
supervisor Documentation
Release 4.0.0.dev0

Supervisor Developers

December 22, 2018

Contents

1 Narrative Documentation 3
1.1 Introduction . 3
1.2 Installing . 5
1.3 Running Supervisor . 7
1.4 Configuration File . 12
1.5 Subprocesses . 33
1.6 Logging . 37
1.7 Events . 40
1.8 Extending Supervisor’s XML-RPC API . 52
1.9 Upgrading Supervisor 2 to 3 . 53
1.10 Frequently Asked Questions . 54
1.11 Resources and Development . 54
1.12 Glossary . 56

2 API Documentation 57
2.1 XML-RPC API Documentation . 57

3 Plugins 65
3.1 Third Party Applications and Libraries . 65

4 Indices and tables 69

Python Module Index 71

i

ii

supervisor Documentation, Release 4.0.0.dev0

Supervisor is a client/server system that allows its users to monitor and control a number of processes on UNIX-like
operating systems.

It shares some of the same goals of programs like launchd, daemontools, and runit. Unlike some of these programs,
it is not meant to be run as a substitute for init as “process id 1”. Instead it is meant to be used to control processes
related to a project or a customer, and is meant to start like any other program at boot time.

Contents 1

supervisor Documentation, Release 4.0.0.dev0

2 Contents

CHAPTER 1

Narrative Documentation

1.1 Introduction

1.1.1 Overview

Supervisor is a client/server system that allows its users to control a number of processes on UNIX-like operating
systems. It was inspired by the following:

Convenience

It is often inconvenient to need to write rc.d scripts for every single process instance. rc.d scripts are
a great lowest-common-denominator form of process initialization/autostart/management, but they can be
painful to write and maintain. Additionally, rc.d scripts cannot automatically restart a crashed process
and many programs do not restart themselves properly on a crash. Supervisord starts processes as its
subprocesses, and can be configured to automatically restart them on a crash. It can also automatically be
configured to start processes on its own invocation.

Accuracy

It’s often difficult to get accurate up/down status on processes on UNIX. Pidfiles often lie. Supervisord
starts processes as subprocesses, so it always knows the true up/down status of its children and can be
queried conveniently for this data.

Delegation

Users who need to control process state often need only to do that. They don’t want or need full-blown
shell access to the machine on which the processes are running. Processes which listen on “low” TCP
ports often need to be started and restarted as the root user (a UNIX misfeature). It’s usually the case
that it’s perfectly fine to allow “normal” people to stop or restart such a process, but providing them with
shell access is often impractical, and providing them with root access or sudo access is often impossible.
It’s also (rightly) difficult to explain to them why this problem exists. If supervisord is started as root, it
is possible to allow “normal” users to control such processes without needing to explain the intricacies
of the problem to them. Supervisorctl allows a very limited form of access to the machine, essentially
allowing users to see process status and control supervisord-controlled subprocesses by emitting “stop”,
“start”, and “restart” commands from a simple shell or web UI.

3

supervisor Documentation, Release 4.0.0.dev0

Process Groups

Processes often need to be started and stopped in groups, sometimes even in a “priority order”. It’s often
difficult to explain to people how to do this. Supervisor allows you to assign priorities to processes, and
allows user to emit commands via the supervisorctl client like “start all”, and “restart all”, which starts
them in the preassigned priority order. Additionally, processes can be grouped into “process groups” and
a set of logically related processes can be stopped and started as a unit.

1.1.2 Features

Simple

Supervisor is configured through a simple INI-style config file that’s easy to learn. It provides many
per-process options that make your life easier like restarting failed processes and automatic log rotation.

Centralized

Supervisor provides you with one place to start, stop, and monitor your processes. Processes can be
controlled individually or in groups. You can configure Supervisor to provide a local or remote command
line and web interface.

Efficient

Supervisor starts its subprocesses via fork/exec and subprocesses don’t daemonize. The operating system
signals Supervisor immediately when a process terminates, unlike some solutions that rely on troublesome
PID files and periodic polling to restart failed processes.

Extensible

Supervisor has a simple event notification protocol that programs written in any language can use to
monitor it, and an XML-RPC interface for control. It is also built with extension points that can be
leveraged by Python developers.

Compatible

Supervisor works on just about everything except for Windows. It is tested and supported on Linux, Mac
OS X, Solaris, and FreeBSD. It is written entirely in Python, so installation does not require a C compiler.

Proven

While Supervisor is very actively developed today, it is not new software. Supervisor has been around for
years and is already in use on many servers.

1.1.3 Supervisor Components

supervisord

The server piece of supervisor is named supervisord. It is responsible for starting child programs
at its own invocation, responding to commands from clients, restarting crashed or exited subprocesseses,
logging its subprocess stdout and stderr output, and generating and handling “events” corresponding
to points in subprocess lifetimes.

The server process uses a configuration file. This is typically located in /etc/supervisord.conf.
This configuration file is a “Windows-INI” style config file. It is important to keep this file secure via
proper filesystem permissions because it may contain unencrypted usernames and passwords.

supervisorctl

4 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

The command-line client piece of the supervisor is named supervisorctl. It provides a shell-like
interface to the features provided by supervisord. From supervisorctl, a user can connect to
different supervisord processes (one at a time), get status on the subprocesses controlled by, stop and
start subprocesses of, and get lists of running processes of a supervisord.

The command-line client talks to the server across a UNIX domain socket or an internet (TCP) socket.
The server can assert that the user of a client should present authentication credentials before it allows
him to perform commands. The client process typically uses the same configuration file as the server but
any configuration file with a [supervisorctl] section in it will work.

Web Server

A (sparse) web user interface with functionality comparable to supervisorctl may be accessed via
a browser if you start supervisord against an internet socket. Visit the server URL (e.g. http://
localhost:9001/) to view and control process status through the web interface after activating the
configuration file’s [inet_http_server] section.

XML-RPC Interface

The same HTTP server which serves the web UI serves up an XML-RPC interface that can be used to
interrogate and control supervisor and the programs it runs. See XML-RPC API Documentation.

1.1.4 Platform Requirements

Supervisor has been tested and is known to run on Linux (Ubuntu 9.10), Mac OS X (10.4/10.5/10.6), and Solaris (10
for Intel) and FreeBSD 6.1. It will likely work fine on most UNIX systems.

Supervisor will not run at all under any version of Windows.

Supervisor is intended to work on Python 3 version 3.4 or later and on Python 2 version 2.7.

1.2 Installing

Installation instructions depend whether the system on which you’re attempting to install Supervisor has internet
access.

1.2.1 Installing to A System With Internet Access

Internet-Installing With Pip

Supervisor can be installed with pip install:

pip install supervisor

Depending on the permissions of your system’s Python, you might need to be the root user to install Supervisor
successfully using pip.

You can also install supervisor in a virtualenv via pip.

Internet-Installing Without Pip

If your system does not have pip installed, you will need to download the Supervisor distribution and install it by
hand. Current and previous Supervisor releases may be downloaded from PyPi. After unpacking the software archive,

1.2. Installing 5

https://pypi.org/pypi/supervisor/

supervisor Documentation, Release 4.0.0.dev0

run python setup.py install. This requires internet access. It will download and install all distributions
depended upon by Supervisor and finally install Supervisor itself.

Note: Depending on the permissions of your system’s Python, you might need to be the root user to successfully
invoke python setup.py install.

1.2.2 Installing To A System Without Internet Access

If the system that you want to install Supervisor to does not have Internet access, you’ll need to perform installa-
tion slightly differently. Since both pip and python setup.py install depend on internet access to perform
downloads of dependent software, neither will work on machines without internet access until dependencies are in-
stalled. To install to a machine which is not internet-connected, obtain the following dependencies on a machine which
is internet-connected:

• setuptools (latest) from https://pypi.org/pypi/setuptools/.

• meld3 (latest) from https://pypi.org/pypi/meld3/.

Copy these files to removable media and put them on the target machine. Install each onto the target machine as per
its instructions. This typically just means unpacking each file and invoking python setup.py install in the
unpacked directory. Finally, run supervisor’s python setup.py install.

Note: Depending on the permissions of your system’s Python, you might need to be the root user to invoke python
setup.py install successfully for each package.

1.2.3 Installing a Distribution Package

Some Linux distributions offer a version of Supervisor that is installable through the system package manager. These
packages are made by third parties, not the Supervisor developers, and often include distribution-specific changes to
Supervisor.

Use the package management tools of your distribution to check availability; e.g. on Ubuntu you can run apt-cache
show supervisor, and on CentOS you can run yum info supervisor.

A feature of distribution packages of Supervisor is that they will usually include integration into the service manage-
ment infrastructure of the distribution, e.g. allowing supervisord to automatically start when the system boots.

Note: Distribution packages of Supervisor can lag considerably behind the official Supervisor packages released to
PyPI. For example, Ubuntu 12.04 (released April 2012) offered a package based on Supervisor 3.0a8 (released January
2010).

Note: Users reported that the distribution package of Supervisor for Ubuntu 16.04 had different behavior than
previous versions. On Ubuntu 10.04, 12.04, and 14.04, installing the package will configure the system to start
supervisord when the system boots. On Ubuntu 16.04, this was not done by the initial release of the package. The
package was fixed later. See Ubuntu Bug #1594740 for more information.

6 Chapter 1. Narrative Documentation

https://pypi.org/pypi/setuptools/
https://pypi.org/pypi/meld3/
https://bugs.launchpad.net/ubuntu/+source/supervisor/+bug/1594740

supervisor Documentation, Release 4.0.0.dev0

1.2.4 Creating a Configuration File

Once the Supervisor installation has completed, run echo_supervisord_conf. This will print a “sample” Su-
pervisor configuration file to your terminal’s stdout.

Once you see the file echoed to your terminal, reinvoke the command as echo_supervisord_conf > /etc/
supervisord.conf. This won’t work if you do not have root access.

If you don’t have root access, or you’d rather not put the supervisord.conf file in /etc/supervisord.
conf, you can place it in the current directory (echo_supervisord_conf > supervisord.conf) and start
supervisord with the -c flag in order to specify the configuration file location.

For example, supervisord -c supervisord.conf. Using the -c flag actually is redundant in this case,
because supervisord searches the current directory for a supervisord.conf before it searches any other
locations for the file, but it will work. See Running Supervisor for more information about the -c flag.

Once you have a configuration file on your filesystem, you can begin modifying it to your liking.

1.3 Running Supervisor

This section makes reference to a BINDIR when explaining how to run the supervisord and supervisorctl
commands. This is the “bindir” directory that your Python installation has been configured with. For example, for an
installation of Python installed via ./configure --prefix=/usr/local/py; make; make install,
BINDIRwould be /usr/local/py/bin. Python interpreters on different platforms use a different BINDIR. Look
at the output of setup.py install if you can’t figure out where yours is.

1.3.1 Adding a Program

Before supervisord will do anything useful for you, you’ll need to add at least one program section to its config-
uration. The program section will define a program that is run and managed when you invoke the supervisord
command. To add a program, you’ll need to edit the supervisord.conf file.

One of the simplest possible programs to run is the UNIX cat program. A program section that will run cat when
the supervisord process starts up is shown below.

[program:foo]
command=/bin/cat

This stanza may be cut and pasted into the supervisord.conf file. This is the simplest possible program con-
figuration, because it only names a command. Program configuration sections have many other configuration options
which aren’t shown here. See [program:x] Section Settings for more information.

1.3.2 Running supervisord

To start supervisord, run $BINDIR/supervisord. The resulting process will daemonize itself and detach
from the terminal. It keeps an operations log at $CWD/supervisor.log by default.

You may start the supervisord executable in the foreground by passing the -n flag on its command line. This is
useful to debug startup problems.

1.3. Running Supervisor 7

supervisor Documentation, Release 4.0.0.dev0

Warning: When supervisord starts up, it will search for its configuration file in default locations including
the current working directory. If you are security-conscious you will probably want to specify a “-c” argument
after the supervisord command specifying an absolute path to a configuration file to ensure that someone
doesn’t trick you into running supervisor from within a directory that contains a rogue supervisord.conf
file. A warning is emitted when supervisor is started as root without this -c argument.

To change the set of programs controlled by supervisord, edit the supervisord.conf file and kill -HUP
or otherwise restart the supervisord process. This file has several example program definitions.

The supervisord command accepts a number of command-line options. Each of these command line options
overrides any equivalent value in the configuration file.

supervisord Command-Line Options

-c FILE, --configuration=FILE The path to a supervisord configuration file.

-n, --nodaemon Run supervisord in the foreground.

-h, --help Show supervisord command help.

-u USER, --user=USER UNIX username or numeric user id. If supervisord is started as the root
user, setuid to this user as soon as possible during startup.

-m OCTAL, --umask=OCTAL Octal number (e.g. 022) representing the umask that should be used
by supervisord after it starts.

-d PATH, --directory=PATH When supervisord is run as a daemon, cd to this directory before dae-
monizing.

-l FILE, --logfile=FILE Filename path to use as the supervisord activity log.

-y BYTES, --logfile_maxbytes=BYTES Max size of the supervisord activity log file before a rotation
occurs. The value is suffix-multiplied, e.g “1” is one byte, “1MB” is 1 megabyte,
“1GB” is 1 gigabyte.

-z NUM, --logfile_backups=NUM Number of backup copies of the supervisord activity log to keep
around. Each logfile will be of size logfile_maxbytes.

-e LEVEL, --loglevel=LEVEL The logging level at which supervisor should write to the activity log.
Valid levels are trace, debug, info, warn, error, and critical.

-j FILE, --pidfile=FILE The filename to which supervisord should write its pid file.

-i STRING, --identifier=STRING Arbitrary string identifier exposed by various client UIs for this
instance of supervisor.

-q PATH, --childlogdir=PATH A path to a directory (it must already exist) where supervisor will
write its AUTO -mode child process logs.

-k, --nocleanup Prevent supervisord from performing cleanup (removal of old AUTO process
log files) at startup.

-a NUM, --minfds=NUM The minimum number of file descriptors that must be available to the su-
pervisord process before it will start successfully.

-t, --strip_ansi Strip ANSI escape sequences from all child log process.

-v, --version Print the supervisord version number out to stdout and exit.

8 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

--profile_options=LIST Comma-separated options list for profiling. Causes supervisord to run
under a profiler, and output results based on the options, which is a comma-
separated list of the following: cumulative, calls, callers. E.g.
cumulative,callers.

--minprocs=NUM The minimum number of OS process slots that must be available to the supervi-
sord process before it will start successfully.

1.3.3 Running supervisorctl

To start supervisorctl, run $BINDIR/supervisorctl. A shell will be presented that will allow you to
control the processes that are currently managed by supervisord. Type “help” at the prompt to get information
about the supported commands.

The supervisorctl executable may be invoked with “one time” commands when invoked with arguments from a
command line. An example: supervisorctl stop all. If arguments are present on the command-line, it will
prevent the interactive shell from being invoked. Instead, the command will be executed and supervisorctl will
exit with a code of 0 for success or running and non-zero for error. An example: supervisorctl status all
would return non-zero if any single process was not running.

If supervisorctl is invoked in interactive mode against a supervisord that requires authentication, you will
be asked for authentication credentials.

supervisorctl Command-Line Options

-c, --configuration Configuration file path (default /etc/supervisord.conf)

-h, --help Print usage message and exit

-i, --interactive Start an interactive shell after executing commands

-s, --serverurl URL URL on which supervisord server is listening (default “http://localhost:9001”).

-u, --username Username to use for authentication with server

-p, --password Password to use for authentication with server

-r, --history-file Keep a readline history (if readline is available)

action [arguments]

Actions are commands like “tail” or “stop”. If -i is specified or no action is specified on the command line, a “shell”
interpreting actions typed interactively is started. Use the action “help” to find out about available actions.

supervisorctl Actions

help

Print a list of available actions

help <action>

Print help for <action>

add <name> [. . .]

Activates any updates in config for process/group

remove <name> [. . .]

Removes process/group from active config

1.3. Running Supervisor 9

http://localhost:9001

supervisor Documentation, Release 4.0.0.dev0

update

Reload config and add/remove as necessary, and will restart affected programs

update all

Reload config and add/remove as necessary, and will restart affected programs

update <gname> [. . .]

