reserved | all>

Sign '!' is negation

Examples:

modbus: function 21 # Write File record function
modbus: function 4, subfunction 4 # Force Listen Only Mode (Diagnostics) function
modbus: function assigned # defined by Modbus Application Protocol Specification V1.1b3
modbus: function public # validated by the Modbus.org community
modbus: function user # internal use and not supported by the specification
modbus: function reserved # used by some companies for legacy products and not available for public use
modbus: function !reserved # every function but reserved function

With the access setting, you can match on:

	a type of data access (read or write);

	one of primary tables access (Discretes Input, Coils, Input Registers and Holding Registers);

	a range of addresses access;

	a written value.

Syntax:

modbus: access <read | write>
modbus: access read <discretes | coils | input | holding>
modbus: access read <discretes | coils | input | holding>, address <value>
modbus: access write < coils | holding>
modbus: access write < coils | holding>, address <value>
modbus: access write < coils | holding>, address <value>, value <value>

With _<value>_ setting matches on the address or value as it is being
accessed or written as follows:

address 100 # exactly address 100
address 100<>200 # greater than address 100 and smaller than address 200
address >100 # greater than address 100
address <100 # smaller than address 100

Examples:

modbus: access read # Read access
modbus: access write # Write access
modbus: access read input # Read access to Discretes Input table
modbus: access write coils # Write access to Coils table
modbus: access read discretes, address <100 # Read access at address smaller than 100 of Discretes Input table
modbus: access write holding, address 500, value >200 # Write value greater than 200 at address 500 of Holding Registers table

With the setting unit, you can match on:

	a MODBUS slave address of a remote device connected on the sub-network behind a bridge or a gateway. The destination IP address identifies the bridge itself and the bridge uses the MODBUS unit identifier to forward the request to the right slave device.

Syntax:

modbus: unit <value>
modbus: unit <value>, function <value>
modbus: unit <value>, function <value>, subfunction <value>
modbus: unit <value>, function [!] <assigned | unassigned | public | user | reserved | all>
modbus: unit <value>, access <read | write>
modbus: unit <value>, access read <discretes | coils | input | holding>
modbus: unit <value>, access read <discretes | coils | input | holding>, address <value>
modbus: unit <value>, access write < coils | holding>
modbus: unit <value>, access write < coils | holding>, address <value>
modbus: unit <value>, access write < coils | holding>, address <value>, value <value>

With _<value>_ setting matches on the address or value as it is being
accessed or written as follows:

unit 10 # exactly unit identifier 10
unit 10<>20 # greater than unit identifier 10 and smaller than unit identifier 20
unit >10 # greater than unit identifier 10
unit <10 # smaller than unit identifier 10

Examples:

modbus: unit 10 # Unit identifier 10
modbus: unit 10, function 21 # Unit identifier 10 and write File record function
modbus: unit 10, function 4, subfunction 4 # Unit identifier 10 and force Listen Only Mode (Diagnostics) function
modbus: unit 10, function assigned # Unit identifier 10 and assigned function
modbus: unit 10, function !reserved # Unit identifier 10 and every function but reserved function
modbus: unit 10, access read # Unit identifier 10 and Read access
modbus: unit 10, access write coils # Unit identifier 10 and Write access to Coils table
modbus: unit >10, access read discretes, address <100 # Greater than unit identifier 10 and Read access at address smaller than 100 of Discretes Input table
modbus: unit 10<>20, access write holding, address 500, value >200 # Greater than unit identifier 10 and smaller than unit identifier 20 and Write value greater than 200 at address 500 of Holding Registers table

(cf. http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf)

Note: Address of read and write are starting at 1. So if your system
is using a start at 0, you need to add 1 the address values.

Note: According to MODBUS Messaging on TCP/IP Implementation Guide
V1.0b, it is recommended to keep the TCP connection opened with a
remote device and not to open and close it for each MODBUS/TCP
transaction. In that case, it is important to set the depth of the
stream reassembling as unlimited (stream.reassembly.depth: 0)

Note: According to MODBUS Messaging on TCP/IP Implementation Guide
V1.0b, the MODBUS slave device addresses on serial line are assigned from 1 to
247 (decimal). Address 0 is used as broadcast address.

(cf. http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf)

Paper and presentation (in french) on Modbus support are available :
http://www.ssi.gouv.fr/agence/publication/detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/

8.21. DCERPC Keywords

Following keywords can be used for matching on fields in headers and payloads
of DCERPC packets over UDP, TCP and SMB.

8.21.1. dcerpc.iface

Match on the value of the interface UUID in a DCERPC header. If any_frag option
is given, the match shall be done on all fragments. If it's not, the match shall
only happen on the first fragment.

The format of the keyword:

dcerpc.iface:<uuid>;
dcerpc.iface:<uuid>,[>,<,!,=]<iface_version>;
dcerpc.iface:<uuid>,any_frag;
dcerpc.iface:<uuid>,[>,<,!,=]<iface_version>,any_frag;

Examples:

dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003;
dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003,!10;
dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003,any_frag;
dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003,>1,any_frag;

ET Open rule example:

alert tcp any any -> $HOME_NET any (msg:"ET NETBIOS DCERPC WMI Remote Process Execution"; flow:to_server,established; dce_iface:00000143-0000-0000-c000-000000000046; classtype:bad-unknown; sid:2027167; rev:1; metadata:affected_product Windows_XP_Vista_7_8_10_Server_32_64_Bit, attack_target Client_Endpoint, created_at 2019_04_09, deployment Internal, former_category NETBIOS, signature_severity Informational, updated_at 2019_04_09;)

8.21.2. dcerpc.opnum

Match on one or many operation numbers and/or operation number range within the
interface in a DCERPC header.

The format of the keyword:

dcerpc.opnum:<u16>;
dcerpc.opnum:[>,<,!,=]<u16>;
dcerpc.opnum:<u16>,<u16>,<u16>....;
dcerpc.opnum:<u16>-<u16>;

Examples:

dcerpc.opnum:15;
dcerpc.opnum:>10;
dcerpc.opnum:12,24,62,61;
dcerpc.opnum:12,18-24,5;
dcerpc.opnum:12-14,12,121,62-78;

8.21.3. dcerpc.stub_data

Match on the stub data in a given DCERPC packet. It is a 'sticky buffer'.

Example:

dcerpc.stub_data; content:"123456";

8.21.4. Additional information

More information on the protocol can be found here:

	DCERPC: https://pubs.opengroup.org/onlinepubs/9629399/chap1.htm

8.22. DHCP keywords

8.22.1. dhcp.leasetime

DHCP lease time (integer).

dhcp.leasetime uses an unsigned 64-bit integer.

Syntax:

dhcp.leasetime:[op]<number>

The time can be matched exactly, or compared using the _op_ setting:

dhcp.leasetime:3 # exactly 3
dhcp.leasetime:<3 # smaller than 3
dhcp.leasetime:>=2 # greater or equal than 2

Signature example:

alert dhcp any any -> any any (msg:"small DHCP lease time (<3)"; dhcp.leasetime:<3; sid:1; rev:1;)

8.22.2. dhcp.rebinding_time

DHCP rebinding time (integer).

dhcp.rebinding_time uses an unsigned 64-bit integer.

Syntax:

dhcp.rebinding_time:[op]<number>

The time can be matched exactly, or compared using the _op_ setting:

dhcp.rebinding_time:3 # exactly 3
dhcp.rebinding_time:<3 # smaller than 3
dhcp.rebinding_time:>=2 # greater or equal than 2

Signature example:

alert dhcp any any -> any any (msg:"small DHCP rebinding time (<3)"; dhcp.rebinding_time:<3; sid:1; rev:1;)

8.22.3. dhcp.renewal_time

DHCP renewal time (integer).

dhcp.renewal_time uses an unsigned 64-bit integer.

Syntax:

dhcp.renewal_time:[op]<number>

The time can be matched exactly, or compared using the _op_ setting:

dhcp.renewal_time:3 # exactly 3
dhcp.renewal_time:<3 # smaller than 3
dhcp.renewal_time:>=2 # greater or equal than 2

Signature example:

alert dhcp any any -> any any (msg:"small DHCP renewal time (<3)"; dhcp.renewal_time:<3; sid:1; rev:1;)

8.23. DNP3 Keywords

The DNP3 keywords can be used to match on fields in decoded DNP3
messages. The keywords are based on Snort's DNP3 keywords and aim to
be 100% compatible.

8.23.1. dnp3_func

This keyword will match on the application function code found in DNP3
request and responses. It can be specified as the integer value or
the symbolic name of the function code.

8.23.1.1. Syntax

dnp3_func:<value>;

Where value is one of:

	An integer value between 0 and 255 inclusive.

	Function code name:

	confirm

	read

	write

	select

	operate

	direct_operate

	direct_operate_nr

	immed_freeze

	immed_freeze_nr

	freeze_clear

	freeze_clear_nr

	freeze_at_time

	freeze_at_time_nr

	cold_restart

	warm_restart

	initialize_data

	initialize_appl

	start_appl

	stop_appl

	save_config

	enable_unsolicited

	disable_unsolicited

	assign_class

	delay_measure

	record_current_time

	open_file

	close_file

	delete_file

	get_file_info

	authenticate_file

	abort_file

	activate_config

	authenticate_req

	authenticate_err

	response

	unsolicited_response

	authenticate_resp

8.23.2. dnp3_ind

This keyword matches on the DNP3 internal indicator flags in the
response application header.

8.23.2.1. Syntax

dnp3_ind:<flag>{,<flag>...}

Where flag is the name of the internal indicator:

	all_stations

	class_1_events

	class_2_events

	class_3_events

	need_time

	local_control

	device_trouble

	device_restart

	no_func_code_support

	object_unknown

	parameter_error

	event_buffer_overflow

	already_executing

	config_corrupt

	reserved_2

	reserved_1

This keyword will match of any of the flags listed are set. To match
on multiple flags (AND type match), use dnp3_ind for each flag that
must be set.

8.23.2.2. Examples

dnp3_ind:all_stations;

dnp3_ind:class_1_events,class_2_events;

8.23.3. dnp3_obj

This keyword matches on the DNP3 application data objects.

8.23.3.1. Syntax

dnp3_obj:<group>,<variation>

Where <group> and <variation> are integer values between 0 and 255 inclusive.

8.23.4. dnp3_data

This keyword will cause the following content options to match on the
re-assembled application buffer. The reassembled application buffer is
a DNP3 fragment with CRCs removed (which occur every 16 bytes), and
will be the complete fragment, possibly reassembled from multiple DNP3
link layer frames.

8.23.4.1. Syntax

dnp3_data;

8.23.4.2. Example

dnp3_data; content:"|c3 06|";

8.24. ENIP/CIP Keywords

The enip_command and cip_service keywords can be used for matching on various properties of
ENIP requests.

There are three ways of using this keyword:

	matching on ENIP command with the setting "enip_command";

	matching on CIP Service with the setting "cip_service".

	matching both the ENIP command and the CIP Service with "enip_command" and "cip_service" together

For the ENIP command, we are matching against the command field found in the ENIP encapsulation.

For the CIP Service, we use a maximum of 3 comma separated values representing the Service, Class and Attribute.
These values are described in the CIP specification. CIP Classes are associated with their Service, and CIP Attributes
are associated with their Service. If you only need to match up until the Service, then only provide the Service value.
If you want to match to the CIP Attribute, then you must provide all 3 values.

Syntax:

enip_command:<value>
cip_service:<value(s)>
enip_command:<value>, cip_service:<value(s)>

Examples:

enip_command:99
cip_service:75
cip_service:16,246,6
enip_command:111, cip_service:5

(cf. http://read.pudn.com/downloads166/ebook/763211/EIP-CIP-V1-1.0.pdf)

Information on the protocol can be found here:
http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf

8.25. FTP/FTP-DATA Keywords

8.25.1. ftpdata_command

Filter ftp-data channel based on command used on the FTP command channel.
Currently supported commands are RETR (get on a file) and STOR (put on a
file).

Syntax:

ftpdata_command:(retr|stor)

Signature Example:

alert ftp-data any any -> any any (msg:"FTP store password"; filestore; filename:"password"; ftpdata_command:stor; sid:3; rev:1;)

8.25.2. ftpbounce

Detect FTP bounce attacks.

Syntax:

ftpbounce

8.25.3. file.name

The file.name keyword can be used at the FTP application level.

Signature Example:

alert ftp-data any any -> any any (msg:"FTP file.name usage"; file.name; content:"file.txt"; classtype:bad-unknown; sid:1; rev:1;)

For additional information on the file.name keyword, see File Keywords.

8.26. Kerberos Keywords

8.26.1. krb5_msg_type

This keyword allows to match the Kerberos messages by its type (integer).
It is possible to specify the following values defined in RFC4120:

	10 (AS-REQ)

	11 (AS-REP)

	12 (TGS-REQ)

	13 (TGS-REP)

	30 (ERROR)

Syntax:

krb5_msg_type:<number>

Signature examples:

alert krb5 any any -> any any (msg:"Kerberos 5 AS-REQ message"; krb5_msg_type:10; sid:3; rev:1;)
alert krb5 any any -> any any (msg:"Kerberos 5 AS-REP message"; krb5_msg_type:11; sid:4; rev:1;)
alert krb5 any any -> any any (msg:"Kerberos 5 TGS-REQ message"; krb5_msg_type:12; sid:5; rev:1;)
alert krb5 any any -> any any (msg:"Kerberos 5 TGS-REP message"; krb5_msg_type:13; sid:6; rev:1;)
alert krb5 any any -> any any (msg:"Kerberos 5 ERROR message"; krb5_msg_type:30; sid:7; rev:1;)

Note

AP-REQ and AP-REP are not currently supported since those messages
are embedded in other application protocols.

8.26.2. krb5_cname

Kerberos client name, provided in the ticket (for AS-REQ and TGS-REQ messages).

If the client name from the Kerberos message is composed of several parts, the
name is compared to each part and the match will succeed if any is identical.

Comparison is case-sensitive.

Syntax:

krb5_cname; content:"name";

Signature example:

alert krb5 any any -> any any (msg:"Kerberos 5 des server name"; krb5_cname; content:"des"; sid:4; rev:1;)

krb5_cname is a 'sticky buffer'.

krb5_cname can be used as fast_pattern.

krb5.cname supports multiple buffer matching, see Multiple Buffer Matching.

8.26.3. krb5_sname

Kerberos server name, provided in the ticket (for AS-REQ and TGS-REQ messages)
or in the error message.

If the server name from the Kerberos message is composed of several parts, the
name is compared to each part and the match will succeed if any is identical.

Comparison is case-sensitive.

Syntax:

krb5_sname; content:"name";

Signature example:

alert krb5 any any -> any any (msg:"Kerberos 5 krbtgt server name"; krb5_sname; content:"krbtgt"; sid:5; rev:1;)

krb5_sname is a 'sticky buffer'.

krb5_sname can be used as fast_pattern.

krb5.sname supports multiple buffer matching, see Multiple Buffer Matching.

8.26.4. krb5_err_code

Kerberos error code (integer). This field is matched in Kerberos error messages only.

For a list of error codes, refer to RFC4120 section 7.5.9.

Syntax:

krb5_err_code:<number>

Signature example:

alert krb5 any any -> any any (msg:"Kerberos 5 error C_PRINCIPAL_UNKNOWN"; krb5_err_code:6; sid:6; rev:1;)

8.26.5. krb5.weak_encryption (event)

Event raised if the encryption parameters selected by the server are weak or
deprecated. For example, using a key size smaller than 128, or using deprecated
ciphers like DES.

Syntax:

app-layer-event:krb5.weak_encryption

Signature example:

alert krb5 any any -> any any (msg:"SURICATA Kerberos 5 weak encryption parameters"; flow:to_client; app-layer-event:krb5.weak_encryption; classtype:protocol-command-decode; sid:2226001; rev:1;)

8.26.6. krb5.malformed_data (event)

Event raised in case of a protocol decoding error.

Syntax:

app-layer-event:krb5.malformed_data

Signature example:

alert krb5 any any -> any any (msg:"SURICATA Kerberos 5 malformed request data"; flow:to_server; app-layer-event:krb5.malformed_data; classtype:protocol-command-decode; sid:2226000; rev:1;)

8.26.7. krb5.ticket_encryption

Kerberos ticket encryption (enumeration).

For a list of encryption types, refer to RFC3961 section 8.

Syntax:

krb5.ticket_encryption: (!)"weak" or (space or comma)-separated list of integer or string values for an encryption type

Signature example:

alert krb5 any any -> any any (krb5.ticket_encryption: weak; sid:1;)
alert krb5 any any -> any any (krb5.ticket_encryption: 23; sid:2;)
alert krb5 any any -> any any (krb5.ticket_encryption: rc4-hmac,rc4-hmac-exp; sid:3;)

8.27. SMB Keywords

SMB keywords used in both SMB1 and SMB2 protocols.

8.27.1. smb.named_pipe

Match on SMB named pipe in tree connect.

Examples:

smb.named_pipe; content:"IPC"; endswith;
smb.named_pipe; content:"strange"; nocase; pcre:"/really$/";

smb.named_pipe is a 'sticky buffer'.

smb.named_pipe can be used as fast_pattern.

8.27.2. smb.share

Match on SMB share name in tree connect.

Examples:

smb.share; content:"shared"; endswith;
smb.share; content:"strange"; nocase; pcre:"/really$/";

smb.share is a 'sticky buffer'.

smb.share can be used as fast_pattern.

8.27.3. smb.ntlmssp_user

Match on SMB ntlmssp user in session setup.

Examples:

smb.ntlmssp_user; content:"doe"; endswith;
smb.ntlmssp_user; content:"doe"; nocase; pcre:"/j(ohn|ane).*doe$/";

smb.ntlmssp_user is a 'sticky buffer'.

smb.ntlmssp_user can be used as fast_pattern.

8.27.4. smb.ntlmssp_domain

Match on SMB ntlmssp domain in session setup.

Examples:

smb.ntlmssp_domain; content:"home"; endswith;
smb.ntlmssp_domain; content:"home"; nocase; pcre:"/home(sweet)*$/";

smb.ntlmssp_domain is a 'sticky buffer'.

smb.ntlmssp_domain can be used as fast_pattern.

8.27.5. smb.version

Keyword to match on the SMB version seen in an SMB transaction.

Signature Example:

alert smb $HOME_NET any -> any any (msg:"SMBv1 version rule"; smb.version:1; sid:1;)

alert smb $HOME_NET any -> any any (msg:"SMBv2 version rule"; smb.version:2; sid:2;)

8.27.5.1. Matching in transition from SMBv1 to SMBv2

In the initial protocol negotiation request, a client supporting SMBv1 and SMBv2 can send an initial SMBv1 request and receive a SMBv2 response from server, indicating that SMBv2 will be used.

This first SMBv2 response made by the server will match as SMBv1, since the entire transaction will be considered a SMBv1 transaction.

8.27.5.2. Will smb.version match SMBv3 traffic?

Yes, it will match SMBv3 messages using smb.version:2;, which will match SMBv2 and SMBv3, since they use the same version identifier in the SMB header.

This keyword will use the Protocol ID specified in SMB header to determine the version. Here is a summary of the Protocol ID codes:

	0xffSMB is SMBv1 header [https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/3c0848a6-efe9-47c2-b57a-f7e8217150b9]

	0xfeSMB is SMBv2 normal header [https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/5cd64522-60b3-4f3e-a157-fe66f1228052] (can be sync [https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/fb188936-5050-48d3-b350-dc43059638a4] or async [https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/ea4560b7-90da-4803-82b5-344754b92a79])

	0xfdSMB is SMBv2 transform header [https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/d6ce2327-a4c9-4793-be66-7b5bad2175fa]. This is only valid for the SMB 3.x dialect family.

	0xfcSMB is SMBv2 transform compression header [https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/d6ce2327-a4c9-4793-be66-7b5bad2175fa] (can be chained [https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/aa880fe8-ebed-4409-a474-ec6e0ca0dbcb] or unchained [https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/793db6bb-25b4-4469-be49-a8d7045ba3a6]). These ones require the use of the 3.1.1 dialect.

The Protocol ID in the header distinguishes only SMBv1 and SMBv2 since they are completely different protocols with entirely
different message formats, types and implementations.

On the other hand, SMBv3 is more like an extension of SMBv2. When using SMBv2 we can select one of the following dialects for the conversation between client and server:

	2.0.2

	2.1

	3.0

	3.0.2

	3.1.1

We say we are using SMBv3 when we select a 3.x dialect for the conversation, so you can use SMB 3.0, SMB 3.0.2 or SMB 3.1.1. The higher you choose, the more capabilities you have, but the message syntax and message command number remains the same.

SMB version and dialect are separate components. In the case of SMBv3 for instance, the SMB version will be 2 but the dialect will be 3.x. Dialect specification is not available currently via keyword.

8.27.6. file.name

The file.name keyword can be used at the SMB application level.

Signature Example:

alert smb any any -> any any (msg:"SMB file.name usage"; file.name; content:"file.txt"; classtype:bad-unknown; sid:1; rev:1;)

For additional information on the file.name keyword, see File Keywords.

8.28. SNMP keywords

8.28.1. snmp.version

SNMP protocol version (integer). Expected values are 1, 2 (for version 2c) or 3.

Syntax:

snmp.version:[op]<number>

The version can be matched exactly, or compared using the _op_ setting:

snmp.version:3 # exactly 3
snmp.version:<3 # smaller than 3
snmp.version:>=2 # greater or equal than 2

Signature example:

alert snmp any any -> any any (msg:"old SNMP version (<3)"; snmp.version:<3; sid:1; rev:1;)

8.28.2. snmp.community

SNMP community strings are like passwords for SNMP messages in version 1 and 2c.
In version 3, the community string is likely to be encrypted. This keyword will not
match if the value is not accessible.

The default value for the read-only community string is often "public", and
"private" for the read-write community string.

Comparison is case-sensitive.

Syntax:

snmp.community; content:"private";

Signature example:

alert snmp any any -> any any (msg:"SNMP community private"; snmp.community; content:"private"; sid:2; rev:1;)

snmp.community is a 'sticky buffer'.

snmp.community can be used as fast_pattern.

8.28.3. snmp.usm

SNMP User-based Security Model (USM) is used in version 3.
It corresponds to the user name.

Comparison is case-sensitive.

Syntax:

snmp.usm; content:"admin";

Signature example:

alert snmp any any -> any any (msg:"SNMP usm admin"; snmp.usm; content:"admin"; sid:2; rev:1;)

snmp.usm is a 'sticky buffer'.

snmp.usm can be used as fast_pattern.

8.28.4. snmp.pdu_type

SNMP PDU type (integer).

Common values are:

	0: GetRequest

	1: GetNextRequest

	2: Response

	3: SetRequest

	4: TrapV1 (obsolete, was the old Trap-PDU in SNMPv1)

	5: GetBulkRequest

	6: InformRequest

	7: TrapV2

	8: Report

This keyword will not match if the value is not accessible within (for ex, an encrypted
SNMP v3 message).

Syntax:

snmp.pdu_type:<number>

Signature example:

alert snmp any any -> any any (msg:"SNMP response"; snmp.pdu_type:2; sid:3; rev:1;)

8.29. Base64 keywords

Suricata supports decoding base64 encoded data from buffers and matching on the decoded data.

This is achieved by using two keywords, base64_decode and base64_data. Both keywords must be used in order to generate an alert.

8.29.1. base64_decode

Decodes base64 data from a buffer and makes it available for the base64_data function.

Syntax:

base64_decode:bytes <value>, offset <value>, relative;

The bytes option specifies how many bytes Suricata should decode and make available for base64_data.
The decoding will stop at the end of the buffer.

The offset option specifies how many bytes Suricata should skip before decoding.
Bytes are skipped relative to the start of the payload buffer if the relative is not set.

The relative option makes the decoding start relative to the previous content match. Default behavior is to start at the beginning of the buffer.
This option makes offset skip bytes relative to the previous match.

Note

Regarding relative and base64_decode:

The content match that you want to decode relative to must be the first match in the stream.

Note

base64_decode follows RFC 4648 by default i.e. encounter with any character that is not found in the base64 alphabet leads to rejection of that character and the rest of the string.

See Redmine Bug 5223: https://redmine.openinfosecfoundation.org/issues/5223 and RFC 4648: https://www.rfc-editor.org/rfc/rfc4648#section-3.3

8.29.2. base64_data

base64_data is a sticky buffer.

Enables content matching on the data previously decoded by base64_decode.

8.29.3. Example

Here is an example of a rule matching on the base64 encoded string "test" that is found inside the http_uri buffer.

It starts decoding relative to the known string "somestring" with the known offset of 1. This must be the first occurrence of "somestring" in the buffer.

Example:

Buffer content:
http_uri = "GET /en/somestring&dGVzdAo=¬_base64"

Rule:
alert http any any -> any any (msg:"Example"; http.uri; content:"somestring"; \
 base64_decode:bytes 8, offset 1, relative; \
 base64_data; content:"test"; sid:10001; rev:1;)

Buffer content:
http_uri = "GET /en/somestring&dGVzdAo=¬_base64"

Rule:
alert http any any -> any any (msg:"Example"; content:"somestring"; http_uri; \
 base64_decode:bytes 8, offset 1, relative; \
 base64_data; content:"test"; sid:10001; rev:1;)

8.30. SIP Keywords

The SIP keywords are implemented as sticky buffers and can be used to match on fields in SIP messages.

	Keyword

	Direction

	sip.method

	Request

	sip.uri

	Request

	sip.request_line

	Request

	sip.stat_code

	Response

	sip.stat_msg

	Response

	sip.response_line

	Response

	sip.protocol

	Both

8.30.1. sip.method

This keyword matches on the method found in a SIP request.

8.30.1.1. Syntax

sip.method; content:<method>;

Examples of methods are:

	INVITE

	BYE

	REGISTER

	CANCEL

	ACK

	OPTIONS

8.30.1.2. Examples

sip.method; content:"INVITE";

8.30.2. sip.uri

This keyword matches on the uri found in a SIP request.

8.30.2.1. Syntax

sip.uri; content:<uri>;

Where <uri> is an uri that follows the SIP URI scheme.

8.30.2.2. Examples

sip.uri; content:"sip:sip.url.org";

8.30.3. sip.request_line

This keyword forces the whole SIP request line to be inspected.

8.30.3.1. Syntax

sip.request_line; content:<request_line>;

Where <request_line> is a partial or full line.

8.30.3.2. Examples

sip.request_line; content:"REGISTER sip:sip.url.org SIP/2.0"

8.30.4. sip.stat_code

This keyword matches on the status code found in a SIP response.

8.30.4.1. Syntax

sip.stat_code; content:<stat_code>

Where <status_code> belongs to one of the following groups of codes:

	1xx - Provisional Responses

	2xx - Successful Responses

	3xx - Redirection Responses

	4xx - Client Failure Responses

	5xx - Server Failure Responses

	6xx - Global Failure Responses

8.30.4.2. Examples

sip.stat_code; content:"100";

8.30.5. sip.stat_msg

This keyword matches on the status message found in a SIP response.

8.30.5.1. Syntax

sip.stat_msg; content:<stat_msg>

Where <stat_msg> is a reason phrase associated to a status code.

8.30.5.2. Examples

sip.stat_msg; content:"Trying";

8.30.6. sip.response_line

This keyword forces the whole SIP response line to be inspected.

8.30.6.1. Syntax

sip.response_line; content:<response_line>;

Where <response_line> is a partial or full line.

8.30.6.2. Examples

sip.response_line; content:"SIP/2.0 100 OK"

8.30.7. sip.protocol

This keyword matches the protocol field from a SIP request or response line.

If the response line is 'SIP/2.0 100 OK', then this buffer will contain 'SIP/2.0'

8.30.7.1. Syntax

sip.protocol; content:<protocol>

Where <protocol> is the SIP protocol version.

8.30.7.2. Example

sip.protocol; content:"SIP/2.0"

8.31. RFB Keywords

The rfb.name and rfb.sectype keywords can be used for matching on various properties of
RFB (Remote Framebuffer, i.e. VNC) handshakes.

8.31.1. rfb.name

Match on the value of the RFB desktop name field.

Examples:

rfb.name; content:"Alice's desktop";
rfb.name; pcre:"/.* \(screen [0-9]\)$/";

rfb.name is a 'sticky buffer'.

rfb.name can be used as fast_pattern.

8.31.2. rfb.secresult

Match on the value of the RFB security result, e.g. ok, fail, toomany or unknown.

Examples:

rfb.secresult: ok;
rfb.secresult: unknown;

8.31.3. rfb.sectype

Match on the value of the RFB security type field, e.g. 2 for VNC challenge-response authentication, 0 for no authentication, and 30 for Apple's custom Remote Desktop authentication.

rfb.sectype uses an unsigned 32-bit integer.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

	> (greater than)

	< (less than)

	>= (greater than or equal)

	<= (less than or equal)

Examples:

rfb.sectype:2;
rfb.sectype:>=3;

8.31.4. Additional information

More information on the protocol can be found here:
https://tools.ietf.org/html/rfc6143

8.32. MQTT Keywords

Various keywords can be used for matching on fields in fixed and variable headers of MQTT messages as well as payload values.

8.32.1. mqtt.protocol_version

Match on the value of the MQTT protocol version field in the fixed header.

mqtt.protocol_version uses an unsigned 8-bit integer.

The format of the keyword:

mqtt.protocol_version:<min>-<max>;
mqtt.protocol_version:[<|>]<number>;
mqtt.protocol_version:<value>;

Examples:

mqtt.protocol_version:5;

8.32.2. mqtt.type

Match on the MQTT message type (also: control packet type).
Valid values are :

	CONNECT

	CONNACK

	PUBLISH

	PUBACK

	PUBREC

	PUBREL

	PUBCOMP

	SUBSCRIBE

	SUBACK

	UNSUBSCRIBE

	UNSUBACK

	PINGREQ

	PINGRESP

	DISCONNECT

	AUTH

	UNASSIGNED

where UNASSIGNED refers to message type code 0.

Examples:

mqtt.type:CONNECT;
mqtt.type:PUBLISH;

8.32.3. mqtt.flags

Match on a combination of MQTT header flags, separated by commas (,). Flags may be prefixed by ! to indicate negation, i.e. a flag prefixed by ! must not be set to match.

Valid flags are:

	dup (duplicate message)

	retain (message should be retained on the broker)

Examples:

mqtt.flags:dup,!retain;
mqtt.flags:retain;

8.32.4. mqtt.qos

Match on the Quality of Service request code in the MQTT fixed header.
Valid values are:

	0 (fire and forget)

	1 (at least one delivery)

	2 (exactly one delivery)

Examples:

mqtt.qos:0;
mqtt.qos:2;

8.32.5. mqtt.reason_code

Match on the numeric value of the reason code that is used in MQTT 5.0 for some message types. Please refer to the specification for the meaning of these values, which are often specific to the message type in question.

Examples:

match on attempts to unsubscribe from a non-subscribed topic
mqtt.type:UNSUBACK; mqtt.reason_code:17;

match on publications that were accepted but there were no subscribers
mqtt.type:PUBACK; mqtt.reason_code:16;

match on connection attempts by banned clients
mqtt.CONNACK; mqtt.reason_code:138;

match on failed connection attempts due to bad credentials
mqtt.CONNACK; mqtt.reason_code:134;

match on connections terminated by server shutdowns
mqtt.DISCONNECT; mqtt.reason_code:139;

This keyword is also available under the alias mqtt.connack.return_code for completeness.

8.32.6. mqtt.connack.session_present

Match on the MQTT CONNACK session_present flag. Values can be yes, true, no or false.

Examples:

mqtt.CONNACK; mqtt.connack.session_present:true;

8.32.7. mqtt.connect.clientid

Match on the self-assigned client ID in the MQTT CONNECT message.

Examples:

mqtt.connect.clientid; pcre:"/^mosq.*/";
mqtt.connect.clientid; content:"myclient";

mqtt.connect.clientid is a 'sticky buffer' and can be used as fast_pattern.

8.32.8. mqtt.connect.flags

Match on a combination of MQTT CONNECT flags, separated by commas (,). Flags may be prefixed by ! to indicate negation, i.e. a flag prefixed by ! must not be set to match.

Valid flags are:

	username (message contains a username)

	password (message contains a password)

	will (message contains a will definition)

	will_retain (will should be retained on broker)

	clean_session (start with a clean session)

Examples:

mqtt.connect.flags:username,password,!will;
mqtt.connect.flags:username,!password;
mqtt.connect.flags:clean_session;

8.32.9. mqtt.connect.password

Match on the password credential in the MQTT CONNECT message.

Examples:

mqtt.connect.password; pcre:"/^123[0-9]*/";
mqtt.connect.password; content:"swordfish";

mqtt.connect.password is a 'sticky buffer' and can be used as fast_pattern.

8.32.10. mqtt.connect.protocol_string

Match on the protocol string in the MQTT CONNECT message. In contrast to mqtt.protocol_version this is a property that is only really relevant in the initial CONNECT communication and never used again; hence it is organized under mqtt.connect.

Examples:

mqtt.connect.protocol_string; content:"MQTT";
mqtt.connect.protocol_string; content:"MQIsdp";

mqtt.connect.protocol_string is a 'sticky buffer' and can be used as fast_pattern.

8.32.11. mqtt.connect.username

Match on the username credential in the MQTT CONNECT message.

Examples:

mqtt.connect.username; content:"benson";

mqtt.connect.username is a 'sticky buffer' and can be used as fast_pattern.

8.32.12. mqtt.connect.willmessage

Match on the will message in the MQTT CONNECT message, if a will is defined.

Examples:

mqtt.connect.willmessage; pcre:"/^fooba[rz]/";
mqtt.connect.willmessage; content:"hunter2";

mqtt.connect.willmessage is a 'sticky buffer' and can be used as fast_pattern.

8.32.13. mqtt.connect.willtopic

Match on the will topic in the MQTT CONNECT message, if a will is defined.

Examples:

mqtt.connect.willtopic; pcre:"/^hunter[0-9]/";

mqtt.connect.willtopic is a 'sticky buffer' and can be used as fast_pattern.

8.32.14. mqtt.publish.message

Match on the payload to be published in the MQTT PUBLISH message.

Examples:

mqtt.type:PUBLISH; mqtt.publish.message; pcre:"/uid=[0-9]+/";
match on published JPEG images
mqtt.type:PUBLISH; mqtt.publish.message; content:"|FF D8 FF E0|"; startswith;

mqtt.publish.message is a 'sticky buffer' and can be used as fast_pattern.

8.32.15. mqtt.publish.topic

Match on the topic to be published to in the MQTT PUBLISH message.

Examples:

mqtt.publish.topic; content:"mytopic";

mqtt.publish.topic is a 'sticky buffer' and can be used as fast_pattern.

8.32.16. mqtt.subscribe.topic

Match on any of the topics subscribed to in a MQTT SUBSCRIBE message.

Examples:

mqtt.subscribe.topic; content:"mytopic";

mqtt.subscribe.topic is a 'sticky buffer' and can be used as fast_pattern.

mqtt.subscribe.topic supports multiple buffer matching, see Multiple Buffer Matching.

8.32.17. mqtt.unsubscribe.topic

Match on any of the topics unsubscribed from in a MQTT UNSUBSCRIBE message.

Examples:

mqtt.unsubscribe.topic; content:"mytopic";

mqtt.unsubscribe.topic is a 'sticky buffer' and can be used as fast_pattern.

mqtt.unsubscribe.topic supports multiple buffer matching, see Multiple Buffer Matching.

8.32.18. Additional information

More information on the protocol can be found here:

	MQTT 3.1: https://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html

	MQTT 3.1.1: https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

	MQTT 5.0: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

8.33. IKE Keywords

The keywords

	ike.init_spi

	ike.resp_spi

	ike.chosen_sa_attribute

	ike.exchtype

	ike.vendor

	ike.key_exchange_payload

	ike.key_exchange_payload_length

	ike.nonce_payload

	ike.nonce_payload_length

can be used for matching on various properties of IKE connections.

8.33.1. ike.init_spi, ike.resp_spi

Match on an exact value of the Security Parameter Index (SPI) for the Initiator or Responder.

Examples:

ike.init_spi; content:"18fe9b731f9f8034";
ike.resp_spi; content:"a00b8ef0902bb8ec";

ike.init_spi and ike.resp_spi are 'sticky buffer'.

ike.init_spi and ike.resp_spi can be used as fast_pattern.

8.33.2. ike.chosen_sa_attribute

Match on an attribute value of the chosen Security Association (SA) by the Responder. Supported for IKEv1 are:
alg_enc,
alg_hash,
alg_auth,
alg_dh,
alg_prf,
sa_group_type,
sa_life_type,
sa_life_duration,
sa_key_length and
sa_field_size.
IKEv2 supports alg_enc, alg_auth, alg_prf and alg_dh.

If there is more than one chosen SA the event MultipleServerProposal is set. The attributes of the first SA are used for this keyword.

Examples:

ike.chosen_sa_attribute:alg_hash=2;
ike.chosen_sa_attribute:sa_key_length=128;

8.33.3. ike.exchtype

Match on the value of the Exchange Type.

ike.exchtype uses an unsigned 8-bit integer.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

	> (greater than)

	< (less than)

	>= (greater than or equal)

	<= (less than or equal)

	arg1-arg2 (range)

Examples:

ike.exchtype:5;
ike.exchtype:>=2;

8.33.4. ike.vendor

Match a vendor ID against the list of collected vendor IDs.

Examples:

ike.vendor:4a131c81070358455c5728f20e95452f;

ike.vendor supports multiple buffer matching, see Multiple Buffer Matching.

8.33.5. ike.key_exchange_payload

Match against the public key exchange payload (e.g. Diffie-Hellman) of the server or client.

Examples:

ike.key_exchange_payload; content:"|6d026d5616c45be05e5b898411e9|"

ike.key_exchange_payload is a 'sticky buffer'.

ike.key_exchange_payload can be used as fast_pattern.

8.33.6. ike.key_exchange_payload_length

Match against the length of the public key exchange payload (e.g. Diffie-Hellman) of the server or client.

ike.key_exchange_payload_length uses an unsigned 32-bit integer.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

	> (greater than)

	< (less than)

	>= (greater than or equal)

	<= (less than or equal)

	arg1-arg2 (range)

Examples:

ike.key_exchange_payload_length:>132

8.33.7. ike.nonce_payload

Match against the nonce of the server or client.

Examples:

ike.nonce_payload; content:"|6d026d5616c45be05e5b898411e9|"

ike.nonce_payload is a 'sticky buffer'.

ike.nonce_payload can be used as fast_pattern.

8.33.8. ike.nonce_payload_length

Match against the length of the nonce of the server or client.

ike.nonce_payload_length uses an unsigned 32-bit integer.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

	> (greater than)

	< (less than)

	>= (greater than or equal)

	<= (less than or equal)

	arg1-arg2 (range)

Examples:

ike.nonce_payload_length:132
ike.nonce_payload_length:>132

8.33.9. Additional information

More information on the protocol and the data contained in it can be found here:
https://tools.ietf.org/html/rfc2409

8.34. HTTP2 Keywords

HTTP2 frames are grouped into transactions based on the stream identifier it it is not 0.
For frames with stream identifier 0, whose effects are global for the connection, a transaction is created for each frame.

8.34.1. http2.frametype

Match on the frame type present in a transaction.

Examples:

http2.frametype:GOAWAY;

8.34.2. http2.errorcode

Match on the error code in a GOWAY or RST_STREAM frame

Examples:

http2.errorcode: NO_ERROR;
http2.errorcode: INADEQUATE_SECURITY;

8.34.3. http2.priority

Match on the value of the HTTP2 priority field present in a PRIORITY or HEADERS frame.

http2.priority uses an unsigned 8-bit integer.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

	> (greater than)

	< (less than)

	x-y (range between values x and y)

Examples:

http2.priority:2;
http2.priority:>100;
http2.priority:32-64;

8.34.4. http2.window

Match on the value of the HTTP2 value field present in a WINDOWUPDATE frame.

http2.window uses an unsigned 32-bit integer.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

	> (greater than)

	< (less than)

	x-y (range between values x and y)

Examples:

http2.window:1;
http2.window:<100000;

8.34.5. http2.size_update

Match on the size of the HTTP2 Dynamic Headers Table.
More information on the protocol can be found here:
https://tools.ietf.org/html/rfc7541#section-6.3

http2.size_update uses an unsigned 64-bit integer.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

	> (greater than)

	< (less than)

	x-y (range between values x and y)

Examples:

http2.size_update:1234;
http2.size_update:>4096;

8.34.6. http2.settings

Match on the name and value of a HTTP2 setting from a SETTINGS frame.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

	> (greater than)

	< (less than)

	x-y (range between values x and y)

Examples:

http2.settings:SETTINGS_ENABLE_PUSH=0;
http2.settings:SETTINGS_HEADER_TABLE_SIZE>4096;

8.34.7. http2.header_name

Match on the name of a HTTP2 header from a HEADER frame (or PUSH_PROMISE or CONTINUATION).

Examples:

http2.header_name; content:"agent";

http2.header_name is a 'sticky buffer'.

http2.header_name can be used as fast_pattern.

http2.header_name supports multiple buffer matching, see Multiple Buffer Matching.

8.34.8. Additional information

More information on the protocol can be found here:
https://tools.ietf.org/html/rfc7540

8.35. Quic Keywords

Suricata implements initial support for Quic by parsing the Quic version.

Suricata also derives a CYU hash for earlier versions of Quic.

Quic app-layer parsing must be enabled in the Suricata config file (set 'app-layer.protocols.quic.enabled' to 'yes').

8.35.1. quic.cyu.hash

Match on the CYU hash

Examples:

alert quic any any -> any any (msg:"QUIC CYU HASH"; \
 quic.cyu.hash; content:"7b3ceb1adc974ad360cfa634e8d0a730"; \
 sid:1;)

quic.cyu.hash supports multiple buffer matching, see Multiple Buffer Matching.

8.35.2. quic.cyu.string

Match on the CYU string

Examples:

alert quic any any -> any any (msg:"QUIC CYU STRING"; \
 quic.cyu.string; content:"46,PAD-SNI-VER-CCS-UAID-TCID-PDMD-SMHL-ICSL-NONP-MIDS-SCLS-CSCT-COPT-IRTT-CFCW-SFCW"; \
 sid:2;)

quic.cyu.string supports multiple buffer matching, see Multiple Buffer Matching.

8.35.3. quic.version

Sticky buffer for matching on the Quic header version in long headers.

Examples:

alert quic any any -> any any (msg:"QUIC VERSION"; \
 quic.version; content:"Q046"; \
 sid:3;)

8.35.4. Additional information

More information on CYU Hash can be found here:
https://engineering.salesforce.com/gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f

More information on the protocol can be found here:
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-17

8.36. NFS Keywords

8.36.1. file.name

The file.name keyword can be used at the NFS application level.

Signature Example:

alert nfs any any -> any any (msg:"NFS file.name usage"; file.name; content:"file.txt"; classtype:bad-unknown; sid:1; rev:1;)

For additional information on the file.name keyword, see File Keywords.

8.37. SMTP Keywords

8.37.1. file.name

The file.name keyword can be used at the SMTP application level.

Signature Example:

alert smtp any any -> any any (msg:"SMTP file.name usage"; file.name; content:"winmail.dat"; classtype:bad-unknown; sid:1; rev:1;)

For additional information on the file.name keyword, see File Keywords.

8.38. Generic App Layer Keywords

8.38.1. app-layer-protocol

Match on the detected app-layer protocol.

Syntax:

app-layer-protocol:[!]<protocol>;

Examples:

app-layer-protocol:ssh;
app-layer-protocol:!tls;
app-layer-protocol:failed;

A special value 'failed' can be used for matching on flows in which
protocol detection failed. This can happen if Suricata doesn't know
the protocol or when certain 'bail out' conditions happen.

8.38.1.1. Bail out conditions

Protocol detection gives up in several cases:

	both sides are inspected and no match was found

	side A detection failed, side B has no traffic at all (e.g. FTP data channel)

	side A detection failed, side B has so little data detection is inconclusive

In these last 2 cases the app-layer-event:applayer_proto_detection_skipped
is set.

8.38.2. app-layer-event

Match on events generated by the App Layer Parsers and the protocol detection
engine.

Syntax:

app-layer-event:<event name>;

Examples:

app-layer-event:applayer_mismatch_protocol_both_directions;
app-layer-event:http.gzip_decompression_failed;

8.38.2.1. Protocol Detection

8.38.2.1.1. applayer_mismatch_protocol_both_directions

The toserver and toclient directions have different protocols. For example a
client talking HTTP to a SSH server.

8.38.2.1.2. applayer_wrong_direction_first_data

Some protocol implementations in Suricata have a requirement with regards to
the first data direction. The HTTP parser is an example of this.

https://redmine.openinfosecfoundation.org/issues/993

8.38.2.1.3. applayer_detect_protocol_only_one_direction

Protocol detection only succeeded in one direction. For FTP and SMTP this is
expected.

8.38.2.1.4. applayer_proto_detection_skipped

Protocol detection was skipped because of Bail out conditions.

8.39. Xbits Keyword

Set, unset, toggle and check for bits stored per host or ip_pair.

Syntax:

xbits:<set|unset|isset|isnotset|toggle>,<name>,track <ip_src|ip_dst|ip_pair>;
xbits:<set|unset|isset|toggle>,<name>,track <ip_src|ip_dst|ip_pair> \
 [,expire <seconds>];
xbits:<set|unset|isset|toggle>,<name>,track <ip_src|ip_dst|ip_pair> \
 [,expire <seconds>];

8.39.1. Notes

	No difference between using hostbits and xbits
with track ip_<src|dst>

	If you set on a client request and use
track ip_dst, if you want to match on the server response,
you check it (isset) with track ip_src.

	To not alert, use noalert;

	the toggle option will flip the value of the xbits.

	See also:

	https://blog.inliniac.net/2014/12/21/crossing-the-streams-in-suricata/

	http://www.cipherdyne.org/blog/2013/07/crossing-the-streams-in-ids-signature-languages.html

8.39.1.1. YAML settings

Bits that are stored per host are stored in the Host table. This means that
host table settings affect hostsbits and xbits per host.

Bits that are stored per IP pair are stored in the IPPair table. This means
that ippair table settings, especially memcap, affect xbits per ip_pair.

8.39.1.2. Threading

Due to subtle timing issues between threads the order of sets and checks
can be slightly unpredictable.

8.39.1.3. Unix Socket

Hostbits can be added, removed and listed through the unix socket.

Add:

suricatasc -c "add-hostbit <ip> <bit name> <expire in seconds>"
suricatasc -c "add-hostbit 1.2.3.4 blacklist 3600"

If a hostbit is added for an existing hostbit, it's expiry timer is updated.

Remove:

suricatasc -c "remove-hostbit <ip> <bit name>"
suricatasc -c "remove-hostbit 1.2.3.4 blacklist"

List:

suricatasc -c "list-hostbit <ip>"
suricatasc -c "list-hostbit 1.2.3.4"

This results in:

{
 "message":
 {
 "count": 1,
 "hostbits":
 [{
 "expire": 89,
 "name": "blacklist"
 }]
 },
 "return": "OK"
}

8.39.1.4. Examples

8.39.1.4.1. Creating a SSH blacklist

Below is an example of rules incoming to a SSH server.

The first 2 rules match on a SSH software version often used in bots.
They drop the traffic and create an 'xbit' 'badssh' for the source ip.
It expires in an hour:

drop ssh any any -> $MYSERVER 22 (msg:"DROP libssh incoming"; \
 flow:to_server,established; ssh.softwareversion:"libssh"; \
 xbits:set, badssh, track ip_src, expire 3600; sid:4000000005;)
drop ssh any any -> $MYSERVER 22 (msg:"DROP PUTTY incoming"; \
 flow:to_server,established; ssh.softwareversion:"PUTTY"; \
 xbits:set, badssh, track ip_src, expire 3600; sid:4000000007;)

Then the following rule simply drops any incoming traffic to that server
that is on that 'badssh' list:

drop ssh any any -> $MYSERVER 22 (msg:"DROP BLACKLISTED"; \
 xbits:isset, badssh, track ip_src; sid:4000000006;)

8.40. Thresholding Keywords

Thresholding can be configured per rule and also globally, see
Global-Thresholds.

Note: mixing rule and global thresholds is not supported in 1.3 and
before. See bug #425. For the state of the support in 1.4 see
Global thresholds vs rule thresholds

8.40.1. threshold

The threshold keyword can be used to control the rule's alert
frequency. It has 3 modes: threshold, limit and both.

Syntax:

threshold: type <threshold|limit|both>, track <by_src|by_dst|by_rule|by_both>, count <N>, seconds <T>

8.40.1.1. type "threshold"

This type can be used to set a minimum threshold for a rule before it
generates alerts. A threshold setting of N means on the Nth time the
rule matches an alert is generated.

Example:

alert tcp !$HOME_NET any -> $HOME_NET 25 (msg:"ET POLICY Inbound Frequent Emails - Possible Spambot Inbound"; \
flow:established; content:"mail from|3a|"; nocase; \
threshold: type threshold, track by_src, count 10, seconds 60; \
reference:url,doc.emergingthreats.net/2002087; classtype:misc-activity; sid:2002087; rev:10;)

This signature only generates an alert if we get 10 inbound emails or
more from the same server in a time period of one minute.

If a signature sets a flowbit, flowint, etc. those actions are still
performed for each of the matches.

Rule actions drop (IPS mode) and reject are applied to each packet
(not only the one that meets the threshold condition).

8.40.1.2. type "limit"

This type can be used to make sure you're not getting flooded with
alerts. If set to limit N, it alerts at most N times.

Example:

alert http $HOME_NET any -> any $HTTP_PORTS (msg:"ET USER_AGENTS Internet Explorer 6 in use - Significant Security Risk"; \
flow:to_server,established; content:"|0d 0a|User-Agent|3a| Mozilla/4.0 (compatible|3b| MSIE 6.0|3b|"; \
threshold: type limit, track by_src, seconds 180, count 1; \
reference:url,doc.emergingthreats.net/2010706; classtype:policy-violation; sid:2010706; rev:7;)

In this example at most 1 alert is generated per host within a period
of 3 minutes if MSIE 6.0 is detected.

If a signature sets a flowbit, flowint, etc. those actions are still
performed for each of the matches.

Rule actions drop (IPS mode) and reject are applied to each packet
(not only the one that meets the limit condition).

8.40.1.3. type "both"

This type is a combination of the "threshold" and "limit" types. It
applies both thresholding and limiting.

Example:

alert tcp $HOME_NET 5060 -> $EXTERNAL_NET any (msg:"ET VOIP Multiple Unauthorized SIP Responses TCP"; \
flow:established,from_server; content:"SIP/2.0 401 Unauthorized"; depth:24; \
threshold: type both, track by_src, count 5, seconds 360; \
reference:url,doc.emergingthreats.net/2003194; classtype:attempted-dos; sid:2003194; rev:6;)

This alert will only generate an alert if within 6 minutes there have
been 5 or more "SIP/2.0 401 Unauthorized" responses, and it will alert
only once in that 6 minutes.

If a signature sets a flowbit, flowint, etc. those actions are still
performed for each of the matches.

Rule actions drop (IPS mode) and reject are applied to each packet.

8.40.2. detection_filter

The detection_filter keyword can be used to alert on every match after
a threshold has been reached. It differs from the threshold with type
threshold in that it generates an alert for each rule match after the
initial threshold has been reached, where the latter will reset it's
internal counter and alert again when the threshold has been reached
again.

Syntax:

detection_filter: track <by_src|by_dst|by_rule|by_both>, count <N>, seconds <T>

Example:

alert http $EXTERNAL_NET any -> $HOME_NET any \
 (msg:"ET WEB_SERVER WebResource.axd access without t (time) parameter - possible ASP padding-oracle exploit"; \
 flow:established,to_server; content:"GET"; http_method; content:"WebResource.axd"; http_uri; nocase; \
 content:!"&t="; http_uri; nocase; content:!"&|3b|t="; http_uri; nocase; \
 detection_filter:track by_src,count 15,seconds 2; \
 reference:url,netifera.com/research/; reference:url,www.microsoft.com/technet/security/advisory/2416728.mspx; \
 classtype:web-application-attack; sid:2011807; rev:5;)

Alerts each time after 15 or more matches have occurred within 2 seconds.

If a signature sets a flowbit, flowint, etc. those actions are still
performed for each of the matches.

Rule actions drop (IPS mode) and reject are applied to each packet
that generate an alert

8.41. IP Reputation Keyword

IP Reputation can be used in rules through a new rule keyword "iprep".

For more information about IP Reputation see IP Reputation Config and IP Reputation Format.

8.41.1. iprep

The iprep directive matches on the IP reputation information for a host.

iprep:<side to check>,<category>,<operator>,<reputation score>

side to check: <any|src|dst|both>

category: the category short name

operator: <, >, =

reputation score: 1-127

Example:

alert ip $HOME_NET any -> any any (msg:"IPREP internal host talking to CnC server"; flow:to_server; iprep:dst,CnC,>,30; sid:1; rev:1;)

This rule will alert when a system in $HOME_NET acts as a client while communicating with any IP in the CnC category that has a reputation score set to greater than 30.

8.41.1.1. Compatibility with IP-only

The "iprep" keyword is compatible with "IP-only" rules. This means that a rule like:

alert ip any any -> any any (msg:"IPREP High Value CnC"; iprep:src,CnC,>,100; sid:1; rev:1;)

will only be checked once per flow-direction.

8.42. IP Addresses Match

Matching on IP addresses can be done via the IP tuple parameters or via the iprep keywords (see IP Reputation Keyword).
Some keywords providing interaction with datasets are also available.

8.42.1. ip.src

The ip.src keyword is a sticky buffer to match on source IP address. It matches on the binary representation
and is compatible with datasets of types ip and ipv4.

Example:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"Inbound bad list"; flow:to_server; ip.src; dataset:isset,badips,type ip,load badips.list; sid:1; rev:1;)

8.42.2. ip.dst

The ip.dst keyword is a sticky buffer to match on destination IP address. It matches on the binary representation
and is compatible with the dataset of type ip and ipv4.

Example:

alert tcp $HOME_NET any -> any any (msg:"Outbound bad list"; flow:to_server; ip.dst; dataset:isset,badips,type ip,load badips.list; sid:1; rev:1;)

8.43. Config Rules

Config rules are rules that when matching, will change the configuration of
Suricata for a flow, transaction, packet or other unit.

Example:

config dns any any -> any any (dns.query; content:"suricata"; config: logging disable, type tx, scope tx; sid:1;)

This example will detect if a DNS query contains the string suricata and if
so disable the DNS transaction logging. This means that eve.json records,
but also Lua output, will not be generated/triggered for this DNS transaction.

8.43.1. Keyword

The config rule keyword provides the setting and the scope of the change.

Syntax:

config:<subsys> <action>, type <type>, scope <scope>;

subsys can be set to:

	logging setting affects logging.

type can be set to:

	tx sub type of the subsys. If subsys is set to logging, setting the type to tx means transaction logging is affected.

scope can be set to:

	tx setting affects the matching transaction.

The action in <subsys> is currently limited to disable.

8.43.2. Action

Config rules can, but don't have to, use the config rule action. The config
rule action won't generate an alert when the rule matches, but the rule actions
will still be applied. It is equivalent to alert ... (noalert; ...).

8.44. Datasets

Using the dataset and datarep keyword it is possible to match on
large amounts of data against any sticky buffer.

For example, to match against a DNS black list called dns-bl:

dns.query; dataset:isset,dns-bl;

These keywords are aware of transforms. So to look up a DNS query against
a MD5 black list:

dns.query; to_md5; dataset:isset,dns-bl;

8.44.1. Global config (optional)

Datasets can optionally be defined in the main config. Sets can also be
declared from the rule syntax.

Example of sets for tracking unique values:

datasets:
 ua-seen:
 type: string
 state: ua-seen.lst
 dns-sha256-seen:
 type: sha256
 state: dns-sha256-seen.lst

Rules to go with the above:

alert dns any any -> any any (msg:"dns list test"; dns.query; to_sha256; dataset:isset,dns-sha256-seen; sid:123; rev:1;)

alert http any any -> any any (msg: "http user-agent test"; http.user_agent; dataset:set,ua-seen; sid:234; rev:1;)

It is also possible to optionally define global default memcap and hashsize.

Example:

datasets:
 defaults:
 memcap: 100mb
 hashsize: 2048
 ua-seen:
 type: string
 load: ua-seen.lst

or define memcap and hashsize per dataset.

Example:

datasets:
 ua-seen:
 type: string
 load: ua-seen.lst
 memcap: 10mb
 hashsize: 1024

Note

The hashsize should be close to the amount of entries in the dataset to avoid collisions. If it's set too low, this could result in rather long startup time.

8.44.2. Rule keywords

8.44.2.1. dataset

Datasets are binary: something is in the set or it's not.

Syntax:

dataset:<cmd>,<name>,<options>;

dataset:<set|isset|isnotset>,<name> \
 [, type <string|md5|sha256|ipv4|ip>, save <file name>, load <file name>, state <file name>, memcap <size>, hashsize <size>];

	type <type>
	the data type: string, md5, sha256, ipv4, ip

	load <file name>
	file name for load the data when Suricata starts up

	state
	sets file name for loading and saving a dataset

	save <file name>
	advanced option to set the file name for saving the in-memory data
when Suricata exits.

	memcap <size>
	maximum memory limit for the respective dataset

	hashsize <size>
	allowed size of the hash for the respective dataset

Note

'type' is mandatory and needs to be set.

Note

'load' and 'state' or 'save' and 'state' cannot be mixed.

Example rules could look like:

	Detect unique User-Agents:

alert http any any -> any any (msg:"LOCAL HTTP new UA"; http.user_agent; dataset:set,http-ua-seen, type string, state http-ua-seen.csv; sid:8000001; rev:1;)

	Detect unique TLDs:

alert dns $HOME_NET any -> any any (msg:"LOCAL DNS unique TLD"; dns.query; pcrexform:"\.([^\.]+)$"; dataset:set,dns-tld-seen, type string, state dns-tld-seen.csv; sid:8000002; rev:1;)

Following image is a pictorial representation of how the pcrexform works
on domain names to find TLDs in the dataset dns-tld-seen:

[image: ../_images/detect-unique-tlds.png]
Notice how it is not possible to do certain operations alone with datasets
(example 2 above), but, it is possible to use a combination of other rule
keywords. Keep in mind the cost of additional keywords though e.g. in the
second example rule above, negative performance impact can be expected due
to pcrexform.

8.44.2.2. datarep

Data Reputation allows matching data against a reputation list.

Syntax:

datarep:<name>,<operator>,<value>, \
 [, load <file name>, type <string|md5|sha256|ipv4|ip>, memcap <size>, hashsize <size>];

Example rules could look like:

alert dns any any -> any any (dns.query; to_md5; datarep:dns_md5, >, 200, load dns_md5.rep, type md5, memcap 100mb, hashsize 2048; sid:1;)
alert dns any any -> any any (dns.query; to_sha256; datarep:dns_sha256, >, 200, load dns_sha256.rep, type sha256; sid:2;)
alert dns any any -> any any (dns.query; datarep:dns_string, >, 200, load dns_string.rep, type string; sid:3;)

In these examples the DNS query string is checked against three different
reputation lists. A MD5 list, a SHA256 list, and a raw string (buffer) list.
The rules will only match if the data is in the list and the reputation
value is higher than 200.

8.44.3. Rule Reloads

Sets that are defined in the yaml, or sets that only use state or save, are
considered dynamic sets. These are not reloaded during rule reloads.

Sets that are defined in rules using only load are considered static tests.
These are not expected to change during runtime. During rule reloads these are
reloaded from disk. This reload is effective when the complete rule reload
process is complete.

8.44.4. Unix Socket

8.44.4.1. dataset-add

Unix Socket command to add data to a set. On success, the addition becomes
active instantly.

Syntax:

dataset-add <set name> <set type> <data>

	set name
	Name of an already defined dataset

	type
	Data type: string, md5, sha256, ipv4, ip

	data
	Data to add in serialized form (base64 for string, hex notation for md5/sha256, string representation for ipv4/ip)

Example adding 'google.com' to set 'myset':

dataset-add myset string Z29vZ2xlLmNvbQ==

8.44.4.2. dataset-remove

Unix Socket command to remove data from a set. On success, the removal becomes
active instantly.

Syntax:

dataset-remove <set name> <set type> <data>

	set name
	Name of an already defined dataset

	type
	Data type: string, md5, sha256, ipv4, ip

	data
	Data to remove in serialized form (base64 for string, hex notation for md5/sha256, string representation for ipv4/ip)

8.44.4.3. dataset-clear

Unix Socket command to remove all data from a set. On success, the removal becomes
active instantly.

Syntax:

dataset-clear <set name> <set type>

	set name
	Name of an already defined dataset

	type
	Data type: string, md5, sha256, ipv4, ip

8.44.4.4. dataset-lookup

Unix Socket command to test if data is in a set.

Syntax:

dataset-lookup <set name> <set type> <data>

	set name
	Name of an already defined dataset

	type
	Data type: string, md5, sha256, ipv4, ip

	data
	Data to test in serialized form (base64 for string, hex notation for md5/sha256, string notation for ipv4/ip)

Example testing if 'google.com' is in the set 'myset':

dataset-lookup myset string Z29vZ2xlLmNvbQ==

8.44.4.5. dataset-dump

Unix socket command to trigger a dump of datasets to disk.

Syntax:

dataset-dump

8.44.5. File formats

Datasets use a simple CSV format where data is per line in the file.

8.44.5.1. data types

	string
	in the file as base64 encoded string

	md5
	in the file as hex encoded string

	sha256
	in the file as hex encoded string

	ipv4
	in the file as string

	ip
	in the file as string, it can be IPv6 or IPv4 address (standard notation or IPv4 in IPv6 one)

8.44.5.2. dataset

Datasets have a simple structure, where there is one piece of data
per line in the file.

Syntax:

<data>

e.g. for ua-seen with type string:

TW96aWxsYS80LjAgKGNvbXBhdGlibGU7ICk=

which when piped to base64 -d reveals its value:

Mozilla/4.0 (compatible;)

8.44.5.3. datarep

The datarep format follows the dataset, expect that there are 1 more CSV
field:

Syntax:

<data>,<value>

8.44.6. File Locations

Dataset filenames configured in the suricata.yaml can exist
anywhere on your filesytem.

When a dataset filename is specified in rule, the following rules
are applied:

	For load, the filename is opened relative to the rule file
containing the rule. Absolute filenames and parent directory
traversals are allowed.

	For save and state the filename is relative to
$LOCALSTATEDIR/suricata/data. On many installs this will be
/var/lib/suricata/data, but run suricata --build-info and
check the value of --localstatedir to verify this location onn
your installation.

	Absolute filenames, or filenames containing parent directory
traversal (..) are not allowed unless the configuration
paramater datasets.allow-absolute-filenames is set to
true.

8.44.7. Security

As datasets potentially allow a rule distributor write access to your
system with save and state dataset rules, the locations
allowed are strict by default, however there are two dataset options
to tune the security of rules utilizing dataset filenames:

datasets:
 rules:
 # Set to true to allow absolute filenames and filenames that use
 # ".." components to reference parent directories in rules that specify
 # their filenames.
 allow-absolute-filenames: false

 # Allow datasets in rules write access for "save" and
 # "state". This is enabled by default, however write access is
 # limited to the data directory.
 allow-write: true

By setting datasets.rules.allow-write to false, all save and
state rules will fail to load. This option is enabled by default
to preserve compatiblity with previous 6.0 Suricata releases, however
may change in a future major release.

Pre-Suricata 6.0.13 behavior can be restored by setting
datasets.rules.allow-absolute-filenames to true, however
allowing so will allow any rule to overwrite any file on your system
that Suricata has write access to.

8.45. Lua Scripting for Detection

Note

Lua is disabled by default for use in rules, it must be
enabled in the configuration file. See the security.lua
section of suricata.yaml and enable allow-rules.

Syntax:

lua:[!]<scriptfilename>;

The script filename will be appended to your default rules location.

The script has 2 parts, an init function and a match function. First, the init.

8.45.1. Init function

function init (args)
 local needs = {}
 needs["http.request_line"] = tostring(true)
 return needs
end

The init function registers the buffer(s) that need
inspection. Currently the following are available:

	packet -- entire packet, including headers

	payload -- packet payload (not stream)

	buffer -- the current sticky buffer

	stream

	dnp3

	dns.request

	dns.response

	dns.rrname

	ssh

	smtp

	tls

	http.uri

	http.uri.raw

	http.request_line

	http.request_headers

	http.request_headers.raw

	http.request_cookie

	http.request_user_agent

	http.request_body

	http.response_headers

	http.response_headers.raw

	http.response_body

	http.response_cookie

All the HTTP buffers have a limitation: only one can be inspected by a
script at a time.

8.45.2. Match function

function match(args)
 a = tostring(args["http.request_line"])
 if #a > 0 then
 if a:find("^POST%s+/.*%.php%s+HTTP/1.0$") then
 return 1
 end
 end

 return 0
end

The script can return 1 or 0. It should return 1 if the condition(s)
it checks for match, 0 if not.

Entire script:

function init (args)
 local needs = {}
 needs["http.request_line"] = tostring(true)
 return needs
end

function match(args)
 a = tostring(args["http.request_line"])
 if #a > 0 then
 if a:find("^POST%s+/.*%.php%s+HTTP/1.0$") then
 return 1
 end
 end

 return 0
end

return 0

A comprehensive list of existing lua functions - with examples - can be found at Lua functions (some of them, however,
work only for the lua-output functionality).

8.46. Differences From Snort

This document is intended to highlight the major differences between Suricata
and Snort that apply to rules and rule writing.

Where not specified, the statements below apply to Suricata. In general,
references to Snort refer to the version 2.9 branch.

8.46.1. Automatic Protocol Detection

	Suricata does automatic protocol detection of the following
application layer protocols:

	dcerpc

	dnp3

	dns

	http

	imap (detection only by default; no parsing)

	ftp

	modbus (disabled by default; minimalist probe parser; can lead to false positives)

	smb

	smb2 (disabled internally inside the engine)

	smtp

	ssh

	tls (SSLv2, SSLv3, TLSv1, TLSv1.1 and TLSv1.2)

	In Suricata, protocol detection is port agnostic (in most cases). In
Snort, in order for the http_inspect and other preprocessors to be
applied to traffic, it has to be over a configured port.

	Some configurations for app-layer in the Suricata yaml can/do by default
specify specific destination ports (e.g. DNS)

	You can look on 'any' port without worrying about the
performance impact that you would have to be concerned about with
Snort.

	If the traffic is detected as HTTP by Suricata, the http_*
buffers are populated and can be used, regardless of port(s)
specified in the rule.

	You don't have to check for the http protocol (i.e.
alert http ...) to use the http_* buffers although it
is recommended.

	If you are trying to detect legitimate (supported) application layer
protocol traffic and don't want to look on specific port(s), the rule
should be written as alert <protocol> ... with any in
place of the usual protocol port(s). For example, when you want to
detect HTTP traffic and don't want to limit detection to a particular
port or list of ports, the rules should be written as
alert http ... with any in place of
$HTTP_PORTS.

	You can also use app-layer-protocol:<protocol>; inside the rule instead.

So, instead of this Snort rule:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS ...

Do this for Suricata:

alert http $HOME_NET -> $EXTERNAL_NET any ...

Or:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (app-layer-protocol:http; ...

8.46.2. urilen Keyword

	Ranges given in the urilen keyword are inclusive for Snort
but not inclusive for Suricata.

Example: urilen:2<>10

	Snort interprets this as, "the URI length must be greater than
or equal to 2, and less than or equal to 10".

	Suricata interprets this as "the URI length must be greater
than 2 and less than 10".

	There is a request to have Suricata behave like Snort in future
versions –
https://redmine.openinfosecfoundation.org/issues/1416

	Currently on hold

	By default, with Suricata, urilen applies to the
normalized buffer

	Use ,raw for raw buffer

	e.g. urilen:>20,raw;

	By default, with Snort, urilen applies to the raw
buffer

	Use ,norm for normalized buffer

	e.g. urilen:>20,norm;

8.46.3. http_uri Buffer

	In Snort, the http_uri buffer normalizes '+' characters
(0x2B) to spaces (0x20).

	Suricata can do this as well but you have to explicitly
set query-plusspace-decode: yes in the libhtp section of Suricata's yaml file.

	https://redmine.openinfosecfoundation.org/issues/1035

	https://github.com/inliniac/suricata/pull/620

8.46.4. http_header Buffer

	In Snort, the http_header buffer includes the CRLF CRLF (0x0D
0x0A 0x0D 0x0A) that separates the end of the last HTTP header from
the beginning of the HTTP body. Suricata includes a CRLF after the
last header in the http_header buffer but not an extra one
like Snort does. If you want to match the end of the buffer, use
either the http_raw_header buffer, a relative
isdataat (e.g. isdataat:!1,relative) or a PCRE
(although PCRE will be worse on performance).

	Suricata will include CRLF CRLF at the end of the http_raw_header
buffer like Snort does.

	Snort will include a leading CRLF in the http_header buffer of
server responses (but not client requests). Suricata does not have
the leading CRLF in the http_header buffer of the server response
or client request.

	In the http_header buffer, Suricata will normalize HTTP header lines
such that there is a single space (0x20) after the colon (':') that
separates the header name from the header value; this single space
replaces zero or more whitespace characters (including tabs) that may be
present in the raw HTTP header line immediately after the colon. If the
extra whitespace (or lack thereof) is important for matching, use
the http_raw_header buffer instead of the http_header buffer.

	Snort will also normalize superfluous whitespace between the header name
and header value like Suricata does but only if there is at least one space
character (0x20 only so not 0x90) immediately after the colon. This means
that, unlike Suricata, if there is no space (or if there is a tab)
immediately after the colon before the header value, the content of the
header line will remain unchanged in the http_header buffer.

	When there are duplicate HTTP headers (referring to the header name
only, not the value), the normalized buffer (http_header)
will concatenate the values in the order seen (from top to
bottom), with a comma and space (", ") between each of them. If this
hinders detection, use the http_raw_header buffer instead.

Example request:

GET /test.html HTTP/1.1
Content-Length: 44
Accept: */*
Content-Length: 55

The Content-Length header line becomes this in the http_header buffer:

Content-Length: 44, 55

	The HTTP 'Cookie' and 'Set-Cookie' headers are NOT included in
the http_header buffer; instead they are extracted and put into
their own buffer – http_cookie. See the http_cookie Buffer
section.

	The HTTP 'Cookie' and 'Set-Cookie' headers ARE included in the
http_raw_header buffer so if you are trying to match on
something like particular header ordering involving (or not
involving) the HTTP Cookie headers, use the http_raw_header
buffer.

	If 'enable_cookie' is set for Snort, the HTTP Cookie header names
and trailing CRLF (i.e. "Cookie: \r\n" and "Set-Cooke \r\n") are
kept in the http_header buffer. This is not the case for
Suricata which removes the entire "Cookie" or "Set-Cookie" line from
the http_header buffer.

	Other HTTP headers that have their own buffer
(http_user_agent, http_host) are not removed from the
http_header buffer like the Cookie headers are.

	When inspecting server responses and file_data is used,
content matches in http_* buffers should come before
file_data unless you use pkt_data to reset the cursor
before matching in http_* buffers. Snort will not complain if
you use http_* buffers after file_data is set.

8.46.5. http_cookie Buffer

	The http_cookie buffer will NOT include the header name,
colon, or leading whitespace. i.e. it will not include "Cookie: " or "Set-Cookie: ".

	The http_cookie buffer does not include a CRLF (0x0D 0x0A) at
the end. If you want to match the end of the buffer, use a relative
isdataat or a PCRE (although PCRE will be worse on
performance).

	There is no http_raw_cookie buffer in Suricata. Use
http_raw_header instead.

	You do not have to configure anything special to use the
'http_cookie' buffer in Suricata. This is different from Snort
where you have to set enable_cookie in the
http_inspect_server preprocessor config in order to have the
http_cookie buffer treated separate from the
http_header buffer.

	If Snort has 'enable_cookie' set and multiple "Cookie" or
"Set-Cookie" headers are seen, it will concatenate them together
(with no separator between them) in the order seen from top to
bottom.

	If a request contains multiple "Cookie" or "Set-Cookie" headers, the
values will be concatenated in the Suricata http_cookie
buffer, in the order seen from top to bottom, with a comma and space
(", ") between each of them.

Example request:

GET /test.html HTTP/1.1
Cookie: monster
Accept: */*
Cookie: elmo

Suricata http_cookie buffer contents:

monster, elmo

Snort http_cookie buffer contents:

monsterelmo

	Corresponding PCRE modifier: C (same as Snort)

8.46.6. New HTTP keywords

Suricata supports several HTTP keywords that Snort doesn't have.

Examples are http_user_agent, http_host and http_content_type.

See HTTP Keywords for all HTTP keywords.

8.46.7. byte_extract Keyword

	Suricata supports
byte_extract from http_* buffers, including
http_header which does not always work as expected in Snort.

	In Suricata, variables extracted using byte_extract must be used
in the same buffer, otherwise they will have the value "0" (zero). Snort
does allow cross-buffer byte extraction and usage.

	Be sure to always positively and negatively test Suricata rules that
use byte_extract and byte_test to verify that they
work as expected.

8.46.8. byte_jump Keyword

	Suricata allows a variable name from byte_extract or
byte_math to be specified for the nbytes value. The
value of nbytes must adhere to the same constraints
as if it were supplied directly in the rule.

8.46.9. byte_math Keyword

	Suricata accepts dce as an endian value or as a separate keyword.
endian dce or dce are equivalent.

	Suricata's rule parser rejects rules that repeat keywords in a single
rule. E.g., byte_math: endian big, endian little.

	Suricata's rule parser accepts rvalue values of 0 to the maximum
uint32 value. Snort rejects rvalue values of 0 and requires
values to be between [1..max-uint32 value].

	Suricata will never match if there's a zero divisor. Division by 0 is undefined.

8.46.10. byte_test Keyword

	Suricata allows a variable name from byte_extract or byte_math
to be specified for the nbytes value. The value of nbytes must adhere
to the same constraints as though a value was directly supplied by the rule.

	Suricata allows a variable name from byte_extract to be specified for
the nbytes value. The value of nbytes must adhere to the same constraints
as if it were supplied directly in the rule.

8.46.11. isdataat Keyword

	The rawbytes keyword is supported in the Suricata syntax but
doesn't actually do anything.

	Absolute isdataat checks will succeed if the offset used is
less than the size of the inspection buffer. This is true for
Suricata and Snort.

	For relative isdataat checks, there is a 1 byte difference
in the way Snort and Suricata do the comparisons.

	Suricata will succeed if the relative offset is less than or
equal to the size of the inspection buffer. This is different
from absolute isdataat checks.

	Snort will succeed if the relative offset is less than the
size of the inspection buffer, just like absolute isdataat
checks.

	Example - to check that there is no data in the inspection buffer
after the last content match:

	Snort: isdataat:!0,relative;

	Suricata: isdataat:!1,relative;

	With Snort, the "inspection buffer" used when checking an
isdataat keyword is generally the packet/segment with some
exceptions:

	With PAF enabled the PDU is examined instead of the
packet/segment. When file_data or base64_data has
been set, it is those buffers (unless rawbytes is set).

	With some preprocessors - modbus, gtp, sip, dce2, and dnp3 - the
buffer can be particular portions of those protocols (unless
rawbytes is set).

	With some preprocessors - rpc_decode, ftp_telnet, smtp, and dnp3
- the buffer can be particular decoded portions of those
protocols (unless rawbytes is set).

	With Suricata, the "inspection buffer" used when checking an absolute
isdataat keyword is the packet/segment if looking at a packet
(e.g. alert tcp-pkt...) or the reassembled stream segments.

	In Suricata, a relative isdataat keyword will apply to the
buffer of the previous content match. So if the previous content
match is a http_* buffer, the relative isdataat
applies to that buffer, starting from the end of the previous content
match in that buffer. Snort does not behave like this!

	For example, this Suricata rule looks for the string ".exe" at the
end of the URI; to do the same thing in the normalized URI buffer in
Snort you would have to use a PCRE – pcre:"/\x2Eexe$/U";

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:".EXE File Download Request"; flow:established,to_server; content:"GET"; http_method; content:".exe"; http_uri; isdataat:!1,relative; priority:3; sid:18332111;)

	If you are unclear about behavior in a particular instance, you are
encouraged to positively and negatively test your rules that use an
isdataat keyword.

8.46.12. Relative PCRE

	You can do relative PCRE matches in normalized/special buffers with Suricata. Example:

content:".php?sign="; http_uri; pcre:"/^[a-zA-Z0-9]{8}$/UR";

	With Snort you can't combine the "relative" PCRE option ('R') with other buffer options like normalized URI ('U') – you get a syntax error.

8.46.13. tls* Keywords

In addition to TLS protocol identification, Suricata supports the storing of
certificates to disk, verifying the validity dates on certificates, matching
against the calculated SHA1 fingerprint of certificates, and
matching on certain TLS/SSL certificate fields including the following:

	Negotiated TLS/SSL version.

	Certificate Subject field.

	Certificate Issuer field.

	Certificate SNI Field

For details see SSL/TLS Keywords.

8.46.14. dns_query Keyword

	Sets the detection pointer to the DNS query.

	Works like file_data does ("sticky buffer") but for a DNS
request query.

	Use pkt_data to reset the detection pointer to the beginning of
the packet payload.

	See DNS Keywords for details.

8.46.15. IP Reputation and iprep Keyword

	Snort has the "reputation" preprocessor that can be used to define
whitelist and blacklist files of IPs which are used generate GID 136
alerts as well as block/drop/pass traffic from listed IPs depending
on how it is configured.

	Suricata also has the concept of files with IPs in them but provides
the ability to assign them:

	Categories

	Reputation score

	Suricata rules can leverage these IP lists with the iprep
keyword that can be configured to match on:

	Direction

	Category

	Value (reputation score)

	Reputation

	IP Reputation Config

	IP Reputation Keyword

	IP Reputation Format

	https://blog.inliniac.net/2012/11/21/ip-reputation-in-suricata/

8.46.16. Flowbits

	Suricata fully supports the setting and checking of flowbits
(including the same flowbit) on the same packet/stream. Snort does
not always allow for this.

	In Suricata, flowbits:isset is checked after the fast pattern
match but before other content matches. In Snort,
flowbits:isset is checked in the order it appears in the
rule, from left to right.

	If there is a chain of flowbits where multiple rules set flowbits and
they are dependent on each other, then the order of the rules or the
sid values can make a
difference in the rules being evaluated in the proper order and
generating alerts as expected. See bug 1399 -
https://redmine.openinfosecfoundation.org/issues/1399.

	Flow Keywords

8.46.17. flowbits:noalert;

A common pattern in existing rules is to use flowbits:noalert; to make
sure a rule doesn't generate an alert if it matches.

Suricata allows using just noalert; as well. Both have an identical meaning
in Suricata.

8.46.18. Negated Content Match Special Case

	For Snort, a negated content match where the starting point for
searching is at or beyond the end of the inspection buffer will never
return true.

	For negated matches, you want it to return true if the content is
not found.

	This is believed to be a Snort bug rather than an engine difference
but it was reported to Sourcefire and acknowledged many years ago
indicating that perhaps it is by design.

	This is not the case for Suricata which behaves as
expected.

Example HTTP request:

POST /test.php HTTP/1.1
Content-Length: 9

user=suri

This rule snippet will never return true in Snort but will in
Suricata:

content:!"snort"; offset:10; http_client_body;

8.46.19. File Extraction

	Suricata has the ability to match on files from FTP, HTTP and SMTP streams and
log them to disk.

	Snort has the "file" preprocessor that can do something similar
but it is experimental, development of it
has been stagnant for years, and it is not something that should be used
in a production environment.

	Files can be matched on using a number of keywords including:

	filename

	fileext

	filemagic

	filesize

	filemd5

	filesha1

	filesha256

	filesize

	See File Keywords for a full list.

	The filestore keyword tells Suricata to save the file to
disk.

	Extracted files are logged to disk with meta data that includes
things like timestamp, src/dst IP, protocol, src/dst port, HTTP URI,
HTTP Host, HTTP Referer, filename, file magic, md5sum, size, etc.

	There are a number of configuration options and considerations (such
as stream reassembly depth and libhtp body-limit) that should be
understood if you want fully utilize file extraction in Suricata.

	File Keywords

	File Extraction

	https://blog.inliniac.net/2011/11/29/file-extraction-in-suricata/

	https://blog.inliniac.net/2014/11/11/smtp-file-extraction-in-suricata/

8.46.20. Lua Scripting

	Suricata has the lua (or luajit) keyword which allows for a
rule to reference a Lua script that can access the packet, payload,
HTTP buffers, etc.

	Provides powerful flexibility and capabilities that Snort does
not have.

	More details in: Lua Scripting for Detection

8.46.21. Fast Pattern

	Snort's fast pattern matcher is always case insensitive; Suricata's
is case sensitive unless 'nocase' is set on the content match used by
the fast pattern matcher.

	Snort will truncate fast pattern matches based on the
max-pattern-len config (default no limit) unless
fast_pattern:only is used in the rule. Suricata does not do any
automatic fast pattern truncation cannot be configured to do so.

	Just like in Snort, in Suricata you can specify a substring of the
content string to be use as the fast pattern match. e.g.
fast_pattern:5,20;

	In Snort, leading NULL bytes (0x00) will be removed from content
matches when determining/using the longest content match unless
fast_pattern is explicitly set. Suricata does not truncate
anything, including NULL bytes.

	Snort does not allow for all http_* buffers to be used for
the fast pattern match (e.g. http_raw_*, http_method,
http_cookie, etc.). Suricata lets you use any 'http_*'
buffer you want for the fast pattern match, including
http_raw_*' and ``http_cookie buffers.

	Suricata supports the fast_pattern:only syntax but
technically it is not really implemented; the only is
silently ignored when encountered in a rule. It is still recommended
that you use fast_pattern:only where appropriate in case this
gets implemented in the future and/or if the rule will be used by
Snort as well.

	With Snort, unless fast_pattern is explicitly set, content
matches in normalized HTTP Inspect buffers (e.g. http content
modifiers such http_uri, http_header, etc.) take
precedence over non-HTTP Inspect content matches, even if they are
shorter. Suricata does the same thing and gives a higher 'priority'
(precedence) to http_* buffers (except for http_method,
http_stat_code, and http_stat_msg).

	See Suricata Fast Pattern Determination Explained for full details on how Suricata
automatically determines which content to use as the fast pattern match.

	When in doubt about what is going to be use as the fast pattern match
by Suricata, set fast_pattern explicitly in the rule and/or
run Suricata with the --engine-analysis switch and view the
generated file (rules_fast_pattern.txt).

	Like Snort, the fast pattern match is checked before flowbits
in Suricata.

	Using Hyperscan as the MPM matcher (mpm-algo setting) for Suricata
can greatly improve performance, especially when it comes to fast pattern
matching. Hyperscan will also take into account depth and offset
when doing fast pattern matching, something the other algorithms and
Snort do not do.

	fast_pattern

8.46.22. Don't Cross The Streams

Suricata will examine network traffic as individual packets and, in the
case of TCP, as part of a (reassembled) stream. However, there are
certain rule keywords that only apply to packets only (dsize,
flags, ttl) and certain ones that only apply to streams
only (http_*) and you can't mix packet and stream keywords. Rules
that use packet keywords will inspect individual packets only and
rules that use stream keywords will inspect streams only. Snort is a
little more forgiving when you mix these – for example, in Snort you can
use dsize (a packet keyword) with http_* (stream
keywords) and Snort will allow it although, because of dsize, it
will only apply detection to individual packets (unless PAF is enabled
then it will apply it to the PDU).

If dsize is in a rule that also looks for a stream-based
application layer protocol (e.g. http), Suricata will not match on
the first application layer packet since dsize make Suricata
evaluate the packet and protocol detection doesn't happen until after
the protocol is checked for that packet; subsequent packets in that
flow should have the application protocol set appropriately and will
match rules using dsize and a stream-based application layer
protocol.

If you need to check sizes on a stream in a rule that uses a stream
keyword, or in a rule looking for a stream-based application layer
protocol, consider using the stream_size keyword and/or
isdataat.

Suricata also supports these protocol values being used in rules and
Snort does not:

	tcp-pkt – example:

	alert tcp-pkt ...

	This tells Suricata to only apply the rule to TCP packets and not
the (reassembled) stream.

	tcp-stream – example:

	alert tcp-stream ...

	This tells Suricata to inspect the (reassembled) TCP stream only.

8.46.23. Alerts

	In Snort, the number of alerts generated for a packet/stream can be
limited by the event_queue configuration.

	Suricata has an internal hard-coded limit of 15 alerts per packet/stream (and
this cannot be configured); all rules that match on the traffic being
analyzed will fire up to that limit.

	Sometimes Suricata will generate what appears to be two alerts for
the same TCP packet. This happens when Suricata evaluates the packet
by itself and as part of a (reassembled) stream.

8.46.24. Buffer Reference Chart

	Buffer

	Snort 2.9.x
Support?

	Suricata
Support?

	PCRE
flag

	Can be used as
Fast Pattern?

	Suricata Fast
Pattern Priority
(lower number is
higher priority)

	content (no modifier)

	YES

	YES

	<none>

	YES

	3

	http_method

	YES

	YES

	M

	Suricata only

	3

	http_stat_code

	YES

	YES

	S

	Suricata only

	3

	http_stat_msg

	YES

	YES

	Y

	Suricata only

	3

	uricontent

	YES but deprecated, use http_uri instead

	YES but deprecated, use http_uri instead

	U

	YES

	2

	http_uri

	YES

	YES

	U

	YES

	2

	http_raw_uri

	YES

	YES

	I

	Suricata only

	2

	http_header

	YES

	YES

	H

	YES

	2

	http_raw_header

	YES

	YES

	D

	Suricata only

	2

	http_cookie

	YES

	YES

	C

	Suricata only

	2

	http_raw_cookie

	YES

	NO (use http_raw_header instead)

	K

	NO

	n/a

	http_host

	NO

	YES

	W

	Suricata only

	2

	http_raw_host

	NO

	YES

	Z

	Suricata only

	2

	http_client_body

	YES

	YES

	P

	YES

	2

	http_server_body

	NO

	YES

	Q

	Suricata only

	2

	http_user_agent

	NO

	YES

	V

	Suricata only

	2

	dns_query

	NO

	YES

	n/a*

	Suricata only

	2

	tls_sni

	NO

	YES

	n/a*

	Suricata only

	2

	tls_cert_issuer

	NO

	YES

	n/a*

	Suricata only

	2

	tls_cert_subject

	NO

	YES

	n/a*

	Suricata only

	2

	file_data

	YES

	YES

	n/a*

	YES

	2

* Sticky buffer

8.47. Multiple Buffer Matching

Suricata 7 and newer now supports matching contents in multiple
buffers within the same transaction.

For example a single DNS transaction that has two queries in it:

query 1: example.net
query 2: something.com

Example rule:

alert dns $HOME_NET any -> $EXTERNAL_NET any (msg:"DNS Multiple Question Example Rule"; dns.query; content:"example"; dns.query; content:".com"; classtype:misc-activity; sid:1; rev:1;)

Within the single DNS query transaction, there are two queries
and Suricata will set up two instances of a dns.query buffer.

The first dns.query buffer will look for content:"example";

The second dns.query buffer will look for content:".com";

The example rule will alert on the example query since all the
content matches are satisfied for the rule.

For matching multiple headers in HTTP2 traffic a rule using the
new functionality would look like:

alert http2 any any -> any any (msg:"HTTP2 Multiple Header Buffer Example"; flow:established,to_server; http.request_header; content:"method|3a 20|GET"; http.request_header; content:"authority|3a 20|example.com"; classtype:misc-activity; sid:1; rev:1;)

With HTTP2 there are multiple headers seen in the same flow record.
We now have a way to write a rule in a more efficient way using the
multiple buffer capability.

Note Existing behavior when using sticky buffers still applies:

Example rule:

alert dns $HOME_NET any -> $EXTERNAL_NET any (msg:"DNS Query Sticky Buffer Classic Example Rule"; dns.query; content:"example"; content:".net"; classtype:misc-activity; sid:1; rev:1;)

The above rule will alert on a single dns query containing
"example.net" or "example.domain.net" since the rule content
matches are within a single dns.query buffer and all
content match requirements of the rule are met.

Note: This is new behavior. In versions of Suricata prior to
version 7 multiple statements of the same sticky buffer did not
make a second instance of the buffer. For example:

dns.query; content:"example"; dns.query; content:".com";

would be equivalent to:

dns.query; content:"example"; content:".com";

Using our example from above, the first query is for example.net
which matches content:"example"; but does not match content:".com";

The second query is for something.com which would match on the
content:".com"; but not the content:"example";

So with the Suricata behavior prior to Suricata 7, the signature
would not fire in this case since both content conditions will
not be met.

Multiple buffer matching is currently enabled for use with the
following keywords:

	dns.query

	file.data

	file.magic

	file.name

	http.request_header

	http.response_header

	http2.header_name

	ike.vendor

	krb5_cname

	krb5_sname

	mqtt.subscribe.topic

	mqtt.unsubscribe.topic

	quic.cyu.hash

	quic.cyu.string

	tls.certs

	tls.cert_subject

8.48. Tag

The tag keyword allows tagging of the current and future packets.

Tagged packets can be logged in EVE and conditional PCAP logging.

Tagging is limited to a scope: host or session (flow). When using host a
direction can be specified: src or dst. Tagging will then occur based on the
src or dst IP address of the packet generating the alert.

Tagging is further controlled by count: packets, bytes or seconds. If the
count is ommited built-in defaults will be used:

	for session: 256 packets

	for host: 256 packets for the destination IP of the packet triggering the alert

The tag keyword can appear multiple times in a rule.

8.48.1. Syntax

tag:<scope>[,<count>, <metric>[,<direction>]];

Values for scope: session and host
Values for metric: packets, bytes, seconds
Values for direction: src and dst

Note

"direction" can only be specified if scope is "host" and both "count"
and "metric" are also specified.

8.48.2. Examples

Keyword:

tag:session; # tags next 256 packets in the flow
tag:host; # tags next 256 packets for the dst ip of the alert
tag:host,100,packets,src; # tags next 100 packets for src ip of the alert
tag:host,3600,seconds,dst; # tags packets for dst host for the next hour

Full rule examples:

alert dns any any -> any any (dns.query; content:"evil"; tag:host,60,seconds,src; sid:1;)

alert http any any -> any any (http.method; content:"POST"; tag:session; sid:1;)

8.48.3. How to Use Tags

8.48.3.1. EVE

Tags can be set to generate EVE tag records:

outputs:
 - eve-log:
 enabled: yes
 filename: eve.json
 types:
 - alert:
 tagged-packets: true

The tagged packets will then be logged with event_type: packet:

{
 "timestamp": "2020-06-03T10:29:17.850417+0000",
 "flow_id": 1576832511820424,
 "event_type": "packet",
 "src_ip": "192.168.0.27",
 "src_port": 54634,
 "dest_ip": "192.168.0.103",
 "dest_port": 22,
 "proto": "TCP",
 "pkt_src": "wire/pcap",
 "packet": "CAAn6mWJAPSNvfrHCABFAAAogkVAAIAG9rfAqAAbwKgAZ9VqABZvnJXH5Zf6aFAQEAljEwAAAAAAAAAA",
 "packet_info": {
 "linktype": 1
 }
}

EVE: Eve JSON Output

8.48.3.2. Conditional PCAP Logging

Using the conditional PCAP logging option the tag keyword can control which
packets are logged by the PCAP logging.

outputs:
 - pcap-log:
 enabled: yes
 filename: log.pcap
 limit: 1000mb
 max-files: 2000
 compression: none
 mode: normal
 use-stream-depth: no #If set to "yes" packets seen after reaching stream inspection depth are ignored. "no" logs all packets
 honor-pass-rules: no # If set to "yes", flows in which a pass rule matched will stop being logged.
 # Use "all" to log all packets or use "alerts" to log only alerted packets and flows or "tag"
 # to log only flow tagged via the "tag" keyword
 conditional: tag

PCAP Logging: PCAP log

8.48.4. Tracking by Host/Flow

When the tags are using the session scope, the tag is added to the
Flow structure. If a packet has no flow, no tagging will happen. No
errors/warnings are generated for this.

See Flow Settings for managing flow
limits and resources.

When tags are using the host scope, the tag is stored with a Host
object in the host table. The Host table size will affect effectiveness
of per host tags.

See Host Settings for managing host
table size.

9. Rule Management

	9.1. Rule Management with Suricata-Update
	9.1.1. Updating your rules

	9.1.2. Using other rulesets

	9.1.3. Controlling which rules are used

	9.1.4. Further reading

	9.2. Adding Your Own Rules

	9.3. Rule Reloads

	9.4. Rules Profiling

9.1. Rule Management with Suricata-Update

While it is possible to download and install rules manually, it is
recommended to use a management tool for this. suricata-update is the
official way to update and manage rules for Suricata.

suricata-update is bundled with Suricata and is normally installed
with it. For instructions on installing manually, see http://suricata-update.readthedocs.io/en/latest/quickstart.html#install-suricata-update

Note

suricata-update is bundled with Suricata version 4.1 and
later. It can be used with older versions as well. It will
have to be installed separately in that case.

To download the Emerging Threats Open ruleset, it is enough to simply run:

sudo suricata-update

This will download the ruleset into /var/lib/suricata/rules/

Suricata's configuration will have to be updated to have a rules config like
this:

default-rule-path: /var/lib/suricata/rules
rule-files:
 - suricata.rules

Now (re)start Suricata.

9.1.1. Updating your rules

To update the rules, simply run

sudo suricata-update

It is recommended to update your rules frequently.

9.1.2. Using other rulesets

Suricata-Update is capable of making other rulesets accessible as well.

To see what is available, fetch the master index from the OISF hosts:

sudo suricata-update update-sources

Then have a look at what is available:

sudo suricata-update list-sources

This will give a result similar to

[image: ../_images/suricata-update.png]
Each of the rulesets has a name that has a 'vendor' prefix, followed by a
set name. For example, OISF's traffic id ruleset is called 'oisf/trafficid'.

To enable 'oisf/trafficid', enter:

sudo suricata-update enable-source oisf/trafficid
sudo suricata-update

Now restart Suricata again and the rules from the OISF TrafficID ruleset are loaded.

To see which rulesets are currently active, use "list-enabled-sources".

9.1.3. Controlling which rules are used

By default suricata-update will merge all rules into a single file
"/var/lib/suricata/rules/suricata.rules".

To enable rules that are disabled by default, use /etc/suricata/enable.conf

2019401 # enable signature with this sid
group:emerging-icmp.rules # enable this rulefile
re:trojan # enable all rules with this string

Similarly, to disable rules use /etc/suricata/disable.conf:

2019401 # disable signature with this sid
group:emerging-info.rules # disable this rulefile
re:heartbleed # disable all rules with this string

After updating these files, rerun suricata-update again:

sudo suricata-update

Finally restart Suricata.

9.1.4. Further reading

See https://suricata-update.readthedocs.io/en/latest/

9.2. Adding Your Own Rules

If you would like to create a rule yourself and use it with Suricata,
this guide might be helpful.

Start creating a file for your rule. Use one of the following examples in
your console/terminal window:

sudo nano local.rules
sudo vim local.rules

Write your rule, see Rules Format and save it.

Update the Suricata configuration file so your rule is included. Use
one of the following examples:

sudo nano /etc/suricata/suricata.yaml
sudo vim /etc/suricata/suricata.yaml

and make sure your local.rules file is added to the list of rules:

default-rule-path: /usr/local/etc/suricata/rules

rule-files:
 - suricata.rules
 - /path/to/local.rules

Now, run Suricata and see if your rule is being loaded.

suricata -c /etc/suricata/suricata.yaml -i wlan0

If the rule failed to load, Suricata will display as much information as
it has when it deemed the rule un-loadable. Pay special attention to the
details: look for mistakes in special characters, spaces, capital characters,
etc.

Next, check if your log-files are enabled in the Suricata configuration file
suricata.yaml.

If you had to correct your rule and/or modify Suricata's YAML configuration
file, you'll have to restart Suricata.

If you see your rule is successfully loaded, you can double check your
rule by doing something that should trigger it.

By default, Suricata will log alerts to two places

	eve.json

	fast.log

These files will be located in the log output directory which is set by
one of two methods:

	Suricata configuration file: see default-log-dir for the name of the directory

	Suricata command line: Using -l /path/to/log-dir creates log files in the named
directory.

The following example assumes that the log directory is named /var/log/suricata

tail -f /var/log/suricata/fast.log

If you would make a rule like this:

alert http any any -> any any (msg:"Do not read gossip during work";
content:"Scarlett"; nocase; classtype:policy-violation; sid:1; rev:1;)

Your alert should look like this:

09/15/2011-16:50:27.725288 [**] [1:1:1] Do not read gossip during work [**]
[Classification: Potential Corporate Privacy Violation] [Priority: 1] {TCP} 192.168.0.32:55604 -> 68.67.185.210:80

9.3. Rule Reloads

Suricata can reload the rules without restarting. This way, there
is minimal service disruption.

This works by sending Suricata a signal or by using the unix socket. When Suricata is told to reload the rules these are the basic steps it takes:

	Load new config to update rule variables and values.

	Load new rules

	Construct new detection engine

	Swap old and new detection engines

	Make sure all threads are updated

	Free old detection engine

Suricata will continue to process packets normally during this process. Keep in mind though, that the system should have enough memory for both detection engines.

Signal:

kill -USR2 $(pidof suricata)

There are two methods available when using the Unix socket.

Blocking reload

suricatasc -c reload-rules

Non blocking reload

suricatasc -c ruleset-reload-nonblocking

It is also possible to get information about the last reload via dedicated commands. See Commands in standard running mode for more information.

9.4. Rules Profiling

If Suricata is built with the --enable-profiling-rules then the ruleset profiling
can be activated on demand from the unix socket and dumped from it.

To start profiling

suricatasc -c ruleset-profile-start

To stop profiling

suricatasc -c ruleset-profile-stop

To dump profiling

suricatasc -c ruleset-profile

A typical scenario to get rules performance would be

suricatasc -c ruleset-profile-start
sleep 30
suricatasc -c ruleset-profile-stop
suricatasc -c ruleset-profile

On busy systems, using the sampling capability to capture performance
on a subset of packets can be obtained via the sample-rate variable
in the profiling section in the suricata.yaml file.

10. Making sense out of Alerts

When an alert happens it's important to figure out what it means. Is it
serious? Relevant? A false positive?

To find out more about the rule that fired, it's always a good idea to
look at the actual rule.

The first thing to look at in a rule is the description that follows
the msg keyword. Let's consider an example:

msg:"ET SCAN sipscan probe";

The "ET" indicates the rule came from the Emerging Threats (Proofpoint)
project. "SCAN" indicates the purpose of the rule is to match on some
form of scanning. Following that, a more or less detailed description
is given.

Most rules contain some pointers to more information in the form of
the "reference" keyword.

Consider the following example rule:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS \
 (msg:"ET CURRENT_EVENTS Adobe 0day Shovelware"; \
 flow:established,to_server; content:"GET "; nocase; depth:4; \
 content:!"|0d 0a|Referer\:"; nocase; \
 uricontent:"/ppp/listdir.php?dir="; \
 pcre:"/\/[a-z]{2}\/[a-z]{4}01\/ppp\/listdir\.php\?dir=/U"; \
 classtype:trojan-activity; \
 reference:url,isc.sans.org/diary.html?storyid=7747; \
 reference:url,doc.emergingthreats.net/2010496; \
 reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/CURRENT_EVENTS/CURRENT_Adobe; \
 sid:2010496; rev:2;)

In this rule, the reference keyword indicates 3 urls to visit for more
information:

isc.sans.org/diary.html?storyid=7747
doc.emergingthreats.net/2010496
www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/CURRENT_EVENTS/CURRENT_Adobe

Some rules contain a reference like: "reference:cve,2009-3958;" should
allow you to find info about the specific CVE using your favorite
search engine.

It's not always straight forward and sometimes not all of that
information is available publicly. Usually asking about it on the
signature support channel can be helpful.

In Rule Management with Suricata-Update more information on the rule
sources and their documentation and support methods can be found.

In many cases, looking at just the alert and the packet that triggered
it won't be enough to be conclusive. When using the default Eve settings
a lot of metadata will be added to the alert.

For example, if a rule fired that indicates your web application is
attacked, looking at the metadata might reveal that the web
application replied with 404 not found. This will usually mean the
attack failed but not always.

Not every protocol leads to metadata generation, so when running an
IDS engine like Suricata, it's often recommended to combine it with
full packet capture. Using tools like Evebox, Sguil or Snorby, the
full TCP session or UDP flow can be inspected.

Obviously there is a lot more to Incidence Response, but this should
get you started.

11. Performance

	11.1. Runmodes
	11.1.1. Different runmodes

	11.1.2. Load balancing

	11.2. Packet Capture
	11.2.1. Load balancing

	11.2.2. RSS

	11.2.3. Offloading

	11.2.4. Recommendations

	11.3. Tuning Considerations
	11.3.1. max-pending-packets: <number>

	11.3.2. mpm-algo: <ac|hs|ac-bs|ac-ks>

	11.3.3. detect.profile: <low|medium|high|custom>

	11.3.4. detect.sgh-mpm-context: <auto|single|full>

	11.3.5. af-packet

	11.3.6. ring-size

	11.3.7. stream.bypass

	11.4. Hyperscan
	11.4.1. Introduction

	11.4.2. Basic Installation (Package)

	11.4.3. Advanced Installation (Source)

	11.4.4. Using Hyperscan

	11.5. High Performance Configuration
	11.5.1. NIC

	11.5.2. CPU affinity and NUMA
	11.5.2.1. Intel based systems

	11.5.2.2. AMD based systems

	11.5.2.3. Other considerations

	11.6. Statistics
	11.6.1. stats.log file
	11.6.1.1. Detecting packet loss

	11.6.2. Kernel drops

	11.6.3. Tools to plot graphs

	11.7. Ignoring Traffic
	11.7.1. capture filters (BPF)
	11.7.1.1. BPF and IPS

	11.7.2. pass rules

	11.7.3. suppress

	11.7.4. encrypted traffic

	11.7.5. bypassing traffic

	11.8. Packet Profiling

	11.9. Rule Profiling

	11.10. Tcmalloc
	11.10.1. Installation

	11.10.2. Usage

	11.11. Performance Analysis
	11.11.1. System Load

	11.11.2. Logfiles

	11.11.3. Suricata Load

	11.11.4. Traffic
	11.11.4.1. Basics

	11.11.4.2. Advanced

	11.11.4.3. Elephant Flows

	11.11.5. Rules

11.1. Runmodes

Suricata consists of several 'building blocks' called threads,
thread-modules and queues. A thread is like a process that runs on a
computer. Suricata is multi-threaded, so multiple threads are active
at once. A thread-module is a part of a functionality. One module is
for example for decoding a packet, another is the detect-module and
another one the output-module. A packet can be processed by more than
one thread. The packet will then be passed on to the next thread through
a queue. Packets will be processed by one thread at a time, but there
can be multiple packets being processed at a time by the engine (see
Max-pending-packets). A thread can have one or
more thread-modules. If they have more modules, they can only be
active one a a time. The way threads, modules and queues are arranged
together is called the "Runmode".

11.1.1. Different runmodes

You can choose a runmode out of several predefined runmodes. The
command line option --list-runmodes shows all available runmodes. All
runmodes have a name: single, workers, autofp.

Generally, the workers runmode performs the best. In this mode the
NIC/driver makes sure packets are properly balanced over Suricata's
processing threads. Each packet processing thread then contains the
full packet pipeline.

[image: ../_images/workers.png]
For processing PCAP files, or in case of certain IPS setups (like NFQ),
autofp is used. Here there are one or more capture threads, that
capture the packet and do the packet decoding, after which it is passed
on to the flow worker threads.

[image: ../_images/autofp1.png]
[image: ../_images/autofp2.png]
Finally, the single runmode is the same as the workers mode,
however there is only a single packet processing thread. This is mostly
useful during development.

[image: ../_images/single.png]
For more information about the command line options concerning the
runmode, see Command Line Options.

11.1.2. Load balancing

Suricata may use different ways to load balance the packets to process
between different threads with the configuration option autofp-scheduler.

The default value is hash, which means the packet is assigned to threads
using the 5-7 tuple hash, which is also used anyways to store the flows
in memory.

This option can also be set to
- ippair : packets are assigned to threads using addresses only.
- ftp-hash : same as hash except for flows that may be ftp or ftp-data
so that these flows get processed by the same thread. Like so, there is no
concurrency issue in recognizing ftp-data flows due to processing them
before the ftp flow got processed. In case of such a flow, a variant of the
hash is used.

11.2. Packet Capture

11.2.1. Load balancing

To get the best performance, Suricata will need to run in 'workers' mode. This effectively means that there are multiple threads, each running a full packet pipeline and each receiving packets from the capture method. This means that we rely on the capture method to distribute the packets over the various threads. One critical aspect of this is that Suricata needs to get both sides of a flow in the same thread, in the correct order.

The AF_PACKET and PF_RING capture methods both have options to select the 'cluster-type'. These default to 'cluster_flow' which instructs the capture method to hash by flow (5 tuple). This hash is symmetric. Netmap does not have a cluster_flow mode built-in. It can be added separately by using the "'lb' tool":https://github.com/luigirizzo/netmap/tree/master/apps/lb

On multi-queue NICs, which is almost any modern NIC, RSS settings need to be considered.

11.2.2. RSS

Receive Side Scaling is a technique used by network cards to distribute incoming traffic over various queues on the NIC. This is meant to improve performance but it is important to realize that it was designed for normal traffic, not for the IDS packet capture scenario. RSS using a hash algorithm to distribute the incoming traffic over the various queues. This hash is normally not symmetrical. This means that when receiving both sides of a flow, each side may end up in a different queue. Sadly, when deploying Suricata, this is the common scenario when using span ports or taps.

The problem here is that by having both sides of the traffic in different queues, the order of processing of packets becomes unpredictable. Timing differences on the NIC, the driver, the kernel and in Suricata will lead to a high chance of packets coming in at a different order than on the wire. This is specifically about a mismatch between the two traffic directions. For example, Suricata tracks the TCP 3-way handshake. Due to this timing issue, the SYN/ACK may only be received by Suricata long after the client to server side has already started sending data. Suricata would see this traffic as invalid.

None of the supported capture methods like AF_PACKET, PF_RING or NETMAP can fix this problem for us. It would require buffering and packet reordering which is expensive.

To see how many queues are configured:

$ ethtool -l ens2f1
Channel parameters for ens2f1:
Pre-set maximums:
RX: 0
TX: 0
Other: 1
Combined: 64
Current hardware settings:
RX: 0
TX: 0
Other: 1
Combined: 8

Some NIC's allow you to set it into a symmetric mode. The Intel X(L)710 card can do this in theory, but the drivers aren't capable of enabling this yet (work is underway to try to address this). Another way to address is by setting a special "Random Secret Key" that will make the RSS symmetrical. See http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf (PDF).

In most scenario's however, the optimal solution is to reduce the number of RSS queues to 1:

Example:

Intel X710 with i40e driver:
ethtool -L $DEV combined 1

Some drivers do not support setting the number of queues through ethtool. In some cases there is a module load time option. Read the driver docs for the specifics.

11.2.3. Offloading

Network cards, drivers and the kernel itself have various techniques to speed up packet handling. Generally these will all have to be disabled.

LRO/GRO lead to merging various smaller packets into big 'super packets'. These will need to be disabled as they break the dsize keyword as well as TCP state tracking.

Checksum offloading can be left enabled on AF_PACKET and PF_RING, but needs to be disabled on PCAP, NETMAP and others.

11.2.4. Recommendations

Read your drivers documentation! E.g. for i40e the ethtool change of RSS queues may lead to kernel panics if done wrong.

Generic: set RSS queues to 1 or make sure RSS hashing is symmetric. Disable NIC offloading.

AF_PACKET: 1 RSS queue and stay on kernel <=4.2 or make sure you have >=4.4.16, >=4.6.5 or >=4.7. Exception: if RSS is symmetric cluster-type 'cluster_qm' can be used to bind Suricata to the RSS queues. Disable NIC offloading except the rx/tx csum.

PF_RING: 1 RSS queue and use cluster-type 'cluster_flow'. Disable NIC offloading except the rx/tx csum.

NETMAP: 1 RSS queue. There is no flow based load balancing built-in, but the 'lb' tool can be helpful. Another option is to use the 'autofp' runmode. Exception: if RSS is symmetric, load balancing is based on the RSS hash and multiple RSS queues can be used. Disable all NIC offloading.

11.3. Tuning Considerations

Settings to check for optimal performance.

11.3.1. max-pending-packets: <number>

This setting controls the number simultaneous packets that the engine
can handle. Setting this higher generally keeps the threads more busy,
but setting it too high will lead to degradation.

Suggested setting: 10000 or higher. Max is ~65000. This setting is per thread.
The memory is set up at start and the usage is as follows:

number_of.threads X max-pending-packets X (default-packet-size + ~750 bytes)

11.3.2. mpm-algo: <ac|hs|ac-bs|ac-ks>

Controls the pattern matcher algorithm. AC (Aho–Corasick) is the default.
On supported platforms, Hyperscan is the best option. On commodity
hardware if Hyperscan is not available the suggested setting is
mpm-algo: ac-ks (Aho–Corasick Ken Steele variant) as it performs better than
mpm-algo: ac

11.3.3. detect.profile: <low|medium|high|custom>

The detection engine tries to split out separate signatures into
groups so that a packet is only inspected against signatures that can
actually match. As in large rule set this would result in way too many
groups and memory usage similar groups are merged together. The
profile setting controls how aggressive this merging is done. The default
setting of high usually is good enough.

The "custom" setting allows modification of the group sizes:

custom-values:
 toclient-groups: 100
 toserver-groups: 100

In general, increasing will improve performance. It will lead to minimal
increase in memory usage.
The default value for toclient-groups and toserver-groups with
detect.profile: high is 75.

11.3.4. detect.sgh-mpm-context: <auto|single|full>

The multi pattern matcher can have it's context per signature group
(full) or globally (single). Auto selects between single and full
based on the mpm-algo selected. ac, ac-bs, ac-ks, hs default to "single".
Setting this to "full" with mpm-algo: ac or mpm-algo: ac-ks offers
better performance. Setting this to "full" with mpm-algo: hs is not
recommended as it leads to much higher startup time. Instead with Hyperscan
either detect.profile: high or bigger custom group size settings can be
used as explained above which offers better performance than ac and
ac-ks even with detect.sgh-mpm-context: full.

11.3.5. af-packet

If using af-packet (default on Linux) it is recommended that af-packet v3
is used for IDS/NSM deployments. For IPS it is recommended af-packet v2. To make
sure af-packet v3 is used it can specifically be enforced it in the
af-packet config section of suricata.yaml like so:

af-packet:
 - interface: eth0

 use-mmap: yes
 tpacket-v3: yes

11.3.6. ring-size

Ring-size is another af-packet variable that can be considered for tuning
and performance benefits. It basically means the buffer size for packets per
thread. So if the setting is ring-size: 100000 like below:

af-packet:
 - interface: eth0
 threads: 5
 ring-size: 100000

it means there will be 100,000 packets allowed in each buffer of the 5 threads.
If any of the buffers gets filled (for example packet processing can not keep up)
that will result in packet drop counters increasing in the stats logs.

The memory used for those is set up and dedicated at start and is calculated
as follows:

af-packet.threads X af-packet.ring-size X (default-packet-size + ~750 bytes)

where af-packet.threads, af-packet.ring-size, default-packet-size
are the values set in suricata.yaml. Config values for example for af-packet
could be quickly displayed with on the command line as well with
suricata --dump-config |grep af-packet.

11.3.7. stream.bypass

Another option that can be used to improve performance is stream.bypass.
In the example below:

stream:
 memcap: 64mb
 checksum-validation: yes # reject wrong csums
 inline: auto # auto will use inline mode in IPS mode, yes or no set it statically
 bypass: yes
 reassembly:
 memcap: 256mb
 depth: 1mb # reassemble 1mb into a stream
 toserver-chunk-size: 2560
 toclient-chunk-size: 2560
 randomize-chunk-size: yes

Inspection will be skipped when stream.reassembly.depth of 1mb is reached for a particular flow.

11.4. Hyperscan

11.4.1. Introduction

"Hyperscan is a high performance regular expression matching library (...)" (https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-hyperscan.html)

In Suricata it can be used to perform multi pattern matching (mpm) or single pattern matching (spm).

Support for hyperscan in Suricata was initially implemented by Justin Viiret and Jim Xu from Intel via https://github.com/OISF/suricata/pull/1965.

Hyperscan is only for Intel x86 based processor architectures at this time. For ARM processors, vectorscan is a drop in replacement for hyperscan, https://github.com/VectorCamp/vectorscan.

11.4.2. Basic Installation (Package)

Some Linux distributions include hyperscan in their respective package collections.

Fedora 37+/Centos 8+: sudo dnf install hyperscan-devel
Ubuntu/Debian: sudo apt-get install libhyperscan-dev

11.4.3. Advanced Installation (Source)

Hyperscan has the following dependencies in order to build from
source:

	boost development libraries (minimum boost library version is 1.58)

	cmake

	C++ compiler (e.g. gcc-c++)

	libpcap development libraries

	pcre2 development libraries

	python3

	ragel

	sqlite development libraries

Note: git is an additional dependency if cloning the
hyperscan GitHub repository. Otherwise downloading the
hyperscan zip from the GitHub repository will work too.

The steps to build and install hyperscan are:

git clone https://github.com/intel/hyperscan
cd hyperscan
cmake -DBUILD_STATIC_AND_SHARED=1
cmake --build ./
sudo cmake --install ./

Note: Hyperscan can take a a long time to build/compile.

Note: It may be necessary to add /usr/local/lib or
/usr/local/lib64 to the ld search path. Typically this is
done by adding a file under /etc/ld.so.conf.d/ with the contents
of the directory location of libhs.so.5 (for hyperscan 5.x).

11.4.4. Using Hyperscan

Confirm that the suricata version installed has hyperscan enabled.

suricata --build-info | grep Hyperscan
 Hyperscan support: yes

To use hyperscan support, edit the suricata.yaml.
Change the mpm-algo and spm-algo values to 'hs'.

Alternatively, use this command-line option: --set mpm-algo=hs --set spm-algo=hs

Note: The default suricata.yaml configuration settings for
mpm-algo and spm-algo are "auto". Suricata will use hyperscan
if it is present on the system in case of the "auto" setting.

If the current suricata installation does not have hyperscan
support, refer to Installation

11.5. High Performance Configuration

11.5.1. NIC

One of the major dependencies for Suricata's performance is the Network
Interface Card. There are many vendors and possibilities. Some NICs have and
require their own specific instructions and tools of how to set up the NIC.
This ensures the greatest benefit when running Suricata. Vendors like
Napatech, Netronome, Accolade, Myricom include those tools and documentation
as part of their sources.

For Intel, Mellanox and commodity NICs the following suggestions below could
be utilized.

It is recommended that the latest available stable NIC drivers are used. In
general when changing the NIC settings it is advisable to use the latest
ethtool version. Some NICs ship with their own ethtool that is
recommended to be used. Here is an example of how to set up the ethtool
if needed:

wget https://mirrors.edge.kernel.org/pub/software/network/ethtool/ethtool-5.2.tar.xz
tar -xf ethtool-5.2.tar.xz
cd ethtool-5.2
./configure && make clean && make && make install
/usr/local/sbin/ethtool --version

When doing high performance optimisation make sure irqbalance is off and
not running:

service irqbalance stop

Depending on the NIC's available queues (for example Intel's x710/i40 has 64
available per port/interface) the worker threads can be set up accordingly.
Usually the available queues can be seen by running:

/usr/local/sbin/ethtool -l eth1

Some NICs - generally lower end 1Gbps - do not support symmetric hashing see
Packet Capture. On those systems due to considerations for out of order
packets the following setup with af-packet is suggested (the example below
uses eth1):

/usr/local/sbin/ethtool -L eth1 combined 1

then set up af-packet with number of desired workers threads threads: auto
(auto by default will use number of CPUs available) and
cluster-type: cluster_flow (also the default setting)

For higher end systems/NICs a better and more performant solution could be
utilizing the NIC itself a bit more. x710/i40 and similar Intel NICs or
Mellanox MT27800 Family [ConnectX-5] for example can easily be set up to do
a bigger chunk of the work using more RSS queues and symmetric hashing in order
to allow for increased performance on the Suricata side by using af-packet
with cluster-type: cluster_qm mode. In that mode with af-packet all packets
linked by network card to a RSS queue are sent to the same socket. Below is
an example of a suggested config set up based on a 16 core one CPU/NUMA node
socket system using x710:

rmmod i40e && modprobe i40e
ifconfig eth1 down
/usr/local/sbin/ethtool -L eth1 combined 16
/usr/local/sbin/ethtool -K eth1 rxhash on
/usr/local/sbin/ethtool -K eth1 ntuple on
ifconfig eth1 up
/usr/local/sbin/ethtool -X eth1 hkey 6D:5A:6D:5A equal 16
/usr/local/sbin/ethtool -A eth1 rx off
/usr/local/sbin/ethtool -C eth1 adaptive-rx off adaptive-tx off rx-usecs 125
/usr/local/sbin/ethtool -G eth1 rx 1024

The commands above can be reviewed in detail in the help or manpages of the
ethtool. In brief the sequence makes sure the NIC is reset, the number of
RSS queues is set to 16, load balancing is enabled for the NIC, a low entropy
toeplitz key is inserted to allow for symmetric hashing, receive offloading is
disabled, the adaptive control is disabled for lowest possible latency and
last but not least, the ring rx descriptor size is set to 1024.
Make sure the RSS hash function is Toeplitz:

/usr/local/sbin/ethtool -X eth1 hfunc toeplitz

Let the NIC balance as much as possible:

for proto in tcp4 udp4 tcp6 udp6; do
 /usr/local/sbin/ethtool -N eth1 rx-flow-hash $proto sdfn
done

In some cases:

/usr/local/sbin/ethtool -N eth1 rx-flow-hash $proto sd

might be enough or even better depending on the type of traffic. However not
all NICs allow it. The sd specifies the multi queue hashing algorithm of
the NIC (for the particular proto) to use src IP, dst IP only. The sdfn
allows for the tuple src IP, dst IP, src port, dst port to be used for the
hashing algorithm.
In the af-packet section of suricata.yaml:

af-packet:
 - interface: eth1
 threads: 16
 cluster-id: 99
 cluster-type: cluster_qm
 ...
 ...

11.5.2. CPU affinity and NUMA

11.5.2.1. Intel based systems

If the system has more then one NUMA node there are some more possibilities.
In those cases it is generally recommended to use as many worker threads as
cpu cores available/possible - from the same NUMA node. The example below uses
a 72 core machine and the sniffing NIC that Suricata uses located on NUMA node 1.
In such 2 socket configurations it is recommended to have Suricata and the
sniffing NIC to be running and residing on the second NUMA node as by default
CPU 0 is widely used by many services in Linux. In a case where this is not
possible it is recommended that (via the cpu affinity config section in
suricata.yaml and the irq affinity script for the NIC) CPU 0 is never used.

In the case below 36 worker threads are used out of NUMA node 1's CPU,
af-packet runmode with cluster-type: cluster_qm.

If the CPU's NUMA set up is as follows:

lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 72
On-line CPU(s) list: 0-71
Thread(s) per core: 2
Core(s) per socket: 18
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 79
Model name: Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz
Stepping: 1
CPU MHz: 1199.724
CPU max MHz: 3600.0000
CPU min MHz: 1200.0000
BogoMIPS: 4589.92
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 46080K
NUMA node0 CPU(s): 0-17,36-53
NUMA node1 CPU(s): 18-35,54-71

It is recommended that 36 worker threads are used and the NIC set up could be
as follows:

rmmod i40e && modprobe i40e
ifconfig eth1 down
/usr/local/sbin/ethtool -L eth1 combined 36
/usr/local/sbin/ethtool -K eth1 rxhash on
/usr/local/sbin/ethtool -K eth1 ntuple on
ifconfig eth1 up
./set_irq_affinity local eth1
/usr/local/sbin/ethtool -X eth1 hkey 6D:5A:6D:5A equal 36
/usr/local/sbin/ethtool -A eth1 rx off tx off
/usr/local/sbin/ethtool -C eth1 adaptive-rx off adaptive-tx off rx-usecs 125
/usr/local/sbin/ethtool -G eth1 rx 1024
for proto in tcp4 udp4 tcp6 udp6; do
 echo "/usr/local/sbin/ethtool -N eth1 rx-flow-hash $proto sdfn"
 /usr/local/sbin/ethtool -N eth1 rx-flow-hash $proto sdfn
done

In the example above the set_irq_affinity script is used from the NIC
driver's sources.
In the cpu affinity section of suricata.yaml config:

Suricata is multi-threaded. Here the threading can be influenced.
threading:
 cpu-affinity:
 - management-cpu-set:
 cpu: ["1-10"] # include only these CPUs in affinity settings
 - receive-cpu-set:
 cpu: ["0-10"] # include only these CPUs in affinity settings
 - worker-cpu-set:
 cpu: ["18-35", "54-71"]
 mode: "exclusive"
 prio:
 low: [0]
 medium: ["1"]
 high: ["18-35","54-71"]
 default: "high"

In the af-packet section of suricata.yaml config :

- interface: eth1
 # Number of receive threads. "auto" uses the number of cores
 threads: 18
 cluster-id: 99
 cluster-type: cluster_qm
 defrag: no
 use-mmap: yes
 mmap-locked: yes
 tpacket-v3: yes
 ring-size: 100000
 block-size: 1048576
- interface: eth1
 # Number of receive threads. "auto" uses the number of cores
 threads: 18
 cluster-id: 99
 cluster-type: cluster_qm
 defrag: no
 use-mmap: yes
 mmap-locked: yes
 tpacket-v3: yes
 ring-size: 100000
 block-size: 1048576

That way 36 worker threads can be mapped (18 per each af-packet interface slot)
in total per CPUs NUMA 1 range - 18-35,54-71. That part is done via the
worker-cpu-set affinity settings. ring-size and block-size in the
config section above are decent default values to start with. Those can be
better adjusted if needed as explained in Tuning Considerations.

11.5.2.2. AMD based systems

Another example can be using an AMD based system where the architecture and
design of the system itself plus the NUMA node's interaction is different as
it is based on the HyperTransport (HT) technology. In that case per NUMA
thread/lock would not be needed. The example below shows a suggestion for such
a configuration utilising af-packet, cluster-type: cluster_flow. The
Mellanox NIC is located on NUMA 0.

The CPU set up is as follows:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
NUMA node(s): 8
Vendor ID: AuthenticAMD
CPU family: 23
Model: 1
Model name: AMD EPYC 7601 32-Core Processor
Stepping: 2
CPU MHz: 1200.000
CPU max MHz: 2200.0000
CPU min MHz: 1200.0000
BogoMIPS: 4391.55
Virtualization: AMD-V
L1d cache: 32K
L1i cache: 64K
L2 cache: 512K
L3 cache: 8192K
NUMA node0 CPU(s): 0-7,64-71
NUMA node1 CPU(s): 8-15,72-79
NUMA node2 CPU(s): 16-23,80-87
NUMA node3 CPU(s): 24-31,88-95
NUMA node4 CPU(s): 32-39,96-103
NUMA node5 CPU(s): 40-47,104-111
NUMA node6 CPU(s): 48-55,112-119
NUMA node7 CPU(s): 56-63,120-127

The ethtool, show_irq_affinity.sh and set_irq_affinity_cpulist.sh
tools are provided from the official driver sources.
Set up the NIC, including offloading and load balancing:

ifconfig eno6 down
/opt/mellanox/ethtool/sbin/ethtool -L eno6 combined 15
/opt/mellanox/ethtool/sbin/ethtool -K eno6 rxhash on
/opt/mellanox/ethtool/sbin/ethtool -K eno6 ntuple on
ifconfig eno6 up
/sbin/set_irq_affinity_cpulist.sh 1-7,64-71 eno6
/opt/mellanox/ethtool/sbin/ethtool -X eno6 hfunc toeplitz
/opt/mellanox/ethtool/sbin/ethtool -X eno6 hkey 6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A

In the example above (1-7,64-71 for the irq affinity) CPU 0 is skipped as it is usually used by default on Linux systems by many applications/tools.
Let the NIC balance as much as possible:

for proto in tcp4 udp4 tcp6 udp6; do
 /usr/local/sbin/ethtool -N eth1 rx-flow-hash $proto sdfn
done

In the cpu affinity section of suricata.yaml config :

Suricata is multi-threaded. Here the threading can be influenced.
threading:
 set-cpu-affinity: yes
 cpu-affinity:
 - management-cpu-set:
 cpu: ["120-127"] # include only these cpus in affinity settings
 - receive-cpu-set:
 cpu: [0] # include only these cpus in affinity settings
 - worker-cpu-set:
 cpu: ["8-55"]
 mode: "exclusive"
 prio:
 high: ["8-55"]
 default: "high"

In the af-packet section of suricata.yaml config:

- interface: eth1
 # Number of receive threads. "auto" uses the number of cores
 threads: 48 # 48 worker threads on cpus "8-55" above
 cluster-id: 99
 cluster-type: cluster_flow
 defrag: no
 use-mmap: yes
 mmap-locked: yes
 tpacket-v3: yes
 ring-size: 100000
 block-size: 1048576

In the example above there are 15 RSS queues pinned to cores 1-7,64-71 on NUMA
node 0 and 40 worker threads using other CPUs on different NUMA nodes. The
reason why CPU 0 is skipped in this set up is as in Linux systems it is very
common for CPU 0 to be used by default by many tools/services. The NIC itself in
this config is positioned on NUMA 0 so starting with 15 RSS queues on that
NUMA node and keeping those off for other tools in the system could offer the
best advantage.

Note

Performance and optimization of the whole system can be affected upon regular NIC driver and pkg/kernel upgrades so it should be monitored regularly and tested out in QA/test environments first. As a general suggestion it is always recommended to run the latest stable firmware and drivers as instructed and provided by the particular NIC vendor.

11.5.2.3. Other considerations

Another advanced option to consider is the isolcpus kernel boot parameter
is a way of allowing CPU cores to be isolated for use of general system
processes. That way ensures total dedication of those CPUs/ranges for the
Suricata process only.

stream.wrong_thread / tcp.pkt_on_wrong_thread are counters available
in stats.log or eve.json as event_type: stats that indicate issues with
the load balancing. There could be traffic/NICs settings related as well. In
very high/heavily increasing counter values it is recommended to experiment
with a different load balancing method either via the NIC or for example using
XDP/eBPF. There is an issue open
https://redmine.openinfosecfoundation.org/issues/2725 that is a placeholder
for feedback and findings.

11.6. Statistics

The stats.log produces statistics records on a fixed interval, by
default every 8 seconds.

11.6.1. stats.log file

Counter | TM Name | Value

flow_mgr.closed_pruned | FlowManagerThread | 154033
flow_mgr.new_pruned | FlowManagerThread | 67800
flow_mgr.est_pruned | FlowManagerThread | 100921
flow.memuse | FlowManagerThread | 6557568
flow.spare | FlowManagerThread | 10002
flow.emerg_mode_entered | FlowManagerThread | 0
flow.emerg_mode_over | FlowManagerThread | 0
decoder.pkts | RxPcapem21 | 450001754
decoder.bytes | RxPcapem21 | 409520714250
decoder.ipv4 | RxPcapem21 | 449584047
decoder.ipv6 | RxPcapem21 | 9212
decoder.ethernet | RxPcapem21 | 450001754
decoder.raw | RxPcapem21 | 0
decoder.sll | RxPcapem21 | 0
decoder.tcp | RxPcapem21 | 448124337
decoder.udp | RxPcapem21 | 542040
decoder.sctp | RxPcapem21 | 0
decoder.icmpv4 | RxPcapem21 | 82292
decoder.icmpv6 | RxPcapem21 | 9164
decoder.ppp | RxPcapem21 | 0
decoder.pppoe | RxPcapem21 | 0
decoder.gre | RxPcapem21 | 0
decoder.vlan | RxPcapem21 | 0
decoder.avg_pkt_size | RxPcapem21 | 910
decoder.max_pkt_size | RxPcapem21 | 1514
defrag.ipv4.fragments | RxPcapem21 | 4
defrag.ipv4.reassembled | RxPcapem21 | 1
defrag.ipv4.timeouts | RxPcapem21 | 0
defrag.ipv6.fragments | RxPcapem21 | 0
defrag.ipv6.reassembled | RxPcapem21 | 0
defrag.ipv6.timeouts | RxPcapem21 | 0
tcp.sessions | Detect | 41184
tcp.ssn_memcap_drop | Detect | 0
tcp.pseudo | Detect | 2087
tcp.invalid_checksum | Detect | 8358
tcp.no_flow | Detect | 0
tcp.reused_ssn | Detect | 11
tcp.memuse | Detect | 36175872
tcp.syn | Detect | 85902
tcp.synack | Detect | 83385
tcp.rst | Detect | 84326
tcp.segment_memcap_drop | Detect | 0
tcp.stream_depth_reached | Detect | 109
tcp.reassembly_memuse | Detect | 67755264
tcp.reassembly_gap | Detect | 789
detect.alert | Detect | 14721

11.6.1.1. Detecting packet loss

At shut down, Suricata reports the packet loss statistics it gets from
pcap, pfring or afpacket

[18088] 30/5/2012 -- 07:39:18 - (RxPcapem21) Packets 451595939, bytes 410869083410
[18088] 30/5/2012 -- 07:39:18 - (RxPcapem21) Pcap Total:451674222 Recv:451596129 Drop:78093 (0.0%).

Usually, this is not the complete story though. These are kernel drop
stats, but the NIC may also have dropped packets. Use ethtool to get
to those:

ethtool -S em2
NIC statistics:
 rx_packets: 35430208463
 tx_packets: 216072
 rx_bytes: 32454370137414
 tx_bytes: 53624450
 rx_broadcast: 17424355
 tx_broadcast: 133508
 rx_multicast: 5332175
 tx_multicast: 82564
 rx_errors: 47
 tx_errors: 0
 tx_dropped: 0
 multicast: 5332175
 collisions: 0
 rx_length_errors: 0
 rx_over_errors: 0
 rx_crc_errors: 51
 rx_frame_errors: 0
 rx_no_buffer_count: 0
 rx_missed_errors: 0
 tx_aborted_errors: 0
 tx_carrier_errors: 0
 tx_fifo_errors: 0
 tx_heartbeat_errors: 0
 tx_window_errors: 0
 tx_abort_late_coll: 0
 tx_deferred_ok: 0
 tx_single_coll_ok: 0
 tx_multi_coll_ok: 0
 tx_timeout_count: 0
 tx_restart_queue: 0
 rx_long_length_errors: 0
 rx_short_length_errors: 0
 rx_align_errors: 0
 tx_tcp_seg_good: 0
 tx_tcp_seg_failed: 0
 rx_flow_control_xon: 0
 rx_flow_control_xoff: 0
 tx_flow_control_xon: 0
 tx_flow_control_xoff: 0
 rx_long_byte_count: 32454370137414
 rx_csum_offload_good: 35270755306
 rx_csum_offload_errors: 65076
 alloc_rx_buff_failed: 0
 tx_smbus: 0
 rx_smbus: 0
 dropped_smbus: 0

11.6.2. Kernel drops

stats.log contains interesting information in the
capture.kernel_packets and capture.kernel_drops. The meaning of them
is different following the capture mode.

In AF_PACKET mode:

	kernel_packets is the number of packets correctly sent to userspace

	kernel_drops is the number of packets that have been discarded instead of being sent to userspace

In PF_RING mode:

	kernel_packets is the total number of packets seen by pf_ring

	kernel_drops is the number of packets that have been discarded instead of being sent to userspace

In the Suricata stats.log the TCP data gap counter is also an
indicator, as it accounts missing data packets in TCP streams:

tcp.reassembly_gap | Detect | 789

Ideally, this number is 0. Not only pkt loss affects it though, also
bad checksums and stream engine running out of memory.

11.6.3. Tools to plot graphs

Some people made nice tools to plot graphs of the statistics file.

	ipython and matplotlib script [https://github.com/regit/suri-stats]

	Monitoring with Zabbix or other [http://christophe.vandeplas.com/2013/11/suricata-monitoring-with-zabbix-or-other.html] and Code on GitHub [https://github.com/cvandeplas/suricata_stats]

11.7. Ignoring Traffic

In some cases there are reasons to ignore certain traffic. Certain hosts
may be trusted, or perhaps a backup stream should be ignored.

11.7.1. capture filters (BPF)

Through BPFs the capture methods pcap, af-packet, netmap and pf_ring can be
told what to send to Suricata, and what not. For example a simple
filter 'tcp' will only capture tcp packets.

If some hosts and or nets need to be ignored, use something like "not
(host IP1 or IP2 or IP3 or net NET/24)".

Example:

not host 1.2.3.4

Capture filters are specified on the command-line after all other options:

suricata -i eth0 -v not host 1.2.3.4
suricata -i eno1 -c suricata.yaml tcp or udp

Capture filters can be set per interface in the pcap, af-packet, netmap
and pf_ring sections. It can also be put in a file:

echo "not host 1.2.3.4" > capture-filter.bpf
suricata -i ens5f0 -F capture-filter.bpf

Using a capture filter limits what traffic Suricata processes. So the
traffic not seen by Suricata will not be inspected, logged or otherwise
recorded.

11.7.1.1. BPF and IPS

In case of IPS modes using af-packet and netmap, BPFs affect how traffic
is forwarded. If a capture NIC does not capture a packet because of a BPF,
it will also not be forwarded to the peering NIC.

So in the example of not host 1.2.3.4, traffic to and from the IP 1.2.3.4
is effectively dropped.

11.7.2. pass rules

Pass rules are Suricata rules that if matching, pass the packet and in
case of TCP the rest of the flow. They look like normal rules, except
that instead of alert or drop they use pass as the action.

Example:

pass ip 1.2.3.4 any <> any any (msg:"pass all traffic from/to 1.2.3.4"; sid:1;)

A big difference with capture filters is that logs such as Eve or http.log
are still generated for this traffic.

11.7.3. suppress

Suppress rules can be used to make sure no alerts are generated for a
host. This is not efficient however, as the suppression is only
considered post-matching. In other words, Suricata first inspects a
rule, and only then will it consider per-host suppressions.

Example:

suppress gen_id 0, sig_id 0, track by_src, ip 1.2.3.4

11.7.4. encrypted traffic

The TLS app layer parser has the ability to stop processing encrypted traffic
after the initial handshake. By setting the app-layer.protocols.tls.encryption-handling
option to bypass the rest of this flow is ignored. If flow bypass is enabled,
the bypass is done in the kernel or in hardware.

11.7.5. bypassing traffic

Aside from using the bypass keyword in rules, there are three other ways
to bypass traffic.

	Within suricata (local bypass). Suricata reads a packet, decodes it, checks
it in the flow table. If the corresponding flow is local bypassed then it
simply skips all streaming, detection and output and the packet goes directly
out in IDS mode and to verdict in IPS mode.

	Within the kernel (capture bypass). When Suricata decides to bypass it calls
a function provided by the capture method to declare the bypass in the
capture. For NFQ this is a simple mark that will be used by the
iptables/nftablesruleset. For AF_PACKET this will be a call to add an element
in an eBPF hash table stored in kernel.

	Within the NIC driver. This method relies upon XDP, XDP can process the
traffic prior to reaching the kernel.

Additional bypass documentation:

https://suricon.net/wp-content/uploads/2017/12/SuriCon17-Manev_Purzynski.pdf
https://www.stamus-networks.com/2016/09/28/suricata-bypass-feature/

11.8. Packet Profiling

In this guide will be explained how to enable packet profiling and use
it with the most recent code of Suricata on Ubuntu. It is based on the
assumption that you have already installed Suricata once from the GIT
repository.

Packet profiling is convenient in case you would like to know how long
packets take to be processed. It is a way to figure out why certain
packets are being processed quicker than others, and this way a good
tool for developing Suricata.

Update Suricata by following the steps from Installation from GIT. Start
at the end at

cd suricata/suricata
git pull

And follow the described next steps. To enable packet profiling, make
sure you enter the following during the configuring stage:

./configure --enable-profiling

Find a folder in which you have pcaps. If you do not have pcaps yet,
you can get these with Wireshark. See Sniffing Packets with Wireshark [https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Sniffing_Packets_with_Wireshark].

Go to the directory of your pcaps. For example:

cd ~/Desktop

With the ls command you can see the content of the folder. Choose a
folder and a pcap file

for example:

cd ~/Desktop/2011-05-05

Run Suricata with that pcap:

suricata -c /etc/suricata/suricata.yaml -r log.pcap.(followed by the number/name of your pcap)

for example:

suricata -c /etc/suricata/suricata.yaml -r log.pcap.1304589204

11.9. Rule Profiling

--
Date: 9/5/2013 -- 14:59:58
--
 Num Rule Gid Rev Ticks % Checks Matches Max Ticks Avg Ticks Avg Match Avg No Match
-------- ------------ -------- -------- ------------ ------ -------- -------- ----------- ----------- ----------- --------------
1 2210021 1 3 12037 4.96 1 1 12037 12037.00 12037.00 0.00
2 2210054 1 1 107479 44.26 12 0 35805 8956.58 0.00 8956.58
3 2210053 1 1 4513 1.86 1 0 4513 4513.00 0.00 4513.00
4 2210023 1 1 3077 1.27 1 0 3077 3077.00 0.00 3077.00
5 2210008 1 1 3028 1.25 1 0 3028 3028.00 0.00 3028.00
6 2210009 1 1 2945 1.21 1 0 2945 2945.00 0.00 2945.00
7 2210055 1 1 2945 1.21 1 0 2945 2945.00 0.00 2945.00
8 2210007 1 1 2871 1.18 1 0 2871 2871.00 0.00 2871.00
9 2210005 1 1 2871 1.18 1 0 2871 2871.00 0.00 2871.00
10 2210024 1 1 2846 1.17 1 0 2846 2846.00 0.00 2846.00

The meaning of the individual fields:

	Ticks -- total ticks spent on this rule, so a sum of all inspections

	% -- share of this single sig in the total cost of inspection

	Checks -- number of times a signature was inspected

	Matches -- number of times it matched. This may not have resulted in an alert due to suppression and thresholding.

	Max ticks -- single most expensive inspection

	Avg ticks -- per inspection average, so "ticks" / "checks".

	Avg match -- avg ticks spent resulting in match

	Avg No Match -- avg ticks spent resulting in no match.

The "ticks" are CPU clock ticks: http://en.wikipedia.org/wiki/CPU_time

11.10. Tcmalloc

'tcmalloc' is a library Google created as part of the google-perftools
suite for improving memory handling in a threaded program. It's very
simple to use and does work fine with Suricata. It leads to minor
speed ups and also reduces memory usage quite a bit.

11.10.1. Installation

On Ubuntu, install the libtcmalloc-minimal4 package:

apt-get install libtcmalloc-minimal4

On Fedora, install the gperftools-libs package:

yum install gperftools-libs

11.10.2. Usage

Use the tcmalloc by preloading it:

Ubuntu:

LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4" suricata -c suricata.yaml -i eth0

Fedora:

LD_PRELOAD="/usr/lib64/libtcmalloc_minimal.so.4" suricata -c suricata.yaml -i eth0

11.11. Performance Analysis

There are many potential causes for performance issues. In this section we
will guide you through some options. The first part will cover basic steps and
introduce some helpful tools. The second part will cover more in-depth
explanations and corner cases.

11.11.1. System Load

The first step should be to check the system load. Run a top tool like htop
to get an overview of the system load and if there is a bottleneck with the
traffic distribution. For example if you can see that only a small number of
cpu cores hit 100% all the time and others don't, it could be related to a bad
traffic distribution or elephant flows like in the screenshot where one core
peaks due to one big elephant flow.

[image: ../_images/htopelephantflow.png]
If all cores are at peak load the system might be too slow for the traffic load
or it might be misconfigured. Also keep an eye on memory usage, if the actual
memory usage is too high and the system needs to swap it will result in very
poor performance.

The load will give you a first indication where to start with the debugging at
specific parts we describe in more detail in the second part.

11.11.2. Logfiles

The next step would be to check all the log files with a focus on stats.log
and suricata.log if any obvious issues are seen. The most obvious indicator
is the capture.kernel_drops value that ideally would not even show up but
should be below 1% of the capture.kernel_packets value as high drop rates
could lead to a reduced amount of events and alerts.

If memcap is seen in the stats the memcap values in the configuration could
be increased. This can result to higher memory usage and should be taken into
account when the settings are changed.

Don't forget to check any system logs as well, even a dmesg run can show
potential issues.

11.11.3. Suricata Load

Besides the system load, another indicator for potential performance issues is
the load of Suricata itself. A helpful tool for that is perf which helps
to spot performance issues. Make sure you have it installed and also the debug
symbols installed for Suricata or the output won't be very helpful. This output
is also helpful when you report performance issues as the Suricata Development
team can narrow down possible issues with that.

sudo perf top -p $(pidof suricata)

If you see specific function calls at the top in red it's a hint that those are
the bottlenecks. For example if you see IPOnlyMatchPacket it can be either
a result of high drop rates or incomplete flows which result in decreased
performance. To look into the performance issues on a specific thread you can
pass -t TID to perf top. In other cases you can see functions that give you
a hint that a specific protocol parser is used a lot and can either try to
debug a performance bug or try to filter related traffic.

[image: ../_images/perftop.png]
In general try to play around with the different configuration options that
Suricata does provide with a focus on the options described in
High Performance Configuration.

11.11.4. Traffic

In most cases where the hardware is fast enough to handle the traffic but the
drop rate is still high it's related to specific traffic issues.

11.11.4.1. Basics

Some of the basic checks are:

	Check if the traffic is bidirectional, if it's mostly unidirectional you're
missing relevant parts of the flow (see tshark example at the bottom).
Another indicator could be a big discrepancy between SYN and SYN-ACK as well
as RST counter in the Suricata stats.

	Check for encapsulated traffic, while GRE, MPLS etc. are supported they could
also lead to performance issues. Especially if there are several layers of
encapsulation.

	Use tools like iftop to spot elephant flows. Flows that have a rate of
over 1Gbit/s for a long time can result in one cpu core peak at 100% all the
time and increasing the droprate while it might not make sense to dig deep
into this traffic.

	Another approach to narrow down issues is the usage of bpf filter. For
example filter all HTTPS traffic with not port 443 to exclude traffic
that might be problematic or just look into one specific port port 25 if
you expect some issues with a specific protocol. See Ignoring Traffic
for more details.

	If VLAN is used it might help to disable vlan.use-for-tracking in
scenarios where only one direction of the flow has the VLAN tag.

11.11.4.2. Advanced

There are several advanced steps and corner cases when it comes to a deep dive
into the traffic.

If VLAN QinQ (IEEE 802.1ad) is used be very cautious if you use cluster_qm
in combination with Intel drivers and AF_PACKET runmode. While the RFC expects
ethertype 0x8100 and 0x88A8 in this case (see
https://en.wikipedia.org/wiki/IEEE_802.1ad) most implementations only add
0x8100 on each layer. If the first seen layer has the same VLAN tag but the
inner one has different VLAN tags it will still end up in the same queue in
cluster_qm mode. This was observed with the i40e driver up to 2.8.20 and
the firmware version up to 7.00, feel free to report if newer versions have
fixed this (see https://suricata.io/support/).

If you want to use tshark to get an overview of the traffic direction use
this command:

sudo tshark -i $INTERFACE -q -z conv,ip -a duration:10

The output will show you all flows within 10s and if you see 0 for one
direction you have unidirectional traffic, thus you don't see the ACK packets
for example. Since Suricata is trying to work on flows this will have a rather
big impact on the visibility. Focus on fixing the unidirectional traffic. If
it's not possible at all you can enable async-oneside in the stream
configuration setting.

Check for other unusual or complex protocols that aren't supported very well.
You can try to filter those to see if it has any impact on the performance. In
this example we filter Cisco Fabric Path (ethertype 0x8903) with the bpf filter
not ether proto 0x8903 as it's assumed to be a performance issue (see
https://redmine.openinfosecfoundation.org/issues/3637)

11.11.4.3. Elephant Flows

The so called Elephant Flows or traffic spikes are quite difficult to deal
with. In most cases those are big file transfers or backup traffic and it's not
feasible to decode the whole traffic. From a network security monitoring
perspective it's often enough to log the metadata of that flow and do a packet
inspection at the beginning but not the whole flow.

If you can spot specific flows as described above then try to filter those. The
easiest solution would be a bpf filter but that would still result in a
performance impact. Ideally you can filter such traffic even sooner on driver
or NIC level (see eBPF/XDP) or even before it reaches the system where Suricata
is running. Some commercial packet broker support such filtering where it's
called Flow Shunting or Flow Slicing.

11.11.5. Rules

The Ruleset plays an important role in the detection but also in the
performance capability of Suricata. Thus it's recommended to look into the
impact of enabled rules as well.

If you run into performance issues and struggle to narrow it down start with
running Suricata without any rules enabled and use the tools again that have
been explained at the first part. Keep in mind that even without signatures
enabled Suricata still does most of the decoding and traffic analysis, so a
fair amount of load should still be seen. If the load is still very high and
drops are seen and the hardware should be capable to deal with such traffic
loads you should deep dive if there is any specific traffic issue (see above)
or report the performance issue so it can be investigated (see
https://suricata.io/join-our-community/).

Suricata also provides several specific traffic related signatures in the rules
folder that could be enabled for testing to spot specific traffic issues. Those
are found the rules and you should start with decoder-events.rules,
stream-events.rules and app-layer-events.rules.

It can also be helpful to use Rule Profiling and/or
Packet Profiling to find problematic rules or traffic pattern. This is
achieved by compiling Suricata with --enable-profiling but keep in mind
that this has an impact on performance and should only be used for
troubleshooting.

12. Configuration

	12.1. Suricata.yaml
	12.1.1. Max-pending-packets

	12.1.2. Runmodes

	12.1.3. Default-packet-size

	12.1.4. User and group

	12.1.5. PID File

	12.1.6. Action-order

	12.1.7. Packet alert queue settings
	12.1.7.1. Impact on engine behavior
	12.1.7.1.1. Packet alert queue overflow

	12.1.7.2. Discarded and Suppressed Alerts Stats

	12.1.8. Splitting configuration in multiple files

	12.1.9. Event output
	12.1.9.1. Default logging directory

	12.1.9.2. Stats

	12.1.9.3. Outputs

	12.1.9.4. Line based alerts log (fast.log)

	12.1.9.5. Eve (Extensible Event Format)

	12.1.9.6. TLS parameters and certificates logging (tls.log)

	12.1.9.7. A line based log of HTTP requests (http.log)

	12.1.9.8. Packet log (pcap-log)

	12.1.9.9. Verbose Alerts Log (alert-debug.log)

	12.1.9.10. Stats

	12.1.9.11. Syslog

	12.1.9.12. File-store (File Extraction)

	12.1.10. Detection engine
	12.1.10.1. Inspection configuration

	12.1.10.2. Prefilter Engines

	12.1.10.3. Pattern matcher settings

	12.1.11. Threading
	12.1.11.1. Relevant cpu-affinity settings for IDS/IPS modes

	12.1.11.2. IDS mode

	12.1.11.3. IPS mode

	12.1.12. IP Defrag

	12.1.13. Flow and Stream handling
	12.1.13.1. Flow Settings

	12.1.13.2. Flow Time-Outs

	12.1.13.3. Stream-engine

	12.1.14. Host Tracking
	12.1.14.1. Settings

	12.1.15. Application Layer Parsers
	12.1.15.1. Asn1_max_frames

	12.1.15.2. FTP

	12.1.15.3. Configure HTTP (libhtp)
	12.1.15.3.1. decompression-time-limit

	12.1.15.4. Configure SMB
	12.1.15.4.1. Resource limits

	12.1.15.5. Configure HTTP2

	12.1.15.6. SSL/TLS
	12.1.15.6.1. Encrypted traffic

	12.1.15.7. Modbus

	12.1.15.8. MQTT

	12.1.15.9. SMTP

	12.1.15.10. Maximum transactions

	12.1.16. Engine Logging
	12.1.16.1. Default Configuration Example

	12.1.16.2. Default Log Level

	12.1.16.3. Default Log Format

	12.1.16.4. Output Filter

	12.1.16.5. Logging Outputs

	12.1.17. Packet Acquisition
	12.1.17.1. Data Plane Development Kit (DPDK)

	12.1.17.2. Pf-ring

	12.1.17.3. NFQ

	12.1.17.4. Ipfw

	12.1.18. Rules
	12.1.18.1. Rule Files

	12.1.18.2. Threshold-file

	12.1.18.3. Classifications

	12.1.18.4. Rule-vars

	12.1.18.5. Host-os-policy

	12.1.19. Engine analysis and profiling
	12.1.19.1. Engine-analysis

	12.1.19.2. Rule and Packet Profiling settings

	12.1.19.3. Packet Profiling

	12.1.20. Decoder
	12.1.20.1. Teredo

	12.1.21. Advanced Options
	12.1.21.1. stacktrace

	12.1.21.2. luajit
	12.1.21.2.1. states

	12.1.22. Configuration hardening
	12.1.22.1. Lua

	12.2. Global-Thresholds
	12.2.1. Threshold Config
	12.2.1.1. threshold/event_filter

	12.2.1.2. rate_filter
	12.2.1.2.1. gen_id

	12.2.1.2.2. sig_id

	12.2.1.2.3. track

	12.2.1.2.4. count

	12.2.1.2.5. seconds

	12.2.1.2.6. new_action

	12.2.1.2.7. timeout

	12.2.1.2.8. Example

	12.2.1.3. suppress

	12.2.2. Global thresholds vs rule thresholds
	12.2.2.1. Suppress

	12.2.2.2. Threshold/event_filter

	12.2.2.3. Rate_filter

	12.3. Exception Policies
	12.3.1. Exception Policies
	12.3.1.1. Master Switch
	12.3.1.1.1. Auto

	12.3.1.2. Specific settings

	12.3.2. Exception Policies and Midstream Pick-up Sessions

	12.3.3. Command-line Options for Simulating Exceptions

	12.3.4. Common abbreviations

	12.4. Snort.conf to Suricata.yaml
	12.4.1. Variables

	12.4.2. Decoder alerts

	12.4.3. Checksum handling

	12.4.4. Various configs
	12.4.4.1. Active response

	12.4.4.2. Dropping privileges

	12.4.4.3. Snaplen

	12.4.4.4. Bpf

	12.4.5. Log directory

	12.4.6. Packet acquisition

	12.4.7. Rules

	12.5. Multi Tenancy
	12.5.1. Introduction

	12.5.2. YAML
	12.5.2.1. vlan-id

	12.5.2.2. device

	12.5.3. Per tenant settings

	12.5.4. Unix Socket
	12.5.4.1. Registration

	12.5.4.2. Unix socket runmode (pcap processing)

	12.5.4.3. Live traffic mode

	12.5.4.4. Registration

	12.5.4.5. Reloads

	12.5.5. Eve JSON output

	12.6. Dropping Privileges After Startup

	12.7. Using Landlock LSM

	12.8. systemd notification
	12.8.1. Introduction

	12.8.2. Example

	12.8.3. Requirements

	12.8.4. Additional Information

	12.9. Includes
	12.9.1. Including a Single File

	12.9.2. Including Multiple Files

	12.9.3. Include Inside a Mapping

12.1. Suricata.yaml

Suricata uses the Yaml format for configuration. The Suricata.yaml
file included in the source code, is the example configuration of
Suricata. This document will explain each option.

At the top of the YAML-file you will find % YAML 1.1. Suricata reads
the file and identifies the file as YAML.

12.1.1. Max-pending-packets

With the max-pending-packets setting you can set the number of packets
you allow Suricata to process simultaneously. This can range from one
packet to tens of thousands/hundreds of thousands of packets. It is a
trade of higher performance and the use of more memory (RAM), or lower
performance and less use of memory. A high number of packets being
processed results in a higher performance and the use of more
memory. A low number of packets, results in lower performance and less
use of memory. Choosing a low number of packets being processed while
having many CPU's/CPU cores, can result in not making use of the whole
computer-capacity. (For instance: using one core while having three
waiting for processing packets.)

max-pending-packets: 1024

12.1.2. Runmodes

By default the runmode option is disabled. With the runmodes setting
you can set the runmode you would like to use. For all runmodes
available, enter --list-runmodes in your command line. For more
information, see Runmodes.

runmode: autofp

12.1.3. Default-packet-size

For the max-pending-packets option, Suricata has to keep packets in
memory. With the default-packet-size option, you can set the size of
the packets on your network. It is possible that bigger packets have
to be processed sometimes. The engine can still process these bigger
packets, but processing it will lower the performance.

default-packet-size: 1514

12.1.4. User and group

It is possible to set the user and group to run Suricata as:

run-as:
 user: suri
 group: suri

12.1.5. PID File

This option sets the name of the PID file when Suricata is run in
daemon mode. This file records the Suricata process ID.

pid-file: /var/run/suricata.pid

Note

This configuration file option only sets the PID file when
running in daemon mode. To force creation of a PID file when
not running in daemon mode, use the --pidfile
command line option.

Also, if running more than one Suricata process, each
process will need to specify a different pid-file location.

12.1.6. Action-order

All signatures have different properties. One of those is the Action
property. This one determines what will happen when a signature
matches. There are four types of Action. A summary of what will
happen when a signature matches and contains one of those Actions:

	Pass

If a signature matches and contains pass, Suricata stops scanning the
packet and skips to the end of all rules (only for the current
packet). If the signature matches on a TCP connection, the entire
flow will be passed but details of the flow will still be logged.

	Drop

This only concerns the IPS/inline mode. If the program finds a
signature that matches, containing drop, it stops immediately. The
packet will not be sent any further. Drawback: The receiver does not
receive a message of what is going on, resulting in a time-out
(certainly with TCP). Suricata generates an alert for this packet.

	Reject

This is an active rejection of the packet. Both receiver and sender
receive a reject packet. There are two types of reject packets that
will be automatically selected. If the offending packet concerns TCP,
it will be a Reset-packet. For all other protocols it will be an
ICMP-error packet. Suricata also generates an alert. When in
Inline/IPS mode, the offending packet will also be dropped like with
the 'drop' action.

	Alert

If a signature matches and contains alert, the packet will be treated
like any other non-threatening packet, except for this one an alert
will be generated by Suricata. Only the system administrator can
notice this alert.

Inline/IPS can block network traffic in two ways. One way is by drop
and the other by reject.

Rules will be loaded in the order of which they appear in files. But
they will be processed in a different order. Signatures have different
priorities. The most important signatures will be scanned first. There
is a possibility to change the order of priority. The default order
is: pass, drop, reject, alert.

action-order:
 - pass
 - drop
 - reject
 - alert

This means a pass rule is considered before a drop rule, a drop rule
before a reject rule and so on.

12.1.7. Packet alert queue settings

It is possible to configure the size of the alerts queue that is used to append alerts triggered by each packet.

This will influence how many alerts would be perceived to have matched against a given packet.
The default value is 15. If an invalid setting or no value is provided, the engine will fall
back to the default.

#Define maximum number of possible alerts that can be triggered for the same
packet. Default is 15
packet-alert-max: 15

We recommend that you use the default value for this setting unless you are seeing a high number of discarded alerts
(alert_queue_overflow) - see the Discarded and Suppressed Alerts Stats section for more details.

12.1.7.1. Impact on engine behavior

Internally, the Suricata engine represents each packet with a data structure that has its own alert queue. The max size
of the queue is defined by packet-alert-max. The same rule can be triggered by the same packet multiple times. As
long as there is still space in the alert queue, those are appended.

Rules that have the noalert keyword will be checked - in case their signatures have actions that must be applied to the Packet or Flow, then suppressed. They have no effect in the final alert queue.

Rules are queued by priority: higher priority rules may be kept instead of lower priority ones that may have been triggered earlier, if Suricata reaches packet-alert-max for a given packet (a.k.a. packet alert queue overflow).

12.1.7.1.1. Packet alert queue overflow

Once the alert queue reaches its max size, we are potentially at packet alert queue overflow, so new alerts will only be appended in case their rules have a higher priority id (this is the internal id attributed by the engine, not the signature id).

This may happen in two different situations:

	a higher priority rule is triggered after a lower priority one: the lower priority rule is replaced in the queue;

	a lower priority rule is triggered: the rule is just discarded.

Note

This behavior does not mean that triggered drop rules would have their action ignored, in IPS mode.

12.1.7.2. Discarded and Suppressed Alerts Stats

Both scenarios previously described will be logged as detect.alert_queue_overflow in the stats logs (in stats.log and eve-log's stats event).

When noalert rules match, they appear in the stats logs as detect.alerts_suppressed.

Date: 4/6/2022 -- 17:18:08 (uptime: 0d, 00h 00m 00s)
--
Counter | TM Name | Value
--
detect.alert | Total | 3
detect.alert_queue_overflow | Total | 4
detect.alerts_suppressed | Total | 1

In this example from a stats.log, we read that 8 alerts were generated: 3 were kept in the packet queue while 4
were discarded due to packets having reached max size for the alert queue, and 1 was suppressed due to coming from a noalert
rule.

12.1.8. Splitting configuration in multiple files

Some users might have a need or a wish to split their suricata.yaml
file into separate files, this is available via the 'include' and
'!include' keyword. The first example is of taking the contents of the
outputs section and storing them in outputs.yaml.

outputs.yaml
- fast
 enabled: yes
 filename: fast.log
 append: yes

...

suricata.yaml
...

outputs: !include outputs.yaml

...

The second scenario is where multiple sections are migrated to a
different YAML file.

host_1.yaml

max-pending-packets: 2048

outputs:
 - fast
 enabled: yes
 filename: fast.log
 append: yes

suricata.yaml

include: host_1.yaml

...

If the same section, say outputs is later redefined after the include
statement it will overwrite the included file. Therefore any include
statement at the end of the document will overwrite the already
configured sections.

12.1.9. Event output

12.1.9.1. Default logging directory

In the /var/log/suricata directory, all of Suricata's output (alerts
and events) will be stored.

default-log-dir: /var/log/suricata

This directory can be overridden by entering the -l command line
parameter or by changing the directory directly in Yaml. To change it
with the -l command line parameter, enter the following:

suricata -c suricata.yaml -i eth0 -l /var/log/suricata-logs/

12.1.9.2. Stats

Engine statistics such as packet counters, memory use counters and others
can be logged in several ways. A separate text log 'stats.log' and an EVE
record type 'stats' are enabled by default.

The stats have a global configuration and a per logger configuration. Here
the global config is documented.

global stats configuration
stats:
 enabled: yes
 # The interval field (in seconds) controls at what interval
 # the loggers are invoked.
 interval: 8
 # Add decode events as stats.
 #decoder-events: true
 # Decoder event prefix in stats. Has been 'decoder' before, but that leads
 # to missing events in the eve.stats records. See issue #2225.
 #decoder-events-prefix: "decoder.event"
 # Add stream events as stats.
 #stream-events: false

Statistics can be enabled or disabled here.

Statistics are dumped on an interval. Setting this below 3 or 4 seconds is
not useful due to how threads are synchronized internally.

The decoder events that the decoding layer generates, can create a counter per
event type. This behaviour is enabled by default. The decoder-events option
can be set to false to disable.

In 4.1.x there was a naming clash between the regular decoder counters and
the decoder-event counters. This lead to a fair amount of decoder-event
counters not being shown in the EVE.stats records. To address this without
breaking existing setups, a config option decoder-events-prefix was added
to change the naming of the decoder-events from decoder.<proto>.<event> to
decoder.event.<proto>.<event>. In 5.0 this became the default.
See issue 2225 [https://redmine.openinfosecfoundation.org/issues/2225].

Similar to the decoder-events option, the stream-events option controls
whether the stream-events are added as counters as well. This is disabled by
default.

12.1.9.3. Outputs

There are several types of output. The general structure is:

outputs:
 - fast:
 enabled: yes
 filename: fast.log
 append: yes/no

Enabling all of the logs, will result in a much lower performance and
the use of more disc space, so enable only the outputs you need.

12.1.9.4. Line based alerts log (fast.log)

This log contains alerts consisting of a single line. Example of the
appearance of a single fast.log-file line:

10/05/10-10:08:59.667372 [**] [1:2009187:4] ET WEB_CLIENT ACTIVEX iDefense
 COMRaider ActiveX Control Arbitrary File Deletion [**] [Classification: Web
 Application Attack] [Priority: 3] {TCP} xx.xx.232.144:80 -> 192.168.1.4:56068

-fast: #The log-name.
 enabled:yes #This log is enabled. Set to 'no' to disable.
 filename: fast.log #The name of the file in the default logging directory.
 append: yes/no #If this option is set to yes, the last filled fast.log-file will not be
 #overwritten while restarting Suricata.

12.1.9.5. Eve (Extensible Event Format)

This is an JSON output for alerts and events. It allows for easy
integration with 3rd party tools like logstash.

outputs:
 # Extensible Event Format (nicknamed EVE) event log in JSON format
 - eve-log:
 enabled: yes
 filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
 filename: eve.json
 # Enable for multi-threaded eve.json output; output files are amended
 # with an identifier, e.g., eve.9.json
 #threaded: false
 #prefix: "@cee: " # prefix to prepend to each log entry
 # the following are valid when type: syslog above
 #identity: "suricata"
 #facility: local5
 #level: Info ## possible levels: Emergency, Alert, Critical,
 ## Error, Warning, Notice, Info, Debug
 #redis:
 # server: 127.0.0.1
 # port: 6379
 # async: true ## if redis replies are read asynchronously
 # mode: list ## possible values: list|lpush (default), rpush, channel|publish
 # ## lpush and rpush are using a Redis list. "list" is an alias for lpush
 # ## publish is using a Redis channel. "channel" is an alias for publish
 # key: suricata ## key or channel to use (default to suricata)
 # Redis pipelining set up. This will enable to only do a query every
 # 'batch-size' events. This should lower the latency induced by network
 # connection at the cost of some memory. There is no flushing implemented
 # so this setting as to be reserved to high traffic suricata.
 # pipelining:
 # enabled: yes ## set enable to yes to enable query pipelining
 # batch-size: 10 ## number of entry to keep in buffer

 # Include top level metadata. Default yes.
 #metadata: no

 types:
 - alert:
 # payload: yes # enable dumping payload in Base64
 # payload-buffer-size: 4kb # max size of payload buffer to output in eve-log
 # payload-printable: yes # enable dumping payload in printable (lossy) format
 # packet: yes # enable dumping of packet (without stream segments)
 # http-body: yes # Requires metadata; enable dumping of http body in Base64
 # http-body-printable: yes # Requires metadata; enable dumping of http body in printable format

 # Enable the logging of tagged packets for rules using the
 # "tag" keyword.
 tagged-packets: yes

 # Configure the metadata to be logged along with an
 # alert. The following shows the default configuration
 # which is used if this field is not provided or simply
 # set to a truthful value. Setting of this section is only
 # required if you wish to enable/disable specific fields.
 #metadata:

 # Include the decoded application layer (ie. http, dns)
 app-layer: true

 # Log the current state of the flow record.
 flow: true

 rule:
 # Log the metadata field from the rule in a structured
 # format.
 metadata: true

 # Log the raw rule text.
 raw: false

 # HTTP X-Forwarded-For support by adding an extra field or overwriting
 # the source or destination IP address (depending on flow direction)
 # with the one reported in the X-Forwarded-For HTTP header. This is
 # helpful when reviewing alerts for traffic that is being reverse
 # or forward proxied.
 xff:
 enabled: no
 # Two operation modes are available, "extra-data" and "overwrite".
 mode: extra-data
 # Two proxy deployments are supported, "reverse" and "forward". In
 # a "reverse" deployment the IP address used is the last one, in a
 # "forward" deployment the first IP address is used.
 deployment: reverse
 # Header name where the actual IP address will be reported, if more
 # than one IP address is present, the last IP address will be the
 # one taken into consideration.
 header: X-Forwarded-For
 - http:
 extended: yes # enable this for extended logging information
 # custom allows additional http fields to be included in eve-log
 # the example below adds three additional fields when uncommented
 #custom: [Accept-Encoding, Accept-Language, Authorization]
 - dns:
 # Use version 2 logging with the new format:
 # dns answers will be logged in one single event
 # rather than an event for each of the answers.
 # Without setting a version the version
 # will fallback to 1 for backwards compatibility.
 version: 2

 # Enable/disable this logger. Default: enabled.
 #enabled: no

 # Control logging of requests and responses:
 # - requests: enable logging of DNS queries
 # - responses: enable logging of DNS answers
 # By default both requests and responses are logged.
 #requests: no
 #responses: no

 # Format of answer logging:
 # - detailed: array item per answer
 # - grouped: answers aggregated by type
 # Default: all
 #answer-format: [detailed, grouped]

 # Answer types to log.
 # Default: all
 #answer-types: [a, aaaa, cname, mx, ns, ptr, txt]
 - dns:
 # Version 1 DNS logger.
 # Deprecated: Will be removed by May 2022.
 version: 1

 enabled: no
 # control logging of queries and answers
 # default yes, no to disable
 query: yes # enable logging of DNS queries
 answer: yes # enable logging of DNS answers
 # control which RR types are logged
 # all enabled if custom not specified
 #custom: [a, aaaa, cname, mx, ns, ptr, txt]
 - tls:
 extended: yes # enable this for extended logging information
 # output TLS transaction where the session is resumed using a
 # session id
 #session-resumption: no
 # custom allows to control which tls fields that are included
 # in eve-log
 #custom: [subject, issuer, session_resumed, serial, fingerprint, sni, version, not_before, not_after, certificate, chain]
 - files:
 force-magic: no # force logging magic on all logged files
 # force logging of checksums, available hash functions are md5,
 # sha1 and sha256
 #force-hash: [md5]
 #- drop:
 # alerts: yes # log alerts that caused drops
 # flows: all # start or all: 'start' logs only a single drop
 # # per flow direction. All logs each dropped pkt.
 - smtp:
 #extended: yes # enable this for extended logging information
 # this includes: bcc, message-id, subject, x_mailer, user-agent
 # custom fields logging from the list:
 # reply-to, bcc, message-id, subject, x-mailer, user-agent, received,
 # x-originating-ip, in-reply-to, references, importance, priority,
 # sensitivity, organization, content-md5, date
 #custom: [received, x-mailer, x-originating-ip, relays, reply-to, bcc]
 # output md5 of fields: body, subject
 # for the body you need to set app-layer.protocols.smtp.mime.body-md5
 # to yes
 #md5: [body, subject]

 # NFS logging.
 - nfs
 # IKE logging.
 - ike
 # BitTorrent DHT logging.
 - bittorrent-dht
 - ssh
 - stats:
 totals: yes # stats for all threads merged together
 threads: no # per thread stats
 deltas: no # include delta values
 - dhcp:
 # DHCP logging.
 enabled: yes
 # When extended mode is on, all DHCP messages are logged
 # with full detail. When extended mode is off (the
 # default), just enough information to map a MAC address
 # to an IP address is logged.
 extended: no
 # bi-directional flows
 - flow
 # uni-directional flows
 #- netflow

 # An event for logging metadata, specifically pktvars when
 # they are set, but will also include the full metadata object.
 #- metadata

For more advanced configuration options, see Eve JSON Output.

The format is documented in Eve JSON Format.

12.1.9.6. TLS parameters and certificates logging (tls.log)

The TLS handshake parameters can be logged in a line based log as well.
By default, the logfile is tls.log in the suricata log directory.
See Custom TLS logging for details
about the configuration and customization of the log format.

Furthermore there is an output module to store TLS certificate files to
disk. This is similar to File-store (File Extraction), but for TLS certificates.

Example:

output module to store certificates chain to disk
- tls-store:
 enabled: yes
 #certs-log-dir: certs # directory to store the certificates files

12.1.9.7. A line based log of HTTP requests (http.log)

This log keeps track of all HTTP-traffic events. It contains the HTTP
request, hostname, URI and the User-Agent. This information will be
stored in the http.log (default name, in the suricata log
directory). This logging can also be performed through the use of the
Eve-log capability.

Example of a HTTP-log line with non-extended logging:

07/01/2014-04:20:14.338309 vg.no [**] / [**] Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.114 Safari/537.36 [**]
192.168.1.6:64685 -> 195.88.54.16:80

Example of a HTTP-log line with extended logging:

07/01/2014-04:21:06.994705 vg.no [**] / [**] Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.114 Safari/537.36 [**] <no referer> [**]
GET [**] HTTP/1.1 [**] 301 => http://www.vg.no/ [**] 239 bytes [**] 192.168.1.6:64726 -> 195.88.54.16:80

- http-log: #The log-name.
 enabled: yes #This log is enabled. Set 'no' to disable.
 filename: http.log #The name of the file in the default logging directory.
 append: yes/no #If this option is set to yes, the last filled http.log-file will not be
 # overwritten while restarting Suricata.
 extended: yes # If set to yes more information is written about the event.

12.1.9.8. Packet log (pcap-log)

With the pcap-log option you can save all packets, that are registered
by Suricata, in a log file named _log.pcap_. This way, you can take a
look at all packets whenever you want. In the normal mode a pcap file
is created in the default-log-dir. It can also be created elsewhere if
a absolute path is set in the yaml-file.