Update specific groups, and will restart affected programs

clear <name>

Clear a process’ log files.

clear <name> <name>

Clear multiple process’ log files

clear all

Clear all process’ log files

fg <process>

Connect to a process in foreground mode Press Ctrl+C to exit foreground

pid

Get the PID of supervisord.

pid <name>

Get the PID of a single child process by name.

pid all

Get the PID of every child process, one per line.

reload

Restarts the remote supervisord

reread

Reload the daemon’s configuration files, without add/remove (no restarts)

restart <name>

Restart a process Note: restart does not reread config files. For that, see reread and update.

restart <gname>:*

Restart all processes in a group Note: restart does not reread config files. For that, see reread and update.

restart <name> <name>

Restart multiple processes or groups Note: restart does not reread config files. For that, see reread and
update.

restart all

Restart all processes Note: restart does not reread config files. For that, see reread and update.

signal

No help on signal

start <name>

10 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

Start a process

start <gname>:*

Start all processes in a group

start <name> <name>

Start multiple processes or groups

start all

Start all processes

status

Get all process status info.

status <name>

Get status on a single process by name.

status <name> <name>

Get status on multiple named processes.

stop <name>

Stop a process

stop <gname>:*

Stop all processes in a group

stop <name> <name>

Stop multiple processes or groups

stop all

Stop all processes

tail [-f] <name> [stdout|stderr] (default stdout)

Output the last part of process logs Ex: tail -f <name> Continuous tail of named process stdout Ctrl-C to
exit. tail -100 <name> last 100 bytes of process stdout tail <name> stderr last 1600 bytes of process stderr

1.3.4 Signals

The supervisord program may be sent signals which cause it to perform certain actions while it’s running.

You can send any of these signals to the single supervisord process id. This process id can be found in the file
represented by the pidfile parameter in the [supervisord] section of the configuration file (by default it’s
$CWD/supervisord.pid).

Signal Handlers

SIGTERM

supervisord and all its subprocesses will shut down. This may take several seconds.

SIGINT

supervisord and all its subprocesses will shut down. This may take several seconds.

SIGQUIT

1.3. Running Supervisor 11

supervisor Documentation, Release 4.0.0.dev0

supervisord and all its subprocesses will shut down. This may take several seconds.

SIGHUP

supervisord will stop all processes, reload the configuration from the first config file it finds, and start
all processes.

SIGUSR2

supervisord will close and reopen the main activity log and all child log files.

1.3.5 Runtime Security

The developers have done their best to assure that use of a supervisord process running as root cannot lead to
unintended privilege escalation. But caveat emptor. Supervisor is not as paranoid as something like DJ Bernstein’s
daemontools, inasmuch as supervisord allows for arbitrary path specifications in its configuration file to which
data may be written. Allowing arbitrary path selections can create vulnerabilities from symlink attacks. Be careful
when specifying paths in your configuration. Ensure that the supervisord configuration file cannot be read from
or written to by unprivileged users and that all files installed by the supervisor package have “sane” file permission
protection settings. Additionally, ensure that your PYTHONPATH is sane and that all Python standard library files have
adequate file permission protections.

1.3.6 Running supervisord automatically on startup

If you are using a distribution-packaged version of Supervisor, it should already be integrated into the service man-
agement infrastructure of your distribution.

There are user-contributed scripts for various operating systems at: https://github.com/Supervisor/initscripts

There are some answers at Serverfault in case you get stuck: How to automatically start supervisord on Linux (Ubuntu)

1.4 Configuration File

The Supervisor configuration file is conventionally named supervisord.conf. It is used by both supervisord
and supervisorctl. If either application is started without the -c option (the option which is used to tell the
application the configuration filename explicitly), the application will look for a file named supervisord.conf
within the following locations, in the specified order. It will use the first file it finds.

1. $CWD/supervisord.conf

2. $CWD/etc/supervisord.conf

3. /etc/supervisord.conf

4. /etc/supervisor/supervisord.conf (since Supervisor 3.3.0)

5. ../etc/supervisord.conf (Relative to the executable)

6. ../supervisord.conf (Relative to the executable)

Note: Many versions of Supervisor packaged for Debian and Ubuntu included a patch that added /etc/
supervisor/supervisord.conf to the search paths. The first PyPI package of Supervisor to include it was
Supervisor 3.3.0.

12 Chapter 1. Narrative Documentation

https://github.com/Supervisor/initscripts
http://serverfault.com/questions/96499/how-to-automatically-start-supervisord-on-linux-ubuntu

supervisor Documentation, Release 4.0.0.dev0

1.4.1 File Format

supervisord.conf is a Windows-INI-style (Python ConfigParser) file. It has sections (each denoted by a
[header]) and key / value pairs within the sections. The sections and their allowable values are described below.

Environment Variables

Environment variables that are present in the environment at the time that supervisord is started can be used in
the configuration file using the Python string expression syntax %(ENV_X)s:

[program:example]
command=/usr/bin/example --loglevel=%(ENV_LOGLEVEL)s

In the example above, the expression %(ENV_LOGLEVEL)s would be expanded to the value of the environment
variable LOGLEVEL.

Note: In Supervisor 3.2 and later, %(ENV_X)s expressions are supported in all options. In prior versions, some
options support them, but most do not. See the documentation for each option below.

1.4.2 [unix_http_server] Section Settings

The supervisord.conf file contains a section named [unix_http_server] under which configuration pa-
rameters for an HTTP server that listens on a UNIX domain socket should be inserted. If the configuration file has no
[unix_http_server] section, a UNIX domain socket HTTP server will not be started. The allowable configura-
tion values are as follows.

[unix_http_server] Section Values

file

A path to a UNIX domain socket (e.g. /tmp/supervisord.sock) on which supervisor will listen for
HTTP/XML-RPC requests. supervisorctl uses XML-RPC to communicate with supervisord
over this port. This option can include the value %(here)s, which expands to the directory in which the
supervisord configuration file was found.

Default: None.

Required: No.

Introduced: 3.0

chmod

Change the UNIX permission mode bits of the UNIX domain socket to this value at startup.

Default: 0700

Required: No.

Introduced: 3.0

chown

Change the user and group of the socket file to this value. May be a UNIX username (e.g. chrism) or a
UNIX username and group separated by a colon (e.g. chrism:wheel).

Default: Use the username and group of the user who starts supervisord.

1.4. Configuration File 13

supervisor Documentation, Release 4.0.0.dev0

Required: No.

Introduced: 3.0

username

The username required for authentication to this HTTP server.

Default: No username required.

Required: No.

Introduced: 3.0

password

The password required for authentication to this HTTP server. This can be a cleartext pass-
word, or can be specified as a SHA-1 hash if prefixed by the string {SHA}. For example,
{SHA}82ab876d1387bfafe46cc1c8a2ef074eae50cb1d is the SHA-stored version of the
password “thepassword”.

Note that hashed password must be in hex format.

Default: No password required.

Required: No.

Introduced: 3.0

[unix_http_server] Section Example

[unix_http_server]
file = /tmp/supervisor.sock
chmod = 0777
chown= nobody:nogroup
username = user
password = 123

1.4.3 [inet_http_server] Section Settings

The supervisord.conf file contains a section named [inet_http_server] under which configuration pa-
rameters for an HTTP server that listens on a TCP (internet) socket should be inserted. If the configuration file has no
[inet_http_server] section, an inet HTTP server will not be started. The allowable configuration values are as
follows.

[inet_http_server] Section Values

port

A TCP host:port value or (e.g. 127.0.0.1:9001) on which supervisor will listen for HTTP/XML-
RPC requests. supervisorctl will use XML-RPC to communicate with supervisord over this
port. To listen on all interfaces in the machine, use :9001 or *:9001.

Default: No default.

Required: Yes.

Introduced: 3.0

username

14 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

The username required for authentication to this HTTP server.

Default: No username required.

Required: No.

Introduced: 3.0

password

The password required for authentication to this HTTP server. This can be a cleartext pass-
word, or can be specified as a SHA-1 hash if prefixed by the string {SHA}. For example,
{SHA}82ab876d1387bfafe46cc1c8a2ef074eae50cb1d is the SHA-stored version of the
password “thepassword”.

Note that hashed password must be in hex format.

Default: No password required.

Required: No.

Introduced: 3.0

[inet_http_server] Section Example

[inet_http_server]
port = 127.0.0.1:9001
username = user
password = 123

1.4.4 [supervisord] Section Settings

The supervisord.conf file contains a section named [supervisord] in which global settings related to the
supervisord process should be inserted. These are as follows.

[supervisord] Section Values

logfile

The path to the activity log of the supervisord process. This option can include the value %(here)s,
which expands to the directory in which the supervisord configuration file was found.

Default: $CWD/supervisord.log

Required: No.

Introduced: 3.0

logfile_maxbytes

The maximum number of bytes that may be consumed by the activity log file before it is rotated (suffix
multipliers like “KB”, “MB”, and “GB” can be used in the value). Set this value to 0 to indicate an
unlimited log size.

Default: 50MB

Required: No.

Introduced: 3.0

logfile_backups

1.4. Configuration File 15

supervisor Documentation, Release 4.0.0.dev0

The number of backups to keep around resulting from activity log file rotation. If set to 0, no backups will
be kept.

Default: 10

Required: No.

Introduced: 3.0

loglevel

The logging level, dictating what is written to the supervisord activity log. One of critical, error,
warn, info, debug, trace, or blather. Note that at log level debug, the supervisord log file will
record the stderr/stdout output of its child processes and extended info info about process state changes,
which is useful for debugging a process which isn’t starting properly. See also: Activity Log Levels.

Default: info

Required: No.

Introduced: 3.0

pidfile

The location in which supervisord keeps its pid file. This option can include the value %(here)s, which
expands to the directory in which the supervisord configuration file was found.

Default: $CWD/supervisord.pid

Required: No.

Introduced: 3.0

umask

The umask of the supervisord process.

Default: 022

Required: No.

Introduced: 3.0

nodaemon

If true, supervisord will start in the foreground instead of daemonizing.

Default: false

Required: No.

Introduced: 3.0

minfds

The minimum number of file descriptors that must be available before supervisord will start successfully.
A call to setrlimit will be made to attempt to raise the soft and hard limits of the supervisord process to
satisfy minfds. The hard limit may only be raised if supervisord is run as root. supervisord uses file
descriptors liberally, and will enter a failure mode when one cannot be obtained from the OS, so it’s useful
to be able to specify a minimum value to ensure it doesn’t run out of them during execution. These limits
will be inherited by the managed subprocesses. This option is particularly useful on Solaris, which has a
low per-process fd limit by default.

Default: 1024

Required: No.

Introduced: 3.0

16 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

minprocs

The minimum number of process descriptors that must be available before supervisord will start success-
fully. A call to setrlimit will be made to attempt to raise the soft and hard limits of the supervisord process
to satisfy minprocs. The hard limit may only be raised if supervisord is run as root. supervisord will
enter a failure mode when the OS runs out of process descriptors, so it’s useful to ensure that enough
process descriptors are available upon supervisord startup.

Default: 200

Required: No.

Introduced: 3.0

nocleanup

Prevent supervisord from clearing any existing AUTO child log files at startup time. Useful for debugging.

Default: false

Required: No.

Introduced: 3.0

childlogdir

The directory used for AUTO child log files. This option can include the value %(here)s, which expands
to the directory in which the supervisord configuration file was found.

Default: value of Python’s tempfile.get_tempdir()

Required: No.

Introduced: 3.0

user

Instruct supervisord to switch users to this UNIX user account before doing any meaningful process-
ing. The user can only be switched if supervisord is started as the root user. If supervisord can’t
switch users, it will still continue but will write a log message at the critical level saying that it can’t
drop privileges.

Default: do not switch users

Required: No.

Introduced: 3.0

directory

When supervisord daemonizes, switch to this directory. This option can include the value
%(here)s, which expands to the directory in which the supervisord configuration file was found.

Default: do not cd

Required: No.

Introduced: 3.0

strip_ansi

Strip all ANSI escape sequences from child log files.

Default: false

Required: No.

Introduced: 3.0

1.4. Configuration File 17

supervisor Documentation, Release 4.0.0.dev0

environment

A list of key/value pairs in the form KEY="val",KEY2="val2" that will be placed in the
supervisord process’ environment (and as a result in all of its child process’ environments). This
option can include the value %(here)s, which expands to the directory in which the supervisord
configuration file was found. Values containing non-alphanumeric characters should be quoted (e.g.
KEY="val:123",KEY2="val,456"). Otherwise, quoting the values is optional but recommended.
To escape percent characters, simply use two. (e.g. URI="/first%%20name") Note that subpro-
cesses will inherit the environment variables of the shell used to start supervisord except for the ones
overridden here and within the program’s environment option. See Subprocess Environment.

Default: no values

Required: No.

Introduced: 3.0

identifier

The identifier string for this supervisor process, used by the RPC interface.

Default: supervisor

Required: No.

Introduced: 3.0

[supervisord] Section Example

[supervisord]
logfile = /tmp/supervisord.log
logfile_maxbytes = 50MB
logfile_backups=10
loglevel = info
pidfile = /tmp/supervisord.pid
nodaemon = false
minfds = 1024
minprocs = 200
umask = 022
user = chrism
identifier = supervisor
directory = /tmp
nocleanup = true
childlogdir = /tmp
strip_ansi = false
environment = KEY1="value1",KEY2="value2"

1.4.5 [supervisorctl] Section Settings

The configuration file may contain settings for the supervisorctl interactive shell program. These
options are listed below.

[supervisorctl] Section Values

serverurl

18 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

The URL that should be used to access the supervisord server, e.g. http://localhost:9001. For
UNIX domain sockets, use unix:///absolute/path/to/file.sock.

Default: http://localhost:9001

Required: No.

Introduced: 3.0

username

The username to pass to the supervisord server for use in authentication. This should be same as
username from the supervisord server configuration for the port or UNIX domain socket you’re at-
tempting to access.

Default: No username

Required: No.

Introduced: 3.0

password

The password to pass to the supervisord server for use in authentication. This should be the cleartext
version of password from the supervisord server configuration for the port or UNIX domain socket
you’re attempting to access. This value cannot be passed as a SHA hash. Unlike other passwords specified
in this file, it must be provided in cleartext.

Default: No password

Required: No.

Introduced: 3.0

prompt

String used as supervisorctl prompt.

Default: supervisor

Required: No.

Introduced: 3.0

history_file

A path to use as the readline persistent history file. If you enable this feature by choosing a path,
your supervisorctl commands will be kept in the file, and you can use readline (e.g. arrow-up) to invoke
commands you performed in your last supervisorctl session.

Default: No file

Required: No.

Introduced: 3.0a5

[supervisorctl] Section Example

[supervisorctl]
serverurl = unix:///tmp/supervisor.sock
username = chris
password = 123
prompt = mysupervisor

1.4. Configuration File 19

supervisor Documentation, Release 4.0.0.dev0

1.4.6 [program:x] Section Settings

The configuration file must contain one or more program sections in order for supervisord to know which programs
it should start and control. The header value is composite value. It is the word “program”, followed directly by a
colon, then the program name. A header value of [program:foo] describes a program with the name of “foo”.
The name is used within client applications that control the processes that are created as a result of this configuration.
It is an error to create a program section that does not have a name. The name must not include a colon character
or a bracket character. The value of the name is used as the value for the %(program_name)s string expression
expansion within other values where specified.

Note: A [program:x] section actually represents a “homogeneous process group” to supervisor (as of 3.0).
The members of the group are defined by the combination of the numprocs and process_name parameters in the
configuration. By default, if numprocs and process_name are left unchanged from their defaults, the group represented
by [program:x] will be named x and will have a single process named x in it. This provides a modicum of
backwards compatibility with older supervisor releases, which did not treat program sections as homogeneous process
group definitions.

But for instance, if you have a [program:foo] section with a numprocs of 3 and a process_name ex-
pression of %(program_name)s_%(process_num)02d, the “foo” group will contain three processes, named
foo_00, foo_01, and foo_02. This makes it possible to start a number of very similar processes using a single
[program:x] section. All logfile names, all environment strings, and the command of programs can also contain
similar Python string expressions, to pass slightly different parameters to each process.

[program:x] Section Values

command

The command that will be run when this program is started. The command can be either absolute
(e.g. /path/to/programname) or relative (e.g. programname). If it is relative, the supervi-
sord’s environment $PATH will be searched for the executable. Programs can accept arguments, e.g.
/path/to/program foo bar. The command line can use double quotes to group arguments with
spaces in them to pass to the program, e.g. /path/to/program/name -p "foo bar". Note
that the value of command may include Python string expressions, e.g. /path/to/programname
--port=80%(process_num)02d might expand to /path/to/programname --port=8000
at runtime. String expressions are evaluated against a dictionary containing the keys group_name,
host_node_name, process_num, program_name, here (the directory of the supervisord config
file), and all supervisord’s environment variables prefixed with ENV_. Controlled programs should them-
selves not be daemons, as supervisord assumes it is responsible for daemonizing its subprocesses (see
Nondaemonizing of Subprocesses).

Note: The command will be truncated if it looks like a config file comment, e.g. command=bash
-c 'foo ; bar' will be truncated to command=bash -c 'foo. Quoting will not prevent this
behavior, since the configuration file reader does not parse the command like a shell would.

Default: No default.

Required: Yes.

Introduced: 3.0

process_name

A Python string expression that is used to compose the supervisor process name for this process. You
usually don’t need to worry about setting this unless you change numprocs. The string expression

20 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

is evaluated against a dictionary that includes group_name, host_node_name, process_num,
program_name, and here (the directory of the supervisord config file).

Default: %(program_name)s

Required: No.

Introduced: 3.0

numprocs

Supervisor will start as many instances of this program as named by numprocs. Note that if numprocs >
1, the process_name expression must include %(process_num)s (or any other valid Python string
expression that includes process_num) within it.

Default: 1

Required: No.

Introduced: 3.0

numprocs_start

An integer offset that is used to compute the number at which numprocs starts.

Default: 0

Required: No.

Introduced: 3.0

priority

The relative priority of the program in the start and shutdown ordering. Lower priorities indicate programs
that start first and shut down last at startup and when aggregate commands are used in various clients (e.g.
“start all”/”stop all”). Higher priorities indicate programs that start last and shut down first.

Default: 999

Required: No.

Introduced: 3.0

autostart

If true, this program will start automatically when supervisord is started.

Default: true

Required: No.

Introduced: 3.0

startsecs

The total number of seconds which the program needs to stay running after a startup to consider the start
successful (moving the process from the STARTING state to the RUNNING state). Set to 0 to indicate
that the program needn’t stay running for any particular amount of time.

Note: Even if a process exits with an “expected” exit code (see exitcodes), the start will still be
considered a failure if the process exits quicker than startsecs.

Default: 1

Required: No.

1.4. Configuration File 21

supervisor Documentation, Release 4.0.0.dev0

Introduced: 3.0

startretries

The number of serial failure attempts that supervisordwill allow when attempting to start the program
before giving up and putting the process into an FATAL state. See Process States for explanation of the
FATAL state.

Default: 3

Required: No.

Introduced: 3.0

autorestart

Specifies if supervisord should automatically restart a process if it exits when it is in the RUNNING
state. May be one of false, unexpected, or true. If false, the process will not be autorestarted.
If unexpected, the process will be restarted when the program exits with an exit code that is not one of
the exit codes associated with this process’ configuration (see exitcodes). If true, the process will
be unconditionally restarted when it exits, without regard to its exit code.

Note: autorestart controls whether supervisord will autorestart a program if it exits after it has
successfully started up (the process is in the RUNNING state).

supervisord has a different restart mechanism for when the process is starting up (the process is in the
STARTING state). Retries during process startup are controlled by startsecs and startretries.

Default: unexpected

Required: No.

Introduced: 3.0

exitcodes

The list of “expected” exit codes for this program used with autorestart. If the autorestart
parameter is set to unexpected, and the process exits in any other way than as a result of a supervisor
stop request, supervisord will restart the process if it exits with an exit code that is not defined in this
list.

Default: 0

Required: No.

Introduced: 3.0

Note: In Supervisor versions prior to 4.0, the default was 0,2. In Supervisor 4.0, the default was
changed to 0.

stopsignal

The signal used to kill the program when a stop is requested. This can be any of TERM, HUP, INT, QUIT,
KILL, USR1, or USR2.

Default: TERM

Required: No.

Introduced: 3.0

stopwaitsecs

22 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

The number of seconds to wait for the OS to return a SIGCHLD to supervisord after the program has
been sent a stopsignal. If this number of seconds elapses before supervisord receives a SIGCHLD
from the process, supervisord will attempt to kill it with a final SIGKILL.

Default: 10

Required: No.

Introduced: 3.0

stopasgroup

If true, the flag causes supervisor to send the stop signal to the whole process group and implies
killasgroup is true. This is useful for programs, such as Flask in debug mode, that do not propa-
gate stop signals to their children, leaving them orphaned.

Default: false

Required: No.

Introduced: 3.0b1

killasgroup

If true, when resorting to send SIGKILL to the program to terminate it send it to its whole process group
instead, taking care of its children as well, useful e.g with Python programs using multiprocessing.

Default: false

Required: No.

Introduced: 3.0a11

user

Instruct supervisord to use this UNIX user account as the account which runs the program. The user
can only be switched if supervisord is run as the root user. If supervisord can’t switch to the
specified user, the program will not be started.

Note: The user will be changed using setuid only. This does not start a login shell and does not change
environment variables like USER or HOME. See Subprocess Environment for details.

Default: Do not switch users

Required: No.

Introduced: 3.0

redirect_stderr

If true, cause the process’ stderr output to be sent back to supervisord on its stdout file descriptor (in
UNIX shell terms, this is the equivalent of executing /the/program 2>&1).

Note: Do not set redirect_stderr=true in an [eventlistener:x] section. Eventlisteners
use stdout and stdin to communicate with supervisord. If stderr is redirected, output from
stderr will interfere with the eventlistener protocol.

Default: false

Required: No.

Introduced: 3.0, replaces 2.0’s log_stdout and log_stderr

1.4. Configuration File 23

supervisor Documentation, Release 4.0.0.dev0

stdout_logfile

Put process stdout output in this file (and if redirect_stderr is true, also place stderr output in this file).
If stdout_logfile is unset or set to AUTO, supervisor will automatically choose a file location.
If this is set to NONE, supervisord will create no log file. AUTO log files and their backups will be
deleted when supervisord restarts. The stdout_logfile value can contain Python string expres-
sions that will evaluated against a dictionary that contains the keys group_name, host_node_name,
process_num, program_name, and here (the directory of the supervisord config file).

Note: It is not possible for two processes to share a single log file (stdout_logfile) when rotation
(stdout_logfile_maxbytes) is enabled. This will result in the file being corrupted.

Default: AUTO

Required: No.

Introduced: 3.0, replaces 2.0’s logfile

stdout_logfile_maxbytes

The maximum number of bytes that may be consumed by stdout_logfile before it is rotated (suffix
multipliers like “KB”, “MB”, and “GB” can be used in the value). Set this value to 0 to indicate an
unlimited log size.

Default: 50MB

Required: No.

Introduced: 3.0, replaces 2.0’s logfile_maxbytes

stdout_logfile_backups

The number of stdout_logfile backups to keep around resulting from process stdout log file rota-
tion. If set to 0, no backups will be kept.

Default: 10

Required: No.

Introduced: 3.0, replaces 2.0’s logfile_backups

stdout_capture_maxbytes

Max number of bytes written to capture FIFO when process is in “stdout capture mode” (see Capture
Mode). Should be an integer (suffix multipliers like “KB”, “MB” and “GB” can used in the value). If this
value is 0, process capture mode will be off.

Default: 0

Required: No.

Introduced: 3.0

stdout_events_enabled

If true, PROCESS_LOG_STDOUT events will be emitted when the process writes to its stdout file de-
scriptor. The events will only be emitted if the file descriptor is not in capture mode at the time the data is
received (see Capture Mode).

Default: 0

Required: No.

Introduced: 3.0a7

24 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

stdout_syslog

If true, stdout will be directed to syslog along with the process name.

Default: False

Required: No.

Introduced: 4.0.0

stderr_logfile

Put process stderr output in this file unless redirect_stderr is true. Accepts the same value types
as stdout_logfile and may contain the same Python string expressions.

Note: It is not possible for two processes to share a single log file (stderr_logfile) when rotation
(stderr_logfile_maxbytes) is enabled. This will result in the file being corrupted.

Default: AUTO

Required: No.

Introduced: 3.0

stderr_logfile_maxbytes

The maximum number of bytes before logfile rotation for stderr_logfile. Accepts the same value
types as stdout_logfile_maxbytes.

Default: 50MB

Required: No.

Introduced: 3.0

stderr_logfile_backups

The number of backups to keep around resulting from process stderr log file rotation. If set to 0, no
backups will be kept.

Default: 10

Required: No.

Introduced: 3.0

stderr_capture_maxbytes

Max number of bytes written to capture FIFO when process is in “stderr capture mode” (see Capture
Mode). Should be an integer (suffix multipliers like “KB”, “MB” and “GB” can used in the value). If this
value is 0, process capture mode will be off.

Default: 0

Required: No.

Introduced: 3.0

stderr_events_enabled

If true, PROCESS_LOG_STDERR events will be emitted when the process writes to its stderr file de-
scriptor. The events will only be emitted if the file descriptor is not in capture mode at the time the data is
received (see Capture Mode).

Default: false

1.4. Configuration File 25

supervisor Documentation, Release 4.0.0.dev0

Required: No.

Introduced: 3.0a7

stderr_syslog

If true, stderr will be directed to syslog along with the process name.

Default: False

Required: No.

Introduced: 4.0.0

environment

A list of key/value pairs in the form KEY="val",KEY2="val2" that will be placed in the child
process’ environment. The environment string may contain Python string expressions that will
be evaluated against a dictionary containing group_name, host_node_name, process_num,
program_name, and here (the directory of the supervisord config file). Values containing non-
alphanumeric characters should be quoted (e.g. KEY="val:123",KEY2="val,456"). Otherwise,
quoting the values is optional but recommended. Note that the subprocess will inherit the environment
variables of the shell used to start “supervisord” except for the ones overridden here. See Subprocess
Environment.

Default: No extra environment

Required: No.

Introduced: 3.0

directory

A file path representing a directory to which supervisord should temporarily chdir before exec’ing
the child.

Default: No chdir (inherit supervisor’s)

Required: No.

Introduced: 3.0

umask

An octal number (e.g. 002, 022) representing the umask of the process.

Default: No special umask (inherit supervisor’s)

Required: No.

Introduced: 3.0

serverurl

The URL passed in the environment to the subprocess process as SUPERVISOR_SERVER_URL (see
supervisor.childutils) to allow the subprocess to easily communicate with the internal HTTP
server. If provided, it should have the same syntax and structure as the [supervisorctl] section
option of the same name. If this is set to AUTO, or is unset, supervisor will automatically construct a
server URL, giving preference to a server that listens on UNIX domain sockets over one that listens on an
internet socket.

Default: AUTO

Required: No.

Introduced: 3.0

26 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

[program:x] Section Example

[program:cat]
command=/bin/cat
process_name=%(program_name)s
numprocs=1
directory=/tmp
umask=022
priority=999
autostart=true
autorestart=unexpected
startsecs=10
startretries=3
exitcodes=0
stopsignal=TERM
stopwaitsecs=10
stopasgroup=false
killasgroup=false
user=chrism
redirect_stderr=false
stdout_logfile=/a/path
stdout_logfile_maxbytes=1MB
stdout_logfile_backups=10
stdout_capture_maxbytes=1MB
stdout_events_enabled=false
stderr_logfile=/a/path
stderr_logfile_maxbytes=1MB
stderr_logfile_backups=10
stderr_capture_maxbytes=1MB
stderr_events_enabled=false
environment=A="1",B="2"
serverurl=AUTO

1.4.7 [include] Section Settings

The supervisord.conf file may contain a section named [include]. If the configuration file contains an
[include] section, it must contain a single key named “files”. The values in this key specify other configuration
files to be included within the configuration.

Note: The [include] section is processed only by supervisord. It is ignored by supervisorctl.

[include] Section Values

files

A space-separated sequence of file globs. Each file glob may be absolute or relative. If the file glob is
relative, it is considered relative to the location of the configuration file which includes it. A “glob” is
a file pattern which matches a specified pattern according to the rules used by the Unix shell. No tilde
expansion is done, but *, ?, and character ranges expressed with [] will be correctly matched. The string
expression is evaluated against a dictionary that includes host_node_name and here (the directory
of the supervisord config file). Recursive includes from included files are not supported.

Default: No default (required)

1.4. Configuration File 27

supervisor Documentation, Release 4.0.0.dev0

Required: Yes.

Introduced: 3.0

Changed: 3.3.0. Added support for the host_node_name expansion.

[include] Section Example

[include]
files = /an/absolute/filename.conf /an/absolute/*.conf foo.conf config??.conf

1.4.8 [group:x] Section Settings

It is often useful to group “homogeneous” process groups (aka “programs”) together into a “heterogeneous” process
group so they can be controlled as a unit from Supervisor’s various controller interfaces.

To place programs into a group so you can treat them as a unit, define a [group:x] section in your configuration
file. The group header value is a composite. It is the word “group”, followed directly by a colon, then the group
name. A header value of [group:foo] describes a group with the name of “foo”. The name is used within client
applications that control the processes that are created as a result of this configuration. It is an error to create a group
section that does not have a name. The name must not include a colon character or a bracket character.

For a [group:x], there must be one or more [program:x] sections elsewhere in your configuration file, and the
group must refer to them by name in the programs value.

If “homogeneous” process groups (represented by program sections) are placed into a “heterogeneous” group via
[group:x] section’s programs line, the homogeneous groups that are implied by the program section will not
exist at runtime in supervisor. Instead, all processes belonging to each of the homogeneous groups will be placed into
the heterogeneous group. For example, given the following group configuration:

[group:foo]
programs=bar,baz
priority=999

Given the above, at supervisord startup, the bar and baz homogeneous groups will not exist, and the processes that
would have been under them will now be moved into the foo group.

[group:x] Section Values

programs

A comma-separated list of program names. The programs which are listed become members of the group.

Default: No default (required)

Required: Yes.

Introduced: 3.0

priority

A priority number analogous to a [program:x] priority value assigned to the group.

Default: 999

Required: No.

Introduced: 3.0

28 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

[group:x] Section Example

[group:foo]
programs=bar,baz
priority=999

1.4.9 [fcgi-program:x] Section Settings

Supervisor can manage groups of FastCGI processes that all listen on the same socket. Until now, deployment flex-
ibility for FastCGI was limited. To get full process management, you could use mod_fastcgi under Apache but then
you were stuck with Apache’s inefficient concurrency model of one process or thread per connection. In addition to
requiring more CPU and memory resources, the process/thread per connection model can be quickly saturated by a
slow resource, preventing other resources from being served. In order to take advantage of newer event-driven web
servers such as lighttpd or nginx which don’t include a built-in process manager, you had to use scripts like cgi-fcgi or
spawn-fcgi. These can be used in conjunction with a process manager such as supervisord or daemontools but require
each FastCGI child process to bind to its own socket. The disadvantages of this are: unnecessarily complicated web
server configuration, ungraceful restarts, and reduced fault tolerance. With fewer sockets to configure, web server
configurations are much smaller if groups of FastCGI processes can share sockets. Shared sockets allow for graceful
restarts because the socket remains bound by the parent process while any of the child processes are being restarted.
Finally, shared sockets are more fault tolerant because if a given process fails, other processes can continue to serve
inbound connections.

With integrated FastCGI spawning support, Supervisor gives you the best of both worlds. You get full-featured process
management with groups of FastCGI processes sharing sockets without being tied to a particular web server. It’s a
clean separation of concerns, allowing the web server and the process manager to each do what they do best.