The file that is saved in example the default-log-dir
/var/log/suricata, can be be opened with every program which supports
the pcap file format. This can be Wireshark, TCPdump, Suricata, Snort
and many others.

The pcap-log option can be enabled and disabled.

There is a size limit for the pcap-log file that can be set. The
default limit is 32 MB. If the log-file reaches this limit, the file
will be rotated and a new one will be created.
Remember that in the 'normal' mode, the file will be saved in
default-log-dir or in the absolute path (if set).

The pcap files can be compressed before being written to disk by setting
the compression option to lz4.
Note: On Windows, this option increases disk I/O instead of
reducing it. When using lz4 compression, you can enable checksums using
the lz4-checksum option, and you can set the compression level lz4-level
to a value between 0 and 16, where higher levels result in higher
compression.

By default all packets are logged except:

	TCP streams beyond stream.reassembly.depth

	encrypted streams after the key exchange

It is possible to do conditional pcap logging by using the conditional
option in the pcap-log section. By default the variable is set to all
so all packets are logged. If the variable is set to alerts then only
the flow with alerts will be logged. If the variable is set to tag
then only packets tagged by signatures using the tag keyword will
be logged to the pcap file. Please note that if alerts or tag is
used, then in the case of TCP session, Suricata will use available
information from the streaming engine to log data that have triggered
the alert.

- pcap-log:
 enabled: yes
 filename: log.pcap

 # Limit in MB.
 limit: 32

 mode: normal # "normal" or multi
 conditional: alerts

In normal mode a pcap file "filename" is created in the default-log-dir or as
specified by "dir". normal mode is generally not as performant as multi
mode.

In multi mode, multiple pcap files are created (per thread) which performs
better than normal mode.

	In multi mode the filename takes a few special variables:
	
	%n representing the thread number

	%i representing the thread id

	%t representing the timestamp (secs or secs.usecs based on 'ts-format')

Example: filename: pcap.%n.%t

Note

It is possible to use directories but the directories are not
created by Suricata. For example filename: pcaps/%n/log.%s will log into
the pre-existing pcaps directory and per thread sub directories.

Note

that the limit and max-files settings are enforced per thread. So the
size limit using 8 threads with 1000mb files and 2000 files is about 16TiB.

12.1.9.9. Verbose Alerts Log (alert-debug.log)

This is a log type that gives supplementary information about an
alert. It is particularly convenient for people who investigate false
positives and who write signatures. However, it lowers the performance
because of the amount of information it has to store.

- alert-debug: #The log-name.
 enabled: no #This log is not enabled. Set 'yes' to enable.
 filename: alert-debug.log #The name of the file in the default logging directory.
 append: yes/no #If this option is set to yes, the last filled fast.log-file will not be
 # overwritten while restarting Suricata.

12.1.9.10. Stats

In stats you can set the options for stats.log. When enabling
stats.log you can set the amount of time in seconds after which you
want the output-data to be written to the log file.

- stats:
 enabled: yes #By default, the stats-option is enabled
 filename: stats.log #The log-name. Combined with the default logging directory
 #(default-log-dir) it will result in /var/log/suricata/stats.log.
 #This directory can be overruled with a absolute path. (A
 #directory starting with /).
 append: yes/no #If this option is set to yes, the last filled fast.log-file will not be
 #overwritten while restarting Suricata.

The interval and several other options depend on the global stats
section as described above.

12.1.9.11. Syslog

With this option it is possible to send all alert and event output to syslog.

- syslog: #This is a output-module to direct log-output to several directions.
 enabled: no #The use of this output-module is not enabled.
 facility: local5 #In this option you can set a syslog facility.
 level: Info #In this option you can set the level of output. The possible levels are:
 #Emergency, Alert, Critical, Error, Warning, Notice, Info and Debug.

12.1.9.12. File-store (File Extraction)

The file-store output enables storing of extracted files to disk and
configures where they are stored.

The following shows the configuration options for version 2 of the
file-store output.

- file-store:
 # This configures version 2 of the file-store.
 version: 2

 enabled: no

 # Set the directory for the filestore. If the path is not
 # absolute will be be relative to the default-log-dir.
 #dir: filestore

 # Write out a fileinfo record for each occurrence of a
 # file. Disabled by default as each occurrence is already logged
 # as a fileinfo record to the main eve-log.
 #write-fileinfo: yes

 # Force storing of all files. Default: no.
 #force-filestore: yes

 # Override the global stream-depth for sessions in which we want
 # to perform file extraction. Set to 0 for unlimited; otherwise,
 # must be greater than the global stream-depth value to be used.
 #stream-depth: 0

 # Uncomment the following variable to define how many files can
 # remain open for filestore by Suricata. Default value is 0 which
 # means files get closed after each write
 #max-open-files: 1000

 # Force logging of checksums, available hash functions are md5,
 # sha1 and sha256. Note that SHA256 is automatically forced by
 # the use of this output module as it uses the SHA256 as the
 # file naming scheme.
 #force-hash: [sha1, md5]

12.1.10. Detection engine

12.1.10.1. Inspection configuration

The detection-engine builds internal groups of signatures. Suricata loads signatures, with which the network traffic will be compared. The fact is, that many rules certainly will not be necessary. (For instance: if there appears a packet with the UDP-protocol, all signatures for the TCP-protocol won't be needed.) For that reason, all signatures will be divided in groups. However, a distribution containing many groups will make use of a lot of memory. Not every type of signature gets its own group. There is a possibility that different signatures with several properties in common, will be placed together in a group. The quantity of groups will determine the balance between memory and performance. A small amount of groups will lower the performance yet uses little memory. The opposite counts for a higher amount of groups. The engine allows you to manage the balance between memory and performance. To manage this, (by determining the amount of groups) there are several general options: high for good performance and more use of memory, low for low performance and little use of memory. The option medium is the balance between performance and memory usage. This is the default setting. The option custom is for advanced users. This option has values which can be managed by the user.

detect:
 profile: medium
 custom-values:
 toclient-groups: 2
 toserver-groups: 25
 sgh-mpm-context: auto
 inspection-recursion-limit: 3000

At all of these options, you can add (or change) a value. Most
signatures have the adjustment to focus on one direction, meaning
focusing exclusively on the server, or exclusively on the client.

If you take a look at example 4, the Detection-engine grouping tree,
you see it has many branches. At the end of each branch, there is
actually a 'sig group head'. Within that sig group head there is a
container which contains a list with signatures that are significant
for that specific group/that specific end of the branch. Also within
the sig group head the settings for Multi-Pattern-Matcher (MPM) can be
found: the MPM-context.

As will be described again at the part 'Pattern matching settings',
there are several MPM-algorithms of which can be chosen from. Because
every sig group head has its own MPM-context, some algorithms use a
lot of memory. For that reason there is the option sgh-mpm-context to
set whether the groups share one MPM-context, or to set that every
group has its own MPM-context.

For setting the option sgh-mpm-context, you can choose from auto, full
or single. The default setting is 'auto', meaning Suricata selects
full or single based on the algorithm you use. 'Full' means that every
group has its own MPM-context, and 'single' that all groups share one
MPM-context. The algorithm "ac" uses a single MPM-context if the
Sgh-MPM-context setting is 'auto'. The rest of the algorithms use full
in that case.

The inspection-recursion-limit option has to mitigate that possible
bugs in Suricata cause big problems. Often Suricata has to deal with
complicated issues. It could end up in an 'endless loop' due to a bug,
meaning it will repeat its actions over and over again. With the
option inspection-recursion-limit you can limit this action.

Example 4 Detection-engine grouping tree

[image: ../_images/grouping_tree.png]
src Stands for source IP-address.
dst Stands for destination IP-address.
sp Stands for source port.
dp Stands for destination port.

Example 5 Detail grouping tree

[image: ../_images/grouping_tree_detail.png]

12.1.10.2. Prefilter Engines

The concept of prefiltering is that there are far too many rules to inspect individually. The approach prefilter takes is that from each rule one condition is added to prefilter, which is then checked in one step. The most common example is MPM (also known as fast_pattern). This takes a single pattern per rule and adds it to the MPM. Only for those rules that have at least one pattern match in the MPM stage, individual inspection is performed.

Next to MPM, other types of keywords support prefiltering. ICMP itype, icode, icmp_seq and icmp_id for example. TCP window, IP TTL are other examples.

For a full list of keywords that support prefilter, see:

suricata --list-keywords=all

Suricata can automatically select prefilter options, or it can be set manually.

detect:
 prefilter:
 default: mpm

By default, only MPM/fast_pattern is used.

The prefilter engines for other non-MPM keywords can then be enabled in specific rules by using the 'prefilter' keyword.

E.g.

alert ip any any -> any any (ttl:123; prefilter; sid:1;)

To let Suricata make these decisions set default to 'auto':

detect:
 prefilter:
 default: auto

12.1.10.3. Pattern matcher settings

The multi-pattern-matcher (MPM) is a part of the detection engine
within Suricata that searches for multiple patterns at
once. Often, signatures have one or more patterns. Of each
signature, one pattern is used by the multi-pattern-matcher. That way
Suricata can exclude many signatures from being examined, because a
signature can only match when all its patterns match.

These are the proceedings:

	A packet comes in.

	The packed will be analyzed by the Multi-pattern-matcher in search of patterns that match.

	All patterns that match, will be further processed by Suricata (signatures).

Example 8 Multi-pattern-matcher

[image: ../_images/MPM2.png]
Suricata offers various implementations of different
multi-pattern-matcher algorithm's. These can be found below.

To set the multi-pattern-matcher algorithm:

mpm-algo: ac

After 'mpm-algo', you can enter one of the following algorithms: ac, hs and ac-ks.

On x86_64 hs (Hyperscan) should be used for best performance.

12.1.11. Threading

Suricata is multi-threaded. Suricata uses multiple CPUs/CPU cores so
it can process a lot of network packets simultaneously. (In a
single-core engine, the packets will be processed one at a time.)

There are four thread-modules: Packet acquisition, decode and stream
application layer, detection, and outputs.

The packet acquisition module reads packets from the network.

The decode module decodes the packets and the stream application
application layer has three tasks:

First: it performs stream-tracking, meaning it is making sure all steps will be taken to make a correct network-connection.
Second: TCP-network traffic comes in as packets. The Stream-Assembly engine reconstructs the original stream.
Finally: the application layer will be inspected. HTTP and DCERPC will be analyzed.

The detection threads will compare signatures. There can be several detection threads so they can operate simultaneously.

In Outputs all alerts and events will be processed.

Example 6 Threading

[image: ../_images/threading.png]
Packet acquisition: Reads packets from the network
Decode: Decodes packets.
Stream app. Layer: Performs stream-tracking and reassembly.
Detect: Compares signatures.
Outputs: Processes all events and alerts.

Most computers have multiple CPU's/ CPU cores. By default the
operating system determines which core works on which thread. When a
core is already occupied, another one will be designated to work on
the thread. So, which core works on which thread, can differ from time
to time.

There is an option within threading:

set-cpu-affinity: no

With this option you can cause Suricata setting fixed cores for every
thread. In that case 1, 2 and 4 are at core 0 (zero). Each core has
its own detect thread. The detect thread running on core 0 has a lower
priority than the other threads running on core 0. If these other
cores are to occupied, the detect thread on core 0 has not much
packets to process. The detect threads running on other cores will
process more packets. This is only the case after setting the option
to 'yes'.

Example 7 Balancing workload

[image: ../_images/balancing_workload.png]
You can set the detect-thread-ratio:

detect-thread-ratio: 1.5

The detect thread-ratio will determine the amount of detect
threads. By default it will be 1.5 x the amount of CPU's/CPU cores
present at your computer. This will result in having more detection
threads then CPU's/ CPU cores. Meaning you are oversubscribing the
amount of cores. This may be convenient at times when there have to be
waited for a detection thread. The remaining detection thread can
become active.

You can alter the per-thread stack-size if the default provided by
your build system is too small. The default value is provided by
your build system; we suggest setting the value to 8MB if the default
value is too small.

stack-size: 8MB

In the option 'cpu affinity' you can set which CPU's/cores work on which
thread. In this option there are several sets of threads. The management-,
receive-, worker- and verdict-set. These are fixed names and can not be
changed. For each set there are several options: cpu, mode, and prio. In the
option 'cpu' you can set the numbers of the CPU's/cores which will run the
threads from that set. You can set this option to 'all', use a range (0-3) or a
comma separated list (0,1). The option 'mode' can be set to 'balanced' or
'exclusive'. When set to 'balanced', the individual threads can be processed by
all cores set in the option 'cpu'. If the option 'mode' is set to 'exclusive',
there will be fixed cores for each thread. As mentioned before, threads can
have different priority's. In the option 'prio' you can set a priority for each
thread. This priority can be low, medium, high or you can set the priority to
'default'. If you do not set a priority for a CPU, than the settings in
'default' will count. By default Suricata creates one 'detect' (worker) thread
per available CPU/CPU core.

Note

The 'prio' settings could overwrite each other, make sure to not
include the same CPU core in different 'prio' settings.

cpu-affinity:
 - management-cpu-set:
 cpu: [0] # include only these cpus in affinity settings
 - receive-cpu-set:
 cpu: [0] # include only these cpus in affinity settings
 - worker-cpu-set:
 cpu: ["all"]
 mode: "exclusive"
 # Use explicitly 3 threads and don't compute number by using
 # detect-thread-ratio variable:
 # threads: 3
 prio:
 low: [0]
 medium: ["1-2"]
 high: [3]
 default: "medium"
 - verdict-cpu-set:
 cpu: [0]
 prio:
 default: "high"

12.1.11.1. Relevant cpu-affinity settings for IDS/IPS modes

12.1.11.2. IDS mode

Runmode AutoFp:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
receive-cpu-set - used for receive and decode
worker-cpu-set - used for streamtcp,detect,output(logging),reject

Rumode Workers:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
worker-cpu-set - used for receive,streamtcp,decode,detect,output(logging),respond/reject

12.1.11.3. IPS mode

Runmode AutoFp:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
receive-cpu-set - used for receive and decode
worker-cpu-set - used for streamtcp,detect,output(logging)
verdict-cpu-set - used for verdict and respond/reject

Runmode Workers:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
worker-cpu-set - used for receive,streamtcp,decode,detect,output(logging),respond/reject, verdict

12.1.12. IP Defrag

Occasionally network packets appear fragmented. On some networks it
occurs more often than on others. Fragmented packets exist of many
parts. Before Suricata is able to inspect these kind of packets
accurately, the packets have to be reconstructed. This will be done by
a component of Suricata; the defragment-engine. After a fragmented
packet is reconstructed by the defragment-engine, the engine sends on
the reassembled packet to rest of Suricata.

At the moment Suricata receives a fragment of a packet, it
keeps in memory that other fragments of that packet will appear soon
to complete the packet. However, there is a possibility that one of
the fragments does not appear. To prevent Suricata for keeping waiting
for that packet (thereby using memory) there is a timespan after which
Suricata discards the fragments (timeout). This occurs by default after 60
seconds.

In IPS mode, it is possible to tell the engine what to do in case the memcap for
the defrag engine is reached: "drop-packet", "pass-packet", or "ignore" (default
behavior).

defrag:
 memcap: 32mb
 memcap-policy: ignore # in IPS mode, what to do if memcap is reached
 hash-size: 65536
 trackers: 65535 # number of defragmented flows to follow
 max-frags: 65535 # number of fragments do keep (higher than trackers)
 prealloc: yes
 timeout: 60

12.1.13. Flow and Stream handling

12.1.13.1. Flow Settings

Within Suricata, Flows are very important. They play a big part in the
way Suricata organizes data internally. A flow is a bit similar to a
connection, except a flow is more general. All packets having the same
Tuple (protocol, source IP, destination IP, source-port,
destination-port), belong to the same flow. Packets belonging to a
flow are connected to it internally.

Example 9 Flow

[image: ../_images/flow.png]
Example 10 Tuple

[image: ../_images/Tuple1.png]
Keeping track of all these flows, uses memory. The more flows, the
more memory it will cost.

To keep control over memory usage, there are several options:

The option memcap for setting the maximum amount of bytes the
flow-engine will use, hash-size for setting the size of the hash-table
and prealloc for the following:

For packets not yet belonging to a flow, Suricata creates a
new flow. This is a relative expensive action. The risk coming
with it, is that attackers /hackers can a attack the engine
system at this part. When they make sure a computer gets a lot
of packets with different tuples, the engine has to make a lot
of new flows. This way, an attacker could flood the system. To
mitigate the engine from being overloaded, this option
instructs Suricata to keep a number of flows ready in
memory. This way Suricata is less vulnerable to these kind of
attacks.

The flow-engine has a management thread that operates independent from
the packet processing. This thread is called the flow-manager. This
thread ensures that wherever possible and within the memcap. There
will be 10000 flows prepared.

In IPS mode, a memcap-policy exception policy can be set, telling Suricata
what to do in case memcap is hit: 'drop-packet', 'pass-packet', 'reject', or
'ignore'.

flow:
 memcap: 33554432 #The maximum amount of bytes the flow-engine will make use of.
 memcap-policy: bypass #How to handle the flow if memcap is reached (IPS mode)
 hash_size: 65536 #Flows will be organized in a hash-table. With this option you can set the
 #size of the hash-table.
 Prealloc: 10000 #The amount of flows Suricata has to keep ready in memory.

At the point the memcap will still be reached, despite prealloc, the
flow-engine goes into the emergency-mode. In this mode, the engine
will make use of shorter time-outs. It lets flows expire in a more
aggressive manner so there will be more space for new Flows.

There are two options: emergency_recovery and prune_flows. The
emergency recovery is set on 30. This is the percentage of prealloc'd
flows after which the flow-engine will be back to normal (when 30
percent of the 10000 flows is completed).

If during the emergency-mode, the aggressive time-outs do not
have the desired result, this option is the final resort. It
ends some flows even if they have not reached their time-outs
yet. The prune-flows option shows how many flows there will be
terminated at each time a new flow is set up.

emergency_recovery: 30 #Percentage of 1000 prealloc'd flows.
prune_flows: 5 #Amount of flows being terminated during the emergency mode.

12.1.13.2. Flow Time-Outs

The amount of time Suricata keeps a flow in memory is determined by
the Flow time-out.

There are different states in which a flow can be. Suricata
distinguishes three flow-states for TCP and two for UDP. For TCP,
these are: New, Established and Closed,for UDP only new and
established. For each of these states Suricata can employ different
timeouts.

The state new in a TCP-flow, means the period during the three way
handshake. The state established is the state when the three way
handshake is completed. The state closed in the TCP-flow: there a
several ways to end a flow. This is by means of Reset or the Four-way
FIN handshake.

New in a UDP-flow: the state in which packets are send from only one
direction.

Established in a UDP-flow: packets are send from both directions.

In the example configuration the are settings for each protocol. TCP,
UDP, ICMP and default (all other protocols).

flow-timeouts:

 default:
 new: 30 #Time-out in seconds after the last activity in this flow in a New state.
 established: 300 #Time-out in seconds after the last activity in this flow in a Established
 #state.
 emergency_new: 10 #Time-out in seconds after the last activity in this flow in a New state
 #during the emergency mode.
 emergency_established: 100 #Time-out in seconds after the last activity in this flow in a Established
 #state in the emergency mode.
 tcp:
 new: 60
 established: 3600
 closed: 120
 emergency_new: 10
 emergency_established: 300
 emergency_closed: 20
 udp:
 new: 30
 established: 300
 emergency_new: 10
 emergency_established: 100
 icmp:
 new: 30
 established: 300
 emergency_new: 10
 emergency_established: 100

12.1.13.3. Stream-engine

The Stream-engine keeps track of the TCP-connections. The engine
exists of two parts: The stream tracking- and the reassembly-engine.

The stream-tracking engine monitors the state of a connection. The
reassembly-engine reconstructs the flow as it used to be, so it will
be recognized by Suricata.

The stream-engine has two memcaps that can be set. One for the
stream-tracking-engine and one for the reassembly-engine. For both cases,
in IPS mode, an exception policy (memcap-policy) can be set, telling Suricata
what to do in case memcap is hit: 'drop-flow', 'drop-packet', 'pass-flow',
'pass-packet', 'bypass', 'reject', or 'ignore'.

The stream-tracking-engine keeps information of the flow in
memory. Information about the state, TCP-sequence-numbers and the TCP
window. For keeping this information, it can make use of the capacity
the memcap allows.

TCP packets have a so-called checksum. This is an internal code which
makes it possible to see if a packet has arrived in a good state. The
stream-engine will not process packets with a wrong checksum. This
option can be set off by entering 'no' instead of 'yes'.

stream:
 memcap: 64mb # Max memory usage (in bytes) for TCP session tracking
 memcap-policy: ignore # In IPS mode, call memcap policy if memcap is reached
 checksum_validation: yes # Validate packet checksum, reject packets with invalid checksums.

To mitigate Suricata from being overloaded by fast session creation,
the option prealloc_sessions instructs Suricata to keep a number of
sessions ready in memory.

A TCP-session starts with the three-way-handshake. After that, data
can be sent and received. A session can last a long time. It can happen
that Suricata will be started after a few TCP sessions have already been
started. This way, Suricata misses the original setup of those
sessions. This setup always includes a lot of information. If you want
Suricata to check the stream from that time on, you can do so by
setting the option 'midstream' to 'true'. The default setting is
'false'. In IPS mode, it is possible to define a 'midstream-policy',
indicating whether Suricata should drop-flow, drop-packet, pass-flow,
pass-packet, reject, or bypass a midstream flow. The default is ignore.
Normally Suricata is able to see all packets of a connection. Some networks
make it more complicated though. Some of the network-traffic follows a
different route than the other part, in other words: the traffic goes
asynchronous. To make sure Suricata will check the one part it does see,
instead of getting confused, the option 'async-oneside' is brought to life. By
default the option is set to 'false'.

Suricata inspects content in the normal/IDS mode in chunks. In the
inline/IPS mode it does that on the sliding window way (see example
..) In the case Suricata is set in inline mode, it has to inspect
packets immediately before sending it to the receiver. This way
Suricata is able to drop a packet directly if needed.(see example …)
It is important for Suricata to note which operating system it is
dealing with, because operating systems differ in the way they process
anomalies in streams. See Host-os-policy.

prealloc_sessions: 32768 # 32k sessions prealloc'd
midstream: false # do not allow midstream session pickups
midstream-policy: drop-flow # in IPS mode, drop flows that start midstream
async_oneside: false # do not enable async stream handling
inline: no # stream inline mode
drop-invalid: yes # drop invalid packets
bypass: no

The drop-invalid option can be set to no to avoid blocking packets that are
seen invalid by the streaming engine. This can be useful to cover some weird cases
seen in some layer 2 IPS setup.

The bypass option activates 'bypass' for a flow/session when either side
of the session reaches its depth.

Warning

bypass can lead to missing important traffic. Use with care.

Example 11 Normal/IDS mode

Suricata inspects traffic in chunks.

[image: ../_images/normal_ids.png]
Example 12 Inline/IPS Sliding Window

Suricata inspects traffic in a sliding window manner.

[image: ../_images/inline_mode.png]
Example 13 Normal/IDS (reassembly on ACK'D data)

[image: ../_images/Normal_ids_ack_d.png]
Example 14 Inline/IPS (reassembly on UNACK'D data)

[image: ../_images/Inline_reassembly_unackd_data.png]
The reassembly-engine has to keep data segments in memory in order to
be able to reconstruct a stream. To avoid resource starvation a memcap
is used to limit the memory used. In IPS mode, an exception policy
(memcap-policy) can be set, telling Suricata what to do in case memcap
is hit: 'drop-flow', 'drop-packet', 'pass-flow', 'pass-packet', 'bypass',
'reject', or 'ignore'.

Reassembling a stream is an expensive operation. With the option depth
you can control how far into a stream reassembly is done. By default
this is 1MB. This setting can be overridden per stream by the protocol
parsers that do file extraction.

Inspection of reassembled data is done in chunks. The size of these
chunks is set with toserver_chunk_size and toclient_chunk_size.
To avoid making the borders predictable, the sizes can be varied by
adding in a random factor.

reassembly:
 memcap: 256mb # Memory reserved for stream data reconstruction (in bytes)
 memcap-policy: ignore # What to do when memcap for reassembly is hit
 depth: 1mb # The depth of the reassembling.
 toserver_chunk_size: 2560 # inspect raw stream in chunks of at least this size
 toclient_chunk_size: 2560 # inspect raw stream in chunks of at least
 randomize-chunk-size: yes
 #randomize-chunk-range: 10

'Raw' reassembly is done for inspection by simple content, pcre
keywords use and other payload inspection not done on specific protocol
buffers like http_uri. This type of reassembly can be turned off:

reassembly:
 raw: no

Incoming segments are stored in a list in the stream. To avoid constant
memory allocations a per-thread pool is used.

reassembly:
 segment-prealloc: 2048 # pre-alloc 2k segments per thread

Resending different data on the same sequence number is a way to confuse
network inspection.

reassembly:
 check-overlap-different-data: true

Example 15 Stream reassembly

[image: ../_images/reassembly1.png]
[image: ../_images/IDS_chunk_size.png]

12.1.14. Host Tracking

The Host table is used for tracking per IP address. This is used for tracking
per IP thresholding, per IP tagging, storing iprep data and storing hostbit.

12.1.14.1. Settings

The configuration allows specifying the following settings: hash-size, prealloc and memcap.

host:
 hash-size: 4096
 prealloc: 1000
 memcap: 32mb

	hash-size: size of the hash table in number of rows

	prealloc: number of Host objects preallocated for efficiency

	memcap: max memory use for hosts, including the hash table size

Hosts are evicted from the hash table by the Flow Manager thread when all
data in the host is expired (tag, threshold, etc). Hosts with iprep will
not expire.

12.1.15. Application Layer Parsers

The app-layer section holds application layer specific configurations.

In IPS mode, a global exception policy accessed via the error-policy
setting can be defined to indicate what the engine should do in case it
encounters an app-layer error. Possible values are "drop-flow", "pass-flow",
"bypass", "drop-packet", "pass-packet", "reject" or "ignore" (which maintains
the default behavior).

Each supported protocol has a dedicated subsection under protocols.

12.1.15.1. Asn1_max_frames

Asn1 (Abstract Syntax One [http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One]) is a
standard notation to structure and describe data.

Within Asn1_max_frames there are several frames. To protect itself,
Suricata will inspect a maximum of 256. You can set this amount
differently if wanted.

Application layer protocols such as X.400 electronic mail, X.500 and
LDAP directory services, H.323 (VoIP), BACnet and SNMP, use ASN.1 to
describe the protocol data units (PDUs) they exchange. It is also
extensively used in the Access and Non-Access Strata of UMTS.

Limit for the maximum number of asn1 frames to decode (default 256):

asn1_max_frames: 256

12.1.15.2. FTP

The FTP application layer parser is enabled by default and uses dynamic protocol
detection.

By default, FTP control channel commands and responses are limited to 4096
bytes, but this value can be changed. When a command request or response exceeds
the line length limit, the stored data will be truncated, however the parser
will continue to watch for the end of line and acquire the next command.
Commands that are truncated will be noted in the eve log file with the fields
command_truncated or reply_truncated. Please note that this affects the
control messages only, not FTP data (file transfers).

ftp:
 enabled: yes
 #memcap: 64mb

 # Maximum line length for control messages before they will be truncated.
 #max-line-length: 4kb

12.1.15.3. Configure HTTP (libhtp)

The library Libhtp is being used by Suricata to parse HTTP-sessions.

While processing HTTP-traffic, Suricata has to deal with different
kind of servers which each process anomalies in HTTP-traffic
differently. The most common web-server is Apache. This is an open
source web-server program.

Besides Apache, IIS (Internet Information Services/Server) a web-server
program of Microsoft is also well-known.

Like with host-os-policy, it is important for Suricata to know which
IP-address/network-address is used by which server. In Libhtp this
assigning of web-servers to IP-and network addresses is called
personality.

Currently Available Personalities:

	Minimal

	Generic

	IDS (default)

	IIS_4_0

	IIS_5_0

	IIS_5_1

	IIS_6_0

	IIS_7_0

	IIS_7_5

	Apache

	Apache_2_2

You can assign names to each block of settings. Which in this case
is -apache and -iis7. Under these names you can set IP-addresses,
network-addresses the personality and a set of features.

The version-specific personalities know exactly how web servers
behave, and emulate that. The IDS personality would try to implement
a best-effort approach that would work reasonably well in the cases
where you do not know the specifics.

The default configuration also applies to every IP-address for which
no specific setting is available.

HTTP request bodies are often big, so they take a lot of time to
process which has a significant impact on the performance. With the
option 'request-body-limit' you can set the limit (in bytes) of the
client-body that will be inspected. Setting it to 0 will inspect all
of the body.

The same goes for HTTP response bodies.

libhtp:

 default-config:
 personality: IDS
 request-body-limit: 3072
 response-body-limit: 3072

 server-config:
 - apache:
 address: [192.168.1.0/24, 127.0.0.0/8, "::1"]
 personality: Apache_2_2
 request-body-limit: 0
 response-body-limit: 0

 - iis7:
 address:
 - 192.168.0.0/24
 - 192.168.10.0/24
 personality: IIS_7_0
 request-body-limit: 4096
 response-body-limit: 8192

Suricata makes available the whole set of libhtp customisations for its users.

You can now use these parameters in the conf to customise suricata's
use of libhtp.

Configures whether backslash characters are treated as path segment
separators. They are not on Unix systems, but are on Windows systems.
If this setting is enabled, a path such as "/one\two/three" will be
converted to "/one/two/three". Accepted values - yes, no.
#path-convert-backslash-separators: yes

Configures whether input data will be converted to lowercase.
#path-convert-lowercase: yes

Configures how the server reacts to encoded NUL bytes.
#path-nul-encoded-terminates: no

Configures how the server reacts to raw NUL bytes.
#path-nul-raw-terminates: no

Configures whether consecutive path segment separators will be
compressed. When enabled, a path such as "/one//two" will be normalized
to "/one/two". The backslash_separators and decode_separators
parameters are used before compression takes place. For example, if
backslash_separators and decode_separators are both enabled, the path
"/one\\/two\/%5cthree/%2f//four" will be converted to
"/one/two/three/four". Accepted values - yes, no.
#path-separators-compress: yes

Configures whether encoded path segment separators will be decoded.
Apache does not do this, but IIS does. If enabled, a path such as
"/one%2ftwo" will be normalized to "/one/two". If the
backslash_separators option is also enabled, encoded backslash
characters will be converted too (and subsequently normalized to
forward slashes). Accepted values - yes, no.
#path-separators-decode: yes

Configures whether %u-encoded sequences in path will be decoded. Such
sequences will be treated as invalid URL encoding if decoding is not
desireable. Accepted values - yes, no.
#path-u-encoding-decode: yes

Configures how server reacts to invalid encoding in path. Accepted
values - preserve_percent, remove_percent, decode_invalid, status_400
#path-url-encoding-invalid-handling: preserve_percent

Controls whether the data should be treated as UTF-8 and converted
to a single-byte stream using best-fit mapping
#path-utf8-convert-bestfit:yes

Sets the replacement character that will be used to in the lossy
best-fit mapping from Unicode characters into single-byte streams.
The question mark is the default replacement character.
#path-bestfit-replacement-char: ?

Configures whether plus characters are converted to spaces
when decoding URL-encoded strings.
#query-plusspace-decode: yes

response-body-decompress-layer-limit:
Limit to how many layers of compression will be
decompressed. Defaults to 2.

uri-include-all: Include all parts of the URI. By default the
'scheme', username/password, hostname and port
are excluded.

meta-field-limit: Hard size limit for request and response size
limits.

inspection limits
 request-body-minimal-inspect-size: 32kb
 request-body-inspect-window: 4kb
 response-body-minimal-inspect-size: 40kb
 response-body-inspect-window: 16kb

auto will use http-body-inline mode in IPS mode, yes or no set it statically
 http-body-inline: auto

Decompress SWF files.
2 types: 'deflate', 'lzma', 'both' will decompress deflate and lzma
compress-depth:
Specifies the maximum amount of data to decompress,
set 0 for unlimited.
decompress-depth:
Specifies the maximum amount of decompressed data to obtain,
set 0 for unlimited.
 swf-decompression:
 enabled: yes
 type: both
 compress-depth: 0
 decompress-depth: 0

Take a random value for inspection sizes around the specified value.
This lower the risk of some evasion technics but could lead
detection change between runs. It is set to 'yes' by default.
#randomize-inspection-sizes: yes
If randomize-inspection-sizes is active, the value of various
inspection size will be chosen in the [1 - range%, 1 + range%]
range
Default value of randomize-inspection-range is 10.
#randomize-inspection-range: 10

Can enable LZMA decompression
#lzma-enabled: false
Memory limit usage for LZMA decompression dictionary
Data is decompressed until dictionary reaches this size
#lzma-memlimit: 1 Mb
Maximum decompressed size with a compression ratio
above 2048 (only reachable by LZMA)
#compression-bomb-limit: 1 Mb
Maximum time spent decompressing a single transaction in usec
#decompression-time-limit: 100000

Other parameters are customizable from Suricata.

double-decode-path: Double decode path section of the URI
double-decode-query: Double decode query section of the URI

12.1.15.3.1. decompression-time-limit

decompression-time-limit was implemented to avoid DOS by resource exhaustion
on inputs such as decompression bombs (found by fuzzing).
The lower the limit, the better the protection against DOS is, but this
may also lead to false positives.
In case the time limit is reached,
the app-layer event http.compression_bomb is set
(this event can also set from other conditions).
This can happen on slow configurations (hardware, ASAN, etc...)

12.1.15.4. Configure SMB

The SMB parser will parse version 1, 2 and 3 of the SMB protocol over TCP.

To enable the parser add the following to the app-layer section of the YAML.

smb:
 enabled: yes
 detection-ports:
 dp: 139, 445

The parser uses pattern based protocol detection and will fallback to probing parsers
if the pattern based detection fails. As usual, the pattern based detection is port
independent. The probing parsers will only run on the detection-ports.

SMB is commonly used to transfer the DCERPC protocol. This traffic is also handled by
this parser.

12.1.15.4.1. Resource limits

Several options are available for limiting record sizes and data chunk tracking.

smb:
 enabled: yes
 max-read-size: 8mb
 max-write-size: 1mb

 max-read-queue-size: 16mb
 max-read-queue-cnt: 16

 max-write-queue-size: 16mb
 max-write-queue-cnt: 16

The max-read-size option can be set to control the max size of accepted
READ records. Events will be raised if a READ request asks for too much data
and/or if READ responses are too big. A value of 0 disables the checks.

The max-write-size option can be set to control the max size of accepted
WRITE request records. Events will be raised if a WRITE request sends too much
data. A value of 0 disables the checks.

Additionally if the max-read-size or max-write-size values in the
"negotiate protocol response" exceeds this limit an event will also be raised.

For file tracking, extraction and file data inspection the parser queues up
out of order data chunks for both READs and WRITEs. To avoid using too much
memory the parser allows for limiting both the size in bytes and the number
of queued chunks.

smb:
 enabled: yes

 max-read-queue-size: 16mb
 max-read-queue-cnt: 16

 max-write-queue-size: 16mb
 max-write-queue-cnt: 16

max-read-queue-size controls how many bytes can be used per SMB flow for
out of order READs. max-read-queue-cnt controls how many READ chunks can be
queued per SMB flow. Processing of these chunks will be blocked when any of
the limits are exceeded, and an event will be raised.

max-write-queue-size and max-write-queue-cnt are as the READ variants,
but then for WRITEs.

12.1.15.5. Configure HTTP2

HTTP2 has 2 parameters that can be customized.
The point of these 2 parameters is to find a balance between the completeness
of analysis and the resource consumption.

http2.max-table-size refers to SETTINGS_HEADER_TABLE_SIZE from rfc 7540 section 6.5.2.
Its default value is 4096 bytes, but it can be set to any uint32 by a flow.

http2.max-streams refers to SETTINGS_MAX_CONCURRENT_STREAMS from rfc 7540 section 6.5.2.
Its default value is unlimited.

12.1.15.6. SSL/TLS

SSL/TLS parsers track encrypted SSLv2, SSLv3, TLSv1, TLSv1.1 and TLSv1.2
sessions.

Protocol detection is done using patterns and a probing parser running
on only TCP/443 by default. The pattern based protocol detection is
port independent.

tls:
 enabled: yes
 detection-ports:
 dp: 443

 # What to do when the encrypted communications start:
 # - default: keep tracking TLS session, check for protocol anomalies,
 # inspect tls_* keywords. Disables inspection of unmodified
 # 'content' signatures.
 # - bypass: stop processing this flow as much as possible. No further
 # TLS parsing and inspection. Offload flow bypass to kernel
 # or hardware if possible.
 # - full: keep tracking and inspection as normal. Unmodified content
 # keyword signatures are inspected as well.
 #
 # For best performance, select 'bypass'.
 #
 #encryption-handling: default

12.1.15.6.1. Encrypted traffic

There is no decryption of encrypted traffic, so once the handshake is complete
continued tracking of the session is of limited use. The encryption-handling
option controls the behavior after the handshake.

If encryption-handling is set to default (or if the option is not set),
Suricata will continue to track the SSL/TLS session. Inspection will be limited,
as raw content inspection will still be disabled. There is no point in doing
pattern matching on traffic known to be encrypted. Inspection for (encrypted)
Heartbleed and other protocol anomalies still happens.

When encryption-handling is set to bypass, all processing of this session is
stopped. No further parsing and inspection happens. If stream.bypass is enabled
this will lead to the flow being bypassed, either inside Suricata or by the
capture method if it supports it and is configured for it.

Finally, if encryption-handling is set to full, Suricata will process the
flow as normal, without inspection limitations or bypass.

The option has replaced the no-reassemble option. If no-reassemble is
present, and encryption-handling is not, false is interpreted as
encryption-handling: default and true is interpreted as
encryption-handling: bypass.

12.1.15.7. Modbus

According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, it
is recommended to keep the TCP connection opened with a remote device
and not to open and close it for each MODBUS/TCP transaction.
In that case, it is important to set the stream-depth of the modbus as
unlimited.

modbus:
 # Stream reassembly size for modbus, default is 0
 stream-depth: 0

12.1.15.8. MQTT

The maximum size of a MQTT message is 256MB, potentially containing a lot of
payload data (such as properties, topics, or published payloads) that would end
up parsed and logged. To acknowledge the fact that most MQTT messages, however,
will be quite small and to reduce the potential for denial of service issues,
it is possible to limit the maximum length of a message that Suricata should
parse. Any message larger than the limit will just be logged with reduced
metadata, and rules will only be evaluated against a subset of fields. The
default is 1 MB.

mqtt:
 max-msg-length: 1mb

12.1.15.9. SMTP

SMTP parsers can extract files from attachments.
It is also possible to extract raw conversations as files with the
key raw-extraction. Note that in this case the whole conversation
will be stored as a file, including SMTP headers and body content. The filename
will be set to "rawmsg". Usual file-related signatures will match on the raw
content of the email.
This configuration parameter has a false default value. It is
incompatible with decode-mime. If both are enabled,
raw-extraction will be automatically disabled.

smtp:
 # extract messages in raw format from SMTP
 raw-extraction: true

12.1.15.10. Maximum transactions

SMTP, MQTT, FTP, PostgreSQL, SMB, DCERPC, HTTP1 and NFS have each a max-tx parameter that can be customized.
max-tx refers to the maximum number of live transactions for each flow.
An app-layer event protocol.too_many_transactions is triggered when this value is reached.
The point of this parameter is to find a balance between the completeness of analysis
and the resource consumption.

For HTTP2, this parameter is named max-streams as an HTTP2 stream will get translated
into one Suricata transaction. This configuration parameter is used whatever the
value of SETTINGS_MAX_CONCURRENT_STREAMS negotiated between a client and a server
in a specific flow is.

12.1.16. Engine Logging

The engine logging system logs information about the application such
as errors and other diagnostic information during startup, runtime and
shutdown of the Suricata engine. This does not include Suricata
generated alerts and events.

The engine logging system has the following log levels:

	error

	warning

	notice

	info

	perf

	config

	debug

Note that debug level logging will only be emitted if Suricata was
compiled with the --enable-debug configure option.

The first option within the logging configuration is the
default-log-level. This option determines the severity/importance
level of information that will be displayed. Messages of lower levels
than the one set here, will not be shown. The default setting is
Info. This means that error, warning and info will be shown and the
other levels won't be.

12.1.16.1. Default Configuration Example

Logging configuration. This is not about logging IDS alerts/events, but
output about what Suricata is doing, like startup messages, errors, etc.
logging:
 # The default log level, can be overridden in an output section.
 # Note that debug level logging will only be emitted if Suricata was
 # compiled with the --enable-debug configure option.
 #
 # This value is overridden by the SC_LOG_LEVEL env var.
 default-log-level: notice

 # The default output format. Optional parameter, should default to
 # something reasonable if not provided. Can be overridden in an
 # output section. You can leave this out to get the default.
 #
 # This console log format value can be overridden by the SC_LOG_FORMAT env var.
 #default-log-format: "%D: %S: %M"
 #
 # For the pre-7.0 log format use:
 #default-log-format: "[%i] %t [%S] - (%f:%l) <%d> (%n) -- "

 # A regex to filter output. Can be overridden in an output section.
 # Defaults to empty (no filter).
 #
 # This value is overridden by the SC_LOG_OP_FILTER env var.
 default-output-filter:

 # Define your logging outputs. If none are defined, or they are all
 # disabled you will get the default - console output.
 outputs:
 - console:
 enabled: yes
 # type: json
 - file:
 enabled: yes
 level: info
 filename: suricata.log
 # format: "[%i - %m] %z %d: %S: %M"
 # type: json
 - syslog:
 enabled: no
 facility: local5
 format: "[%i] <%d> -- "
 # type: json

12.1.16.2. Default Log Level

Example:

logging:
 default-log-level: info

This option sets the default log level. The default log level is
notice. This value will be used in the individual logging
configuration (console, file, syslog) if not otherwise set.

Note

The -v command line option can be used to quickly
increase the log level at runtime. See the -v command
line option.

The default-log-level set in the configuration value can be
overridden by the SC_LOG_LEVEL environment variable.

12.1.16.3. Default Log Format

A logging line exists of two parts. First it displays meta information
(Log-level, Suricata module), and finally the actual log message. Example:

i: suricata: This is Suricata version 7.0.2 RELEASE running in USER mode

(Here the part until the second : is the meta info,
"This is Suricata version 7.0.2 RELEASE running in USER mode" is the actual
message.)

It is possible to determine which information will be displayed in
this line and (the manner how it will be displayed) in which format it
will be displayed. This option is the so called format string:

default-log-format: "[%i] %t - (%f:%l) <%d> (%n) -- "

The % followed by a character has a special meaning. There are thirteen
specified signs:

z: ISO-like formatted timestamp: YYYY-MM-DD HH:MM:SS
t: Original Suricata log timestamp: DD/MM/YYYY -- HH:MM::SS
p: Process ID. Suricata's whole processing consists of multiple threads.
i: Thread ID. ID of individual threads.
m: Thread module name. (Outputs, Detect etc.)
d: Log-level of specific log-event. (Error, info, debug etc.)
D: Compact log format (E for Error, i for info etc.)
S: Subsystem name.
T: Thread name.
M: Log message body.
f: Filename. Name of C-file (source code) where log-event is generated.
l: Line-number within the filename, where the log-event is generated in the source-code.
n: Function-name in the C-code (source code).

The last three options, f, l and n, are mainly convenient for developers.

The log-format can be overridden in the command line by the
environment variable: SC_LOG_FORMAT

12.1.16.4. Output Filter

Within logging you can set an output-filter. With this output-filter
you can set which part of the event-logs should be displayed. You can
supply a regular expression (Regex). A line will be shown if the regex
matches.

default-output-filter: #In this option the regular expression can be entered.

This value is overridden by the environment var: SC_LOG_OP_FILTER

12.1.16.5. Logging Outputs

There are different ways of displaying output. The output can appear
directly on your screen, it can be placed in a file or via syslog. The
last mentioned is an advanced tool for log-management. The tool can be
used to direct log-output to different locations (files, other
computers etc.)

outputs:
 - console: #Output on your screen.
 enabled: yes #This option is enabled.
 #level: notice #Use a different level than the default.
 - file: #Output stored in a file.
 enabled: no #This option is not enabled.
 filename: /var/log/suricata.log #Filename and location on disc.
 level: info #Use a different level than the default.
 - syslog: #This is a program to direct log-output to several directions.
 enabled: no #The use of this program is not enabled.
 facility: local5 #In this option you can set a syslog facility.
 format: "[%i] <%d> -- " #The option to set your own format.
 #level: notice #Use a different level than the default.

12.1.17. Packet Acquisition

12.1.17.1. Data Plane Development Kit (DPDK)

Data Plane Development Kit [https://www.dpdk.org/] is a framework for fast
packet processing in data plane applications running on a wide variety of CPU
architectures. DPDK's Environment Abstraction Layer (EAL) [https://doc.dpdk.org/guides/prog_guide/env_abstraction_layer.html]
provides a generic interface to low-level resources. It is a unique way how
DPDK libraries access NICs. EAL creates an API for an application to access NIC
resources from the userspace level. In DPDK, packets are not retrieved via
interrupt handling. Instead, the application polls [https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html] the NIC for newly
received packets.

DPDK allows the user space application to directly access memory where the NIC
stores the packets. As a result, neither DPDK nor the application copies the
packets for the inspection. The application directly processes packets via
passed packet descriptors.

[image: DPDK basic architecture]

High-level overview of DPDK application

To use DPDK capture module, Suricata must be compiled with DPDK option enabled.
Support for DPDK can be enabled in configure step of the build process such as:

./configure --enable-dpdk

Suricata makes use of DPDK for packet acquisition in workers runmode.
The whole DPDK configuration resides in the dpdk: node. This node encapsulates
2 main subnodes, and those are eal-params and interfaces.

dpdk:
 eal-params:
 proc-type: primary
 allow: ["0000:3b:00.0", "0000:3b:00.1"]
 interfaces:
 - interface: 0000:3b:00.0
 threads: auto
 promisc: true
 multicast: true
 checksum-checks: true
 checksum-checks-offload: true
 mtu: 1500
 mempool-size: 65535
 mempool-cache-size: 257
 rx-descriptors: 1024
 tx-descriptors: 1024
 copy-mode: none
 copy-iface: none # or PCIe address of the second interface

The DPDK arguments [https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html], which
are typically provided through the command line, are contained in the node
dpdk.eal-params. EAL is configured and initialized using these
parameters. There are two ways to specify arguments: lengthy and short.
Dashes are omitted when describing the arguments. This setup node can be
used to set up the memory configuration, accessible NICs, and other EAL-related
parameters, among other things. The node dpdk.eal-params also supports
multiple arguments of the same type. This can be useful for EAL arguments
such as --vdev, --allow, or --block. Values for these EAL arguments
are specified as a comma-separated list.
An example of such usage can be found in the example above where the allow
argument only makes 0000:3b:00.0 and 0000:3b:00.1 accessible to Suricata.
arguments with list node. such as --vdev, --allow, --block eal options.
The definition of lcore affinity as an EAL
parameter is a standard practice. However, lcore parameters like -l, -c,
and --lcores` are specified within the suricata-yaml-threading section
to prevent configuration overlap.

The node dpdk.interfaces wraps a list of interface configurations. Items on
the list follow the structure that can be found in other capture interfaces.
The individual items contain the usual configuration options
such as threads/copy-mode/checksum-checks settings. Other capture
interfaces, such as AF_PACKET, rely on the user to ensure that NICs are
appropriately configured.
Configuration through the kernel does not apply to applications running under
DPDK. The application is solely responsible for the initialization of the NICs
it is using. So, before the start of Suricata, the NICs that Suricata uses,
must undergo the process of initialization.
As a result, there are extra configuration options (how NICs can be
configured) in the items (interfaces) of the dpdk.interfaces list.
At the start of the configuration process, all NIC offloads are disabled to
prevent any packet modification. According to the configuration, checksum
validation offload can be enabled to drop invalid packets. Other offloads can
not currently be enabled.
Additionally, the list items in dpdk.interfaces contain DPDK specific
settings such as mempool-size or rx-descriptors. These settings adjust
individual parameters of EAL. One of the entries in dpdk.interfaces is
the default interface. When loading interface configuration and some entry is
missing, the corresponding value of the default interface is used.

The worker threads must be assigned to specific cores. The configuration
module threading must be used to set thread affinity.
Worker threads can be pinned to cores in the array configured in
threading.cpu-affinity["worker-cpu-set"]. Performance-oriented setups have
everything (the NIC, memory, and CPU cores interacting with the NIC) based on
one NUMA node.
It is therefore required to know the layout of the server architecture to get the
best results. The CPU core ids and NUMA locations can be determined for example
from the output of /proc/cpuinfo where physical id described the NUMA
number. The NUMA node to which the NIC is connected to can be determined from
the file /sys/class/net/<KERNEL NAME OF THE NIC>/device/numa_node.

Check ids and NUMA location of individual CPU cores
cat /proc/cpuinfo | grep 'physical id\|processor'

Check NUMA node of the NIC
cat /sys/class/net/<KERNEL NAME OF THE NIC>/device/numa_node e.g.
cat /sys/class/net/eth1/device/numa_node

Suricata operates in workers runmode. Packet distribution relies on Receive
Side Scaling (RSS), which distributes packets across the NIC queues.
Individual Suricata workers then poll packets from the NIC queues.
Internally, DPDK runmode uses a symmetric hash (0x6d5a) [https://www.ran-lifshitz.com/2014/08/28/symmetric-rss-receive-side-scaling/]
that redirects bi-flows to specific workers.

Before Suricata can be run, it is required to allocate a sufficient number of
hugepages. For efficiency, hugepages are continuous chunks of memory (pages)
that are larger (2 MB+) than what is typically used in the operating systems
(4 KB). A lower count of pages allows faster lookup of page entries. The
hugepages need to be allocated on the NUMA node where the NIC and affiniated
CPU cores reside. For example, if the hugepages are allocated only on NUMA
node 0 and the NIC is connected to NUMA node 1, then the application will fail
to start. As a result, it is advised to identify the NUMA node to which the
NIC is attached before allocating hugepages and setting CPU core affinity to
that node. In case Suricata deployment uses multiple NICs, hugepages must be
allocated on each of the NUMA nodes used by the Suricata deployment.

To check number of allocated hugepages:
sudo dpdk-hugepages.py -s
alternative (older) way
grep Huge /proc/meminfo

Allocate 2 GB in hugepages on all available NUMA nodes:
(number of hugepages depend on the default size of hugepages 2 MB / 1 GB)
sudo dpdk-hugepages.py --setup 2G
alternative (older) way allocates 1024 2 MB hugepages but only on NUMA 0
echo 1024 | sudo tee \
 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages

DPDK memory pools hold packets received from NICs. These memory pools are
allocated in hugepages. One memory pool is allocated per interface. The size
of each memory pool can be individual and is set with the mempool-size.
Memory (in bytes) for one memory pool is calculated as: mempool-size * mtu.
The sum of memory pool requirements divided by the size of one hugepage results
in the number of required hugepages. It causes no problem to allocate more
memory than required, but it is vital for Suricata to not run out of hugepages.

The mempool cache is local to the individual CPU cores and holds packets that
were recently processed. As the mempool is shared among all cores, the cache
tries to minimize the required inter-process synchronization. The recommended
size of the cache is covered in the YAML file.

To be able to run DPDK on Intel cards, it is required to change the default
Intel driver to either vfio-pci or igb_uio driver. The process is
described in DPDK manual page regarding Linux drivers [https://doc.dpdk.org/guides/linux_gsg/linux_drivers.html].
The Intel NICs have the amount of RX/TX descriptors capped at 4096.
This should be possible to change by manually compiling the DPDK while
changing the value of respective macros for the desired drivers
(e.g. IXGBE_MAX_RING_DESC/I40E_MAX_RING_DESC).
DPDK is natively supported by Mellanox and thus their NICs should work
"out of the box".

Current DPDK support involves Suricata running on:

	
	a physical machine with a physical NICs such as:
	
	mlx5 (ConnectX-4/ConnectX-5/ConnectX-6)

	ixgbe

	i40e

	ice

	
	a virtual machine with virtual interfaces such as:
	
	e1000

	VMXNET3

	virtio-net

Other NICs using the same driver as mentioned above should work as well.
The DPDK capture interface has not been tested neither with the virtual
interfaces nor in the virtual environments like VMs, Docker or similar.

The minimal supported DPDK is version 19.11 which should be available in most
repositories of major distributions.
Alternatively, it is also possible to use meson and ninja to build and
install DPDK from source files.
It is required to have correctly configured tool pkg-config as it is used to
load libraries and CFLAGS during the Suricata configuration and compilation.
This can be tested by querying DPDK version as:

pkg-config --modversion libdpdk

12.1.17.2. Pf-ring

The Pf_ring is a library that aims to improve packet capture
performance over libcap. It performs packet acquisition. There are
three options within Pf_ring: interface, cluster-id and cluster-type.

pfring:
 interface: eth0 # In this option you can set the network-interface
 # on which you want the packets of the network to be read.

Pf_ring will load balance packets based on flow. All packet
acquisition threads that will participate in the load balancing need
to have the same cluster-id. It is important to make sure this ID is
unique for this cluster of threads, so that no other engine / program
is making use of clusters with the same id.

cluster-id: 99

Pf_ring can load balance traffic using pf_ring-clusters. All traffic
for pf_ring can be load balanced according to the configured cluster
type value; in a round robin manner or a per flow manner that are part
of the same cluster. All traffic for pf_ring will be load balanced across
acquisition threads of the same cluster id.

The "inner" flow means that the traffic will be load balanced based on
address tuple after the outer vlan has been removed.

	Cluster Type

	Value

	cluster_flow

	src ip, src_port, dst ip, dst port, proto, vlan

	cluster_inner_flow

	src ip, src port, dst ip, dst port, proto, vlan

	cluster_inner_flow_2_tuple

	src ip, dst ip

	cluster_inner_flow_4_tuple

	src ip, src port, dst ip, dst port

	cluster_inner_flow_5_tuple

	src ip, src port, dst ip, dst port, proto

	cluster_round_robin

	not recommended

The cluster_round_robin manner is a way of distributing packets one at
a time to each thread (like distributing playing cards to fellow
players). The cluster_flow manner is a way of distributing all packets
of the same flow to the same thread. The flows itself will be
distributed to the threads in a round-robin manner.

If your deployment has VLANs, the cluster types with "inner" will use the innermost
address tuple for distribution.

The default cluster type is cluster_flow; the cluster_round_robin is not recommended with Suricata.

cluster-type: cluster_inner_flow_5_tuple

12.1.17.3. NFQ

Using NFQUEUE in iptables rules, will send packets to Suricata. If the
mode is set to 'accept', the packet that has been send to Suricata by
a rule using NFQ, will by default not be inspected by the rest of the
iptables rules after being processed by Suricata. There are a few more
options to NFQ to change this if desired.

If the mode is set to 'repeat', the packets will be marked by Suricata
and be re-injected at the first rule of iptables. To mitigate the
packet from being going round in circles, the rule using NFQ will be
skipped because of the mark.

If the mode is set to 'route', you can make sure the packet will be
send to another tool after being processed by Suricata. It is possible
to assign this tool at the mandatory option 'route_queue'. Every
engine/tool is linked to a queue-number. This number you can add to
the NFQ rule and to the route_queue option.

Add the numbers of the options repeat_mark and route_queue to the NFQ-rule:

iptables -I FORWARD -m mark ! --mark $MARK/$MASK -j NFQUEUE

nfq:
 mode: accept #By default the packet will be accepted or dropped by Suricata
 repeat_mark: 1 #If the mode is set to 'repeat', the packets will be marked after being
 #processed by Suricata.
 repeat_mask: 1
 route_queue: 2 #Here you can assign the queue-number of the tool that Suricata has to
 #send the packets to after processing them.

Example 1 NFQ1

mode: accept

[image: ../_images/NFQ.png]
Example 2 NFQ

mode: repeat

[image: ../_images/NFQ1.png]
Example 3 NFQ

mode: route

[image: ../_images/NFQ2.png]

12.1.17.4. Ipfw

Suricata does not only support Linux, it supports the FreeBSD
operating system (this is an open source Unix operating system) and
Mac OS X as well. The in-line mode on FreeBSD uses ipfw (IP-firewall).

Certain rules in ipfw send network-traffic to Suricata. Rules have
numbers. In this option you can set the rule to which the
network-traffic will be placed back. Make sure this rule comes after
the one that sends the traffic to Suricata, otherwise it will go
around in circles.

The following tells the engine to re-inject packets back into the ipfw
firewall at rule number 5500:

ipfw:
 ipfw-reinjection-rule-number: 5500

Example 16 Ipfw-reinjection.

[image: ../_images/ipfw_reinjection.png]

12.1.18. Rules

12.1.18.1. Rule Files

Suricata by default is setup for rules to be managed by Suricata-Update with
the following rule file configuration:

default-rule-path: /var/lib/suricata/rules
rule-files:
 - suricata.rules

A default installation of Suricata-Update will write out the rules to
/var/lib/suricata/rules/suricata.rules.

You may want to edit this section if you are not using Suricata-Update or want
to add rule files that are not managed by Suricata-Update, for example:

default-rule-path: /var/lib/suricata/rules
rule-files:
 - suricata.rules
 - /etc/suricata/rules/custom.rules

File names can be specific with an absolute path, or just the base name. If
just the base name is provided it will be looked for in the
default-rule-path.

If a rule file cannot be found, Suricata will log a warning message and
continue to load, unless --init-errors-fatal has been specified on the
command line, in which case Suricata will exit with an error code.

For more information on rule management see Rule Management.

12.1.18.2. Threshold-file

Within this option, you can state the directory in which the
threshold-file will be stored. The default directory is:
/etc/suricata/threshold.config

12.1.18.3. Classifications

The Classification-file is a file which makes the purpose of rules
clear.

Some rules are just for providing information. Some of them are to
warn you for serious risks like when you are being hacked etc.

In this classification-file, there is a part submitted to the rule to
make it possible for the system-administrator to distinguish events.

A rule in this file exists of three parts: the short name, a
description and the priority of the rule (in which 1 has the highest
priority and 4 the lowest).

You can notice these descriptions returning in the rule and events / alerts.

Example:

configuration classification: misc-activity,Misc activity,3

Rule:

alert tcp $HOME_NET 21 -> $EXTERNAL_NET any (msg:"ET POLICY FTP Login Successful (non-anonymous)";
flow:from_server,established;flowbits:isset,ET.ftp.user.login; flowbits:isnotset,ftp.user.logged_in;
flowbits:set,ftp.user.logged_in; content:"230 ";pcre:!"/^230(\s+USER)?\s+(anonymous|ftp)/smi";
classtype:misc-activity; reference:urldoc.emergingthreats.net/2003410,;
reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/POLICY/POLICY_FTP_Login; sid:2003410; rev:7;)

Event/Alert:

10/26/10-10:13:42.904785 [**] [1:2003410:7] ET POLICY FTP Login Successful (non-anonymous) [**]
 [Classification: Misc activity[Priority: 3] {TCP} 192.168.0.109:21 -> x.x.x.x:34117

You can set the direction of the classification configuration.

classification-file: /etc/suricata/classification.config

12.1.18.4. Rule-vars

There are variables which can be used in rules.

Within rules, there is a possibility to set for which IP-address the
rule should be checked and for which IP-address it should not.

This way, only relevant rules will be used. To prevent you from having
to set this rule by rule, there is an option in which you can set the
relevant IP-address for several rules. This option contains the
address group vars that will be passed in a rule. So, after HOME_NET
you can enter your home IP-address.

vars:
 address-groups:
 HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]" #By using [], it is possible to set
 #complicated variables.
 EXTERNAL_NET: any
 HTTP_SERVERS: "$HOME_NET" #The $-sign tells that what follows is
 #a variable.
 SMTP_SERVERS: "$HOME_NET"
 SQL_SERVERS: "$HOME_NET"
 DNS_SERVERS: "$HOME_NET"
 TELNET_SERVERS: "$HOME_NET"
 AIM_SERVERS: any

It is a convention to use upper-case characters.

There are two kinds of variables: Address groups and Port-groups. They
both have the same function: change the rule so it will be relevant to
your needs.

In a rule there is a part assigned to the address and one to the
port. Both have their variable.

All options have to be set. If it is not necessary to set a specific
address, you should enter 'any'.

port-groups:
 HTTP_PORTS: "80"
 SHELLCODE_PORTS: "!80"
 ORACLE_PORTS: 1521
 SSH_PORTS: 22
 SIP_PORTS: "[5060, 5061]"

12.1.18.5. Host-os-policy

Operating systems differ in the way they process fragmented packets
and streams. Suricata performs differently with anomalies for
different operating systems. It is important to set of which operating
system your IP-address makes use of, so Suricata knows how to process
fragmented packets and streams. For example in stream-reassembly there
can be packets with overlapping payloads.

Example 17 Overlapping payloads

[image: ../_images/overlap.png]
In the configuration-file, the operating-systems are listed. You can
add your IP-address behind the name of the operating system you make
use of.

host-os-policy:
 windows: [0.0.0.0/0]
 bsd: []
 bsd_right: []
 old_linux: []
 linux: [10.0.0.0/8, 192.168.1.100, "8762:2352:6241:7245:E000:0000:0000:0000"]
 old_solaris: []
 solaris: ["::1"]
 hpux10: []
 hpux11: []
 irix: []
 macos: []
 vista: []
 windows2k3: []

12.1.19. Engine analysis and profiling

Suricata offers several ways of analyzing performance of rules and the
engine itself.

12.1.19.1. Engine-analysis

The option engine-analysis provides information for signature writers
about how Suricata organizes signatures internally.

Like mentioned before, signatures have zero or more patterns on which
they can match. Only one of these patterns will be used by the multi
pattern matcher (MPM). Suricata determines which patterns will be used
unless the fast-pattern rule option is used.

The option engine-analysis creates a new log file in the default log
dir. In this file all information about signatures and patterns can be
found so signature writers are able to see which pattern is used and
change it if desired.

To create this log file, you have to run Suricata with
./src/suricata -c suricata.yaml --engine-analysis.

engine-analysis:
 rules-fast-pattern: yes

Example:

[10703] 26/11/2010 -- 11:41:15 - (detect.c:560) <Info> (SigLoadSignatures)
-- Engine-Analysis for fast_pattern printed to file - /var/log/suricata/rules_fast_pattern.txt

alert tcp any any -> any any (content:"Volume Serial Number"; sid:1292;)

== Sid: 1292 ==
Fast pattern matcher: content
Fast pattern set: no
Fast pattern only set: no
Fast pattern chop set: no
Content negated: no
Original content: Volume Serial Number
Final content: Volume Serial Number

alert tcp any any -> any any (content:"abc"; content:"defghi"; sid:1;)

== Sid: 1 ==
Fast pattern matcher: content
Fast pattern set: no
Fast pattern only set: no
Fast pattern chop set: no
Content negated: no
Original content: defghi
Final content: defghi

alert tcp any any -> any any (content:"abc"; fast_pattern:only; content:"defghi"; sid:1;)

== Sid: 1 ==
Fast pattern matcher: content
Fast pattern set: yes
Fast pattern only set: yes
Fast pattern chop set: no
Content negated: no
Original content: abc
Final content: abc

alert tcp any any -> any any (content:"abc"; fast_pattern; content:"defghi"; sid:1;)

== Sid: 1 ==
Fast pattern matcher: content
Fast pattern set: yes
Fast pattern only set: no
Fast pattern chop set: no
Content negated: no
Original content: abc
Final content: abc

alert tcp any any -> any any (content:"abc"; fast_pattern:1,2; content:"defghi"; sid:1;)

== Sid: 1 ==
Fast pattern matcher: content
Fast pattern set: yes
Fast pattern only set: no
Fast pattern chop set: yes
Fast pattern offset, length: 1, 2
Content negated: no
Original content: abc
Final content: bc

12.1.19.2. Rule and Packet Profiling settings

Rule profiling is a part of Suricata to determine how expensive rules
are. Some rules are very expensive while inspecting traffic. Rule
profiling is convenient for people trying to track performance
problems and resolving them. Also for people writing signatures.

Compiling Suricata with rule-profiling will have an impact on
performance, even if the option is disabled in the configuration file.

To observe the rule-performance, there are several options.

profiling:
 rules:
 enabled: yes

This engine is not used by default. It can only be used if Suricata is
compiled with:

-- enable-profiling

At the end of each session, Suricata will display the profiling
statistics. The list will be displayed sorted.

This order can be changed as pleased. The choice is between ticks,
avgticks, checks, maxticks and matches. The setting of your choice
will be displayed from high to low.

The amount of time it takes to check the signatures, will be
administrated by Suricata. This will be counted in ticks. One tick is
one CPU computation. 3 GHz will be 3 billion ticks.

Beside the amount of checks, ticks and matches it will also display
the average and the maximum of a rule per session at the end of the
line.

The option Limit determines the amount of signatures of which the
statistics will be shown, based on the sorting.

sort: avgticks
limit: 100

Example of how the rule statistics can look like;

Rule Ticks % Checks Matches Max Tick Avg
Ticks

7560 107766621 0.02 138 37 105155334 780917.54
11963 1605394413 0.29 2623 1 144418923 612045.14
7040 1431034011 0.26 2500 0 106018209 572413.60
5726 1437574662 0.26 2623 1 115632900 548065.06
7037 1355312799 0.24 2562 0 116048286 529005.78
11964 1276449255 0.23 2623 1 96412347 486637.15
7042 1272562974 0.23 2623 1 96405993 485155.54
5719 1233969192 0.22 2562 0 106439661 481642.93
5720 1204053246 0.21 2562 0 125155431 469966.14

12.1.19.3. Packet Profiling

packets:

 # Profiling can be disabled here, but it will still have a
 # performance impact if compiled in.

 enabled: yes #this option is enabled by default
 filename: packet_stats.log #name of the file in which packet profiling information will be
 #stored.
 append: yes #If set to yes, new packet profiling information will be added to the
 #information that was saved last in the file.

 # per packet csv output
 csv:

 # Output can be disabled here, but it will still have a
 # performance impact if compiled in.

 enabled: no #the sending of packet output to a csv-file is by default disabled.
 filename: packet_stats.csv #name of the file in which csv packet profiling information will be
 #stored

Packet profiling is enabled by default in suricata.yaml but it will
only do its job if you compiled Suricata with --enable profiling.

The filename in which packet profiling information will be stored, is
packet-stats.log. Information in this file can be added to the last
information that was saved there, or if the append option is set to
no, the existing file will be overwritten.

Per packet, you can send the output to a csv-file. This file contains
one line for each packet with all profiling information of that
packet. This option can be used only if Suricata is build
with --enable-profiling and if the packet profiling option is enabled
in yaml.

It is best to use runmode 'single' if you would like to profile the
speed of the code. When using a single thread, there is no situation
in which two threads have to wait for each other. When using two
threads, the time threads might have to wait for each other will be
taken in account when/during profiling packets. For more information
see Packet Profiling.

12.1.20. Decoder

12.1.20.1. Teredo

The Teredo decoder can be disabled. It is enabled by default.

decoder:
 # Teredo decoder is known to not be completely accurate
 # it will sometimes detect non-teredo as teredo.
 teredo:
 enabled: true
 # ports to look for Teredo. Max 4 ports. If no ports are given, or
 # the value is set to 'any', Teredo detection runs on _all_ UDP packets.
 ports: $TEREDO_PORTS # syntax: '[3544, 1234]'

Using this default configuration, Teredo detection will run on UDP port
3544. If the ports parameter is missing, or set to any, all ports will be
inspected for possible presence of Teredo.

12.1.21. Advanced Options

12.1.21.1. stacktrace

Display diagnostic stacktraces when a signal unexpectedly terminates Suricata, e.g., such as
SIGSEGV or SIGABRT. Requires the libunwind library to be available. The default value is
to display the diagnostic message if a signal unexpectedly terminates Suricata -- e.g.,
SIGABRT or SIGSEGV occurs while Suricata is running.

logging:
 # Requires libunwind to be available when Suricata is configured and built.
 # If a signal unexpectedly terminates Suricata, displays a brief diagnostic
 # message with the offending stacktrace if enabled.
 #stacktrace-on-signal: on

12.1.21.2. luajit

12.1.21.2.1. states

Luajit has a strange memory requirement, it's 'states' need to be in the
first 2G of the process' memory. For this reason when luajit is used the
states are allocated at the process startup. This option controls how many
states are preallocated.

If the pool is depleted a warning is generated. Suricata will still try to
continue, but may fail if other parts of the engine take too much memory.
If the pool was depleted a hint will be printed at the engines exit.

States are allocated as follows: for each detect script a state is used per
detect thread. For each output script, a single state is used. Keep in
mind that a rule reload temporary doubles the states requirement.

12.1.22. Configuration hardening

The security section of suricata.yaml is meant to provide in-depth security configuration options.

Besides landlock, (see Using Landlock LSM), one setting is available.
limit-noproc is a boolean to prevent process creation by Suricata.
If you do not need Suricata to create other processes or threads
(you may need it for LUA scripts for instance or plugins), enable this to
call setrlimit with RLIMIT_NPROC argument (see man setrlimit).
This prevents potential exploits against Suricata to fork a new process,
even if it does not prevent the call of exec.

Warning! This has no effect on Linux when running as root. If you want a hardened configuration,
you probably want to set run-as configuration parameter so as to drop root privileges.

Beyond suricata.yaml, other ways to harden Suricata are
- compilation : enabling ASLR and other exploit mitigation techniques.
- environment : running Suricata on a device that has no direct access to Internet.

12.1.22.1. Lua

Suricata 7.0 disables Lua rules by default. Lua rules can be enabled
in the security.lua section of the configuration file:

security:
 lua:
 # Allow Lua rules. Disabled by default.
 #allow-rules: false

12.2. Global-Thresholds

Thresholds can be configured in the rules themselves, see
Thresholding Keywords. They are often set by rule writers based on
their intelligence for creating a rule combined with a judgement on how often
a rule will alert.

12.2.1. Threshold Config

Next to rule thresholding more thresholding can be configured on the sensor
using the threshold.config.

12.2.1.1. threshold/event_filter

Syntax:

threshold gen_id <gid>, sig_id <sid>, type <threshold|limit|both>, \
 track <by_src|by_dst|by_rule|by_both>, count <N>, seconds <T>

12.2.1.2. rate_filter

Rate filters allow changing of a rule action when a rule matches.

Syntax:

rate_filter: rate_filter gen_id <gid>, sig_id <sid>, track <tracker>, \
 count <c>, seconds <s>, new_action <action>, timeout <timeout>

Example:

rate_filter gen_id 1, sig_id 1000, track by_rule, count 100, seconds 60, \
 new_action alert, timeout 30

12.2.1.2.1. gen_id

Generator id. Normally 1, but if a rule uses the gid keyword to set
another value it has to be matched in the gen_id.

12.2.1.2.2. sig_id

Rule/signature id as set by the rule sid keyword.

12.2.1.2.3. track

Where to track the rule matches. When using by_src/by_dst the tracking is
done per IP-address. The Host table is used for storage. When using by_rule
it's done globally for the rule.
Option by_both used to track per IP pair of source and destination. Packets
going to opposite directions between same addresses tracked as the same pair.

12.2.1.2.4. count

Number of rule hits before the rate_filter is activated.

12.2.1.2.5. seconds

Time period within which the count needs to be reached to activate
the rate_filter

12.2.1.2.6. new_action

New action that is applied to matching traffic when the rate_filter
is in place.

Values:

<alert|drop|pass|reject>

Note: 'sdrop' and 'log' are supported by the parser but not implemented otherwise.

12.2.1.2.7. timeout

Time in seconds during which the rate_filter will remain active.

12.2.1.2.8. Example

Let's say we want to limit incoming connections to our SSH server. The rule
888 below simply alerts on SYN packets to the SSH port of our SSH server.
If an IP-address triggers this more than 10 or more with a minute, the
drop rate_filter is set with a timeout of 5 minutes.

Rule:

alert tcp any any -> $MY_SSH_SERVER 22 (msg:"Connection to SSH server"; \
 flow:to_server; flags:S,12; sid:888;)

Rate filter:

rate_filter gen_id 1, sig_id 888, track by_src, count 10, seconds 60, \
 new_action drop, timeout 300

12.2.1.3. suppress

Suppressions can be used to suppress alerts for a rule or a
host/network. Actions performed when a rule matches, such as setting a
flowbit, are still performed.

Syntax:

suppress gen_id <gid>, sig_id <sid>
suppress gen_id <gid>, sig_id <sid>, track <by_src|by_dst|by_either>, ip <ip|subnet|addressvar>

Examples:

suppress gen_id 1, sig_id 2002087, track by_src, ip 209.132.180.67

This will make sure the signature 2002087 will never match for src
host 209.132.180.67.

Other possibilities/examples:

suppress gen_id 1, sig_id 2003614, track by_src, ip 217.110.97.128/25
suppress gen_id 1, sig_id 2003614, track by_src, ip [192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]
suppress gen_id 1, sig_id 2003614, track by_src, ip $HOME_NET
suppress gen_id 1, sig_id 2003614, track by_either, ip 217.110.97.128/25

In the last example above, the by_either tracking means that if either
the source ip or destination ip matches 217.110.97.128/25 the
rule with sid 2003614 is suppressed.

12.2.2. Global thresholds vs rule thresholds

Note: this section applies to 1.4+ In 1.3 and before mixing rule and
global thresholds is not supported.

When a rule has a threshold/detection_filter set a rule can still be
affected by the global threshold file.

The rule below will only fire if 10 or more emails are being
delivered/sent from a host within 60 seconds.

alert tcp any any -> any 25 (msg:"ET POLICY Inbound Frequent Emails - Possible Spambot Inbound"; \
 flow:established; content:"mail from|3a|"; nocase; \
 threshold: type threshold, track by_src, count 10, seconds 60; \
 reference:url,doc.emergingthreats.net/2002087; classtype:misc-activity; sid:2002087; rev:10;)

Next, we'll see how global settings affect this rule.

12.2.2.1. Suppress

Suppressions can be combined with rules with
thresholds/detection_filters with no exceptions.

suppress gen_id 1, sig_id 2002087, track by_src, ip 209.132.180.67
suppress gen_id 0, sig_id 0, track by_src, ip 209.132.180.67
suppress gen_id 1, sig_id 0, track by_src, ip 209.132.180.67

Each of the rules above will make sure 2002087 doesn't alert when the
source of the emails is 209.132.180.67. It will alert for all other
hosts.

suppress gen_id 1, sig_id 2002087

This suppression will simply convert the rule to "noalert", meaning it
will never alert in any case. If the rule sets a flowbit, that will
still happen.

12.2.2.2. Threshold/event_filter

When applied to a specific signature, thresholds and event_filters
(threshold from now on) will override the signature setting. This can
be useful for when the default in a signature doesn't suit your
environment.

threshold gen_id 1, sig_id 2002087, type both, track by_src, count 3, seconds 5
threshold gen_id 1, sig_id 2002087, type threshold, track by_src, count 10, seconds 60
threshold gen_id 1, sig_id 2002087, type limit, track by_src, count 1, seconds 15

Each of these will replace the threshold setting for 2002087 by the
new threshold setting.

Note: overriding all gids or sids (by using gen_id 0 or sig_id 0)
is not supported. Bug https://redmine.openinfosecfoundation.org/issues/425.

12.2.2.3. Rate_filter

see https://redmine.openinfosecfoundation.org/issues/425.

12.3. Exception Policies

Suricata has a set of configuration variables to indicate what should the engine
do when certain exception conditions, such as hitting a memcap, are reached.

They are called Exception Policies and are configurable via suricata.yaml. If
enabled, the engine will call them when it reaches exception states.

For developers or for researching purposes, there are also simulation options
exposed in debug mode and passed via command-line. These exist to force or
simulate failures or errors and understand Suricata behavior under such conditions.

12.3.1. Exception Policies

12.3.1.1. Master Switch

It is possible to set all configuration policies via what we call "master
switch". This offers a quick way to define what the engine should do in case of
traffic exceptions, while still allowing for the flexibility of indicating a
different behavior for specific exception policies your setup/environment may
have the need to.

Define a common behavior for all exception policies.
In IPS mode, the default is drop-flow. For cases when that's not possible, the
engine will fall to drop-packet. To fallback to old behavior (setting each of
them individually, or ignoring all), set this to ignore.
All values available for exception policies can be used, and there is one
extra option: auto - which means drop-flow or drop-packet (as explained above)
in IPS mode, and ignore in IDS mode. Exception policy values are: drop-packet,
drop-flow, reject, bypass, pass-packet, pass-flow, ignore (disable).
exception-policy: auto

This value will be overwritten by specific exception policies whose settings are
also defined in the yaml file.

12.3.1.1.1. Auto

In IPS mode, the default behavior for most of the exception policies is to
fail close. This means dropping the flow, or the packet, when the flow action is
not supported. The default policy for the midstream exception will be ignore if
midstream flows are accepted.

It is possible to disable this default, by setting the exception policies'
"master switch" yaml config option to ignore.

In IDS mode, setting auto mode actually means disabling the
master-switch, or ignoring the exception policies.

12.3.1.2. Specific settings

Exception policies are implemented for:

Exception Policy configuration variables

	Config setting

	Policy variable

	Expected behavior

	stream.memcap

	memcap-policy

	If a stream memcap limit is reached, apply the memcap policy to the packet and/or
flow.

	stream.midstream

	midstream-policy

	If a session is picked up midstream, apply the midstream policy to the flow.

	stream.reassembly.memcap

	memcap-policy

	If stream reassembly reaches memcap limit, apply memcap policy to the
packet and/or flow.

	flow.memcap

	memcap-policy

	Apply policy when the memcap limit for flows is reached and no flow could
be freed up. Policy can only be applied to the packet.

	defrag.memcap

	memcap-policy

	Apply policy when the memcap limit for defrag is reached and no tracker
could be picked up. Policy can only be applied to the packet.

	app-layer

	error-policy

	Apply policy if a parser reaches an error state. Policy can be applied to packet and/or flow.

To change any of these, go to the specific section in the suricata.yaml file
(for more configuration details, check the suricata.yaml's
documentation).

The possible values for the exception policies, and the resulting behaviors,
are:

	drop-flow: disable inspection for the whole flow (packets, payload,
application layer protocol), drop the packet and all future packets in the
flow.

	drop-packet: drop the packet.

	reject: same as drop-flow, but reject the current packet as well (see
reject action in Rule's Action).

	bypass: bypass the flow. No further inspection is done. Bypass may be offloaded.

	pass-flow: disable payload and packet detection; stream reassembly,
app-layer parsing and logging still happen.

	pass-packet: disable detection, still does stream updates and app-layer
parsing (depending on which policy triggered it).

	ignore: do not apply exception policies (default behavior).

The drop, pass and reject are similar to the rule actions described in rule
actions.

12.3.2. Exception Policies and Midstream Pick-up Sessions

Suricata behavior can be difficult to track in case of midstream session
pick-ups. Consider this matrix illustrating the different interactions for
midstream pick-ups enabled or not and the various exception policy values:

Exception Policy Behaviors - IDS Mode

	Exception Policy

	Midstream pick-up sessions ENABLED (stream.midstream=true)

	Midstream pick-up sessions DISABLED (stream.midstream=false)

	Ignore

	Session tracked and parsed, inspect and log app-layer traffic, do detection.

	Session not tracked. No app-layer inspection or logging. No detection. No stream reassembly.

	Drop-flow

	Not valid.*

	Not valid.*

	Drop-packet

	Not valid.*

	Not valid.*

	Reject

	Not valid.*

	Session not tracked, flow REJECTED.

	Pass-flow

	Track session, inspect and log app-layer traffic, no detection.

	Session not tracked. No app-layer inspection or logging. No detection. No stream reassembly.

	Pass-packet

	Not valid.*

	Not valid.*

	Bypass

	Not valid.*

	Session not tracked. No app-layer inspection or logging. No detection. No stream reassembly.

	Auto

	Midstream policy applied: "ignore". Same behavior.

	Midstream policy applied: "ignore". Same behavior.

The main difference between IDS and IPS scenarios is that in IPS mode flows can
be allowed or blocked (as in with the PASS and DROP rule actions). Packet
actions are not valid, as midstream pick-up is a configuration that affects the
whole flow.

Exception Policy Behaviors - IPS Mode

	Exception Policy

	Midstream pick-up sessions ENABLED (stream.midstream=true)

	Midstream pick-up sessions DISABLED (stream.midstream=false)

	Ignore

	Session tracked and parsed, inspect and log app-layer traffic, do detection.

	Session not tracked. No app-layer inspection or logging. No detection. No stream reassembly.

	Drop-flow

	Not valid.*

	Session not tracked. No app-layer inspection or logging. No detection. No stream reassembly.
Flow DROPPED.

	Drop-packet

	Not valid.*

	Not valid.*

	Reject

	Not valid.*

	Session not tracked, flow DROPPED and REJECTED.

	Pass-flow

	Track session, inspect and log app-layer traffic, no detection.

	Session not tracked. No app-layer inspection or logging. No detection. No stream reassembly.

	Pass-packet

	Not valid.*

	Not valid.*

	Bypass

	Not valid.*

	Session not tracked. No app-layer inspection or logging. No detection. No stream reassembly.
Packets ALLOWED.

	Auto

	Midstream policy applied: "ignore". Same behavior.

	Midstream policy applied: "drop-flow". Same behavior.

Notes:

	Not valid means that Suricata will error out and won't start.

	REJECT will make Suricata send a Reset-packet unreach error to the sender of the matching packet.

12.3.3. Command-line Options for Simulating Exceptions

It is also possible to force specific exception scenarios, to check engine
behavior under failure or error conditions.

The available command-line options are:

	simulate-applayer-error-at-offset-ts: force an applayer error in the to
server direction at the given offset.

	simulate-applayer-error-at-offset-tc: force an applayer error in the to
client direction at the given offset.

	simulate-packet-loss: simulate that the packet with the given number
(pcap_cnt) from the session was lost.

	simulate-packet-tcp-reassembly-memcap: simulate that the TCP stream
reassembly reached memcap for the specified packet.

	simulate-packet-tcp-ssn-memcap: simulate that the TCP session hit the
memcap for the specified packet.

	simulate-packet-flow-memcap: force the engine to assume that flow memcap is
hit at the given packet.

	simulate-packet-defrag-memcap: force Suricata to assume memcap is hit when
defragmenting specified packet.

	simulate-alert-queue-realloc-failure: prevent the engine from dynamically
growing the temporary alert queue, during alerts processing.

12.3.4. Common abbreviations

	applayer: application layer protocol

	memcap: (maximum) memory capacity available

	defrag: defragmentation

12.4. Snort.conf to Suricata.yaml

This guide is meant for those who are familiar with Snort and the
snort.conf configuration format. This guide will provide a 1:1 mapping
between Snort and Suricata configuration wherever possible.

12.4.1. Variables

snort.conf

ipvar HOME_NET any
ipvar EXTERNAL_NET any
...

portvar HTTP_PORTS [80,81,311,591,593,901,1220,1414,1741,1830,2301,2381,2809,3128,3702,4343,4848,5250,7001,7145,7510,7777,7779,8000,8008,8014,8028,8080,8088,8090,8118,8123,8180,8181,8243,8280,8800,8888,8899,9000,9080,9090,9091,9443,9999,11371,55555]
portvar SHELLCODE_PORTS !80
...

suricata.yaml

vars:
 address-groups:

 HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"
 EXTERNAL_NET: "!$HOME_NET"

 port-groups:
 HTTP_PORTS: "80"
 SHELLCODE_PORTS: "!80"

Note that Suricata can automatically detect HTTP traffic regardless of
the port it uses. So the HTTP_PORTS variable is not nearly as
important as it is with Snort, if you use a Suricata enabled
ruleset.

12.4.2. Decoder alerts

snort.conf

Stop generic decode events:
config disable_decode_alerts

Stop Alerts on experimental TCP options
config disable_tcpopt_experimental_alerts

Stop Alerts on obsolete TCP options
config disable_tcpopt_obsolete_alerts

Stop Alerts on T/TCP alerts
config disable_tcpopt_ttcp_alerts

Stop Alerts on all other TCPOption type events:
config disable_tcpopt_alerts

Stop Alerts on invalid ip options
config disable_ipopt_alerts

suricata.yaml

Suricata has no specific decoder options. All decoder related alerts
are controlled by rules. See #Rules below.

12.4.3. Checksum handling

snort.conf

config checksum_mode: all

suricata.yaml

Suricata's checksum handling works on-demand. The stream engine
checks TCP and IP checksum by default:

stream:
 checksum-validation: yes # reject wrong csums

Alerting on bad checksums can be done with normal rules. See #Rules,
decoder-events.rules specifically.