Note: The socket manager in Supervisor was originally developed to support FastCGI processes but it is not limited
to FastCGI. Other protocols may be used as well with no special configuration. Any program that can access an
open socket from a file descriptor (e.g. with socket.fromfd in Python) can use the socket manager. Supervisor will
automatically create the socket, bind, and listen before forking the first child in a group. The socket will be passed to
each child on file descriptor number 0 (zero). When the last child in the group exits, Supervisor will close the socket.

All the options available to [program:x] sections are also respected by fcgi-program sections.

[fcgi-program:x] Section Values

[fcgi-program:x] sections have a few keys which [program:x] sections do not have.

socket

The FastCGI socket for this program, either TCP or UNIX domain socket. For TCP sockets, use this for-
mat: tcp://localhost:9002. For UNIX domain sockets, use unix:///absolute/path/to/
file.sock. String expressions are evaluated against a dictionary containing the keys “program_name”
and “here” (the directory of the supervisord config file).

Default: No default.

Required: Yes.

Introduced: 3.0

socket_owner

1.4. Configuration File 29

http://www.fastcgi.com
http://docs.python.org/library/socket.html#socket.fromfd

supervisor Documentation, Release 4.0.0.dev0

For UNIX domain sockets, this parameter can be used to specify the user and group for the FastCGI
socket. May be a UNIX username (e.g. chrism) or a UNIX username and group separated by a colon (e.g.
chrism:wheel).

Default: Uses the user and group set for the fcgi-program

Required: No.

Introduced: 3.0

socket_mode

For UNIX domain sockets, this parameter can be used to specify the permission mode.

Default: 0700

Required: No.

Introduced: 3.0

Consult [program:x] Section Settings for other allowable keys, delta the above constraints and additions.

[fcgi-program:x] Section Example

[fcgi-program:fcgiprogramname]
command=/usr/bin/example.fcgi
socket=unix:///var/run/supervisor/%(program_name)s.sock
socket_owner=chrism
socket_mode=0700
process_name=%(program_name)s_%(process_num)02d
numprocs=5
directory=/tmp
umask=022
priority=999
autostart=true
autorestart=unexpected
startsecs=1
startretries=3
exitcodes=0
stopsignal=QUIT
stopasgroup=false
killasgroup=false
stopwaitsecs=10
user=chrism
redirect_stderr=true
stdout_logfile=/a/path
stdout_logfile_maxbytes=1MB
stdout_logfile_backups=10
stdout_events_enabled=false
stderr_logfile=/a/path
stderr_logfile_maxbytes=1MB
stderr_logfile_backups=10
stderr_events_enabled=false
environment=A="1",B="2"
serverurl=AUTO

30 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

1.4.10 [eventlistener:x] Section Settings

Supervisor allows specialized homogeneous process groups (“event listener pools”) to be defined within the configu-
ration file. These pools contain processes that are meant to receive and respond to event notifications from supervisor’s
event system. See Events for an explanation of how events work and how to implement programs that can be declared
as event listeners.

Note that all the options available to [program:x] sections are respected by eventlistener sections except for
stdout_capture_maxbytes. Eventlisteners cannot emit process communication events on stdout, but can
emit on stderr (see Capture Mode).

[eventlistener:x] Section Values

[eventlistener:x] sections have a few keys which [program:x] sections do not have.

buffer_size

The event listener pool’s event queue buffer size. When a listener pool’s event buffer is overflowed (as
can happen when an event listener pool cannot keep up with all of the events sent to it), the oldest event
in the buffer is discarded.

events

A comma-separated list of event type names that this listener is “interested” in receiving notifications for
(see Event Types for a list of valid event type names).

result_handler

A pkg_resources entry point string that resolves to a Python callable. The default value is supervisor.
dispatchers:default_handler. Specifying an alternate result handler is a very uncommon thing
to need to do, and as a result, how to create one is not documented.

Consult [program:x] Section Settings for other allowable keys, delta the above constraints and additions.

[eventlistener:x] Section Example

[eventlistener:theeventlistenername]
command=/bin/eventlistener
process_name=%(program_name)s_%(process_num)02d
numprocs=5
events=PROCESS_STATE
buffer_size=10
directory=/tmp
umask=022
priority=-1
autostart=true
autorestart=unexpected
startsecs=1
startretries=3
exitcodes=0
stopsignal=QUIT
stopwaitsecs=10
stopasgroup=false
killasgroup=false
user=chrism
redirect_stderr=false
stdout_logfile=/a/path

(continues on next page)

1.4. Configuration File 31

http://peak.telecommunity.com/DevCenter/PkgResources

supervisor Documentation, Release 4.0.0.dev0

(continued from previous page)

stdout_logfile_maxbytes=1MB
stdout_logfile_backups=10
stdout_events_enabled=false
stderr_logfile=/a/path
stderr_logfile_maxbytes=1MB
stderr_logfile_backups=10
stderr_events_enabled=false
environment=A="1",B="2"
serverurl=AUTO

1.4.11 [rpcinterface:x] Section Settings

Adding rpcinterface:x settings in the configuration file is only useful for people who wish to extend supervisor
with additional custom behavior.

In the sample config file, there is a section which is named [rpcinterface:supervisor]. By default it looks
like the following.

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

The [rpcinterface:supervisor] section must remain in the configuration for the standard setup of supervisor
to work properly. If you don’t want supervisor to do anything it doesn’t already do out of the box, this is all you need
to know about this type of section.

However, if you wish to add rpc interface namespaces in order to customize supervisor, you may add additional
[rpcinterface:foo] sections, where “foo” represents the namespace of the interface (from the web root), and
the value named by supervisor.rpcinterface_factory is a factory callable which should have a function
signature that accepts a single positional argument supervisord and as many keyword arguments as required to
perform configuration. Any extra key/value pairs defined within the [rpcinterface:x] section will be passed as
keyword arguments to the factory.

Here’s an example of a factory function, created in the __init__.py file of the Python package my.package.

from my.package.rpcinterface import AnotherRPCInterface

def make_another_rpcinterface(supervisord, **config):
retries = int(config.get('retries', 0))
another_rpc_interface = AnotherRPCInterface(supervisord, retries)
return another_rpc_interface

And a section in the config file meant to configure it.

[rpcinterface:another]
supervisor.rpcinterface_factory = my.package:make_another_rpcinterface
retries = 1

[rpcinterface:x] Section Values

supervisor.rpcinterface_factory

pkg_resources “entry point” dotted name to your RPC interface’s factory function.

Default: N/A

32 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

Required: No.

Introduced: 3.0

[rpcinterface:x] Section Example

[rpcinterface:another]
supervisor.rpcinterface_factory = my.package:make_another_rpcinterface
retries = 1

1.5 Subprocesses

supervisord’s primary purpose is to create and manage processes based on data in its configuration file. It does
this by creating subprocesses. Each subprocess spawned by supervisor is managed for the entirety of its lifetime by
supervisord (supervisord is the parent process of each process it creates). When a child dies, supervisor is notified
of its death via the SIGCHLD signal, and it performs the appropriate operation.

1.5.1 Nondaemonizing of Subprocesses

Programs meant to be run under supervisor should not daemonize themselves. Instead, they should run in the fore-
ground. They should not detach from the terminal from which they are started.

The easiest way to tell if a program will run in the foreground is to run the command that invokes the program from a
shell prompt. If it gives you control of the terminal back, but continues running, it’s daemonizing itself and that will
almost certainly be the wrong way to run it under supervisor. You want to run a command that essentially requires
you to press Ctrl-C to get control of the terminal back. If it gives you a shell prompt back after running it without
needing to press Ctrl-C, it’s not useful under supervisor. All programs have options to be run in the foreground but
there’s no “standard way” to do it; you’ll need to read the documentation for each program.

Below are configuration file examples that are known to start common programs in “foreground” mode under Super-
visor.

Examples of Program Configurations

Here are some “real world” program configuration examples:

Apache 2.2.6

[program:apache2]
command=/path/to/httpd -c "ErrorLog /dev/stdout" -DFOREGROUND
redirect_stderr=true

Two Zope 2.X instances and one ZEO server

[program:zeo]
command=/path/to/runzeo
priority=1

(continues on next page)

1.5. Subprocesses 33

supervisor Documentation, Release 4.0.0.dev0

(continued from previous page)

[program:zope1]
command=/path/to/instance/home/bin/runzope
priority=2
redirect_stderr=true

[program:zope2]
command=/path/to/another/instance/home/bin/runzope
priority=2
redirect_stderr=true

Postgres 8.X

[program:postgres]
command=/path/to/postmaster
; we use the "fast" shutdown signal SIGINT
stopsignal=INT
redirect_stderr=true

OpenLDAP slapd

[program:slapd]
command=/path/to/slapd -f /path/to/slapd.conf -h ldap://0.0.0.0:8888
redirect_stderr=true

Other Examples

Other examples of shell scripts that could be used to start services under supervisord can be found at http://
thedjbway.b0llix.net/services.html. These examples are actually for daemontools but the premise is the same for
supervisor.

Another collection of recipes for starting various programs in the foreground is available from http://smarden.org/
runit/runscripts.html.

1.5.2 pidproxy Program

Some processes (like mysqld) ignore signals sent to the actual process which is spawned by supervisord. In-
stead, a “special” thread/process is created by these kinds of programs which is responsible for handling signals.
This is problematic because supervisord can only kill a process which it creates itself. If a process created by
supervisord creates its own child processes, supervisord cannot kill them.

Fortunately, these types of programs typically write a “pidfile” which contains the “special” process’ PID, and is meant
to be read and used in order to kill the process. As a workaround for this case, a special pidproxy program can
handle startup of these kinds of processes. The pidproxy program is a small shim that starts a process, and upon
the receipt of a signal, sends the signal to the pid provided in a pidfile. A sample configuration program entry for a
pidproxy-enabled program is provided below.

[program:mysql]
command=/path/to/pidproxy /path/to/pidfile /path/to/mysqld_safe

34 Chapter 1. Narrative Documentation

http://thedjbway.b0llix.net/services.html
http://thedjbway.b0llix.net/services.html
http://smarden.org/runit/runscripts.html
http://smarden.org/runit/runscripts.html

supervisor Documentation, Release 4.0.0.dev0

The pidproxy program is put into your configuration’s $BINDIR when supervisor is installed (it is a “console
script”).

1.5.3 Subprocess Environment

Subprocesses will inherit the environment of the shell used to start the supervisord program. Several environment
variables will be set by supervisord itself in the child’s environment also, including SUPERVISOR_ENABLED
(a flag indicating the process is under supervisor control), SUPERVISOR_PROCESS_NAME (the config-file-specified
process name for this process) and SUPERVISOR_GROUP_NAME (the config-file-specified process group name for
the child process).

These environment variables may be overridden within the [supervisord] section config option named
environment (applies to all subprocesses) or within the per- [program:x] section environment config op-
tion (applies only to the subprocess specified within the [program:x] section). These “environment” settings are
additive. In other words, each subprocess’ environment will consist of:

The environment variables set within the shell used to start supervisord. . .

. . . added-to/overridden-by . . .

. . . the environment variables set within the “environment” global

config option . . .

. . . added-to/overridden-by . . .

. . . supervisor-specific environment variables (SUPERVISOR_ENABLED,
SUPERVISOR_PROCESS_NAME, SUPERVISOR_GROUP_NAME) ..

. . . added-to/overridden-by . . .

. . . the environment variables set within the per-process “environment” config option.

No shell is executed by supervisord when it runs a subprocess, so environment variables such as USER, PATH,
HOME, SHELL, LOGNAME, etc. are not changed from their defaults or otherwise reassigned. This is particularly
important to note when you are running a program from a supervisord run as root with a user= stanza in the
configuration. Unlike cron, supervisord does not attempt to divine and override “fundamental” environment
variables like USER, PATH, HOME, and LOGNAME when it performs a setuid to the user defined within the user=
program config option. If you need to set environment variables for a particular program that might otherwise be set by
a shell invocation for a particular user, you must do it explicitly within the environment= program config option.
An example of setting these environment variables is as below.

[program:apache2]
command=/home/chrism/bin/httpd -c "ErrorLog /dev/stdout" -DFOREGROUND
user=chrism
environment=HOME="/home/chrism",USER="chrism"

1.5.4 Process States

A process controlled by supervisord will be in one of the below states at any given time. You may see these state
names in various user interface elements in clients.

STOPPED (0)

The process has been stopped due to a stop request or has never been started.

STARTING (10)

The process is starting due to a start request.

1.5. Subprocesses 35

supervisor Documentation, Release 4.0.0.dev0

RUNNING (20)

The process is running.

BACKOFF (30)

The process entered the STARTING state but subsequently exited too quickly to move to the RUNNING
state.

STOPPING (40)

The process is stopping due to a stop request.

EXITED (100)

The process exited from the RUNNING state (expectedly or unexpectedly).

FATAL (200)

The process could not be started successfully.

UNKNOWN (1000)

The process is in an unknown state (supervisord programming error).

Each process run under supervisor progresses through these states as per the following directed graph.

Fig. 1: Subprocess State Transition Graph

A process is in the STOPPED state if it has been stopped adminstratively or if it has never been started.

When an autorestarting process is in the BACKOFF state, it will be automatically restarted by supervisord. It will
switch between STARTING and BACKOFF states until it becomes evident that it cannot be started because the number

36 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

of startretries has exceeded the maximum, at which point it will transition to the FATAL state. Each start retry
will take progressively more time.

When a process is in the EXITED state, it will automatically restart:

• never if its autorestart parameter is set to false.

• unconditionally if its autorestart parameter is set to true.

• conditionally if its autorestart parameter is set to unexpected. If it exited with an exit code that doesn’t
match one of the exit codes defined in the exitcodes configuration parameter for the process, it will be
restarted.

A process automatically transitions from EXITED to RUNNING as a result of being configured to autorestart condi-
tionally or unconditionally. The number of transitions between RUNNING and EXITED is not limited in any way: it
is possible to create a configuration that endlessly restarts an exited process. This is a feature, not a bug.

An autorestarted process will never be automatically restarted if it ends up in the FATAL state (it must be manually
restarted from this state).

A process transitions into the STOPPING state via an administrative stop request, and will then end up in the STOPPED
state.

A process that cannot be stopped successfully will stay in the STOPPING state forever. This situation should never be
reached during normal operations as it implies that the process did not respond to a final SIGKILL signal sent to it by
supervisor, which is “impossible” under UNIX.

State transitions which always require user action to invoke are these:

FATAL -> STARTING

RUNNING -> STOPPING

State transitions which typically, but not always, require user action to invoke are these, with exceptions noted:

STOPPED -> STARTING (except at supervisord startup if process is configured to autostart)

EXITED -> STARTING (except if process is configured to autorestart)

All other state transitions are managed by supervisord automatically.

1.6 Logging

One of the main tasks that supervisord performs is logging. supervisord logs an activity log detailing what
it’s doing as it runs. It also logs child process stdout and stderr output to other files if configured to do so.

1.6.1 Activity Log

The activity log is the place where supervisord logs messages about its own health, its subprocess’ state changes,
any messages that result from events, and debug and informational messages. The path to the activity log is config-
ured via the logfile parameter in the [supervisord] section of the configuration file, defaulting to $CWD/
supervisord.log. Sample activity log traffic is shown in the example below. Some lines have been broken to
better fit the screen.