12.4.4. Various configs

12.4.4.1. Active response

snort.conf

Configure active response for non inline operation. For more information, see REAMDE.active
config response: eth0 attempts 2

suricata.yaml

Active responses are handled automatically w/o config if rules with
the "reject" action are used.

12.4.4.2. Dropping privileges

snort.conf

Configure specific UID and GID to run snort as after dropping privs. For more information see snort -h command line options
#
config set_gid:
config set_uid:

Suricata

To set the user and group use the --user <username> and --group
<groupname> command-line options.

12.4.4.3. Snaplen

snort.conf

Configure default snaplen. Snort defaults to MTU of in use interface. For more information see README
#
config snaplen:
#

Suricata always works at full snap length to provide full traffic visibility.

12.4.4.4. Bpf

snort.conf

Configure default bpf_file to use for filtering what traffic reaches snort. For more information see snort -h command line options (-F)
#
config bpf_file:
#

suricata.yaml

BPF filters can be set per packet acquisition method, with the "bpf-filter: <file>" yaml option and in a file using the -F command line option.

For example:

pcap:
 - interface: eth0
 #buffer-size: 16777216
 #bpf-filter: "tcp and port 25"
 #checksum-checks: auto
 #threads: 16
 #promisc: no
 #snaplen: 1518

12.4.5. Log directory

snort.conf

Configure default log directory for snort to log to. For more information see snort -h command line options (-l)
#
config logdir:

suricata.yaml

default-log-dir: /var/log/suricata/

This value is overridden by the -l command-line option.

12.4.6. Packet acquisition

snort.conf

Configure DAQ related options for inline operation. For more information, see README.daq
#
config daq: <type>
config daq_dir: <dir>
config daq_mode: <mode>
config daq_var: <var>
#
<type> ::= pcap | afpacket | dump | nfq | ipq | ipfw
<mode> ::= read-file | passive | inline
<var> ::= arbitrary <name>=<value passed to DAQ
<dir> ::= path as to where to look for DAQ module so's

suricata.yaml

Suricata has all packet acquisition support built-in. It's
configuration format is very verbose.

pcap:
 - interface: eth0
 #buffer-size: 16777216
 #bpf-filter: "tcp and port 25"
 #checksum-checks: auto
 #threads: 16
 #promisc: no
 #snaplen: 1518
pfring:
afpacket:
nfq:
ipfw:

Passive vs inline vs reading files is determined by how Suricata is
invoked on the command line.

12.4.7. Rules

snort.conf:

In snort.conf a RULE_PATH variable is set, as well as variables for
shared object (SO) rules and preprocessor rules.

var RULE_PATH ../rules
var SO_RULE_PATH ../so_rules
var PREPROC_RULE_PATH ../preproc_rules

include $RULE_PATH/local.rules
include $RULE_PATH/emerging-activex.rules
...

suricata.yaml:

In the suricata.yaml the default rule path is set followed by a list
of rule files. Suricata does not have a concept of shared object rules
or preprocessor rules. Instead of preprocessor rules, Suricata has
several rule files for events set by the decoders, stream engine, http
parser etc.

default-rule-path: /etc/suricata/rules
rule-files:
 - local.rules
 - emerging-activex.rules

The equivalent of preprocessor rules are loaded like normal rule files:

rule-files:
 - decoder-events.rules
 - stream-events.rules
 - http-events.rules
 - smtp-events.rules

12.5. Multi Tenancy

12.5.1. Introduction

Multi tenancy support allows different tenants to use different
rule sets with different rule variables.

Tenants are identified by their selector; a selector can be
a VLAN, interface/device, or from a pcap file ("direct").

12.5.2. YAML

Add a new section in the main ("master") Suricata configuration file -- suricata.yaml -- named multi-detect.

Settings:

	enabled: yes/no -> is multi-tenancy support enabled

	selector: direct (for unix socket pcap processing, see below), VLAN or device

	loaders: number of loader threads, for parallel tenant loading at startup

	tenants: list of tenants

	config-path: path from where the tenant yamls are loaded

	id: tenant id (numeric values only)

	yaml: separate yaml file with the tenant specific settings

	mappings:

	VLAN id or device: The outermost VLAN is used to match.

	tenant id: tenant to associate with the VLAN id or device

multi-detect:
 enabled: yes
 #selector: direct # direct or vlan
 selector: vlan
 loaders: 3

 tenants:
 - id: 1
 yaml: tenant-1.yaml
 - id: 2
 yaml: tenant-2.yaml
 - id: 3
 yaml: tenant-3.yaml

 mappings:
 - vlan-id: 1000
 tenant-id: 1
 - vlan-id: 2000
 tenant-id: 2
 - vlan-id: 1112
 tenant-id: 3

The tenant-1.yaml, tenant-2.yaml, tenant-3.yaml each contain a partial
configuration:

Set the default rule path here to search for the files.
if not set, it will look at the current working dir
default-rule-path: /etc/suricata/rules
rule-files:
 - rules1

You can specify a threshold config file by setting "threshold-file"
to the path of the threshold config file:
threshold-file: /etc/suricata/threshold.config

classification-file: /etc/suricata/classification.config
reference-config-file: /etc/suricata/reference.config

Holds variables that would be used by the engine.
vars:

 # Holds the address group vars that would be passed in a Signature.
 # These would be retrieved during the Signature address parsing stage.
 address-groups:

 HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"

 EXTERNAL_NET: "!$HOME_NET"

 ...

 port-groups:

 HTTP_PORTS: "80"

 SHELLCODE_PORTS: "!80"

 ...

12.5.2.1. vlan-id

Assign tenants to VLAN ids. Suricata matches the outermost VLAN id with this value.
Multiple VLANs can have the same tenant id. VLAN id values must be between 1 and 4094.

Example of VLAN mapping:

mappings:
- vlan-id: 1000
 tenant-id: 1
- vlan-id: 2000
 tenant-id: 2
- vlan-id: 1112
 tenant-id: 3

The mappings can also be modified over the unix socket, see below.

Note: can only be used if vlan.use-for-tracking is enabled.

12.5.2.2. device

Assign tenants to devices. A single tenant can be assigned to a device.
Multiple devices can have the same tenant id.

Example of device mapping:

mappings:
- device: ens5f0
 tenant-id: 1
- device: ens5f1
 tenant-id: 3

The mappings are static and cannot be modified over the unix socket.

Note: Not currently supported for IPS.

Note: support depends on a capture method using the 'livedev' API. Currently
these are: pcap, AF_PACKET, PF_RING and Netmap.

12.5.3. Per tenant settings

The following settings are per tenant:

	default-rule-path

	rule-files

	classification-file

	reference-config-file

	threshold-file

	address-vars

	port-vars

12.5.4. Unix Socket

12.5.4.1. Registration

register-tenant <id> <yaml>

Examples:

register-tenant 1 tenant-1.yaml
register-tenant 2 tenant-2.yaml
register-tenant 3 tenant-3.yaml
register-tenant 5 tenant-5.yaml
register-tenant 7 tenant-7.yaml

unregister-tenant <id>

unregister-tenant 2
unregister-tenant 1

12.5.4.2. Unix socket runmode (pcap processing)

The Unix Socket pcap-file command is used to associate the tenant with
the pcap:

pcap-file traffic1.pcap /logs1/ 1
pcap-file traffic2.pcap /logs2/ 2
pcap-file traffic3.pcap /logs3/ 3
pcap-file traffic4.pcap /logs5/ 5
pcap-file traffic5.pcap /logs7/ 7

This runs the traffic1.pcap against tenant 1 and it logs into /logs1/,
traffic2.pcap against tenant 2 and logs to /logs2/ and so on.

12.5.4.3. Live traffic mode

Multi-tenancy supports both VLAN and devices with live traffic.

In the master configuration yaml file, specify device or vlan for the selector setting.

12.5.4.4. Registration

Tenants can be mapped to vlan ids.

register-tenant-handler <tenant id> vlan <vlan id>

register-tenant-handler 1 vlan 1000

unregister-tenant-handler <tenant id> vlan <vlan id>

unregister-tenant-handler 4 vlan 1111
unregister-tenant-handler 1 vlan 1000

The registration of tenant and tenant handlers can be done on a
running engine.

12.5.4.5. Reloads

Reloading all tenants:

reload-tenants

reload-tenants

Reloading a single tenant:

reload-tenant <tenant id> [yaml path]

reload-tenant 1 tenant-1.yaml
reload-tenant 5

The [yaml path] is optional. If it isn't provided, the original path of
the tenant will be used during the reload.

12.5.5. Eve JSON output

When multi-tenant support is configured and the detect engine is active then
all EVE-types that report based on flows will also report the corresponding
tenant_id for events matching a tenant configuration.

12.6. Dropping Privileges After Startup

Currently, libcap-ng is needed for dropping privileges on Suricata
after startup. For libcap, see status of feature request number #276
-- Libcap support for dropping privileges.

Most distributions have libcap-ng in their repositories.

To download the current version of libcap-ng from upstream, see also
http://people.redhat.com/sgrubb/libcap-ng/ChangeLog

wget http://people.redhat.com/sgrubb/libcap-ng/libcap-ng-0.7.8.tar.gz
tar -xzvf libcap-ng-0.7.8.tar.gz
cd libcap-ng-0.7.8
./configure
make
make install

Download, configure, compile and install Suricata for your particular setup.
See Installation. Depending on your environment, you may need to add the
--with-libpcap_ng-libraries and --with-libpcap_ng-includes options
during the configure step. e.g:

./configure --with-libcap_ng-libraries=/usr/local/lib \
 --with-libcap_ng-includes=/usr/local/include

Now, when you run Suricata, tell it what user and/or group you want it
to run as after startup with the --user and --group options.
e.g. (this assumes a 'suri' user and group):

suricata -D -i eth0 --user=suri --group=suri

You will also want to make sure your user/group permissions are set so
Suricata can still write to its log files which are usually located in
/var/log/suricata.

mkdir -p /var/log/suricata
chown -R root:suri /var/log/suricata
chmod -R 775 /var/log/suricata

12.7. Using Landlock LSM

Landlock is a Linux Security Module that has been introduced in Linux 5.13.
It allows an application to sandbox itself by selecting access right to
directories using a deny by default approach.

Given its nature, Suricata knows where it is going to read files and where
it is going to write them. So it is possible to implement an efficient
Landlock sandboxing policy.

Landlock is not active by default and needs to be activated in the
YAML configuration. Configuration should come with sane default (defined
at build time) and the command line options are used to dynamically add
some permissions.

Please note that Landlock is in blocking mode by default so careful testing
is needed in production.

To enable Landlock, edit the YAML and set enabled to yes:

landlock:
 enabled: yes
 directories:
 write:
 - /var/log/suricata/
 - /var/run/
 read:
 - /usr/
 - /etc/
 - /etc/suricata/

Following your running configuration you may have to add some directories.
There are two lists you can use, write to add directories where write is needed
and read for directories where read access is needed.

Landlock is not active in some distributions and you may need to activate it
at boot by adding lsm=landock to the Linux command line. For example,
on a Debian distribution with at least a linux 5.13, you can edit /etc/default/grub
and update the GRUB_CMDLINE_LINUX_DEFAULT option:

GRUB_CMDLINE_LINUX_DEFAULT="quiet lsm=landlock"

Then run sudo update-grub and reboot.

You can check at boot if it is running by doing:

sudo dmesg | grep landlock || journalctl -kg landlock

If you are interested in reading more about Landlock, you can use https://docs.kernel.org/userspace-api/landlock.html
as entry point.

12.8. systemd notification

12.8.1. Introduction

Suricata supports systemd notification with the aim of notifying the service manager of successful
initialisation. The purpose is to enable the ability to start upon/await successful start-up for
services/test frameworks that depend on a fully initialised Suricata .

During the initialisation phase Suricata synchronises the initialisation thread with all active
threads to ensure they are in a running state. Once synchronisation has been completed a READY=1
status notification is sent to the service manager using sd_notify().

12.8.2. Example

A test framework requires Suricata to be capturing before the tests can be carried out.
Writing a test.service and ensuring the correct execution order with After=suricata.service
forces the unit to be started after suricata.service. This does not enforce Suricata has fully
initialised. By configuring suricata.service as Type=notify instructs the service manager
to wait for the notification before starting test.service.

12.8.3. Requirements

This feature is only supported for distributions under the following conditions:

	Distribution contains libsystemd

	Any distribution that runs under systemd

	Unit file configuration: Type=notify

	Contains development files for systemd shared library

To install development files:
Fedora:

dnf -y install systemd-devel

Ubuntu/Debian:

apt -y install systemd-dev

This package shall be compile-time configured and therefore only built with distributions fulfilling
requirements [1, 2]. For notification to the service manager the unit file must be configured as
shown in requirement [3]. Upon all requirements being met the service manager will start and await
READY=1 status from Suricata. Otherwise the service manager will treat the service unit as
Type=simple and consider it started immediately after the main process ExecStart= has been
forked.

12.8.4. Additional Information

To confirm the system is running under systemd:

ps --no-headers -o comm 1

See: https://man7.org/linux/man-pages/man3/sd_notify.3.html for a detailed description on
sd_notify.

See https://www.freedesktop.org/software/systemd/man/systemd.service.html for help
writing systemd unit files.

12.9. Includes

A Suricata configuration file (typically
/etc/suricata/suricata.yaml) may include other files allowing a
configuration file to be broken into multiple files. The special
field name include is used to include one or more files.

The contents of the include file are inlined at the level of the
include statement. Include fields may also be included at any
level within a mapping.

12.9.1. Including a Single File

include: filename.yaml

12.9.2. Including Multiple Files

include:
 - filename1.yaml
 - filename2.yaml

12.9.3. Include Inside a Mapping

vars:
 address-groups:
 include: address-groups.yaml

where address-groups.yaml contains:

%YAML 1.1

HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"

is the equivalent of:

vars:
 address-groups:
 HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"

Note

Suricata versions less than 7 required multiple include
statements to be specified to include more than one file. While
Suricata 7.0 still supports this it will issue a deprecation
warning. Suricata 8.0 will not allow multiple include
statements at the same level as this is not allowed by YAML.

13. Reputation

	13.1. IP Reputation
	13.1.1. IP Reputation Config
	13.1.1.1. reputation-categories-file

	13.1.1.2. default-reputation-path

	13.1.1.3. reputation-files

	13.1.1.4. Hosts

	13.1.1.5. Reloads

	13.1.1.6. File format

	13.1.2. IP Reputation Format
	13.1.2.1. Categories file

	13.1.2.2. Reputation file

13.1. IP Reputation

	13.1.1. IP Reputation Config
	13.1.1.1. reputation-categories-file

	13.1.1.2. default-reputation-path

	13.1.1.3. reputation-files

	13.1.1.4. Hosts

	13.1.1.5. Reloads

	13.1.1.6. File format

	13.1.2. IP Reputation Format
	13.1.2.1. Categories file

	13.1.2.2. Reputation file

The purpose of the IP reputation component is the ranking of IP Addresses within the Suricata Engine. It will collect, store, update and distribute reputation intelligence on IP Addresses. The hub and spoke architecture will allows the central database (The Hub) to collect, store and compile updated IP reputation details that are then distributed to user-side sensor databases (Spokes) for inclusion in user security systems. The reputation data update frequency and security action taken, is defined in the user security configuration.

The intent of IP Reputation is to allow sharing of intelligence regarding a vast number of IP addresses. This can be positive or negative intelligence classified into a number of categories. The technical implementation requires three major efforts; engine integration, the hub that redistributes reputation, and the communication protocol between hubs and sensors. The hub will have a number of responsibilities. This will be a separate module running on a separate system as any sensor. Most often it would run on a central database that all sensors already have communication with. It will be able to subscribe to one or more external feeds. The local admin should be able to define the feeds to be subscribed to, provide authentication credentials if required, and give a weight to that feed. The weight can be an overall number or a by category weight. This will allow the admin to minimize the influence a feed has on their overall reputation if they distrust a particular category or feed, or trust another implicitly. Feeds can be configured to accept feedback or not and will report so on connect. The admin can override and choose not to give any feedback, but the sensor should report these to the Hub upstream on connect. The hub will take all of these feeds and aggregate them into an average single score for each IP or IP Block, and then redistribute this data to all local sensors as configured. It should receive connections from sensors. The sensor will have to provide authentication and will provide feedback. The hub should redistribute that feedback from sensors to all other sensors as well as up to any feeds that accept feedback. The hub should also have an API to allow outside statistical analysis to be done to the database and fed back into the stream. For instance a local site may choose to change the reputation on all Russian IP blocks, etc.

For more information about IP Reputation see IP Reputation Config, IP Reputation Keyword and IP Reputation Format.

13.1.1. IP Reputation Config

IP reputation has a few configuration directives, all disabled by default.

IP Reputation
#reputation-categories-file: /etc/suricata/iprep/categories.txt
#default-reputation-path: /etc/suricata/iprep
#reputation-files:
- reputation.list

13.1.1.1. reputation-categories-file

The categories file mapping numbered category values to short names.

reputation-categories-file: /etc/suricata/iprep/categories.txt

13.1.1.2. default-reputation-path

Path where reputation files from the "reputation-files" directive are loaded from by default.

default-reputation-path: /etc/suricata/iprep

13.1.1.3. reputation-files

YAML list of file names to load. In case of a absolute path the file is loaded directly, otherwise the path from "default-reputation-path" is pre-pended to form the final path.

reputation-files:
 - badhosts.list
 - knowngood.list
 - sharedhosting.list

13.1.1.4. Hosts

IP reputation information is stored in the host table, so the settings of the host table affect it.

Depending on the number of hosts reputation information is available for, the memcap and hash size may have to be increased.

13.1.1.5. Reloads

Sending Suricata a USR2 signal will reload the IP reputation data, along with the normal rules reload.

During the reload the host table will be updated to contain the new data. The iprep information is versioned. When the reload is complete, Suricata will automatically clean up the old iprep information.

Only the reputation files will be reloaded, the categories file won't be. If categories change, Suricata should be restarted.

13.1.1.6. File format

The format of the reputation files is described in the IP Reputation Format page.

13.1.2. IP Reputation Format

Description of IP Reputation file formats. For the configuration see IP Reputation Config and IP Reputation Keyword for the rule format.

13.1.2.1. Categories file

The categories file provides a mapping between a category number, short name, and long description. It's a simple CSV file:

<id>,<short name>,<description>

Example:

1,BadHosts,Known bad hosts
2,Google,Known google host

The maximum value for the category id is hard coded at 60 currently.

13.1.2.2. Reputation file

The reputation file lists a reputation score for hosts in the categories. It's a simple CSV file:

<ip>,<category>,<reputation score>

The IP is an IPv4 address in the quad-dotted notation or an IPv6 address. Both IP types support networks in CIDR notation. The category is the number as defined in the categories file. The reputation score is the confidence that this IP is in the specified category, represented by a number between 1 and 127 (0 means no data).

Example:

1.2.3.4,1,101
1.1.1.0/24,6,88

If an IP address has a score in multiple categories it should be listed in the file multiple times.

Example:

1.1.1.1,1,10
1.1.1.1,2,10

This lists 1.1.1.1 in categories 1 and 2, each with a score of 10.

14. Init Scripts

For Ubuntu with Upstart, the following can be used in /etc/init/suricata.conf:

suricata
description "Intrusion Detection System Daemon"
start on runlevel [2345]
stop on runlevel [!2345]
expect fork
exec suricata -D --pidfile /var/run/suricata.pid -c /etc/suricata/suricata.yaml -i eth1

15. Setting up IPS/inline for Linux

15.1. Setting up IPS with Netfilter

In this guide, we'll discuss how to work with Suricata in layer3 inline
mode using iptables.

First, start by compiling Suricata with NFQ support. For instructions
see Ubuntu Installation [https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Ubuntu_Installation].
For more information about NFQ and iptables, see
NFQ.

To check if you have NFQ enabled in your Suricata build, enter the following command:

suricata --build-info

and make sure that NFQ is listed in the output.

To run Suricata with the NFQ mode, you have to make use of the -q option. This
option tells Suricata which queue numbers it should use.

sudo suricata -c /etc/suricata/suricata.yaml -q 0

15.1.1. Iptables configuration

First of all, it is important to know which traffic you would like to send
to Suricata. There are two choices:

	Traffic that passes your computer

	Traffic that is generated by your computer.

[image: _images/IPtables.png]
[image: _images/iptables1.png]
If Suricata is running on a gateway and is meant to protect the computers
behind that gateway you are dealing with the first scenario: forward_ing .

If Suricata has to protect the computer it is running on, you are dealing
with the second scenario: host (see drawing 2).

These two ways of using Suricata can also be combined.

The easiest rule in case of the gateway-scenario to send traffic to Suricata is:

sudo iptables -I FORWARD -j NFQUEUE

In this case, all forwarded traffic goes to Suricata.

In case of the host situation, these are the two most simple iptables rules;

sudo iptables -I INPUT -j NFQUEUE
sudo iptables -I OUTPUT -j NFQUEUE

It is possible to set a queue number. If you do not, the queue number will
be 0 by default.

Imagine you want Suricata to check for example just TCP traffic, or all
incoming traffic on port 80, or all traffic on destination-port 80, you
can do so like this:

sudo iptables -I INPUT -p tcp -j NFQUEUE
sudo iptables -I OUTPUT -p tcp -j NFQUEUE

In this case, Suricata checks just TCP traffic.

sudo iptables -I INPUT -p tcp --sport 80 -j NFQUEUE
sudo iptables -I OUTPUT -p tcp --dport 80 -j NFQUEUE

In this example, Suricata checks all packets for outgoing connections to port 80.

[image: _images/iptables2.png]
[image: _images/IPtables3.png]
To see if you have set your iptables rules correct make sure Suricata is
running and enter:

sudo iptables -vnL

In the example you can see if packets are being logged.

[image: _images/iptables_vnL.png]
This description of the use of iptables is the way to use it with IPv4. To
use it with IPv6 all previous mentioned commands have to start with ip6tables.
It is also possible to let Suricata check both kinds of traffic.

There is also a way to use iptables with multiple networks (and interface cards). Example:

[image: _images/iptables4.png]
sudo iptables -I FORWARD -i eth0 -o eth1 -j NFQUEUE
sudo iptables -I FORWARD -i eth1 -o eth0 -j NFQUEUE

The options -i (input) -o (output) can be combined with all previous mentioned
options.

If you would stop Suricata and use internet, the traffic will not come through.
To make internet work correctly, first delete all iptables rules.

To erase all iptables rules, enter:

sudo iptables -F

15.1.2. NFtables configuration

The NFtables configuration is straight forward and allows mixing firewall rules
with IPS. The concept is to create a dedicated chain for the IPS that will
be evaluated after the firewalling rule. If your main table is named filter
it can be created like so:

nft> add chain filter IPS { type filter hook forward priority 10;}

To send all forwarded packets to Suricata one can use

nft> add rule filter IPS queue

To only do it for packets exchanged between eth0 and eth1

nft> add rule filter IPS iif eth0 oif eth1 queue
nft> add rule filter IPS iif eth1 oif eth0 queue

15.1.3. NFQUEUE advanced options

The NFQUEUE mechanism supports some interesting options. The nftables configuration
will be shown there but the features are also available in iptables.

The full syntax of the queuing mechanism is as follows:

nft add rule filter IPS queue num 3-5 options fanout,bypass

This rule sends matching packets to 3 load-balanced queues starting at 3 and
ending at 5. To get the packets in Suricata with this setup, you need to specify
multiple queues on command line:

suricata -q 3 -q 4 -q 5

fanout and bypass are the two available options:

	fanout: When used together with load balancing, this will use the CPU ID
instead of connection hash as an index to map packets to the queues. The idea
is that you can improve performance if there’s one queue per CPU. This requires
total with a number of queues superior to 1 to be specified.

	bypass: By default, if no userspace program is listening on an Netfilter
queue, then all packets that are to be queued are dropped. When this option
is used, the queue rule behaves like ACCEPT if there is no program listening,
and the packet will move on to the next table.

The bypass option can be used to avoid downtime of link when Suricata is not
running but this also means that the blocking feature will not be present.

15.2. Setting up IPS at Layer 2

15.2.1. AF_PACKET IPS mode

AF_PACKET capture method is supporting a IPS/Tap mode. In this mode, you just
need the interfaces to be up. Suricata will take care of copying the packets
from one interface to the other. No iptables or nftables configuration is
necessary.

You need to dedicate two network interfaces for this mode. The configuration
is made via configuration variable available in the description of an AF_PACKET
interface.

For example, the following configuration will create a Suricata acting as IPS
between interface eth0 and eth1:

af-packet:
 - interface: eth0
 threads: 1
 defrag: no
 cluster-type: cluster_flow
 cluster-id: 98
 copy-mode: ips
 copy-iface: eth1
 buffer-size: 64535
 use-mmap: yes
 - interface: eth1
 threads: 1
 cluster-id: 97
 defrag: no
 cluster-type: cluster_flow
 copy-mode: ips
 copy-iface: eth0
 buffer-size: 64535
 use-mmap: yes

This is a basic af-packet configuration using two interfaces. Interface
eth0 will copy all received packets to eth1 because of the copy-*
configuration variable

copy-mode: ips
copy-iface: eth1

The configuration on eth1 is symmetric

copy-mode: ips
copy-iface: eth0

There are some important points to consider when setting up this mode:

	The implementation of this mode is dependent of the zero copy mode of
AF_PACKET. Thus you need to set use-mmap to yes on both interface.

	MTU on both interfaces have to be equal: the copy from one interface to
the other is direct and packets bigger then the MTU will be dropped by kernel.

	Set different values of cluster-id on both interfaces to avoid conflict.

	Any network card offloading creating bigger then physical layer datagram
(like GRO, LRO, TSO) will result in dropped packets as the transmit path can not
handle them.

	Set stream.inline to auto or yes so Suricata switches to
blocking mode.

The copy-mode variable can take the following values:

	ips: the drop keyword is honored and matching packets are dropped.

	tap: no drop occurs, Suricata acts as a bridge

Some specific care must be taken to scale the capture method on multiple
threads. As we can't use defrag that will generate too big frames, the in
kernel load balancing will not be correct: the IP-only fragment will not
reach the same thread as the full featured packet of the same flow because
the port information will not be present.

A solution is to use eBPF load balancing to get an IP pair load balancing
without fragmentation. The AF_PACKET IPS Configuration using multiple threads
and eBPF load balancing looks like the following:

af-packet:
 - interface: eth0
 threads: 16
 defrag: no
 cluster-type: cluster_ebpf
 ebpf-lb-file: /usr/libexec/suricata/ebpf/lb.bpf
 cluster-id: 98
 copy-mode: ips
 copy-iface: eth1
 buffer-size: 64535
 use-mmap: yes
 - interface: eth1
 threads: 16
 cluster-id: 97
 defrag: no
 cluster-type: cluster_ebpf
 ebpf-lb-file: /usr/libexec/suricata/ebpf/lb.bpf
 copy-mode: ips
 copy-iface: eth0
 buffer-size: 64535
 use-mmap: yes

The eBPF file /usr/libexec/suricata/ebpf/lb.bpf may not be present on disk.
See eBPF and XDP for more information.

15.2.2. DPDK IPS mode

In the same way as you would configure AF_PACKET IPS mode, you can configure the DPDK capture module.
Prior to starting with IPS (inline) setup, it is recommended to go over Data Plane Development Kit (DPDK) manual page
to understand the setup essentials.

DPDK IPS mode, similarly to AF-Packet, uses two interfaces. Packets received on the first network interface
(0000:3b:00.1) are transmitted by the second network interface (0000:3b:00.0) and similarly,
packets received on the second interface (0000:3b:00.0) are transmitted
by the first interface (0000:3b:00.1). Packets are not altered in any way in this mode.

The following configuration snippet configures Suricata DPDK IPS mode between two NICs:

dpdk:
 eal-params:
 proc-type: primary

 interfaces:
 - interface: 0000:3b:00.1
 threads: 4
 promisc: true
 multicast: true
 checksum-checks: true
 checksum-checks-offload: true
 mempool-size: 262143
 mempool-cache-size: 511
 rx-descriptors: 4096
 tx-descriptors: 4096
 copy-mode: ips
 copy-iface: 0000:3b:00.0
 mtu: 3000

 - interface: 0000:3b:00.0
 threads: 4
 promisc: true
 multicast: true
 checksum-checks: true
 checksum-checks-offload: true
 mempool-size: 262143
 mempool-cache-size: 511
 rx-descriptors: 4096
 tx-descriptors: 4096
 copy-mode: ips
 copy-iface: 0000:3b:00.1
 mtu: 3000

The previous DPDK configuration snippet outlines several things to consider:

	copy-mode - see Section AF_PACKET IPS mode for more details.

	copy-iface - see Section AF_PACKET IPS mode for more details.

	threads - all interface entries must have their thread count configured
and paired/connected interfaces must be configured with the same amount of threads.

	mtu - MTU must be the same on both paired interfaces.

DPDK capture module also requires having CPU affinity set in the configuration file. For the best performance,
every Suricata worker should be pinned to a separate CPU core that is not shared with any other Suricata thread
(e.g. management threads).
The following snippet shows a possible Threading configuration set-up for DPDK IPS mode.

threading:
 set-cpu-affinity: yes
 cpu-affinity:
 - management-cpu-set:
 cpu: [0]
 - worker-cpu-set:
 cpu: [2,4,6,8,10,12,14,16]

15.2.3. Netmap IPS mode

Using Netmap to support IPS requires setting up pairs of interfaces; packets are received
on one interface within the pair, inspected by Suricata, and transmitted on the other
paired interface. You can use native or host stack mode; host stack mode is used when the interface
name contains the ^ character, e.g, enp6s0f0^. host stack mode does not require
multiple physical network interfaces.

15.2.3.1. Netmap Host Stack Mode

Netmap's host stack mode allows packets that flow through Suricata to be used with other host OS applications,
e.g., a firewall or similar. Additionally, host stack mode allows traffic to be received and transmitted
on one network interface card.

With host stack mode, Netmap establishes a pair of host stack mode rings (one each for RX and TX). Packets
pass through the host operating system network protocol stack. Ingress network packets flow from the network
interface card to the network protocol stack and then into the host stack mode rings. Outbound packets
flow from the host stack mode rings to the network protocol stack and finally, to the network interface card.
Suricata receives packets from the host stack mode rings and, in IPS mode, places packets to be transmitted into
the host stack mode rings. Packets transmitted by Suricata into the host stack mode rings are available for
other host OS applications.

Paired network interfaces are specified in the netmap configuration section.
For example, the following configuration will create a Suricata acting as IPS
between interface enp6s0f0 and enp6s0f1

netmap:
 - interface: enp6s0f0
 threads: auto
 copy-mode: ips
 copy-iface: enp6s0f1

 - interface: enp6s0f1
 threads: auto
 copy-mode: ips
 copy-iface: enp6s0f0

You can specify the threads value; the default value of auto will create a
thread for each queue supported by the NIC; restrict the thread count by specifying
a value, e.g., threads: 1

This is a basic netmap configuration using two interfaces. Suricata will copy
packets between interfaces enp6s0f0 and en60sf1 because of the copy-*
configuration variable in interface's enp6s0f0 configuration

copy-mode: ips
copy-iface: enp6s0f1

The configuration on enp6s0f1 is symmetric

copy-mode: ips
copy-iface: enp6s0f0

The host stack mode feature of Netmap can be used. host stack mode doesn't require a second network
interface.

This example demonstrates host stack mode with a single physical network interface enp6s0f01

- interface: enp60s0f0
 copy-mode: ips
 copy-iface: enp6s0f0^

The configuration on enp6s0f0^ is symmetric

- interface: enp60s0f0^
 copy-mode: ips
 copy-iface: enp6s0f0

Suricata will use zero-copy mode when the runmode is workers.

There are some important points to consider when setting up this mode:

	Any network card offloading creating bigger then physical layer datagram
(like GRO, LRO, TSO) will result in dropped packets as the transmit path can not
handle them.

	Set stream.inline to auto or yes so Suricata switches to
blocking mode. The default value is auto.

The copy-mode variable can take the following values:

	ips: the drop keyword is honored and matching packets are dropped.

	tap: no drop occurs, Suricata acts as a bridge

16. Setting up IPS/inline for Windows

This guide explains how to work with Suricata in layer 4 inline mode using
WinDivert on Windows.

First start by compiling Suricata with WinDivert support. For instructions, see
Windows Installation [https://redmine.openinfosecfoundation.org/attachments/download/1175/SuricataWinInstallationGuide_v1.4.3.pdf].
This documentation has not yet been updated with WinDivert information, so make
sure to add the following flags before configuring Suricata with configure:

--enable-windivert=yes --with-windivert-include=<include-dir> --with-windivert-libraries=<libraries-dir>

WinDivert.dll and WinDivert.sys must be in the same directory as the Suricata
executable. WinDivert automatically installs the driver when it is run. For more
information about WinDivert, see https://www.reqrypt.org/windivert-doc.html.

To check if you have WinDivert enabled in your Suricata, enter the following
command in an elevated command prompt or terminal:

suricata -c suricata.yaml --windivert [filter string]

For information on the WinDivert filter language, see
https://www.reqrypt.org/windivert-doc.html#filter_language

If Suricata is running on a gateway and is meant to protect the network behind
that gateway, you need to run WinDivert at the NETWORK_FORWARD layer. This can
be achieved using the following command:

suricata -c suricata.yaml --windivert-forward [filter string]

The filter is automatically stopped and normal traffic resumes when Suricata is
stopped.

A quick start is to examine all traffic, in which case you can use the following
command:

suricata -c suricata.yaml --windivert[-forward] true

A few additional examples:

Only TCP traffic:

suricata -c suricata.yaml --windivert tcp

Only TCP traffic on port 80:

suricata -c suricata.yaml --windivert "tcp.DstPort == 80"

TCP and ICMP traffic:

suricata -c suricata.yaml --windivert "tcp or icmp"

17. Output

	17.1. EVE
	17.1.1. Eve JSON Output
	17.1.1.1. Output types

	17.1.1.2. Alerts

	17.1.1.3. Anomaly

	17.1.1.4. HTTP

	17.1.1.5. DNS

	17.1.1.6. TLS

	17.1.1.7. Drops

	17.1.1.8. Date modifiers in filename

	17.1.1.9. Threaded file output

	17.1.1.10. Rotate log file

	17.1.1.11. Multiple Logger Instances

	17.1.1.12. File permissions

	17.1.1.13. JSON flags

	17.1.1.14. Community Flow ID
	17.1.1.14.1. Options
	17.1.1.14.1.1. Multi Tenancy

	17.1.2. Eve JSON Format
	17.1.2.1. Common Section
	17.1.2.1.1. Field: flow_id

	17.1.2.1.2. Event types

	17.1.2.1.3. PCAP fields

	17.1.2.2. Event type: Alert
	17.1.2.2.1. Action field

	17.1.2.2.2. Verdict

	17.1.2.2.3. Pcap Field

	17.1.2.3. Event type: Anomaly
	17.1.2.3.1. Fields

	17.1.2.3.2. Examples

	17.1.2.4. Event type: HTTP
	17.1.2.4.1. Fields

	17.1.2.4.2. Examples

	17.1.2.5. Event type: DNS
	17.1.2.5.1. Fields

	17.1.2.5.2. Examples

	17.1.2.6. Event type: FTP
	17.1.2.6.1. Fields

	17.1.2.6.2. Examples

	17.1.2.7. Event type: FTP_DATA
	17.1.2.7.1. Fields

	17.1.2.7.2. Examples

	17.1.2.8. Event type: TLS
	17.1.2.8.1. Fields

	17.1.2.8.2. Examples

	17.1.2.9. Event type: TFTP
	17.1.2.9.1. Fields

	17.1.2.10. Event type: SMB
	17.1.2.10.1. SMB Fields

	17.1.2.10.2. DCERPC fields

	17.1.2.11. Event type: BITTORRENT-DHT
	17.1.2.11.1. Common fields:

	17.1.2.11.2. Extra fields:

	17.1.2.11.3. Examples:

	17.1.2.11.4. NTLMSSP fields

	17.1.2.11.5. Kerberos fields

	17.1.2.12. Event type: SSH
	17.1.2.12.1. Fields

	17.1.2.13. Event type: Flow
	17.1.2.13.1. Fields

	17.1.2.14. Event type: RDP
	17.1.2.14.1. RDP type: Initial Request

	17.1.2.14.2. RDP type: Initial Response

	17.1.2.14.3. RDP type: Connect Request

	17.1.2.14.4. RDP type: Connect Response

	17.1.2.14.5. RDP type: TLS Handshake

	17.1.2.14.6. Examples

	17.1.2.15. Event type: RFB
	17.1.2.15.1. Fields

	17.1.2.15.2. Examples

	17.1.2.16. Event type: MQTT
	17.1.2.16.1. Transactions

	17.1.2.16.2. Common fields

	17.1.2.16.3. MQTT CONNECT fields

	17.1.2.16.4. MQTT CONNACK fields

	17.1.2.16.5. MQTT PUBLISH fields

	17.1.2.16.6. MQTT PUBACK/PUBREL/PUBREC/PUBCOMP fields

	17.1.2.16.7. MQTT SUBSCRIBE fields

	17.1.2.16.8. MQTT SUBACK fields

	17.1.2.16.9. MQTT UNSUBSCRIBE fields

	17.1.2.16.10. MQTT UNSUBACK fields

	17.1.2.16.11. MQTT AUTH fields (MQTT 5.0)

	17.1.2.16.12. MQTT DISCONNECT fields

	17.1.2.16.13. Truncated MQTT data

	17.1.2.17. Event type: HTTP2
	17.1.2.17.1. Fields

	17.1.2.17.2. Examples

	17.1.2.18. Event type: PGSQL
	17.1.2.18.1. Fields

	17.1.2.18.2. Request Messages

	17.1.2.18.3. Response Messages

	17.1.2.18.4. Examples

	17.1.2.19. Event type: IKE
	17.1.2.19.1. Fields

	17.1.2.19.2. Examples

	17.1.2.20. Event type: Modbus
	17.1.2.20.1. Common fields

	17.1.2.20.2. Request/Response fields

	17.1.2.20.3. Exception fields

	17.1.2.20.4. Diagnostic fields

	17.1.2.20.5. MEI fields

	17.1.2.20.6. Read Request fields

	17.1.2.20.7. Read Response fields

	17.1.2.20.8. Multiple Write Request fields

	17.1.2.20.9. Mask Write fields

	17.1.2.20.10. Other Write fields

	17.1.2.20.11. Generic Data fields

	17.1.2.20.12. Example

	17.1.2.21. Event type: QUIC
	17.1.2.21.1. Fields

	17.1.2.21.2. Examples

	17.1.2.22. Event type: DHCP
	17.1.2.22.1. Fields

	17.1.2.22.2. Examples

	17.1.3. Eve JSON 'jq' Examples
	17.1.3.1. Colorize output

	17.1.3.2. DNS NXDOMAIN

	17.1.3.3. Unique HTTP User Agents

	17.1.3.4. Data use for a host

	17.1.3.5. Monitor part of the stats

	17.1.3.6. Inspect Alert Data

	17.1.3.7. Top 10 Destination Ports

	17.2. Lua Output
	17.2.1. Script structure

	17.2.2. YAML

	17.2.3. Developing lua output script

	17.3. Syslog Alerting Compatibility
	17.3.1. Popular syslog daemons

	17.3.2. Finding what syslog daemon you are using

	17.3.3. Example

	17.4. Custom http logging

	17.5. Custom tls logging

	17.6. Log Rotation

17.1. EVE

	17.1.1. Eve JSON Output
	17.1.1.1. Output types

	17.1.1.2. Alerts

	17.1.1.3. Anomaly

	17.1.1.4. HTTP

	17.1.1.5. DNS

	17.1.1.6. TLS

	17.1.1.7. Drops

	17.1.1.8. Date modifiers in filename

	17.1.1.9. Threaded file output

	17.1.1.10. Rotate log file

	17.1.1.11. Multiple Logger Instances

	17.1.1.12. File permissions

	17.1.1.13. JSON flags

	17.1.1.14. Community Flow ID
	17.1.1.14.1. Options
	17.1.1.14.1.1. Multi Tenancy

	17.1.2. Eve JSON Format
	17.1.2.1. Common Section
	17.1.2.1.1. Field: flow_id

	17.1.2.1.2. Event types

	17.1.2.1.3. PCAP fields

	17.1.2.2. Event type: Alert
	17.1.2.2.1. Action field

	17.1.2.2.2. Verdict

	17.1.2.2.3. Pcap Field

	17.1.2.3. Event type: Anomaly
	17.1.2.3.1. Fields

	17.1.2.3.2. Examples

	17.1.2.4. Event type: HTTP
	17.1.2.4.1. Fields

	17.1.2.4.2. Examples

	17.1.2.5. Event type: DNS
	17.1.2.5.1. Fields

	17.1.2.5.2. Examples

	17.1.2.6. Event type: FTP
	17.1.2.6.1. Fields

	17.1.2.6.2. Examples

	17.1.2.7. Event type: FTP_DATA
	17.1.2.7.1. Fields

	17.1.2.7.2. Examples

	17.1.2.8. Event type: TLS
	17.1.2.8.1. Fields

	17.1.2.8.2. Examples

	17.1.2.9. Event type: TFTP
	17.1.2.9.1. Fields

	17.1.2.10. Event type: SMB
	17.1.2.10.1. SMB Fields

	17.1.2.10.2. DCERPC fields

	17.1.2.11. Event type: BITTORRENT-DHT
	17.1.2.11.1. Common fields:

	17.1.2.11.2. Extra fields:

	17.1.2.11.3. Examples:

	17.1.2.11.4. NTLMSSP fields

	17.1.2.11.5. Kerberos fields

	17.1.2.12. Event type: SSH
	17.1.2.12.1. Fields

	17.1.2.13. Event type: Flow
	17.1.2.13.1. Fields

	17.1.2.14. Event type: RDP
	17.1.2.14.1. RDP type: Initial Request

	17.1.2.14.2. RDP type: Initial Response

	17.1.2.14.3. RDP type: Connect Request

	17.1.2.14.4. RDP type: Connect Response

	17.1.2.14.5. RDP type: TLS Handshake

	17.1.2.14.6. Examples

	17.1.2.15. Event type: RFB
	17.1.2.15.1. Fields

	17.1.2.15.2. Examples

	17.1.2.16. Event type: MQTT
	17.1.2.16.1. Transactions

	17.1.2.16.2. Common fields

	17.1.2.16.3. MQTT CONNECT fields

	17.1.2.16.4. MQTT CONNACK fields

	17.1.2.16.5. MQTT PUBLISH fields

	17.1.2.16.6. MQTT PUBACK/PUBREL/PUBREC/PUBCOMP fields

	17.1.2.16.7. MQTT SUBSCRIBE fields

	17.1.2.16.8. MQTT SUBACK fields

	17.1.2.16.9. MQTT UNSUBSCRIBE fields

	17.1.2.16.10. MQTT UNSUBACK fields

	17.1.2.16.11. MQTT AUTH fields (MQTT 5.0)

	17.1.2.16.12. MQTT DISCONNECT fields

	17.1.2.16.13. Truncated MQTT data

	17.1.2.17. Event type: HTTP2
	17.1.2.17.1. Fields

	17.1.2.17.2. Examples

	17.1.2.18. Event type: PGSQL
	17.1.2.18.1. Fields

	17.1.2.18.2. Request Messages

	17.1.2.18.3. Response Messages

	17.1.2.18.4. Examples

	17.1.2.19. Event type: IKE
	17.1.2.19.1. Fields

	17.1.2.19.2. Examples

	17.1.2.20. Event type: Modbus
	17.1.2.20.1. Common fields

	17.1.2.20.2. Request/Response fields

	17.1.2.20.3. Exception fields

	17.1.2.20.4. Diagnostic fields

	17.1.2.20.5. MEI fields

	17.1.2.20.6. Read Request fields

	17.1.2.20.7. Read Response fields

	17.1.2.20.8. Multiple Write Request fields

	17.1.2.20.9. Mask Write fields

	17.1.2.20.10. Other Write fields

	17.1.2.20.11. Generic Data fields

	17.1.2.20.12. Example

	17.1.2.21. Event type: QUIC
	17.1.2.21.1. Fields

	17.1.2.21.2. Examples

	17.1.2.22. Event type: DHCP
	17.1.2.22.1. Fields

	17.1.2.22.2. Examples

	17.1.3. Eve JSON 'jq' Examples
	17.1.3.1. Colorize output

	17.1.3.2. DNS NXDOMAIN

	17.1.3.3. Unique HTTP User Agents

	17.1.3.4. Data use for a host

	17.1.3.5. Monitor part of the stats

	17.1.3.6. Inspect Alert Data

	17.1.3.7. Top 10 Destination Ports

17.1.1. Eve JSON Output

The EVE output facility outputs alerts, anomalies, metadata, file info and protocol
specific records through JSON.

The most common way to use this is through 'EVE', which is a firehose approach
where all these logs go into a single file.

outputs:
 # Extensible Event Format (nicknamed EVE) event log in JSON format
 - eve-log:
 enabled: yes
 filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
 filename: eve.json
 # Enable for multi-threaded eve.json output; output files are amended
 # with an identifier, e.g., eve.9.json
 #threaded: false
 #prefix: "@cee: " # prefix to prepend to each log entry
 # the following are valid when type: syslog above
 #identity: "suricata"
 #facility: local5
 #level: Info ## possible levels: Emergency, Alert, Critical,
 ## Error, Warning, Notice, Info, Debug
 #redis:
 # server: 127.0.0.1
 # port: 6379
 # async: true ## if redis replies are read asynchronously
 # mode: list ## possible values: list|lpush (default), rpush, channel|publish
 # ## lpush and rpush are using a Redis list. "list" is an alias for lpush
 # ## publish is using a Redis channel. "channel" is an alias for publish
 # key: suricata ## key or channel to use (default to suricata)
 # Redis pipelining set up. This will enable to only do a query every
 # 'batch-size' events. This should lower the latency induced by network
 # connection at the cost of some memory. There is no flushing implemented
 # so this setting as to be reserved to high traffic suricata.
 # pipelining:
 # enabled: yes ## set enable to yes to enable query pipelining
 # batch-size: 10 ## number of entry to keep in buffer

 # Include top level metadata. Default yes.
 #metadata: no

 types:
 - alert:
 # payload: yes # enable dumping payload in Base64
 # payload-buffer-size: 4kb # max size of payload buffer to output in eve-log
 # payload-printable: yes # enable dumping payload in printable (lossy) format
 # packet: yes # enable dumping of packet (without stream segments)
 # http-body: yes # Requires metadata; enable dumping of http body in Base64
 # http-body-printable: yes # Requires metadata; enable dumping of http body in printable format

 # Enable the logging of tagged packets for rules using the
 # "tag" keyword.
 tagged-packets: yes

 # Configure the metadata to be logged along with an
 # alert. The following shows the default configuration
 # which is used if this field is not provided or simply
 # set to a truthful value. Setting of this section is only
 # required if you wish to enable/disable specific fields.
 #metadata:

 # Include the decoded application layer (ie. http, dns)
 app-layer: true

 # Log the current state of the flow record.
 flow: true

 rule:
 # Log the metadata field from the rule in a structured
 # format.
 metadata: true

 # Log the raw rule text.
 raw: false

 # HTTP X-Forwarded-For support by adding an extra field or overwriting
 # the source or destination IP address (depending on flow direction)
 # with the one reported in the X-Forwarded-For HTTP header. This is
 # helpful when reviewing alerts for traffic that is being reverse
 # or forward proxied.
 xff:
 enabled: no
 # Two operation modes are available, "extra-data" and "overwrite".
 mode: extra-data
 # Two proxy deployments are supported, "reverse" and "forward". In
 # a "reverse" deployment the IP address used is the last one, in a
 # "forward" deployment the first IP address is used.
 deployment: reverse
 # Header name where the actual IP address will be reported, if more
 # than one IP address is present, the last IP address will be the
 # one taken into consideration.
 header: X-Forwarded-For
 - http:
 extended: yes # enable this for extended logging information
 # custom allows additional http fields to be included in eve-log
 # the example below adds three additional fields when uncommented
 #custom: [Accept-Encoding, Accept-Language, Authorization]
 - dns:
 # Use version 2 logging with the new format:
 # dns answers will be logged in one single event
 # rather than an event for each of the answers.
 # Without setting a version the version
 # will fallback to 1 for backwards compatibility.
 version: 2

 # Enable/disable this logger. Default: enabled.
 #enabled: no

 # Control logging of requests and responses:
 # - requests: enable logging of DNS queries
 # - responses: enable logging of DNS answers
 # By default both requests and responses are logged.
 #requests: no
 #responses: no

 # Format of answer logging:
 # - detailed: array item per answer
 # - grouped: answers aggregated by type
 # Default: all
 #answer-format: [detailed, grouped]

 # Answer types to log.
 # Default: all
 #answer-types: [a, aaaa, cname, mx, ns, ptr, txt]
 - dns:
 # Version 1 DNS logger.
 # Deprecated: Will be removed by May 2022.
 version: 1

 enabled: no
 # control logging of queries and answers
 # default yes, no to disable
 query: yes # enable logging of DNS queries
 answer: yes # enable logging of DNS answers
 # control which RR types are logged
 # all enabled if custom not specified
 #custom: [a, aaaa, cname, mx, ns, ptr, txt]
 - tls:
 extended: yes # enable this for extended logging information
 # output TLS transaction where the session is resumed using a
 # session id
 #session-resumption: no
 # custom allows to control which tls fields that are included
 # in eve-log
 #custom: [subject, issuer, session_resumed, serial, fingerprint, sni, version, not_before, not_after, certificate, chain]
 - files:
 force-magic: no # force logging magic on all logged files
 # force logging of checksums, available hash functions are md5,
 # sha1 and sha256
 #force-hash: [md5]
 #- drop:
 # alerts: yes # log alerts that caused drops
 # flows: all # start or all: 'start' logs only a single drop
 # # per flow direction. All logs each dropped pkt.
 - smtp:
 #extended: yes # enable this for extended logging information
 # this includes: bcc, message-id, subject, x_mailer, user-agent
 # custom fields logging from the list:
 # reply-to, bcc, message-id, subject, x-mailer, user-agent, received,
 # x-originating-ip, in-reply-to, references, importance, priority,
 # sensitivity, organization, content-md5, date
 #custom: [received, x-mailer, x-originating-ip, relays, reply-to, bcc]
 # output md5 of fields: body, subject
 # for the body you need to set app-layer.protocols.smtp.mime.body-md5
 # to yes
 #md5: [body, subject]

 # NFS logging.
 - nfs
 # IKE logging.
 - ike
 # BitTorrent DHT logging.
 - bittorrent-dht
 - ssh
 - stats:
 totals: yes # stats for all threads merged together
 threads: no # per thread stats
 deltas: no # include delta values
 - dhcp:
 # DHCP logging.
 enabled: yes
 # When extended mode is on, all DHCP messages are logged
 # with full detail. When extended mode is off (the
 # default), just enough information to map a MAC address
 # to an IP address is logged.
 extended: no
 # bi-directional flows
 - flow
 # uni-directional flows
 #- netflow

 # An event for logging metadata, specifically pktvars when
 # they are set, but will also include the full metadata object.
 #- metadata

Each alert, http log, etc will go into this one file: 'eve.json'. This file
can then be processed by 3rd party tools like Logstash (ELK) or jq.

If ethernet is set to yes, then ethernet headers will be added to events
if available.

17.1.1.1. Output types

EVE can output to multiple methods. regular is a normal file. Other
options are syslog, unix_dgram, unix_stream and redis.

Output types:

filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
filename: eve.json
Enable for multi-threaded eve.json output; output files are amended
with an identifier, e.g., eve.9.json. Default: off
#threaded: off
#prefix: "@cee: " # prefix to prepend to each log entry
the following are valid when type: syslog above
#identity: "suricata"
#facility: local5
#level: Info ## possible levels: Emergency, Alert, Critical,
 ## Error, Warning, Notice, Info, Debug
#ethernet: no # log ethernet header in events when available
#redis:
server: 127.0.0.1
port: 6379
async: true ## if redis replies are read asynchronously
mode: list ## possible values: list|lpush (default), rpush, channel|publish
lpush and rpush are using a Redis list. "list" is an alias for lpush
publish is using a Redis channel. "channel" is an alias for publish
key: suricata ## key or channel to use (default to suricata)
Redis pipelining set up. This will enable to only do a query every
'batch-size' events. This should lower the latency induced by network
connection at the cost of some memory. There is no flushing implemented
so this setting as to be reserved to high traffic suricata.
pipelining:
enabled: yes ## set enable to yes to enable query pipelining
batch-size: 10 ## number of entry to keep in buffer

17.1.1.2. Alerts

Alerts are event records for rule matches. They can be amended with
metadata, such as the application layer record (HTTP, DNS, etc) an
alert was generated for, and elements of the rule.

Metadata:

- alert:
 #payload: yes # enable dumping payload in Base64
 #payload-buffer-size: 4kb # max size of payload buffer to output in eve-log
 #payload-printable: yes # enable dumping payload in printable (lossy) format
 #packet: yes # enable dumping of packet (without stream segments)
 #http-body: yes # Requires metadata; enable dumping of http body in Base64
 #http-body-printable: yes # Requires metadata; enable dumping of http body in printable format

 # metadata:

 # Include the decoded application layer (ie. http, dns)
 #app-layer: true

 # Log the current state of the flow record.
 #flow: true

 #rule:
 # Log the metadata field from the rule in a structured
 # format.
 #metadata: true

 # Log the raw rule text.
 #raw: false

17.1.1.3. Anomaly

Anomalies are event records created when packets with unexpected or anomalous
values are handled. These events include conditions such as incorrect protocol
values, incorrect protocol length values, and other conditions which render the
packet suspect. Other conditions may occur during the normal progression of a stream;
these are termed stream events are include control sequences with incorrect
values or that occur out of expected sequence.

Anomalies are reported by and configured by type:

	Decode

	Stream

	Application layer

Metadata:

- anomaly:
 # Anomaly log records describe unexpected conditions such as truncated packets,
 # packets with invalid IP/UDP/TCP length values, and other events that render
 # the packet invalid for further processing or describe unexpected behavior on
 # an established stream. Networks which experience high occurrences of
 # anomalies may experience packet processing degradation.
 #
 # Anomalies are reported for the following:
 # 1. Decode: Values and conditions that are detected while decoding individual
 # packets. This includes invalid or unexpected values for low-level protocol
 # lengths as well.
 # 2. Stream: This includes stream related events (TCP 3-way handshake issues,
 # unexpected sequence number, etc).
 # 3. Application layer: These denote application layer specific conditions that
 # are unexpected, invalid or are unexpected given the application monitoring
 # state.
 #
 # By default, anomaly logging is disabled. When anomaly logging is enabled,
 # application-layer anomaly reporting is enabled.
 #
 # Choose one or both types of anomaly logging and whether to enable
 # logging of the packet header for packet anomalies.
 types:
 #decode: no
 #stream: no
 #applayer: yes
 #packethdr: no

17.1.1.4. HTTP

HTTP transaction logging.

Config:

- http:
 extended: yes # enable this for extended logging information
 # custom allows additional http fields to be included in eve-log
 # the example below adds three additional fields when uncommented
 #custom: [Accept-Encoding, Accept-Language, Authorization]
 # set this value to one among {both, request, response} to dump all
 # http headers for every http request and/or response
 # dump-all-headers: [both, request, response]

List of custom fields:

	Yaml Option

	HTTP Header

	accept

	accept

	accept_charset

	accept-charset

	accept_encoding

	accept-encoding

	accept_language

	accept-language

	accept_datetime

	accept-datetime

	authorization

	authorization

	cache_control

	cache-control

	cookie

	cookie

	from

	from

	max_forwards

	max-forwards

	origin

	origin

	pragma

	pragma

	proxy_authorization

	proxy-authorization

	range

	range

	te

	te

	via

	via

	x_requested_with

	x-requested-with

	dnt

	dnt

	x_forwarded_proto

	x-forwarded-proto

	x_authenticated_user

	x-authenticated-user

	x_flash_version

	x-flash-version

	accept_range

	accept-range

	age

	age

	allow

	allow

	connection

	connection

	content_encoding

	content-encoding

	content_language

	content-language

	content_length

	content-length

	content_location

	content-location

	content_md5

	content-md5

	content_range

	content-range

	content_type

	content-type

	date

	date

	etag

	etags

	expires

	expires

	last_modified

	last-modified

	link

	link

	location

	location

	proxy_authenticate

	proxy-authenticate

	referer

	referer

	refresh

	refresh

	retry_after

	retry-after

	server

	server

	set_cookie

	set-cookie

	trailer

	trailer

	transfer_encoding

	transfer-encoding

	upgrade

	upgrade

	vary

	vary

	warning

	warning

	www_authenticate

	www-authenticate

	true_client_ip

	true-client-ip

	org_src_ip

	org-src-ip

	x_bluecoat_via

	x-bluecoat-via

In the custom option values from both columns can be used. The
HTTP Header column is case insensitive.

17.1.1.5. DNS

Note

As of Suricata 7.0 the v1 EVE DNS format has been removed.

DNS records are logged as one entry for the request, and one entry for
the response.

YAML:

- dns:
 #version: 2

 # Enable/disable this logger. Default: enabled.
 #enabled: yes

 # Control logging of requests and responses:
 # - requests: enable logging of DNS queries
 # - responses: enable logging of DNS answers
 # By default both requests and responses are logged.
 #requests: no
 #responses: no

 # Format of answer logging:
 # - detailed: array item per answer
 # - grouped: answers aggregated by type
 # Default: all
 #formats: [detailed, grouped]

 # Types to log, based on the query type.
 # Default: all.
 #types: [a, aaaa, cname, mx, ns, ptr, txt]

17.1.1.6. TLS

TLS records are logged one record per session.

YAML:

- tls:
 extended: yes # enable this for extended logging information
 # custom allows to control which tls fields that are included
 # in eve-log
 #custom: [subject, issuer, serial, fingerprint, sni, version, not_before, not_after, certificate, chain, ja3, ja3s]

The default is to log certificate subject and issuer. If extended is
enabled, then the log gets more verbose.

By using custom it is possible to select which TLS fields to log.

17.1.1.7. Drops

Drops are event types logged when the engine drops a packet.

Config:

- drop:
 alerts: yes # log alerts that caused drops
 flows: all # start or all: 'start' logs only a single drop
 # per flow direction. All logs each dropped pkt.
 # Enable logging the final action taken on a packet by the engine
 # (will show more information in case of a drop caused by 'reject')
 verdict: yes

17.1.1.8. Date modifiers in filename

It is possible to use date modifiers in the eve-log filename.

outputs:
 - eve-log:
 filename: eve-%s.json

The example above adds epoch time to the filename. All the date modifiers from the
C library should be supported. See the man page for strftime for all supported
modifiers.

17.1.1.9. Threaded file output

By default, all output is written to the named filename in the outputs section. The threaded option enables
each output thread to write to individual files. In this case, the filename will include a unique identifier.

With threaded enabled, the output will be split among many files -- and
the aggregate of each file's contents must be treated together.

outputs:
 - eve-log:
 filename: eve.json
 threaded: on

This example will cause each Suricata thread to write to its own "eve.json" file. Filenames are constructed
by adding a unique identifier to the filename. For example, eve.7.json.

17.1.1.10. Rotate log file

Eve-log can be configured to rotate based on time.

outputs:
 - eve-log:
 filename: eve-%Y-%m-%d-%H:%M.json
 rotate-interval: minute

The example above creates a new log file each minute, where the filename contains
a timestamp. Other supported rotate-interval values are hour and day.

In addition to this, it is also possible to specify the rotate-interval as a
relative value. One example is to rotate the log file each X seconds.

outputs:
 - eve-log:
 filename: eve-%Y-%m-%d-%H:%M:%S.json
 rotate-interval: 30s

The example above rotates eve-log each 30 seconds. This could be replaced with
30m to rotate every 30 minutes, 30h to rotate every 30 hours, 30d
to rotate every 30 days, or 30w to rotate every 30 weeks.

17.1.1.11. Multiple Logger Instances

It is possible to have multiple 'EVE' instances, for example the following is valid:

outputs:
 - eve-log:
 enabled: yes
 type: file
 filename: eve-ips.json
 types:
 - alert
 - drop

 - eve-log:
 enabled: yes
 type: file
 filename: eve-nsm.json
 types:
 - http
 - dns
 - tls

So here the alerts and drops go into 'eve-ips.json', while http, dns and tls go into 'eve-nsm.json'.

With the exception of drop, you can specify multiples of the same
logger type, however, drop can only be used once.

Note

The use of independent json loggers such as alert-json-log,
dns-json-log, etc. has been deprecated and will be removed
by June 2020. Please use multiple eve-log instances as
documented above instead. Please see the deprecation
policy [https://suricata.io/our-story/deprecation-policy/] for more information.

17.1.1.12. File permissions

Log file permissions can be set individually for each logger. filemode can be used to
control the permissions of a log file, e.g.:

outputs:
 - eve-log:
 enabled: yes
 filename: eve.json
 filemode: 600

The example above sets the file permissions on eve.json to 600, which means that it is
only readable and writable by the owner of the file.

17.1.1.13. JSON flags

Several flags can be specified to control the JSON output in EVE:

outputs:
 - eve-log:
 json:
 # Sort object keys in the same order as they were inserted
 preserve-order: yes

 # Make the output more compact
 compact: yes

 # Escape all unicode characters outside the ASCII range
 ensure-ascii: yes

 # Escape the '/' characters in string with '\/'
 escape-slash: yes

All these flags are enabled by default, and can be modified per EVE instance.

17.1.1.14. Community Flow ID

Often Suricata is used in combination with other tools like Bro/Zeek. Enabling
the community-id option in the eve-log section adds a new community_id
field to each output.

Example:

{
 "timestamp": "2003-12-16T13:21:44.891921+0000",
 "flow_id": 1332028388187153,
 "pcap_cnt": 1,
 "event_type": "alert",
 ...
 "community_id": "1:LQU9qZlK+B5F3KDmev6m5PMibrg=",
 "alert": {
 "action": "allowed",
 "gid": 1,
 "signature_id": 1,
 },
}
{
 "timestamp": "2003-12-16T13:21:45.037333+0000",
 "flow_id": 1332028388187153,
 "event_type": "flow",
 "flow": {
 "pkts_toserver": 5,
 "pkts_toclient": 4,
 "bytes_toserver": 338,
 "bytes_toclient": 272,
 "start": "2003-12-16T13:21:44.891921+0000",
 "end": "2003-12-16T13:21:45.346457+0000",
 "age": 1,
 "state": "closed",
 "reason": "shutdown",
 "alerted": true
 },
 "community_id": "1:LQU9qZlK+B5F3KDmev6m5PMibrg=",
}

17.1.1.14.1. Options

The output can be enabled per instance of the EVE logger.

The community-id option is boolean. If set to true it is enabled.
The community-id-seed option specifies a unsigned 16 bit value that
is used a seed to the hash that is calculated for the community-id
output. This must be set to the same value on all tools that output this
record.

YAML:

- eve-log:
 # Community Flow ID
 # Adds a 'community_id' field to EVE records. These are meant to give
 # a records a predictable flow id that can be used to match records to
 # output of other tools such as Bro.
 #
 # Takes a 'seed' that needs to be same across sensors and tools
 # to make the id less predictable.

 # enable/disable the community id feature.
 community-id: false
 # Seed value for the ID output. Valid values are 0-65535.
 community-id-seed: 0

17.1.1.14.1.1. Multi Tenancy

Suricata can be configured to support multiple tenants with different detection
engine configurations. When these tenants are configured and the detection
engine is running then all EVE logging will also report the tenant_id field
for traffic matching a specific tenant.

17.1.2. Eve JSON Format

Example:

{
 "timestamp": "2017-04-07T22:24:37.251547+0100",
 "flow_id": 586497171462735,
 "pcap_cnt": 53381,
 "event_type": "alert",
 "src_ip": "192.168.2.14",
 "src_port": 50096,
 "dest_ip": "209.53.113.5",
 "dest_port": 80,
 "proto": "TCP",
 "metadata": {
 "flowbits": [
 "http.dottedquadhost"
]
 },
 "tx_id": 4,
 "alert": {
 "action": "allowed",
 "gid": 1,
 "signature_id": 2018358,
 "rev": 10,
 "signature": "ET HUNTING GENERIC SUSPICIOUS POST to Dotted Quad with Fake Browser 1",
 "category": "Potentially Bad Traffic",
 "severity": 2
 },
 "app_proto": "http"
}

17.1.2.1. Common Section

All the JSON log types share a common structure:

{"timestamp":"2009-11-24T21:27:09.534255","flow_id":ID_NUMBER, "event_type":"TYPE", ...tuple... ,"TYPE":{ ... type specific content ... }}

17.1.2.1.1. Field: flow_id

Correlates the network protocol, flow logs EVE data and any evidence that
Suricata has logged to an alert event and that alert's metadata, as well as
to fileinfo/file transaction and anomaly logs, if available. The same correlation
and logs are produced regardless if there is an alert, for any session/flow.

The ability to correlate EVE logs belonging to a specific session/flow was
introduced in 2014 (see commit f1185d051c21 [https://github.com/OISF/suricata/commit/f1185d051c210ca0daacdddbe865a51af24f4ea3]).

Further below, you can see several examples of events logged by Suricata: an
alert for an HTTP rule, fileinfo, http,
anomaly, and flow events, all
easily correlated using the flow_id EVE field:

$ jq 'select(.flow_id==1676750115612680)' eve.json

Event type: alert:

{
 "timestamp": "2023-09-18T06:13:41.532140+0000",
 "flow_id": 1676750115612680,
 "pcap_cnt": 130,
 "event_type": "alert",
 "src_ip": "142.11.240.191",
 "src_port": 35361,
 "dest_ip": "192.168.100.237",
 "dest_port": 49175,
 "proto": "TCP",
 "pkt_src": "wire/pcap",
 "ether": {
 "src_mac": "52:54:00:36:3e:ff",
 "dest_mac": "12:a9:86:6c:77:de"
 },
 "tx_id": 1,
 "alert": {
 "action": "allowed",
 "gid": 1,
 "signature_id": 2045001,
 "rev": 1,
 "signature": "ET ATTACK_RESPONSE Win32/LeftHook Stealer Browser Extension Config Inbound",
 "category": "A Network Trojan was detected",
 "severity": 1,
 "metadata": {
 "affected_product": [
 "Windows_XP_Vista_7_8_10_Server_32_64_Bit"
],
 "attack_target": [
 "Client_Endpoint"
],
 "created_at": [
 "2023_04_17"
],
 "deployment": [
 "Perimeter"
],
 "former_category": [
 "ATTACK_RESPONSE"
],
 "signature_severity": [
 "Major"
],
 "updated_at": [
 "2023_04_18"
]
 }
 },
 "http": {
 "hostname": "142.11.240.191",
 "http_port": 35361,
 "url": "/",
 "http_content_type": "text/xml",
 "http_method": "POST",
 "protocol": "HTTP/1.1",
 "status": 200,
 "length": 5362
 },
 "files": [
 {
 "filename": "/",
 "gaps": false,
 "state": "CLOSED",
 "stored": false,
 "size": 5362,
 "tx_id": 1
 }
],
 "app_proto": "http",
 "direction": "to_client",
 "flow": {
 "pkts_toserver": 13,
 "pkts_toclient": 12,
 "bytes_toserver": 1616,
 "bytes_toclient": 8044,
 "start": "2023-09-18T06:13:33.324862+0000",
 "src_ip": "192.168.100.237",
 "dest_ip": "142.11.240.191",
 "src_port": 49175,
 "dest_port": 35361
 }
}

Event type: fileinfo:

{
 "timestamp": "2023-09-18T06:13:33.903924+0000",
 "flow_id": 1676750115612680,
 "pcap_cnt": 70,
 "event_type": "fileinfo",
 "src_ip": "192.168.100.237",
 "src_port": 49175,
 "dest_ip": "142.11.240.191",
 "dest_port": 35361,
 "proto": "TCP",
 "pkt_src": "wire/pcap",
 "ether": {
 "src_mac": "12:a9:86:6c:77:de",
 "dest_mac": "52:54:00:36:3e:ff"
 },
 "http": {
 "hostname": "142.11.240.191",
 "http_port": 35361,
 "url": "/",
 "http_content_type": "text/xml",
 "http_method": "POST",
 "protocol": "HTTP/1.1",
 "status": 200,
 "length": 212
 },
 "app_proto": "http",
 "fileinfo": {
 "filename": "/",
 "gaps": false,
 "state": "CLOSED",
 "stored": false,
 "size": 137,
 "tx_id": 0
 }
}

Event type: HTTP:

{
 "timestamp": "2023-09-18T06:13:33.903924+0000",
 "flow_id": 1676750115612680,
 "pcap_cnt": 70,
 "event_type": "http",
 "src_ip": "192.168.100.237",
 "src_port": 49175,
 "dest_ip": "142.11.240.191",
 "dest_port": 35361,
 "proto": "TCP",
 "pkt_src": "wire/pcap",
 "ether": {
 "src_mac": "12:a9:86:6c:77:de",
 "dest_mac": "52:54:00:36:3e:ff"
 },
 "tx_id": 0,
 "http": {
 "hostname": "142.11.240.191",
 "http_port": 35361,
 "url": "/",
 "http_content_type": "text/xml",
 "http_method": "POST",
 "protocol": "HTTP/1.1",
 "status": 200,
 "length": 212,
 "request_headers": [
 {
 "name": "Content-Type",
 "value": "text/xml; charset=utf-8"
 },
 {
 "name": "SOAPAction",
 "value": "\"http://tempuri.org/Endpoint/CheckConnect\""
 },
 {
 "name": "Host",
 "value": "142.11.240.191:35361"
 },
 {
 "name": "Content-Length",
 "value": "137"
 },
 {
 "name": "Expect",
 "value": "100-continue"
 },
 {
 "name": "Accept-Encoding",
 "value": "gzip, deflate"
 },
 {
 "name": "Connection",
 "value": "Keep-Alive"
 }
],
 "response_headers": [
 {
 "name": "Content-Length",
 "value": "212"
 },
 {
 "name": "Content-Type",
 "value": "text/xml; charset=utf-8"
 },
 {
 "name": "Server",
 "value": "Microsoft-HTTPAPI/2.0"
 },
 {
 "name": "Date",
 "value": "Mon, 18 Sep 2023 06:13:33 GMT"
 }
]
 }
}

Event type: anomaly:

{
 "timestamp": "2023-09-18T06:13:58.882971+0000",
 "flow_id": 1676750115612680,
 "pcap_cnt": 2878,
 "event_type": "anomaly",
 "src_ip": "192.168.100.237",
 "src_port": 49175,
 "dest_ip": "142.11.240.191",
 "dest_port": 35361,
 "proto": "TCP",
 "pkt_src": "wire/pcap",
 "ether": {
 "src_mac": "12:a9:86:6c:77:de",
 "dest_mac": "52:54:00:36:3e:ff"
 },
 "tx_id": 3,
 "anomaly": {
 "app_proto": "http",
 "type": "applayer",
 "event": "UNABLE_TO_MATCH_RESPONSE_TO_REQUEST",
 "layer": "proto_parser"
 }
}

Event type: flow:

{
 "timestamp": "2023-09-18T06:13:21.216460+0000",
 "flow_id": 1676750115612680,
 "event_type": "flow",
 "src_ip": "192.168.100.237",
 "src_port": 49175,
 "dest_ip": "142.11.240.191",
 "dest_port": 35361,
 "proto": "TCP",
 "app_proto": "http",
 "flow": {
 "pkts_toserver": 3869,
 "pkts_toclient": 1523,
 "bytes_toserver": 3536402,
 "bytes_toclient": 94102,
 "start": "2023-09-18T06:13:33.324862+0000",
 "end": "2023-09-18T06:14:13.752399+0000",
 "age": 40,
 "state": "closed",
 "reason": "shutdown",
 "alerted": true
 },
 "ether": {
 "dest_macs": [
 "52:54:00:36:3e:ff"
],
 "src_macs": [
 "12:a9:86:6c:77:de"
]
 },
 "tcp": {
 "tcp_flags": "1e",
 "tcp_flags_ts": "1e",
 "tcp_flags_tc": "1a",
 "syn": true,
 "rst": true,
 "psh": true,
 "ack": true,
 "state": "closed",
 "ts_max_regions": 1,
 "tc_max_regions": 1
 }
}

Note

It is possible to have even more detailed alert records, by enabling for
instance logging http-body, or alert metadata (alert output).

Examples come from pcap found at https://app.any.run/tasks/ce7ca983-9e4b-4251-a7c3-fefa3da02ebe/.

17.1.2.1.2. Event types

The common part has a field "event_type" to indicate the log type.

"event_type":"TYPE"

When an application layer protocol event is detected, the common section will
have an app_proto field.

"app_proto": "http"

17.1.2.1.3. PCAP fields

If Suricata is processing a pcap file, additional fields are added:

"pcap_cnt": 123

pcap_cnt contains the packet number in the pcap. This can be used to look
up a packet in Wireshark for example.

"pcap_filename":"/path/to/file.pcap"

pcap_filename contains the file name and location of the pcap that
generated the event.

Note

the pcap fields are only available on "real" packets, and are
omitted from internal "pseudo" packets such as flow timeout
packets.

17.1.2.2. Event type: Alert

This field contains data about a signature that matched, such as
signature_id (sid in the rule) and the signature (msg in the
rule).

It can also contain information about Source and Target of the attack in the
alert.source and alert.target field if target keyword is used in
the signature.

This event will also have the pcap_cnt field, when running in pcap mode, to
indicate which packet triggered the signature.

"alert": {
 "action": "allowed",
 "gid": 1,
 "signature_id": 2024056,
 "rev": 4,
 "signature": "ET MALWARE Win32/CryptFile2 / Revenge Ransomware Checkin M3",
 "category": "Malware Command and Control Activity Detected",
 "severity": 1,
 "metadata": {
 "affected_product": [
 "Windows_XP_Vista_7_8_10_Server_32_64_Bit"
],
 "attack_target": [
 "Client_Endpoint"
],
 "created_at": [
 "2017_03_15"
],
 "deployment": [
 "Perimeter"
],
 "former_category": [
 "MALWARE"
],
 "malware_family": [
 "CryptFile2"
],
 "performance_impact": [
 "Moderate"
],
 "signature_severity": [
 "Major"
],
 "updated_at": [
 "2020_08_04"
]
 }
},

17.1.2.2.1. Action field

Possible values: "allowed" and "blocked".

Example:

"action":"allowed"

Action is set to "allowed" unless a rule used the "drop" action and Suricata is
in IPS mode, or when the rule used the "reject" action. It is important to note
that this does not necessarily indicate the final verdict for a given packet or
flow, since one packet may match on several rules.

17.1.2.2.2. Verdict

An object containning info on the final action that will be applied to a given
packet, based on all the signatures triggered by it and other possible events
(e.g., a flow drop). For that reason, it is possible for an alert with
an action allowed to have a verdict drop, in IPS mode, for instance, if
that packet was dropped due to a different alert.

	Action: alert, pass, drop (this latter only occurs in IPS mode)

	Reject-target: to_server, to_client, both (only occurs for 'reject' rules)

	Reject: an array of strings with possible reject types: tcp-reset,
icmp-prohib (only occurs for 'reject' rules)

Example:

"verdict": {
 "action": "drop",
 "reject-target": "to_client",
 "reject": "[icmp-prohib]"
 }

17.1.2.2.3. Pcap Field

If pcap log capture is active in multi mode, a capture_file key will be added to the event
with value being the full path of the pcap file where the corresponding packets
have been extracted.

17.1.2.3. Event type: Anomaly

Events with type "anomaly" report unexpected conditions such as truncated
packets, packets with invalid values, events that render the packet invalid
for further processing or unexpected behaviors.

Networks which experience high occurrences of anomalies may experience packet
processing degradation when anomaly logging is enabled.

17.1.2.3.1. Fields

	"type": Either "decode", "stream" or "applayer". In rare cases, type will be
"unknown". When this occurs, an additional field named "code" will be
present. Events with type
"applayer" are detected by the application layer parsers.

	"event" The name of the anomalous event. Events of type "decode" are prefixed
with "decoder"; events of type "stream" are prefixed with "stream".

	"code" If "type" is "unknown", than "code" contains the unrecognized event
code. Otherwise, this field is not present.

The following field is included when "type" has the value "applayer":

	"layer" Indicates the handling layer that detected the event. This will be
"proto_parser" (protocol parser), "proto_detect" (protocol detection) or
"parser."

When packethdr is enabled, the first 32 bytes of the packet are included
as a byte64-encoded blob in the main part of record. This applies to events
of "type" "packet" or "stream" only.

17.1.2.3.2. Examples

"anomaly": {
 "type": "decode",
 "event": "decoder.icmpv4.unknown_type"
}

"anomaly": {
 "type": "decode",
 "event": "decoder.udp.pkt_too_small"
}

"anomaly": {
 "type": "decode",
 "event": "decoder.ipv4.wrong_ip_version"
}

"anomaly": {
 "type": "stream",
 "event": "stream.pkt_invalid_timestamp"
}

{
 "timestamp": "1969-12-31T16:04:21.000000-0800",
 "pcap_cnt": 9262,
 "event_type": "anomaly",
 "src_ip": "208.21.2.184",
 "src_port": 0,
 "dest_ip": "10.1.1.99",
 "dest_port": 0,
 "proto": "UDP",
 "packet": "////////AQEBAQEBCABFAAA8xZ5AAP8R1+DQFQK4CgE=",
 "packet_info": {
 "linktype": 1
 },
 "anomaly": {
 "type": "decode",
 "event": "decoder.udp.pkt_too_small"
 }
}

{
 "timestamp": "2016-01-11T05:10:54.612110-0800",
 "flow_id": 412547343494194,
 "pcap_cnt": 1391293,
 "event_type": "anomaly",
 "src_ip": "192.168.122.149",
 "src_port": 49324,
 "dest_ip": "69.195.71.174",
 "dest_port": 443,
 "proto": "TCP",
 "app_proto": "tls",
 "anomaly": {
 "type": "applayer",
 "event": "APPLAYER_DETECT_PROTOCOL_ONLY_ONE_DIRECTION",
 "layer": "proto_detect"
 }
}

{
 "timestamp": "2016-01-11T05:10:52.828802-0800",
 "flow_id": 201217772575257,
 "pcap_cnt": 1391281,
 "event_type": "anomaly",
 "src_ip": "192.168.122.149",
 "src_port": 49323,
 "dest_ip": "69.195.71.174",
 "dest_port": 443,
 "proto": "TCP",
 "tx_id": 0,
 "app_proto": "tls",
 "anomaly": {
 "type": "applayer",
 "event": "INVALID_RECORD_TYPE",
 "layer": "proto_parser"
 }
}

17.1.2.4. Event type: HTTP

17.1.2.4.1. Fields

	"hostname": The hostname this HTTP event is attributed to

	"url": URL at the hostname that was accessed

	"http_user_agent": The user-agent of the software that was used

	"http_content_type": The type of data returned (ex: application/x-gzip)

	"cookie"

In addition to these fields, if the extended logging is enabled in the
suricata.yaml file the following fields are (can) also included:

	"length": The content size of the HTTP body

	"status": HTTP status code

	"protocol": Protocol / Version of HTTP (ex: HTTP/1.1)

	"http_method": The HTTP method (ex: GET, POST, HEAD)

	"http_refer": The referer for this action

In addition to the extended logging fields one can also choose to enable/add
from more than 50 additional custom logging HTTP fields enabled in the
suricata.yaml file. The additional fields can be enabled as following:

- eve-log:
 enabled: yes
 type: file #file|syslog|unix_dgram|unix_stream
 filename: eve.json
 # the following are valid when type: syslog above
 #identity: "suricata"
 #facility: local5
 #level: Info ## possible levels: Emergency, Alert, Critical,
 ## Error, Warning, Notice, Info, Debug
 types:
 - alert
 - http:
 extended: yes # enable this for extended logging information
 # custom allows additional http fields to be included in eve-log
 # the example below adds three additional fields when uncommented
 #custom: [Accept-Encoding, Accept-Language, Authorization]
 custom: [accept, accept-charset, accept-encoding, accept-language,
 accept-datetime, authorization, cache-control, cookie, from,
 max-forwards, origin, pragma, proxy-authorization, range, te, via,
 x-requested-with, dnt, x-forwarded-proto, accept-range, age,
 allow, connection, content-encoding, content-language,
 content-length, content-location, content-md5, content-range,
 content-type, date, etags, expires, last-modified, link, location,
 proxy-authenticate, referer, refresh, retry-after, server,
 set-cookie, trailer, transfer-encoding, upgrade, vary, warning,
 www-authenticate, x-flash-version, x-authenticated-user]

The benefits here of using the extended logging is to see if this action for
example was a POST or perhaps if a download of an executable actually returned
any bytes.

It is also possible to dump every header for HTTP requests/responses or both
via the keyword dump-all-headers.

17.1.2.4.2. Examples

Event with non-extended logging:

"http": {
 "hostname": "www.digip.org",
 "url" :"\/jansson\/releases\/jansson-2.6.tar.gz",
 "http_user_agent": "<User-Agent>",
 "http_content_type": "application\/x-gzip"
}

In case the hostname shows a port number, such as in case there is a header "Host: www.test.org:1337":

"http": {
 "http_port": 1337,
 "hostname": "www.test.org",
 "url" :"\/this\/is\/test.tar.gz",
 "http_user_agent": "<User-Agent>",
 "http_content_type": "application\/x-gzip"
}

Event with extended logging:

"http": {
 "hostname": "direkte.vg.no",
 "url":".....",
 "http_user_agent": "<User-Agent>",
 "http_content_type": "application\/json",
 "http_refer": "http:\/\/www.vg.no\/",
 "http_method": "GET",
 "protocol": "HTTP\/1.1",
 "status":"200",
 "length":310
}

Event with dump-all-headers set to "both":

"http": {
 "hostname": "test.co.uk",
 "url":"\/test\/file.json",
 "http_user_agent": "<User-Agent>",
 "http_content_type": "application\/json",
 "http_refer": "http:\/\/www.test.com\/",
 "http_method": "GET",
 "protocol": "HTTP\/1.1",
 "status":"200",
 "length":310,
 "request_headers": [
 {
 "name": "User-Agent",
 "value": "Wget/1.13.4 (linux-gnu)"
 },
 {
 "name": "Accept",
 "value": "*/*"
 },
],
 "response_headers": [
 {
 "name": "Date",
 "value": "Wed, 25 Mar 2015 15:40:41 GMT"
 },
]
}

17.1.2.5. Event type: DNS

A new version of dns logging has been introduced to improve how dns answers
are logged.

With that new version, dns answers are logged in one event
rather than an event for each answer.

It's possible to customize how a dns answer will be logged with the following
formats:

	"detailed": "rrname", "rrtype", "rdata" and "ttl" fields are logged for each answer

	"grouped": answers logged are aggregated by their type (A, AAAA, NS, ...)

It will be still possible to use the old DNS logging format, you can control it
with "version" option in dns configuration section.

17.1.2.5.1. Fields

Outline of fields seen in the different kinds of DNS events:

	"type": Indicating DNS message type, can be "answer" or "query".

	"id": Identifier field

	"version": Indicating DNS logging version in use

	"flags": Indicating DNS answer flag, in hexadecimal (ex: 8180 , please note 0x is not output)

	"qr": Indicating in case of DNS answer flag, Query/Response flag (ex: true if set)

	"aa": Indicating in case of DNS answer flag, Authoritative Answer flag (ex: true if set)

	"tc": Indicating in case of DNS answer flag, Truncation flag (ex: true if set)

	"rd": Indicating in case of DNS answer flag, Recursion Desired flag (ex: true if set)

	"ra": Indicating in case of DNS answer flag, Recursion Available flag (ex: true if set)

	"z": Indicating in case of DNS answer flag, Reserved bit (ex: true if set)

	"rcode": (ex: NOERROR)

	"rrname": Resource Record Name (ex: a domain name)

	"rrtype": Resource Record Type (ex: A, AAAA, NS, PTR)

	"rdata": Resource Data (ex: IP that domain name resolves to)

	"ttl": Time-To-Live for this resource record

More complex DNS record types may log additional fields for resource data:

	"soa": Section containing fields for the SOA (start of authority) record type

	"mname": Primary name server for this zone

	"rname": Authority's mailbox

	"serial": Serial version number

	"refresh": Refresh interval (seconds)

	"retry": Retry interval (seconds)

	"expire": Upper time limit until zone is no longer authoritative (seconds)

	"minimum": Minimum ttl for records in this zone (seconds)

	"sshfp": section containing fields for the SSHFP (ssh fingerprint) record type

	"fingerprint": Hex format of the fingerprint (ex: 12:34:56:78:9a:bc:de:...)