Sample Activity Log Output

1.6. Logging 37

supervisor Documentation, Release 4.0.0.dev0

2007-09-08 14:43:22,886 DEBG 127.0.0.1:Medusa (V1.11) started at Sat Sep 8 14:43:22
→˓2007

Hostname: kingfish
Port:9001

2007-09-08 14:43:22,961 INFO RPC interface 'supervisor' initialized
2007-09-08 14:43:22,961 CRIT Running without any HTTP authentication checking
2007-09-08 14:43:22,962 INFO supervisord started with pid 27347
2007-09-08 14:43:23,965 INFO spawned: 'listener_00' with pid 27349
2007-09-08 14:43:23,970 INFO spawned: 'eventgen' with pid 27350
2007-09-08 14:43:23,990 INFO spawned: 'grower' with pid 27351
2007-09-08 14:43:24,059 DEBG 'listener_00' stderr output:
/Users/chrism/projects/supervisor/supervisor2/dev-sandbox/bin/python:
can't open file '/Users/chrism/projects/supervisor/supervisor2/src/supervisor/
→˓scripts/osx_eventgen_listener.py':
[Errno 2] No such file or directory

2007-09-08 14:43:24,060 DEBG fd 7 closed, stopped monitoring
→˓<PEventListenerDispatcher at 19910168 for
<Subprocess at 18892960 with name listener_00 in state STARTING> (stdout)>

2007-09-08 14:43:24,060 INFO exited: listener_00 (exit status 2; not expected)
2007-09-08 14:43:24,061 DEBG received SIGCHLD indicating a child quit

The activity log “level” is configured in the config file via the loglevel parameter in the [supervisord] ini file
section. When loglevel is set, messages of the specified priority, plus those with any higher priority are logged to
the activity log. For example, if loglevel is error, messages of error and critical priority will be logged.
However, if loglevel is warn, messages of warn, error, and critical will be logged.

Activity Log Levels

The below table describes the logging levels in more detail, ordered in highest priority to lowest. The “Config File
Value” is the string provided to the loglevel parameter in the [supervisord] section of configuration file and
the “Output Code” is the code that shows up in activity log output lines.

Config
File Value

Output
Code

Description

critical CRIT Messages that indicate a condition that requires immediate user attention, a supervisor
state change, or an error in supervisor itself.

error ERRO Messages that indicate a potentially ignorable error condition (e.g. unable to clear a log
directory).

warn WARN Messages that indicate an anomalous condition which isn’t an error.
info INFO Normal informational output. This is the default log level if none is explicitly configured.
debug DEBG Messages useful for users trying to debug process configuration and communications be-

havior (process output, listener state changes, event notifications).
trace TRAC Messages useful for developers trying to debug supervisor plugins, and information about

HTTP and RPC requests and responses.
blather BLAT Messages useful for developers trying to debug supervisor itself.

Activity Log Rotation

The activity log is “rotated” by supervisord based on the combination of the logfile_maxbytes and
the logfile_backups parameters in the [supervisord] section of the configuration file. When the ac-
tivity log reaches logfile_maxbytes bytes, the current log file is moved to a backup file and a new activ-
ity log file is created. When this happens, if the number of existing backup files is greater than or equal to
logfile_backups, the oldest backup file is removed and the backup files are renamed accordingly. If the file

38 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

being written to is named supervisord.log, when it exceeds logfile_maxbytes, it is closed and renamed
to supervisord.log.1, and if files supervisord.log.1, supervisord.log.2 etc. exist, then they are
renamed to supervisord.log.2, supervisord.log.3 etc. respectively. If logfile_maxbytes is 0, the
logfile is never rotated (and thus backups are never made). If logfile_backups is 0, no backups will be kept.

1.6.2 Child Process Logs

The stdout of child processes spawned by supervisor, by default, is captured for redisplay to users of
supervisorctl and other clients. If no specific logfile-related configuration is performed in a [program:x],
[fcgi-program:x], or [eventlistener:x] section in the configuration file, the following is true:

• supervisord will capture the child process’ stdout and stderr output into temporary files. Each stream is
captured to a separate file. This is known as AUTO log mode.

• AUTO log files are named automatically and placed in the directory configured as childlogdir of the
[supervisord] section of the config file.

• The size of each AUTO log file is bounded by the {streamname}_logfile_maxbytes value of the pro-
gram section (where {streamname} is “stdout” or “stderr”). When it reaches that number, it is rotated (like the
activity log), based on the {streamname}_logfile_backups.

The configuration keys that influence child process logging in [program:x] and [fcgi-program:x] sections
are these:

redirect_stderr, stdout_logfile, stdout_logfile_maxbytes, stdout_logfile_backups,
stdout_capture_maxbytes, stdout_syslog, stderr_logfile, stderr_logfile_maxbytes,
stderr_logfile_backups, stderr_capture_maxbytes, and stderr_syslog.

[eventlistener:x] sections may not specify redirect_stderr, stdout_capture_maxbytes, or
stderr_capture_maxbytes, but otherwise they accept the same values.

The configuration keys that influence child process logging in the [supervisord] config file section are these:
childlogdir, and nocleanup.

Capture Mode

Capture mode is an advanced feature of Supervisor. You needn’t understand capture mode unless you want to take
actions based on data parsed from subprocess output.

If a [program:x] section in the configuration file defines a non-zero stdout_capture_maxbytes or
stderr_capture_maxbytes parameter, each process represented by the program section may emit spe-
cial tokens on its stdout or stderr stream (respectively) which will effectively cause supervisor to emit a
PROCESS_COMMUNICATION event (see Events for a description of events).

The process communications protocol relies on two tags, one which commands supervisor to enter “capture mode”
for the stream and one which commands it to exit. When a process stream enters “capture mode”, data sent to the
stream will be sent to a separate buffer in memory, the “capture buffer”, which is allowed to contain a maximum of
capture_maxbytes bytes. During capture mode, when the buffer’s length exceeds capture_maxbytes bytes,
the earliest data in the buffer is discarded to make room for new data. When a process stream exits capture mode, a
PROCESS_COMMUNICATION event subtype is emitted by supervisor, which may be intercepted by event listeners.

The tag to begin “capture mode” in a process stream is <!--XSUPERVISOR:BEGIN-->. The tag to exit capture
mode is <!--XSUPERVISOR:END-->. The data between these tags may be arbitrary, and forms the payload of the
PROCESS_COMMUNICATION event. For example, if a program is set up with a stdout_capture_maxbytes
of “1MB”, and it emits the following on its stdout stream:

<!--XSUPERVISOR:BEGIN-->Hello!<!--XSUPERVISOR:END-->

1.6. Logging 39

supervisor Documentation, Release 4.0.0.dev0

In this circumstance, supervisord will emit a PROCESS_COMMUNICATIONS_STDOUT event with data in the
payload of “Hello!”.

An example of a script (written in Python) which emits a process communication event is in the scripts directory
of the supervisor package, named sample_commevent.py.

The output of processes specified as “event listeners” ([eventlistener:x] sections) is not processed this way.
Output from these processes cannot enter capture mode.

1.7 Events

Events are an advanced feature of Supervisor introduced in version 3.0. You don’t need to understand events if you
simply want to use Supervisor as a mechanism to restart crashed processes or as a system to manually control process
state. You do need to understand events if you want to use Supervisor as part of a process monitoring/notification
framework.

1.7.1 Event Listeners and Event Notifications

Supervisor provides a way for a specially written program (which it runs as a subprocess) called an “event listener”
to subscribe to “event notifications”. An event notification implies that something happened related to a subprocess
controlled by supervisord or to supervisord itself. Event notifications are grouped into types in order to make
it possible for event listeners to subscribe to a limited subset of event notifications. Supervisor continually emits event
notifications as its running even if there are no listeners configured. If a listener is configured and subscribed to an
event type that is emitted during a supervisord lifetime, that listener will be notified.

The purpose of the event notification/subscription system is to provide a mechanism for arbitrary code to be run (e.g.
send an email, make an HTTP request, etc) when some condition is met. That condition usually has to do with
subprocess state. For instance, you may want to notify someone via email when a process crashes and is restarted by
Supervisor.

The event notification protocol is based on communication via a subprocess’ stdin and stdout. Supervisor sends
specially-formatted input to an event listener process’ stdin and expects specially-formatted output from an event
listener’s stdout, forming a request-response cycle. A protocol agreed upon between supervisor and the listener’s
implementer allows listeners to process event notifications. Event listeners can be written in any language supported
by the platform you’re using to run Supervisor. Although event listeners may be written in any language, there is
special library support for Python in the form of a supervisor.childutils module, which makes creating
event listeners in Python slightly easier than in other languages.

Configuring an Event Listener

A supervisor event listener is specified via a [eventlistener:x] section in the configuration file. Supervisor
[eventlistener:x] sections are treated almost exactly like supervisor [program:x] section with the respect
to the keys allowed in their configuration except that Supervisor does not respect “capture mode” output from event
listener processes (ie. event listeners cannot be PROCESS_COMMUNICATIONS_EVENT event generators). Therefore
it is an error to specify stdout_capture_maxbytes or stderr_capture_maxbytes in the configuration
of an eventlistener. There is no artificial constraint on the number of eventlistener sections that can be placed into the
configuration file.

When an [eventlistener:x] section is defined, it actually defines a “pool”, where the number of event listeners
in the pool is determined by the numprocs value within the section.

The events parameter of the [eventlistener:x] section specifies the events that will be sent to a listener
pool. A well-written event listener will ignore events that it cannot process, but there is no guarantee that a specific
event listener won’t crash as a result of receiving an event type it cannot handle. Therefore, depending on the listener

40 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

implementation, it may be important to specify in the configuration that it may receive only certain types of events. The
implementor of the event listener is the only person who can tell you what these are (and therefore what value to put
in the events configuration). Examples of eventlistener configurations that can be placed in supervisord.conf
are as follows.

[eventlistener:memmon]
command=memmon -a 200MB -m bob@example.com
events=TICK_60

[eventlistener:mylistener]
command=my_custom_listener.py
events=PROCESS_STATE,TICK_60

Note: An advanced feature, specifying an alternate “result handler” for a pool, can be specified via the
result_handler parameter of an [eventlistener:x] section in the form of a pkg_resources “entry point”
string. The default result handler is supervisord.dispatchers:default_handler. Creating an alternate
result handler is not currently documented.

When an event notification is sent by supervisor, all event listener pools which are subscribed to receive events for
the event’s type (filtered by the events value in the eventlistener section) will be found. One of the listeners in each
listener pool will receive the event notification (any “available” listener).

Every process in an event listener pool is treated equally by supervisor. If a process in the pool is unavailable (because
it is already processing an event, because it has crashed, or because it has elected to removed itself from the pool),
supervisor will choose another process from the pool. If the event cannot be sent because all listeners in the pool
are “busy”, the event will be buffered and notification will be retried later. “Later” is defined as “the next time that
the supervisord select loop executes”. For satisfactory event processing performance, you should configure a
pool with as many event listener processes as appropriate to handle your event load. This can only be determined
empirically for any given workload, there is no “magic number” but to help you determine the optimal number of
listeners in a given pool, Supervisor will emit warning messages to its activity log when an event cannot be sent
immediately due to pool congestion. There is no artificial constraint placed on the number of processes that can be in
a pool, it is limited only by your platform constraints.

A listener pool has an event buffer queue. The queue is sized via the listener pool’s buffer_size config file option.
If the queue is full and supervisor attempts to buffer an event, supervisor will throw away the oldest event in the buffer
and log an error.

Writing an Event Listener

An event listener implementation is a program that is willing to accept structured input on its stdin stream and produce
structured output on its stdout stream. An event listener implementation should operate in “unbuffered” mode or should
flush its stdout every time it needs to communicate back to the supervisord process. Event listeners can be written to be
long-running or may exit after a single request (depending on the implementation and the autorestart parameter
in the eventlistener’s configuration).

An event listener can send arbitrary output to its stderr, which will be logged or ignored by supervisord depending on
the stderr-related logfile configuration in its [eventlistener:x] section.

Event Notification Protocol

When supervisord sends a notification to an event listener process, the listener will first be sent a single “header” line
on its stdin. The composition of the line is a set of colon-separated tokens (each of which represents a key-value pair)

1.7. Events 41

http://peak.telecommunity.com/DevCenter/PkgResources

supervisor Documentation, Release 4.0.0.dev0

separated from each other by a single space. The line is terminated with a \n (linefeed) character. The tokens on the
line are not guaranteed to be in any particular order. The types of tokens currently defined are in the table below.

Header Tokens

Key Description Ex-
am-
ple

ver The event system protocol version 3.0
server The identifier of the supervisord sending the event (see config file [supervisord] section

identifier value.
se-
rial

An integer assigned to each event. No two events generated during the lifetime of a supervisord
process will have the same serial number. The value is useful for functional testing and detecting
event ordering anomalies.

30

pool The name of the event listener pool which generated this event. myevent-
pool

poolse-
rial

An integer assigned to each event by the eventlistener pool which it is being sent from. No two
events generated by the same eventlister pool during the lifetime of a supervisord process will
have the same poolserial number. This value can be used to detect event ordering anomalies.

30

event-
name

The specific event type name (see Event Types) TICK_5

len An integer indicating the number of bytes in the event payload, aka the PAYLOAD_LENGTH 22

An example of a complete header line is as follows.

ver:3.0 server:supervisor serial:21 pool:listener poolserial:10 eventname:PROCESS_
→˓COMMUNICATION_STDOUT len:54

Directly following the linefeed character in the header is the event payload. It consists of PAYLOAD_LENGTH bytes
representing a serialization of the event data. See Event Types for the specific event data serialization definitions.

An example payload for a PROCESS_COMMUNICATION_STDOUT event notification is as follows.

processname:foo groupname:bar pid:123
This is the data that was sent between the tags

The payload structure of any given event is determined only by the event’s type.

Event Listener States

An event listener process has three possible states that are maintained by supervisord:

Name Description
ACKNOWLEDGED The event listener has acknowledged (accepted or rejected) an event send.
READY Event notificatons may be sent to this event listener
BUSY Event notifications may not be sent to this event listener.

When an event listener process first starts, supervisor automatically places it into the ACKNOWLEDGED state to allow
for startup activities or guard against startup failures (hangs). Until the listener sends a READY\n string to its stdout,
it will stay in this state.

42 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

When supervisor sends an event notification to a listener in the READY state, the listener will be placed into the BUSY
state until it receives an OK or FAIL response from the listener, at which time, the listener will be transitioned back
into the ACKNOWLEDGED state.

Event Listener Notification Protocol

Supervisor will notify an event listener in the READY state of an event by sending data to the stdin of the process.
Supervisor will never send anything to the stdin of an event listener process while that process is in the BUSY or
ACKNOWLEDGED state. Supervisor starts by sending the header.

Once it has processed the header, the event listener implementation should read PAYLOAD_LENGTH bytes from its
stdin, perform an arbitrary action based on the values in the header and the data parsed out of the serialization. It is
free to block for an arbitrary amount of time while doing this. Supervisor will continue processing normally as it waits
for a response and it will send other events of the same type to other listener processes in the same pool as necessary.

After the event listener has processed the event serialization, in order to notify supervisord about the result, it should
send back a result structure on its stdout. A result structure is the word “RESULT”, followed by a space, followed by
the result length, followed by a line feed, followed by the result content. For example, RESULT 2\nOK is the result
“OK”. Conventionally, an event listener will use either OK or FAIL as the result content. These strings have special
meaning to the default result handler.

If the default result handler receives OK as result content, it will assume that the listener processed the event notification
successfully. If it receives FAIL, it will assume that the listener has failed to process the event, and the event will be
rebuffered and sent again at a later time. The event listener may reject the event for any reason by returning a FAIL
result. This does not indicate a problem with the event data or the event listener. Once an OK or FAIL result is received
by supervisord, the event listener is placed into the ACKNOWLEDGED state.

Once the listener is in the ACKNOWLEDGED state, it may either exit (and subsequently may be restarted by supervisor
if its autorestart config parameter is true), or it may continue running. If it continues to run, in order to be
placed back into the READY state by supervisord, it must send a READY token followed immediately by a line feed to
its stdout.

Example Event Listener Implementation

A Python implementation of a “long-running” event listener which accepts an event notification, prints the header and
payload to its stderr, and responds with an OK result, and then subsequently a READY is as follows.

import sys

def write_stdout(s):
only eventlistener protocol messages may be sent to stdout
sys.stdout.write(s)
sys.stdout.flush()

def write_stderr(s):
sys.stderr.write(s)
sys.stderr.flush()

def main():
while 1:

transition from ACKNOWLEDGED to READY
write_stdout('READY\n')

read header line and print it to stderr
line = sys.stdin.readline()

(continues on next page)

1.7. Events 43

supervisor Documentation, Release 4.0.0.dev0

(continued from previous page)

write_stderr(line)

read event payload and print it to stderr
headers = dict([x.split(':') for x in line.split()])
data = sys.stdin.read(int(headers['len']))
write_stderr(data)

transition from READY to ACKNOWLEDGED
write_stdout('RESULT 2\nOK')

if __name__ == '__main__':
main()

Other sample event listeners are present within the superlance package, including one which can monitor supervisor
subprocesses and restart a process if it is using “too much” memory.