	"algo": Algorithm number (ex: 1 for RSA, 2 for DSS)

	"type": Fingerprint type (ex: 1 for SHA-1)

	"srv": section containing fields for the SRV (location of services) record type

	"target": Domain name of the target host (ex: foo.bar.baz)

	"priority": Target priority (ex: 20)

	"weight": Weight for target selection (ex: 1)

	"port": Port on this target host of this service (ex: 5060)

One can control which RR types are logged by using the "types" field in the
suricata.yaml file. If this field is not specified, all RR types are logged.
More than 50 values can be specified with this field as shown below:

- eve-log:
 enabled: yes
 type: file #file|syslog|unix_dgram|unix_stream
 filename: eve.json
 # the following are valid when type: syslog above
 #identity: "suricata"
 #facility: local5
 #level: Info ## possible levels: Emergency, Alert, Critical,
 ## Error, Warning, Notice, Info, Debug
 types:
 - alert
 - dns:
 # Control logging of requests and responses:
 # - requests: enable logging of DNS queries
 # - responses: enable logging of DNS answers
 # By default both requests and responses are logged.
 requests: yes
 responses: yes
 # DNS record types to log, based on the query type.
 # Default: all.
 #types: [a, aaaa, cname, mx, ns, ptr, txt]
 types: [a, ns, md, mf, cname, soa, mb, mg, mr, null,
 wks, ptr, hinfo, minfo, mx, txt, rp, afsdb, x25, isdn,
 rt, nsap, nsapptr, sig, key, px, gpos, aaaa, loc, nxt,
 srv, atma, naptr, kx, cert, a6, dname, opt, apl, ds,
 sshfp, ipseckey, rrsig, nsec, dnskey, dhcid, nsec3,
 nsec3param, tlsa, hip, cds, cdnskey, spf, tkey,
 tsig, maila, any, uri]

17.1.2.5.2. Examples

Example of a DNS query for the IPv4 address of "twitter.com" (resource record type 'A'):

"dns": {
 "type": "query",
 "id": 16000,
 "rrname": "twitter.com",
 "rrtype":"A"
}

Example of a DNS answer with "detailed" format:

"dns": {
 "version": 2,
 "type": "answer",
 "id": 45444,
 "flags": "8180",
 "qr": true,
 "rd": true,
 "ra": true,
 "rcode": "NOERROR",
 "answers": [
 {
 "rrname": "www.suricata.io",
 "rrtype": "CNAME",
 "ttl": 3324,
 "rdata": "suricata.io"
 },
 {
 "rrname": "suricata.io",
 "rrtype": "A",
 "ttl": 10,
 "rdata": "192.0.78.24"
 },
 {
 "rrname": "suricata.io",
 "rrtype": "A",
 "ttl": 10,
 "rdata": "192.0.78.25"
 }
]
}

Example of a DNS answer with "grouped" format:

"dns": {
 "version": 2,
 "type": "answer",
 "id": 18523,
 "flags": "8180",
 "qr": true,
 "rd": true,
 "ra": true,
 "rcode": "NOERROR",
 "grouped": {
 "A": [
 "192.0.78.24",
 "192.0.78.25"
],
 "CNAME": [
 "suricata.io"
]
 }
}

Example of a old DNS answer with an IPv4 (resource record type 'A') return:

"dns": {
 "type": "answer",
 "id":16000,
 "flags":"8180",
 "qr":true,
 "rd":true,
 "ra":true,
 "rcode":"NOERROR"
 "rrname": "twitter.com",
 "rrtype":"A",
 "ttl":8,
 "rdata": "199.16.156.6"
}

17.1.2.6. Event type: FTP

17.1.2.6.1. Fields

	"command": The FTP command.

	"command_data": The data accompanying the command.

	"reply": The command reply, which may contain multiple lines, in array format.

	"completion_code": The 3-digit completion code. The first digit indicates whether the response is good, bad or incomplete. This
is also in array format and may contain multiple completion codes matching multiple reply lines.

	"dynamic_port": The dynamic port established for subsequent data transfers, when applicable, with a "PORT" or "EPRT" command.

	"mode": The type of FTP connection. Most connections are "passive" but may be "active".

	"reply_received": Indicates whether a response was matched to the command. In some non-typical cases, a command may lack a response.

17.1.2.6.2. Examples

Example of regular FTP logging:

"ftp": {
 "command": "RETR",
 "command_data": "100KB.zip",
 "reply": [
 "Opening BINARY mode data connection for 100KB.zip (102400 bytes).",
 "Transfer complete."
],
 "completion_code": [
 "150",
 "226"
],

Example showing all fields:

"ftp": {
 "command": "EPRT",
 "command_data": "|2|2a01:e34:ee97:b130:8c3e:45ea:5ac6:e301|41813|",
 "reply": [
 "EPRT command successful. Consider using EPSV."
],
 "completion_code": [
 "200"
],
 "dynamic_port": 41813,
 "mode": "active",
 "reply_received": "yes"
}

17.1.2.7. Event type: FTP_DATA

17.1.2.7.1. Fields

	"command": The FTP command associated with the event.

	"filename": The name of the involved file.

17.1.2.7.2. Examples

Example of FTP_DATA logging:

"ftp_data": {
 "filename": "temp.txt",
 "command": "RETR"
}

17.1.2.8. Event type: TLS

17.1.2.8.1. Fields

	"subject": The subject field from the TLS certificate

	"issuer": The issuer field from the TLS certificate

	"session_resumed": This field has the value of "true" if the TLS session was resumed via a session id. If this field appears, "subject" and "issuer" do not appear, since a TLS certificate is not seen.

If extended logging is enabled the following fields are also included:

	"serial": The serial number of the TLS certificate

	"fingerprint": The (SHA1) fingerprint of the TLS certificate

	"sni": The Server Name Indication (SNI) extension sent by the client

	"version": The SSL/TLS version used

	"notbefore": The NotBefore field from the TLS certificate

	"notafter": The NotAfter field from the TLS certificate

	"ja3": The JA3 fingerprint consisting of both a JA3 hash and a JA3 string

	"ja3s": The JA3S fingerprint consisting of both a JA3 hash and a JA3 string

JA3 must be enabled in the Suricata config file (set 'app-layer.protocols.tls.ja3-fingerprints' to 'yes').

In addition to this, custom logging also allows the following fields:

	"certificate": The TLS certificate base64 encoded

	"chain": The entire TLS certificate chain base64 encoded

17.1.2.8.2. Examples

Example of regular TLS logging:

"tls": {
 "subject": "C=US, ST=California, L=Mountain View, O=Google Inc, CN=*.google.com",
 "issuerdn": "C=US, O=Google Inc, CN=Google Internet Authority G2"
}

Example of regular TLS logging for resumed sessions:

"tls": {
 "session_resumed": true
}

Example of extended TLS logging:

"tls": {
 "subject": "C=US, ST=California, L=Mountain View, O=Google Inc, CN=*.google.com",
 "issuerdn": "C=US, O=Google Inc, CN=Google Internet Authority G2",
 "serial": "0C:00:99:B7:D7:54:C9:F6:77:26:31:7E:BA:EA:7C:1C",
 "fingerprint": "8f:51:12:06:a0:cc:4e:cd:e8:a3:8b:38:f8:87:59:e5:af:95:ca:cd",
 "sni": "calendar.google.com",
 "version": "TLS 1.2",
 "notbefore": "2017-01-04T10:48:43",
 "notafter": "2017-03-29T10:18:00"
}

Example of certificate logging using TLS custom logging (subject, sni, certificate):

"tls": {
 "subject": "C=US, ST=California, L=Mountain View, O=Google Inc, CN=*.googleapis.com
 "sni": "www.googleapis.com",
 "certificate": "MIIE3TCCA8WgAwIBAgIIQPsvobRZN0gwDQYJKoZIhvcNAQELBQAwSTELMA [...]"
 }

17.1.2.9. Event type: TFTP

17.1.2.9.1. Fields

	"packet": The operation code, can be "read" or "write" or "error"

	"file": The filename transported with the tftp protocol

	"mode": The mode field, can be "octet" or "mail" or "netascii" (or any combination of upper and lower case)

Example of TFTP logging:

"tftp": {
 "packet": "write",
 "file": "rfc1350.txt",
 "mode": "octet"
 }

17.1.2.10. Event type: SMB

17.1.2.10.1. SMB Fields

	"id" (integer): internal transaction id

	"dialect" (string): the negotiated protocol dialect, or "unknown" if missing

	"command" (string): command name. E.g. SMB2_COMMAND_CREATE or SMB1_COMMAND_WRITE_ANDX

	"status" (string): status string. Can be both NT_STATUS or DOS_ERR and other variants

	"status_code" (string): status code as hex string

	"session_id" (integer): SMB2+ session_id. SMB1 user id.

	"tree_id" (integer): Tree ID

	"filename" (string): filename for CREATE and other commands.

	"disposition" (string): requested disposition. E.g. FILE_OPEN, FILE_CREATE and FILE_OVERWRITE. See https://msdn.microsoft.com/en-us/library/ee442175.aspx#Appendix_A_Target_119

	"access" (string): indication of how the file was opened. "normal" or "delete on close" (field is subject to change)

	"created", "accessed", "modified", "changed" (integer): timestamps in seconds since unix epoch

	"size" (integer): size of the requested file

	"fuid" (string): SMB2+ file GUID. SMB1 FID as hex.

	"share" (string): share name.

	"share_type" (string): FILE, PIPE, PRINT or unknown.

	"client_dialects" (array of strings): list of SMB dialects the client speaks.

	"client_guid" (string): client GUID

	"server_guid" (string): server GUID

	"request.native_os" (string): SMB1 native OS string

	"request.native_lm" (string): SMB1 native Lan Manager string

	"response.native_os" (string): SMB1 native OS string

	"response.native_lm" (string): SMB1 native Lan Manager string

Examples of SMB logging:

Pipe open:

"smb": {
 "id": 1,
 "dialect": "unknown",
 "command": "SMB2_COMMAND_CREATE",
 "status": "STATUS_SUCCESS",
 "status_code": "0x0",
 "session_id": 4398046511201,
 "tree_id": 1,
 "filename": "atsvc",
 "disposition": "FILE_OPEN",
 "access": "normal",
 "created": 0,
 "accessed": 0,
 "modified": 0,
 "changed": 0,
 "size": 0,
 "fuid": "0000004d-0000-0000-0005-0000ffffffff"
}

File/pipe close:

"smb": {
 "id": 15,
 "dialect": "2.10",
 "command": "SMB2_COMMAND_CLOSE",
 "status": "STATUS_SUCCESS",
 "status_code": "0x0",
 "session_id": 4398046511121,
 "tree_id": 1,
}

Tree connect (share open):

"smb": {
 "id": 3,
 "dialect": "2.10",
 "command": "SMB2_COMMAND_TREE_CONNECT",
 "status": "STATUS_SUCCESS",
 "status_code": "0x0",
 "session_id": 4398046511121,
 "tree_id": 1,
 "share": "\\\\admin-pc\\c$",
 "share_type": "FILE"
}

Dialect negotiation from SMB1 to SMB2 dialect 2.10:

"smb": {
 "id": 1,
 "dialect": "2.??",
 "command": "SMB1_COMMAND_NEGOTIATE_PROTOCOL",
 "status": "STATUS_SUCCESS",
 "status_code": "0x0",
 "session_id": 0,
 "tree_id": 0,
 "client_dialects": [
 "PC NETWORK PROGRAM 1.0",
 "LANMAN1.0",
 "Windows for Workgroups 3.1a",
 "LM1.2X002",
 "LANMAN2.1",
 "NT LM 0.12",
 "SMB 2.002",
 "SMB 2.???"
],
 "server_guid": "aec6e793-2b11-4019-2d95-55453a0ad2f1"
}
"smb": {
 "id": 2,
 "dialect": "2.10",
 "command": "SMB2_COMMAND_NEGOTIATE_PROTOCOL",
 "status": "STATUS_SUCCESS",
 "status_code": "0x0",
 "session_id": 0,
 "tree_id": 0,
 "client_dialects": [
 "2.02",
 "2.10"
],
 "client_guid": "601985d2-aad9-11e7-8494-00088bb57f27",
 "server_guid": "aec6e793-2b11-4019-2d95-55453a0ad2f1"
}

SMB1 partial SMB1_COMMAND_SESSION_SETUP_ANDX:

"request": {
 "native_os": "Unix",
 "native_lm": "Samba 3.9.0-SVN-build-11572"
},
"response": {
 "native_os": "Windows (TM) Code Name \"Longhorn\" Ultimate 5231",
 "native_lm": "Windows (TM) Code Name \"Longhorn\" Ultimate 6.0"
}

17.1.2.10.2. DCERPC fields

	"request" (string): command. E.g. REQUEST, BIND.

	"response" (string): reply. E.g. RESPONSE, BINDACK or FAULT.

	"opnum" (integer): the opnum

	"call_id" (integer): the call id

	"frag_cnt" (integer): the number of fragments for the stub data

	"stub_data_size": total stub data size

	"interfaces" (array): list of interfaces

	"interfaces.uuid" (string): string representation of the UUID

	"interfaces.version" (string): interface version

	"interfaces.ack_result" (integer): ack result

	"interfaces.ack_reason" (integer): ack reason

DCERPC REQUEST/RESPONSE:

"smb": {
 "id": 4,
 "dialect": "unknown",
 "command": "SMB2_COMMAND_IOCTL",
 "status": "STATUS_SUCCESS",
 "status_code": "0x0",
 "session_id": 4398046511201,
 "tree_id": 0,
 "dcerpc": {
 "request": "REQUEST",
 "response": "RESPONSE",
 "opnum": 0,
 "req": {
 "frag_cnt": 1,
 "stub_data_size": 136
 },
 "res": {
 "frag_cnt": 1,
 "stub_data_size": 8
 },
 "call_id": 2
 }
}

DCERPC BIND/BINDACK:

"smb": {
 "id": 53,
 "dialect": "2.10",
 "command": "SMB2_COMMAND_WRITE",
 "status": "STATUS_SUCCESS",
 "status_code": "0x0",
 "session_id": 35184439197745,
 "tree_id": 1,
 "dcerpc": {
 "request": "BIND",
 "response": "BINDACK",
 "interfaces": [
 {
 "uuid": "12345778-1234-abcd-ef00-0123456789ac",
 "version": "1.0",
 "ack_result": 2,
 "ack_reason": 0
 },
 {
 "uuid": "12345778-1234-abcd-ef00-0123456789ac",
 "version": "1.0",
 "ack_result": 0,
 "ack_reason": 0
 },
 {
 "uuid": "12345778-1234-abcd-ef00-0123456789ac",
 "version": "1.0",
 "ack_result": 3,
 "ack_reason": 0
 }
],
 "call_id": 2
 }

17.1.2.11. Event type: BITTORRENT-DHT

17.1.2.11.1. Common fields:

	"transaction_id" (hex): the unique id of the transaction, generated by node making the request (a.k.a the querying node). Same transaction_id is echoed back by responding nodes.

	"client_version" (hex): identifies the type and version of the bittorrent-dht client. Some implementations may be missing this field.

17.1.2.11.2. Extra fields:

Packets should also contain one of either the fields:

error

	
	"error": details of an error which occurred while processing the request
	
	"error.num" (num): the error code

	"error.msg" (string): the error message

request_type and request

	"request_type" (string): the type of the request (a.k.a. the query). Included if this packet was a request

	
	"request": a request (a.k.a. a query) sent by the bittorrent-dht client
	
	"request.id" (hex): the node ID of the node which sent the request (20 bytes in network byte order)

	"request.target" (hex): the target node ID. Used by the find_node request_type

	"request.info_hash" (hex): info hash of target torrent (20 bytes). Used by the get_peers and announce_peer request_types

	"request.token" (hex): token key received from previous get_peers request. Used by the announce_peer request type

	"request.implied_port" (num): 0 or 1, if 1 ignore provided port and use source port of UDP packet. Used by the announce_peer request_type

	"request.port" (num): port on which peer will download torrent. Used by the announce_peer request_type

response

	
	"response": a response to the client's request
	
	"response.id" (hex): the node ID of the node which sent the response (20 bytes in network byte order)

	"response.nodes" (array): find_node/get_peers - a list of info objects for target node or K(8) closest good nodes in routing table

	"response.nodes6" (array): find_node/get_peers - a list of info objects for target node or K(8) closest good nodes in routing table (ipv6)

	"response.values" (array): list of compact peer info strings. Used by the get_peers request_type

	"response.token" (hex): token key required for sender's future announce_peer query

node object

	"id" (hex): node ID

	"ip" (string): IPv4 or IPv6 address of node

	"port" (integer): node port

peer object (values array)

	"ip" (string): IPv6 or IPv6 address of node

	"port" (integer): node port

17.1.2.11.3. Examples:

Ping and response:

"bittorrent_dht": {
 "transaction_id": "0c17",
 "client_version": "4c540126",
 "request_type": "ping",
 "request": {
 "id": "41aff1580119f074e2f537f231f12adf684f0d1f"
 }
}

"bittorrent_dht": {
 "transaction_id": "0c17",
 "client_version": "5554b50c",
 "response": {
 "id": "42aeb304a0845b3b9ee089327b48967b8e87b2e2"
 }
}

Find_node and response:

"bittorrent_dht": {
 "transaction_id": "420f0000",
 "client_version": "5554b50c",
 "request_type": "find_node",
 "request": {
 "id": "37579bad1bad166af4329508096fae8c553c6cf4",
 "target": "37579bad1bad166af4329508096fae8c553c6cf4"
 }
}

Get_peers and response with values param:

"bittorrent_dht": {
 "transaction_id": "05e4",
 "client_version": "4c540126",
 "request_type": "get_peers",
 "request": {
 "id": "41aff1580119f074e2f537f231f12adf684f0d1f",
 "info_hash": "19a6fcfcba6cc2c6d371eb754074d095adb5d291"
 }
}
"bittorrent_dht": {
 "transaction_id": "05e4",
 "client_version": "555462d6",
 "response": {
 "id": "19a6f98be177e32e7b5bd77276d529f03e3ba8a9",
 "values": [
 {
 "ip": "45.238.190.2",
 "port": 6881
 },
 {
 "ip": "185.70.52.245",
 "port": 51215
 },
 {
 "ip": "45.21.238.247",
 "port": 55909
 },
 {
 "ip": "62.28.248.195",
 "port": 6881
 }
],
 "token": "c17094641ca8844d711120baecb2b5cf25435614"
 }
}

Get_peers and response with nodes param:

 "bittorrent_dht": {
 "transaction_id": "44e6",
 "client_version": "4c540126",
 "request_type": "get_peers",
 "request": {
 "id": "41aff1580119f074e2f537f231f12adf684f0d1f",
 "info_hash": "19a6fcfcba6cc2c6d371eb754074d095adb5d291"
 }
}

"bittorrent_dht": {
 "transaction_id": "44e6",
 "response": {
 "id": "19a7c8f4f6d14d9f87a67671720633e551f30cb7",
 "values": [
 {
 "ip": "45.22.252.153",
 "port": 36798
 },
 {
 "ip": "94.41.206.37",
 "port": 30850
 },
 {
 "ip": "84.228.120.50",
 "port": 6881
 },
 {
 "ip": "178.81.206.84",
 "port": 12373
 },
 {
 "ip": "110.188.93.186",
 "port": 22223
 }
],
 "token": "c897ee539e02a54595b4d7cfb6319ad48e71b282"
 }
}

Announce_peer and response:

"bittorrent_dht": {
 "transaction_id": "aa",
 "request_type": "announce_peer",
 "request": {
 "id": "abcdefghij0123456789",
 "info_hash": "mnopqrstuvwxyz123456",
 "token": "aoeusnth",
 "port": 6881
 }
}
"bittorrent_dht": {
 "transaction_id": "aa",
 "response": {
 "id": "mnopqrstuvwxyz123456"
 }
}

Announce_peer with implied_port param and response:

"bittorrent_dht": {
 "transaction_id": "7fe9",
 "client_version": "4c540126",
 "request_type": "announce_peer",
 "request": {
 "id": "51bc83f53417a62a40e8a48170cad369a13fef3c",
 "info_hash": "19a6fcfcba6cc2c6d371eb754074d095adb5d291",
 "token": "cacbef35",
 "implied_port": 1,
 "port": 54892
 }
}

"bittorrent_dht": {
 "transaction_id": "7fe9",
 "client_version": "4c54012f",
 "response": {
 "id": "19a66dece45e0288ab75d141e0255738a1ce8508"
 }
}

Sample error responses:

"bittorrent_dht": {
 "transaction_id": "aa",
 "error": {
 "num": 201,
 "msg": "A Generic Error Ocurred"
 }
}
"bittorrent_dht": {
 "transaction_id": "aa",
 "error": {
 "num": 203,
 "msg": "Malformed Packet"
 }
}

17.1.2.11.4. NTLMSSP fields

	"domain" (string): the Windows domain.

	"user" (string): the user.

	"host" (string): the host.

	"version" (string): the client version.

Example:

"ntlmssp": {
 "domain": "VNET3",
 "user": "administrator",
 "host": "BLU",
 "version": "60.230 build 13699 rev 188"
}

More complete example:

"smb": {
 "id": 3,
 "dialect": "NT LM 0.12",
 "command": "SMB1_COMMAND_SESSION_SETUP_ANDX",
 "status": "STATUS_SUCCESS",
 "status_code": "0x0",
 "session_id": 2048,
 "tree_id": 0,
 "ntlmssp": {
 "domain": "VNET3",
 "user": "administrator",
 "host": "BLU",
 "version": "60.230 build 13699 rev 188"
 },
 "request": {
 "native_os": "Unix",
 "native_lm": "Samba 3.9.0-SVN-build-11572"
 },
 "response": {
 "native_os": "Windows (TM) Code Name \"Longhorn\" Ultimate 5231",
 "native_lm": "Windows (TM) Code Name \"Longhorn\" Ultimate 6.0"
 }
}

17.1.2.11.5. Kerberos fields

	"kerberos.realm" (string): the Kerberos Realm.

	"kerberos.snames (array of strings): snames.

Example:

"smb": {
 "dialect": "2.10",
 "command": "SMB2_COMMAND_SESSION_SETUP",
 "status": "STATUS_SUCCESS",
 "status_code": "0x0",
 "session_id": 35184439197745,
 "tree_id": 0,
 "kerberos": {
 "realm": "CONTOSO.LOCAL",
 "snames": [
 "cifs",
 "DC1.contoso.local"
]
 }
}

17.1.2.12. Event type: SSH

17.1.2.12.1. Fields

	"proto_version": The protocol version transported with the ssh protocol (1.x, 2.x)

	"software_version": The software version used by end user

	"hassh.hash": MD5 of hassh algorithms of client or server

	"hassh.string": hassh algorithms of client or server

Hassh must be enabled in the Suricata config file (set 'app-layer.protocols.ssh.hassh' to 'yes').

Example of SSH logging:

"ssh": {
 "client": {
 "proto_version": "2.0",
 "software_version": "OpenSSH_6.7",
 "hassh": {
 "hash": "ec7378c1a92f5a8dde7e8b7a1ddf33d1",
 "string": "curve25519-sha256,diffie-hellman-group14-sha256,diffie-hellman-group14-sha1,ext-info-c",
 }
 },
 "server": {
 "proto_version": "2.0",
 "software_version": "OpenSSH_6.7",
 "hassh": {
 "hash": "ec7378c1a92f5a8dde7e8b7a1ddf33d1",
 "string": "curve25519-sha256,curve25519-sha256@libssh.org,ecdh-sha2-nistp256",
 }
 }
}

17.1.2.13. Event type: Flow

17.1.2.13.1. Fields

	"pkts_toserver": total number of packets to server, include bypassed packets

	"pkts_toclient": total number of packets to client

	"bytes_toserver": total bytes count to server

	"bytes_toclient": total bytes count to client

	"bypassed.pkts_toserver": number of bypassed packets to server

	"bypassed.pkts_toclient": number of bypassed packets to client

	"bypassed.bytes_toserver": bypassed bytes count to server

	"bypassed.bytes_toclient": bypassed bytes count to client

	"start": date of start of the flow

	"end": date of end of flow (last seen packet)

	"age": duration of the flow

	"bypass": if the flow has been bypassed, it is set to "local" (internal bypass) or "capture"

	"state": display state of the flow (include "new", "established", "closed", "bypassed")

	"reason": mechanism that did trigger the end of the flow (include "timeout", "forced" and "shutdown")

	"alerted": "true" or "false" depending if an alert has been seen on flow

Example

"flow": {
 "pkts_toserver": 23,
 "pkts_toclient": 21,
 "bytes_toserver": 4884,
 "bytes_toclient": 7392,
 "bypassed": {
 "pkts_toserver": 10,
 "pkts_toclient": 8,
 "bytes_toserver": 1305,
 "bytes_toclient": 984
 },
 "start": "2019-05-28T23:32:29.025256+0200",
 "end": "2019-05-28T23:35:28.071281+0200",
 "age": 179,
 "bypass": "capture",
 "state": "bypassed",
 "reason": "timeout",
 "alerted": false
}

17.1.2.14. Event type: RDP

Initial negotiations between RDP client and server are stored as transactions and logged.

Each RDP record contains a per-flow incrementing "tx_id" field.

The "event_type" field indicates an RDP event subtype. Possible values:

	"initial_request"

	"initial_response"

	"connect_request"

	"connect_response"

	"tls_handshake"

17.1.2.14.1. RDP type: Initial Request

The optional "cookie" field is a string identifier the RDP client has chosen to provide.

The optional "flags" field is a list of client directives. Possible values:

	"restricted_admin_mode_required"

	"redirected_authentication_mode_required"

	"correlation_info_present"

17.1.2.14.2. RDP type: Initial Response

In the event of a standard initial response:

The "protocol" field is the selected protocol. Possible values:

	"rdp"

	"ssl"

	"hybrid"

	"rds_tls"

	"hybrid_ex"

The optional "flags" field is a list of support server modes. Possible values:

	"extended_client_data"

	"dynvc_gfx"

	"restricted_admin"

	"redirected_authentication"

Alternatively, in the event of an error-indicating initial response:

There will be no "protocol" or "flags" fields.

The "error_code" field will contain the numeric code provided by the RDP server.

The "reason" field will contain a text summary of this code. Possible values:

	"ssl required by server" (error code 0x1)

	"ssl not allowed by server" (error code 0x2)

	"ssl cert not on server" (error code 0x3)

	"inconsistent flags" (error code 0x4)

	"hybrid required by server" (error code 0x5)

	"ssl with user auth required by server" (error code 0x6)

17.1.2.14.3. RDP type: Connect Request

The optional "channel" field is a list of requested data channel names.

Common channels:

	"rdpdr" (device redirection)

	"cliprdr" (shared clipboard)

	"rdpsnd" (sound)

The optional "client" field is a sub-object that may contain the following:

	"version": RDP protocol version. Possible values are "v4", "v5", "v10.0", "v10.1", "v10.2", "v10.3", "v10.4", "v10.5", "v10.6", "v10.7", "unknown".

	"desktop_width": Numeric desktop width value.

	"desktop_height": Numeric desktop height value.

	"color_depth": Numeric color depth. Possible values are 4, 8, 15, 16, 24.

	"keyboard_layout": Locale identifier name, e.g., "en-US".

	"build": OS and SP level, e.g., "Windows XP", "Windows 7 SP1".

	"client_name": Client computer name.

	"keyboard_type": Possible values are "xt", "ico", "at", "enhanced", "1050", "9140", "jp".

	"keyboard_subtype": Numeric code for keyboard.

	"function_keys": Number of function keys on client keyboard.

	"ime": Input method editor (IME) file name.

	"product_id": Product id string.

	"serial_number": Numeric value.

	"capabilities": List of any of the following: "support_errinfo_pdf", "want_32bpp_session", "support_statusinfo_pdu", "strong_asymmetric_keys", "valid_connection_type", "support_monitor_layout_pdu", "support_netchar_autodetect", "support_dynvc_gfx_protocol", "support_dynamic_time_zone", "support_heartbeat_pdu".

	"id": Client product id string.

	"connection_hint": Possible values are "modem", "low_broadband", "satellite", "high_broadband", "wan", "lan", "autodetect".

	"physical_width": Numeric physical width of display.

	"physical_height": Numeric physical height of display.

	"desktop_orientation": Numeric angle of orientation.

	"scale_factor": Numeric scale factor of desktop.

	"device_scale_factor": Numeric scale factor of display.

17.1.2.14.4. RDP type: Connect Response

With this event, the initial RDP negotiation is complete in terms of tracking and logging.

17.1.2.14.5. RDP type: TLS Handshake

With this event, the initial RDP negotiation is complete in terms of tracking and logging.

The session will use TLS encryption.

The "x509_serials" field is a list of observed certificate serial numbers, e.g., "16ed2aa0495f259d4f5d99edada570d1".

17.1.2.14.6. Examples

RDP logging:

"rdp": {
 "tx_id": 0,
 "event_type": "initial_request",
 "cookie": "A70067"
}

"rdp": {
 "tx_id": 1,
 "event_type": "initial_response"
}

"rdp": {
 "tx_id": 2,
 "event_type": "connect_request",
 "client": {
 "version": "v5",
 "desktop_width": 1152,
 "desktop_height": 864,
 "color_depth": 15,
 "keyboard_layout": "en-US",
 "build": "Windows XP",
 "client_name": "ISD2-KM84178",
 "keyboard_type": "enhanced",
 "function_keys": 12,
 "product_id": 1,
 "capabilities": [
 "support_errinfo_pdf"
],
 "id": "55274-OEM-0011903-00107"
 },
 "channels": [
 "rdpdr",
 "cliprdr",
 "rdpsnd"
]
}

"rdp": {
 "tx_id": 3,
 "event_type": "connect_response"
}

RDP logging, with transition to TLS:

"rdp": {
 "tx_id": 0,
 "event_type": "initial_request",
 "cookie": "AWAKECODI"
}

"rdp": {
 "tx_id": 1,
 "event_type": "initial_response",
 "server_supports": [
 "extended_client_data"
],
 "protocol": "hybrid"
}

"rdp": {
 "tx_id": 2,
 "event_type": "tls_handshake",
 "x509_serials": [
 "16ed2aa0495f259d4f5d99edada570d1"
]
}

17.1.2.15. Event type: RFB

17.1.2.15.1. Fields

	"server_protocol_version.major", "server_protocol_version.minor": The RFB protocol version offered by the server.

	"client_protocol_version.major", "client_protocol_version.minor": The RFB protocol version agreed by the client.

	"authentication.security_type": Security type agreed upon in the logged transaction, e.g. 2 is VNC auth.

	"authentication.vnc.challenge", "authentication.vnc.response": Only available when security type 2 is used. Contains the challenge and response byte buffers exchanged by the server and client as hex strings.

	"authentication.security-result": Result of the authentication process (OK, FAIL or TOOMANY).

	"screen_shared": Boolean value describing whether the client requested screen sharing.

	"framebuffer": Contains metadata about the initial screen setup process. Only available when the handshake completed this far.

	"framebuffer.width", "framebuffer.height": Screen size as offered by the server.

	"framebuffer.name": Desktop name as advertised by the server.

	"framebuffer.pixel_format": Pixel representation information, such as color depth. See RFC6143 (https://tools.ietf.org/html/rfc6143) for details.

17.1.2.15.2. Examples

Example of RFB logging, with full VNC style authentication parameters:

"rfb": {
 "server_protocol_version": {
 "major": "003",
 "minor": "007"
 },
 "client_protocol_version": {
 "major": "003",
 "minor": "007"
 },
 "authentication": {
 "security_type": 2,
 "vnc": {
 "challenge": "0805b790b58e967f2b350a0c99de3881",
 "response": "aecb26faeaaa62179636a5934bac1078"
 },
 "security-result": "OK"
 },
 "screen_shared": false,
 "framebuffer": {
 "width": 1280,
 "height": 800,
 "name": "foobar@localhost.localdomain",
 "pixel_format": {
 "bits_per_pixel": 32,
 "depth": 24,
 "big_endian": false,
 "true_color": true,
 "red_max": 255,
 "green_max": 255,
 "blue_max": 255,
 "red_shift": 16,
 "green_shift": 8,
 "blue_shift": 0
 }
 }

17.1.2.16. Event type: MQTT

EVE-JSON output for MQTT consists of one object per MQTT transaction, with some common and various type-specific fields.

17.1.2.16.1. Transactions

A single MQTT communication can consist of multiple messages that need to be exchanged between broker and client.
For example, some actions at higher QoS levels (> 0) usually involve a combination of requests and acknowledgement
messages that are linked by a common identifier:

	CONNECT followed by CONNACK

	PUBLISH followed by PUBACK (QoS 1) or PUBREC/PUBREL/PUBCOMP (QoS 2)

	SUBSCRIBE followed by SUBACK

	UNSUBSCRIBE followed by UNSUBACK

The MQTT parser merges individual messages into one EVE output item if they belong to one transaction. In such cases,
the source and destination information (IP/port) reflect the direction of the initial request, but contain messages
from both sides.

Example for a PUBLISH at QoS 2:

{
 "timestamp": "2020-05-19T18:00:39.016985+0200",
 "flow_id": 1454127794305760,
 "pcap_cnt": 65,
 "event_type": "mqtt",
 "src_ip": "0000:0000:0000:0000:0000:0000:0000:0001",
 "src_port": 60105,
 "dest_ip": "0000:0000:0000:0000:0000:0000:0000:0001",
 "dest_port": 1883,
 "proto": "TCP",
 "mqtt": {
 "publish": {
 "qos": 2,
 "retain": false,
 "dup": false,
 "topic": "house/bulbs/bulb1",
 "message_id": 3,
 "message": "OFF"
 },
 "pubrec": {
 "qos": 0,
 "retain": false,
 "dup": false,
 "message_id": 3
 },
 "pubrel": {
 "qos": 1,
 "retain": false,
 "dup": false,
 "message_id": 3
 },
 "pubcomp": {
 "qos": 0,
 "retain": false,
 "dup": false,
 "message_id": 3
 }
 }
}

Note that some message types (aka control packet types), such as PINGREQ and PINGRESP, have no type-specific
data, nor do they have information that facilitate grouping into transactions. These will be logged as single items
and only contain the common fields listed below.

17.1.2.16.2. Common fields

Common fields from the MQTT fixed header:

	"*.qos": Quality of service level for the message, integer between 0 and 2.

	"*.retain": Boolean value of the MQTT 'retain' flag.

	"*.dup": Boolean value of the MQTT 'dup' (duplicate) flag.

17.1.2.16.3. MQTT CONNECT fields

	"connect.protocol_string": Protocol string as defined in the spec, e.g. MQTT (MQTT 3.1.1 and later) or MQIsdp (MQTT 3.1).

	"connect.protocol_version": Protocol version as defined in the specification:

	protocol version 3: MQTT 3.1

	protocol version 4: MQTT 3.1.1

	protocol version 5: MQTT 5.0

	"connect.flags.username", "connect.flags.password": Set to true if credentials are submitted with the connect request.

	"connect.flags.will": Set to true if a will is set.

	"connect.flags.will_retain": Set to true if the will is to be retained on the broker.

	"connect.will.clean_session": Set to true if the connection is to made with a clean session.

	"connect.client_id": Client ID string submitted my the connecting client.

	"connect.username", "connect.password": User/password authentication credentials submitted with the connect request. Passwords are only logged when the corresponding configuration setting is enabled (mqtt.passwords: yes).

	"connect.will.topic": Topic to publish the will message to.

	"connect.will.message": Message to be published on connection loss.

	"connect.will.properties": (Optional, MQTT 5.0) Will properties set on this request. See 3.1.3.2 in the spec [https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901060] for more information on will properties.

	"connect.properties": (Optional, MQTT 5.0) CONNECT properties set on this request. See 3.1.2.11 in the spec [https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901046] for more information on CONNECT properties.

Example of MQTT CONNECT logging:

"connect": {
 "qos": 0,
 "retain": false,
 "dup": false,
 "protocol_string": "MQTT",
 "protocol_version": 5,
 "flags": {
 "username": true,
 "password": true,
 "will_retain": false,
 "will": true,
 "clean_session": true
 },
 "client_id": "client",
 "username": "user",
 "password": "pass",
 "will": {
 "topic": "willtopic",
 "message": "willmessage",
 "properties": {
 "content_type": "mywilltype",
 "correlation_data": "3c32aa4313b3e",
 "message_expiry_interval": 133,
 "payload_format_indicator": 144,
 "response_topic": "response_topic1",
 "userprop": "uservalue",
 "will_delay_interval": 200
 }
 },
 "properties": {
 "maximum_packet_size": 11111,
 "receive_maximum": 222,
 "session_expiry_interval": 555,
 "topic_alias_maximum": 666,
 "userprop1": "userval1",
 "userprop2": "userval2"
 }
}

17.1.2.16.4. MQTT CONNACK fields

	"connack.session_present": Set to true if a session is continued on connection.

	"connack.return_code": Return code/reason code for this reply. See 3.2.2.2 in the spec [https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901079] for more information on these codes.

	"connect.properties": (Optional, MQTT 5.0) CONNACK properties set on this request. See 3.2.2.3 in the spec [https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901080] for more information on CONNACK properties.

Example of MQTT CONNACK logging:

"connack": {
 "qos": 0,
 "retain": false,
 "dup": false,
 "session_present": false,
 "return_code": 0,
 "properties": {
 "topic_alias_maximum": 10
 }
}

17.1.2.16.5. MQTT PUBLISH fields

	"publish.topic": Topic this message is published to.

	"publish.message_id": (Only present if QOS level > 0) Message ID for this publication.

	"publish.message": Message to be published.

	"publish.properties": (Optional, MQTT 5.0) PUBLISH properties set on this request. See 3.3.2.3 in the spec [https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901109] for more information on PUBLISH properties.

Example of MQTT PUBLISH logging:

"publish": {
 "qos": 1,
 "retain": false,
 "dup": false,
 "topic": "topic",
 "message_id": 1,
 "message": "baa baa sheep",
 "properties": {
 "content_type": "mytype",
 "correlation_data": "3c32aa4313b3e",
 "message_expiry_interval": 77,
 "payload_format_indicator": 88,
 "response_topic": "response_topic1",
 "topic_alias": 5,
 "userprop": "userval"
 }
}

17.1.2.16.6. MQTT PUBACK/PUBREL/PUBREC/PUBCOMP fields

	"[puback|pubrel|pubrec|pubcomp].message_id": Original message ID this message refers to.

	"[puback|pubrel|pubrec|pubcomp].reason_code": Return code/reason code for this reply. See the spec for more information on these codes.

	"[puback|pubrel|pubrec|pubcomp].properties": (Optional, MQTT 5.0) Properties set on this request. See the spec for more information on these properties.

Example of MQTT PUBACK/PUBREL/PUBREC/PUBCOMP logging:

"puback": {
 "qos": 0,
 "retain": false,
 "dup": false,
 "message_id": 1,
 "reason_code": 16
}

17.1.2.16.7. MQTT SUBSCRIBE fields

	"subscribe.message_id": (Only present if QOS level > 0) Message ID for this subscription.

	"subscribe.topics": Array of pairs describing the subscribed topics:

	"subscribe.topics[].topic": Topic to subscribe to.

	"subscribe.topics[].qos": QOS level to apply for when subscribing.

	"subscribe.properties": (Optional, MQTT 5.0) SUBSCRIBE properties set on this request. See 3.8.2.1 in the spec [https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901164] for more information on SUBSCRIBE properties.

Example of MQTT SUBSCRIBE logging:

"subscribe": {
 "qos": 1,
 "retain": false,
 "dup": false,
 "message_id": 1,
 "topics": [
 {
 "topic": "topicX",
 "qos": 0
 },
 {
 "topic": "topicY",
 "qos": 0
 }
]
}

17.1.2.16.8. MQTT SUBACK fields

	"suback.message_id": Original message ID this message refers to.

	"suback.qos_granted": Array of QOS levels granted for the subscribed topics, in the order of the original request.

	"suback.properties": (Optional, MQTT 5.0) SUBACK properties set on this request. See 3.9.2.1 in the spec [https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901174] for more information on SUBACK properties.

Example of MQTT SUBACK logging:

"suback": {
 "qos": 0,
 "retain": false,
 "dup": false,
 "message_id": 1,
 "qos_granted": [
 0,
 0
]
}

17.1.2.16.9. MQTT UNSUBSCRIBE fields

	"unsubscribe.message_id": (Only present if QOS level > 0) Message ID for this unsubscribe action.

	"unsubscribe.topics": Array of topics to be unsubscribed from.

	"unsubscribe.properties": (Optional, MQTT 5.0) UNSUBSCRIBE properties set on this request. See 3.10.2.1 in the spec [https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901182] for more information on UNSUBSCRIBE properties.

Example of MQTT UNSUBSCRIBE logging:

"unsubscribe": {
 "qos": 1,
 "retain": false,
 "dup": false,
 "message_id": 1,
 "topics": [
 "topicX",
 "topicY"
]
}

17.1.2.16.10. MQTT UNSUBACK fields

	"unsuback.message_id": Original message ID this message refers to.

Example of MQTT UNSUBACK logging:

"unsuback": {
 "qos": 0,
 "retain": false,
 "dup": false,
 "message_id": 1
}

17.1.2.16.11. MQTT AUTH fields (MQTT 5.0)

	"auth.reason_code": Return code/reason code for this message. See 3.15.2.1 in the spec [https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901220] for more information on these codes.

	"auth.properties": (Optional, MQTT 5.0) Properties set on this request. See 3.15.2.2 in the spec [https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901221] for more information on these properties.

Example of MQTT AUTH logging:

"auth": {
 "qos": 0,
 "retain": false,
 "dup": false,
 "reason_code": 16
}

17.1.2.16.12. MQTT DISCONNECT fields

	"auth.reason_code": (Optional) Return code/reason code for this message. See 3.14.2.1 in the spec [https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901208] for more information on these codes.

	"auth.properties": (Optional, MQTT 5.0) Properties set on this request. See 3.14.2.2 in the spec [https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901209] for more information on DISCONNECT properties.

Example of MQTT DISCONNECT logging:

"disconnect": {
 "qos": 0,
 "retain": false,
 "dup": false,
 "reason_code": 4,
 "properties": {
 "session_expiry_interval": 122,
 }
}

17.1.2.16.13. Truncated MQTT data

Messages exceeding the maximum message length limit (config setting app-layer.protocols.mqtt.max-msg-length)
will not be parsed entirely to reduce the danger of denial of service issues. In such cases, only reduced
metadata will be included in the EVE-JSON output. Furthermore, since no message ID is parsed, such messages
can not be placed into transactions, hence, they will always appear as a single transaction.

These truncated events will -- besides basic communication metadata -- only contain the following
fields:

	"truncated": Set to true if the entry is truncated.

	"skipped_length": Size of the original message.

Example of a truncated MQTT PUBLISH message (with 10000 being the maximum length):

{
 "timestamp": "2020-06-23T16:25:48.729785+0200",
 "flow_id": 1872904524326406,
 "pcap_cnt": 107,
 "event_type": "mqtt",
 "src_ip": "0000:0000:0000:0000:0000:0000:0000:0001",
 "src_port": 53335,
 "dest_ip": "0000:0000:0000:0000:0000:0000:0000:0001",
 "dest_port": 1883,
 "proto": "TCP",
 "mqtt": {
 "publish": {
 "qos": 0,
 "retain": false,
 "dup": false,
 "truncated": true,
 "skipped_length": 100011
 }

17.1.2.17. Event type: HTTP2

17.1.2.17.1. Fields

There are the two fields "request" and "response" which can each contain the same set of fields :
* "settings": a list of settings with "name" and "value"
* "headers": a list of headers with either "name" and "value", or "table_size_update", or "error" if any
* "error_code": the error code from GOAWAY or RST_STREAM, which can be "NO_ERROR"
* "priority": the stream priority.

17.1.2.17.2. Examples

Example of HTTP2 logging, of a settings frame:

"http2": {
 "request": {
 "settings": [
 {
 "settings_id": "SETTINGSMAXCONCURRENTSTREAMS",
 "settings_value": 100
 },
 {
 "settings_id": "SETTINGSINITIALWINDOWSIZE",
 "settings_value": 65535
 }
]
 },
 "response": {}
}

Example of HTTP2 logging, of a request and response:

"http2": {
 "request": {
 "headers": [
 {
 "name": ":authority",
 "value": "localhost:3000"
 },
 {
 "name": ":method",
 "value": "GET"
 },
 {
 "name": ":path",
 "value": "/doc/manual/html/index.html"
 },
 {
 "name": ":scheme",
 "value": "http"
 },
 {
 "name": "accept",
 "value": "*/*"
 },
 {
 "name": "accept-encoding",
 "value": "gzip, deflate"
 },
 {
 "name": "user-agent",
 "value": "nghttp2/0.5.2-DEV"
 }
]
 },
 "response": {
 "headers": [
 {
 "name": ":status",
 "value": "200"
 },
 {
 "name": "server",
 "value": "nghttpd nghttp2/0.5.2-DEV"
 },
 {
 "name": "content-length",
 "value": "22617"
 },
 {
 "name": "cache-control",
 "value": "max-age=3600"
 },
 {
 "name": "date",
 "value": "Sat, 02 Aug 2014 10:50:25 GMT"
 },
 {
 "name": "last-modified",
 "value": "Sat, 02 Aug 2014 07:58:59 GMT"
 }
]
 }
}

17.1.2.18. Event type: PGSQL

PGSQL eve-logs reflect the bidirectional nature of the protocol transactions.
Each PGSQL event lists at most one "Request" message field and one or more
"Response" messages.

The PGSQL parser merges individual messages into one EVE output item if they
belong to the same transaction. In such cases, the source and destination
information (IP/port) reflect the direction of the initial request, but contain
messages from both sides.

Example of pgsql event for a SimpleQuery transaction complete with request
with a SELECT statement and its response:

{
 "timestamp": "2021-11-24T16:56:24.403417+0000",
 "flow_id": 1960113262002448,
 "pcap_cnt": 780,
 "event_type": "pgsql",
 "src_ip": "172.18.0.1",
 "src_port": 54408,
 "dest_ip": "172.18.0.2",
 "dest_port": 5432,
 "proto": "TCP",
 "pgsql": {
 "tx_id": 4,
 "request": {
 "simple_query": "select * from rule limit 5000;"
 },
 "response": {
 "field_count": 7,
 "data_rows": 5000,
 "data_size": 3035751,
 "command_completed": "SELECT 5000"
 }
 }
}

While on the wire PGSQL messages follow basically two types (startup messages
and regular messages), those may have different subfields and/or meanings, based
on the message type. Messages are logged based on their type and relevant fields.

We list a few possible message types and what they mean in Suricata. For more
details on message types and formats as well as what each message and field mean
for PGSQL, check PostgreSQL's official documentation [https://www.postgresql.org/docs/14/protocol-message-formats.html].

17.1.2.18.1. Fields

	"tx_id": internal transaction id.

	"request": each PGSQL transaction may have up to one request message. The
possible messages will be described in another section.

	"response": even when there are several "Response" messages, there is one
response field that summarizes all responses for that transaction. The
possible messages will be described in another section.

17.1.2.18.2. Request Messages

Requests are sent by the frontend (client), which would be the source of a pgsql
flow. Some of the possible request messages are:

	"startup_message": message sent to start a new PostgreSQL connection

	"password_message": if password output for PGSQL is enabled in suricata.yaml,
carries the password sent during Authentication phase

	"simple_query": issued SQL command during simple query subprotocol. PostgreSQL
identifies specific sets of commands that change the set of expected messages
to be exchanged as subprotocols.

	"message": "cancel_request": sent after a query, when the frontend
attempts to cancel said query. This message is sent over a different port,
thus bring shown as a different flow. It has no direct answer from the
backend, but if successful will lead to an ErrorResponse in the
transaction where the query was sent.

	"message": requests which do not have meaningful payloads are logged like this,
where the field value is the message type

There are several different authentication messages possible, based on selected
authentication method. (e.g. the SASL authentication will have a set of
authentication messages different from when md5 authentication is chosen).

17.1.2.18.3. Response Messages

Responses are sent by the backend (server), which would be the destination of a
pgsql flow. Some of the possible request messages are:

	"authentication_sasl_final": final SCRAM server-final-message, as explained
at https://www.postgresql.org/docs/14/sasl-authentication.html#SASL-SCRAM-SHA-256

	"message": Backend responses which do not have meaningful payloads are logged
like this, where the field value is the message type

	"error_response"

	"notice_response"

	"notification_response"

	"authentication_md5_password": a string with the md5 salt value

	"parameter_status": logged as an array

	"backend_key_data"

	"data_rows": integer. When one or many DataRow messages are parsed, the
total returned rows

	"data_size": in bytes. When one or many DataRow messages are parsed, the
total size in bytes of the data returned

	"command_completed": string. Informs the command just completed by the backend

	"ssl_accepted": bool. With this event, the initial PGSQL SSL Handshake
negotiation is complete in terms of tracking and logging. The session will be
upgraded to use TLS encryption

17.1.2.18.4. Examples

The two pgsql events in this example represent a rejected SSL handshake
and a following connection request where the authentication method indicated by
the backend was md5:

{
 "timestamp": "2021-11-24T16:56:19.435242+0000",
 "flow_id": 1960113262002448,
 "pcap_cnt": 21,
 "event_type": "pgsql",
 "src_ip": "172.18.0.1",
 "src_port": 54408,
 "dest_ip": "172.18.0.2",
 "dest_port": 5432,
 "proto": "TCP",
 "pgsql": {
 "tx_id": 1,
 "request": {
 "message": "SSL Request"
 },
 "response": {
 "accepted": false
 }
 }
}
{
 "timestamp": "2021-11-24T16:56:19.436228+0000",
 "flow_id": 1960113262002448,
 "pcap_cnt": 25,
 "event_type": "pgsql",
 "src_ip": "172.18.0.1",
 "src_port": 54408,
 "dest_ip": "172.18.0.2",
 "dest_port": 5432,
 "proto": "TCP",
 "pgsql": {
 "tx_id": 2,
 "request": {
 "protocol_version": "3.0",
 "startup_parameters": {
 "user": "rules",
 "database": "rules",
 "optional_parameters": [
 {
 "application_name": "psql"
 },
 {
 "client_encoding": "UTF8"
 }
]
 }
 },
 "response": {
 "authentication_md5_password": "Z\\xdc\\xfdf"
 }
 }
}

AuthenticationOk: a response indicating that the connection was successfully
established.:

{
 "pgsql": {
 "tx_id": 3,
 "response": {
 "message": "authentication_ok",
 "parameter_status": [
 {
 "application_name": "psql"
 },
 {
 "client_encoding": "UTF8"
 },
 {
 "date_style": "ISO, MDY"
 },
 {
 "integer_datetimes": "on"
 },
 {
 "interval_style": "postgres"
 },
 {
 "is_superuser": "on"
 },
 {
 "server_encoding": "UTF8"
 },
 {
 "server_version": "13.6 (Debian 13.6-1.pgdg110+1)"
 },
 {
 "session_authorization": "rules"
 },
 {
 "standard_conforming_strings": "on"
 },
 {
 "time_zone": "Etc/UTC"
 }
],
 "process_id": 28954,
 "secret_key": 889887985
 }
 }
}

Note

In Suricata, the AuthenticationOk message is also where the backend's
process_id and secret_key are logged. These must be sent by the
frontend when it issues a CancelRequest message (seen below).

A CancelRequest message:

{
 "timestamp": "2023-12-07T15:46:56.971150+0000",
 "flow_id": 775771889500133,
 "event_type": "pgsql",
 "src_ip": "100.88.2.140",
 "src_port": 39706,
 "dest_ip": "100.96.199.113",
 "dest_port": 5432,
 "proto": "TCP",
 "pkt_src": "stream (flow timeout)",
 "pgsql": {
 "tx_id": 1,
 "request": {
 "message": "cancel_request",
 "process_id": 28954,
 "secret_key": 889887985
 }
 }
}

Note

As the CancelRequest message is sent over a new connection, the way to
correlate it with the proper frontend/flow from which it originates is by
querying on process_id and secret_key seen in the
AuthenticationOk event.

	References:
	
	PostgreSQL protocol - Canceling Requests in Progress [https://www.postgresql.org/docs/current/protocol-flow.html#PROTOCOL-FLOW-CANCELING-REQUESTS]

	PostgreSQL message format - BackendKeyData [https://www.postgresql.org/docs/current/protocol-message-formats.html#PROTOCOL-MESSAGE-FORMATS-BACKENDKEYDATA]

17.1.2.19. Event type: IKE

The parser implementations for IKEv1 and IKEv2 have a slightly different feature
set. They can be distinguished using the "version_major" field (which equals
either 1 or 2).
The unique properties are contained within a separate "ikev1" and "ikev2" sub-object.

17.1.2.19.1. Fields

	"init_spi", "resp_spi": The Security Parameter Index (SPI) of the initiator and responder.

	"version_major": Major version of the ISAKMP header.

	"version_minor": Minor version of the ISAKMP header.

	"payload": List of payload types in the current packet.

	"exchange_type": Type of the exchange, as numeric values.

	"exchange_type_verbose": Type of the exchange, in human-readable form. Needs extended: yes set in the ike EVE output option.

	"alg_enc", "alg_hash", "alg_auth", "alg_dh", "alg_esn": Properties of the chosen security association by the server.

	"ikev1.encrypted_payloads": Set to true if the payloads in the packet are encrypted.

	"ikev1.doi": Value of the domain of interpretation (DOI).

	"ikev1.server.key_exchange_payload", "ikev1.client.key_exchange_payload": Public key exchange payloads of the server and client.

	"ikev1.server.key_exchange_payload_length", "ikev1.client.key_exchange_payload_length": Length of the public key exchange payload.

	"ikev1.server.nonce_payload", "ikev1.client.nonce_payload": Nonce payload of the server and client.

	"ikev1.server.nonce_payload_length", "ikev1.client.nonce_payload_length": Length of the nonce payload.

	"ikev1.client.client_proposals": List of the security associations proposed to the server.

	"ikev1.vendor_ids": List of the vendor IDs observed in the communication.

	"server_proposals": List of server proposals with parameters, if there are more than one. This is a non-standard case; this field is only present if such a situation was observed in the inspected traffic.

17.1.2.19.2. Examples

Example of IKE logging:

"ike": {
 "version_major": 1,
 "version_minor": 0,
 "init_spi": "8511617bfea2f172",
 "resp_spi": "c0fc6bae013de0f5",
 "message_id": 0,
 "exchange_type": 2,
 "exchange_type_verbose": "Identity Protection",
 "sa_life_type": "LifeTypeSeconds",
 "sa_life_type_raw": 1,
 "sa_life_duration": "Unknown",
 "sa_life_duration_raw": 900,
 "alg_enc": "EncAesCbc",
 "alg_enc_raw": 7,
 "alg_hash": "HashSha2_256",
 "alg_hash_raw": 4,
 "alg_auth": "AuthPreSharedKey",
 "alg_auth_raw": 1,
 "alg_dh": "GroupModp2048Bit",
 "alg_dh_raw": 14,
 "sa_key_length": "Unknown",
 "sa_key_length_raw": 256,
 "alg_esn": "NoESN",
 "payload": [
 "VendorID",
 "Transform",
 "Proposal",
 "SecurityAssociation"
],
 "ikev1": {
 "doi": 1,
 "encrypted_payloads": false,
 "client": {
 "key_exchange_payload": "0bf7907681a656aabed38fb1ba8918b10d707a8e635a...",
 "key_exchange_payload_length": 256,
 "nonce_payload": "1427d158fc1ed6bbbc1bd81e6b74960809c87d18af5f0abef14d5274ac232904",
 "nonce_payload_length": 32,
 "proposals": [
 {
 "sa_life_type": "LifeTypeSeconds",
 "sa_life_type_raw": 1,
 "sa_life_duration": "Unknown",
 "sa_life_duration_raw": 900,
 "alg_enc": "EncAesCbc",
 "alg_enc_raw": 7,
 "alg_hash": "HashSha2_256",
 "alg_hash_raw": 4,
 "alg_auth": "AuthPreSharedKey",
 "alg_auth_raw": 1,
 "alg_dh": "GroupModp2048Bit",
 "alg_dh_raw": 14,
 "sa_key_length": "Unknown",
 "sa_key_length_raw": 256
 }
]
 },
 "server": {
 "key_exchange_payload": "1e43be52b088ec840ff81865074b6d459b5ca7813b46...",
 "key_exchange_payload_length": 256,
 "nonce_payload": "04d78293ead007bc1a0f0c6c821a3515286a935af12ca50e08905b15d6c8fcd4",
 "nonce_payload_length": 32
 },
 "vendor_ids": [
 "4048b7d56ebce88525e7de7f00d6c2d3",
 "4a131c81070358455c5728f20e95452f",
 "afcad71368a1f1c96b8696fc77570100",
 "7d9419a65310ca6f2c179d9215529d56",
 "cd60464335df21f87cfdb2fc68b6a448",
 "90cb80913ebb696e086381b5ec427b1f"
]
 },
}

17.1.2.20. Event type: Modbus

17.1.2.20.1. Common fields

	"id": The unique transaction number given by Suricata

17.1.2.20.2. Request/Response fields

	"transaction_id": The transaction id found in the packet

	"protocol_id": The modbus version

	"unit_id": ID of the remote server to interact with

	"function_raw": Raw value of the function code byte

	"function_code": Associated name of the raw function value

	"access_type": Type of access requested by the function

	"category": The function code's category

	"error_flags": Errors found in the data while parsing

17.1.2.20.3. Exception fields

	"raw": Raw value of the exception code byte

	"code": Associated name of the raw exception value

17.1.2.20.4. Diagnostic fields

	"raw": Raw value of the subfunction code bytes

	"code": Associated name of the raw subfunction value

	"data": Bytes following the subfunction code

17.1.2.20.5. MEI fields

	"raw": Raw value of the mei function code bytes

	"code": Associated name of the raw mei function value

	"data": Bytes following the mei function code

17.1.2.20.6. Read Request fields

	"address": Starting address to read from

	"quantity": Amount to read

17.1.2.20.7. Read Response fields

	"data": Data that was read

17.1.2.20.8. Multiple Write Request fields

	"address": Starting address to write to

	"quantity": Amount to write

	"data": Data to write

17.1.2.20.9. Mask Write fields

	"address": Starting address of content modification

	"and_mask": And mask to modify content with

	"or_mask": Or mask to modify content with

17.1.2.20.10. Other Write fields

	"address": Starting address to write to

	"data": Data to write

17.1.2.20.11. Generic Data fields

	"data": Data following the function code

17.1.2.20.12. Example

Example of Modbus logging of a request and response:

"modbus": {
 "id": 1,
 "request": {
 "transaction_id": 0,
 "protocol_id": 0,
 "unit_id": 0,
 "function_raw": 1,
 "function_code": "RdCoils",
 "access_type": "READ | COILS",
 "category": "PUBLIC_ASSIGNED",
 "error_flags": "NONE",
 },
 "response": {
 "transaction_id": 0,
 "protocol_id": 0,
 "unit_id": 0,
 "function_raw": 1,
 "function_code": "RdCoils",
 "access_type": "READ | COILS",
 "category": "PUBLIC_ASSIGNED",
 "error_flags": "DATA_VALUE",
 },
}

17.1.2.21. Event type: QUIC

17.1.2.21.1. Fields

	"version": Version of the QUIC packet if contained in the packet, 0 if not

	"cyu": List of found CYUs in the packet

	"cyu[].hash": CYU hash

	"cyu[].string": CYU string

17.1.2.21.2. Examples

Example of QUIC logging with a CYU hash:

"quic": {
 "version": 1362113590,
 "cyu": [
 {
 "hash": "7b3ceb1adc974ad360cfa634e8d0a730",
 "string": "46,PAD-SNI-STK-SNO-VER-CCS-NONC-AEAD-UAID-SCID-TCID-PDMD-SMHL-ICSL-NONP-PUBS-MIDS-SCLS-KEXS-XLCT-CSCT-COPT-CCRT-IRTT-CFCW-SFCW"
 }
]
}

17.1.2.22. Event type: DHCP

The default DHCP logging level only logs enough information to map a
MAC address to an IP address. Enable extended mode to log all DHCP
message types in full detail.

17.1.2.22.1. Fields

	"type": message type (e.g. request, reply)

	"id": DHCP transaction id

	"client_mac": client MAC address

	"assigned_ip": IP address given by DHCP server

	"client_ip": client IP address

	"dhcp_type": DHCP message type

	"client_id": DHCP client identifier

	"hostname": DHCP client host name

	"params": DHCP parameter request list

	"requested_ip": DHCP client requesting specific IP address

	"relay_ip": BOOTP relay agent IP address

	"next_server_ip": BOOTP next IP address to use for booting process

	"subnet_mask": subnet mask to use with client IP address

	"routers": IP address(es) to be used as default gateways on DHCP client

	"lease_time": Duration of IP address assignment to client

	"renewal_time": Time in seconds since client began IP address request or renewal process

	"rebinding_time": Time in seconds before the client begins to renew its IP address lease

	"dns_servers": IP address(es) of servers the client will use for DNS queries

17.1.2.22.2. Examples

Example of DHCP log entry (default logging level):

"dhcp": {
 "type":"reply",
 "id":755466399,
 "client_mac":"54:ee:75:51:e0:66",
 "assigned_ip":"100.78.202.125",
 "dhcp_type":"ack",
 "renewal_time":21600,
 "client_id":"54:ee:75:51:e0:66"
}

Example of DHCP log entry (extended logging enabled):

"dhcp": {
 "type":"reply",
 "id":2787908432,
 "client_mac":"54:ee:75:51:e0:66",
 "assigned_ip":"192.168.1.120",
 "client_ip":"0.0.0.0",
 "relay_ip":"192.168.1.1",
 "next_server_ip":"0.0.0.0",
 "dhcp_type":"offer",
 "subnet_mask":"255.255.255.0",
 "routers":["192.168.1.100"],
 "hostname":"test",
 "lease_time":86400,
 "renewal_time":21600,
 "rebinding_time":43200,
 "client_id":"54:ee:75:51:e0:66",
 "dns_servers":["192.168.1.50","192.168.1.49"]
}

17.1.3. Eve JSON 'jq' Examples

The jq tool is very useful for quickly parsing and filtering JSON files. This page is contains various examples of how it can be used with Suricata's Eve.json.

The basics are discussed here:

	https://www.stamus-networks.com/2015/05/18/looking-at-suricata-json-events-on-command-line/

17.1.3.1. Colorize output

tail -f eve.json | jq -c '.'

17.1.3.2. DNS NXDOMAIN

tail -f eve.json|jq -c 'select(.dns.rcode=="NXDOMAIN")'

17.1.3.3. Unique HTTP User Agents

cat eve.json | jq -s '[.[]|.http.http_user_agent]|group_by(.)|map({key:.[0],value:(.|length)})|from_entries'

Source: https://twitter.com/mattarnao/status/601807374647750657

17.1.3.4. Data use for a host

tail -n500000 eve.json | jq -s 'map(select(.event_type=="netflow" and .dest_ip=="192.168.1.3").netflow.bytes)|add'|numfmt --to=iec
1.3G

Note: can use a lot of memory.
Source: https://twitter.com/pkt_inspector/status/605524218722148352

17.1.3.5. Monitor part of the stats

$ tail -f eve.json | jq -c 'select(.event_type=="stats")|.stats.decoder'

17.1.3.6. Inspect Alert Data

cat eve.json | jq -r -c 'select(.event_type=="alert")|.payload'|base64 --decode

17.1.3.7. Top 10 Destination Ports

cat eve.json | jq -c 'select(.event_type=="flow")|[.proto, .dest_port]'|sort |uniq -c|sort -nr|head -n10

17.2. Lua Output

Suricata offers the possibility to get more detailed output on specific kinds of
network traffic via pluggable lua scripts. You can write these scripts yourself and only need to
define four hook functions.

For lua output scripts suricata offers a wide range of lua functions.
They all return information on specific engine internals and aspects of the network traffic.
They are described in the following sections, grouped by the event/traffic type.
But let's start with an example explaining the four hook functions, and how to make
suricata load a lua output script.

17.2.1. Script structure

A lua output script needs to define 4 hook functions: init(), setup(), log(), deinit()

	init() -- registers where the script hooks into the output engine

	setup() -- does per output thread setup

	log() -- logging function

	deinit() -- clean up function

Example:

function init (args)
 local needs = {}
 needs["protocol"] = "http"
 return needs
end

function setup (args)
 filename = SCLogPath() .. "/" .. name
 file = assert(io.open(filename, "a"))
 SCLogInfo("HTTP Log Filename " .. filename)
 http = 0
end

function log(args)
 http_uri = HttpGetRequestUriRaw()
 if http_uri == nil then
 http_uri = "<unknown>"
 end
 http_uri = string.gsub(http_uri, "%c", ".")

 http_host = HttpGetRequestHost()
 if http_host == nil then
 http_host = "<hostname unknown>"
 end
 http_host = string.gsub(http_host, "%c", ".")

 http_ua = HttpGetRequestHeader("User-Agent")
 if http_ua == nil then
 http_ua = "<useragent unknown>"
 end
 http_ua = string.gsub(http_ua, "%g", ".")

 timestring = SCPacketTimeString()
 ip_version, src_ip, dst_ip, protocol, src_port, dst_port = SCFlowTuple()

 file:write (timestring .. " " .. http_host .. " [**] " .. http_uri .. " [**] " ..
 http_ua .. " [**] " .. src_ip .. ":" .. src_port .. " -> " ..
 dst_ip .. ":" .. dst_port .. "\n")
 file:flush()

 http = http + 1
end

function deinit (args)
 SCLogInfo ("HTTP transactions logged: " .. http);
 file:close(file)
end

17.2.2. YAML

To enable the lua output, add the 'lua' output and add one or more
scripts like so:

outputs:
 - lua:
 enabled: yes
 scripts-dir: /etc/suricata/lua-output/
 scripts:
 - tcp-data.lua
 - flow.lua

The scripts-dir option is optional. It makes Suricata load the scripts
from this directory. Otherwise scripts will be loaded from the current
workdir.

17.2.3. Developing lua output script

You can use functions described in Lua Functions

17.3. Syslog Alerting Compatibility

Suricata can alert via syslog which is a very handy feature for central log collection, compliance, and reporting to a SIEM. Instructions on setting this up can be found in the .yaml file in the section where you can configure what type of alert (and other) logging you would like.

However, there are different syslog daemons and there can be parsing issues with the syslog format a SIEM expects and what syslog format Suricata sends. The syslog format from Suricata is dependent on the syslog daemon running on the Suricata sensor but often the format it sends is not the format the SIEM expects and cannot parse it properly.

17.3.1. Popular syslog daemons

	syslogd - logs system messages

	syslog-ng - logs system messages but also supports TCP, TLS, and other enhanced enterprise features

	rsyslogd - logs system messages but also support TCP, TLS, multi-threading, and other enhanced features

	klogd - logs kernel messages

	sysklogd - basically a bundle of syslogd and klogd

If the syslog format the Suricata sensor is sending is not compatible with what your SIEM or syslog collector expects, you will need to fix this. You can do this on your SIEM if it is capable of being able to be configured to interpret the message, or by configuring the syslog daemon on the Suricata sensor itself to send in a format you SIEM can parse. The latter can be done by applying a template to your syslog config file.

17.3.2. Finding what syslog daemon you are using

There are many ways to find out what syslog daemon you are using but here is one way:

cd /etc/init.d
ls | grep syslog

You should see a file with the word syslog in it, e.g. "syslog", "rsyslogd", etc. Obviously if the name is "rsyslogd" you can be fairly confident you are running rsyslogd. If unsure or the filename is just "syslog", take a look at that file. For example, if it was "rsyslogd", run:

less rsyslogd

At the top you should see a comment line that looks something like this:

rsyslog Starts rsyslogd/rklogd.

Locate those files and look at them to give you clues as to what syslog daemon you are running. Also look in the start() section of the file you ran "less" on and see what binaries get started because that can give you clues as well.

17.3.3. Example

Here is an example where the Suricata sensor is sending syslog messages in rsyslogd format but the SIEM is expecting and parsing them in a sysklogd format. In the syslog configuration file (usually in /etc with a filename like rsyslog.conf or syslog.conf), first add the template:

$template sysklogd, "<%PRI%>%syslogtag:1:32%%msg:::sp-if-no-1st-sp%%msg%"

Then send it to the syslog server with the template applied:

user.alert @10.8.75.24:514;sysklogd

Of course this is just one example and it will probably be different in your environment depending on what syslog daemons and SIEM you use but hopefully this will point you in the right direction.

17.4. Custom http logging

In your Suricata.yaml, find the http-log section and edit as follows:

- http-log:
 enabled: yes
 filename: http.log
 custom: yes # enable the custom logging format (defined by custom format)
 customformat: "%{%D-%H:%M:%S}t.%z %{X-Forwarded-For}i %{User-agent}i %H %m %h %u %s %B %a:%p -> %A:%P"
 append: no
 #extended: yes # enable this for extended logging information
 #filetype: regular # 'regular', 'unix_stream' or 'unix_dgram'

And in your http.log file you would get the following, for example:

8/28/12-22:14:21.101619 - Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:11.0) Gecko/20100101 Firefox/11.0 HTTP/1.1 GET us.cnn.com /video/data/3.0/video/world/2012/08/28/hancocks-korea-typhoon-bolavan.cnn/index.xml 200 16856 192.168.1.91:45111 -> 157.166.255.18:80

08/28/12-22:14:30.693856 - Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:11.0) Gecko/20100101 Firefox/11.0 HTTP/1.1 GET us.cnn.com /video/data/3.0/video/showbiz/2012/08/28/conan-reports-from-rnc-convention.teamcoco/index.xml 200 15789 192.168.1.91:45108 -> 157.166.255.18:80

The list of supported format strings is the following:

	%h - Host HTTP Header (remote host name). ie: google.com

	%H - Request Protocol. ie: HTTP/1.1

	%m - Request Method. ie: GET

	%u - URL including query string. ie: /search?q=suricata

	%{header_name}i - contents of the defined HTTP Request Header name. ie:

	%{User-agent}i: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:11.0) Gecko/20100101 Firefox/11.0

	%{X-Forwarded-For}i: outputs the IP address contained in the X-Forwarded-For HTTP header (inserted by a reverse proxy)

	%s - return status code. In the case of 301 and 302 it will print the url in brackets. ie: 200

	%B - response size in bytes. ie: 15789

	%{header_name}o - contents of the defined HTTP Response Header name

	%{strftime_format]t - timestamp of the HTTP transaction in the selected strftime format. ie: 08/28/12-22:14:30

	%z - precision time in useconds. ie: 693856

	%a - client IP address

	%p - client port number

	%A - server IP address

	%P - server port number

Any non printable character will be represented by its byte value in hexadecimal format (|XX|, where XX is the hex code)

17.5. Custom tls logging

In your Suricata.yaml, find the tls-log section and edit as follows:

- tls-log:
 enabled: yes # Log TLS connections.
 filename: tls.log # File to store TLS logs.
 append: yes
 custom: yes # enabled the custom logging format (defined by customformat)
 customformat: "%{%D-%H:%M:%S}t.%z %a:%p -> %A:%P %v %n %d %D"

And in your tls.log file you would get the following, for example:

12/03/16-19:20:14.85859 10.10.10.4:58274 -> 192.0.78.24:443 VERSION='TLS 1.2' suricata.io NOTBEFORE='2016-10-27T20:36:00' NOTAFTER='2017-01-25T20:36:00'

The list of supported format strings is the following:

	%n - client SNI

	%v - TLS/SSL version

	%d - certificate date not before

	%D - certificate date not after

	%f - certificate fingerprint SHA1

	%s - certificate subject

	%i - certificate issuer dn

	%E - extended format

	%{strftime_format}t - timestamp of the TLS transaction in the selected strftime format. ie: 08/28/12-22:14:30

	%z - precision time in useconds. ie: 693856

	%a - client IP address

	%p - client port number

	%A - server IP address

	%P - server port number

Any non printable character will be represented by its byte value in hexadecimal format (|XX|, where XX is the hex code)

17.6. Log Rotation

All outputs in the outputs section of
the configuration file can be subject to log rotation.

For most outputs an external tool like logrotate is required to
rotate the log files in combination with sending a SIGHUP to Suricata
to notify it that the log files have been rotated.

On receipt of a SIGHUP, Suricata simply closes all open log files and
then re-opens them in append mode. If the external tool has renamed
any of the log files, new files will be created, otherwise the files
will be re-opened and new data will be appended to them with no
noticeable affect.

The following is an example logrotate configuration file that will
rotate Suricata log files then send Suricata a SIGHUP triggering
Suricata to open new files:

/var/log/suricata/*.log /var/log/suricata/*.json
{
 rotate 3
 missingok
 nocompress
 create
 sharedscripts
 postrotate
 /bin/kill -HUP `cat /var/run/suricata.pid 2>/dev/null` 2>/dev/null || true
 endscript
}

Note

The above logrotate configuration file depends on the
existence of a Suricata PID file. If running in daemon mode
a PID file will be created by default, otherwise the
--pidfile option should be used to create a PID file.

In addition to the SIGHUP style rotation discussed above, some outputs
support their own time and date based rotation, however removal of old
log files is still the responsibility of external tools. These outputs
include:

	Eve

	PCAP log

18. Lua support

	18.1. Lua usage in Suricata
	18.1.1. Lua output

	18.1.2. Lua detection

	18.2. Lua functions
	18.2.1. Differences between output and detect:

	18.2.2. packet
	18.2.2.1. SCPacketTimestamp

	18.2.2.2. SCPacketTimeString

	18.2.2.3. SCPacketTuple

	18.2.2.4. SCPacketPayload

	18.2.3. flow
	18.2.3.1. SCFlowTimestamps

	18.2.3.2. SCFlowTimeString

	18.2.3.3. SCFlowTuple

	18.2.3.4. SCFlowAppLayerProto

	18.2.3.5. SCFlowHasAlerts

	18.2.3.6. SCFlowStats

	18.2.3.7. SCFlowId

	18.2.4. http
	18.2.4.1. HttpGetRequestBody and HttpGetResponseBody.

	18.2.4.2. HttpGetRequestHost

	18.2.4.3. HttpGetRequestHeader

	18.2.4.4. HttpGetResponseHeader

	18.2.4.5. HttpGetRequestLine

	18.2.4.6. HttpGetResponseLine

	18.2.4.7. HttpGetRawRequestHeaders

	18.2.4.8. HttpGetRawResponseHeaders

	18.2.4.9. HttpGetRequestUriRaw

	18.2.4.10. HttpGetRequestUriNormalized

	18.2.4.11. HttpGetRequestHeaders

	18.2.4.12. HttpGetResponseHeaders

	18.2.5. DNS
	18.2.5.1. DnsGetQueries

	18.2.5.2. DnsGetAnswers

	18.2.5.3. DnsGetAuthorities

	18.2.5.4. DnsGetRcode

	18.2.5.5. DnsGetRecursionDesired

	18.2.6. TLS
	18.2.6.1. TlsGetVersion

	18.2.6.2. TlsGetCertInfo

	18.2.6.3. TlsGetCertChain

	18.2.6.4. TlsGetCertNotAfter

	18.2.6.5. TlsGetCertNotBefore

	18.2.6.6. TlsGetCertSerial

	18.2.6.7. TlsGetSNI

	18.2.7. JA3
	18.2.7.1. Ja3GetHash

	18.2.7.2. Ja3GetString

	18.2.7.3. Ja3SGetHash

	18.2.7.4. JA3SGetString

	18.2.8. SSH
	18.2.8.1. SshGetServerProtoVersion

	18.2.8.2. SshGetServerSoftwareVersion

	18.2.8.3. SshGetClientProtoVersion

	18.2.8.4. SshGetClientSoftwareVersion

	18.2.8.5. HasshGet

	18.2.8.6. HasshGetString

	18.2.8.7. HasshServerGet

	18.2.8.8. HasshServerGetString

	18.2.9. Files
	18.2.9.1. SCFileInfo

	18.2.9.2. SCFileState

	18.2.10. Alerts
	18.2.10.1. SCRuleIds

	18.2.10.2. SCRuleAction

	18.2.10.3. SCRuleMsg

	18.2.10.4. SCRuleClass

	18.2.11. Streaming Data
	18.2.11.1. SCStreamingBuffer

	18.2.12. Flow variables
	18.2.12.1. SCFlowintGet

	18.2.12.2. SCFlowintSet

	18.2.12.3. SCFlowintIncr

	18.2.12.4. SCFlowintDecr

	18.2.12.5. SCFlowvarGet

	18.2.12.6. SCFlowvarSet

	18.2.13. Misc
	18.2.13.1. SCThreadInfo

	18.2.13.2. SCLogError, SCLogWarning, SCLogNotice, SCLogInfo, SCLogDebug

	18.2.13.3. SCLogPath

	18.2.13.4. SCByteVarGet

18.1. Lua usage in Suricata

Lua scripting can be used in two components of Suricata. The first is in
output and the second one in rules in the detection engine.

Both features are using a list of functions to access the data extracted by
Suricata. You can get the list of functions in the Lua functions page.

Note

Currently, there is a difference in the needs key in the init function, depending on what is the usage: output or detection. The list of available functions may also differ.

18.1.1. Lua output

Lua can be used to write arbitrary output. See Lua Output for more information.

18.1.2. Lua detection

Lua script can be used as a filter condition in signatures. See Lua Scripting for Detection for more information.

18.2. Lua functions

18.2.1. Differences between output and detect:

Currently, the needs key initialization varies, depending on what is the goal of the script: output or detection.

If the script is for detection, the needs initialization should be as seen in the example below (see Lua Scripting for Detection for a complete example of a detection script):

function init (args)
 local needs = {}
 needs["packet"] = tostring(true)
 return needs
end

For output logs, follow the pattern below. (The complete script structure can be seen at Lua Output:)

function init (args)
 local needs = {}
 needs["protocol"] = "http"
 return needs
end

Do notice that the functions and protocols available for log and match may also vary. DNP3, for instance, is not
available for logging.

18.2.2. packet

Initialize with:

function init (args)
 local needs = {}
 needs["type"] = "packet"
 return needs
end

18.2.2.1. SCPacketTimestamp

Get packets timestamp as 2 numbers: seconds & microseconds elapsed since
1970-01-01 00:00:00 UTC.

function log(args)
 local sec, usec = SCPacketTimestamp()
end

18.2.2.2. SCPacketTimeString

Use SCPacketTimeString to get the packet's time string in the format:
11/24/2009-18:57:25.179869

function log(args)
 ts = SCPacketTimeString()

18.2.2.3. SCPacketTuple

ipver, srcip, dstip, proto, sp, dp = SCPacketTuple()

18.2.2.4. SCPacketPayload

p = SCPacketPayload()

18.2.3. flow

function init (args)
 local needs = {}
 needs["type"] = "flow"
 return needs
end

18.2.3.1. SCFlowTimestamps

Get timestamps (seconds and microseconds) of the first and the last packet from
the flow.

startts, lastts = SCFlowTimestamps()
startts_s, lastts_s, startts_us, lastts_us = SCFlowTimestamps()

18.2.3.2. SCFlowTimeString

startts = SCFlowTimeString()

18.2.3.3. SCFlowTuple

ipver, srcip, dstip, proto, sp, dp = SCFlowTuple()

18.2.3.4. SCFlowAppLayerProto

Get alproto as a string from the flow. If a alproto is not (yet) known, it
returns "unknown".

Example:

function log(args)
 alproto = SCFlowAppLayerProto()
 if alproto ~= nil then
 print (alproto)
 end
end

Returns 5 values: <alproto> <alproto_ts> <alproto_tc> <alproto_orig> <alproto_expect>

Orig and expect are used when changing and upgrading protocols. In a SMTP STARTTLS
case, orig would normally be set to "smtp" and expect to "tls".

18.2.3.5. SCFlowHasAlerts

Returns true if flow has alerts.

Example:

function log(args)
 has_alerts = SCFlowHasAlerts()
 if has_alerts then
 -- do something
 end
end

18.2.3.6. SCFlowStats

Gets the packet and byte counts per flow.

tscnt, tsbytes, tccnt, tcbytes = SCFlowStats()

18.2.3.7. SCFlowId

Gets the flow id.

id = SCFlowId()

Note that simply printing 'id' will likely result in printing a scientific
notation. To avoid that, simply do:

id = SCFlowId()
idstr = string.format("%.0f",id)
print ("Flow ID: " .. idstr .. "\n")

18.2.4. http

For output, init with:

function init (args)
 local needs = {}
 needs["protocol"] = "http"
 return needs
end

For detection, use the specific buffer (cf Lua Scripting for Detection for a complete list), as with:

function init (args)
 local needs = {}
 needs["http.uri"] = tostring(true)
 return needs
end

18.2.4.1. HttpGetRequestBody and HttpGetResponseBody.

Make normalized body data available to the script through
HttpGetRequestBody and HttpGetResponseBody.

There no guarantees that all of the body will be available.

Example:

function log(args)
 a, o, e = HttpGetResponseBody();
 --print("offset " .. o .. " end " .. e)
 for n, v in ipairs(a) do
 print(v)
 end
end

18.2.4.2. HttpGetRequestHost

Get the host from libhtp's tx->request_hostname, which can either be
the host portion of the url or the host portion of the Host header.

Example:

http_host = HttpGetRequestHost()
if http_host == nil then
 http_host = "<hostname unknown>"
end

18.2.4.3. HttpGetRequestHeader

http_ua = HttpGetRequestHeader("User-Agent")
if http_ua == nil then
 http_ua = "<useragent unknown>"
end

18.2.4.4. HttpGetResponseHeader

server = HttpGetResponseHeader("Server");
print ("Server: " .. server);

18.2.4.5. HttpGetRequestLine

rl = HttpGetRequestLine();
print ("Request Line: " .. rl);

18.2.4.6. HttpGetResponseLine

rsl = HttpGetResponseLine();
print ("Response Line: " .. rsl);

18.2.4.7. HttpGetRawRequestHeaders

rh = HttpGetRawRequestHeaders();
print ("Raw Request Headers: " .. rh);

18.2.4.8. HttpGetRawResponseHeaders

rh = HttpGetRawResponseHeaders();
print ("Raw Response Headers: " .. rh);

18.2.4.9. HttpGetRequestUriRaw

http_uri = HttpGetRequestUriRaw()
if http_uri == nil then
 http_uri = "<unknown>"
end

18.2.4.10. HttpGetRequestUriNormalized

http_uri = HttpGetRequestUriNormalized()
if http_uri == nil then
 http_uri = "<unknown>"
end

18.2.4.11. HttpGetRequestHeaders

a = HttpGetRequestHeaders();
for n, v in pairs(a) do
 print(n,v)
end

18.2.4.12. HttpGetResponseHeaders

a = HttpGetResponseHeaders();
for n, v in pairs(a) do
 print(n,v)
end

18.2.5. DNS

If your purpose is to create a logging script, initialize the buffer as:

function init (args)
 local needs = {}
 needs["protocol"] = "dns"
 return needs
end

If you are going to use the script for rule matching, choose one of the available DNS buffers listed in
Lua Scripting for Detection and follow the pattern:

function init (args)
 local needs = {}
 needs["dns.rrname"] = tostring(true)
 return needs
end

18.2.5.1. DnsGetQueries

dns_query = DnsGetQueries();
if dns_query ~= nil then
 for n, t in pairs(dns_query) do
 rrname = t["rrname"]
 rrtype = t["type"]

 print ("QUERY: " .. ts .. " " .. rrname .. " [**] " .. rrtype .. " [**] " ..
 "TODO" .. " [**] " .. srcip .. ":" .. sp .. " -> " ..
 dstip .. ":" .. dp)
 end
end

returns a table of tables

18.2.5.2. DnsGetAnswers

dns_answers = DnsGetAnswers();
if dns_answers ~= nil then
 for n, t in pairs(dns_answers) do
 rrname = t["rrname"]
 rrtype = t["type"]
 ttl = t["ttl"]

 print ("ANSWER: " .. ts .. " " .. rrname .. " [**] " .. rrtype .. " [**] " ..
 ttl .. " [**] " .. srcip .. ":" .. sp .. " -> " ..
 dstip .. ":" .. dp)
 end
end

returns a table of tables

18.2.5.3. DnsGetAuthorities

dns_auth = DnsGetAuthorities();
if dns_auth ~= nil then
 for n, t in pairs(dns_auth) do
 rrname = t["rrname"]
 rrtype = t["type"]
 ttl = t["ttl"]

 print ("AUTHORITY: " .. ts .. " " .. rrname .. " [**] " .. rrtype .. " [**] " ..
 ttl .. " [**] " .. srcip .. ":" .. sp .. " -> " ..
 dstip .. ":" .. dp)
 end
end

returns a table of tables

18.2.5.4. DnsGetRcode

rcode = DnsGetRcode();
if rcode == nil then
 return 0
end
print (rcode)

returns a lua string with the error message, or nil

18.2.5.5. DnsGetRecursionDesired

if DnsGetRecursionDesired() == true then
 print ("RECURSION DESIRED")
end

returns a bool

18.2.6. TLS

For log output, initialize with:

function init (args)
 local needs = {}
 needs["protocol"] = "tls"
 return needs
end

For detection, initialization is as follows:

function init (args)
 local needs = {}
 needs["tls"] = tostring(true)
 return needs
end

18.2.6.1. TlsGetVersion

Get the negotiated version in a TLS session as a string through TlsGetVersion.

Example:

function log (args)
 version = TlsGetVersion()
 if version then
 -- do something
 end
end

18.2.6.2. TlsGetCertInfo

Make certificate information available to the script through TlsGetCertInfo.

Example:

function log (args)
 version, subject, issuer, fingerprint = TlsGetCertInfo()
 if version == nil then
 return 0
 end
end

18.2.6.3. TlsGetCertChain

Make certificate chain available to the script through TlsGetCertChain.

The output is an array of certificate with each certificate being an hash
with data and length keys.

Example:

-- Use debian lua-luaossl coming from https://github.com/wahern/luaossl
local x509 = require"openssl.x509"

 chain = TlsGetCertChain()
 for k, v in pairs(chain) do
 -- v.length is length of data
 -- v.data is raw binary data of certificate
 cert = x509.new(v["data"], "DER")
 print(cert:text() .. "\n")
 end

18.2.6.4. TlsGetCertNotAfter

Get the Unix timestamp of end of validity of certificate.

Example:

function log (args)
 notafter = TlsGetCertNotAfter()
 if notafter < os.time() then
 -- expired certificate
 end
end

18.2.6.5. TlsGetCertNotBefore

Get the Unix timestamp of beginning of validity of certificate.

Example:

function log (args)
 notbefore = TlsGetCertNotBefore()
 if notbefore > os.time() then
 -- not yet valid certificate
 end
end

18.2.6.6. TlsGetCertSerial

Get TLS certificate serial number through TlsGetCertSerial.

Example:

function log (args)
 serial = TlsGetCertSerial()
 if serial then
 -- do something
 end
end

18.2.6.7. TlsGetSNI

Get the Server name Indication from a TLS connection.

Example:

function log (args)
 asked_domain = TlsGetSNI()
 if string.find(asked_domain, "badguys") then
 -- ok connection to bad guys let's do something
 end
end

18.2.7. JA3

JA3 must be enabled in the Suricata config file (set 'app-layer.protocols.tls.ja3-fingerprints' to 'yes').

For log output, initialize with:

function init (args)
 local needs = {}
 needs["protocol"] = "tls"
 return needs
end

For detection, initialization is as follows:

function init (args)
 local needs = {}
 needs["tls"] = tostring(true)
 return needs
end

18.2.7.1. Ja3GetHash

Get the JA3 hash (md5sum of JA3 string) through Ja3GetHash.

Example:

function log (args)
 hash = Ja3GetHash()
 if hash == nil then
 return
 end
end

18.2.7.2. Ja3GetString

Get the JA3 string through Ja3GetString.

Example:

function log (args)
 str = Ja3GetString()
 if str == nil then
 return
 end
end

18.2.7.3. Ja3SGetHash

Get the JA3S hash (md5sum of JA3S string) through JA3SGetHash.

Examples:

function log (args)
 hash = Ja3SGetHash()
 if hash == nil then
 return
 end
end

Or, for detection:

function match (args)
 hash = Ja3SGetHash()
 if hash == nil then
 return 0
 end

 // matching code

 return 0
end

18.2.7.4. JA3SGetString

Get the JA3S string through Ja3SGetString.

Examples:

function log (args)
 str = Ja3SGetString()
 if str == nil then
 return
 end
end

Or, for detection:

function match (args)
 str = Ja3SGetString()
 if str == nil then
 return 0
 end

 // matching code

 return 0
end

18.2.8. SSH

Initialize with:

function init (args)
 local needs = {}
 needs["protocol"] = "ssh"
 return needs
end

18.2.8.1. SshGetServerProtoVersion

Get SSH protocol version used by the server through SshGetServerProtoVersion.

Example:

function log (args)
 version = SshGetServerProtoVersion()
 if version == nil then
 return 0
 end
end

18.2.8.2. SshGetServerSoftwareVersion

Get SSH software used by the server through SshGetServerSoftwareVersion.

Example:

function log (args)
 software = SshGetServerSoftwareVersion()
 if software == nil then
 return 0
 end
end

18.2.8.3. SshGetClientProtoVersion

Get SSH protocol version used by the client through SshGetClientProtoVersion.

Example:

function log (args)
 version = SshGetClientProtoVersion()
 if version == nil then
 return 0
 end
end

18.2.8.4. SshGetClientSoftwareVersion

Get SSH software used by the client through SshGetClientSoftwareVersion.

Example:

function log (args)
 software = SshGetClientSoftwareVersion()
 if software == nil then
 return 0
 end
end

18.2.8.5. HasshGet

Get MD5 of hassh algorithms used by the client through HasshGet.

Example:

function log (args)
 hassh = HasshGet()
 if hassh == nil then
 return 0
 end
end

18.2.8.6. HasshGetString

Get hassh algorithms used by the client through HasshGetString.

Example:

function log (args)
 hassh_string = HasshGetString()
 if hassh == nil then
 return 0
 end
end

18.2.8.7. HasshServerGet

Get MD5 of hassh algorithms used by the server through HasshServerGet.

Example:

function log (args)
 hassh_string = HasshServerGet()
 if hassh == nil then
 return 0
 end
end

18.2.8.8. HasshServerGetString

Get hassh algorithms used by the server through HasshServerGetString.

Example:

function log (args)
 hassh_string = HasshServerGetString()
 if hassh == nil then
 return 0
 end
end

18.2.9. Files

To use the file logging API, the script's init() function needs to look like:

function init (args)
 local needs = {}
 needs['type'] = 'file'
 return needs
end

18.2.9.1. SCFileInfo

fileid, txid, name, size, magic, md5, sha1, sha256 = SCFileInfo()

returns fileid (number), txid (number), name (string), size (number),
magic (string), md5 in hex (string), sha1 (string), sha256 (string)

18.2.9.2. SCFileState

state, stored = SCFileState()

returns state (string), stored (bool)

18.2.10. Alerts

Alerts are a subset of the 'packet' logger:

function init (args)
 local needs = {}
 needs["type"] = "packet"
 needs["filter"] = "alerts"
 return needs
end

18.2.10.1. SCRuleIds

sid, rev, gid = SCRuleIds()

18.2.10.2. SCRuleAction

action = SCRuleAction()

returns one of 'pass', 'reject', 'drop' or 'alert'

18.2.10.3. SCRuleMsg

msg = SCRuleMsg()

18.2.10.4. SCRuleClass

class, prio = SCRuleClass()

18.2.11. Streaming Data

Streaming data can currently log out reassembled TCP data and
normalized HTTP data. The script will be invoked for each consecutive
data chunk.

In case of TCP reassembled data, all possible overlaps are removed
according to the host OS settings.

function init (args)
 local needs = {}
 needs["type"] = "streaming"
 needs["filter"] = "tcp"
 return needs
end

In case of HTTP body data, the bodies are unzipped and dechunked if applicable.

function init (args)
 local needs = {}
 needs["type"] = "streaming"
 needs["protocol"] = "http"
 return needs
end

18.2.11.1. SCStreamingBuffer

function log(args)
 -- sb_ts and sb_tc are bools indicating the direction of the data
 data, sb_open, sb_close, sb_ts, sb_tc = SCStreamingBuffer()
 if sb_ts then
 print("->")
 else
 print("<-")
 end
 hex_dump(data)
end

18.2.12. Flow variables

It is possible to access, define and modify Flow variables from Lua. To do so,
you must use the functions described in this section and declare the counter in
init function:

function init(args)
 local needs = {}
 needs["tls"] tostring(true)
 needs["flowint"] = {"tls-cnt"}
 return needs
end

Here we define a tls-cnt Flowint that can now be used in output or in a
signature via dedicated functions. The access to the Flow variable is done by
index so in our case we need to use 0.

function match(args)
 a = SCFlowintGet(0);
 if a then
 SCFlowintSet(0, a + 1)
 else
 SCFlowintSet(0, 1)
 end

18.2.12.1. SCFlowintGet

Get the Flowint at index given by the parameter.

18.2.12.2. SCFlowintSet

Set the Flowint at index given by the first parameter. The second parameter is the value.

18.2.12.3. SCFlowintIncr

Increment Flowint at index given by the first parameter.

18.2.12.4. SCFlowintDecr

Decrement Flowint at index given by the first parameter.

18.2.12.5. SCFlowvarGet

Get the Flowvar at index given by the parameter.

18.2.12.6. SCFlowvarSet

Set a Flowvar. First parameter is the index, second is the data
and third is the length of data.

You can use it to set string

function init (args)
 local needs = {}
 needs["http.request_headers"] = tostring(true)
 needs["flowvar"] = {"cnt"}
 return needs
end

function match(args)
 a = SCFlowvarGet(0);
 if a then
 a = tostring(tonumber(a)+1)
 SCFlowvarSet(0, a, #a)
 else
 a = tostring(1)
 SCFlowvarSet(0, a, #a)
 end

18.2.13. Misc

18.2.13.1. SCThreadInfo

tid, tname, tgroup = SCThreadInfo()

It gives: tid (integer), tname (string), tgroup (string)

18.2.13.2. SCLogError, SCLogWarning, SCLogNotice, SCLogInfo, SCLogDebug

Print a message. It will go into the outputs defined in the
yaml. Whether it will be printed depends on the log level.

Example:

SCLogError("some error message")

18.2.13.3. SCLogPath

Expose the log path.

name = "fast_lua.log"
function setup (args)
 filename = SCLogPath() .. "/" .. name
 file = assert(io.open(filename, "a"))
end

18.2.13.4. SCByteVarGet

Get the ByteVar at index given by the parameter. These variables are defined by
byte_extract or byte_math in Suricata rules. Only callable from match scripts.

function init(args)
 local needs = {}
 needs["bytevar"] = {"var1", "var2"}
 return needs
end

Here we define a register that we will be using variables var1 and var2.
The access to the Byte variables is done by index.

function match(args)
 var1 = SCByteVarGet(0)
 var2 = SCByteVarGet(1)

19. File Extraction

19.1. Architecture

The file extraction code works on top of selected protocol parsers (see supported protocols below). The application layer parsers run on top of the stream reassembly engine and the UDP flow tracking.

In case of HTTP, the parser takes care of dechunking and unzipping the request and/or response data if necessary.

This means that settings in the stream engine, reassembly engine and the application layer parsers all affect the workings of the file extraction.

The rule language controls which files are extracted and stored on disk.

Supported protocols are:

	HTTP

	SMTP

	FTP

	NFS

	SMB

	HTTP2

19.2. Settings

stream.checksum_validation controls whether or not the stream engine rejects packets with invalid checksums. A good idea normally, but the network interface performs checksum offloading a lot of packets may seem to be broken. This setting is enabled by default, and can be disabled by setting to "no". Note that the checksum handling can be controlled per interface, see "checksum_checks" in example configuration.

file-store.stream-depth controls how far into a stream reassembly is done. Beyond this value no reassembly will be done. This means that after this value the HTTP session will no longer be tracked. By default a setting of 1 Megabyte is used. 0 sets it to unlimited. If set to no, it is disabled and stream.reassembly.depth is considered. Non-zero values must be greater than stream.stream-depth to be used.

libhtp.default-config.request-body-limit / libhtp.server-config.<config>.request-body-limit controls how much of the HTTP request body is tracked for inspection by the http_client_body keyword, but also used to limit file inspection. A value of 0 means unlimited.

libhtp.default-config.response-body-limit / libhtp.server-config.<config>.response-body-limit is like the request body limit, only it applies to the HTTP response body.

19.3. Output

19.3.1. File-Store and Eve Fileinfo

There are two output modules for logging information about extracted files.
The first is eve.files which is an eve sub-logger
that logs fileinfo records. These fileinfo records provide
metadata about the file, but not the actual file contents.

This must be enabled in the eve output:

- outputs:
 - eve-log:
 types:
 - files:
 force-magic: no
 force-hash: [md5,sha256]

See Eve (Extensible Event Format) for more details on working
with the eve output.

The other output module, file-store stores the actual files to
disk.

The file-store module uses its own log directory (default: filestore in
the default logging directory) and logs files using the SHA256 of the
contents as the filename. Each file is then placed in a directory
named 00 to ff where the directory shares the first 2 characters
of the filename. For example, if the SHA256 hex string of an extracted
file starts with "f9bc6d..." the file we be placed in the directory
filestore/f9.

The size of a file that can be stored depends on file-store.stream-depth,
if this value is reached a file can be truncated and might not be stored completely.
If not enabled, stream.reassembly.depth will be considered.

Setting file-store.stream-depth to 0 permits store of the entire file;
here, 0 means "unlimited."

file-store.stream-depth will always override stream.reassembly.depth
when filestore keyword is used. However, it is not possible to set file-store.stream-depth
to a value less than stream.reassembly.depth. Values less than this amount are ignored
and a warning message will be displayed.

A protocol parser, like modbus, could permit to set a different
store-depth value and use it rather than file-store.stream-depth.

Using the SHA256 for file names allows for automatic de-duplication of
extracted files. However, the timestamp of a preexisting file will be
updated if the same files is extracted again, similar to the touch
command.

Optionally a fileinfo record can be written to its own file
sharing the same SHA256 as the file it references. To handle recording
the metadata of each occurrence of an extracted file, these filenames
include some extra fields to ensure uniqueness. Currently the format
is:

<SHA256>.<SECONDS>.<ID>.json

where <SECONDS> is the seconds from the packet that triggered the
stored file to be closed and <ID> is a unique ID for the runtime
of the Suricata instance. These values should not be depended on, and
are simply used to ensure uniqueness.

These fileinfo records are identical to the fileinfo records
logged to the eve output.

See File-store (File Extraction) for more information on
configuring the file-store output.

Note

This section documents version 2 of the file-store. Version 1 of the file-store has been removed as of Suricata version 6.

19.4. Rules

Without rules in place no extraction will happen. The simplest rule would be:

alert http any any -> any any (msg:"FILE store all"; filestore; sid:1; rev:1;)

This will simply store all files to disk.

Want to store all files with a pdf extension?

alert http any any -> any any (msg:"FILE PDF file claimed"; fileext:"pdf"; filestore; sid:2; rev:1;)

Or rather all actual pdf files?

alert http any any -> any any (msg:"FILE pdf detected"; filemagic:"PDF document"; filestore; sid:3; rev:1;)

Or rather only store files from black list checksum md5 ?

alert http any any -> any any (msg:"Black list checksum match and extract MD5"; filemd5:fileextraction-chksum.list; filestore; sid:4; rev:1;)

Or only store files from black list checksum sha1 ?

alert http any any -> any any (msg:"Black list checksum match and extract SHA1"; filesha1:fileextraction-chksum.list; filestore; sid:5; rev:1;)

Or finally store files from black list checksum sha256 ?

	::
	alert http any any -> any any (msg:"Black list checksum match and extract SHA256"; filesha256:fileextraction-chksum.list; filestore; sid:6; rev:1;)

Bundled with the Suricata download, is a file with more example rules. In the archive, go to the rules directory and check the files.rules file.

19.5. MD5

Suricata can calculate MD5 checksums of files on the fly and log them. See Storing MD5s checksums for an explanation on how to enable this.

	19.5.1. Storing MD5s checksums
	19.5.1.1. Configuration

	19.5.1.2. Testing

	19.5.1.3. Log all MD5s without any rules

	19.5.2. Public SHA1 MD5 data sets

19.6. Updating Filestore Configuration

	19.6.1. Update File-store v1 Configuration to V2

19.5.1. Storing MD5s checksums

19.5.1.1. Configuration

In the Suricata config file:

- file-store:
 enabled: yes # set to yes to enable
 dir: filestore # directory to store the files
 force-hash: [md5] # force logging of md5 checksums

For JSON output:

outputs:
 - eve-log:
 enabled: yes
 filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
 filename: eve.json
 types:
 - files:
 force-magic: no # force logging magic on all logged files
 # force logging of checksums, available hash functions are md5,
 # sha1 and sha256
 #force-hash: [md5]

Other settings affecting File Extraction

stream:
 memcap: 64mb
 checksum-validation: yes # reject wrong csums
 inline: no # no inline mode
 reassembly:
 memcap: 32mb
 depth: 0 # reassemble all of a stream
 toserver-chunk-size: 2560
 toclient-chunk-size: 2560

Make sure we have depth: 0 so all files can be tracked fully.

libhtp:
 default-config:
 personality: IDS
 # Can be specified in kb, mb, gb. Just a number indicates
 # it's in bytes.
 request-body-limit: 0
 response-body-limit: 0

Make sure we have request-body-limit: 0 and response-body-limit: 0

19.5.1.2. Testing

For the purpose of testing we use this rule only in a file.rules (a test/example file):

alert http any any -> any any (msg:"FILE store all"; filestore; sid:1; rev:1;)

This rule above will save all the file data for files that are opened/downloaded through HTTP

Start Suricata (-S option ONLY loads the specified rule file and disregards any other rules that are enabled in suricata.yaml):

suricata -c /etc/suricata/suricata.yaml -S file.rules -i eth0

Meta data:

TIME: 05/01/2012-11:09:52.425751
SRC IP: 2.23.144.170
DST IP: 192.168.1.91
PROTO: 6
SRC PORT: 80
DST PORT: 51598
HTTP URI: /en/US/prod/collateral/routers/ps5855/prod_brochure0900aecd8019dc1f.pdf
HTTP HOST: www.cisco.com
HTTP REFERER: http://www.cisco.com/c/en/us/products/routers/3800-series-integrated-services-routers-isr/index.html
FILENAME: /en/US/prod/collateral/routers/ps5855/prod_brochure0900aecd8019dc1f.pdf
MAGIC: PDF document, version 1.6
STATE: CLOSED
MD5: 59eba188e52467adc11bf2442ee5bf57
SIZE: 9485123

and in files-json.log (or eve.json) :

{ "id": 1, "timestamp": "05\/01\/2012-11:10:27.693583", "ipver": 4, "srcip": "2.23.144.170", "dstip": "192.168.1.91", "protocol": 6, "sp": 80, "dp": 51598, "http_uri": "\/en\/US\/prod\/collateral\/routers\/ps5855\/prod_brochure0900aecd8019dc1f.pdf", "http_host": "www.cisco.com", "http_referer": "http:\/\/www.google.com\/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDAQFjAA&url=http%3A%2F%2Fwww.cisco.com%2Fen%2FUS%2Fprod%2Fcollateral%2Frouters%2Fps5855%2Fprod_brochure0900aecd8019dc1f.pdf&ei=OqyfT9eoJubi4QTyiamhAw&usg=AFQjCNGdjDBpBDfQv2r3VogSH41V6T5x9Q", "filename": "\/en\/US\/prod\/collateral\/routers\/ps5855\/prod_brochure0900aecd8019dc1f.pdf", "magic": "PDF document, version 1.6", "state": "CLOSED", "md5": "59eba188e52467adc11bf2442ee5bf57", "stored": true, "size": 9485123 }
{ "id": 12, "timestamp": "05\/01\/2012-11:12:57.421420", "ipver": 4, "srcip": "2.23.144.170", "dstip": "192.168.1.91", "protocol": 6, "sp": 80, "dp": 51598, "http_uri": "\/en\/US\/prod\/collateral\/routers\/ps5855\/prod_brochure0900aecd8019dc1f.pdf", "http_host": "www.cisco.com", "http_referer": "http:\/\/www.google.com\/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDAQFjAA&url=http%3A%2F%2Fwww.cisco.com%2Fen%2FUS%2Fprod%2Fcollateral%2Frouters%2Fps5855%2Fprod_brochure0900aecd8019dc1f.pdf&ei=OqyfT9eoJubi4QTyiamhAw&usg=AFQjCNGdjDBpBDfQv2r3VogSH41V6T5x9Q", "filename": "\/en\/US\/prod\/collateral\/routers\/ps5855\/prod_brochure0900aecd8019dc1f.pdf", "magic": "PDF document, version 1.6", "state": "CLOSED", "md5": "59eba188e52467adc11bf2442ee5bf57", "stored": true, "size": 9485123 }

19.5.1.3. Log all MD5s without any rules

If you would like to log MD5s for everything and anything that passes through the traffic that you are inspecting with Suricata, but not log the files themselves, all you have to do is disable file-store and enable only the JSON output with forced MD5s - in suricata.yaml like so:

- file-store:
 version: 2
 enabled: no # set to yes to enable
 log-dir: files # directory to store the files
 force-filestore: no
 force-hash: [md5] # force logging of md5 checksums

19.5.2. Public SHA1 MD5 data sets

National Software Reference Library - http://www.nsrl.nist.gov/Downloads.html

19.6.1. Update File-store v1 Configuration to V2

Given a file-store configuration like:

- file-store:
 enabled: yes # set to yes to enable
 log-dir: files # directory to store the files
 force-magic: no # force logging magic on all stored files
 force-hash: [md5] # force logging of md5 checksums
 force-filestore: no # force storing of all files
 stream-depth: 1mb # reassemble 1mb into a stream, set to no to disable
 waldo: file.waldo # waldo file to store the file_id across runs
 max-open-files: 0 # how many files to keep open (O means none)
 write-meta: yes # write a .meta file if set to yes
 include-pid: yes # include the pid in filenames if set to yes.

The following changes will need to be made to convert to a v2 style configuration:

	The version field must be set to 2.

	The log-dir field should be renamed to dir. It is recommended to use a new directory instead of an existing v1 directory.

	Remove the waldo option. It is no longer used.

	Remove the write-meta option.

	Optionally set write-fileinfo to enable writing of a metadata file along side the extracted file. Not that this option is disabled by default as a fileinfo event can be written to the Eve log file.

	Remove the include-pid option. There is no equivalent to this option in file-store v2.

Example converted configuration:

- file-store:
 version: 2
 enabled: yes
 dir: filestore
 force-hash: [md5]
 file-filestore: no
 stream-depth: 1mb
 max-open-files: 0
 write-fileinfo: yes

Refer to the File Extraction section of the manual for information about the format of the file-store directory for file-store v2.

20. Public Data Sets

Collections of pcaps for testing and profiling.

DARPA sets: https://www.ll.mit.edu/r-d/datasets?author=All&rdarea=All&rdgroup=All&keywords=cyber&tag=All&items_per_page=10

MAWI sets (pkt headers only, no payloads): http://mawi.wide.ad.jp/mawi/samplepoint-F/2012/

MACCDC: http://www.netresec.com/?page=MACCDC

Netresec: http://www.netresec.com/?page=PcapFiles

Wireshark: https://gitlab.com/wireshark/wireshark/-/wikis/SampleCaptures

Security Onion collection: https://securityonion.net/docs/Pcaps

Stratosphere IPS. Malware Capture Facility Project: https://stratosphereips.org/category/dataset.html

21. Using Capture Hardware

	21.1. Endace DAG

	21.2. Napatech
	21.2.1. Contents

	21.2.2. Introduction

	21.2.3. Package Installation

	21.2.4. Suricata Installation

	21.2.5. Suricata configuration

	21.2.6. Example Configuration - Auto-config without cpu-affinity:

	21.2.7. Example Configuration - Auto-config with cpu-affinity:

	21.2.8. Example Configuration - Manual Configuration

	21.2.9. Bypassing Flows

	21.2.10. Inline Operation

	21.2.11. Counters

	21.2.12. Napatech configuration options:

	21.2.13. Support

	21.3. Myricom
	21.3.1. Debug Info

	21.3.2. Additional Info

	21.4. eBPF and XDP
	21.4.1. Introduction
	21.4.1.1. XDP

	21.4.2. Requirements

	21.4.3. Prerequisites
	21.4.3.1. Disable irqbalance

	21.4.3.2. Kernel

	21.4.3.3. Clang and dependencies

	21.4.3.4. libbpf

	21.4.4. Compile and install Suricata

	21.4.5. Setup bypass

	21.4.6. Setup eBPF filter

	21.4.7. Setup eBPF bypass

	21.4.8. Setup eBPF load balancing

	21.4.9. Setup XDP bypass
	21.4.9.1. Intel NIC setup

	21.4.9.2. Disable any NIC offloading

	21.4.9.3. Balance as much as you can

	21.4.9.4. The XDP CPU redirect case

	21.4.9.5. Start Suricata with XDP

	21.4.10. Pinned maps usage

	21.4.11. XDP and pinned-maps
	21.4.11.1. Pinned maps and eBPF filter

	21.4.12. Hardware bypass with Netronome

	21.4.13. Getting live info about bypass

	21.5. Netmap
	21.5.1. Compiling Suricata
	21.5.1.1. FreeBSD

	21.5.1.2. Linux

	21.5.2. Starting Suricata
	21.5.2.1. IDS

	21.5.2.2. IPS

	21.5.3. Advanced setups

	21.5.4. lb (load balance)
	21.5.4.1. FreeBSD 11

	21.5.4.2. Single NIC

	21.5.4.3. VALE switches

	21.5.5. Inline IDS

	21.6. AF_XDP
	21.6.1. Compiling Suricata
	21.6.1.1. Linux

	21.6.2. Starting Suricata
	21.6.2.1. IDS

	21.6.3. AF_XDP Configuration

	21.6.4. Advanced setup
	21.6.4.1. force-xdp-mode

	21.6.4.2. force-bind-mode

	21.6.4.3. mem-unaligned

	21.6.4.4. enable-busy-poll

	21.6.4.5. busy-poll-time

	21.6.4.6. busy-poll-budget

	21.6.4.7. Linux tunables

	21.6.5. Hardware setup
	21.6.5.1. Intel NIC setup

	21.6.5.2. Disable any NIC offloading

	21.6.5.3. Balance as much as you can

	21.7. DPDK
	21.7.1. Introduction

	21.7.2. Hugepage analysis

	21.7.3. Bond interface

	21.7.4. Interrupt (power-saving) mode

21.1. Endace DAG

Suricata comes with native Endace DAG card support. This means Suricata can use the libdag interface directly, instead of a libpcap wrapper (which should also work).

Steps:

Configure with DAG support:

./configure --enable-dag --prefix=/usr --sysconfdir=/etc --localstatedir=/var
make
sudo make install

Results in:

Suricata Configuration:
 AF_PACKET support: no
 PF_RING support: no
 NFQueue support: no
 IPFW support: no
 DAG enabled: yes
 Napatech enabled: no

Start with:

suricata -c suricata.yaml --dag 0:0

Started up!

[5570] 10/7/2012 -- 13:52:30 - (source-erf-dag.c:262) <Info> (ReceiveErfDagThreadInit) -- Attached and started stream: 0 on DAG: /dev/dag0
[5570] 10/7/2012 -- 13:52:30 - (source-erf-dag.c:288) <Info> (ReceiveErfDagThreadInit) -- Starting processing packets from stream: 0 on DAG: /dev/dag0

21.2. Napatech

21.2.1. Contents

	Introduction

	Package Installation

	Basic Configuration

	Advanced Multithreaded Configuration

21.2.2. Introduction

Napatech packet capture accelerator cards can greatly improve the performance of your Suricata deployment using these
hardware based features:

	On board burst buffering (up to 12GB)

	Zero-copy kernel bypass DMA

	Non-blocking PCIe performance

	Port merging

	Load distribution to up 128 host buffers

	Precise timestamping

	Accurate time synchronization

The package uses a proprietary shell script to handle the installation process.
In either case, gcc, make and the kernel header files are required to compile the kernel module and
install the software.

21.2.3. Package Installation

Note that make, gcc, and the kernel headers are required for installation

Root privileges are also required

The latest driver and tools installation package can be downloaded from: https://www.napatech.com/downloads.

Note that you will be prompted to install the Napatech libpcap library. Answer "yes" if you would like to
use the Napatech card to capture packets in Wireshark, tcpdump, or another pcap based application.
Libpcap is not needed for Suricata as native Napatech API support is included

Red Hat Based Distros:

$ yum install kernel-devel-$(uname -r) gcc make
 $./package_install_3gd.sh

Debian Based Distros:

$ apt-get install linux-headers-$(uname .r) gcc make
 $./package_install_3gd.sh

To complete installation for all distros ntservice:

$ /opt/napatech3/bin/ntstart.sh -m

21.2.4. Suricata Installation

After downloading and extracting the Suricata tarball, you need to run configure to enable Napatech support and
prepare for compilation:

$./configure --enable-napatech --with-napatech-includes=/opt/napatech3/include --with-napatech-libraries=/opt/napatech3/lib
$ make
$ make install-full

21.2.5. Suricata configuration

Now edit the suricata.yaml file to configure the system. There are three ways
the system can be configured:

1. Auto-config without cpu-affinity: In this mode you specify the stream
configuration in suricata.yaml file and allow the threads to
roam freely. This is good for single processor systems where NUMA node
configuration is not a performance concern.

2. Auto-config with cpu-affinity: In this mode you use the cpu-affinity
of the worker threads to control the creation and configuration of streams.
One stream and one worker thread will be created for each cpu identified in
suricata.yaml. This is best in systems with multiple NUMA nodes (i.e.
multi-processor systems) as the NUMA node of the host buffers is matched
to the core on which the thread is running.

3. Manual-config (legacy): In this mode the underlying Napatech streams are configured
by issuing NTPL commands prior to running Suricata. Suricata then connects
to the existing streams on startup.

21.2.6. Example Configuration - Auto-config without cpu-affinity:

If cpu-affinity is not used it is necessary to explicitly define the streams in
the Suricata configuration file. To use this option the following options should
be set in the Suricata configuration file:

	Turn off cpu-affinity

	Enable the Napatech "auto-config" option

	Specify the streams that should be created on startup

	Specify the ports that will provide traffic to Suricata

	Specify the hashmode used to distribute traffic to the streams

Below are the options to set:

threading:
 set-cpu-affinity: no
 .
 .
 .
napatech:
 auto-config: yes
 streams: ["0-3"]
 ports: [all]
 hashmode: hash5tuplesorted

Now modify ntservice.ini. You also need make sure that you have allocated enough
host buffers in ntservice.ini for the streams. It's a good idea to also set the
TimeSyncReferencePriority. To do this make the following changes to ntservice.ini:

HostBuffersRx = [4,16,-1] # [number of host buffers, Size(MB), NUMA node]
TimeSyncReferencePriority = OSTime # Timestamp clock synchronized to the OS

Stop and restart ntservice after making changes to ntservice:

$ /opt/napatech3/bin/ntstop.sh
$ /opt/napatech3/bin/ntstart.sh

Now you are ready to start Suricata:

$ suricata -c /usr/local/etc/suricata/suricata.yaml --napatech --runmode workers

21.2.7. Example Configuration - Auto-config with cpu-affinity:

This option will create a single worker-thread and stream for each CPU defined in the
worker-cpu-set. To use this option make the following changes to suricata.yaml:

	Turn on cpu-affinity

	Specify the worker-cpu-set

	Enable the Napatech "auto-config" option

	Specify the ports that will provide traffic to Suricata

	Specify the hashmode that will be used to control the distribution of
traffic to the different streams/cpus.

When you are done it should look similar to this:

threading:
 set-cpu-affinity: yes
 cpu-affinity:
 management-cpu-set:
 cpu: [0]
 receive-cpu-set:
 cpu: [0]
 worker-cpu-set:
 cpu: [all]
 .
 .
 .
napatech:
 auto-config: yes
 ports: [all]
 hashmode: hash5tuplesorted

Prior to running Suricata in this mode you also need to configure a sufficient
number of host buffers on each NUMA node. So, for example, if you have a two
processor server with 32 total cores and you plan to use all of the cores you
will need to allocate 16 host buffers on each NUMA node. It is also desirable
to set the Napatech cards time source to the OS.

To do this make the following changes to ntservice.ini:

TimeSyncReferencePriority = OSTime # Timestamp clock synchronized to the OS
HostBuffersRx = [16,16,0],[16,16,1] # [number of host buffers, Size(MB), NUMA node]

Stop and restart ntservice after making changes to ntservice:

$ /opt/napatech3/bin/ntstop.sh -m
$ /opt/napatech3/bin/ntstart.sh -m

Now you are ready to start Suricata:

$ suricata -c /usr/local/etc/suricata/suricata.yaml --napatech --runmode workers

21.2.8. Example Configuration - Manual Configuration

For Manual Configuration the Napatech streams are created by running NTPL
commands prior to running Suricata.

Note that this option is provided primarily for legacy configurations as previously
this was the only way to configure Napatech products. Newer capabilities such as
flow-awareness and inline processing cannot be configured manually.

In this example we will setup the Napatech capture accelerator to merge all physical
ports, and then distribute the merged traffic to four streams that Suricata will ingest.

	The steps for this configuration are:
	
	Disable the Napatech auto-config option in suricata.yaml

	Specify the streams that Suricata is to use in suricata.yaml

	Create a file with NTPL commands to create the underlying Napatech streams.

First suricata.yaml should be configured similar to the following:

napatech:
 auto-config: no
 streams: ["0-3"]

Next you need to make sure you have enough host buffers defined in ntservice.ini. As
it's also a good idea to set up the TimeSync. Here are the lines to change:

TimeSyncReferencePriority = OSTime # Timestamp clock synchronized to the OS
HostBuffersRx = [4,16,-1] # [number of host buffers, Size(MB), NUMA node]

Stop and restart ntservice after making changes to ntservice:

$ /opt/napatech3/bin/ntstop.sh
$ /opt/napatech3/bin/ntstart.sh

Now that ntservice is running we need to execute a few NTPL (Napatech Programming Language)
commands to complete the setup. Create a file will the following commands:

Delete=All # Delete any existing filters
Assign[streamid=(0..3)]= all # Assign all physical ports to stream ID 0

Next execute those command using the ntpl tool:

$ /opt/napatech3/bin/ntpl -f <my_ntpl_file>

Now you are ready to start Suricata:

$ suricata -c /usr/local/etc/suricata/suricata.yaml --napatech --runmode workers

It is possible to specify much more elaborate configurations using this option. Simply by
creating the appropriate NTPL file and attaching Suricata to the streams.

21.2.9. Bypassing Flows

On flow-aware Napatech products, traffic from individual flows can be automatically
dropped or, in the case of inline configurations, forwarded by the hardware after
an inspection of the initial packet(s) of the flow by Suricata. This will save
CPU cycles since Suricata does not process packets for a flow that has already been
adjudicated. This is enabled via the hardware-bypass option in the Napatech section
of the configuration file.

When hardware bypass is used it is important that the ports accepting upstream
and downstream traffic from the network are configured with information on
which port the two sides of the connection will arrive. This is needed for the
hardware to properly process traffic in both directions. This is indicated in the
"ports" section as a hyphen separated list of port-pairs that will be receiving
upstream and downstream traffic E.g.:

napatech:
 hardware-bypass: true
 ports[0-1,2-3]

Note that these "port-pairings" are also required for IDS configurations as the hardware
needs to know on which port(s) two sides of the connection will arrive.

For configurations relying on optical taps the two sides of the pairing will typically
be different ports. For SPAN port configurations where both upstream and downstream traffic
are delivered to a single port both sides of the "port-pair" will reference the same port.

For example tap configurations have a form similar to this:

ports[0-1,2-3]

Whereas SPAN port configurations it would look similar to this:

ports[0-0,1-1,2-2,3-3]

Note that SPAN and tap configurations may be combined on the same adapter.

There are multiple ways that Suricata can be configured to bypass traffic.
One way is to enable stream.bypass in the configuration file. E.g.:

stream:
 bypass: true

When enabled once Suricata has evaluated the first chunk of the stream (the
size of which is also configurable) it will indicate that the rest of the
packets in the flow can be bypassed. In IDS mode this means that the subsequent
packets of the flow will be dropped and not delivered to Suricata. In inline
operation the packets will be transmitted on the output port but not delivered
to Suricata.

Another way is by specifying the "bypass" keyword in a rule. When a rule is
triggered with this keyword then the "pass" or "drop" action will be applied
to subsequent packets of the flow automatically without further analysis by
Suricata. For example given the rule:

drop tcp any 443 <> any any (msg: "SURICATA Test rule"; bypass; sid:1000001; rev:2;)

Once Suricata initially evaluates the fist packet(s) and identifies the flow,
all subsequent packets from the flow will be dropped by the hardware; thus
saving CPU cycles for more important tasks.

The timeout value for how long to wait before evicting stale flows from the
hardware flow table can be specified via the FlowTimeout attribute in ntservice.ini.

21.2.10. Inline Operation

Napatech flow-aware products can be configured for inline operation. This is
specified in the configuration file. When enabled, ports are specified as
port-pairs. With traffic received from one port it is transmitted out the
the peer port after inspection by Suricata. E.g. the configuration:

napatech:
 inline: enabled
 ports[0-1, 2-3]

Will pair ports 0 and 1; and 2 and 3 as peers. Rules can be defined to
pass traffic matching a given signature. For example, given the rule:

pass tcp any 443 <> any any (msg: "SURICATA Test rule"; bypass; sid:1000001; rev:2;)

Suricata will evaluate the initial packet(s) of the flow and program the flow
into the hardware. Subsequent packets from the flow will be automatically be
shunted from one port to it's peer.

21.2.11. Counters

The following counters are available:

	napa_total.pkts - The total of packets received by the card.

	napa_total.byte - The total count of bytes received by the card.

	napa_total.overflow_drop_pkts - The number of packets that were dropped because
the host buffers were full. (I.e. the application is not able to process
packets quickly enough.)

	napa_total.overflow_drop_byte - The number of bytes that were dropped because
the host buffers were full. (I.e. the application is not able to process
packets quickly enough.)

On flow-aware products the following counters are also available:

	napa_dispatch_host.pkts, napa_dispatch_host.byte:

The total number of packets/bytes that were dispatched to a host buffer for
processing by Suricata. (Note: this count includes packets that may be
subsequently dropped if there is no room in the host buffer.)

	napa_dispatch_drop.pkts, napa_dispatch_drop.byte:

The total number of packets/bytes that were dropped at the hardware as
a result of a Suricata "drop" bypass rule or other adjudication by
Suricata that the flow packets should be dropped. These packets are not
delivered to the application.

	napa_dispatch_fwd.pkts, napa_dispatch_fwd.byte:

When inline operation is configured this is the total number of packets/bytes
that were forwarded as result of a Suricata "pass" bypass rule or as a result
of stream or encryption bypass being enabled in the configuration file.
These packets were not delivered to the application.

	napa_bypass.active_flows:

The number of flows actively programmed on the hardware to be forwarded or dropped.

	napa_bypass.total_flows:

The total count of flows programmed since the application started.

If enable-stream-stats is enabled in the configuration file then, for each stream
that is being processed, the following counters will be output in stats.log:

	napa<streamid>.pkts: The number of packets received by the stream.

	napa<streamid>.bytes: The total bytes received by the stream.

	napa<streamid>.drop_pkts: The number of packets dropped from this stream due to buffer overflow conditions.

	napa<streamid>.drop_byte: The number of bytes dropped from this stream due to buffer overflow conditions.

This is useful for fine-grain debugging to determine if a specific CPU core or
thread is falling behind resulting in dropped packets.

Debugging:

For debugging configurations it is useful to see what traffic is flowing as well as what streams are
created and receiving traffic. There are two tools in /opt/napatech3/bin that are useful for this:

	monitoring: this tool will, among other things, show what traffic is arriving at the port interfaces.

	profiling: this will show host-buffers, streams and traffic flow to the streams.

If Suricata terminates abnormally stream definitions, which are normally removed at shutdown, may remain in effect.
If this happens they can be cleared by issuing the "delete=all" NTPL command as follows:

/opt/napatech3/bin/ntpl -e "delete=all"

21.2.12. Napatech configuration options:

These are the Napatech options available in the Suricata configuration file:

napatech:
 # When use_all_streams is set to "yes" the initialization code will query
 # the Napatech service for all configured streams and listen on all of them.
 # When set to "no" the streams config array will be used.
 #
 # This option necessitates running the appropriate NTPL commands to create
 # the desired streams prior to running Suricata.
 #use-all-streams: no

 # The streams to listen on when auto-config is disabled or when threading
 # cpu-affinity is disabled. This can be either:
 # an individual stream (e.g. streams: [0])
 # or
 # a range of streams (e.g. streams: ["0-3"])
 #
 streams: ["0-3"]

 # Stream stats can be enabled to provide fine grain packet and byte counters
 # for each thread/stream that is configured.
 #
 enable-stream-stats: no

 # When auto-config is enabled the streams will be created and assigned
 # automatically to the NUMA node where the thread resides. If cpu-affinity
 # is enabled in the threading section, then the streams will be created
 # according to the number of worker threads specified in the worker cpu set.
 # Otherwise, the streams array is used to define the streams.
 #
 # This option cannot be used simultaneous with "use-all-streams".
 #
 auto-config: yes

 # Enable hardware level flow bypass.
 #
 hardware-bypass: yes

 # Enable inline operation. When enabled traffic arriving on a given port is
 # automatically forwarded out it's peer port after analysis by Suricata.
 # hardware-bypass must be enabled when this is enabled.
 #
 inline: no

 # Ports indicates which napatech ports are to be used in auto-config mode.
 # these are the port ID's of the ports that will be merged prior to the
 # traffic being distributed to the streams.
 #
 # When hardware-bypass is enabled the ports must be configured as a segment
 # specify the port(s) on which upstream and downstream traffic will arrive.
 # This information is necessary for the hardware to properly process flows.
 #
 # When using a tap configuration one of the ports will receive inbound traffic
 # for the network and the other will receive outbound traffic. The two ports on a
 # given segment must reside on the same network adapter.
 #
 # When using a SPAN-port configuration the upstream and downstream traffic
 # arrives on a single port. This is configured by setting the two sides of the
 # segment to reference the same port. (e.g. 0-0 to configure a SPAN port on
 # port 0).
 #
 # port segments are specified in the form:
 # ports: [0-1,2-3,4-5,6-6,7-7]
 #
 # For legacy systems when hardware-bypass is disabled this can be specified in any
 # of the following ways:
 #
 # a list of individual ports (e.g. ports: [0,1,2,3])
 #
 # a range of ports (e.g. ports: [0-3])
 #
 # "all" to indicate that all ports are to be merged together
 # (e.g. ports: [all])
 #
 # This parameter has no effect if auto-config is disabled.
 #
 ports: [0-1,2-3]

 # When auto-config is enabled the hashmode specifies the algorithm for
 # determining to which stream a given packet is to be delivered.
 # This can be any valid Napatech NTPL hashmode command.
 #
 # The most common hashmode commands are: hash2tuple, hash2tuplesorted,
 # hash5tuple, hash5tuplesorted and roundrobin.
 #
 # See Napatech NTPL documentation other hashmodes and details on their use.
 #
 # This parameter has no effect if auto-config is disabled.
 #
 hashmode: hash5tuplesorted

Make sure that there are enough host-buffers declared in ntservice.ini to
accommodate the number of cores/streams being used.

21.2.13. Support

Contact a support engineer at: ntsupport@napatech.com

Napatech Documentation can be found at: https://docs.napatech.com (Click the search icon, with no search text,
to see all documents in the portal.)

21.3. Myricom

From: https://blog.inliniac.net/2012/07/10/suricata-on-myricom-capture-cards/

In this guide I'll describe using the Myricom libpcap support. I'm going to assume you installed the card properly, installed the Sniffer driver and made sure that all works. Make sure dmesg shows that the card is in sniffer mode:

[2102.860241] myri_snf INFO: eth4: Link0 is UP
[2101.341965] myri_snf INFO: eth5: Link0 is UP

I have installed the Myricom runtime and libraries in /opt/snf

Compile Suricata against Myricom's libpcap:

./configure --with-libpcap-includes=/opt/snf/include/ --with-libpcap-libraries=/opt/snf/lib/ --prefix=/usr --sysconfdir=/etc --localstatedir=/var
make
sudo make install

Next, configure the amount of ringbuffers. I'm going to work with 8 here, as my quad core + hyper threading has 8 logical CPUs. See below for additional information about the buffer-size parameter.

pcap:
 - interface: eth5
 threads: 8
 buffer-size: 512kb
 checksum-checks: no

The 8 threads setting causes Suricata to create 8 reader threads for eth5. The Myricom driver makes sure each of those is attached to its own ringbuffer.

Then start Suricata as follows:

SNF_NUM_RINGS=8 SNF_FLAGS=0x1 suricata -c suricata.yaml -i eth5 --runmode=workers

If you want 16 ringbuffers, update the "threads" variable in the Suricata configuration file to 16 and start Suricata:

SNF_NUM_RINGS=16 SNF_FLAGS=0x1 suricata -c suricata.yaml -i eth5 --runmode=workers

Note that the pcap.buffer-size configuration setting shown above is currently ignored when using Myricom cards. The value is passed through to the pcap_set_buffer_size libpcap API within the Suricata source code. From Myricom support:

"The libpcap interface to Sniffer10G ignores the pcap_set_buffer_size() value. The call to snf_open() uses zero as the dataring_size which informs the Sniffer library to use a default value or the value from the SNF_DATARING_SIZE environment variable."

The following pull request opened by Myricom in the libpcap project indicates that a future SNF software release could provide support for setting the SNF_DATARING_SIZE via the pcap.buffer-size yaml setting:

	https://github.com/the-tcpdump-group/libpcap/pull/435

Until then, the data ring and descriptor ring values can be explicitly set using the SNF_DATARING_SIZE and SNF_DESCRING_SIZE environment variables, respectively.

The SNF_DATARING_SIZE is the total amount of memory to be used for storing incoming packet data. This size is shared across all rings.
The SNF_DESCRING_SIZE is the total amount of memory to be used for storing meta information about the packets (packet lengths, offsets, timestamps). This size is also shared across all rings.

Myricom recommends that the descriptor ring be 1/4 the size of the data ring, but the ratio can be modified based on your traffic profile.
If not set explicitly, Myricom uses the following default values: SNF_DATARING_SIZE = 256MB, and SNF_DESCRING_SIZE = 64MB

Expanding on the 16 thread example above, you can start Suricata with a 16GB Data Ring and a 4GB Descriptor Ring using the following command:

SNF_NUM_RINGS=16 SNF_DATARING_SIZE=17179869184 SNF_DESCRING_SIZE=4294967296 SNF_FLAGS=0x1 suricata -c suricata.yaml -i eth5 --runmode=workers

21.3.1. Debug Info

Myricom also provides a means for obtaining debug information. This can be useful for verifying your configuration and gathering additional information.
Setting SNF_DEBUG_MASK=3 enables debug information, and optionally setting the SNF_DEBUG_FILENAME allows you to specify the location of the output file.

Following through with the example:

SNF_NUM_RINGS=16 SNF_DATARING_SIZE=17179869184 SNF_DESCRING_SIZE=4294967296 SNF_FLAGS=0x1 SNF_DEBUG_MASK=3 SNF_DEBUG_FILENAME="/tmp/snf.out" suricata -c suricata.yaml -i eth5 --runmode=workers

21.3.2. Additional Info

	http://www.40gbe.net/index_files/be59da7f2ab5bf0a299ab99ef441bb2e-28.html

	https://www.broadcom.com/support/knowledgebase/1211161394432/how-to-use-emulex-oneconnect-oce12000-d-adapters-with-faststack-

21.4. eBPF and XDP

21.4.1. Introduction

eBPF stands for extended BPF. This is an extended version of Berkeley Packet Filter available in recent
Linux kernel versions.

It provides more advanced features with eBPF programs developed in C and capability to use structured data shared
between kernel and userspace.

eBPF is used for three things in Suricata:

	eBPF filter: any BPF like filter can be developed. An example of filter accepting only packet for some VLANs is provided. A bypass implementation is also provided.

	eBPF load balancing: provide programmable load balancing. Simple ippair load balancing is provided.

	XDP programs: Suricata can load XDP programs. A bypass program is provided.

Bypass can be implemented in eBPF and XDP. The advantage of XDP is that the packets are dropped at the earliest stage
possible. So performance is better. But bypassed packets don't reach the network so you can't use this on regular
traffic but only on duplicated/sniffed traffic.

The bypass implementation relies on one of the most powerful concept of eBPF: maps. A map is a data structure
shared between user space and kernel space/hardware. It allows user space and kernel space to interact, pass
information. Maps are often implemented as arrays or hash tables that can contain arbitrary key, value pairs.

21.4.1.1. XDP

XDP provides another Linux native way of optimising Suricata's performance on sniffing high speed networks:

XDP or eXpress Data Path provides a high performance, programmable network data path in the Linux kernel as part of the IO Visor Project. XDP provides bare metal packet processing at the lowest point in the software stack which makes it ideal for speed without compromising programmability. Furthermore, new functions can be implemented dynamically with the integrated fast path without kernel modification.

More info about XDP:

	IOVisor's XDP page [https://www.iovisor.org/technology/xdp]

	Cilium's BPF and XDP reference guide [https://docs.cilium.io/en/stable/bpf/]

21.4.2. Requirements

You will need a kernel that supports XDP and, for the most performance improvement, a network
card that support XDP in the driver.

Suricata XDP code has been tested with 4.13.10 but 4.15 or later is necessary to use all
features like the CPU redirect map.

If you are using an Intel network card, you will need to stay with in tree kernel NIC drivers.
The out of tree drivers do not contain the XDP support.

Having a network card with support for RSS symmetric hashing is a good point or you will have to
use the XDP CPU redirect map feature.

21.4.3. Prerequisites

This guide has been confirmed on Debian/Ubuntu "LTS" Linux.

21.4.3.1. Disable irqbalance

irqbalance may cause issues in most setups described here, so it is recommended
to deactivate it

systemctl stop irqbalance
systemctl disable irqbalance

21.4.3.2. Kernel

You need to run a kernel 4.13 or newer.

21.4.3.3. Clang and dependencies

Make sure you have clang (>=3.9) installed on the system

sudo apt install clang

Some i386 headers will also be needed as eBPF is not x86_64 and some included headers
are architecture specific

sudo apt install libc6-dev-i386 --no-install-recommends

21.4.3.4. libbpf

Suricata uses libbpf to interact with eBPF and XDP

git clone https://github.com/libbpf/libbpf.git

Now, you can build and install the library

cd libbpf/src/
make && sudo make install

sudo make install_headers
sudo ldconfig

In some cases your system will not find the libbpf library that is installed under
/usr/lib64 so you may need to modify your ldconfig configuration.

21.4.4. Compile and install Suricata

To get Suricata source, you can use the usual

git clone https://github.com/OISF/suricata.git
cd suricata && git clone https://github.com/OISF/libhtp.git -b 0.5.x

./autogen.sh

Then you need to add the eBPF flags to configure and specify the Clang
compiler for building all C sources, including the eBPF programs

CC=clang ./configure --prefix=/usr/ --sysconfdir=/etc/ --localstatedir=/var/ \
--enable-ebpf --enable-ebpf-build

make clean && make
sudo make install-full
sudo ldconfig
sudo mkdir /usr/libexec/suricata/ebpf/

The clang compiler is needed if you want to build eBPF files as the build
is done via a specific eBPF backend available only in llvm/clang suite. If you
don't want to use Clang for building Suricata itself, you can still specify it
separately, using the --with-clang parameter

./configure --prefix=/usr/ --sysconfdir=/etc/ --localstatedir=/var/ \
--enable-ebpf --enable-ebpf-build --with-clang=/usr/bin/clang

21.4.5. Setup bypass

If you plan to use eBPF or XDP for a kernel/hardware level bypass, you need to enable
some of the following features:

First, enable bypass in the stream section in suricata.yaml

stream:
 bypass: true

This will bypass flows as soon as the stream depth will be reached.

If you want, you can also bypass encrypted flows by setting encryption-handling to bypass
in the app-layer tls section

app-layer:
 protocols:
 tls:
 enabled: yes
 detection-ports:
 dp: 443

 encryption-handling: bypass

Another solution is to use a set of signatures using the bypass keyword to obtain
a selective bypass. Suricata traffic ID defines flowbits that can be used in other signatures.
For instance one could use

alert any any -> any any (msg:"bypass video"; flowbits:isset,traffic/label/video; noalert; bypass; sid:1000000; rev:1;)
alert any any -> any any (msg:"bypass Skype"; flowbits:isset,traffic/id/skype; noalert; bypass; sid:1000001; rev:1;)

21.4.6. Setup eBPF filter

The file ebpf/vlan_filter.c contains a list of VLAN id in a switch
that you need to edit to get something adapted to your network. Another
filter dropping packets from or to a set of IPv4 address is also available in
ebpf/filter.c. See Pinned maps usage for more information.

Suricata can load as eBPF filter any eBPF code exposing a filter section.

Once modifications and build via make are complete, you can copy the resulting
eBPF filter as needed

cp ebpf/vlan_filter.bpf /usr/libexec/suricata/ebpf/

Then setup the ebpf-filter-file variable in af-packet section in suricata.yaml

- interface: eth3
 threads: 16
 cluster-id: 97
 cluster-type: cluster_flow # choose any type suitable
 defrag: yes
 # eBPF file containing a 'filter' function that will be inserted into the
 # kernel and used as load balancing function
 ebpf-filter-file: /usr/libexec/suricata/ebpf/vlan_filter.bpf
 use-mmap: yes
 ring-size: 200000

You can then run Suricata normally

/usr/bin/suricata --pidfile /var/run/suricata.pid --af-packet=eth3 -vvv

21.4.7. Setup eBPF bypass

You can also use eBPF bypass. To do that load the bypass_filter.bpf file and
update af-packet configuration in suricata.yaml to set bypass to yes

- interface: eth3
 threads: 16
 cluster-id: 97
 cluster-type: cluster_qm # symmetric RSS hashing is mandatory to use this mode
 # eBPF file containing a 'filter' function that will be inserted into the
 # kernel and used as packet filter function
 ebpf-filter-file: /usr/libexec/suricata/ebpf/bypass_filter.bpf
 bypass: yes
 use-mmap: yes
 ring-size: 200000

Constraints on eBPF code to have a bypass compliant code are stronger than for regular filters. The
filter must expose flow_table_v4 and flow_table_v6 per CPU array maps with similar definitions
as the one available in bypass_filter.c. These two maps will be accessed and
maintained by Suricata to handle the lists of flows to bypass.

If you are not using VLAN tracking (vlan.use-for-tracking set to false in suricata.yaml) then you also have to set
the VLAN_TRACKING define to 0 in bypass_filter.c.

21.4.8. Setup eBPF load balancing

eBPF load balancing allows to load balance the traffic on the listening sockets
With any logic implemented in the eBPF filter. The value returned by the function
tagged with the loadbalancer section is used with a modulo on the CPU count to know in
which socket the packet has to be send.

An implementation of a simple symmetric IP pair hashing function is provided in the lb.bpf
file.

Copy the resulting eBPF filter as needed

cp ebpf/lb.bpf /usr/libexec/suricata/ebpf/

Then use cluster_ebpf as load balancing method in the interface section of af-packet
and point the ebpf-lb-file variable to the lb.bpf file

- interface: eth3
 threads: 16
 cluster-id: 97
 cluster-type: cluster_ebpf
 defrag: yes
 # eBPF file containing a 'loadbalancer' function that will be inserted into the
 # kernel and used as load balancing function
 ebpf-lb-file: /usr/libexec/suricata/ebpf/lb.bpf
 use-mmap: yes
 ring-size: 200000

21.4.9. Setup XDP bypass

XDP bypass allows Suricata to tell the kernel that packets for some
flows have to be dropped via the XDP mechanism. This is an early
drop that occurs before the datagram reaches the Linux kernel
network stack.

Linux 4.15 or newer are recommended to use that feature. You can use it
on older kernel if you set BUILD_CPUMAP to 0 in ebpf/xdp_filter.c.

Copy the resulting XDP filter as needed:

cp ebpf/xdp_filter.bpf /usr/libexec/suricata/ebpf/

Setup af-packet section/interface in suricata.yaml.

We will use cluster_qm as we have symmetric hashing on the NIC, xdp-mode: driver and we will
also use the /usr/libexec/suricata/ebpf/xdp_filter.bpf (in our example TCP offloading/bypass)

- interface: eth3
 threads: 16
 cluster-id: 97
 cluster-type: cluster_qm # symmetric hashing is a must!
 defrag: yes
 # Xdp mode, "soft" for skb based version, "driver" for network card based
 # and "hw" for card supporting eBPF.
 xdp-mode: driver
 xdp-filter-file: /usr/libexec/suricata/ebpf/xdp_filter.bpf
 # if the ebpf filter implements a bypass function, you can set 'bypass' to
 # yes and benefit from these feature
 bypass: yes
 use-mmap: yes
 ring-size: 200000
 # Uncomment the following if you are using hardware XDP with
 # a card like Netronome (default value is yes)
 # use-percpu-hash: no

XDP bypass is compatible with AF_PACKET IPS mode. Packets from bypassed flows will be send directly
from one card to the second card without going by the kernel network stack.

If you are using hardware XDP offload you may have to set use-percpu-hash to false and
build and install the XDP filter file after setting USE_PERCPU_HASH to 0.

In the XDP filter file, you can set ENCRYPTED_TLS_BYPASS to 1 if you want to bypass
the encrypted TLS 1.2 packets in the eBPF code. Be aware that this will mean that Suricata will
be blind on packets on port 443 with the correct pattern.

If you are not using VLAN tracking (vlan.use-for-tracking set to false in suricata.yaml) then you also have to set
the VLAN_TRACKING define to 0 in xdp_filter.c.

21.4.9.1. Intel NIC setup

Intel network card don't support symmetric hashing but it is possible to emulate
it by using a specific hashing function.

Follow these instructions closely for desired result:

ifconfig eth3 down

Use in tree kernel drivers: XDP support is not available in Intel drivers available on Intel website.

Enable symmetric hashing

ifconfig eth3 down
ethtool -L eth3 combined 16 # if you have at least 16 cores
ethtool -K eth3 rxhash on
ethtool -K eth3 ntuple on
ifconfig eth3 up
./set_irq_affinity 0-15 eth3
ethtool -X eth3 hkey 6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A equal 16
ethtool -x eth3
ethtool -n eth3

In the above setup you are free to use any recent set_irq_affinity script. It is available in any Intel x520/710 NIC sources driver download.

NOTE:
We use a special low entropy key for the symmetric hashing. More info about the research for symmetric hashing set up [http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf]

21.4.9.2. Disable any NIC offloading

Run the following command to disable offloading

for i in rx tx tso ufo gso gro lro tx nocache copy sg txvlan rxvlan; do
 /sbin/ethtool -K eth3 $i off 2>&1 > /dev/null;
done

21.4.9.3. Balance as much as you can

Try to use the network card's flow balancing as much as possible

for proto in tcp4 udp4 ah4 esp4 sctp4 tcp6 udp6 ah6 esp6 sctp6; do
 /sbin/ethtool -N eth3 rx-flow-hash $proto sd
done

This command triggers load balancing using only source and destination IPs. This may be not optimal
in term of load balancing fairness but this ensures all packets of a flow will reach the same thread
even in the case of IP fragmentation (where source and destination port will not be available
for some fragmented packets).

21.4.9.4. The XDP CPU redirect case

If ever your hardware is not able to do a symmetric load balancing but support XDP in driver mode, you
can then use the CPU redirect map support available in the xdp_filter.bpf and xdp_lb.bpf file. In
this mode, the load balancing will be done by the XDP filter and each CPU will handle the whole packet
treatment including the creation of the skb structure in kernel.

You will need Linux 4.15 or newer to use that feature.

To do so set the xdp-cpu-redirect variable in af-packet interface configuration to a set of CPUs.
Then use the cluster_cpu as load balancing function. You will also need to set the affinity
to be certain that CPU cores that have the skb assigned are used by Suricata.

Also to avoid out of order packets, you need to set the RSS queue number to 1. So if our interface
is eth3

/sbin/ethtool -L eth3 combined 1

In case your system has more then 64 core, you need to set CPUMAP_MAX_CPUS to a value greater
than this number in xdp_lb.c and xdp_filter.c.

A sample configuration for pure XDP load balancing could look like

- interface: eth3
 threads: 16
 cluster-id: 97
 cluster-type: cluster_cpu
 xdp-mode: driver
 xdp-filter-file: /usr/libexec/suricata/ebpf/xdp_lb.bpf
 xdp-cpu-redirect: ["1-17"] # or ["all"] to load balance on all CPUs
 use-mmap: yes
 ring-size: 200000

It is possible to use xdp_monitor to have information about the behavior of CPU redirect. This
program is available in Linux tree under the samples/bpf directory and will be build by the
make command. Sample output is the following

sudo ./xdp_monitor --stats
XDP-event CPU:to pps drop-pps extra-info
XDP_REDIRECT 11 2,880,212 0 Success
XDP_REDIRECT total 2,880,212 0 Success
XDP_REDIRECT total 0 0 Error
cpumap-enqueue 11:0 575,954 0 5.27 bulk-average
cpumap-enqueue sum:0 575,954 0 5.27 bulk-average
cpumap-kthread 0 575,990 0 56,409 sched
cpumap-kthread 1 576,090 0 54,897 sched

21.4.9.5. Start Suricata with XDP

You can now start Suricata with XDP bypass activated

/usr/bin/suricata -c /etc/suricata/xdp-suricata.yaml --pidfile /var/run/suricata.pid --af-packet=eth3 -vvv

Confirm you have the XDP filter engaged in the output (example):

...
...
(runmode-af-packet.c:220) <Config> (ParseAFPConfig) -- Enabling locked memory for mmap on iface eth3
(runmode-af-packet.c:231) <Config> (ParseAFPConfig) -- Enabling tpacket v3 capture on iface eth3
(runmode-af-packet.c:326) <Config> (ParseAFPConfig) -- Using queue based cluster mode for AF_PACKET (iface eth3)
(runmode-af-packet.c:424) <Info> (ParseAFPConfig) -- af-packet will use '/usr/libexec/suricata/ebpf/xdp_filter.bpf' as XDP filter file
(runmode-af-packet.c:429) <Config> (ParseAFPConfig) -- Using bypass kernel functionality for AF_PACKET (iface eth3)
(runmode-af-packet.c:609) <Config> (ParseAFPConfig) -- eth3: enabling zero copy mode by using data release call
(util-runmodes.c:296) <Info> (RunModeSetLiveCaptureWorkersForDevice) -- Going to use 8 thread(s)
...
...

21.4.10. Pinned maps usage

Pinned maps stay attached to the system if the creating process disappears and
they can also be accessed by external tools. In Suricata bypass case, this can be
used to keep bypassed flow tables active, so Suricata is not hit by previously bypassed flows when
restarting. In the socket filter case, this can be used to maintain a map from tools outside
of Suricata.

To use pinned maps, you first have to mount the bpf pseudo filesystem

sudo mount -t bpf none /sys/fs/bpf

You can also add to your /etc/fstab

bpffs /sys/fs/bpf bpf defaults 0 0

and run sudo mount -a.

Pinned maps will be accessible as file from the /sys/fs/bpf directory. Suricata
will pin them under the name suricata-$IFACE_NAME-$MAP_NAME.

To activate pinned maps for a interface, set pinned-maps to true in the af-packet
configuration of this interface

- interface: eth3
 pinned-maps: true

21.4.11. XDP and pinned-maps

This option can be used to expose the maps of a socket filter to other processes.
This allows for example, the external handling of a accept list or block list of
IP addresses. See bpfctrl [https://github.com/StamusNetworks/bpfctrl/] for an example
of external list handling.

In the case of XDP, the eBPF filter is attached to the interface so if you
activate pinned-maps the eBPF will remain attached to the interface and
the maps will remain accessible upon Suricata start.
If XDP bypass is activated, Suricata will try at start to open the pinned maps
flow_v4_table and flow_v6_table. If they are present, this means the XDP filter
is still there and Suricata will just use them instead of attaching the XDP file to
the interface.

So if you want to reload the XDP filter, you need to remove the files from /sys/fs/bpf/
before starting Suricata.

In case, you are not using bypass, this means that the used maps are managed from outside
Suricata. As their names are not known by Suricata, you need to specify a name of a map to look
for, that will be used to check for the presence of the XDP filter

- interface: eth3
 pinned-maps: true
 pinned-maps-name: ipv4_drop
 xdp-filter-file: /usr/libexec/suricata/ebpf/xdp_filter.bpf

If XDP bypass is used in IPS mode stopping Suricata will trigger an interruption in the traffic.
To fix that, the provided XDP filter xdp_filter.bpf is containing a map that will trigger
a global bypass if set to 1. You need to use pinned-maps to benefit from this feature.

To use it you need to set #define USE_GLOBAL_BYPASS 1 (instead of 0) in the xdp_filter.c file and rebuild
the eBPF code and install the eBPF file in the correct place. If you write 1 as key 0 then the XDP
filter will switch to global bypass mode. Set key 0 to value 0 to send traffic to Suricata.

The switch must be activated on all sniffing interfaces. For an interface named eth0 the global
switch map will be /sys/fs/bpf/suricata-eth0-global_bypass.

21.4.11.1. Pinned maps and eBPF filter

Pinned maps can also be used with regular eBPF filters. The main difference is that the map will not
persist after Suricata is stopped because it is attached to a socket and not an interface which
is persistent.

The eBPF filter filter.bpf uses a ipv4_drop map that contains the set of IPv4 addresses to drop.
If pinned-maps is set to true in the interface configuration then the map will be pinned
under /sys/fs/bpf/suricata-eth3-ipv4_drop.

You can then use a tool like bpfctrl to manage the IPv4 addresses in the map.

21.4.12. Hardware bypass with Netronome

Netronome cards support hardware bypass. In this case the eBPF code is running in the card
itself. This introduces some architectural differences compared to driver mode and the configuration
and eBPF filter need to be updated.

On eBPF side, as of Linux 4.19 CPU maps and interfaces redirect are not supported and these features
need to be disabled. By architecture, per CPU hash should not be used and has to be disabled.
To achieve this, edit the beginning of ebpf/xdp_filter.c and do

#define BUILD_CPUMAP 0
/* Increase CPUMAP_MAX_CPUS if ever you have more than 64 CPUs */
#define CPUMAP_MAX_CPUS 64

#define USE_PERCPU_HASH 0
#define GOT_TX_PEER 0

Then build the bpf file with make and install it in the expected place.

The Suricata configuration is rather simple as you need to activate
hardware mode and the use-percpu-hash option in the af-packet configuration
of the interface

xdp-mode: hw
use-percpu-hash: no

The load balancing will be done on IP pairs inside the eBPF code, so
using cluster_qm as cluster type is a good idea

cluster-type: cluster_qm

As of Linux 4.19, the number of threads must be a power of 2. So set
threads variable of the af-packet interface to a power
of 2 and in the eBPF filter set the following variable accordingly

#define RSS_QUEUE_NUMBERS 32

21.4.13. Getting live info about bypass

You can get information about bypass via the stats event and through the unix socket.
iface-stat will return the number of bypassed packets (adding packets for a flow when it timeout)

suricatasc -c "iface-stat enp94s0np0" | jq
{
 "message": {
 "pkts": 56529854964,
 "drop": 932328611,
 "bypassed": 1569467248,
 "invalid-checksums": 0
 },
 "return": "OK"
}

iface-bypassed-stats command will return the number of elements in IPv4 and IPv6 flow tables for
each interface

suricatasc
>>> iface-bypassed-stats
Success:
{
 "enp94s0np0": {
 "ipv4_fail": 0,
 "ipv4_maps_count": 2303,
 "ipv4_success": 4232,
 "ipv6_fail": 0,
 "ipv6_maps_count": 13131,
 "ipv6_success": 13500

 }
}

The stats entry also contains a stats.flow_bypassed object that has local and capture
bytes and packets counters as well as a bypassed and closed flow counter

{
 "local_pkts": 0,
 "local_bytes": 0,
 "local_capture_pkts": 20,
 "local_capture_bytes": 25000,
 "closed": 84,
 "pkts": 4799,
 "bytes": 2975133
}

local_pkts and local_bytes are for Suricata bypassed flows. This can be because
local bypass is used or because the capture method can not bypass more flows.
pkts and bytes are counters coming from the capture method. They can take some
time to appear due to the accounting at timeout.
local_capture_pkts and local_capture_bytes are counters for packets that are seen
by Suricata before the capture method efficiently bypass the traffic. There is almost
always some for each flow because of the buffer in front of Suricata reading threads.

21.5. Netmap

Netmap is a high speed capture framework for Linux and FreeBSD. In Linux it
is available as an external module, while in FreeBSD 11+ it is available by
default.

21.5.1. Compiling Suricata

21.5.1.1. FreeBSD

On FreeBSD 11 and up, NETMAP is included and enabled by default in the kernel.

To build Suricata with NETMAP, add --enable-netmap to the configure line.
The location of the NETMAP includes (/usr/src/sys/net/) does not have to be
specified.

21.5.1.2. Linux

On Linux, NETMAP is not included by default. It can be pulled from github.
Follow the instructions on installation included in the NETMAP repository.

When NETMAP is installed, add --enable-netmap to the configure line.
If the includes are not added to a standard location, the location can
be specified when configuring Suricata.

Example:

./configure --enable-netmap --with-netmap-includes=/usr/local/include/netmap/

21.5.2. Starting Suricata

When opening an interface, netmap can take various special characters as
options in the interface string.

Warning

the interface that netmap reads from will become unavailable
for normal network operations. You can lock yourself out of
your system.

21.5.2.1. IDS

Suricata can be started in 2 ways to use netmap:

suricata --netmap=<interface>
suricata --netmap=igb0

In the above example Suricata will start reading from the igb0 network interface.
The number of threads created depends on the number of RSS queues available on the NIC.

suricata --netmap

In the above example Suricata will take the netmap block from the Suricata
configuration and open each of the interfaces listed.

netmap:
 - interface: igb0
 threads: 2
 - interface: igb1
 threads: 4

For the above configuration, both igb0 and igb1 would be opened. With 2
threads for igb0 and 4 capture threads for igb1.

Warning

This multi threaded setup only works correctly if the NIC
has symmetric RSS hashing. If this is not the case, consider
using the 'lb' method below.

21.5.2.2. IPS

Suricata's Netmap based IPS mode is based on the concept of creating
a layer 2 software bridge between 2 interfaces. Suricata reads packets on
one interface and transmits them on another.

Packets that are blocked by the IPS policy, are simply not transmitted.

netmap:
 - interface: igb0
 copy-mode: ips
 copy-iface: igb1
 - interface: igb1
 copy-mode: ips
 copy-iface: igb0

21.5.3. Advanced setups

21.5.4. lb (load balance)

"lb" is a tool written by Seth Hall to allow for load balancing for single
or multiple tools. One common use case is being able to run Suricata and
Zeek together on the same traffic.

starting lb:

lb -i eth0 -p suricata:6 -p zeek:6

Note

On FreeBSD 11, the named prefix doesn't work.

yaml:

netmap:
 - interface: netmap:suricata
 threads: 6

startup:

suricata --netmap=netmap:suricata

The interface name as passed to Suricata includes a 'netmap:' prefix. This
tells Suricata that it's going to read from netmap pipes instead of a real
interface.

Then Zeek (formerly Bro) can be configured to load 6 instances. Both will
get a copy of the same traffic. The number of netmap pipes does not have
to be equal for both tools.

21.5.4.1. FreeBSD 11

On FreeBSD 11 the named pipe is not available.

starting lb:

lb -i eth0 -p 6

yaml:

netmap:
 - interface: netmap:eth0
 threads: 6

startup:

suricata --netmap

Note

"lb" is bundled with netmap.

21.5.4.2. Single NIC

When an interface enters NETMAP mode, it is no longer available to
the OS for other operations. This can be undesirable in certain
cases, but there is a workaround.

By running Suricata in a special inline mode, the interface will
show it's traffic to the OS.

netmap:
 - interface: igb0
 copy-mode: tap
 copy-iface: igb0^
 - interface: igb0^
 copy-mode: tap
 copy-iface: igb0

The copy-mode can be both 'tap' and 'ips', where the former never
drops packets based on the policies in use, and the latter may drop
packets.

Warning

Misconfiguration can lead to connectivity loss. Use
with care.

Note

This set up can also be used to mix NETMAP with firewall
setups like pf or ipfw.

21.5.4.3. VALE switches

VALE is a virtual switch that can be used to create an all virtual
network or a mix of virtual and real nics.

A simple all virtual setup:

vale-ctl -n vi0
vale-ctl -a vale0:vi0
vale-ctl -n vi1
vale-ctl -a vale0:vi1

We now have a virtual switch "vale0" with 2 ports "vi0" and "vi1".

We can start Suricata to listen on one of the ports:

suricata --netmap=vale0:vi1

Then we can

21.5.5. Inline IDS

The inline IDS is almost the same as the IPS setup above, but it will not
enforce drop policies.

netmap:
 - interface: igb0
 copy-mode: tap
 copy-iface: igb1
 - interface: igb1
 copy-mode: tap
 copy-iface: igb0

The only difference with the IPS mode is that the copy-mode setting is
set to tap.

21.6. AF_XDP

AF_XDP (eXpress Data Path) is a high speed capture framework for Linux that was
introduced in Linux v4.18. AF_XDP aims at improving capture performance by
redirecting ingress frames to user-space memory rings, thus bypassing the network
stack.

Note that during af_xdp operation the selected interface cannot be used for
regular network usage.

Further reading:

	https://www.kernel.org/doc/html/latest/networking/af_xdp.html

21.6.1. Compiling Suricata

21.6.1.1. Linux

libxdp and libpbf are required for this feature. When building from source the
development files will also be required.

Example:

dnf -y install libxdp-devel libbpf-devel

This feature is enabled provided the libraries above are installed, the user
does not need to add any additional command line options.

The command line option --disable-af-xdp can be used to disable this
feature.

Example:

./configure --disable-af-xdp

21.6.2. Starting Suricata

21.6.2.1. IDS

Suricata can be started as follows to use af-xdp:

af-xdp:
 suricata --af-xdp=<interface>
 suricata --af-xdp=igb0

In the above example Suricata will start reading from the igb0 network interface.

21.6.3. AF_XDP Configuration

Each of these settings can be configured under af-xdp within the "Configure
common capture settings" section of suricata.yaml configuration file.

The number of threads created can be configured in the suricata.yaml configuration
file. It is recommended to use threads equal to NIC queues/CPU cores.

Another option is to select auto which will allow Suricata to configure the
number of threads based on the number of RSS queues available on the NIC.

With auto selected, Suricata spawns receive threads equal to the number of
configured RSS queues on the interface.

af-xdp:
 threads: <number>
 threads: auto
 threads: 8

21.6.4. Advanced setup

af-xdp capture source will operate using the default configuration settings.
However, these settings are available in the suricata.yaml configuration file.

Available configuration options are:

21.6.4.1. force-xdp-mode

There are two operating modes employed when loading the XDP program, these are:

	XDP_DRV: Mode chosen when the driver supports AF_XDP

	XDP_SKB: Mode chosen when no AF_XDP support is unavailable

XDP_DRV mode is the preferred mode, used to ensure best performance.

af-xdp:
 force-xdp-mode: <value> where: value = <skb|drv|none>
 force-xdp-mode: drv

21.6.4.2. force-bind-mode

During binding the kernel will first attempt to use zero-copy (preferred). If
zero-copy support is unavailable it will fallback to copy mode, copying all
packets out to user space.

af-xdp:
 force-bind-mode: <value> where: value = <copy|zero|none>
 force-bind-mode: zero

For both options, the kernel will attempt the 'preferred' option first and
fallback upon failure. Therefore the default (none) means the kernel has
control of which option to apply. By configuring these options the user
is forcing said option. Note that if enabled, the bind will only attempt
this option, upon failure the bind will fail i.e. no fallback.

21.6.4.3. mem-unaligned

AF_XDP can operate in two memory alignment modes, these are:

	Aligned chunk mode

	Unaligned chunk mode

Aligned chunk mode is the default option which ensures alignment of the
data within the UMEM.

Unaligned chunk mode uses hugepages for the UMEM.
Hugepages start at the size of 2MB but they can be as large as 1GB.
Lower count of pages (memory chunks) allows faster lookup of page entries.
The hugepages need to be allocated on the NUMA node where the NIC and CPU resides.
Otherwise, if the hugepages are allocated only on NUMA node 0 and the NIC is
connected to NUMA node 1, then the application will fail to start.
Therefore, it is recommended to first find out to which NUMA node the NIC is
connected to and only then allocate hugepages and set CPU cores affinity
to the given NUMA node.

Memory assigned per socket/thread is 16MB, so each worker thread requires at least
16MB of free space. As stated above hugepages can be of various sizes, consult the
OS to confirm with cat /proc/meminfo.

Example

8 worker threads * 16Mb = 128Mb
hugepages = 2048 kB
so: pages required = 62.5 (63) pages

See https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt for detailed
description.

To enable unaligned chunk mode:

af-xdp:
 mem-unaligned: <yes/no>
 mem-unaligned: yes

Introduced from Linux v5.11 a SO_PREFER_BUSY_POLL option has been added to
AF_XDP that allows a true polling of the socket queues. This feature has
been introduced to reduce context switching and improve CPU reaction time
during traffic reception.

Enabled by default, this feature will apply the following options, unless
disabled (see below). The following options are used to configure this feature.

21.6.4.4. enable-busy-poll

Enables or disables busy polling.

af-xdp:
 enable-busy-poll: <yes/no>
 enable-busy-poll: yes

21.6.4.5. busy-poll-time

Sets the approximate time in microseconds to busy poll on a blocking receive
when there is no data.

af-xdp:
 busy-poll-time: <time>
 busy-poll-time: 20

21.6.4.6. busy-poll-budget

Budget allowed for batching of ingress frames. Larger values means more
frames can be stored/read. It is recommended to test this for performance.

af-xdp:
 busy-poll-budget: <budget>
 busy-poll-budget: 64

21.6.4.7. Linux tunables

The SO_PREFER_BUSY_POLL option works in concert with the following two Linux
knobs to ensure best capture performance. These are not socket options:

	gro-flush-timeout

	napi-defer-hard-irq

The purpose of these two knobs is to defer interrupts and to allow the
NAPI context to be scheduled from a watchdog timer instead.

The gro-flush-timeout indicates the timeout period for the watchdog
timer. When no traffic is received for gro-flush-timeout the timer will
exit and softirq handling will resume.

The napi-defer-hard-irq indicates the number of queue scan attempts
before exiting to interrupt context. When enabled, the softirq NAPI context will
exit early, allowing busy polling.

af-xdp:
 gro-flush-timeout: 2000000
 napi-defer-hard-irq: 2

21.6.5. Hardware setup

21.6.5.1. Intel NIC setup

Intel network cards don't support symmetric hashing but it is possible to emulate
it by using a specific hashing function.

Follow these instructions closely for desired result:

ifconfig eth3 down

Enable symmetric hashing

ifconfig eth3 down
ethtool -L eth3 combined 16 # if you have at least 16 cores
ethtool -K eth3 rxhash on
ethtool -K eth3 ntuple on
ifconfig eth3 up
./set_irq_affinity 0-15 eth3
ethtool -X eth3 hkey 6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A equal 16
ethtool -x eth3
ethtool -n eth3

In the above setup you are free to use any recent set_irq_affinity script. It is available in any Intel x520/710 NIC sources driver download.

NOTE:
We use a special low entropy key for the symmetric hashing. More info about the research for symmetric hashing set up [http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf]

21.6.5.2. Disable any NIC offloading

Suricata shall disable NIC offloading based on configuration parameter disable-offloading, which is enabled by default.
See capture section of yaml file.

capture:
 # disable NIC offloading. It's restored when Suricata exits.
 # Enabled by default.
 #disable-offloading: false

21.6.5.3. Balance as much as you can

Try to use the network card's flow balancing as much as possible

for proto in tcp4 udp4 ah4 esp4 sctp4 tcp6 udp6 ah6 esp6 sctp6; do
 /sbin/ethtool -N eth3 rx-flow-hash $proto sd
done

This command triggers load balancing using only source and destination IPs. This may be not optimal
in terms of load balancing fairness but this ensures all packets of a flow will reach the same thread
even in the case of IP fragmentation (where source and destination port will not be available for
some fragmented packets).

21.7. DPDK

21.7.1. Introduction

The Data Plane Development Kit (DPDK) is a set of libraries and drivers that
enhance and speed up packet processing in the data plane. Its primary use is to
provide faster packet processing by bypassing the kernel network stack, which
can provide significant performance improvements. For detailed instructions on
how to setup DPDK, please refer to Suricata.yaml to
learn more about the basic setup for DPDK.
The following sections contain examples of how to set up DPDK and Suricata for
more obscure use-cases.

21.7.2. Hugepage analysis

Suricata can analyse utilized hugepages on the system. This can be particularly
beneficial when there's a potential overallocation of hugepages.
The hugepage analysis is designed to examine the hugepages in use and
provide recommendations on an adequate number of hugepages. This then ensures
Suricata operates optimally while leaving sufficient memory for other
applications on the system. The analysis works by comparing snapshots of the
hugepages before and after Suricata is initialized. After the initialization,
no more hugepages are allocated by Suricata.
The hugepage analysis can be seen in the Perf log level and is printed out
during the Suricata start. It is only printed when Suricata detects some
disrepancies in the system related to hugepage allocation.

It's recommended to perform this analysis from a "clean" state -
that is a state when all your hugepages are free. It is especially recommended
when no other hugepage-dependent applications are running on your system.
This can be checked in one of two ways:

global check
cat /proc/meminfo

HugePages_Total: 1024
HugePages_Free: 1024

per-numa check depends on NUMA node ID, hugepage size,
and nr_hugepages/free_hugepages - e.g.:
cat /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages

After the termination of Suricata and other hugepage-related applications,
if the count of free hugepages is not equal with the total number of hugepages,
it indicates some hugepages were not freed completely.
This can be fixed by removing DPDK-related files from the hugepage-mounted
directory (filesystem).
It's important to exercise caution while removing hugepages, especially when
other hugepage-dependent applications are in operation, as this action will
disrupt their memory functionality.
Removing the DPDK files from the hugepage directory can often be done as:

sudo rm -rf /dev/hugepages/rtemap_*

To check where hugepages are mounted:
dpdk-hugepages.py -s
or
mount | grep huge

21.7.3. Bond interface

Link Bonding Poll Mode Driver (Bond PMD), is a software
mechanism provided by the Data Plane Development Kit (DPDK) for aggregating
multiple physical network interfaces into a single logical interface.
Bonding can be e.g. used to:

	deliver bidirectional flows of tapped interfaces to the same worker,

	establish redundancy by monitoring multiple links,

	improve network performance by load-balancing traffic across multiple links.

Bond PMD is essentially a virtual driver that manipulates with multiple
physical network interfaces. It can operate in multiple modes as described
in the DPDK docs [https://doc.dpdk.org/guides/prog_guide/link_bonding_poll_mode_drv_lib.html]
The individual bonding modes can accustom user needs.
DPDK Bond PMD has a requirement that the aggregated interfaces must be
the same device types - e.g. both physical ports run on mlx5 PMD.
Bond PMD supports multiple queues and therefore can work in workers runmode.
It should have no effect on traffic distribution of the individual ports and
flows should be distributed by physical ports according to the RSS
configuration the same way as if they would be configured independently.

As an example of Bond PMD, we can setup Suricata to monitor 2 interfaces
that receive TAP traffic from optical interfaces. This means that Suricata
receive one direction of the communication on one interface and the other
direction is received on the other interface.

...
dpdk:
 eal-params:
 proc-type: primary
 vdev: 'net_bonding0,mode=0,slave=0000:04:00.0,slave=0000:04:00.1'

 # DPDK capture support
 # RX queues (and TX queues in IPS mode) are assigned to cores in 1:1 ratio
 interfaces:
 - interface: net_bonding0 # PCIe address of the NIC port
 # Threading: possible values are either "auto" or number of threads
 # - auto takes all cores
 # in IPS mode it is required to specify the number of cores and the
 # numbers on both interfaces must match
 threads: 4
...

In the DPDK part of suricata.yaml we have added a new parameter to the
eal-params section for virtual devices - vdev.
DPDK Environment Abstraction Layer (EAL) can initialize some virtual devices
during the initialization of EAL.
In this case, EAL creates a new device of type net_bonding. Suffix of
net_bonding signifies the name of the interface (in this case the zero).
Extra arguments are passed after the device name, such as the bonding mode
(mode=0). This is the round-robin mode as is described in the DPDK
documentation of Bond PMD.
Members (slaves) of the net_bonding0 interface are appended after
the bonding mode parameter.

When the device is specified within EAL parameters, it can be used within
Suricata interfaces list. Note that the list doesn't contain PCIe addresses
of the physical ports but instead the net_bonding0 interface.
Threading section is also adjusted according to the items in the interfaces
list by enablign set-cpu-affinity and listing CPUs that should be used in
management and worker CPU set.

...
threading:
 set-cpu-affinity: yes
 cpu-affinity:
 - management-cpu-set:
 cpu: [0] # include only these CPUs in affinity settings
 - receive-cpu-set:
 cpu: [0] # include only these CPUs in affinity settings
 - worker-cpu-set:
 cpu: [2,4,6,8]
...