Event Listener Error Conditions

If the event listener process dies while the event is being transmitted to its stdin, or if it dies before sending an result
structure back to supervisord, the event is assumed to not be processed and will be rebuffered by supervisord and sent
again later.

If an event listener sends data to its stdout which supervisor does not recognize as an appropriate response based on
the state that the event listener is in, the event listener will be placed into the UNKNOWN state, and no further event
notifications will be sent to it. If an event was being processed by the listener during this time, it will be rebuffered
and sent again later.

Miscellaneous

Event listeners may use the Supervisor XML-RPC interface to call “back in” to Supervisor. As such, event listeners
can impact the state of a Supervisor subprocess as a result of receiving an event notification. For example, you may
want to generate an event every few minutes related to process usage of Supervisor-controlled subprocesses, and if
any of those processes exceed some memory threshold, you would like to restart it. You would write a program that
caused supervisor to generate PROCESS_COMMUNICATION events every so often with memory information in them,
and an event listener to perform an action based on processing the data it receives from these events.

1.7.2 Event Types

The event types are a controlled set, defined by Supervisor itself. There is no way to add an event type without
changing supervisord itself. This is typically not a problem, though, because metadata is attached to events that
can be used by event listeners as additional filter criterion, in conjunction with its type.

Event types that may be subscribed to by event listeners are predefined by supervisor and fall into several major
categories, including “process state change”, “process communication”, and “supervisor state change” events. Below
are tables describing these event types.

In the below list, we indicate that some event types have a “body” which is a a token set. A token set consists of a set
of charaters with space-separated tokens. Each token represents a key-value pair. The key and value are separated by
a colon. For example:

processname:cat groupname:cat from_state:STOPPED

Token sets do not have a linefeed or carriage return character at their end.

44 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

EVENT Event Type

The base event type. This event type is abstract. It will never be sent directly. Subscribing to this event type will cause
a subscriber to receive all event notifications emitted by Supervisor.

Name: EVENT

Subtype Of : N/A

Body Description: N/A

PROCESS_STATE Event Type

This process type indicates a process has moved from one state to another. See Process States for a description of
the states that a process moves through during its lifetime. This event type is abstract, it will never be sent directly.
Subscribing to this event type will cause a subscriber to receive event notifications of all the event types that are
subtypes of PROCESS_STATE.

Name: PROCESS_STATE

Subtype Of : EVENT

Body Description

All subtypes of PROCESS_STATE have a body which is a token set. Additionally, each PROCESS_STATE subtype’s
token set has a default set of key/value pairs: processname, groupname, and from_state. processname
represents the process name which supervisor knows this process as. groupname represents the name of the super-
visord group which this process is in. from_state is the name of the state from which this process is transitioning
(the new state is implied by the concrete event type). Concrete subtypes may include additional key/value pairs in the
token set.

PROCESS_STATE_STARTING Event Type

Indicates a process has moved from a state to the STARTING state.

Name: PROCESS_STATE_STARTING

Subtype Of : PROCESS_STATE

Body Description

This body is a token set. It has the default set of key/value pairs plus an additional tries key. tries represents the
number of times this process has entered this state before transitioning to RUNNING or FATAL (it will never be larger
than the “startretries” parameter of the process). For example:

processname:cat groupname:cat from_state:STOPPED tries:0

PROCESS_STATE_RUNNING Event Type

Indicates a process has moved from the STARTING state to the RUNNING state. This means that the process has
successfully started as far as Supervisor is concerned.

Name: PROCESS_STATE_RUNNING

1.7. Events 45

supervisor Documentation, Release 4.0.0.dev0

Subtype Of : PROCESS_STATE

Body Description

This body is a token set. It has the default set of key/value pairs plus an additional pid key. pid represents the UNIX
process id of the process that was started. For example:

processname:cat groupname:cat from_state:STARTING pid:2766

PROCESS_STATE_BACKOFF Event Type

Indicates a process has moved from the STARTING state to the BACKOFF state. This means that the process did
not successfully enter the RUNNING state, and Supervisor is going to try to restart it unless it has exceeded its
“startretries” configuration limit.

Name: PROCESS_STATE_BACKOFF

Subtype Of : PROCESS_STATE

Body Description

This body is a token set. It has the default set of key/value pairs plus an additional tries key. tries represents the
number of times this process has entered this state before transitioning to RUNNING or FATAL (it will never be larger
than the “startretries” parameter of the process). For example:

processname:cat groupname:cat from_state:STOPPED tries:0

PROCESS_STATE_STOPPING Event Type

Indicates a process has moved from either the RUNNING state or the STARTING state to the STOPPING state.

Name: PROCESS_STATE_STOPPING

Subtype Of : PROCESS_STATE

Body Description

This body is a token set. It has the default set of key/value pairs plus an additional pid key. pid represents the UNIX
process id of the process that was started. For example:

processname:cat groupname:cat from_state:STARTING pid:2766

PROCESS_STATE_EXITED Event Type

Indicates a process has moved from the RUNNING state to the EXITED state.

Name: PROCESS_STATE_EXITED

Subtype Of : PROCESS_STATE

46 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

Body Description

This body is a token set. It has the default set of key/value pairs plus two additional keys: pid and expected. pid
represents the UNIX process id of the process that exited. expected represents whether the process exited with an
expected exit code or not. It will be 0 if the exit code was unexpected, or 1 if the exit code was expected. For example:

processname:cat groupname:cat from_state:RUNNING expected:0 pid:2766

PROCESS_STATE_STOPPED Event Type

Indicates a process has moved from the STOPPING state to the STOPPED state.

Name: PROCESS_STATE_STOPPED

Subtype Of : PROCESS_STATE

Body Description

This body is a token set. It has the default set of key/value pairs plus an additional pid key. pid represents the UNIX
process id of the process that was started. For example:

processname:cat groupname:cat from_state:STOPPING pid:2766

PROCESS_STATE_FATAL Event Type

Indicates a process has moved from the BACKOFF state to the FATAL state. This means that Supervisor tried
startretries number of times unsuccessfully to start the process, and gave up attempting to restart it.

Name: PROCESS_STATE_FATAL

Subtype Of : PROCESS_STATE

Body Description

This event type is a token set with the default key/value pairs. For example:

processname:cat groupname:cat from_state:BACKOFF

PROCESS_STATE_UNKNOWN Event Type

Indicates a process has moved from any state to the UNKNOWN state (indicates an error in supervisord). This state
transition will only happen if supervisord itself has a programming error.

Name: PROCESS_STATE_UNKNOWN

Subtype Of : PROCESS_STATE

1.7. Events 47

supervisor Documentation, Release 4.0.0.dev0

Body Description

This event type is a token set with the default key/value pairs. For example:

processname:cat groupname:cat from_state:BACKOFF

REMOTE_COMMUNICATION Event Type

An event type raised when the supervisor.sendRemoteCommEvent() method is called on Supervisor’s RPC
interface. The type and data are arguments of the RPC method.

Name: REMOTE_COMMUNICATION

Subtype Of : EVENT

Body Description

type:type
data

PROCESS_LOG Event Type

An event type emitted when a process writes to stdout or stderr. The event will only be emitted if the file descriptor is
not in capture mode and if stdout_events_enabled or stderr_events_enabled config options are set to
true. This event type is abstract, it will never be sent directly. Subscribing to this event type will cause a subscriber
to receive event notifications for all subtypes of PROCESS_LOG.

Name: PROCESS_LOG

Subtype Of : EVENT

Body Description: N/A

PROCESS_LOG_STDOUT Event Type

Indicates a process has written to its stdout file descriptor. The event will only be emitted if the file descriptor is not in
capture mode and if the stdout_events_enabled config option is set to true.

Name: PROCESS_LOG_STDOUT

Subtype Of : PROCESS_LOG

Body Description

processname:name groupname:name pid:pid
data

48 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

PROCESS_LOG_STDERR Event Type

Indicates a process has written to its stderr file descriptor. The event will only be emitted if the file descriptor is not in
capture mode and if the stderr_events_enabled config option is set to true.

Name: PROCESS_LOG_STDERR

Subtype Of : PROCESS_LOG

Body Description

processname:name groupname:name pid:pid
data

PROCESS_COMMUNICATION Event Type

An event type raised when any process attempts to send information between <!--XSUPERVISOR:BEGIN-->
and <!--XSUPERVISOR:END--> tags in its output. This event type is abstract, it will never be sent di-
rectly. Subscribing to this event type will cause a subscriber to receive event notifications for all subtypes of
PROCESS_COMMUNICATION.

Name: PROCESS_COMMUNICATION

Subtype Of : EVENT

Body Description: N/A

PROCESS_COMMUNICATION_STDOUT Event Type

Indicates a process has sent a message to Supervisor on its stdout file descriptor.

Name: PROCESS_COMMUNICATION_STDOUT

Subtype Of : PROCESS_COMMUNICATION

Body Description

processname:name groupname:name pid:pid
data

PROCESS_COMMUNICATION_STDERR Event Type

Indicates a process has sent a message to Supervisor on its stderr file descriptor.

Name: PROCESS_COMMUNICATION_STDERR

Subtype Of : PROCESS_COMMUNICATION

Body Description

processname:name groupname:name pid:pid
data

1.7. Events 49

supervisor Documentation, Release 4.0.0.dev0

SUPERVISOR_STATE_CHANGE Event Type

An event type raised when the state of the supervisord process changes. This type is abstract, it will never be
sent directly. Subscribing to this event type will cause a subscriber to receive event notifications of all the subtypes of
SUPERVISOR_STATE_CHANGE.

Name: SUPERVISOR_STATE_CHANGE

Subtype Of : EVENT

Body Description: N/A

SUPERVISOR_STATE_CHANGE_RUNNING Event Type

Indicates that supervisord has started.

Name: SUPERVISOR_STATE_CHANGE_RUNNING

Subtype Of : SUPERVISOR_STATE_CHANGE

Body Description: Empty string

SUPERVISOR_STATE_CHANGE_STOPPING Event Type

Indicates that supervisord is stopping.

Name: SUPERVISOR_STATE_CHANGE_STOPPING

Subtype Of : SUPERVISOR_STATE_CHANGE

Body Description: Empty string

TICK Event Type

An event type that may be subscribed to for event listeners to receive “wake-up” notifications every N seconds. This
event type is abstract, it will never be sent directly. Subscribing to this event type will cause a subscriber to receive
event notifications for all subtypes of TICK.

Note that the only TICK events available are the ones listed below. You cannot subscribe to an arbitrary TICK interval.
If you need an interval not provided below, you can subscribe to one of the shorter intervals given below and keep
track of the time between runs in your event listener.

Name: TICK

Subtype Of : EVENT

Body Description: N/A

TICK_5 Event Type

An event type that may be subscribed to for event listeners to receive “wake-up” notifications every 5 seconds.

Name: TICK_5

Subtype Of : TICK

50 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

Body Description

This event type is a token set with a single key: “when”, which indicates the epoch time for which the tick was sent.

when:1201063880

TICK_60 Event Type

An event type that may be subscribed to for event listeners to receive “wake-up” notifications every 60 seconds.

Name: TICK_60

Subtype Of : TICK

Body Description

This event type is a token set with a single key: “when”, which indicates the epoch time for which the tick was sent.

when:1201063880

TICK_3600 Event Type

An event type that may be subscribed to for event listeners to receive “wake-up” notifications every 3600 seconds (1
hour).

Name: TICK_3600

Subtype Of : TICK

Body Description

This event type is a token set with a single key: “when”, which indicates the epoch time for which the tick was sent.

when:1201063880

PROCESS_GROUP Event Type

An event type raised when a process group is added to or removed from Supervisor. This type is abstract, it will never
be sent directly. Subscribing to this event type will cause a subscriber to receive event notifications of all the subtypes
of PROCESS_GROUP.

Name: PROCESS_GROUP

Subtype Of : EVENT

Body Description: N/A

1.7. Events 51

supervisor Documentation, Release 4.0.0.dev0

PROCESS_GROUP_ADDED Event Type

Indicates that a process group has been added to Supervisor’s configuration.

Name: PROCESS_GROUP_ADDED

Subtype Of : PROCESS_GROUP

Body Description: This body is a token set with just a groupname key/value.

groupname:cat

PROCESS_GROUP_REMOVED Event Type

Indicates that a process group has been removed from Supervisor’s configuration.

Name: PROCESS_GROUP_REMOVED

Subtype Of : PROCESS_GROUP

Body Description: This body is a token set with just a groupname key/value.

groupname:cat

1.8 Extending Supervisor’s XML-RPC API

Supervisor can be extended with new XML-RPC APIs. Several third-party plugins already exist that can be wired
into your Supervisor configuration. You may additionally write your own. Extensible XML-RPC interfaces is an
advanced feature, introduced in version 3.0. You needn’t understand it unless you wish to use an existing third-party
RPC interface plugin or if you wish to write your own RPC interface plugin.

1.8.1 Configuring XML-RPC Interface Factories

An additional RPC interface is configured into a supervisor installation by adding a [rpcinterface:x] section in
the Supervisor configuration file.

In the sample config file, there is a section which is named [rpcinterface:supervisor]. By default it looks
like this:

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

This section must remain in the configuration for the standard setup of supervisor to work properly. If you don’t want
supervisor to do anything it doesn’t already do out of the box, this is all you need to know about this type of section.

However, if you wish to add additional XML-RPC interface namespaces to a configuration of supervisor, you may add
additional [rpcinterface:foo] sections, where “foo” represents the namespace of the interface (from the web
root), and the value named by supervisor.rpcinterface_factory is a factory callable written in Python
which should have a function signature that accepts a single positional argument supervisord and as many key-
word arguments as required to perform configuration. Any key/value pairs defined within the rpcinterface:foo
section will be passed as keyword arguments to the factory. Here’s an example of a factory function, created in the
package my.package.

52 Chapter 1. Narrative Documentation

supervisor Documentation, Release 4.0.0.dev0

def make_another_rpcinterface(supervisord, **config):
retries = int(config.get('retries', 0))
another_rpc_interface = AnotherRPCInterface(supervisord, retries)
return another_rpc_interface

And a section in the config file meant to configure it.

[rpcinterface:another]
supervisor.rpcinterface_factory = my.package:make_another_rpcinterface
retries = 1

1.9 Upgrading Supervisor 2 to 3

The following is true when upgrading an installation from Supervisor 2.X to Supervisor 3.X:

1. In [program:x] sections, the keys logfile, logfile_backups, logfile_maxbytes,
log_stderr and log_stdout are no longer valid. Supervisor2 logged both stderr and stdout to a
single log file. Supervisor 3 logs stderr and stdout to separate log files. You’ll need to rename logfile to
stdout_logfile, logfile_backups to stdout_logfile_backups, and logfile_maxbytes
to stdout_logfile_maxbytes at the very least to preserve your configuration. If you created program
sections where log_stderr was true, to preserve the behavior of sending stderr output to the stdout log, use
the redirect_stderr boolean in the program section instead.

2. The supervisor configuration file must include the following section verbatim for the XML-RPC interface (and
thus the web interface and supervisorctl) to work properly:

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

3. The semantics of the autorestart parameter within [program:x] sections has changed. This parameter
used to accept only true or false. It now accepts an additional value, unexpected, which indicates that
the process should restart from the EXITED state only if its exit code does not match any of those represented
by the exitcode parameter in the process’ configuration (implying a process crash). In addition, the default
for autorestart is now unexpected (it used to be true, which meant restart unconditionally).