21.7.4. Interrupt (power-saving) mode

The DPDK is traditionally recognized for its polling mode operation.
In this mode, CPU cores are continuously querying for packets from
the Network Interface Card (NIC). While this approach offers benefits like
reduced latency and improved performance, it might not be the most efficient
in scenarios with sporadic or low traffic.
The constant polling can lead to unnecessary CPU consumption.
To address this, DPDK offers an interrupt mode.

The obvious advantage that interrupt mode brings is power efficiency.
So far in our tests, we haven't observed a decrease in performance. Suricata's
performance has actually seen a slight improvement.
The (IPS runmode) users should be aware that interrupts can
introduce non-deterministic latency. However, the latency should never be
higher than in other (e.g. AF_PACKET/AF_XDP/...) capture methods.

Interrupt mode in DPDK can be configured on a per-interface basis.
This allows for a hybrid setup where some workers operate in polling mode,
while others utilize the interrupt mode.
The configuration for the interrupt mode can be found and modified in the
DPDK section of the suricata.yaml file.

Below is a sample configuration that demonstrates how to enable the interrupt mode for a specific interface:

...
dpdk:
 eal-params:
 proc-type: primary

 interfaces:
 - interface: 0000:3b:00.0
 interrupt-mode: true
 threads: 4

22. Interacting via Unix Socket

22.1. Introduction

Suricata can listen to a unix socket and accept commands from the user. The
exchange protocol is JSON-based and the format of the message is generic.

An example script called suricatasc is provided in the source and installed
automatically when installing/updating Suricata.

The unix socket is always enabled by default.

You'll need to have JSON support in Python:

	python-simplejson - simple, fast, extensible JSON encoder/decoder for Python

Debian/Ubuntu:

apt-get install python-simplejson

The creation of the socket is managed by setting enabled to 'yes' or 'auto'
under unix-command in Suricata YAML configuration file:

unix-command:
 enabled: yes
 #filename: custom.socket # use this to specify an alternate file

The filename variable can be used to set an alternate socket
filename. The filename is always relative to the local state base
directory.

Clients are implemented for some programming languages and can be used as code
example to write custom scripts:

	Python: https://github.com/OISF/suricata/blob/master/python/suricata/sc/suricatasc.py (provided with Suricata and used in this document)

	Perl: https://github.com/aflab/suricatac (a simple Perl client with interactive mode)

	C: https://github.com/regit/SuricataC (a Unix socket mode client in C without interactive mode)

22.2. Commands in standard running mode

Runnable script for suricatasc is available in python/bin directory of suricata. You can
run it with the following commands.

cd python
sudo ./bin/suricatasc

The set of existing commands is the following:

	command-list: list available commands

	shutdown: shutdown Suricata

	iface-list: list interfaces where Suricata is sniffing packets

	iface-stat: list statistics for an interface

	help: alias of command-list

	version: display Suricata's version

	uptime: display Suricata's uptime

	running-mode: display running mode (workers, autofp, simple)

	capture-mode: display capture system used

	conf-get: get configuration item (see example below)

	dump-counters: dump Suricata's performance counters

	reopen-log-files: reopen log files (to be run after external log rotation)

	ruleset-reload-rules: reload ruleset and wait for completion

	ruleset-reload-nonblocking: reload ruleset and proceed without waiting

	ruleset-reload-time: return time of last reload

	ruleset-stats: display the number of rules loaded and failed

	ruleset-failed-rules: display the list of failed rules

	memcap-set: update memcap value of the specified item

	memcap-show: show memcap value of the specified item

	memcap-list: list all memcap values available

	reload-rules: alias of ruleset-reload-rules

	register-tenant-handler: register a tenant handler with the specified mapping

	unregister-tenant-handler: unregister a tenant handler with the specified mapping

	register-tenant: register tenant with a particular ID and filename

	unregister-tenant: unregister tenant with a particular ID

	reload-tenant: reload a tenant with specified ID and filename

	add-hostbit: add hostbit on a host IP with a particular bit name and time of expiry

	remove-hostbit: remove hostbit on a host IP with specified bit name

	list-hostbit: list hostbit for a particular host IP

You can access these commands with the provided example suricatasc script.
A typical session with suricatasc looks like:

suricatasc
Command list: shutdown, command-list, help, version, uptime, running-mode, capture-mode, conf-get, dump-counters, iface-stat, iface-list, quit
>>> iface-list
Success: {'count': 2, 'ifaces': ['eth0', 'eth1']}
>>> iface-stat eth0
Success: {'pkts': 378, 'drop': 0, 'invalid-checksums': 0}
>>> conf-get unix-command.enabled
Success:
"yes"

22.3. Commands on the cmd prompt

You can use suricatasc directly on the command prompt:

root@debian64:~# suricatasc -c version
{'message': '5.0.3 RELEASE', 'return': 'OK'}
root@debian64:~#
root@debian64:~# suricatasc -c uptime
{'message': 35264, 'return': 'OK'}
root@debian64:~#

NOTE:
You need to quote commands with more than one argument:

root@debian64:~# suricatasc -c "iface-stat eth0"
{'message': {'pkts': 5110429, 'drop': 0, 'invalid-checksums': 0}, 'return': 'OK'}
root@debian64:~#

22.4. PCAP processing mode

This mode is one of main motivations behind this code. The idea is to
be able to provide different pcap files to Suricata without
having to restart Suricata for each file. This saves time since
you don't need to wait for the signature engine to initialize.

To use this mode, start Suricata with your preferred configuration YAML file and
provide the option --unix-socket as argument:

suricata -c /etc/suricata-full-sigs.yaml --unix-socket

It is also possible to specify the socket filename as an argument:

suricata --unix-socket=custom.socket

In this last case, you will need to provide the complete path to the
socket to suricatasc. To do so, you need to pass the filename as
first argument of suricatasc:

suricatasc custom.socket

Once Suricata is started, you can use suricatasc to connect to the
command socket and provide different pcap files:

root@tiger:~# suricatasc
>>> pcap-file /home/benches/file1.pcap /tmp/file1
Success: Successfully added file to list
>>> pcap-file /home/benches/file2.pcap /tmp/file2
Success: Successfully added file to list
>>> pcap-file-continuous /home/pcaps /tmp/dirout
Success: Successfully added file to list

You can add multiple files without waiting for each to be processed; they will be
sequentially processed and the generated log/alert files will be put
into the directory specified as second argument of the pcap-file
command. You need to provide an absolute path to the files and directory
as Suricata doesn't know from where the script has been run. If you pass
a directory instead of a file, all files in the directory will be processed. If
using pcap-file-continuous and passing in a directory, the directory will
be monitored for new files being added until you use pcap-interrupt or
delete/move the directory.

To display how many files are waiting to get processed, you can do:

>>> pcap-file-number
Success: 3

To display the list of queued files, do:

>>> pcap-file-list
Success: {'count': 2, 'files': ['/home/benches/file1.pcap', '/home/benches/file2.pcap']}

To display current processed file:

>>> pcap-current
Success:
"/tmp/test.pcap"

When passing in a directory, you can see last processed time (modified time of last file) in milliseconds since epoch:

>>> pcap-last-processed
Success:
1509138964000

To interrupt directory processing which terminates the current state:

>>> pcap-interrupt
Success:
"Interrupted"

22.5. Build your own client

The protocol is documented in the following page
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Unix_Socket#Protocol

The following session show what is sent (SND) and received (RCV) by
the server. Initial negotiation is the following:

suricatasc
SND: {"version": "0.1"}
RCV: {"return": "OK"}

Once this is done, commands can be issued:

>>> iface-list
SND: {"command": "iface-list"}
RCV: {"message": {"count": 1, "ifaces": ["wlan0"]}, "return": "OK"}
Success: {'count': 1, 'ifaces': ['wlan0']}
>>> iface-stat wlan0
SND: {"command": "iface-stat", "arguments": {"iface": "wlan0"}}
RCV: {"message": {"pkts": 41508, "drop": 0, "invalid-checksums": 0}, "return": "OK"}
Success: {'pkts': 41508, 'drop': 0, 'invalid-checksums': 0}

In pcap-file mode, this gives:

>>> pcap-file /home/eric/git/oisf/benches/sandnet.pcap /tmp/bench
SND: {"command": "pcap-file", "arguments": {"output-dir": "/tmp/bench", "filename": "/home/eric/git/oisf/benches/sandnet.pcap"}}
RCV: {"message": "Successfully added file to list", "return": "OK"}
Success: Successfully added file to list
>>> pcap-file-number
SND: {"command": "pcap-file-number"}
RCV: {"message": 1, "return": "OK"}
>>> pcap-file-list
SND: {"command": "pcap-file-list"}
RCV: {"message": {"count": 1, "files": ["/home/eric/git/oisf/benches/sandnet.pcap"]}, "return": "OK"}
Success: {'count': 1, 'files': ['/home/eric/git/oisf/benches/sandnet.pcap']}
>>> pcap-file-continuous /home/eric/git/oisf/benches /tmp/bench 0 true
SND: {"command": "pcap-file", "arguments": {"output-dir": "/tmp/bench", "filename": "/home/eric/git/oisf/benches/sandnet.pcap", "tenant": 0, "delete-when-done": true}}
RCV: {"message": "Successfully added file to list", "return": "OK"}
Success: Successfully added file to list

There is one thing to be careful about: a Suricata message is sent in
multiple send operations. This result in possible incomplete read on
client side. The worse workaround is to sleep a bit before trying a
recv call. An other solution is to use non blocking socket and retry a
recv if the previous one has failed.

Pcap-file json format is:

{
 "command": "pcap-file",
 "arguments": {
 "output-dir": "path to output dir",
 "filename": "path to file or directory to run",
 "tenant": 0,
 "continuous": false,
 "delete-when-done": false
 }
}

output-dir and filename are required. tenant is optional and should be a
number, indicating which tenant the file or directory should run under. continuous
is optional and should be true/false, indicating that file or directory should be
run until pcap-interrupt is sent or ctrl-c is invoked. delete-when-done is
optional and should be true/false, indicating that the file or files under the
directory specified by filename should be deleted when processing is complete.
delete-when-done defaults to false, indicating files will be kept after
processing.

23. 3rd Party Integration

	23.1. Symantec SSL Visibility (BlueCoat)
	23.1.1. Appliance Software Version

	23.1.2. Magic Markers

	23.1.3. TCP handling

	23.1.4. TLS matching in Suricata

	23.1.5. IPS

23.1. Symantec SSL Visibility (BlueCoat)

As Suricata itself cannot decrypt SSL/TLS traffic, some organizations use
a decryption product to handle this. This document will offer some advice
on using Suricata with the Symantec SSL Visibility appliance (formerly
known as BlueCoat).

23.1.1. Appliance Software Version

The appliance comes with two major software version options. The 3.x and 4.x
series. Suricata works best with the 4.x series.

TLS1.3 is only properly supported in the 4.x version of the appliance
software.

23.1.2. Magic Markers

The appliance has an indicator that data is decrypted. This is done using
a special magic source MAC address, or using a special VLAN header. Since
Suricata can use VLANs as part of flow tracking, it is recommended to use
the source MAC method.

In the 3.x version of the software these markers are always there, the
config just allows setting which type will be used. In the 4.x software the
markers are optional.

23.1.3. TCP handling

In the 3.x software, a bit of care is required in TCP stream reassembly
handling in Suricata. The decrypted traffic is presented to the IDS as
TCP data packets, that are not ack'd as regularly as would be expected
in a regular TCP session. A large TCP window is used to not violate the
TCP specs. Since in IDS mode Suricata waits for ACKs for much of its
processing, this can lead to delays in detection and logging, as well
as increased resource usage due to increased data buffering.

To avoid this, enable the 'stream.inline' mode, which processed data
segments as they come in without waiting for the ACKs.

The 4.x software sends more regular ACKs and does not need any special
handling on the Suricata side.

23.1.4. TLS matching in Suricata

The appliance takes care of the TLS handling and decryption, presenting
only the decrypted data to Suricata. This means that Suricata will not
see the TLS handshake. As a consequence of this, Suricata cannot inspect
the TLS handshake or otherwise process it. This means that for decrypted
TLS sessions, Suricata will not do any TLS keyword inspection (such as
fingerprint matching and ja3), TLS logging or TLS certificate extraction.

If it is important to match on and/or log such information as well, the
appliance facilities for matching and logging themselves will have to be
used.

For TLS traffic where the appliance security policy does not lead to
decryption of the traffic, the TLS handshake is presented to Suricata
for analysis and logging.

23.1.5. IPS

When using Suricata in IPS mode with the appliance, some things will
have to be considered:

	if Suricata DROPs a packet in the decrypted traffic, this will be seen
by the appliance after which it will trigger a RST session teardown.

	if a packet takes more than one second to process, it will automatically
be considered a DROP by the appliance. This should not happen in normal
traffic, but with very inefficient Lua scripts this could perhaps
happen. The appliance can also be configured to wait for 5 seconds.

	When using the Suricata 'replace' keyword to modify data, be aware
that the 3.x appliance software will not pass the modification on to
the destination so this will not have any effect. The 4.x appliance
software does support passing on modifications that were made to the
unencrypted text, by default this feature is disabled but you can
enable it if you want modifications to be passed on to the destination
in the re-encrypted stream. Due to how Suricata works, the size of
the payloads cannot be changed.

24. Man Pages

	24.1. Suricata

	24.2. Suricata Socket Control

	24.3. Suricata Control

	24.4. Suricata Control Filestore

24.1. Suricata

24.1.1. SYNOPSIS

suricata [OPTIONS] [BPF FILTER]

24.1.2. DESCRIPTION

suricata is a high performance Network IDS, IPS and Network Security
Monitoring engine. Open Source and owned by a community run non-profit
foundation, the Open Information Security Foundation (OISF).

suricata can be used to analyze live traffic and pcap files. It can
generate alerts based on rules. suricata will generate traffic logs.

When used with live traffic suricata can be passive or active. Active
modes are: inline in a L2 bridge setup, inline with L3 integration with
host firewall (NFQ, IPFW, WinDivert), or out of band using active responses.

24.1.3. OPTIONS

	
-h

	Display a brief usage overview.

	
-V

	Displays the version of Suricata.

	
-c <path>

	Path to configuration file.

	
--include <path>

	Additional configuration files to include. Multiple additional
configuration files can be provided and will be included in the
order specified on the command line. These additional configuration
files are loaded as if they existed at the end of the main
configuration file.

Example including one additional file:

--include /etc/suricata/other.yaml

Example including more than one additional file:

--include /etc/suricata/other.yaml --include /etc/suricata/extra.yaml

	
-T

	Test configuration.

	
-v

	Increase the verbosity of the Suricata application logging by
increasing the log level from the default. This option can be
passed multiple times to further increase the verbosity.

	-v: INFO

	-vv: PERF

	-vvv: CONFIG

	-vvvv: DEBUG

This option will not decrease the log level set in the
configuration file if it is already more verbose than the level
requested with this option.

	
-r <path>

	Run in pcap offline mode (replay mode) reading files from pcap file. If
<path> specifies a directory, all files in that directory will be processed
in order of modified time maintaining flow state between files.

	
--pcap-file-continuous

	Used with the -r option to indicate that the mode should stay alive until
interrupted. This is useful with directories to add new files and not reset
flow state between files.

	
--pcap-file-recursive

	Used with the -r option when the path provided is a directory. This option
enables recursive traversal into subdirectories to a maximum depth of 255.
This option cannot be combined with --pcap-file-continuous. Symlinks are
ignored.

	
--pcap-file-delete

	Used with the -r option to indicate that the mode should delete pcap files
after they have been processed. This is useful with pcap-file-continuous to
continuously feed files to a directory and have them cleaned up when done. If
this option is not set, pcap files will not be deleted after processing.

	
-i <interface>

	After the -i option you can enter the interface card you would like
to use to sniff packets from. This option will try to use the best
capture method available. Can be used several times to sniff packets from
several interfaces.

	
--pcap[=<device>]

	Run in PCAP mode. If no device is provided the interfaces
provided in the pcap section of the configuration file will be
used.

	
--af-packet[=<device>]

	Enable capture of packet using AF_PACKET on Linux. If no device is
supplied, the list of devices from the af-packet section in the
yaml is used.

	
--af-xdp[=<device>]

	Enable capture of packet using AF_XDP on Linux. If no device is
supplied, the list of devices from the af-xdp section in the
yaml is used.

	
-q <queue id>

	Run inline of the NFQUEUE queue ID provided. May be provided
multiple times.

	
-s <filename.rules>

	With the -s option you can set a file with signatures, which will
be loaded together with the rules set in the yaml.

It is possible to use globbing when specifying rules files.
For example, -s '/path/to/rules/*.rules'

	
-S <filename.rules>

	With the -S option you can set a file with signatures, which will
be loaded exclusively, regardless of the rules set in the yaml.

It is possible to use globbing when specifying rules files.
For example, -S '/path/to/rules/*.rules'

	
-l <directory>

	With the -l option you can set the default log directory. If you
already have the default-log-dir set in yaml, it will not be used
by Suricata if you use the -l option. It will use the log dir that
is set with the -l option. If you do not set a directory with
the -l option, Suricata will use the directory that is set in yaml.

	
-D

	Normally if you run Suricata on your console, it keeps your console
occupied. You can not use it for other purposes, and when you close
the window, Suricata stops running. If you run Suricata as daemon
(using the -D option), it runs at the background and you will be
able to use the console for other tasks without disturbing the
engine running.

	
--runmode <runmode>

	With the --runmode option you can set the runmode that you would
like to use. This command line option can override the yaml runmode
option.

Runmodes are: workers, autofp and single.

For more information about runmodes see Runmodes in the user guide.

	
-F <bpf filter file>

	Use BPF filter from file.

	
-k [all|none]

	Force (all) the checksum check or disable (none) all checksum
checks.

	
--user=<user>

	Set the process user after initialization. Overrides the user
provided in the run-as section of the configuration file.

	
--group=<group>

	Set the process group to group after initialization. Overrides the
group provided in the run-as section of the configuration file.

	
--pidfile <file>

	Write the process ID to file. Overrides the pid-file option in
the configuration file and forces the file to be written when not
running as a daemon.

	
--init-errors-fatal

	Exit with a failure when errors are encountered loading signatures.

	
--strict-rule-keywords[=all|<keyword>|<keywords(csv)]

	Applies to: classtype, reference and app-layer-event.

By default missing reference or classtype values are warnings and
not errors. Additionally, loading outdated app-layer-event events are
also not treated as errors, but as warnings instead.

If this option is enabled these warnings are considered errors.

If no value, or the value 'all', is specified, the option applies to
all of the keywords above. Alternatively, a comma separated list can
be supplied with the keyword names it should apply to.

	
--disable-detection

	Disable the detection engine.

	
--disable-hashing

	Disable support for hash algorithms such as md5, sha1 and sha256.

By default hashing is enabled. Disabling hashing will also disable some
Suricata features such as the filestore, ja3, and rule keywords that use hash
algorithms.

	
--dump-config

	Dump the configuration loaded from the configuration file to the
terminal and exit.

	
--dump-features

	Dump the features provided by Suricata modules and exit. Features
list (a subset of) the configuration values and are intended to
assist with comparing provided features with those required by
one or more rules.

	
--build-info

	Display the build information the Suricata was built with.

	
--list-app-layer-protos

	List all supported application layer protocols.

	
--list-keywords=[all|csv|<kword>]

	List all supported rule keywords.

	
--list-runmodes

	List all supported run modes.

	
--set <key>=<value>

	Set a configuration value. Useful for overriding basic
configuration parameters. For example, to change the default log
directory:

--set default-log-dir=/var/tmp

This option cannot be used to add new entries to a list in the
configuration file, such as a new output. It can only be used to
modify a value in a list that already exists.

For example, to disable the eve-log in the default
configuration file:

--set outputs.1.eve-log.enabled=no

Also note that the index values may change as the suricata.yaml
is updated.

See the output of --dump-config for existing values that could
be modified with their index.

	
--engine-analysis

	Print reports on analysis of different sections in the engine and
exit. Please have a look at the conf parameter engine-analysis on
what reports can be printed

	
--unix-socket=<file>

	Use file as the Suricata unix control socket. Overrides the
filename provided in the unix-command section of the
configuration file.

	
--reject-dev=<device>

	Use device to send out RST / ICMP error packets with
the reject keyword.

	
--pcap-buffer-size=<size>

	Set the size of the PCAP buffer (0 - 2147483647).

	
--netmap[=<device>]

	Enable capture of packet using NETMAP on FreeBSD or Linux. If no
device is supplied, the list of devices from the netmap section
in the yaml is used.

	
--pfring[=<device>]

	Enable PF_RING packet capture. If no device provided, the devices in
the Suricata configuration will be used.

	
--pfring-cluster-id <id>

	Set the PF_RING cluster ID.

	
--pfring-cluster-type <type>

	Set the PF_RING cluster type (cluster_round_robin, cluster_flow).

	
-d <divert-port>

	Run inline using IPFW divert mode.

	
--dag <device>

	Enable packet capture off a DAG card. If capturing off a specific
stream the stream can be select using a device name like
"dag0:4". This option may be provided multiple times read off
multiple devices and/or streams.

	
--napatech

	Enable packet capture using the Napatech Streams API.

	
--erf-in=<file>

	Run in offline mode reading the specific ERF file (Endace
extensible record format).

	
--simulate-ips

	Simulate IPS mode when running in a non-IPS mode.

24.1.4. OPTIONS FOR DEVELOPERS

	
-u

	Run the unit tests and exit. Requires that Suricata be configured
with --enable-unittests.

	
-U, --unittest-filter=REGEX

	With the -U option you can select which of the unit tests you want
to run. This option uses REGEX. Example of use: suricata -u -U
http

	
--list-unittests

	Lists available unit tests.

	
--fatal-unittests

	Enables fatal failure on a unit test error. Suricata will exit
instead of continuing more tests.

	
--unittests-coverage

	Display unit test coverage report.

24.1.5. SIGNALS

Suricata will respond to the following signals:

SIGUSR2

Causes Suricata to perform a live rule reload.

SIGHUP

Causes Suricata to close and re-open all log files. This can be
used to re-open log files after they may have been moved away by
log rotation utilities.

24.1.6. FILES AND DIRECTORIES

	/etc/suricata/suricata.yaml
	Default location of the Suricata configuration file.

	/var/log/suricata
	Default Suricata log directory.

24.1.7. EXAMPLES

To capture live traffic from interface eno1:

suricata -i eno1

To analyze a pcap file and output logs to the CWD:

suricata -r /path/to/capture.pcap

To capture using AF_PACKET and override the flow memcap setting from the suricata.yaml:

suricata --af-packet --set flow.memcap=1gb

To analyze a pcap file with a custom rule file:

suricata -r /pcap/to/capture.pcap -S /path/to/custom.rules

24.1.8. BUGS

Please visit Suricata's support page for information about submitting
bugs or feature requests.

24.1.9. NOTES

	Suricata Home Page

https://suricata.io/

	Suricata Support Page

https://suricata.io/support/

24.2. Suricata Socket Control

24.2.1. SYNOPSIS

suricatasc

24.2.2. DESCRIPTION

Suricata socket control tool

24.2.3. COMMANDS

	
shutdown

	Shut Suricata instance down.

	
command-list

	List available commands.

	
help

	Get help about the available commands.

	
version

	Print the version of Suricata instance.

	
uptime

	Display the uptime of Suricata.

	
running-mode

	Display running mode. This can either be workers, autofp or single.

	
capture-mode

	Display the capture mode. This can be either of PCAP_DEV,
PCAP_FILE, PFRING(DISABLED), NFQ, NFLOG, IPFW, ERF_FILE,
ERF_DAG, AF_PACKET_DEV, NETMAP(DISABLED), UNIX_SOCKET or
WINDIVERT(DISABLED).

	
conf-get <variable>

	Get configuration value for a given variable. Variable to be provided can be
either of the configuration parameters that are written in suricata.yaml.

	
dump-counters

	Dump Suricata's performance counters.

	
ruleset-reload-rules

	Reload the ruleset and wait for completion.

	
reload-rules

	Alias .. describe ruleset-reload-rules.

	
ruleset-reload-nonblocking

	Reload ruleset and proceed without waiting.

	
ruleset-reload-time

	Return time of last reload.

	
ruleset-stats

	Display the number of rules loaded and failed.

	
ruleset-failed-rules

	Display the list of failed rules.

	
register-tenant-handler <id> <htype> [hargs]

	Register a tenant handler with the specified mapping.

	
unregister-tenant-handler <id> <htype> [hargs]

	Unregister a tenant handler with the specified mapping.

	
register-tenant <id> <filename>

	Register tenant with a particular ID and filename.

	
reload-tenant <id> [filename]

	Reload a tenant with specified ID. A filename to a tenant yaml can be
specified. If it is omitted, the original yaml that was used to load
/ last reload the tenant is used.

	
reload-tenants

	Reload all registered tenants by reloading their yaml.

	
unregister-tenant <id>

	Unregister tenant with a particular ID.

	
add-hostbit <ipaddress> <hostbit> <expire>

	Add hostbit on a host IP with a particular bit name and time of expiry.

	
remove-hostbit <ipaddress> <hostbit>

	Remove hostbit on a host IP with specified IP address and bit name.

	
list-hostbit <ipaddress>

	List hostbit for a particular host IP.

	
reopen-log-files

	Reopen log files to be run after external log rotation.

	
memcap-set <config> <memcap>

	Update memcap value of a specified item.

	
memcap-show <config>

	Show memcap value of a specified item.

	
memcap-list

	List all memcap values available.

24.2.4. PCAP MODE COMMANDS

	
pcap-file <file> <dir> [tenant] [continuous] [delete-when-done]

	Add pcap files to Suricata for sequential processing. The generated
log/alert files will be put into the directory specified as second argument.
Make sure to provide absolute path to the files and directory. It is
acceptable to add multiple files without waiting the result.

	
pcap-file-continuous <file> <dir> [tenant] [delete-when-done]

	Add pcap files to Suricata for sequential processing. Directory will be
monitored for new files being added until there is a use of
pcap-interrupt or directory is moved or deleted.

	
pcap-file-number

	Number of pcap files waiting to get processed.

	
pcap-file-list

	List of queued pcap files.

	
pcap-last-processed

	Processed time of last file in milliseconds since epoch.

	
pcap-interrupt

	Terminate the current state by interrupting directory processing.

	
pcap-current

	Currently processed file.

24.2.5. BUGS

Please visit Suricata's support page for information about submitting
bugs or feature requests.

24.2.6. NOTES

	Suricata Home Page

https://suricata.io/

	Suricata Support Page

https://suricata.io/support/

24.3. Suricata Control

24.3.1. SYNOPSIS

suricatactl [-h] <command> [<args>]

24.3.2. DESCRIPTION

This tool helps control Suricata's features.

24.3.3. OPTIONS

	
-h

	

Get help about the available commands.

24.3.4. COMMANDS

suricatactl-filestore(1)

24.3.5. BUGS

Please visit Suricata's support page for information about submitting
bugs or feature requests.

24.3.6. NOTES

	Suricata Home Page

https://suricata.io/

	Suricata Support Page

https://suricata.io/support/

24.4. Suricata Control Filestore

24.4.1. SYNOPSIS

suricatactl filestore [-h] <command> [<args>]

24.4.2. DESCRIPTION

This command lets you perform certain operations on Suricata filestore.

24.4.3. OPTIONS

	
-h

	

Get help about the available commands.

24.4.4. COMMANDS

prune [-h|--help] [-n|--dry-run] [-v|verbose] [-q|--quiet] -d <DIRECTORY>
--age <AGE>

Prune files older than a given age.

-d <DIRECTORY> | --directory <DIRECTORY> is a required argument which tells
that user must provide the suricata filestore directory on which all the
specified operations are to be performed.

--age <AGE> is a required argument asking the age of the files. Files older
than the age mentioned with this option shall be pruned.

-h | --help is an optional argument with which you can ask for help about the
command usage.

-n | --dry-run is an optional argument which makes the utility print only what
would happen

-v | --verbose is an optional argument to increase the verbosity of command.

-q | --quiet is an optional argument that helps log errors and warnings only
and keep silent about everything else.

24.4.5. BUGS

Please visit Suricata's support page for information about submitting
bugs or feature requests.

24.4.6. NOTES

	Suricata Home Page

https://suricata.io/

	Suricata Support Page

https://suricata.io/support/

25. Acknowledgements

Thank you to the following for their Wiki and documentation
contributions that have made this user guide possible:

	Andreas Herz

	Andreas Moe

	Anne-Fleur Koolstra

	Christophe Vandeplas

	Darren Spruell

	David Cannings

	David Diallo

	David Wharton

	Eric Leblond

	god lol

	Haris Haq

	Ignacio Sanchez

	Jason Ish

	Jason Taylor

	Josh Smith

	Juliana Fajardini

	Ken Steele

	Les Syv

	Lukas Sismis

	Mark Solaris

	Martin Holste

	Mats Klepsland

	Matt Jonkman

	Michael Bentley

	Michael Hrishenko

	Nathan Jimerson

	Nicolas Merle

	Peter Manev

	Philipp Buehler

	Philippe Antoine

	Ralph Broenink

	Rob MacGregor

	Russel Fulton

	Shivani Bhardwaj

	Victor Julien

	Vincent Fang

	Zach Rasmor

26. Licenses

	26.1. GNU General Public License

	26.2. Creative Commons Attribution-NonCommercial 4.0 International Public License

26.3. Suricata Source Code

The Suricata source code is licensed under version 2 of the
GNU General Public License.

26.4. Suricata Documentation

The Suricata documentation (this documentation) is licensed under the
Creative Commons Attribution-NonCommercial 4.0 International Public License.

26.1. GNU General Public License

Version 2, June 1991
Copyright © 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

26.1.1. Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

26.1.2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

	a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

	b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

	c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

	a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

	b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

	c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

26.1.3. NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

26.1.4. How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w` and `show c` should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c`; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

26.2. Creative Commons Attribution-NonCommercial 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution-NonCommercial 4.0 International Public License ("Public License"). To the extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions.

26.2.1. Section 1 – Definitions.

	Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon the Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording, Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving image.

	Adapter's License means the license You apply to Your Copyright and Similar Rights in Your contributions to Adapted Material in accordance with the terms and conditions of this Public License.

	Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

	Effective Technological Measures means those measures that, in the absence of proper authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

	Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

	Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied this Public License.

	Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that the Licensor has authority to license.

	Licensor means the individual(s) or entity(ies) granting rights under this Public License.

	NonCommercial means not primarily intended for or directed towards commercial advantage or monetary compensation. For purposes of this Public License, the exchange of the Licensed Material for other material subject to Copyright and Similar Rights by digital file-sharing or similar means is NonCommercial provided there is no payment of monetary compensation in connection with the exchange.

	Share means to provide material to the public by any means or process that requires permission under the Licensed Rights, such as reproduction, public display, public performance, distribution, dissemination, communication, or importation, and to make material available to the public including in ways that members of the public may access the material from a place and at a time individually chosen by them.

	Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world.

	You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corresponding meaning.

26.2.2. Section 2 – Scope.

	License grant.

	Subject to the terms and conditions of this Public License, the Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed Rights in the Licensed Material to:

	reproduce and Share the Licensed Material, in whole or in part, for NonCommercial purposes only; and

	produce, reproduce, and Share Adapted Material for NonCommercial purposes only.

	Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply to Your use, this Public License does not apply, and You do not need to comply with its terms and conditions.

	Term. The term of this Public License is specified in Section 6(a).

	Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the Licensed Rights in all media and formats whether now known or hereafter created, and to make technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right or authority to forbid You from making technical modifications necessary to exercise the Licensed Rights, including technical modifications necessary to circumvent Effective Technological Measures. For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4) never produces Adapted Material.

	Downstream recipients.

	Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms and conditions of this Public License.

	No downstream restrictions. You may not offer or impose any additional or different terms or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

	No endorsement. Nothing in this Public License constitutes or may be construed as permission to assert or imply that You are, or that Your use of the Licensed Material is, connected with, or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).

	Other rights.

	Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but not otherwise.

	Patent and trademark rights are not licensed under this Public License.

	To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties, including when the Licensed Material is used other than for NonCommercial purposes.

26.2.3. Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

	Attribution.

	If You Share the Licensed Material (including in modified form), You must:

	retain the following if it is supplied by the Licensor with the Licensed Material:

	identification of the creator(s) of the Licensed Material and any others designated to receive attribution, in any reasonable manner requested by the Licensor (including by pseudonym if designated);

	a copyright notice;

	a notice that refers to this Public License;

	a notice that refers to the disclaimer of warranties;

	a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

	indicate if You modified the Licensed Material and retain an indication of any previous modifications; and

	indicate the Licensed Material is licensed under this Public License, and include the text of, or the URI or hyperlink to, this Public License.

	You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium, means, and context in which You Share the Licensed Material. For example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required information.

	If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A) to the extent reasonably practicable.

	If You Share Adapted Material You produce, the Adapter's License You apply must not prevent recipients of the Adapted Material from complying with this Public License.

26.2.4. Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:

	for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a substantial portion of the contents of the database for NonCommercial purposes only;

	if You include all or a substantial portion of the database contents in a database in which You have Sui Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual contents) is Adapted Material; and

	You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License where the Licensed Rights include other Copyright and Similar Rights.

26.2.5. Section 5 – Disclaimer of Warranties and Limitation of Liability.

	Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Licensed Material as-is and as-available, and makes no representations or warranties of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation, warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.

	To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply to You.

	The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.

26.2.6. Section 6 – Term and Termination.

	This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail to comply with this Public License, then Your rights under this Public License terminate automatically.

	Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

	automatically as of the date the violation is cured, provided it is cured within 30 days of Your discovery of the violation; or

	upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek remedies for Your violations of this Public License.

	For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.

	Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

26.2.7. Section 7 – Other Terms and Conditions.

	The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed.

	Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate from and independent of the terms and conditions of this Public License.

26.2.8. Section 8 – Interpretation.

	For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without permission under this Public License.

	To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall be severed from this Public License without affecting the enforceability of the remaining terms and conditions.

	No term or condition of this Public License will be waived and no failure to comply consented to unless expressly agreed to by the Licensor.

	Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.

Creative Commons is not a party to its public
licenses. Notwithstanding, Creative Commons may elect to apply one of
its public licenses to material it publishes and in those instances
will be considered the "Licensor." Except for the limited purpose of
indicating that material is shared under a Creative Commons public
license or as otherwise permitted by the Creative Commons policies
published at creativecommons.org/policies, Creative Commons does not
authorize the use of the trademark "Creative Commons" or any other
trademark or logo of Creative Commons without its prior written
consent including, without limitation, in connection with any
unauthorized modifications to any of its public licenses or any other
arrangements, understandings, or agreements concerning use of licensed
material. For the avoidance of doubt, this paragraph does not form
part of the public licenses.

Creative Commons may be contacted at creativecommons.org.

27. Suricata Developer Guide

	27.1. Working with the Codebase
	27.1.1. Installation from GIT

	27.1.2. Coding Style

	27.1.3. Fuzz Testing

	27.1.4. Testing Suricata

	27.1.5. Unit Tests - C

	27.1.6. Unit tests - Rust

	27.2. Contributing
	27.2.1. Contributing to Suricata

	27.2.2. Code Submission Process

	27.2.3. GitHub Pull Request Workflow

	27.2.4. Suricata Backports Guide

	27.3. Suricata Internals
	27.3.1. Packet Pipeline

	27.3.2. Threading

	27.3.3. Important Data Structures

	27.3.4. Engines

	27.4. Extending Suricata
	27.4.1. Packet Capture

	27.4.2. Packet Decoder

	27.4.3. App-Layer

	27.4.4. Detection

	27.4.5. Output

	27.5. LibSuricata
	27.5.1. Using Suricata as a Library

	27.6. Upgrading
	27.6.1. Upgrading 7.0 to 8.0

27.1. Working with the Codebase

	27.1.1. Installation from GIT
	27.1.1.1. Ubuntu Installation from GIT

	27.1.2. Coding Style
	27.1.2.1. Formatting

	27.1.2.2. Flow

	27.1.2.3. Alignment

	27.1.2.4. Functions

	27.1.2.5. Variables

	27.1.2.6. Macros

	27.1.2.7. Comments

	27.1.2.8. File names

	27.1.2.9. Enums

	27.1.2.10. Structures and typedefs

	27.1.2.11. switch statements

	27.1.2.12. const

	27.1.2.13. goto

	27.1.2.14. Includes

	27.1.2.15. Unittests

	27.1.2.16. Banned functions

	27.1.3. Fuzz Testing
	27.1.3.1. Running the Fuzzers

	27.1.3.2. Extending Coverage

	27.1.3.3. Adding Fuzz Targets

	27.1.3.4. Oss-Fuzz

	27.1.4. Testing Suricata
	27.1.4.1. General Concepts

	27.1.4.2. Unit tests

	27.1.4.3. Suricata-Verify

	27.1.4.4. Generating Input

	27.1.5. Unit Tests - C
	27.1.5.1. Writing Unit Tests - C codebase

	27.1.6. Unit tests - Rust
	27.1.6.1. Rust tests with Cargo check

	27.1.6.2. Adding unit tests

27.1.1. Installation from GIT

27.1.1.1. Ubuntu Installation from GIT

This document will explain how to install and use the most recent code of
Suricata on Ubuntu. Installing from GIT on other operating systems is
basically the same, except that some commands are Ubuntu-specific
(like sudo and apt-get). In case you are using another operating system,
you should replace those commands with your OS-specific commands.

Note

These instructions were tested on Ubuntu 22.04.

27.1.1.1.1. Pre-installation requirements

Before you can build Suricata for your system, run the following command
to ensure that you have everything you need for the installation.

sudo apt-get -y install libpcre2-dev build-essential autoconf \
automake libtool libpcap-dev libnet1-dev libyaml-0-2 libyaml-dev \
pkg-config zlib1g zlib1g-dev libcap-ng-dev libcap-ng0 make \
libmagic-dev libjansson-dev rustc cargo jq git-core

Add ${HOME}/.cargo/bin to your path:

export PATH=$PATH:${HOME}/.cargo/bin
cargo install --force cbindgen

Depending on the current status of your system, it may take a while to
complete this process.

IPS

By default, Suricata works as an IDS. If you want to use it as an IDS and IPS
program, enter:

sudo apt-get -y install libnetfilter-queue-dev libnetfilter-queue1 \
libnfnetlink-dev libnfnetlink0

27.1.1.1.2. Suricata

First, it is convenient to create a directory for Suricata.
Name it 'suricata' or 'oisf', for example. Open the terminal and enter:

mkdir suricata # mkdir oisf

Followed by:

cd suricata # cd oisf

Next, enter the following line in the terminal:

git clone https://github.com/OISF/suricata.git
cd suricata

Libhtp and suricata-update are not bundled. Get them by doing:

./scripts/bundle.sh

Followed by:

./autogen.sh

To configure, please enter:

./configure

To compile, please enter:

make

To install Suricata, enter:

sudo make install
sudo ldconfig

27.1.1.1.3. Auto-setup

You can also use the available auto-setup features of Suricata. Ex:

./configure && make && sudo make install-conf

make install-conf
would do the regular "make install" and then it would automatically
create/setup all the necessary directories and suricata.yaml for you.

./configure && make && make install-rules

make install-rules
would do the regular "make install" and then it would automatically download
and set-up the latest ruleset from Emerging Threats available for Suricata.

./configure && make && make install-full

make install-full
would combine everything mentioned above (install-conf and install-rules) -
and will present you with a ready to run (configured and set-up) Suricata.

27.1.1.1.4. Post installation

Please continue with Basic setup.

In case you have already created your Suricata directory and cloned the
repository in it, if you want to update your local repository with the
most recent code, please run:

cd suricata/suricata

next, enter:

git pull

After that, you should run ./autogen.sh again.

27.1.2. Coding Style

Suricata uses a fairly strict coding style. This document describes it.

27.1.2.1. Formatting

27.1.2.1.1. clang-format

clang-format is configured to help you with formatting C code.

Note

The .clang-format script requires clang 9 or newer.

27.1.2.1.1.1. Format your Changes

Before opening a pull request, please also try to ensure it is formatted
properly. We use clang-format for this, which has git integration through the
git-clang-format script to only format your changes.

On some systems, it may already be installed (or be installable via your package
manager). If so, you can simply run it.

It is recommended to format each commit as you go. However, you can always
reformat your whole branch after the fact.

Note

Depending on your installation, you might have to use the version-specific
git clang-format in the commands below, e.g. git clang-format-9,
and possibly even provide the clang-format binary with
--binary clang-format-9.

As an alternative, you can use the provided scripts/clang-format.sh
that isolates you from the different versions.

27.1.2.1.1.1.1. Formatting the most recent commit only

The following command will format only the code changed in the most recent commit:

$ git clang-format HEAD^
Or with script:
$ scripts/clang-format.sh commit

Note that this modifies the files, but doesn't commit them. If the changes are
trivial, you’ll likely want to run

$ git commit --amend -a

in order to update the last commit with all pending changes.

For bigger formatting changes, we do ask you to add them to separate, dedicated
commits.

27.1.2.1.1.1.2. Formatting code in staging

The following command will format the changes in staging, i.e. files you
git add-ed:

$ git clang-format
Or with script:
$ scripts/clang-format.sh cached

If you also want to change the unstaged changes, do:

$ git clang-format --force
Or with script:
$ scripts/clang-format.sh cached --force

27.1.2.1.1.1.3. Formatting your branch's commits

In case you have multiple commits on your branch already and forgot to
format them you can fix that up as well.

The following command will format every commit in your branch off master and
rewrite history using the existing commit metadata.

Tip: Create a new version of your branch first and run this off the new version.

In a new version of your pull request:
$ scripts/clang-format.sh rewrite-branch

Note that the above should only be used for rather minimal formatting changes.
As mentioned, we prefer that you add such changes to a dedicated commit for
formatting changes:

Format all changes by commits on your branch:
$ git clang-format first_commit_on_your_branch^
Or with script:
$ scripts/clang-format.sh branch

Note the usage of first_commit_on_your_branch^, not master, to avoid picking up
new commits on master in case you've updated master since you've branched.

27.1.2.1.1.1.4. Check formatting

Check if your branch changes' formatting is correct with:

$ scripts/clang-format.sh check-branch

Add the --diffstat parameter if you want to see the files needing formatting.
Add the --diff parameter if you want to see the actual diff of the formatting
change.

27.1.2.1.1.1.5. Formatting a whole file

	Note

Do not reformat whole files by default, i.e. do not use
clang-format proper in general.

If you were ever to do so, formatting changes of existing code with clang-format
shall be a different commit and must not be mixed with actual code changes.

$ clang-format -i {file}

27.1.2.1.1.2. Disabling clang-format

There might be times, where the clang-format's formatting might not please.
This might mostly happen with macros, arrays (single or multi-dimensional ones),
struct initialization, or where one manually formatted code.

You can always disable clang-format.

/* clang-format off */
#define APP_LAYER_INCOMPLETE(c, n) (AppLayerResult){1, (c), (n)}
/* clang-format on */

27.1.2.1.1.3. Installing clang-format and git-clang-format

clang-format 9 or newer is required.

On ubuntu 18.04:

	It is sufficient to only install clang-format, e.g.

$ sudo apt-get install clang-format-9

	See http://apt.llvm.org for other releases in case the clang-format version
is not found in the default repos.

On fedora:

	Install the clang and git-clang-format packages with

$ sudo dnf install clang git-clang-format

27.1.2.1.2. Line length

Limit line lengths to 100 characters.

When wrapping lines that are too long, they should be indented at least 8
spaces from previous line. You should attempt to wrap the minimal portion of
the line to meet the 100 character limit.

	clang-format:
	
	ColumnLimit: 100

	ContinuationIndentWidth: 8

	ReflowComments: true

27.1.2.1.3. Indent

We use 4 space indentation.

int DecodeEthernet(ThreadVars *tv, DecodeThreadVars *dtv, Packet *p,
 uint8_t *pkt, uint16_t len, PacketQueue *pq)
{
 SCPerfCounterIncr(dtv->counter_eth, tv->sc_perf_pca);

 if (unlikely(len < ETHERNET_HEADER_LEN)) {
 ENGINE_SET_INVALID_EVENT(p, ETHERNET_PKT_TOO_SMALL);
 return TM_ECODE_FAILED;
 }

 ...

 DecodeNetworkLayer(tv, dtv, SCNtohs(p->ethh->eth_type), p,
 pkt + ETHERNET_HEADER_LEN, len - ETHERNET_HEADER_LEN);

 return TM_ECODE_OK;
}

Use 8 space indentation when wrapping function parameters, loops and if statements.

Use 4 space indentation when wrapping variable definitions.

const SCPlugin PluginSpec = {
 .name = OUTPUT_NAME,
 .author = "Some Developer",
 .license = "GPLv2",
 .Init = TemplateInit,
};

	clang-format:
	
	AlignAfterOpenBracket: DontAlign

	Cpp11BracedListStyle: false

	IndentWidth: 4

	TabWidth: 8 [llvm]

	UseTab: Never [llvm]

27.1.2.1.4. Braces

Functions should have the opening brace on a newline:

int SomeFunction(void)
{
 DoSomething();
}

Note: you may encounter non-compliant code.

Control and loop statements should have the opening brace on the same line:

if (unlikely(len < ETHERNET_HEADER_LEN)) {
 ENGINE_SET_INVALID_EVENT(p, ETHERNET_PKT_TOO_SMALL);
 return TM_ECODE_FAILED;
}

for (ascii_code = 0; ascii_code < 256; ascii_code++) {
 ctx->goto_table[ctx->state_count][ascii_code] = SC_AC_FAIL;
}

while (funcs != NULL) {
 temp = funcs;
 funcs = funcs->next;
 SCFree(temp);
}

Opening and closing braces go on the same line as as the _else_ (also known as a "cuddled else").

if (this) {
 DoThis();
} else {
 DoThat();
}

Structs, unions and enums should have the opening brace on the same line:

union {
 TCPVars tcpvars;
 ICMPV4Vars icmpv4vars;
 ICMPV6Vars icmpv6vars;
} l4vars;

struct {
 uint8_t type;
 uint8_t code;
} icmp_s;

enum {
 DETECT_TAG_TYPE_SESSION,
 DETECT_TAG_TYPE_HOST,
 DETECT_TAG_TYPE_MAX
};

	clang-format:
	
	BreakBeforeBraces: Custom [breakbeforebraces]

	BraceWrapping:

	AfterClass: true

	AfterControlStatement: false

	AfterEnum: false

	AfterFunction: true

	AfterStruct: false

	AfterUnion: false

	AfterExternBlock: true

	BeforeElse: false

	IndentBraces: false

27.1.2.2. Flow

Don't use conditions and statements on the same line. E.g.

if (a) b = a; // <- wrong

if (a)
 b = a; // <- right

for (int i = 0; i < 32; ++i) f(i); // <- wrong

for (int i = 0; i < 32; ++i)
 f(i); // <- right

Don't put short or empty functions and structs on one line.

void empty_function(void)
{
}

int short_function(void)
{
 return 1;
}

Don't use unnecessary branching. E.g.:

if (error) {
 goto error;
} else {
 a = b;
}

Can be written as:

if (error) {
 goto error;
}
a = b;

	clang-format:
	
	AllowShortBlocksOnASingleLine: false [llvm]

	AllowShortBlocksOnASingleLine: Never [llvm] (breaking change in clang 10!) [clang10]

	AllowShortEnumsOnASingleLine: false [clang11]

	AllowShortFunctionsOnASingleLine: None

	AllowShortIfStatementsOnASingleLine: Never [llvm]

	AllowShortLoopsOnASingleLine: false [llvm]

	BreakBeforeBraces: Custom [breakbeforebraces]

	BraceWrapping:

	SplitEmptyFunction: true

	SplitEmptyRecord: true

27.1.2.3. Alignment

27.1.2.3.1. Pointers

Pointers shall be right aligned.

void *ptr;
void f(int *a, const char *b);
void (*foo)(int *);

	clang-format:
	
	PointerAlignment: Right

	DerivePointerAlignment: false

27.1.2.3.2. Declarations and Comments

Trailing comments should be aligned for consecutive lines.

struct bla {
 int a; /* comment */
 unsigned bb; /* comment */
 int *ccc; /* comment */
};

void alignment()
{
 // multiple consecutive vars
 int a = 13; /* comment */
 int32_t abc = 1312; /* comment */
 int abcdefghikl = 13; /* comment */
}

	clang-format:
	
	AlignConsecutiveAssignments: false

	AlignConsecutiveDeclarations: false

	AlignTrailingComments: true

27.1.2.4. Functions

27.1.2.4.1. parameter names

TODO

27.1.2.4.2. Function names

Function names are NamedLikeThis().

static ConfNode *ConfGetNodeOrCreate(char *name, int final)

27.1.2.4.3. static vs non-static

Functions should be declared static whenever possible.

27.1.2.4.4. inline

The inlining of functions should be used only in critical paths.

27.1.2.5. Variables

27.1.2.5.1. Names

A variable is named_like_this in all lowercase.

ConfNode *parent_node = root;

Generally, use descriptive variable names.

In loop vars, make sure i is a signed int type.

27.1.2.5.2. Scope

TODO

27.1.2.6. Macros

Macro names are ALL_CAPS_WITH_UNDERSCORES.
Enclose parameters in parens on each usage inside the macro.

Align macro values on consecutive lines.

#define ACTION_ALERT 0x01
#define ACTION_DROP 0x02
#define ACTION_REJECT 0x04
#define ACTION_REJECT_DST 0x08
#define ACTION_REJECT_BOTH 0x10
#define ACTION_PASS 0x20

Align escape for multi-line macros right-most at ColumnLimit.

#define MULTILINE_DEF(a, b) \
 if ((a) > 2) { \
 auto temp = (b) / 2; \
 (b) += 10; \
 someFunctionCall((a), (b)); \
 }

	clang-format:
	
	AlignConsecutiveMacros: true [clang9]

	AlignEscapedNewlines: Right

27.1.2.7. Comments

TODO

27.1.2.7.1. Function comments

We use Doxygen, functions are documented using Doxygen notation:

/**
 * \brief Helper function to get a node, creating it if it does not
 * exist.
 *
 * This function exits on memory failure as creating configuration
 * nodes is usually part of application initialization.
 *
 * \param name The name of the configuration node to get.
 * \param final Flag to set created nodes as final or not.
 *
 * \retval The existing configuration node if it exists, or a newly
 * created node for the provided name. On error, NULL will be returned.
 */
static ConfNode *ConfGetNodeOrCreate(char *name, int final)

27.1.2.7.2. General comments

We use /* foobar */ style and try to avoid // style.

27.1.2.8. File names

File names are all lowercase and have a .c. .h or .rs (Rust) extension.

Most files have a _subsystem_ prefix, e.g. detect-dsize.c, util-ip.c

Some cases have a multi-layer prefix, e.g. util-mpm-ac.c

27.1.2.9. Enums

Use a common prefix for all enum values. Value names are ALL_CAPS_WITH_UNDERSCORES.

Put each enum values on a separate line.
Tip: Add a trailing comma to the last element to force "one-value-per-line"
formatting in clang-format.

enum { VALUE_ONE, VALUE_TWO }; // <- wrong

// right
enum {
 VALUE_ONE,
 VALUE_TWO, // <- force one-value-per-line
};

	clang-format:
	
	AllowShortEnumsOnASingleLine: false [clang11]

27.1.2.10. Structures and typedefs

TODO

27.1.2.11. switch statements

Switch statements are indented like in the following example, so the 'case' is indented from the switch:

switch (ntohs(p->ethh->eth_type)) {
 case ETHERNET_TYPE_IP:
 DecodeIPV4(tv, dtv, p, pkt + ETHERNET_HEADER_LEN,
 len - ETHERNET_HEADER_LEN, pq);
 break;

Fall through cases will be commented with /* fall through */. E.g.:

switch (suri->run_mode) {
 case RUNMODE_PCAP_DEV:
 case RUNMODE_AFP_DEV:
 case RUNMODE_PFRING:
 /* find payload for interface and use it */
 default_packet_size = GetIfaceMaxPacketSize(suri->pcap_dev);
 if (default_packet_size)
 break;
 /* fall through */
 default:
 default_packet_size = DEFAULT_PACKET_SIZE;

Do not put short case labels on one line.
Put opening brace on same line as case statement.

switch (a) {
 case 13: {
 int a = bla();
 break;
 }
 case 15:
 blu();
 break;
 default:
 gugus();
}

	clang-format:
	
	IndentCaseLabels: true

	IndentCaseBlocks: false [clang11]

	AllowShortCaseLabelsOnASingleLine: false [llvm]

	BreakBeforeBraces: Custom [breakbeforebraces]

	BraceWrapping:

	AfterCaseLabel: false (default)

27.1.2.12. const

TODO

27.1.2.13. goto

Goto statements should be used with care. Generally, we use it primarily for error handling. E.g.:

static DetectFileextData *DetectFileextParse (char *str)
{
 DetectFileextData *fileext = NULL;

 fileext = SCMalloc(sizeof(DetectFileextData));
 if (unlikely(fileext == NULL))
 goto error;

 memset(fileext, 0x00, sizeof(DetectFileextData));

 if (DetectContentDataParse("fileext", str, &fileext->ext, &fileext->len, &fileext->flags) == -1) {
 goto error;
 }

 return fileext;

error:
 if (fileext != NULL)
 DetectFileextFree(fileext);
 return NULL;
}

Put goto labels at brace level.

int goto_style_nested()
{
 if (foo()) {
 label1:
 bar();
 }

label2:
 return 1;
}

	clang-format:
	
	IndentGotoLabels: true (default) [clang10]

27.1.2.14. Includes

TODO

A .c file shall include it's own header first.

	clang-format:
	
	SortIncludes: false

27.1.2.15. Unittests

When writing unittests that use a data array containing a protocol message, please put an explanatory comment that contain the readable content of the message

So instead of:

int SMTPProcessDataChunkTest02(void)
{
 char mimemsg[] = {0x4D, 0x49, 0x4D, 0x45, 0x2D, 0x56, 0x65, 0x72,

you should have something like:

int SMTPParserTest14(void)
{
 /* 220 mx.google.com ESMTP d15sm986283wfl.6<CR><LF> */
 static uint8_t welcome_reply[] = { 0x32, 0x32, 0x30, 0x20,

27.1.2.16. Banned functions

	function

	replacement

	reason

	strtok

	strtok_r

	

	sprintf

	snprintf

	unsafe

	strcat

	strlcat

	unsafe

	strcpy

	strlcpy

	unsafe

	strncpy

	strlcat

	

	strncat

	strlcpy

	

	strndup

	
	OS specific

	strchrnul

	
	

	rand

	
	

	rand_r

	
	

	index

	
	

	rindex

	
	

	bzero

	memset

	

Also, check the existing code. If yours is wildly different, it's wrong.
Example: https://github.com/oisf/suricata/blob/master/src/decode-ethernet.c

Footnotes

[llvm]
(1,2,3,4,5,6,7)
Default LLVM clang-format Style

[clang9]
Requires clang 9

[clang10]
(1,2)
Requires clang 10

[clang11]
(1,2,3)
Requires clang 11

[breakbeforebraces]
(1,2,3)
BreakBeforeBraces: Mozilla is closest, but does not split empty functions/structs

27.1.3. Fuzz Testing

To enable fuzz targets compilation, add --enable-fuzztargets to configure.

Note

This changes various parts of Suricata making the suricata binary
unsafe for production use.

The targets can be used with libFuzzer, AFL and other fuzz platforms.

27.1.3.1. Running the Fuzzers

TODO. For now see src/tests/fuzz/README

27.1.3.1.1. Reproducing issues

27.1.3.2. Extending Coverage

27.1.3.3. Adding Fuzz Targets

27.1.3.4. Oss-Fuzz

Suricata is continuously fuzz tested in Oss-Fuzz. See https://github.com/google/oss-fuzz/tree/master/projects/suricata

27.1.4. Testing Suricata

Table of Contents

	Testing Suricata

	General Concepts

	Unit tests

	Code Examples

	Suricata-Verify

	Generating Input

	Using real traffic

	Crafting input samples with Scapy

	Other examples from our Suricata-Verify tests:

	Finding Capture Samples

27.1.4.1. General Concepts

There are a few ways of testing Suricata:

	Unit tests: for independently checking specific functions or portions of code. This guide has specific sections to
further explain those, for C and Rust;

	Suricata-Verify [https://github.com/OISF/suricata-verify]: those are used to check more complex behavior, like the log output or the alert counts for a given input, where that input is usually comprised of several packets;

	Static and dynamic analysis tools: to help in finding bugs, memory leaks and other issues (like scan-build [https://clang-analyzer.llvm.org/scan-build.html#scanbuild_basicusage], from clang, which is also used for our C formatting checks; or ASAN, which checks for memory issues);

	Fuzz testing: especially good for uncovering existing, often non-trivial bugs. For more on how to fuzz test Suricata, check Fuzz Testing;

	CI checks: each PR submitted to the project's public repositories will be run against a suit of Continuous Integration
workflows, as part of our QA process. Those cover: formatting and commit checks; fuzz tests (CI Fuzz), and several builds. See our github workflows [https://github.com/OISF/suricata/tree/master/.github/workflows] for details and those in
action at https://github.com/OISF/suricata/actions.

Note

If you can run unit tests or other checks and report failures in our issue tracker [https://redmine.openinfosecfoundation.org/projects/suricata/issues], that is rather useful and appreciated!

The focus of this document are Unit tests and Suricata-Verify tests, especially on offering some guidance regarding when to use each type of test, and how to prepare input
for them.

27.1.4.2. Unit tests

Use these to check that specific functions behave as expected, in success and in failure scenarios. Specially useful
during development, for nom parsers in the Rust codebase, for instance, or for checking that messages
or message parts of a protocol/stream are processed as they should.

To execute all unit tests (both from C and Rust code), as well as libhtp ones, from the Suricata main directory, run:

make check

Check the Suricata Devguide on Unit Tests - C or Unit tests - Rust for more on how to write and run unit tests,
given that the way to do so differs, depending on the language.

27.1.4.2.1. Code Examples

An example from the DNS parser [https://github.com/OISF/suricata/blob/master/rust/src/dns/parser.rs#L417]. This
checks that the given raw input (note the comments indicating what it means), once processed by dns_parse_name yields
the expected result, including the unparsed portion.

/// Parse a simple name with no pointers.
#[test]
fn test_dns_parse_name() {
 let buf: &[u8] = &[
 0x09, 0x63, /*c */
 0x6c, 0x69, 0x65, 0x6e, 0x74, 0x2d, 0x63, 0x66, /* lient-cf */
 0x07, 0x64, 0x72, 0x6f, 0x70, 0x62, 0x6f, 0x78, /* .dropbox */
 0x03, 0x63, 0x6f, 0x6d, 0x00, 0x00, 0x01, 0x00, /* .com.... */
];
 let expected_remainder: &[u8] = &[0x00, 0x01, 0x00];
 let (remainder,name) = dns_parse_name(buf, buf).unwrap();
 assert_eq!("client-cf.dropbox.com".as_bytes(), &name[..]);
 assert_eq!(remainder, expected_remainder);
}

From the C side, decode-ethernet.c offers an good example:

/**
 * Test a DCE ethernet frame that is too small.
 */
static int DecodeEthernetTestDceTooSmall(void)
{
 uint8_t raw_eth[] = {
 0x00, 0x10, 0x94, 0x55, 0x00, 0x01, 0x00, 0x10,
 0x94, 0x56, 0x00, 0x01, 0x89, 0x03,
 };

 Packet *p = PacketGetFromAlloc();
 FAIL_IF_NULL(p);
 ThreadVars tv;
 DecodeThreadVars dtv;

 memset(&dtv, 0, sizeof(DecodeThreadVars));
 memset(&tv, 0, sizeof(ThreadVars));

 DecodeEthernet(&tv, &dtv, p, raw_eth, sizeof(raw_eth));

 FAIL_IF_NOT(ENGINE_ISSET_EVENT(p, DCE_PKT_TOO_SMALL));

 PacketFree(p);
 PASS;
}

27.1.4.3. Suricata-Verify

As mentioned above, these tests are used to check more complex behavior that involve a complete flow, with exchange of requests and responses. This can be done in an easier and more straightforward way,
since one doesn't have to simulate the network traffic and Suricata engine mechanics - one simply runs it, with the desired input packet capture,
configuration and checks.

A Suricata-verify test can help to ensure that code refactoring doesn't affect protocol logs, or signature detection,
for instance, as this could have a major impact to Suricata users and integrators.

For simpler tests, providing the pcap input is enough. But it is also possible to provide Suricata rules to be
inspected, and have Suricata Verify match for alerts and specific events.

Refer to the Suricata Verify readme [https://github.com/OISF/suricata-verify#readme] for details on how to create
this type of test. It suffices to have a packet capture representative of the behavior one wants to test, and then
follow the steps described there.

The Git repository for the Suricata Verify tests is a great source for examples, like the app-layer-template [https://github.com/OISF/suricata-verify/tree/master/tests/app-layer-template] one.

27.1.4.4. Generating Input

27.1.4.4.1. Using real traffic

Having a packet capture for the desired protocol you want to test, open it in Wireshark [https://www.wireshark.org/], and select the specific
packet chosen for the test input, then use the Wireshark option Follow [TCP/UDP/HTTP/HTTP2/QUIC] Stream. This allows for inspecting the whole network traffic stream in a different window.
There, it's possible to choose to Show and save data as C Arrays, as well as to select if one wants to see the whole conversation or just client or server packets.
It is also possible to reach the same effect by accessing the Analyze->Follow->TCP Stream top menu in Wireshark.
(There are other stream options, the available one will depend on the type of network traffic captured).

This option will show the packet data as hexadecimal compatible with C-array style, and easily adapted for Rust,
as well. As shown in the image:

[image: ../../_images/InputCaptureExample.png]
Wireshark can be also used to capture sample network traffic [https://gitlab.com/wireshark/wireshark/-/wikis/CaptureSetup] and generate pcap files.

27.1.4.4.2. Crafting input samples with Scapy

It is also possible to use Scapy to create specific traffic: Scapy usage [https://scapy.readthedocs.io/en/latest/usage.html]

Suricata-verify tests have several examples of pcaps generated in such a way. Look for Python scripts like the one used
for the dce-udp-scapy [https://github.com/OISF/suricata-verify/blob/master/tests/dcerpc/dcerpc-udp-scapy/dcerpc_udp_scapy.py].

27.1.4.4.3. Other examples from our Suricata-Verify tests:

Going through Suricata-Verify tests readme files it is also possible to find an assorted collection of pcap generation possibilities, some with explanation on the how-tos. To list a few:

	http2-range [https://github.com/OISF/suricata-verify/blob/master/tests/http2-range/README.md]

	http-range [https://github.com/OISF/suricata-verify/blob/master/tests/http-range/README.md]

	smb2-delete [https://github.com/OISF/suricata-verify/blob/master/tests/smb2-delete/README.md]

	smtp-rset [https://github.com/OISF/suricata-verify/blob/master/tests/smtp-rset/README.md]

	http-auth-unrecognized [https://github.com/OISF/suricata-verify/blob/master/tests/http-auth-unrecognized/README.md]

27.1.4.4.4. Finding Capture Samples

If you can't capture traffic for the desired protocol from live traffic, or craft something up, you can try finding the type of traffic you
are interested in in public data sets. There's a thread for Sharing good sources of sample captures [https://forum.suricata.io/t/sharing-good-sources-of-sample-captures/1766/4] in our forum.

27.1.5. Unit Tests - C

Unit tests are a great way to create tests that can check the internal state
of parsers, structures and other objects.

Tests should:

	use FAIL/PASS macros

	be deterministic

	not leak memory on PASS

	not use conditions

Unit tests are used by developers of Suricata and advanced users who would like to contribute by debugging and testing the engine.
Unit tests are small pieces (units) of code which check certain code functionalities in Suricata. If Suricata's code is modified, developers can run unit tests to see if there are any unforeseen effects on other parts of the engine's code.
Unit tests will not be compiled with Suricata by default.
If you would like to compile Suricata with unit tests, enter the following during the configure-stage:

./configure --enable-unittests

The unit tests specific command line options can be found at Command Line Options [https://docs.suricata.io/en/suricata-6.0.3/command-line-options.html#unit-tests].

Example:
You can run tests specifically on flowbits. This is how you should do that:

suricata -u -U flowbit

It is highly appreciated if you would run unit tests and report failing tests in our issue tracker [https://redmine.openinfosecfoundation.org/projects/suricata/issues].

If you want more info about the unittests, regular debug mode can help. This is enabled by adding the configure option:

--enable-debug

Then, set the debug level from the command-line:

SC_LOG_LEVEL=Debug suricata -u

This will be very verbose. You can also add the SC_LOG_OP_FILTER to limit the output, it is grep-like:

SC_LOG_LEVEL=Debug SC_LOG_OP_FILTER="(something|somethingelse)" suricata -u

This example will show all lines (debug, info, and all other levels) that contain either something or something else.
Keep in mind the log level [https://docs.suricata.io/en/latest/manpages/suricata.html#id1] precedence: if you choose Info level, for instance, Suricata won't show messages from the other levels.

27.1.5.1. Writing Unit Tests - C codebase

Suricata unit tests are somewhat different in C and in Rust. In C, they are comprised of a function with no arguments and returning 0 for failure or 1 for success. Instead of explicitly returning a value, FAIL_* and PASS macros should be used. For example:

void MyUnitTest(void)
{
 int n = 1;
 void *p = NULL;

 FAIL_IF(n != 1);
 FAIL_IF_NOT(n == 1);
 FAIL_IF_NOT_NULL(p);
 FAIL_IF_NULL(p);

 PASS;
}

Each unit test needs to be registered with UtRegisterTest(). Example:

UtRegisterTest("MyUnitTest", MyUnitTest);

where the first argument is the name of the test, and the second argument is the function. Existing modules should already have a function that registers its unit tests. Otherwise the unit tests will need to be registered. Look for a module similar to your new module to see how best to register the unit tests or ask the development team for help.

27.1.5.1.1. Examples

From conf-yaml-loader.c:

/**
 * Test that a configuration section is overridden but subsequent
 * occurrences.
 */
static int
ConfYamlOverrideTest(void)
{
 char config[] =
 "%YAML 1.1\n"
 "---\n"
 "some-log-dir: /var/log\n"
 "some-log-dir: /tmp\n"
 "\n"
 "parent:\n"
 " child0:\n"
 " key: value\n"
 "parent:\n"
 " child1:\n"
 " key: value\n"
 ;
 const char *value;

 ConfCreateContextBackup();
 ConfInit();

 FAIL_IF(ConfYamlLoadString(config, strlen(config)) != 0);
 FAIL_IF_NOT(ConfGet("some-log-dir", &value));
 FAIL_IF(strcmp(value, "/tmp") != 0);

 /* Test that parent.child0 does not exist, but child1 does. */
 FAIL_IF_NOT_NULL(ConfGetNode("parent.child0"));
 FAIL_IF_NOT(ConfGet("parent.child1.key", &value));
 FAIL_IF(strcmp(value, "value") != 0);

 ConfDeInit();
 ConfRestoreContextBackup();

 PASS;
}

In detect-ike-chosen-sa.c, it is possible to see the freeing of resources (DetectIkeChosenSaFree) and the
function that should group all the UtRegisterTest calls:

#ifdef UNITTESTS
.
.
.
static int IKEChosenSaParserTest(void)
{
 DetectIkeChosenSaData *de = NULL;
 de = DetectIkeChosenSaParse("alg_hash=2");

 FAIL_IF_NULL(de);
 FAIL_IF(de->sa_value != 2);
 FAIL_IF(strcmp(de->sa_type, "alg_hash") != 0);

 DetectIkeChosenSaFree(NULL, de);
 PASS;
}

#endif /* UNITTESTS */

void IKEChosenSaRegisterTests(void)
{
#ifdef UNITTESTS
 UtRegisterTest("IKEChosenSaParserTest", IKEChosenSaParserTest);
#endif /* UNITTESTS */

27.1.6. Unit tests - Rust

27.1.6.1. Rust tests with Cargo check

Rust offers a built-in tool for running unit and integration tests. To do so, one makes usage of:

cargo test [options][testname][-- test-options]

The Cargo Book [https://doc.rust-lang.org/cargo/commands/cargo-test.html] explains all options in more detail.

For testing a specific Rust module from Suricata, it suffices to go to the rust directory and run the above command,
specifying the desired module (like http2).

cargo test http2

The line above will make rustc compile the Rust side of Suricata and run unit tests in the http2 rust module.

For running all Suricata unit tests from our Rust codebase, just run cargo test.

27.1.6.2. Adding unit tests

Note

If you want to understand when to use a unit test, please read the devguide section on Testing Suricata.

In general, it is preferable to have the unit tests in the same file that they test. At the end of the file, after all other functions. Add a tests module, if there isn't one yet, and add the #[test] attribute before the unit test
function. It is also necessary to import (use) the module to test, as well as any other modules used. As seen in the example below:

27.1.6.2.1. Example

From nfs > rpc_records.rs:

mod tests {
 use crate::nfs::rpc_records::*;
 use nom::Err::Incomplete;
 use nom::Needed::Size;

 #[test]
 fn test_partial_input_ok() {
 let buf: &[u8] = &[
 0x80, 0x00, 0x00, 0x9c, // flags
 0x8e, 0x28, 0x02, 0x7e, // xid
 0x00, 0x00, 0x00, 0x01, // msgtype
 0x00, 0x00, 0x00, 0x02, // rpcver
 0x00, 0x00, 0x00, 0x03, // program
 0x00, 0x00, 0x00, 0x04, // progver
 0x00, 0x00, 0x00, 0x05, // procedure
];
 let expected = RpcRequestPacketPartial {
 hdr: RpcPacketHeader {
 frag_is_last: true,
 frag_len: 156,
 xid: 2384986750,
 msgtype: 1
 },
 rpcver: 2,
 program: 3,
 progver: 4,
 procedure: 5
 };
 let r = parse_rpc_request_partial(buf);
 match r {
 Ok((rem, hdr)) => {
 assert_eq!(rem.len(), 0);
 assert_eq!(hdr, expected);
 },
 _ => { panic!("failed {:?}",r); }
 }
 }
}

Once that is done, Rust should recognize the new test. If you want to check a single test, run:

cargo test module::file_name::tests::test_name

Where tests refers to mod tests. If you know the test name is unique, you can even run:

cargo test test_name

Following the same idea, it is also possible to test specific modules or submodules. For instance:

cargo test nfs::rpc_records

27.2. Contributing

	27.2.1. Contributing to Suricata
	27.2.1.1. Communication is Key!

	27.2.1.2. Claim (or open) a ticket

	27.2.1.3. Expectations

	27.2.1.4. Stale tickets policy

	27.2.1.5. What branch to work on

	27.2.1.6. Create your own branch

	27.2.1.7. Coding Style

	27.2.1.8. Documentation Style

	27.2.1.9. Commit History matters

	27.2.1.10. Send a Pull Request

	27.2.1.11. Feedback

	27.2.1.12. Wrapping up

	27.2.2. Code Submission Process
	27.2.2.1. Commits

	27.2.2.2. Pull Requests

	27.2.2.3. Tests and QA

	27.2.3. GitHub Pull Request Workflow
	27.2.3.1. Draft Pull Requests

	27.2.3.2. Mergeable Pull Requests

	27.2.4. Suricata Backports Guide
	27.2.4.1. What should be backported?

	27.2.4.2. Selection overview

	27.2.4.3. Git Backport Workflow

	27.2.4.4. QA

27.2.1. Contributing to Suricata

This guide describes what steps to take if you want to contribute a patch or
patchset to Suricata.

Essentially, these are:

	Agree to and sign our Contribution Agreement

	Communicate early, and use the preferred channels

	Claim (or open) a ticket

	Fork from master

	Follow our Coding Style

	Use our Documentation Style

	Stick to our commit guidelines

	Add version numbers to your Pull Requests

	Incorporate Feedback into new PRs

	[Work merged] Wrap up!

The rest of this document will cover those in detail.

Note

Important!

Before contributing, please review and sign our Contribution Agreement [https://suricata.io/contribution-agreements/].

27.2.1.1. Communication is Key!

To clarify questions, discuss or suggest new features, talk about bugs and
optimizations, and/or ask for help, it is important to communicate.

These are our main channels:

	Suricata's issue tracker [https://redmine.openinfosecfoundation.org/projects/suricata/issues]

	Suricata's forum [https://forum.suricata.io/c/developers/8]

	Suricata's Discord server [https://discord.com/invite/t3rV2x7MrG]

27.2.1.2. Claim (or open) a ticket

For features and bugs we need tickets [https://redmine.openinfosecfoundation.org/projects/suricata/issues]. Tickets help us keep track of the work done,
indicate when changes need backports etc.

They are also important if you would like to see your new feature officially
added to our tool: the ticket documents your ideas so we can analyze how do they
fit in our plans for Suricata, and, if the feature is accepted, we can properly
track progress etc.

Note

If you want to add new functionalities (e.g. a new application layer
protocol), please ask us first whether we see that being merged into
Suricata or not. This helps both sides understand how the new feature will
fit in our roadmap, and prevents wasting time and motivation with
contributions that we may not accept. Therefore, before starting any code
related to a new feature, do request comments from the team about it.

For really trivial fixes or cleanups we won't need that.

Once work on the issue has been agreed upon:

Assign the ticket to yourself. For this, you will need to have the "developer"
role. You can ask for that directly on the ticket you want to claim or mention
that you are interested in working on ticket number on our Developer's
channel on Discord [https://discord.com/channels/864648830553292840/888087709002891324].

If a ticket is already assigned to someone, please reach out on the ticket or
ask the person first.

You can reach out to other community members via Suricata's Discord server [https://discord.com/invite/t3rV2x7MrG].

27.2.1.3. Expectations

If you submit a new feature that is not part of Suricata's core functionalities,
it will have the community supported status. This means we would expect some
commitment from you, or the organization who is sponsoring your work, before we
could approve the new feature, as the Suricata development team is pretty lean
(and many times overworked).

This means we expect that:

	the new contribution comes with a set of Suricata-verify tests (and
possibly unit tests, where those apply), before we can approve it;

	proof of compatibility with existing keywords/features is provided,
when the contribution is for replacing an existing feature;

	you would maintain the feature once it is approved - or some other
community member would do that, in case you cannot.

Note

Regardless of contribution size or complexity, we expect that you respect
our guidelines and processes. We appreciate community contributors:
Suricata wouldn't be what it is without them; and the value of our tool and
community also comes from how seriously we take all this, so we ask that
our contributors do the same!

27.2.1.3.1. What does "community supported" and "supporting a feature" mean?

If a feature is community supported, the Suricata team will try to spend
minimal time on it - to be able to focus on the core functionalities. If for any
reason you're not willing or able to commit to supporting a feature, please
indicate this.

The team and/or community members can then consider offering help. It is best
to indicate this prior to doing the actual work, because we will reject features
if no one steps up.

It is also important to note that community supported features will be
disabled by default, and if it brings in new dependencies (libraries or Rust
crates) those will also be optional and disabled by default.

Supporting a feature means to actually maintain it:

	fixing bugs

	writing documentation

	keeping it up to date

	offering end-user support via forum and/or Discord chat

27.2.1.4. Stale tickets policy

We understand that people's availability and interested to volunteer their time
to our project may change. Therefore, to prevent tickets going stale (not worked
on), and issues going unsolved for a long time, we have a policy to unclaim
tickets if there are no contribution updates within 6 months.

If you claim a ticket and later on find out that you won't be able to work on
it, it is also appreciated if you inform that to us in the ticket and unclaim
it, so everyone knows that work is still open and waiting to be done.

27.2.1.5. What branch to work on

There are usually 2 or 3 active branches:

	master-x.x.x (e.g. master-6.0.x)

	main-x.x.x (e.g. main-7.0.x)

	master

The ones with version numbers are stable branches. master is the development branch.

The stable branch should only be worked on for important bug fixes or other
needed backports. Those are mainly expected from more
experienced contributors.

Development of new features or large scale redesign is done in the development
branch. New development and new contributors should work with master except
in very special cases - which should and would be discussed with us first.

If in doubt, please reach out to us via Redmine, Discord or
forum.

27.2.1.6. Create your own branch

It's useful to create descriptive branch names. You're working on ticket 123 to
improve GeoIP? Name your branch "geoip-feature-123-v1". The "-v1" addition is
for feedback. When incorporating feedback you will have to create a new branch
for each pull request. So, when you address the first feedback, you will work in
"geoip-feature-123-v2" and so on.

For more details check: Creating a branch to do your changes [https://redmine.openinfosecfoundation.org/projects/suricata/wiki/GitHub_work_flow#Creating-a-branch-to-do-your-changes]

27.2.1.7. Coding Style

We have a Coding Style that must be followed.

27.2.1.8. Documentation Style

For documenting code, please follow Rust documentation and/or Doxygen
guidelines, according to what your contribution is using (Rust or C).

When writing or updating documentation pages, please:

	wrap up lines at 79 (80 at most) characters;

	when adding diagrams or images, we prefer alternatives that can be generated
automatically, if possible;

	bear in mind that our documentation is published on Read the Docs [https://docs.suricata.io/en/latest/#suricata-user-guide] and can also be
built to pdf, so it is important that it looks good in such formats.

27.2.1.8.1. Rule examples

For rule documentation, we have a special container:

example-rule

This will present the rule in a box with an easier to read font size, and also
allows highlighting specific elements in the signature, as the names indicate
- action, header, options, or emphasize custom portions:

	example-rule-action

	example-rule-header

	example-rule-options

	example-rule-emphasis

When using these, indicate the portion to be highlighted by surrounding it with
` . Before using them, one has to invoke the specific role, like so:

.. role:: example-rule-role

It is only necessary to invoke the role once per document. One can see these
being invoked in our introduction to the rule language (see Rules intro [https://raw.githubusercontent.com/OISF/suricata/master/doc/userguide/rules/intro.rst]).

A rule example like:

.. container:: example-rule

:example-rule-action:`alert` :example-rule-header:`http $HOME_NET any ->
$EXTERNAL_NET any` :example-rule-options:`(msg:"HTTP GET Request Containing
Rule in URI"; flow:established,to_server; http.method; content:"GET"; http.uri;
content:"rule"; fast_pattern; classtype:bad-unknown; sid:123; rev:1;)`

Results in:

alert http $HOME_NET any ->
$EXTERNAL_NET any (msg:"HTTP GET Request Containing
Rule in URI"; flow:established,to_server; http.method; content:"GET"; http.uri;
content:"rule"; fast_pattern; classtype:bad-unknown; sid:123; rev:1;)

Example - emphasis:

.. container:: example-rule

alert ssh any any -> any any (msg:"match SSH protocol version";
:example-rule-emphasis:`ssh.proto;` content:"2.0"; sid:1000010;)

Renders as:

alert ssh any any -> any any (msg:"match SSH protocol version";
ssh.proto; content:"2.0"; sid:1000010;)

27.2.1.9. Commit History matters

Please consider our Commit guidelines before submitting your PR.

27.2.1.10. Send a Pull Request

The pull request is used to request inclusion of your patches into the main
repository. Before it is merged, it will be reviewed and pushed through a QA
process.

Please consider our Pull Requests Criteria when
submitting.

We have 'GitHub-CI' integration enabled. This means some automated build check,
suricata-verity and unit tests are performed on the pull request. Generally,
this is ready after a few minutes. If the test fails, the pull request won't be
considered. So please, when you submit something, keep an eye on the checks,
and address any failures - if you do not understand what they are, it is fine to
ask about them on the failing PR itself.

Before merge, we also perform other integration tests in our private QA-lab. If
those fail, we may request further changes, even if the GitHub-CI has passed.

27.2.1.11. Feedback

You'll likely get some feedback. Even our most experienced devs do, so don't
feel bad about it.

After discussing what needs to be changed (usually on the PR itself), it's time
to go back to "Create your own branch" and do it all again. This process
can iterate quite a few times, as the contribution is refined.

27.2.1.12. Wrapping up

27.2.1.12.1. Merged! Cleanup

Congrats! Your change has been merged into the main repository. Many thanks!

We strongly suggest cleaning up: delete your related branches, both locally and
on GitHub - this helps you in keeping things organized when you want to make new
contributions.

27.2.1.12.2. Update ticket

You can now put the URL of the merged pull request in the Redmine ticket.
Next, mark the ticket as "Closed" or "Resolved".

Well done! You are all set now.

27.2.2. Code Submission Process

27.2.2.1. Commits

	Commits need to be logically separated. Don't fix unrelated things in one commit.

	Don't add unnecessary commits, if commit 2 fixes commit 1 merge them together (squash)

	Commits need to have proper messages, explaining anything that is non-trivial

	Commits should not, at the same time, change, rename and/or move code. Use
separate commits for each of this, e.g, a commit to rename files, then a commit
to change the code.

	If your code changes or adds new behavior, add the related documentation
updates in their own commit, but make sure to add the same ticket number to
both commit messages.

	
	Commit messages need to be properly formatted (check the example further
	
	below in this section):
	
	Meaningful and short (50 chars max) subject line followed by an empty line

	Naming convention: prefix message with sub-system ("rule parsing: fixing foobar"). If
you're not sure what to use, look at past commits to the file(s) in your PR.

	Description, wrapped at ~72 characters

	
	Commits should be individually compilable, starting with the oldest commit. Make sure that
	each commit can be built if it and the preceding commits in the PR are used.

	Commits should be authored with the format: "FirstName LastName <name@example.com>"

Information that needs to be part of a commit (if applicable):

	Ticket it fixes. E.g. "Fixes Bug #123."

	Compiler warnings addressed.

	Coverity Scan issues addressed.

	Static analyzer error it fixes (cppcheck/scan-build/etc)

When in doubt, check our git history for other messages or changes done to the
same module your're working on. This is a good example of a commit message [https://github.com/OISF/suricata/commit/33fca4d4db112b75ffa22eb2e6f14f038cbcc1f9]:

pcap/file: normalize file timestamps

Normalize the timestamps that are too far in the past to epoch.

Bug: #6240.

27.2.2.2. Pull Requests

A github pull request is actually just a pointer to a branch in your tree. GitHub provides a review interface that we use.

	A branch can only be used in for an individual PR.

	A branch should not be updated after the pull request

	A pull request always needs a good description (link to issue tracker if related to a ticket).

	Incremental pull requests need to link to the prior iteration

	Incremental pull requests need to describe changes since the last PR

	Link to the ticket(s) that are addressed to it.

	When fixing an issue, update the issue status to In Review after submitting the PR.

	Pull requests are automatically tested using github actions (https://github.com/OISF/suricata/blob/master/.github/workflows/builds.yml).
Failing builds won't be considered and should be closed immediately.

	Pull requests that change, or add a feature should include a documentation update commit

27.2.2.3. Tests and QA

As much as possible, new functionality should be easy to QA.

	Add suricata-verify tests for verification. See https://github.com/OISF/suricata-verify

	Add unittests if a suricata-verify test isn't possible.

	Provide pcaps that reproduce the problem. Try to trim as much as possible to the pcap includes the minimal
set of packets that demonstrate the problem.

	Provide example rules if the code added new keywords or new options to existing keywords

27.2.3. GitHub Pull Request Workflow

27.2.3.1. Draft Pull Requests

A Pull Request (PR) should be marked as draft if it is not intended to be merged as is,
but is waiting for some sort of feedback.
The author of the PR should be explicit with what kind of feedback is expected
(CI/QA run, discussion on the code, etc...)

The GitHub filter is is:pr is:open draft:true sort:updated-asc.

A draft may be closed if it has not been updated in two months.

27.2.3.2. Mergeable Pull Requests

	When a Pull Request is intended to be merged as is, the workflow is the following:
	
	get reviewed, and either request changes or get approved

	if approved, get staged in a next branch (with other PRs), wait for CI validation
(and eventually request changes if CI finds anything)

	get merged and closed

Once submitted, we aim at providing a first PR review within two weeks and a
month.

If either code, documentation wording or commit messages need re-work, the
reviewer will set the PR state to changes requested.

Note

It is expected that the author will create a new PR with a new version
of the patch as described in Pull Requests Criteria.
A PR may be closed as stale if it has not been updated in two months after
changes were requested.

A PR may be labeled decision-required if the reviewer thinks the team needs
more time to analyze the best approach to a proposed solution or discussion
raised by the PR.

Once in approved state, the PRs are in the responsibility of the maintainer, along
with the next branches/PRs.

27.2.3.2.1. Reviewers and Maintainers

A newly created PR should match the filter:

is:pr is:open draft:false review:none sort:updated-asc no:assignee

The whole team is responsible to assign a PR to someone precise within 2 weeks.

When someone gets assigned a PR, it should get a review status within 2 weeks:
either changes requested, approved, or assigned to someone else if more
expertise is needed.