4. We now allow supervisord to listen on both a UNIX domain socket and an inet socket instead
of making listening on one mutually exclusive with listening on the other. As a result, the options
http_port, http_username, http_password, sockchmod and sockchown are no longer part
of the [supervisord] section configuration. These have been supplanted by two other sections:
[unix_http_server] and [inet_http_server]. You’ll need to insert one or the other (depend-
ing on whether you want to listen on a UNIX domain socket or a TCP socket respectively) or both into your
supervisord.conf file. These sections have their own options (where applicable) for port, username,
password, chmod, and chown.

5. All supervisord command-line options related to http_port, http_username, http_password,
sockchmod and sockchown have been removed (see above point for rationale).

6. The option that used to be sockchownwithin the [supervisord] section (and is now named chownwithin
the [unix_http_server] section) used to accept a dot-separated (user.group) value. The separator
now must be a colon, e.g. user:group. Unices allow for dots in usernames, so this change is a bugfix.

1.9. Upgrading Supervisor 2 to 3 53

supervisor Documentation, Release 4.0.0.dev0

1.10 Frequently Asked Questions

Q My program never starts and supervisor doesn’t indicate any error?

A Make sure the x bit is set on the executable file you’re using in the command= line of your program section.

Q I am a software author and I want my program to behave differently when it’s running under supervisord. How
can I tell if my program is running under supervisord?

A Supervisor and its subprocesses share an environment variable SUPERVISOR_ENABLED. When your program is
run under supervisord, it can check for the presence of this environment variable to determine whether it is
running as a supervisord subprocess.

Q My command works fine when I invoke it by hand from a shell prompt, but when I use the same command line in
a supervisor program command= section, the program fails mysteriously. Why?

A This may be due to your process’ dependence on environment variable settings. See Subprocess Environment.

Q How can I make Supervisor restart a process that’s using “too much” memory automatically?

A The superlance package contains a console script that can be used as a Supervisor event listener named memmon
which helps with this task. It works on Linux and Mac OS X.

1.11 Resources and Development

1.11.1 Mailing Lists

Supervisor has a mailing list for users. You may subscribe to the Supervisor-users mailing list.

Supervisor has a mailing list for checkins too. You may subscribe to the Supervisor-checkins mailing list.

1.11.2 Bug Tracker

Supervisor has a bugtracker where you may report any bugs or other errors you find. Please report bugs to the GitHub
issues page.

1.11.3 Version Control Repository

You can also view the Supervisor version control repository.

1.11.4 Contributing

Supervisor development is discussed on the mailing list. We’ll review contributions from the community in both pull
requests on GitHub (preferred) and patches sent to the list.

1.11.5 Author Information

The following people are responsible for creating Supervisor.

54 Chapter 1. Narrative Documentation

http://lists.supervisord.org/mailman/listinfo/supervisor-users
http://lists.supervisord.org/mailman/listinfo/supervisor-checkins
https://github.com/supervisor/supervisor/issues
https://github.com/supervisor/supervisor/issues
https://github.com/Supervisor/supervisor
https://help.github.com/articles/using-pull-requests
https://help.github.com/articles/using-pull-requests

supervisor Documentation, Release 4.0.0.dev0

Original Author

• Chris McDonough is the original author of Supervisor.

Contributors

Contributors are tracked on the GitHub contributions page. The two lists below are included for historical reasons.

This first list recognizes significant contributions that were made before the repository moved to GitHub.

• Anders Quist: Anders contributed the patch that was the basis for Supervisor’s ability to reload parts of its
configuration without restarting.

• Derek DeVries: Derek did the web design of Supervisor’s internal web interface and website logos.

• Guido van Rossum: Guido authored zdrun and zdctl, the programs from Zope that were the original basis
for Supervisor. He also created Python, the programming language that Supervisor is written in.

• Jason Kirtland: Jason fixed Supervisor to run on Python 2.6 by contributing a patched version of Medusa (a
Supervisor dependency) that we now bundle.

• Roger Hoover: Roger added support for spawning FastCGI programs. He has also been one of the most active
mailing list users, providing his testing and feedback.

• Siddhant Goel: Siddhant worked on supervisorctl as our Google Summer of Code student for 2008. He
implemented the fg command and also added tab completion.

This second list records contributors who signed a legal agreement. The legal agreement was introduced in January
2014 but later withdrawn in March 2014. This list is being preserved in case it is useful later (e.g. if at some point
there was a desire to donate the project to a foundation that required such agreements).

• Chris McDonough, 2006-06-26

• Siddhant Goel, 2008-06-15

• Chris Rossi, 2010-02-02

• Roger Hoover, 2010-08-17

• Benoit Sigoure, 2011-06-21

• John Szakmeister, 2011-09-06

• Gunnlaugur Þór Briem, 2011-11-26

• Jens Rantil, 2011-11-27

• Michael Blume, 2012-01-09

• Philip Zeyliger, 2012-02-21

• Marcelo Vanzin, 2012-05-03

• Martijn Pieters, 2012-06-04

• Marcin Kuźmiński, 2012-06-21

• Jean Jordaan, 2012-06-28

• Perttu Ranta-aho, 2012-09-27

• Chris Streeter, 2013-03-23

• Caio Ariede, 2013-03-25

• David Birdsong, 2013-04-11

1.11. Resources and Development 55

https://github.com/mcdonc
https://github.com/Supervisor/supervisor/graphs/contributors
https://github.com/Supervisor/supervisor/commit/7bdac36e67a91b513a2e53a6098751509a7a9e34
https://github.com/Supervisor/supervisor/commit/79090d521c512634bed03a65147f16cd41456051

supervisor Documentation, Release 4.0.0.dev0

• Lukas Rist, 2013-04-18

• Honza Pokorny, 2013-07-23

• Thúlio Costa, 2013-10-31

• Gary M. Josack, 2013-11-12

• Márk Sági-Kazár, 2013-12-16

1.12 Glossary

daemontools A process control system by D.J. Bernstein.

launchd A process control system used by Apple as process 1 under Mac OS X.

runit A process control system.

Superlance A package which provides various event listener implementations that plug into Supervisor which can
help monitor process memory usage and crash status: https://pypi.org/pypi/superlance/.

umask Abbreviation of user mask: sets the file mode creation mask of the current process. See http://en.wikipedia.
org/wiki/Umask.

56 Chapter 1. Narrative Documentation

http://cr.yp.to/daemontools.html
http://en.wikipedia.org/wiki/Launchd
http://smarden.org/runit/
https://pypi.org/pypi/superlance/
http://en.wikipedia.org/wiki/Umask
http://en.wikipedia.org/wiki/Umask

CHAPTER 2

API Documentation

2.1 XML-RPC API Documentation

To use the XML-RPC interface, first make sure you have configured the interface factory properly by setting the default
factory. See Configuring XML-RPC Interface Factories.

Then you can connect to supervisor’s HTTP port with any XML-RPC client library and run commands against it.

An example of doing this using Python 2’s xmlrpclib client library is as follows.

import xmlrpclib
server = xmlrpclib.Server('http://localhost:9001/RPC2')

An example of doing this using Python 3’s xmlrpc.client library is as follows.

from xmlrpc.client import ServerProxy
server = ServerProxy('http://localhost:9001/RPC2')

You may call methods against supervisord and its subprocesses by using the supervisor namespace. An
example is provided below.

server.supervisor.getState()

You can get a list of methods supported by the supervisord XML-RPC interface by using the XML-RPC
system.listMethods API:

server.system.listMethods()

You can see help on a method by using the system.methodHelp API against the method:

server.system.methodHelp('supervisor.shutdown')

The supervisord XML-RPC interface also supports the XML-RPC multicall API.

You can extend supervisord functionality with new XML-RPC API methods by adding new top-level RPC inter-
faces as necessary. See Configuring XML-RPC Interface Factories.

57

http://web.archive.org/web/20060824100531/http://www.xmlrpc.com/discuss/msgReader\protect \T1\textdollar 1208

supervisor Documentation, Release 4.0.0.dev0

Note: Any XML-RPC method call may result in a fault response. This includes errors caused by the client such
as bad arguments, and any errors that make supervisord unable to fulfill the request. Many XML-RPC client
programs will raise an exception when a fault response is encountered.

2.1.1 Status and Control

class supervisor.rpcinterface.SupervisorNamespaceRPCInterface(supervisord)

getAPIVersion()
Return the version of the RPC API used by supervisord

@return string version version id

This API is versioned separately from Supervisor itself. The API version returned by
getAPIVersion only changes when the API changes. Its purpose is to help the client iden-
tify with which version of the Supervisor API it is communicating.

When writing software that communicates with this API, it is highly recommended that you
first test the API version for compatibility before making method calls.

Note: The getAPIVersion method replaces getVersion found in Supervisor versions
prior to 3.0a1. It is aliased for compatibility but getVersion() is deprecated and support will be
dropped from Supervisor in a future version.

getSupervisorVersion()
Return the version of the supervisor package in use by supervisord

@return string version version id

getIdentification()
Return identifying string of supervisord

@return string identifier identifying string

This method allows the client to identify with which Supervisor instance it is communicating
in the case of environments where multiple Supervisors may be running.

The identification is a string that must be set in Supervisor’s configuration file. This method
simply returns that value back to the client.

getState()
Return current state of supervisord as a struct

@return struct A struct with keys int statecode, string statename

This is an internal value maintained by Supervisor that determines what Supervisor believes to
be its current operational state.

Some method calls can alter the current state of the Supervisor. For example, calling the method
supervisor.shutdown() while the station is in the RUNNING state places the Supervisor in the
SHUTDOWN state while it is shutting down.

The supervisor.getState() method provides a means for the client to check Supervisor’s state,
both for informational purposes and to ensure that the methods it intends to call will be permit-
ted.

The return value is a struct:

58 Chapter 2. API Documentation

supervisor Documentation, Release 4.0.0.dev0

{'statecode': 1,
'statename': 'RUNNING'}

The possible return values are:

statecode statename Description
2 FATAL Supervisor has experienced a serious error.
1 RUNNING Supervisor is working normally.
0 RESTARTING Supervisor is in the process of restarting.
-1 SHUTDOWN Supervisor is in the process of shutting down.

The FATAL state reports unrecoverable errors, such as internal errors inside Supervisor or sys-
tem runaway conditions. Once set to FATAL, the Supervisor can never return to any other state
without being restarted.

In the FATAL state, all future methods except supervisor.shutdown() and supervisor.restart()
will automatically fail without being called and the fault FATAL_STATE will be raised.

In the SHUTDOWN or RESTARTING states, all method calls are ignored and their possible
return values are undefined.

getPID()
Return the PID of supervisord

@return int PID

readLog(offset, length)
Read length bytes from the main log starting at offset

@param int offset offset to start reading from. @param int length number of bytes to read from
the log. @return string result Bytes of log

It can either return the entire log, a number of characters from the tail of the log, or a slice of
the log specified by the offset and length parameters:

Off-
set

LengthBehavior of readProcessLog

Neg-
ative

Not
Zero

Bad arguments. This will raise the fault BAD_ARGUMENTS.

Neg-
ative

Zero This will return the tail of the log, or offset number of characters from the
end of the log. For example, if offset = -4 and length = 0, then the last
four characters will be returned from the end of the log.

Zero
or
Posi-
tive

Neg-
a-
tive

Bad arguments. This will raise the fault BAD_ARGUMENTS.

Zero
or
Posi-
tive

Zero All characters will be returned from the offset specified.

Zero
or
Posi-
tive

Pos-
i-
tive

A number of characters length will be returned from the offset.

If the log is empty and the entire log is requested, an empty string is returned.

2.1. XML-RPC API Documentation 59

supervisor Documentation, Release 4.0.0.dev0

If either offset or length is out of range, the fault BAD_ARGUMENTS will be returned.

If the log cannot be read, this method will raise either the NO_FILE error if the file does not
exist or the FAILED error if any other problem was encountered.

Note: The readLog() method replaces readMainLog() found in Supervisor versions prior to
2.1. It is aliased for compatibility but readMainLog() is deprecated and support will be dropped
from Supervisor in a future version.

clearLog()
Clear the main log.

@return boolean result always returns True unless error

If the log cannot be cleared because the log file does not exist, the fault NO_FILEwill be raised.
If the log cannot be cleared for any other reason, the fault FAILED will be raised.

shutdown()
Shut down the supervisor process

@return boolean result always returns True unless error

This method shuts down the Supervisor daemon. If any processes are running, they are auto-
matically killed without warning.

Unlike most other methods, if Supervisor is in the FATAL state, this method will still function.

restart()
Restart the supervisor process

@return boolean result always return True unless error

This method soft restarts the Supervisor daemon. If any processes are running, they are au-
tomatically killed without warning. Note that the actual UNIX process for Supervisor cannot
restart; only Supervisor’s main program loop. This has the effect of resetting the internal states
of Supervisor.

Unlike most other methods, if Supervisor is in the FATAL state, this method will still function.

2.1.2 Process Control

class supervisor.rpcinterface.SupervisorNamespaceRPCInterface(supervisord)

getProcessInfo(name)
Get info about a process named name

@param string name The name of the process (or ‘group:name’) @return struct result A struc-
ture containing data about the process

The return value is a struct:

{'name': 'process name',
'group': 'group name',
'description': 'pid 18806, uptime 0:03:12'
'start': 1200361776,
'stop': 0,
'now': 1200361812,
'state': 20,

(continues on next page)

60 Chapter 2. API Documentation

supervisor Documentation, Release 4.0.0.dev0

(continued from previous page)

'statename': 'RUNNING',
'spawnerr': '',
'exitstatus': 0,
'logfile': '/path/to/stdout-log', # deprecated, b/c only
'stdout_logfile': '/path/to/stdout-log',
'stderr_logfile': '/path/to/stderr-log',
'pid': 1}

name
Name of the process

group
Name of the process’ group

description
If process state is running description’s value is process_id and uptime. Example “pid
18806, uptime 0:03:12 “. If process state is stopped description’s value is stop time. Exam-
ple:”Jun 5 03:16 PM “.

start
UNIX timestamp of when the process was started

stop
UNIX timestamp of when the process last ended, or 0 if the process has never been stopped.

now
UNIX timestamp of the current time, which can be used to calculate process up-time.

state
State code, see Process States.

statename
String description of state, see Process States.

logfile
Deprecated alias for stdout_logfile. This is provided only for compatibility
with clients written for Supervisor 2.x and may be removed in the future. Use
stdout_logfile instead.

stdout_logfile
Absolute path and filename to the STDOUT logfile

stderr_logfile
Absolute path and filename to the STDOUT logfile

spawnerr
Description of error that occurred during spawn, or empty string if none.

exitstatus
Exit status (errorlevel) of process, or 0 if the process is still running.

pid
UNIX process ID (PID) of the process, or 0 if the process is not running.

getAllProcessInfo()
Get info about all processes

@return array result An array of process status results

Each element contains a struct, and this struct contains the exact same elements as the struct
returned by getProcessInfo. If the process table is empty, an empty array is returned.

2.1. XML-RPC API Documentation 61

supervisor Documentation, Release 4.0.0.dev0

startProcess(name, wait=True)
Start a process

@param string name Process name (or group:name, or group:*) @param boolean wait
Wait for process to be fully started @return boolean result Always true unless error

startAllProcesses(wait=True)
Start all processes listed in the configuration file

@param boolean wait Wait for each process to be fully started @return array result An array of
process status info structs

startProcessGroup(name, wait=True)
Start all processes in the group named ‘name’

@param string name The group name @param boolean wait Wait for each process to be fully
started @return array result An array of process status info structs

stopProcess(name, wait=True)
Stop a process named by name

@param string name The name of the process to stop (or ‘group:name’) @param boolean wait
Wait for the process to be fully stopped @return boolean result Always return True unless error

stopProcessGroup(name, wait=True)
Stop all processes in the process group named ‘name’

@param string name The group name @param boolean wait Wait for each process to be fully
stopped @return array result An array of process status info structs

stopAllProcesses(wait=True)
Stop all processes in the process list

@param boolean wait Wait for each process to be fully stopped @return array result An array
of process status info structs

signalProcess(name, signal)
Send an arbitrary UNIX signal to the process named by name

@param string name Name of the process to signal (or ‘group:name’) @param string signal
Signal to send, as name (‘HUP’) or number (‘1’) @return boolean

signalProcessGroup(name, signal)
Send a signal to all processes in the group named ‘name’

@param string name The group name @param string signal Signal to send, as name (‘HUP’)
or number (‘1’) @return array

signalAllProcesses(signal)
Send a signal to all processes in the process list

@param string signal Signal to send, as name (‘HUP’) or number (‘1’) @return array An array
of process status info structs

sendProcessStdin(name, chars)
Send a string of chars to the stdin of the process name. If non-7-bit data is sent (unicode), it is
encoded to utf-8 before being sent to the process’ stdin. If chars is not a string or is not unicode,
raise INCORRECT_PARAMETERS. If the process is not running, raise NOT_RUNNING. If
the process’ stdin cannot accept input (e.g. it was closed by the child process), raise NO_FILE.