The GitHub filter for changes-requested PRs is:

is:pr is:open draft:false sort: updated-asc review:changes-requested

The command to get approved PRs is:

gh pr list --json number,reviewDecision --search "state:open type:pr -review:none" | jq '.[] | select(.reviewDecision=="")'

An approved PR should match the filter: is:open is:pr review:approved.

27.2.4. Suricata Backports Guide

This document describes the processes used to backport content to current stable
Suricata releases. Most often, this means security and/or bug fixes;
however, in some cases, features may be backported to previous Suricata releases.

	There are multiple versions of Suricata at any given time:
	
	Master

	Major stable release

	Old stable release

	For example, at the moment, there are 3 releases based on these Suricata branches:
	
	master: 8.0.0-dev, current development branch

	main-7.0.x: major stable release (note we're changing our naming conventions)

	master-6.0.x: old stable release

For Suricata's release cadence and end of life policies, please check
https://suricata.io/our-story/eol-policy/.

The next sections discuss when and what to backport, and some guidelines when
doing so.

27.2.4.1. What should be backported?

Usually, when the team creates a ticket, we'll add the Needs backport related
labels, so necessary backporting tickets will be automatically created. If you
are working on a ticket that doesn't have such labels, nor backporting tasks
associated, it probably doesn't need backporting. If you understand that the
issue should be backported, please let us know in the ticket or related PR. But
sometimes we'll miss those.

	The general principle used to determine what will be backported is:
	
	security fixes (please see our Security Policy [https://github.com/OISF/suricata/blob/master/SECURITY.md])

	bug fixes

	in some cases, new features are backported if there are sufficient reasons to
backport a new feature.

Note

Exceptions

There can be cases where backports may be "missed" -- some issues may not be
labeled as needing backports and some PRs may be merged without an issue.

This guide may be insufficient for some situations. When in doubt, please reach
out to the team on the backport ticket or PR.

27.2.4.2. Selection overview

	All items considered for backports should be reviewed with the following:
	
	risk estimate: will the change introduce new bugs? Consider the scope and
items affected by the change.

	behavioral change: how much will the behavior of the system be changed by the
backport. For example, a small change to decode additional encapsulation
protocols may result in more traffic being presented to Suricata.

	default settings: if the issue alters behavior, can it be made optional, and
at what cost?

27.2.4.2.1. Creating backport tickets -- new issues

Redmine: for security and bug fixes, when creating a new Redmine issue,
label the Redmine issue with "Needs backport to x.0", where x.0 is a supported
Suricata release, e.g, 7.0.x.

27.2.4.2.2. Creating backports tickets -- existing issues/PRs

We want to minimize the occurrence of "missed backports" -- that is, work that
should be backported but wasn't. Sometimes this happens when there is no Redmine
issue, or the Redmine issue wasn't labeled as needing a backport.

	Therefore, we will be periodically reviewing:
	
	Redmine issues without backport labels, including recently closed issues, to
see which require backport labels.

	PRs without associated Redmine issues. Those requiring backports should be
labeled with needs backport.

Then, also periodically, we will create backport issues from those items
identified in the previous steps. When doing so, we will evaluate what are the
relevant target backport releases. Some issues reported against master or the
current Suricata release may not apply to older releases.

27.2.4.3. Git Backport Workflow

If you are working on a task that needs to be backported, only start the
backporting process once the PR for master has been merged. Then:

	Identify the commit(s) needed for the backport. Start with the PR that merged
the commits into master and select only the commits from the issue being
backported.

	Bring each commit into the new branch, one at a time -- starting with the
oldest commit. Use git cherry-pick -x commit-hash, where commit-hash
is the hash to the commit already in master or main-7.0x that is being
backported, as it maintains the linkage with said cherry-picked commit.

	Resolve conflicts: Some of the cherry-picked commits may contain merge
conflicts. If the conflicts are small, include the corrections in the
cherry-picked commit.

	Add additional commits, if any are needed (e.g., to adjust cherry-picked code
to old behavior).

Note

Commit hashes

We have a CI check that ensures the validity of the cherry-pick line.

Note

Exceptions

Sometimes, the fix for master will not work for the stable or old releases.
In such cases, the backporting process won't be through cherry-picking, but
through actually implementing a fix for the specific version.

27.2.4.3.1. Create a PR:

Please indicate in the title that this is a backport PR, with something like
(7.0.x-backport), and add the related milestone label.

In the PR description, indicate the backport ticket.

27.2.4.4. QA

Add suricata-verify PRs when needed. Some existing suricata-verify tests may require
version specification changes.

27.3. Suricata Internals

	27.3.1. Packet Pipeline

	27.3.2. Threading

	27.3.3. Important Data Structures
	27.3.3.1. Introduction

	27.3.4. Engines
	27.3.4.1. Flow

	27.3.4.2. Stream

	27.3.4.3. Defrag

27.3.1. Packet Pipeline

27.3.2. Threading

27.3.3. Important Data Structures

27.3.3.1. Introduction

This section explains the most important Suricata Data structures.

For a complete overview, see the doxygen: https://doxygen.openinfosecfoundation.org

27.3.4. Engines

27.3.4.1. Flow

27.3.4.2. Stream

27.3.4.3. Defrag

27.4. Extending Suricata

	27.4.1. Packet Capture

	27.4.2. Packet Decoder

	27.4.3. App-Layer
	27.4.3.1. Application Layer Frame Support

	27.4.3.2. Parsers

	27.4.3.3. Transactions

	27.4.4. Detection

	27.4.5. Output
	27.4.5.1. Introduction

27.4.1. Packet Capture

27.4.2. Packet Decoder

27.4.3. App-Layer

	27.4.3.1. Application Layer Frame Support
	27.4.3.1.1. Baseline

	27.4.3.1.2. General Concepts

	27.4.3.1.3. Adding Frame Support to a Parser

	27.4.3.1.4. Visual context

	27.4.3.2. Parsers
	27.4.3.2.1. Callbacks

	27.4.3.2.2. Return Types

	27.4.3.3. Transactions
	27.4.3.3.1. General Concepts

	27.4.3.3.2. How the engine uses transactions

	27.4.3.3.3. Progress Tracking

	27.4.3.3.4. Examples

	27.4.3.3.5. Work In Progress changes

	27.4.3.3.6. Common words and abbreviations

27.4.3.1. Application Layer Frame Support

Table of Contents

	Application Layer Frame Support

	Baseline

	General Concepts

	Adding Frame Support to a Parser

	Basic steps

	Implementation Examples & API Callbacks

	Rust

	C code

	Visual context

27.4.3.1.1. Baseline

	Suricata rules format [https://docs.suricata.io/en/latest/rules/intro.html]

27.4.3.1.2. General Concepts

Frame support was introduced with Suricata 7.0. Up until 6.0.x, Suricata's architecture and state of parsers meant that the network traffic available to the detection engine was just a stream of data, without detail about higher level parsers.

Note

For Suricata, Frame is a generic term that can represent any unit of network data we are interested in, which could be comprised of one or several records of other, lower level protocol(s). Frames work as "stream annotations", allowing Suricata to tell the detection engine what type of record exists at a specific offset in the stream.

The normal pipeline of detection in Suricata implied that:

	Certain rules could be quite costly performance-wise. This happened because the same stream could be inspected several times for different rules, since for certain signatures the detection is done when Suricata is still inspecting a lower level stream, not the application layer protocol (e.g., TCP traffic, in place of SMB one);

	Rules could be difficult and tedious to write (and read), requiring that writers went in byte-detail to express matching on specific payload patterns.

What the Frame support offers is the ability to "point" to a specific portion of stream and identify what type of traffic Suricata is looking at. Then, as the engine reassembles the stream, one can have "read access" to that portion of the stream, aggregating concepts like what type of application layer protocol that is, and differentiating between header, data or even protocol versions (SMB1, SMB2...).

The goal of the stream Frame is to expose application layer protocol PDUs [https://en.wikipedia.org/wiki/Protocol_data_unit] and other such arbitrary elements to the detection engine directly, instead of relying on Transactions. The main purpose is to bring TCP data processing times down by specialising/ filtering down traffic detection.

27.4.3.1.3. Adding Frame Support to a Parser

The application layer parser exposes frames it supports to the detect engine, by tagging them as they're parsed. The rest works automatically.

In order to allow the engine to identify frames for records of a given application layer parser, thought must be given as to which frames make sense for the specific protocol you are handling. Some parsers may have clear header and data fields that form its protocol data unit (pdu). For others, the distinction might be between request and response, only. Whereas for others it may make sense to have specific types of data. This is better understood by seeing the different types of frame keywords, which vary on a per-protocol basis.

It is also important to keep follow naming conventions when defining Frame Types. While a protocol may have strong naming standards for certain structures, do compare those with what Suricata already has registered:

	hdr: used for the record header portion

	data: is used for the record data portion

	pdu: unless documented otherwise, means the whole record, comprising hdr and data

	request: a message from a client to a server

	response: a message from a server to a client

27.4.3.1.3.1. Basic steps

Once the frame types that make sense for a given protocol are defined, the basic steps for adding them are:

	create an enum with the frame types;

	identify the parsing function(s) where application layer records are parsed;

	identify the correct moment to register the frames;

	use the Frame API calls directly or build upon them and use your functions to register the frames;

	register the relevant frame callbacks when registering the parser.

Once these are done, you can enable frame eve-output to confirm that your frames are being properly registered. It is important to notice that some hard coded limits could influence what you see on the logs (max size of log output; type of logging for the payload, cf. https://redmine.openinfosecfoundation.org/issues/4988).

If all the steps are successfully followed, you should be able to write a rule using the frame keyword and the frame types you have registered with the application layer parser.

Using the SMB parser as example, before frame support, a rule would look like:

alert tcp ... flow:to_server; content:"|ff|SMB"; content:"some smb 1 issue";

With frame support, one is able to do:

alert smb ... flow:to_server; frame:smb1.data; content:"some smb 1 issue";

27.4.3.1.3.2. Implementation Examples & API Callbacks

Though the steps are the same, there are a few differences when implementing frame support in Rust or in C. The following sections elaborate on that, as well as on the process itself. (Note that the code snippets have omitted portions of code that weren't so relevant to this document).

27.4.3.1.3.2.1. Rust

This section shows how Frame support is added in Rust, using examples from the SIP parser [https://github.com/OISF/suricata/blob/master/rust/src/sip/sip.rs], and the telnet parser [https://github.com/OISF/suricata/blob/master/rust/src/telnet/telnet.rs].

Define the frame types. The frame types are defined as an enum. In Rust, make sure to derive from the AppLayerFrameType:

rust/src/sip/sip.rs

#[derive(AppLayerFrameType)]
pub enum SIPFrameType {
 Pdu,
 RequestLine,
 ResponseLine,
 RequestHeaders,
 ResponseHeaders,
 RequestBody,
 ResponseBody,
}

Frame registering. Some understanding of the parser will be needed in order to find where the frames should be registered. It makes sense that it will happen when the input stream is being parsed into records. See when some pdu and request frames are created for SIP:

rust/src/sip/sip.rs

fn parse_request(&mut self, flow: *const core::Flow, stream_slice: StreamSlice) -> bool {
 let input = stream_slice.as_slice();
 let _pdu = Frame::new(
 flow,
 &stream_slice,
 input,
 input.len() as i64,
 SIPFrameType::Pdu as u8,
);
 SCLogDebug!("ts: pdu {:?}", _pdu);

 match sip_parse_request(input) {
 Ok((_, request)) => {
 sip_frames_ts(flow, &stream_slice, &request);
 self.build_tx_request(input, request);
 return true;
 }

Note

when to create PDU frames

The standard approach we follow for frame registration is that a frame pdu will always be created, regardless of parser status (in practice, before the parser is called). The other frames are then created when and if only the parser succeeds.

Use the Frame API or build upon them as needed. These are the frame registration functions highlighted above:

rust/src/sip/sip.rs

fn sip_frames_ts(flow: *const core::Flow, stream_slice: &StreamSlice, r: &Request) {
 let oi = stream_slice.as_slice();
 let _f = Frame::new(
 flow,
 stream_slice,
 oi,
 r.request_line_len as i64,
 SIPFrameType::RequestLine as u8,
);
 SCLogDebug!("ts: request_line {:?}", _f);
 let hi = &oi[r.request_line_len as usize..];
 let _f = Frame::new(
 flow,
 stream_slice,
 hi,
 r.headers_len as i64,
 SIPFrameType::RequestHeaders as u8,
);
 SCLogDebug!("ts: request_headers {:?}", _f);
 if r.body_len > 0 {
 let bi = &oi[r.body_offset as usize..];
 let _f = Frame::new(
 flow,
 stream_slice,
 bi,
 r.body_len as i64,
 SIPFrameType::RequestBody as u8,
);
 SCLogDebug!("ts: request_body {:?}", _f);
 }
}

Register relevant frame callbacks. As these are inferred from the #[derive(AppLayerFrameType)] statement, all that is needed is:

rust/src/sip/sip.rs

get_frame_id_by_name: Some(SIPFrameType::ffi_id_from_name),
get_frame_name_by_id: Some(SIPFrameType::ffi_name_from_id),

Note

on frame_len

For protocols which search for an end of frame char, like telnet, indicate unknown length by passing -1. Once the length is known, it must be updated. For those where length is a field in the record (e.g. SIP), the frame is set to match said length, even if that is bigger than the current input

The telnet parser has examples of using the Frame API directly for registering telnet frames, and also illustrates how that is done when length is not yet known:

rust/src/telnet/telnet.rs

fn parse_request(
 &mut self, flow: *const Flow, stream_slice: &StreamSlice, input: &[u8],
) -> AppLayerResult {
 let mut start = input;
 while !start.is_empty() {
 if self.request_frame.is_none() {
 self.request_frame = Frame::new(
 flow,
 stream_slice,
 start,
 -1_i64,
 TelnetFrameType::Pdu as u8,
);
 }
 if self.request_specific_frame.is_none() {
 if let Ok((_, is_ctl)) = parser::peek_message_is_ctl(start) {
 let f = if is_ctl {
 Frame::new(
 flow,
 stream_slice,
 start,
 -1_i64,
 TelnetFrameType::Ctl as u8,
)
 } else {
 Frame::new(
 flow,
 stream_slice,
 start,
 -1_i64,
 TelnetFrameType::Data as u8,

We then update length later on (note especially lines 3 and 10):

rust/src/telnet/telnet.rs

 1match parser::parse_message(start) {
 2 Ok((rem, request)) => {
 3 let consumed = start.len() - rem.len();
 4 if rem.len() == start.len() {
 5 panic!("lockup");
 6 }
 7 start = rem;
 8
 9 if let Some(frame) = &self.request_frame {
10 frame.set_len(flow, consumed as i64);

The Frame API calls parameters represent:

	flow: dedicated data type, carries specific flow-related data

	stream_slice: dedicated data type, carries stream data, shown further bellow

	frame_start: a pointer to the start of the frame buffer in the stream (cur_i in the SMB code snippet)

	frame_len: what we expect the frame length to be (the engine may need to wait until it has enough data. See what is done in the telnet snippet request frames registering)

	frame_type: type of frame it's being registering (defined in an enum, as shown further above)

StreamSlice contains the input data to the parser, alongside other Stream-related data important in parsing context. Definition is found in applayer.rs:

rust/src/applayer.rs

pub struct StreamSlice {
 input: *const u8,
 input_len: u32,
 /// STREAM_* flags
 flags: u8,
 offset: u64,
}

27.4.3.1.3.2.2. C code

Implementing Frame support in C involves a bit more manual work, as one cannot make use of the Rust derives. Code snippets from the HTTP parser:

Defining the frame types with the enum means:

src/app-layer-htp.c

enum HttpFrameTypes {
 HTTP_FRAME_REQUEST,
 HTTP_FRAME_RESPONSE,
};

SCEnumCharMap http_frame_table[] = {
 {
 "request",
 HTTP_FRAME_REQUEST,
 },
 {
 "response",
 HTTP_FRAME_RESPONSE,
 },
 { NULL, -1 },
};

The HTTP parser uses the Frame registration functions from the C API (app-layer-frames.c) directly for registering request Frames. Here we also don't know the length yet. The 0 indicates flow direction: toserver, and 1 would be used for toclient:

src/app-layer-htp.c

Frame *frame = AppLayerFrameNewByAbsoluteOffset(
 hstate->f, hstate->slice, consumed, -1, 0, HTTP_FRAME_REQUEST);
if (frame) {
 SCLogDebug("frame %p/%" PRIi64, frame, frame->id);
 hstate->request_frame_id = frame->id;
 AppLayerFrameSetTxId(frame, HtpGetActiveRequestTxID(hstate));
}

Updating frame->len later:

src/app-layer-htp.c

if (hstate->request_frame_id > 0) {
 Frame *frame = AppLayerFrameGetById(hstate->f, 0, hstate->request_frame_id);
 if (frame) {
 const uint64_t request_size = abs_right_edge - hstate->last_request_data_stamp;

 SCLogDebug("HTTP request complete: data offset %" PRIu64 ", request_size %" PRIu64,
 hstate->last_request_data_stamp, request_size);
 SCLogDebug("frame %p/%" PRIi64 " setting len to %" PRIu64, frame, frame->id,
 request_size);
 frame->len = (int64_t)request_size;

Register relevant callbacks (note that the actual functions will also have to be written, for C):

src/app-layer-htp.c

AppLayerParserRegisterGetFrameFuncs(
 IPPROTO_TCP, ALPROTO_HTTP1, HTTPGetFrameIdByName, HTTPGetFrameNameById);

Note

The GetFrameIdByName functions can be "probed", so they should not generate any output or that could be misleading (for instance, Suricata generating a log message stating that a valid frame type is unknown).

27.4.3.1.4. Visual context

input and input_len are used to calculate the proper offset, for storing the frame. The stream buffer slides forward, so frame offsets/frames have to be updated. The relative offset (rel_offset) reflects that:

Start:
[stream]
 [frame ]
 rel_offset: 2
 len: 19

Slide:
 [stream]
[frame]
 rel_offset: -10
 len: 19

Slide:
 [stream]
[frame]
 rel_offset: -16
 len: 19

The way the engine handles stream frames can be illustrated as follows:

[image: ../../../_images/StreamFrames.png]

27.4.3.2. Parsers

27.4.3.2.1. Callbacks

The API calls callbacks that are registered at the start of the program.

The function prototype is:

typedef AppLayerResult (*AppLayerParserFPtr)(Flow *f, void *protocol_state,
 AppLayerParserState *pstate,
 const uint8_t *buf, uint32_t buf_len,
 void *local_storage, const uint8_t flags);

27.4.3.2.1.1. Examples

A C example:

static AppLayerResult HTPHandleRequestData(Flow *f, void *htp_state,
 AppLayerParserState *pstate,
 const uint8_t *input, uint32_t input_len,
 void *local_data, const uint8_t flags);

In Rust, the callbacks are similar.

#[no_mangle]
pub extern "C" fn rs_dns_parse_response_tcp(_flow: *const core::Flow,
 state: *mut std::os::raw::c_void,
 _pstate: *mut std::os::raw::c_void,
 input: *const u8,
 input_len: u32,
 _data: *const std::os::raw::c_void,
 _flags: u8)
-> AppLayerResult

27.4.3.2.2. Return Types

Parsers return the type AppLayerResult.

	There are 3 possible results:
	
	APP_LAYER_OK - parser consumed the data successfully

	APP_LAYER_ERROR - parser encountered a unrecoverable error

	APP_LAYER_INCOMPLETE(c,n) - parser consumed c bytes, and needs n more before being called again

	Rust parsers follow the same logic, but can return
	
	AppLayerResult::ok()

	AppLayerResult::err()

	AppLayerResult::incomplete(c,n)

For i32 and bool, Rust parsers can also use .into().

27.4.3.2.2.1. APP_LAYER_OK / AppLayerResult::ok()

When a parser returns "OK", it signals to the API that all data has been consumed. The parser will be called again when more data is available.

27.4.3.2.2.2. APP_LAYER_ERROR / AppLayerResult::err()

Returning "ERROR" from the parser indicates to the API that the parser encountered an unrecoverable error and the processing of the protocol should stop for the rest of this flow.

Note

This should not be used for recoverable errors. For those events should be set.

27.4.3.2.2.3. APP_LAYER_INCOMPLETE / AppLayerResult::incomplete()

Using "INCOMPLETE" a parser can indicate how much more data is needed. Many protocols use records that have the size as one of the first parameters. When the parser receives a partial record, it can read this value and then tell the API to only call the parser again when enough data is available.

consumed is used how much of the current data has been processed
needed is the number of bytes that the parser needs on top of what was consumed.

Example:

[32 record 1][32 record 2][32 r..]
 0 31 32 63 64 72
 ^ ^
consumed: 64 ---------------/ |
needed: 32 -------------------/

Note

"INCOMPLETE" is only supported for TCP

The parser will be called again when the needed data is available OR when the stream ends. In the latter case the data will be incomplete. It's up to the parser to decide what to do with it in this case.

27.4.3.2.2.3.1. Supporting incomplete data

In some cases it may be preferable to actually support dealing with incomplete records. For example protocols like SMB and NFS can use very large records during file transfers. Completely queuing these before processing could be a waste of resources. In such cases the "INCOMPLETE" logic could be used for just the record header, while the record data is streamed into the parser.

27.4.3.3. Transactions

Table of Contents

	Transactions

	General Concepts

	How the engine uses transactions

	Logging

	Rule Matching

	Progress Tracking

	In Summary - Transactions and State

	Examples

	Enums

	API Callbacks

	Sequence Diagrams

	Template Protocol

	Work In Progress changes

	Common words and abbreviations

27.4.3.3.1. General Concepts

For Suricata, transactions are an abstraction that help with detecting and logging. An example of a complete transaction is
a pair of messages in the form of a request (from client to server) and a response (from server to client) in HTTP.

In order to know when to log an event for a given protocol, the engine tracks the progress of each transaction - that
is, when is it complete, or when it reaches a key intermediate state. They aid during the detection phase,
when dealing with protocols that can have large PDUs (protocol data units), like TCP, in controlling state for partial rule matching -- in case of rules that mention more than one field.

Transactions are implemented and stored in the per-flow state. The engine interacts with them using a set of callbacks the parser registers.

27.4.3.3.2. How the engine uses transactions

27.4.3.3.2.1. Logging

Suricata controls when logging should happen based on transaction completeness. For simpler protocols, such as dns
or ntp, that will most
likely happen once per transaction, by the time of its completion. In other cases, like with HTTP, this may happen at intermediary states.

In OutputTxLog, the engine will compare current state with the value defined for the logging to happen, per flow
direction (logger->tc_log_progress, logger->ts_log_progress). If state is less than that value, the engine skips to
the next logger. Code snippet from: suricata/src/output-tx.c:

static TmEcode OutputTxLog(ThreadVars *tv, Packet *p, void *thread_data)
{
 .
 .
 .
 if ((ts_eof && tc_eof) || last_pseudo) {
 SCLogDebug("EOF, so log now");
 } else {
 if (logger->LogCondition) {
 int r = logger->LogCondition(tv, p, alstate, tx, tx_id);
 if (r == FALSE) {
 SCLogDebug("conditions not met, not logging");
 goto next_logger;
 }
 } else {
 if (tx_progress_tc < logger->tc_log_progress) {
 SCLogDebug("progress not far enough, not logging");
 goto next_logger;
 }

 if (tx_progress_ts < logger->ts_log_progress) {
 SCLogDebug("progress not far enough, not logging");
 goto next_logger;
 }
 }
 }
 .
 .
 .
}

27.4.3.3.2.2. Rule Matching

Transaction progress is also used for certain keywords to know what is the minimum state before we can expect a match: until that, Suricata won't even try to look for the patterns.

As seen in DetectAppLayerMpmRegister that has int progress as parameter, and DetectAppLayerInspectEngineRegister, which expects int tx_min_progress, for instance. In the code snippet,
HTTP2StateDataClient, HTTP2StateDataServer and 0 are the values passed to the functions - in the last
example, for FTPDATA,
the existence of a transaction implies that a file is being transferred. Hence the 0 value.

void DetectFiledataRegister(void)
{
 .
 .
 DetectAppLayerMpmRegister("file_data", SIG_FLAG_TOSERVER, 2,
 PrefilterMpmFiledataRegister, NULL,
 ALPROTO_HTTP2, HTTP2StateDataClient);
 DetectAppLayerMpmRegister("file_data", SIG_FLAG_TOCLIENT, 2,
 PrefilterMpmFiledataRegister, NULL,
 ALPROTO_HTTP2, HTTP2StateDataServer);
 .
 .
 DetectAppLayerInspectEngineRegister("file_data",
 ALPROTO_HTTP2, SIG_FLAG_TOCLIENT, HTTP2StateDataServer,
 DetectEngineInspectFiledata, NULL);
 DetectAppLayerInspectEngineRegister(
 "file_data", ALPROTO_FTPDATA, SIG_FLAG_TOSERVER, 0, DetectEngineInspectFiledata, NULL);
 .
 .
}

27.4.3.3.3. Progress Tracking

As a rule of thumb, transactions will follow a request-response model: if a transaction has had a request and a response, it is complete.

But if a protocol has situations where a request or response won’t expect or generate a message from its counterpart,
it is also possible to have uni-directional transactions. In such cases, transaction is set to complete at the moment of
creation.

For example, DNS responses may be considered as completed transactions, because they also contain the request data, so
all information needed for logging and detection can be found in the response.

In addition, for file transfer protocols, or similar ones where there may be several messages before the file exchange
is completed (NFS, SMB), it is possible to create a level of abstraction to handle such complexity. This could be achieved by adding phases to the model implemented by the protocol (e.g., protocol negotiation phase (SMB), request parsed (HTTP), and so on).

This is controlled by implementing progress states. In Suricata, those will be enums that are incremented as the parsing
progresses. A state will start at 0. The higher its value, the closer the transaction would be to completion. Due to how
the engine tracks detection across states, there is an upper limit of 48 to the state progress (it must be < 48).

The engine interacts with transactions' state using a set of callbacks the parser registers. State is defined per flow direction (STREAM_TOSERVER / STREAM_TOCLIENT).

27.4.3.3.3.1. In Summary - Transactions and State

	Initial State value: 0.

	Simpler scenarios: State is simply a bool. 1 represents transaction completion, per direction.

	Complex Transaction State in Suricata: enum (Rust: i32). Completion is indicated by the highest enum value (some examples are: SSH, HTTP, HTTP2, DNS, SMB).

27.4.3.3.4. Examples

This section shares some examples from Suricata codebase, to help visualize how Transactions work and are handled by the engine.

27.4.3.3.4.1. Enums

Code snippet from: rust/src/ssh/ssh.rs:

pub enum SSHConnectionState {
 SshStateInProgress = 0,
 SshStateBannerWaitEol = 1,
 SshStateBannerDone = 2,
 SshStateFinished = 3,
}

From src/app-layer-ftp.h:

enum {
 FTP_STATE_IN_PROGRESS,
 FTP_STATE_PORT_DONE,
 FTP_STATE_FINISHED,
};

From src/app-layer-ssl.h:

enum {
 TLS_STATE_IN_PROGRESS = 0,
 TLS_STATE_CERT_READY = 1,
 TLS_HANDSHAKE_DONE = 2,
 TLS_STATE_FINISHED = 3
};

27.4.3.3.4.2. API Callbacks

In Rust, this is done via the RustParser struct. As seen in rust/src/applayer.rs:

/// Rust parser declaration
pub struct RustParser {
 .
 .
 .
 /// Progress values at which the tx is considered complete in a direction
 pub tx_comp_st_ts: c_int,
 pub tx_comp_st_tc: c_int,
 .
 .
 .
}

In C, the callback API is:

void AppLayerParserRegisterStateProgressCompletionStatus(
 AppProto alproto, const int ts, const int tc)

Simple scenario described, in Rust:

rust/src/dhcp/dhcp.rs:

tx_comp_st_ts: 1,
tx_comp_st_tc: 1,

For SSH, this looks like this:

rust/src/ssh/ssh.rs:

tx_comp_st_ts: SSHConnectionState::SshStateFinished as i32,
tx_comp_st_tc: SSHConnectionState::SshStateFinished as i32,

In C, callback usage would be as follows:

src/app-layer-dcerpc.c:

AppLayerParserRegisterStateProgressCompletionStatus(ALPROTO_DCERPC, 1, 1);

src/app-layer-ftp.c:

AppLayerParserRegisterStateProgressCompletionStatus(
 ALPROTO_FTP, FTP_STATE_FINISHED, FTP_STATE_FINISHED);

27.4.3.3.4.3. Sequence Diagrams

A DNS transaction in Suricata can be considered unidirectional:

[image: A sequence diagram with two entities, Client and Server, with an arrow going from the Client to the Server, labeled "DNS Request". After that, there is a dotted line labeled "Transaction Completed".]
An HTTP2 transaction is an example of a bidirectional transaction, in Suricata (note that, while HTTP2 may have multiple streams, those are mapped to transactions in Suricata. They run in parallel, scenario not shown in this Sequence Diagram - which shows one transaction, only):

[image: A sequence diagram with two entities, Client and Server, with an arrow going from the Client to the Server labeled "Request" and below that an arrow going from Server to Client labeled "Response". Below those arrows, a dotted line indicates that the transaction is completed.]
A TLS Handshake is a more complex example, where several messages are exchanged before the transaction is considered completed:

[image: A sequence diagram with two entities, Client and Server, with an arrow going from the Client to the Server labeled "ClientHello" and below that an arrow going from Server to Client labeled "ServerHello". Below those arrows, several more follow from Server to Client and vice-versa, before a dotted line indicates that the transaction is finally completed.]

27.4.3.3.4.4. Template Protocol

Suricata has a template protocol for educational purposes, which has simple bidirectional transactions.

A completed transaction for the template looks like this:

[image: A sequence diagram with two entities, Client and Server, with an arrow going from the Client to the Server, labeled "Request". An arrow below that first one goes from Server to Client.]
Following are the functions that check whether a transaction is considered completed, for the Template Protocol. Those are called by the Suricata API. Similar functions exist for each protocol, and may present implementation differences, based on what is considered a transaction for that given protocol.

In C:

static int TemplateGetStateProgress(void *txv, uint8_t direction)
{
 TemplateTransaction *tx = txv;

 SCLogNotice("Transaction progress requested for tx ID %"PRIu64
 ", direction=0x%02x", tx->tx_id, direction);

 if (direction & STREAM_TOCLIENT && tx->response_done) {
 return 1;
 }
 else if (direction & STREAM_TOSERVER) {
 /* For the template, just the existence of the transaction means the
 * request is done. */
 return 1;
 }

 return 0;
}

And in Rust:

pub extern "C" fn rs_template_tx_get_alstate_progress(
 tx: *mut std::os::raw::c_void,
 _direction: u8,
) -> std::os::raw::c_int {
 let tx = cast_pointer!(tx, TemplateTransaction);

 // Transaction is done if we have a response.
 if tx.response.is_some() {
 return 1;
 }
 return 0;
}

27.4.3.3.5. Work In Progress changes

Currently we are working to have files be part of the transaction instead of the per-flow state, as seen in https://redmine.openinfosecfoundation.org/issues/4444.

Another work in progress is to limit the number of transactions per flow, to prevent Denial of Service (DoS) by quadratic complexity - a type of attack that may happen to protocols which can have multiple transactions at the same time - such as HTTP2 so-called streams (see https://redmine.openinfosecfoundation.org/issues/4530).

27.4.3.3.6. Common words and abbreviations

	al, applayer: application layer

	alproto: application layer protocol

	alstate: application layer state

	engine: refers to Suricata core detection logic

	flow: a bidirectional flow of packets with the same 5-tuple elements (protocol, source ip, destination ip, source port, destination port. Vlans can be added as well)

	PDU: Protocol Data Unit

	rs: rust

	tc: to client

	ts: to server

	tx: transaction

27.4.4. Detection

27.4.5. Output

27.4.5.1. Introduction

Extending Suricata's alert and event output.

27.5. LibSuricata

27.5.1. Using Suricata as a Library

The ability to turn Suricata into a library that can be utilized in other tools
is currently a work in progress, tracked by Redmine Ticket #2693:
https://redmine.openinfosecfoundation.org/issues/2693.

A related work are Suricata plugins, also in progress and tracked by Redmine
Ticket #4101: https://redmine.openinfosecfoundation.org/issues/4101.

27.6. Upgrading

27.6.1. Upgrading 7.0 to 8.0

27.6.1.1. EVE File Types

	The ThreadInit function will now be called when in threaded
and non-threaded modes. This simplifies the initialization for EVE
filetypes as they can use the same flow of execution for both
modes. To upgrade, either remove the call to ThreadInit from
Init, or move per-thread setup code from Init to
ThreadInit.

	Many of the function arguments to the callbacks have been made
const where it made sense.

Please see the latest example EVE filetype plugin for an up to date
example.

Index

 Symbols
 | C

Symbols

 	
 	
 --af-packet

 	command line option, [1]

 	
 --af-xdp

 	command line option, [1]

 	
 --build-info

 	command line option, [1]

 	
 --dag

 	command line option, [1]

 	
 --disable-detection

 	command line option, [1]

 	
 --disable-gccmarch-native

 	command line option

 	
 --disable-hashing

 	command line option, [1]

 	
 --dump-config

 	command line option, [1]

 	
 --dump-features

 	command line option, [1]

 	
 --enable-dpdk

 	command line option

 	
 --enable-geoip

 	command line option

 	
 --enable-lua

 	command line option

 	
 --engine-analysis

 	command line option, [1]

 	
 --erf-in

 	command line option, [1]

 	
 --fatal-unittests

 	command line option, [1]

 	
 --group

 	command line option, [1]

 	
 --include

 	command line option, [1]

 	
 --init-errors-fatal

 	command line option, [1]

 	
 --list-app-layer-protos

 	command line option, [1]

 	
 --list-keywords

 	command line option, [1]

 	
 --list-runmodes

 	command line option, [1]

 	
 --list-unittests

 	command line option, [1]

 	
 --localstatedir

 	command line option

 	
 --napatech

 	command line option, [1]

 	
 --netmap

 	command line option, [1]

 	
 --pcap

 	command line option, [1]

 	
 --pcap-buffer-size

 	command line option, [1]

 	
 --pcap-file-continuous

 	command line option, [1]

 	
 --pcap-file-delete

 	command line option, [1]

 	
 --pcap-file-recursive

 	command line option, [1]

 	
 --pfring

 	command line option, [1]

 	
 	
 --pfring-cluster-id

 	command line option, [1]

 	
 --pfring-cluster-type

 	command line option, [1]

 	
 --pidfile

 	command line option, [1]

 	
 --prefix

 	command line option

 	
 --reject-dev

 	command line option, [1]

 	
 --runmode

 	command line option, [1]

 	
 --set

 	command line option, [1]

 	
 --simulate-ips

 	command line option, [1]

 	
 --strict-rule-keywords

 	command line option, [1]

 	
 --sysconfdir

 	command line option

 	
 --unittest-filter

 	command line option, [1]

 	
 --unittests-coverage

 	command line option, [1]

 	
 --unix-socket

 	command line option, [1]

 	
 --user

 	command line option, [1]

 	
 -c

 	command line option, [1]

 	
 -D

 	command line option, [1]

 	
 -d

 	command line option, [1]

 	
 -F

 	command line option, [1]

 	
 -h

 	command line option, [1], [2], [3]

 	
 -i

 	command line option, [1]

 	
 -k

 	command line option, [1]

 	
 -l

 	command line option, [1]

 	
 -q

 	command line option, [1]

 	
 -r

 	command line option, [1]

 	
 -S

 	command line option, [1]

 	
 -s

 	command line option, [1]

 	
 -T

 	command line option, [1]

 	
 -U

 	command line option, [1]

 	
 -u

 	command line option, [1]

 	
 -V

 	command line option, [1]

 	
 -v

 	command line option, [1]

C

 	
 	
 command line option

 	--af-packet, [1]

 	--af-xdp, [1]

 	--build-info, [1]

 	--dag, [1]

 	--disable-detection, [1]

 	--disable-gccmarch-native

 	--disable-hashing, [1]

 	--dump-config, [1]

 	--dump-features, [1]

 	--enable-dpdk

 	--enable-geoip

 	--enable-lua

 	--engine-analysis, [1]

 	--erf-in, [1]

 	--fatal-unittests, [1]

 	--group, [1]

 	--include, [1]

 	--init-errors-fatal, [1]

 	--list-app-layer-protos, [1]

 	--list-keywords, [1]

 	--list-runmodes, [1]

 	--list-unittests, [1]

 	--localstatedir

 	--napatech, [1]

 	--netmap, [1]

 	--pcap, [1]

 	--pcap-buffer-size, [1]

 	--pcap-file-continuous, [1]

 	--pcap-file-delete, [1]

 	--pcap-file-recursive, [1]

 	--pfring, [1]

 	--pfring-cluster-id, [1]

 	--pfring-cluster-type, [1]

 	--pidfile, [1]

 	--prefix

 	--reject-dev, [1]

 	--runmode, [1]

 	--set, [1]

 	--simulate-ips, [1]

 	--strict-rule-keywords, [1]

 	--sysconfdir

 	--unittest-filter, [1]

 	--unittests-coverage, [1]

 	--unix-socket, [1]

 	--user, [1]

 	-c, [1]

 	-D, [1]

 	-d, [1]

 	-F, [1]

 	-h, [1], [2], [3]

 	-i, [1]

 	-k, [1]

 	-l, [1]

 	-q, [1]

 	-r, [1]

 	-s, [1]

 	-S, [1]

 	-T, [1]

 	-u, [1]

 	-U, [1]

 	-V, [1]

 	-v, [1]

Unified2 Output Removed

As of Suricata 6.0 the Unified2 output has been removed. The legacy
Unified2 format lacks the flexibility found in the Eve format, and is
considerably more difficult to integrate with other tools. The
current recommended output is EVE.

Packet (Payload) Logging

By default, Eve does not log the packet or payload like Unified2
does. This can be done with Eve by enabling the payload in Eve alert
logs. This will log the payload in base64 format to be compatible with
the JSON format of Eve logs.

It is important to note that while Eve does have an option to log the
packet, it is the payload option that provides the equivalent data to
that of the Unified2 output.

Migration Tools

Meer

Meer is an Eve log processing tool that can process Eve logs and
insert them into a database that is compatible with Barnyard2. This
could could be used as a Barnyard2 replacement if your use of Unified2
was to have Suricata events added this style of database for use with
tools such as Snorby and BASE.

More information on Meer can be found at its GitHub project page:
https://github.com/beave/meer.

Note

Please note that Meer is not supported or maintained by the
OISF or the Suricata development team.

 _images/threading.png
AL
2BEE =
./

_images/uri.png
content: %index.htmi"; hitp_uri;
content: “GET"; http_uri;

content: *index’; hitp_uri; content: *html";
hitp_uri; within:S;

content: index'; hip_uri; depth:6;

NN =N

_images/stat_msg_1.png
PAYLOAD

ound’; http_stat_msg; v
17, hitp_stat_msg; X

content"found”; hitp_stat_msg; nocase:

_images/suricata-update.png
Name: oisf/trafficid
Vendor: OISF
Summary: Suricata Traffic ID ruleset
License: MIT
Name: ptresearch/attackdetection
Vendor: Positive Technologies
Summary: Positive Technologies Attack Detection Team ruleset
License: Custom
Name: sslbl/ssl-fp-blacklist
Vendor: Abuse.ch
Summary: Abuse.ch SSL Blacklist
License: Non-Commercial
Name: et/open
Vendor: Proofpoint
Summary: Emerging Threats Open Ruleset
License: MIT
Name: scwx/security
Vendor: Secureworks
Summary: Secureworks suricata-security ruleset.
License: Commercial
Parameters: secret-code
Subscription: https://www.secureworks.com/contact/ (Please reference CTU Countermeasures)
Name: scwx/malware
Vendor: Secureworks
Summary: Secureworks suricata-malware ruleset.
License: Commercial
Parameters: secret-code
Subscription: https://www.secureworks.com/contact/ (Please reference CTU Countermeasures)
Name: et/pro
Vendor: Proofpoint
Summary: Emerging Threats Pro Ruleset
License: Commercial
Replaces: et/open
Parameters: secret-code
Subscription: https://www.proofpoint.com/us/threat-insight/et-pro-ruleset

_images/uri1.png
GET lindex.html HTTP/1.0\\n

_images/uricontent1.png
uricontent: “abc”;

T

_images/stat_code.png
HTTPI11302 Found

_images/stat_msg.png
HTTPIL1 302 Found

_images/single.png
Runmode: single___

_images/stat-code1.png
PAYLOAD

HTTP/1.1 B02JF

content:"302"; hitp_stat_code;
content:"found”; hitp_stat_code;

content:"302"; hitp_stat_code; depth:5;

_images/detect-unique-tlds.png
WWW.Xz-2-vc.net.cn

dns.query

(48"

—>

cn

Match

dns-tld-seen

_images/distance.png
content"abc’; content"def' distance:0; 1/

contentabc’; content:'bed; distance:0; K

_images/content5.png
offset

content’abe’; offset3; X
content"def’; offset:3; v

_images/content6.png
depth
offset

content?def": offset3; depth:3; v

_images/distance4.png
PAYLOAD

avdaerghii

distance

contentabc’; content:’kin’; distance: 0; X

_images/distance5.png
content:"abc”; content:"kin"; distance: 0;
N — 3 — 5

The distance (3), tells how the second (2)
content relates 10 the first (1) content

_images/distance1.png
distance
distance

content"abc”; content:"def’; distance:|

content:"abc”; content:"def’; distance

_images/distance3.png
content"abc’; content:"bed”; distance:

_images/dns_query.png
dns_query; content: "abc";pcre: /abc/;

_static/file.png

_images/dpdk.png
NIC

Kernel space
DATA
POLLING

Application

Network driver
(configuration)

CONFIGURATION

_static/plus.png

_static/minus.png

_images/within_distance.png
within
distance

content“ab

nient:def’;distance:0; within:3: X

_images/within2.png
content:"abc”; content: Kl

&_/2&/ R

1

The keyword within (3), tells how the second
(2) content relates to the first (1) content.

_images/workers.png
Runmode: Workers

Flow balancing happens in hardware or driver

_images/within_distance2.png
within

distance

contentabc content-“def’ distance:1; within4; 1/

_images/grouping_tree.png
st

sc-group

dst-group | sp-group

dp-group si

ignatures

_images/grouping_tree_detail.png
Sig group head

-Signatures
“MPM gty

_images/file_data.png
file_data; content: “abc”; pere: /abc/;

_images/flow.png
1CP Flow

—_—

e
A B [
s

_images/htopelephantflow.png
1o 1 20 S0
2 0 2 L 2 LN eses] 52 L)
R [Nl 2 LT s
& 140l 240 Rl
5 o 150 Rt -
R (e ERiinnnn 300
7 L [aaunm B s
R 180l B il
i 190l LN S0
o LI 20 01 EXubi el
HenLI LTI 145.06/93 261 Taskes 31, 12 thes S ruming

Supl of /11261 Load averdge: 4.52'5.00 4.55

Upkinas 26 days, 1

i bin/sunicats -0
Jusrbin/suricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats
Jusrfbin/zuricats

ior

£o Jabe/sunicata/sunicata-deso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.
o Jate/suricata/sunicatasdeso.

Jeke/suricata/sur icat a-deso.

_images/http_uri.png
content: “abc”; http_uri

~_~

_images/header.png
GET/HTTP/LL
Host: www.google.com

Connection: keep-alive

Accept:
applicationixml,application/xhtml+xml,text/html;q=0.9,
textlplain;q=0.8 image/png,/*;q=0.5

_images/header1.png
PAYLOAD

HTTP/LL

Connection: keep-alive

content"www.google.com’; http_header ;

content”GET"; htp_header;

PAYLOAD

content’GET";

content"KEEP-ALIVE"; nocase; http_header

>

v
v

_images/inline_mode.png
ABC DEF GHI

ABCDEF I

-

Sliding window = 6

_images/user_agent.png
GET/HTTP/L1
Host: www.google com

‘Connection: keep-alive

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US)
AppleWebKiU534.16

(KHTML, like Gecko) Ubuntul10.10
Chromium/10.0.618.0 Chromel10.0.618.0
Safarif534.16

_images/urilen.png
PAYLOAD

GETTP/l.o

uilen:10; vV
uilen<10; X
urilen:5<>20;
uilen20; X
v

urilen:>4;

_images/within1.png
content"abc”; content:"def’; within:3; ¥

content:"abc”; conte

:"fgh'’; within:

_images/user_agent_match.png
PAYLOAD

GETIHTTPILL
Host: wwwiJo0gle

Connection: keep-aiive
User-Agent [Mozila/5.0(X11; Us Linux 1636; en-US)

AppIeWEDK(t/534.16 (KHTML, like Gecko) Ubuntu/10.10
Chromium/10.0 618.0 Chrome/10.0.618.0 Safari/534.16

contentMozil5 07, http_user_agent; 1

conentgooge com: ntp_usersgent X

_images/fast_pattern.png
content:"User-Agent3A]";
content"Badness”; distance:0; fast_pattern;

—

_images/iptables_vnL.png
Janne-fleurgte: -4 sudo iptables -wil
Chois 1UPUT (poticy ACCEPT 250 packets, 43999 bytes)
PGS bytes targes prot opc in out | Source
573 soiek wwoime Sep -+ asle

crain romen (poticy accerr o packets, o bytes)
Bias bytes tarses | prot apc in out | source

crain ourrur (poticy accerr 275 pockets, 43459 bytes)
PGS bytes targec prot ope in out . sauree
Sois oo wenimE e ot 66000

arne:ricorecen:-s []

dessination
bt <o spt:80 WOUELE om0
dessination
dessination
550000 Teh dp1:90 NEQUEUE o ©

_images/isdataat1.png
isdataat
content"abc’; isdataatc, relative; 1/

contentabc”; isdataat8, relative; X

_images/iptables2.png
source port 80

55 p—

_images/iptables4.png

_images/method2.png
GET/HTTP/L1
Host: www.google.com

Connection: keep-alive

Accept

application/xm,application/xhtmk+xmi textihtmiq=0.9,text/
plain:q=0.8.image/png./*¢=0.5

_images/normal_ids.png
packet1 Packel 2

Packeta

_images/method.png
content"GET"; 4

content"GET"; http_method 1/

_images/method1.png
content:"GET";

content:"GET"; http_method

v
X
v

content"POST; hitp_method

_images/ipfw_reinjection.png
FreeBSD
Ipfw rules

_images/iptables1.png

_images/pcre6.png
PAYLOAD

findex.abe.htm

contentfindex.

hitp_uri; content iy

tip_uri; distance:0;

contentindex.”; hitp_uri; pere: /htmi?$/UR';

contentindex.”; http_uri; pere:"/~index\tmi2/$/U";

_images/perftop.png
595
Lax
Lax
Lser
=
lsax
er
e
Ls0x

ot
a3
a2
a2
e
e7

Lest

G

Le1x
Ls0x

Sax
S5
2
St
i
i

1s0x

a5

Latx
et

S
S
5
£
£
4

[2ax

S

=
=it

2
£
i
i
25
23

29

23

120x

o
620

2

Siricats
Tibheza.5.1.0
et

Siicats
Libpthrasd-2.25.50
[rernel]
Libhe-20.5.1.0
[kernel]

sirieats
Tibheza.5.1.0
suriciis

Tiblus it
[kernal]
Libhe-20.5.1.0
sirizits

=]

sirizats

Siicats

Tibhe a.5.1.0
Libhe.20.5.1.0
[rernal]
Uibpthrasd-2.25.50
suricats
Tibheza.5.1.0
[kernel]

sirizats

Siicats

Siicats

Siicats
Tibheza.5.1.0
surizhis
Tibheza.5.1.0
Tiblujit-5.1.
Tibhe 20,516
surizhis
Tibhe-22.5.1.
Tibhe. 205,11
Uibhe.20.5.1.
et
Siicats
Tibheza.5.1.0

ez.2.0

Tibtcnal loz_nininal.s0.4.5.3

[kernel]
Libhe-20.5.1.0
[rernel]
Libhe-20.5.1.0
surizats
The2.28.20
siricats

Tibtens! Loc_nininal.s0.4.5.3
Bor & higher Level ovarvisw, b

TPOn uffatchPackst
[i)
FloubetF LauFronfisch
DatectRun.part. 15
pthresd mutex_lock
Epacket_rev
GabBananaEET3F 32
140 napi_poll
FFPRzadFranRingVs
OxapBasoRaD T35S
Flauflanager

[
nencpy erns
e
StHelabchEvant
net{f_racaive_skb_core
DetectFortLackupran
DetectRddrasehistenifos
2512 b _scan
GxabpaRoaGoRTIIer
eth_tupe_trans
 pthrasd putex unlock usercnt
Flowhand|Packatlpdate
OxGbBanRGRET3aTeS
packat _rev_Fanout
Brafiitar
PackstFoolBatPacket
OutputLoggerLog
Flomlorkar
e
Statalncr
GxabBaRRaRET3Ta0
GabBanoaaER0 ShTe
GxabBaDRRRE T3 1o
DecodelPUs
GxabBanonaRET3F 2
GabBanARRG T et

[o
hashuord
Tfhraade3Lotarfun
OxaRBaAAREETII
tc_dalatasrray_aligned_nothron
huitd sk
RabbanaRET3F S
Knen_cacha.free
OxabRaRonaEE e
ToghlutputPacketpool

[e
StHSsesrch

ke patlos

cort conmy dso

bart top =

_images/pcre4.png
PAYLOAD

findex.htm

contentindex." hitp_uri: content"htm": hitp_uri distance:0;
contentindex."; http_uri; pcre:/ntmiZSIUR';

content:'index.; hitp_uri; pre:"/*findex\ htmi2/$U";

N

_images/pcre5.png
PAYLOAD

findex.ntmo

‘content:*/index.”; hitp_uri; content-"htm’; hitp_uri; distance:0;

content-index.”; htip_ui; pere:"/tm?$iUR

content:index."; hitp_uri; pere:"/™findext hmi2/$iU";

><

_images/replace1.png
savLoRD oavLoRD
L

_images/reassembly1.png
Stream Reassembly

Signature: EVIL

nnection

_images/replace.png
content: “abc”; replace: “def”;
-

_images/overlap.png
Packet 3

AA AAA
or
AA BBB

BB CC
BB CC

_images/pcre3.png
contentindex." htp_ur; content"him'; tp_ut; distance0:
content-"index.”; http_uri; pere:"/htmI?$/UR"; v
contentindex." tp_u pre:"indext humi /81U v

_images/normalization1.png
/- GET /somemaplliiiothermap/ HTTP/1.0

normalization
GET /somemap/othermap/ HTTP/L.0

matching

content: “/somemaplothermap/’;

_images/DnsUnidirectionalTransactions.png
Client Server

Transaction 1 Completet

DNS Response.

Transation 2 Completet

[generated with MscGen]

_images/Flow1.png
TCP session

Packetx Packet x+1

alert hitp SHOME_NET any -> SEXTERNAL_NET any,
(msg: "Logged In User Saying Blah'; content™blah’;
flowrestablished:)

_images/Flow2.png
Packet x

alert hitp SHOME_NET any -> SEXTERNAL_NET any|
(msg: “Logged In User Saying Blah’; contentblai
flowestabished:)

nav.xhtml

 Table of Contents

 		
 Suricata User Guide

 		
 What is Suricata

 		
 About the Open Information Security Foundation

 		
 License

 		
 Quickstart guide

 		
 Installation

 		
 Basic setup

 		
 Signatures

 		
 Running Suricata

 		
 Alerting

 		
 EVE Json

 		
 Installation

 		
 Source

 		
 Common configure options

 		
 Dependencies

 		
 Compilation

 		
 Auto-Setup

 		
 Binary packages

 		
 Ubuntu from Personal Package Archives (PPA)

 		
 Debian

 		
 CentOS, AlmaLinux, RockyLinux, Fedora, etc

 		
 Arch Based

 		
 Advanced Installation

 		
 Upgrading

 		
 General instructions

 		
 Configuration Updates

 		
 Upgrading 7.0 to 8.0

 		
 Major changes

 		
 Upgrading 6.0 to 7.0

 		
 Major changes

 		
 Security changes

 		
 Removals

 		
 Logging changes

 		
 Deprecations

 		
 Other changes

 		
 Upgrading 5.0 to 6.0

 		
 Major changes

 		
 Removals

 		
 Performance

 		
 Upgrading 4.1 to 5.0

 		
 Major changes

 		
 Removals

 		
 Security Considerations

 		
 Running as a User Other Than Root

 		
 Create User

 		
 File System Permissions

 		
 Configure Suricata to Run as Suricata

 		
 Starting Suricata

 		
 Other Commands: Suricata-Update, SuricataSC

 		
 Containers

 		
 Capabilities

 		
 Podman

 		
 Support Status

 		
 Levels of Support

 		
 Tier 1

 		
 Tier 2

 		
 Community

 		
 Vendor

 		
 Unmaintained

 		
 Distributions

 		
 Tier 1

 		
 Tier 2

 		
 Architecture Support

 		
 Tier 1

 		
 Tier 2

 		
 Community

 		
 High Level Features

 		
 Command Line Options

 		
 Unit Tests

 		
 Suricata Rules

 		
 Rules Format

 		
 Action

 		
 Protocol

 		
 Source and destination

 		
 Ports (source and destination)

 		
 Direction

 		
 Rule options

 		
 Meta Keywords

 		
 msg (message)

 		
 sid (signature ID)

 		
 rev (revision)

 		
 gid (group ID)

 		
 classtype

 		
 reference

 		
 priority

 		
 metadata

 		
 target

 		
 requires

 		
 IP Keywords

 		
 ttl

 		
 ipopts

 		
 sameip

 		
 ip_proto

 		
 ipv4.hdr

 		
 ipv6.hdr

 		
 id

 		
 geoip

 		
 fragbits (IP fragmentation)

 		
 fragoffset

 		
 tos

 		
 TCP keywords

 		
 tcp.flags

 		
 seq

 		
 ack

 		
 window

 		
 tcp.mss

 		
 tcp.hdr

 		
 UDP keywords

 		
 udp.hdr

 		
 ICMP keywords

 		
 itype

 		
 icode

 		
 icmp_id

 		
 icmp_seq

 		
 icmpv4.hdr

 		
 icmpv6.hdr

 		
 icmpv6.mtu

 		
 Payload Keywords

 		
 content

 		
 nocase

 		
 depth

 		
 startswith

 		
 endswith

 		
 offset

 		
 distance

 		
 within

 		
 rawbytes

 		
 isdataat

 		
 bsize

 		
 dsize

 		
 byte_test

 		
 byte_math

 		
 byte_jump

 		
 byte_extract

 		
 rpc

 		
 replace

 		
 pcre (Perl Compatible Regular Expressions)

 		
 Changes from PCRE1 to PCRE2

 		
 Integer Keywords

 		
 Comparison modes

 		
 Enumerations

 		
 Bitmasks

 		
 Transformations

 		
 dotprefix

 		
 strip_whitespace

 		
 compress_whitespace

 		
 to_lowercase

 		
 to_md5

 		
 to_uppercase

 		
 to_sha1

 		
 to_sha256

 		
 pcrexform

 		
 url_decode

 		
 xor

 		
 header_lowercase

 		
 strip_pseudo_headers

 		
 Prefiltering Keywords

 		
 fast_pattern

 		
 prefilter

 		
 Flow Keywords

 		
 flowbits

 		
 flow

 		
 flowint

 		
 stream_size

 		
 flow.age

 		
 flow.pkts_toclient

 		
 flow.pkts_toserver

 		
 flow.bytes_toclient

 		
 flow.bytes_toserver

 		
 Bypass Keyword

 		
 bypass

 		
 HTTP Keywords

 		
 HTTP Primer

 		
 http.method

 		
 http.uri and http.uri.raw

 		
 uricontent

 		
 urilen

 		
 http.protocol

 		
 http.request_line

 		
 http.header and http.header.raw

 		
 http.cookie

 		
 http.user_agent

 		
 http.accept

 		
 http.accept_enc

 		
 http.accept_lang

 		
 http.connection

 		
 http.content_type

 		
 http.content_len

 		
 http.referer

 		
 http.start

 		
 http.header_names

 		
 http.request_body

 		
 http.stat_code

 		
 http.stat_msg

 		
 http.response_line

 		
 http.response_body

 		
 http.server

 		
 http.location

 		
 http.host and http.host.raw

 		
 http.request_header

 		
 http.response_header

 		
 file.data

 		
 file.name

 		
 File Keywords

 		
 file.data

 		
 file.name

 		
 fileext

 		
 file.magic

 		
 filestore

 		
 filemd5

 		
 filesha1

 		
 filesha256

 		
 filesize

 		
 DNS Keywords

 		
 dns.answer.name

 		
 dns.opcode

 		
 dns.rcode

 		
 dns.rrtype

 		
 dns.query

 		
 dns.query.name

 		
 SSL/TLS Keywords

 		
 tls.cert_subject

 		
 tls.cert_issuer

 		
 tls.cert_serial

 		
 tls.cert_fingerprint

 		
 tls.sni

 		
 tls_cert_notbefore

 		
 tls_cert_notafter

 		
 tls_cert_expired

 		
 tls_cert_valid

 		
 tls.certs

 		
 tls.version

 		
 ssl_version

 		
 tls.fingerprint

 		
 tls.store

 		
 ssl_state

 		
 tls.random

 		
 tls.random_time

 		
 tls.random_bytes

 		
 tls.cert_chain_len

 		
 SSH Keywords

 		
 ssh.proto

 		
 ssh.software

 		
 ssh.protoversion

 		
 ssh.softwareversion

 		
 ssh.hassh

 		
 ssh.hassh.string

 		
 ssh.hassh.server

 		
 ssh.hassh.server.string

 		
 JA3 Keywords

 		
 ja3.hash

 		
 ja3.string

 		
 ja3s.hash

 		
 ja3s.string

 		
 Modbus Keyword

 		
 DCERPC Keywords

 		
 dcerpc.iface

 		
 dcerpc.opnum

 		
 dcerpc.stub_data

 		
 Additional information

 		
 DHCP keywords

 		
 dhcp.leasetime

 		
 dhcp.rebinding_time

 		
 dhcp.renewal_time

 		
 DNP3 Keywords

 		
 dnp3_func

 		
 dnp3_ind

 		
 dnp3_obj

 		
 dnp3_data

 		
 ENIP/CIP Keywords

 		
 FTP/FTP-DATA Keywords

 		
 ftpdata_command

 		
 ftpbounce

 		
 file.name

 		
 Kerberos Keywords

 		
 krb5_msg_type

 		
 krb5_cname

 		
 krb5_sname

 		
 krb5_err_code

 		
 krb5.weak_encryption (event)

 		
 krb5.malformed_data (event)

 		
 krb5.ticket_encryption

 		
 SMB Keywords

 		
 smb.named_pipe

 		
 smb.share

 		
 smb.ntlmssp_user

 		
 smb.ntlmssp_domain

 		
 smb.version

 		
 file.name

 		
 SNMP keywords

 		
 snmp.version

 		
 snmp.community

 		
 snmp.usm

 		
 snmp.pdu_type

 		
 Base64 keywords

 		
 base64_decode

 		
 base64_data

 		
 Example

 		
 SIP Keywords

 		
 sip.method

 		
 sip.uri

 		
 sip.request_line

 		
 sip.stat_code

 		
 sip.stat_msg

 		
 sip.response_line

 		
 sip.protocol

 		
 RFB Keywords

 		
 rfb.name

 		
 rfb.secresult

 		
 rfb.sectype

 		
 Additional information

 		
 MQTT Keywords

 		
 mqtt.protocol_version

 		
 mqtt.type

 		
 mqtt.flags

 		
 mqtt.qos

 		
 mqtt.reason_code

 		
 mqtt.connack.session_present

 		
 mqtt.connect.clientid

 		
 mqtt.connect.flags

 		
 mqtt.connect.password

 		
 mqtt.connect.protocol_string

 		
 mqtt.connect.username

 		
 mqtt.connect.willmessage

 		
 mqtt.connect.willtopic

 		
 mqtt.publish.message

 		
 mqtt.publish.topic

 		
 mqtt.subscribe.topic

 		
 mqtt.unsubscribe.topic

 		
 Additional information

 		
 IKE Keywords

 		
 ike.init_spi, ike.resp_spi

 		
 ike.chosen_sa_attribute

 		
 ike.exchtype

 		
 ike.vendor

 		
 ike.key_exchange_payload

 		
 ike.key_exchange_payload_length

 		
 ike.nonce_payload

 		
 ike.nonce_payload_length

 		
 Additional information

 		
 HTTP2 Keywords

 		
 http2.frametype

 		
 http2.errorcode

 		
 http2.priority

 		
 http2.window

 		
 http2.size_update

 		
 http2.settings

 		
 http2.header_name

 		
 Additional information

 		
 Quic Keywords

 		
 quic.cyu.hash

 		
 quic.cyu.string

 		
 quic.version

 		
 Additional information

 		
 NFS Keywords

 		
 file.name

 		
 SMTP Keywords

 		
 file.name

 		
 Generic App Layer Keywords

 		
 app-layer-protocol

 		
 app-layer-event

 		
 Xbits Keyword

 		
 Notes

 		
 Thresholding Keywords

 		
 threshold

 		
 detection_filter

 		
 IP Reputation Keyword

 		
 iprep

 		
 IP Addresses Match

 		
 ip.src

 		
 ip.dst

 		
 Config Rules

 		
 Keyword

 		
 Action

 		
 Datasets

 		
 Global config (optional)

 		
 Rule keywords

 		
 Rule Reloads

 		
 Unix Socket

 		
 File formats

 		
 File Locations

 		
 Security

 		
 Lua Scripting for Detection

 		
 Init function

 		
 Match function

 		
 Differences From Snort

 		
 Automatic Protocol Detection

 		
 urilen Keyword

 		
 http_uri Buffer

 		
 http_header Buffer

 		
 http_cookie Buffer

 		
 New HTTP keywords

 		
 byte_extract Keyword

 		
 byte_jump Keyword

 		
 byte_math Keyword

 		
 byte_test Keyword

 		
 isdataat Keyword

 		
 Relative PCRE

 		
 tls* Keywords

 		
 dns_query Keyword

 		
 IP Reputation and iprep Keyword

 		
 Flowbits

 		
 flowbits:noalert;

 		
 Negated Content Match Special Case

 		
 File Extraction

 		
 Lua Scripting

 		
 Fast Pattern

 		
 Don't Cross The Streams

 		
 Alerts

 		
 Buffer Reference Chart

 		
 Multiple Buffer Matching

 		
 Tag

 		
 Syntax

 		
 Examples

 		
 How to Use Tags

 		
 Tracking by Host/Flow

 		
 Rule Management

 		
 Rule Management with Suricata-Update

 		
 Updating your rules

 		
 Using other rulesets

 		
 Controlling which rules are used

 		
 Further reading

 		
 Adding Your Own Rules

 		
 Rule Reloads

 		
 Rules Profiling

 		
 Making sense out of Alerts

 		
 Performance

 		
 Runmodes

 		
 Different runmodes

 		
 Load balancing

 		
 Packet Capture

 		
 Load balancing

 		
 RSS

 		
 Offloading

 		
 Recommendations

 		
 Tuning Considerations

 		
 max-pending-packets: <number>

 		
 mpm-algo: <ac|hs|ac-bs|ac-ks>

 		
 detect.profile: <low|medium|high|custom>

 		
 detect.sgh-mpm-context: <auto|single|full>

 		
 af-packet

 		
 ring-size

 		
 stream.bypass

 		
 Hyperscan

 		
 Introduction

 		
 Basic Installation (Package)

 		
 Advanced Installation (Source)

 		
 Using Hyperscan

 		
 High Performance Configuration

 		
 NIC

 		
 CPU affinity and NUMA

 		
 Statistics

 		
 stats.log file

 		
 Kernel drops

 		
 Tools to plot graphs

 		
 Ignoring Traffic

 		
 capture filters (BPF)

 		
 pass rules

 		
 suppress

 		
 encrypted traffic

 		
 bypassing traffic

 		
 Packet Profiling

 		
 Rule Profiling

 		
 Tcmalloc

 		
 Installation

 		
 Usage

 		
 Performance Analysis

 		
 System Load

 		
 Logfiles

 		
 Suricata Load

 		
 Traffic

 		
 Rules

 		
 Configuration

 		
 Suricata.yaml

 		
 Max-pending-packets

 		
 Runmodes

 		
 Default-packet-size

 		
 User and group

 		
 PID File

 		
 Action-order

 		
 Packet alert queue settings

 		
 Splitting configuration in multiple files

 		
 Event output

 		
 Detection engine

 		
 Threading

 		
 IP Defrag

 		
 Flow and Stream handling

 		
 Host Tracking

 		
 Application Layer Parsers

 		
 Engine Logging

 		
 Packet Acquisition

 		
 Rules

 		
 Engine analysis and profiling

 		
 Decoder

 		
 Advanced Options

 		
 Configuration hardening

 		
 Global-Thresholds

 		
 Threshold Config

 		
 Global thresholds vs rule thresholds

 		
 Exception Policies

 		
 Exception Policies

 		
 Exception Policies and Midstream Pick-up Sessions

 		
 Command-line Options for Simulating Exceptions

 		
 Common abbreviations

 		
 Snort.conf to Suricata.yaml

 		
 Variables

 		
 Decoder alerts

 		
 Checksum handling

 		
 Various configs

 		
 Log directory

 		
 Packet acquisition

 		
 Rules

 		
 Multi Tenancy

 		
 Introduction

 		
 YAML

 		
 Per tenant settings

 		
 Unix Socket

 		
 Eve JSON output

 		
 Dropping Privileges After Startup

 		
 Using Landlock LSM

 		
 systemd notification

 		
 Introduction

 		
 Example

 		
 Requirements

 		
 Additional Information

 		
 Includes

 		
 Including a Single File

 		
 Including Multiple Files

 		
 Include Inside a Mapping

 		
 Reputation

 		
 IP Reputation

 		
 IP Reputation Config

 		
 IP Reputation Format

 		
 Init Scripts

 		
 Setting up IPS/inline for Linux

 		
 Setting up IPS with Netfilter

 		
 Iptables configuration

 		
 NFtables configuration

 		
 NFQUEUE advanced options

 		
 Setting up IPS at Layer 2

 		
 AF_PACKET IPS mode

 		
 DPDK IPS mode

 		
 Netmap IPS mode

 		
 Setting up IPS/inline for Windows

 		
 Output

 		
 EVE

 		
 Eve JSON Output

 		
 Eve JSON Format

 		
 Eve JSON 'jq' Examples

 		
 Lua Output

 		
 Script structure

 		
 YAML

 		
 Developing lua output script

 		
 Syslog Alerting Compatibility

 		
 Popular syslog daemons

 		
 Finding what syslog daemon you are using

 		
 Example

 		
 Custom http logging

 		
 Custom tls logging

 		
 Log Rotation

 		
 Lua support

 		
 Lua usage in Suricata

 		
 Lua output

 		
 Lua detection

 		
 Lua functions

 		
 Differences between output and detect:

 		
 packet

 		
 flow

 		
 http

 		
 DNS

 		
 TLS

 		
 JA3

 		
 SSH

 		
 Files

 		
 Alerts

 		
 Streaming Data

 		
 Flow variables

 		
 Misc

 		
 File Extraction

 		
 Architecture

 		
 Settings

 		
 Output

 		
 File-Store and Eve Fileinfo

 		
 Rules

 		
 MD5

 		
 Storing MD5s checksums

 		
 Public SHA1 MD5 data sets

 		
 Updating Filestore Configuration

 		
 Update File-store v1 Configuration to V2

 		
 Public Data Sets

 		
 Using Capture Hardware

 		
 Endace DAG

 		
 Napatech

 		
 Contents

 		
 Introduction

 		
 Package Installation

 		
 Suricata Installation

 		
 Suricata configuration

 		
 Example Configuration - Auto-config without cpu-affinity:

 		
 Example Configuration - Auto-config with cpu-affinity:

 		
 Example Configuration - Manual Configuration

 		
 Bypassing Flows

 		
 Inline Operation

 		
 Counters

 		
 Napatech configuration options:

 		
 Support

 		
 Myricom

 		
 Debug Info

 		
 Additional Info

 		
 eBPF and XDP

 		
 Introduction

 		
 Requirements

 		
 Prerequisites

 		
 Compile and install Suricata

 		
 Setup bypass

 		
 Setup eBPF filter

 		
 Setup eBPF bypass

 		
 Setup eBPF load balancing

 		
 Setup XDP bypass

 		
 Pinned maps usage

 		
 XDP and pinned-maps

 		
 Hardware bypass with Netronome

 		
 Getting live info about bypass

 		
 Netmap

 		
 Compiling Suricata

 		
 Starting Suricata

 		
 Advanced setups

 		
 lb (load balance)

 		
 Inline IDS

 		
 AF_XDP

 		
 Compiling Suricata

 		
 Starting Suricata

 		
 AF_XDP Configuration

 		
 Advanced setup

 		
 Hardware setup

 		
 DPDK

 		
 Introduction

 		
 Hugepage analysis

 		
 Bond interface

 		
 Interrupt (power-saving) mode

 		
 Interacting via Unix Socket

 		
 Introduction

 		
 Commands in standard running mode

 		
 Commands on the cmd prompt

 		
 PCAP processing mode

 		
 Build your own client

 		
 3rd Party Integration

 		
 Symantec SSL Visibility (BlueCoat)

 		
 Appliance Software Version

 		
 Magic Markers

 		
 TCP handling

 		
 TLS matching in Suricata

 		
 IPS

 		
 Man Pages

 		
 Suricata

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 OPTIONS FOR DEVELOPERS

 		
 SIGNALS

 		
 FILES AND DIRECTORIES

 		
 EXAMPLES

 		
 BUGS

 		
 NOTES

 		
 Suricata Socket Control

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 COMMANDS

 		
 PCAP MODE COMMANDS

 		
 BUGS

 		
 NOTES

 		
 Suricata Control

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 COMMANDS

 		
 BUGS

 		
 NOTES

 		
 Suricata Control Filestore

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 COMMANDS

 		
 BUGS

 		
 NOTES

 		
 Acknowledgements

 		
 Licenses

 		
 GNU General Public License

 		
 Preamble

 		
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 		
 NO WARRANTY

 		
 How to Apply These Terms to Your New Programs

 		
 Creative Commons Attribution-NonCommercial 4.0 International Public License

 		
 Section 1 â�� Definitions.

 		
 Section 2 â�� Scope.

 		
 Section 3 â�� License Conditions.

 		
 Section 4 â�� Sui Generis Database Rights.

 		
 Section 5 â�� Disclaimer of Warranties and Limitation of Liability.

 		
 Section 6 â�� Term and Termination.

 		
 Section 7 â�� Other Terms and Conditions.

 		
 Section 8 â�� Interpretation.

 		
 Suricata Source Code

 		
 Suricata Documentation

 		
 Suricata Developer Guide

 		
 Working with the Codebase

 		
 Installation from GIT

 		
 Coding Style

 		
 Fuzz Testing

 		
 Testing Suricata

 		
 Unit Tests - C

 		
 Unit tests - Rust

 		
 Contributing

 		
 Contributing to Suricata

 		
 Code Submission Process

 		
 GitHub Pull Request Workflow

 		
 Suricata Backports Guide

 		
 Suricata Internals

 		
 Packet Pipeline

 		
 Threading

 		
 Important Data Structures

 		
 Engines

 		
 Extending Suricata

 		
 Packet Capture

 		
 Packet Decoder

 		
 App-Layer

 		
 Detection

 		
 Output

 		
 LibSuricata

 		
 Using Suricata as a Library

 		
 Upgrading

 		
 Upgrading 7.0 to 8.0

_images/IDS_chunk_size.png
Packet 1 Packet 2 Packet 4 Packet 6
T T T
Packet 3 Packet 5 Packet 7

toserver_chunk_size: 10

_images/IPtables.png

_images/Flowbit_3.png
alert itp SHOME | NET any -> SEXTERNAL_NET any
(msg: "Logged In User Saying Blan’; contentuserlogin’
flowbits:set, userlogin; flowbits:noalert;)

alert hitp SHOME_NET any -> SEXTERNAL_NET any
(msg: “Logged In User Saying Blah' flowbits'isset,
userlogin; content:"biah)

_images/HTTP2BidirectionalTransaction.png
Client Server

Trarsaction Complered

[generated with MscGen]

_images/InputCaptureExample.png
Src.port Destination

No. Time Source Dst.port Protocol

10.16.1.10

40784 10.16.1.11 5432 TCP 40784 — 5432 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=3780714711 TSecr=4026838554

10.16.1.10 40784 10.16.1.11 5432 PGSQL >
5 2020-12- 15:36:28 10.16.1.11 5432 10.16.1.10 40784 TCP. 5432 — 40784 [ACK] Seq=1 Ack=9 Win=65152 Len=0 TSval=4026838597 TSecr=3780714754
15:36:28 10.16.1.11 5432 10.16.1.10 40784 TCP < [TCP segment of a reassembled PDU]
10.16.1.10 40784 10.16.1.11 5432 TCP

40784 —~ 5432 [ACK] Seq=9 Ack=2 Win=64256 Len=0 TSval=3780714754 TSecr=4026838597

14 2020-12-30

15:36:28
15:36:28

15:36:28

PGSQL

10.16.1.11 5432 10.16.1.10 46784 TCP
10.16.1.11 5432 10.16.1.10 40784 PGSQL
10.16.1.10 40784 10.16.1.11 5432 TCP

10.16.1.10 40784 10.16.1.11 5432 TCP

5432 - 49784 [ACK] Seq=2 Ack=91 Win=65152 Len=0 TSval=4026838598 TSecr=3780714754

40784 — 5432 [ACK] Seq=92 Ack=16 Win=64256 Len=0 TSval=3780714757 TSecr=4026838601

40784 — 5432 [ACK] Seq=91 Ack=15 Win=64256 Len=0 TSval=3780714756 TSecr=4026838599

» Frame 8: 148 bytes on wire (1184 bits), 148 bytes captured (1184 bits)
» Ethernet IT, Src: HewlettP_27:35:ba (6c:3b:e5:27:35:ba), Dst: Micro-St ed:a1:46 (d8:cb:8a:ed:al:46)
» Internet Protocol Version 4, Src: 10.16.1.19, Dst: 10.16.1.11
» Transmission Control Protocol, Src Port: 40784, Dst Port: 5432, Seq: 9, Ack: 2, Len: 82
~ PostgresQL
Tvpe:hStﬂrtup message Wireshark - Follow TCP Stream (tcp.stream eq 0) - pgsql-filtered-sst-hands... - 0 @
Length: 82
proteect mer versio: S char peero o) = (/- paket 4 1 g
: 0x00, ©x00, 0X00, OX08, 0x04, Oxd2, ©x16, OX2f };
Parameter user Z
s char peer1 0[] = { /* Packet 6 */
Parameter indexer =
Parameter database 7<= 1]
arametor ndexer char peere 1[] = { /* Packet 8 */
arametor application name 0x00, ©x00, 0X00, OX52, 0x60, OX03, 0x00, 0X00,
arametor beal - 0X75, ©x73, OX65, ©x72, 0x60, OX69, Ox6e, 0X64,
arametor chient_encoding 0X65, ©x78, OX65, ©x72, 0x60, OX64, Ox61, OX74,
arametor value: UTEs 0x61, ©x62, OX61, Ox73, 0X65, 0X00, OX69, OXGe,
0x64, ©x65, OX78, OX65, 0x72, 0X00, Ox61, OX70,
0x70, @x6c, 0X69, OX63, OX61, OX74, OX69, OXGF,
ox6e, Ox5f, Ox6e, Ox61, 0x6d, OX65, ©x80, OX70,
0x73, @x71, Ox6c, OX00, 0X63, OX6C, OX69, OX65,
Ox6e, ©x74, OX5f, Ox65, Ox6e, OX63, OX6f, 0X64,
0x69, @x6e, OX67, OX00, OX55, OX54, Ox46, OX38,
0x00, 0x00 };
0050 d8 cb 8a ed al 46 6¢c 3b e5 27 35 ba 08 00 45 60 char peerl i[] = { /* Packet 10 */
0910 ©0 86 71 20 40 00 40 06 b3 1d Oa 10 O1 Oa Oa 10 0x52, Ox00, Ox00, Ox00, OxOc, Ox0O, Ox00, Ox00,
9920 @1 @b 9f 50 15 38 4f 67 1c @a 04 a6 d3 4d 80 18 0x05, Ox88, Ox27, Ox4e, Ox35 };
6030 01 f6 5a 2e 00 00 01 61 08 0a el 59 21 02 O 04 e
6040 ae 45 00 @0 00 52 00 03 00 00 75 73 65 72 00 69 ‘2lient pkts, 2 server pkts, 3 turns.
6050 6e 64 65 78 65 72 00 64 61 74 61 62 61 73 65 00 ndexer -d e Py r— reg
0060 69 Ge 64 65 78 65 72 @0 61 70 70 6c 69 63 61 74 indexer- (Entire conversation (104 bytes) - | show and save dataas | CATrays - | stream (0 |*
0070 69 6f 6e 5 6e 61 6d 65 00 70 73 71 6c 00 63 6¢ ion_name - Find: | | [Find Next
6050 69 65 6e 74 5f 65 6e 63 6f 64 69 6e 67 00 55 54 ient_enc oding-UT =
B835) 46 38 66 e 8- @tHelp || Filterout Thisstream || Print || saveas... || Back || @close
O 7 pgsqlfiltered-ssi-handshake-rejected-w-simple-query.pcap Packets: 41 - Displayed: 14 (34.1%)

_images/Legenda_rules.png
V' match

X nomatch

match in the payload

no match in the payload

_images/IPtables3.png
e

Suricata. Interet
-—

_images/Inline_reassembly_unackd_data.png
Packetl Packet2 Packet 3 Packet 4.

ey E--

HTTP parser HTTP parser HTTP parser

_images/Legenda_rules1.png
V' match

X nomatch

match in the payload

no match in the payload

_images/MPM2.png
Signatures

_images/NFQ.png
iptables and NFQ
Mode: accept

NFQUEUE

IoRNON AN

ACCEPT/DROP

_images/Normal_ids_ack_d.png
<o--osTiwo ~wox

/_Packet1

Packet 2

Packet 3

Packet 4

_images/StreamFrames.png
|16 03| 17 03] 115 03|
0:0 0:10 0:30
L:10 L:20 L5
stream
A stream frame is like a pointer to
a portion of data in the stream...
115 03|
0:3
L5
The engine reads the traffic
stream as a sliding window.
Once that “frame” is past, e
previous app-layer records
are discarded, to release
resources. A negative offset is
used for frames that started Slide: 27
before the current window.
NBSS NBSS NBSS
An app-layer frame 0:0 0: 100 0: 300
may be contained by | L: 100 L: 200 L: 36
another (for instance, SMB2 SMB2 SMB2
SMB may be part of
an NBSS frame). 0:4 0: 104 0: 304
N L: 96 L: 196 L:32

stream

_images/NFQ1.png
iptables and NFQ
Mode: repeat

REPEAT/DROP

. =

NFQUEUE =5

20N B BN

_images/NFQ2.png
iptables and NFQ
Mode: route

NFQUEUE

2omNoO AW =

_images/TlsHandshake.png
Client Server

TLS_STATE_IN_PROGRESS

ClientHello

f—— Giemtelo |

ServerHello

L semeelo |

ServerCertificate |

ServerHello Done

ClientCertificate

TLS_STATE_CERT_READY

ClientKeyExchange

Finished

E— o NN

Finished

L Fnshed |

TLS_HANDSHAKE_DONE

TLS_STATE_FINISHED

Trarsaction Complered

[generated with

_images/Tuple1.png
- - -]
-

Same Tuple

_images/TCP-session.png
client server
-
1P address: 12.3.4 IP address: 5.6.7.8
Port: 1024 Port: 80
-_> -<_
sclP 1234 siclP 5678
srcport 1024 srcport 80
dstlP 5678 dstlP 1234

ast port 80 dst port 1024

_images/TemplateTransaction.png
Client Server
Request (12:HelloWorld!)

Response (3:Bye).

Trarsaction Complered

[generated with M

_images/Wireshark_seq.png
e @mZxcm Q 374 EE QaqaF @EBEX @

i - [esprssion. cleae gl
Moo Tme. souce pestirstion proocot ot
o000 e T30S e 1102 RABE IOPG Nesanbor solicstatian

10846 Roer sivertjserent

> 1 seguene of 3

ey 153.268.0.32 Fn TS mplication bata

713597540 209.85.577.20 152.166.0.32 TGP Riipe = 3745, X0K) SeqereIS229983 ACKSAYIOTOBA38 WineI72 Lt TSl
et frrong 152260.0.32 TiSen opiicetion bats, Aplicstion oata

Hewt fitront fony T SETEs s, (A Seq-TOTE ACK2AISIINIED MIn-IOS Lens TSHED

* Frane & (68 bytes on e, 66 bytes capturea)
" Elharret T0, Src: Trtel $7:11:05 (09-19:02:97:11:5), DSt JetuayIn aa:be:as (40:30:16:a8:be:26)
" Interret pritacol, Src: 192.160.0.32 (152.160.0.22, Dst: 209.85.227 19 (208.85.227.19)
" Transaisston Cantiol Protocsl, Src Porcs 33567 (S5}, DSt Port hiips (603], Seqs 667707, Ack: 120221821, Len: ©
Saurce port: 53567 (53567
Destination por M. (443)
Strean inder: o)
T ey —
Teksouteggerent Timber TS
esser Lengtn: 32 byres
» Flage: o fhck)
» Checksun: Bxia12 [validation aisables]
- options: (12 byces)
1500k smatyis

b0 <3 13 31 3¢ ot bb IERCENEERD 47 3t 37 20 30 10
23 53 <a 4 12 00 08 o1 61 Ge on 06 36 %0 71 o0 ¢5

_images/autofp1.png
Runmode: autofp (single capture thread)

Flow balancing happens inside Suricata

_images/Wireshark_ack.png
e @EBxce a TT 4
i - lespresson. | clexe gty
pestirstion proocot ot

Baaam §EEX @

1 0P teigibor solicitation
H 10846 Roter sivertjsrent

s pication vsta

> e segnen of 3 reasserated

ey 153.268.0.32 TS mplication bata

713597540 209.85.577.20 TGP Riipe = 3745, X0K) SeqereIS229983 ACKSAYIOTOBA38 WineI72 Lt TSl
et frrong TiSen opiicetion bats, Aplicstion oata

Hewt fitront fony T SETEs s, (A Seq-TOTE ACK2AISIINIED MIn-IOS Lens TSHED

* Frane & (68 bytes on e, 66 bytes capturea)
" Elharret T0, Src: Trtel $7:11:05 (09-19:02:97:11:5), DSt JetuayIn aa:be:as (40:30:16:a8:be:26)
" Interret pritacol, Src: 192.160.0.32 (152.160.0.22, Dst: 209.85.227 19 (208.85.227.19)
" Transaisston Cantiol Protocsl, Src Porcs 33567 (S5}, DSt Port hiips (603], Seqs 667707, Ack: 120221821, Len: ©
Saurce port: 53567 (53567
Destination por M. (443)
Istrean tds:
Rkt egserent ater= 0T)
Tesser Lengtn: 32 byrer
» Flage: o thck)
» Checksun: Bxia12 [validation aisables]
- options: (12 byces)
1500k smatyis

s 4 B 6 EE N
o & 1o CORERANE s0 30 Loo7oooo n B
B30 53 ca 4 12 00 08 61 61 a6 an o6 B w1 ob ¢8 1. o

_images/client_body.png
Host: nowhereasdfasdf.com
Connection: Keep-Alive
Cache-Control: no-cache

type=playerStart&position=tidal

_images/client_body1.png
contentplayerStart&position”; hitp_client_body;

content'no-cache’; itp_client_body;

content:"playerStart’; depth: 16; hitp_client_body:

content"playerStart’; hitp_client_bod
content"&position” distance:0; within:9.

N N> N

_images/autofp2.png
Runmode: autofp (muliple capture threads)

Flow balancing happens in both Suricata and hardware/driver

_images/balancing_workload.png
CPUICPU corethreads set_cpu_affnity: yes

Core 0 PAQ _DECODE _STREAM _DETEGT- _OUTPUT
1 DETECT
2 DETECT
3 DETECT
sel_cpu_affinty: no
Example
Core 0 PAQ DETECT
1 DECODE
2 STREAM _DETECT X2
3 DETECT __ OUTPUT

_images/content4.png
depth

content:“def’; depth:3; X

content:“abc”; depth:3; v

_images/content2.png
content:"abc”;
content:"aBc”;

N < <

content:"abC”;

_images/content3.png
content:"abc”; nocase;

content:"aBc"; nocase;

NN

content:"abC’; nocase;