@param string name The process name to send to (or ‘group:name’) @param string chars The
character data to send to the process @return boolean result Always return True unless error

62 Chapter 2. API Documentation

supervisor Documentation, Release 4.0.0.dev0

sendRemoteCommEvent(type, data)
Send an event that will be received by event listener subprocesses subscribing to the Re-
moteCommunicationEvent.

@param string type String for the “type” key in the event header @param string data Data for
the event body @return boolean Always return True unless error

reloadConfig()
Reload the configuration.

The result contains three arrays containing names of process groups:
• added gives the process groups that have been added
• changed gives the process groups whose contents have changed
• removed gives the process groups that are no longer in the configuration

@return array result [[added, changed, removed]]

addProcessGroup(name)
Update the config for a running process from config file.

@param string name name of process group to add @return boolean result true if successful

removeProcessGroup(name)
Remove a stopped process from the active configuration.

@param string name name of process group to remove @return boolean result Indicates
whether the removal was successful

2.1.3 Process Logging

class supervisor.rpcinterface.SupervisorNamespaceRPCInterface(supervisord)

readProcessStdoutLog(name, offset, length)
Read length bytes from name’s stdout log starting at offset

@param string name the name of the process (or ‘group:name’) @param int offset offset to start
reading from. @param int length number of bytes to read from the log. @return string result
Bytes of log

readProcessStderrLog(name, offset, length)
Read length bytes from name’s stderr log starting at offset

@param string name the name of the process (or ‘group:name’) @param int offset offset to start
reading from. @param int length number of bytes to read from the log. @return string result
Bytes of log

tailProcessStdoutLog(name, offset, length)
Provides a more efficient way to tail the (stdout) log than readProcessStdoutLog(). Use read-
ProcessStdoutLog() to read chunks and tailProcessStdoutLog() to tail.

Requests (length) bytes from the (name)’s log, starting at (offset). If the total log size is greater
than (offset + length), the overflow flag is set and the (offset) is automatically increased to
position the buffer at the end of the log. If less than (length) bytes are available, the maximum
number of available bytes will be returned. (offset) returned is always the last offset in the log
+1.

@param string name the name of the process (or ‘group:name’) @param int offset offset to
start reading from @param int length maximum number of bytes to return @return array result
[string bytes, int offset, bool overflow]

2.1. XML-RPC API Documentation 63

supervisor Documentation, Release 4.0.0.dev0

tailProcessStderrLog(name, offset, length)
Provides a more efficient way to tail the (stderr) log than readProcessStderrLog(). Use readPro-
cessStderrLog() to read chunks and tailProcessStderrLog() to tail.

Requests (length) bytes from the (name)’s log, starting at (offset). If the total log size is greater
than (offset + length), the overflow flag is set and the (offset) is automatically increased to
position the buffer at the end of the log. If less than (length) bytes are available, the maximum
number of available bytes will be returned. (offset) returned is always the last offset in the log
+1.

@param string name the name of the process (or ‘group:name’) @param int offset offset to
start reading from @param int length maximum number of bytes to return @return array result
[string bytes, int offset, bool overflow]

clearProcessLogs(name)
Clear the stdout and stderr logs for the named process and reopen them.

@param string name The name of the process (or ‘group:name’) @return boolean result Always
True unless error

clearAllProcessLogs()
Clear all process log files

@return array result An array of process status info structs

2.1.4 System Methods

class supervisor.xmlrpc.SystemNamespaceRPCInterface(namespaces)

listMethods()
Return an array listing the available method names

@return array result An array of method names available (strings).

methodHelp(name)
Return a string showing the method’s documentation

@param string name The name of the method. @return string result The documentation for the
method name.

methodSignature(name)
Return an array describing the method signature in the form [rtype, ptype, ptype. . .] where
rtype is the return data type of the method, and ptypes are the parameter data types that the
method accepts in method argument order.

@param string name The name of the method. @return array result The result.

multicall(calls)
Process an array of calls, and return an array of results. Calls should be structs of the form
{‘methodName’: string, ‘params’: array}. Each result will either be a single-item array con-
taining the result value, or a struct of the form {‘faultCode’: int, ‘faultString’: string}. This is
useful when you need to make lots of small calls without lots of round trips.

@param array calls An array of call requests @return array result An array of results

64 Chapter 2. API Documentation

CHAPTER 3

Plugins

3.1 Third Party Applications and Libraries

There are a number of third party applications that can be useful together with Supervisor. This list aims to summarize
them and make them easier to find.

See README.rst for information on how to contribute to this list. Obviously, you can always also send an e-mail to
the Supervisor mailing list to inform about missing plugins or libraries for/using Supervisor.

3.1.1 Dashboards and Tools for Multiple Supervisor Instances

These are tools that can monitor or control a number of Supervisor instances running on different servers.

cesi Web-based dashboard written in Python.

Django-Dashvisor Web-based dashboard written in Python. Requires Django 1.3 or 1.4.

Nodervisor Web-based dashboard written in Node.js.

Supervisord-Monitor Web-based dashboard written in PHP.

SupervisorUI Another Web-based dashboard written in PHP.

supervisorclusterctl Command line tool for controlling multiple Supervisor instances using Ansible.

suponoff Web-based dashboard written in Python 3. Requires Django 1.7 or later.

Supvisors Designed for distributed applications, written in Python 2.7. Includes an extended XML-RPC API and a
Web-based dashboard.

multivisor Centralized supervisor web-based dashboard. The frontend is based on VueJS. The backend runs a flask
web server. It communicates with each supervisor through a specialized supervisor event-listener based on
zerorpc.

65

https://github.com/Gamegos/cesi
https://github.com/aleszoulek/django-dashvisor
https://github.com/TAKEALOT/nodervisor
https://github.com/mlazarov/supervisord-monitor
https://github.com/luxbet/supervisorui
https://github.com/RobWin/supervisorclusterctl
https://github.com/GambitResearch/suponoff
https://github.com/julien6387/supvisors
https://github.com/tiagocoutinho/multivisor
https://vuejs.org
http://flask.pocoo.org
http://www.zerorpc.io

supervisor Documentation, Release 4.0.0.dev0

3.1.2 Third Party Plugins and Libraries for Supervisor

These are plugins and libraries that add new functionality to Supervisor. These also includes various event listeners.

superlance Provides set of common eventlisteners that can be used to monitor and, for example, restart when it uses
too much memory etc.

mr.rubber An event listener that makes it possible to scale the number of processes to the number of cores on the
supervisor host.

supervisor-wildcards Implements start/stop/restart commands with wildcard support for Supervisor. These com-
mands run in parallel and can be much faster than the built-in start/stop/restart commands.

mr.laforge Lets you easily make sure that supervisord and specific processes controlled by it are running from
within shell and Python scripts. Also adds a kill command to supervisor that makes it possible to send
arbitrary signals to child processes.

supervisor_cache An extension for Supervisor that provides the ability to cache arbitrary data directly inside a Su-
pervisor instance as key/value pairs. Also serves as a reference for how to write Supervisor extensions.

supervisor_twiddler An RPC extension for Supervisor that allows Supervisor’s configuration and state to be manip-
ulated in ways that are not normally possible at runtime.

supervisor-stdout An event listener that sends process output to supervisord’s stdout.

supervisor-serialrestart Adds a serialrestart command to supervisorctl that restarts processes one after
another rather than all at once.

supervisor-quick Adds quickstart, quickstop, and quickrestart commands to supervisorctl that
can be faster than the built-in commands. It works by using the non-blocking mode of the XML-RPC methods
and then polling supervisord. The built-in commands use the blocking mode, which can be slower due to
supervisord implementation details.

supervisor-logging An event listener that sends process log events to an external Syslog instance (e.g. Logstash).

supervisor-logstash-notifier An event listener plugin to stream state events to a Logstash instance.

supervisor_cgroups An event listener that enables tying Supervisor processes to a cgroup hierarchy. It is intended to
be used as a replacement for cgrules.conf.

supervisor_checks Framework to build health checks for Supervisor-based services. Health check applications are
supposed to run as event listeners in Supervisor environment. On check failure Supervisor will attempt to restart
monitored process.

Superfsmon Watch a directory and restart programs when files change. It can monitor a directory for changes, filter
the file paths by glob patterns or regular expressions and restart Supervisor programs individually or by group.

3.1.3 Libraries that integrate Third Party Applications with Supervisor

These are libraries and plugins that makes it easier to use Supervisor with third party applications:

django-supervisor Easy integration between djangocl and supervisord.

collective.recipe.supervisor A buildout recipe to install supervisor.

puppet-module-supervisor Puppet module for configuring the supervisor daemon tool.

puppet-supervisord Puppet module to manage the supervisord process control system.

ngx_supervisord An nginx module providing API to communicate with supervisord and manage (start/stop) back-
ends on-demand.

Supervisord-Nagios-Plugin A Nagios/Icinga plugin written in Python to monitor individual supervisord processes.

66 Chapter 3. Plugins

https://pypi.org/pypi/superlance/
https://github.com/collective/mr.rubber
https://github.com/aleszoulek/supervisor-wildcards
https://github.com/fschulze/mr.laforge
https://github.com/mnaberez/supervisor_cache
https://github.com/mnaberez/supervisor_twiddler
https://github.com/coderanger/supervisor-stdout
https://github.com/native2k/supervisor-serialrestart
http://lxyu.github.io/supervisor-quick/
https://github.com/infoxchange/supervisor-logging
https://github.com/dohop/supervisor-logstash-notifier
https://github.com/htch/supervisor_cgroups
http://linux.die.net/man/5/cgrules.conf
https://github.com/vovanec/supervisor_checks
https://github.com/timakro/superfsmon
https://pypi.org/pypi/django-supervisor/
https://pypi.org/pypi/collective.recipe.supervisor/
https://github.com/plathrop/puppet-module-supervisor
https://github.com/ajcrowe/puppet-supervisord
https://github.com/FRiCKLE/ngx_supervisord
https://github.com/Level-Up/Supervisord-Nagios-Plugin

supervisor Documentation, Release 4.0.0.dev0

nagios-supervisord-processes A Nagios/Icinga plugin written in PHP to monitor individual supervisord processes.

supervisord-nagios A plugin for supervisorctl to allow one to perform nagios-style checks against supervisord-
managed processes.

php-supervisor-event PHP classes for interacting with Supervisor event notifications.

PHP5 Supervisor wrapper PHP 5 library to manage Supervisor instances as object.

Symfony2 SupervisorBundle Provide full integration of Supervisor multiple servers management into Symfony2
project.

sd-supervisord Server Density plugin for supervisor.

node-supervisord Node.js client for Supervisor’s XML-RPC interface.

node-supervisord-eventlistener Node.js implementation of an event listener for Supervisor.

ruby-supervisor Ruby client library for Supervisor’s XML-RPC interface.

Sulphite Sends supervisord events to Graphite.

supervisord.tmbundle TextMate bundle for supervisord.conf.

capistrano-supervisord Capistrano recipe to deploy supervisord based services.

capistrano-supervisor Another package to control supervisord from Capistrano.

chef-supervisor Chef cookbook install and configure supervisord.

SupervisorPHP Complete Supervisor suite in PHP: Client using XML-RPC interface, event listener and configura-
tion builder implementation, console application and monitor UI.

Supervisord-Client Perl client for the supervisord XML-RPC interface.

supervisord4j Java client for Supervisor’s XML-RPC interface.

Supermann Supermann monitors processes running under Supervisor and sends metrics to Riemann.

gulp-supervisor Run Supervisor as a Gulp task.

Yeebase.Supervisor Control and monitor Supervisor from a TYPO3 Flow application.

dokku-supervisord Dokku plugin that injects supervisord to run applications.

dokku-logging-supervisord Dokku plugin that injects supervisord to run applications. It also redirects stdout
and stderr from processes to log files (rather than the Docker default per-container JSON files).

superslacker Send Supervisor event notifications to Slack.

supervisor-alert Send event notifications over Telegram or to an arbitrary command.

3.1. Third Party Applications and Libraries 67

https://github.com/blablacar/nagios-supervisord-processes
https://github.com/3dna/supervisord-nagios
https://github.com/mtdowling/php-supervisor-event
https://github.com/yzalis/Supervisor
https://github.com/yzalis/SupervisorBundle
https://github.com/robcowie/sd-supervisord
http://www.serverdensity.com
https://github.com/crcn/node-supervisord
https://github.com/sugendran/node-supervisord-eventlistener
https://github.com/schmurfy/ruby-supervisor
https://github.com/jib/sulphite
https://github.com/graphite-project/graphite-web
https://github.com/countergram/supervisord.tmbundle
http://macromates.com/
https://github.com/yyuu/capistrano-supervisord
https://github.com/capistrano/capistrano
https://github.com/glooby/capistrano-supervisor
https://github.com/capistrano/capistrano
https://github.com/opscode-cookbooks/supervisor
http://www.opscode.com/chef/
http://supervisorphp.com
http://search.cpan.org/~skaufman/Supervisord-Client
https://github.com/satifanie/supervisord4j
https://github.com/borntyping/supermann
http://riemann.io/
https://github.com/leny/gulp-supervisor
http://gulpjs.com/
https://github.com/yeebase/Yeebase.Supervisor
https://github.com/statianzo/dokku-supervisord
https://github.com/progrium/dokku
https://github.com/sehrope/dokku-logging-supervisord
https://github.com/progrium/dokku
https://github.com/MTSolutions/superslacker
https://slack.com
https://github.com/rahiel/supervisor-alert
https://telegram.org

supervisor Documentation, Release 4.0.0.dev0

68 Chapter 3. Plugins

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

69

supervisor Documentation, Release 4.0.0.dev0

70 Chapter 4. Indices and tables

Python Module Index

s
supervisor.rpcinterface, 58
supervisor.xmlrpc, 64

71

supervisor Documentation, Release 4.0.0.dev0

72 Python Module Index

Index

A
addProcessGroup() (supervi-

sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 63

B
BINDIR, 7

C
clearAllProcessLogs() (supervi-

sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 64

clearLog() (supervisor.rpcinterface.SupervisorNamespaceRPCInterface
method), 60

clearProcessLogs() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 64

D
daemontools, 56

E
environment variable

BINDIR, 7
HOME, 35
LOGNAME, 35
PATH, 35
SHELL, 35
SUPERVISOR_ENABLED, 35, 54
SUPERVISOR_GROUP_NAME, 35
SUPERVISOR_PROCESS_NAME, 35
USER, 35

G
getAllProcessInfo() (supervi-

sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 61

getAPIVersion() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 58

getIdentification() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 58

getPID() (supervisor.rpcinterface.SupervisorNamespaceRPCInterface
method), 59

getProcessInfo() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 60

getState() (supervisor.rpcinterface.SupervisorNamespaceRPCInterface
method), 58

getSupervisorVersion() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 58

H
HOME, 35

L
launchd, 56
listMethods() (supervisor.xmlrpc.SystemNamespaceRPCInterface

method), 64
LOGNAME, 35

M
methodHelp() (supervi-

sor.xmlrpc.SystemNamespaceRPCInterface
method), 64

methodSignature() (supervi-
sor.xmlrpc.SystemNamespaceRPCInterface
method), 64

multicall() (supervisor.xmlrpc.SystemNamespaceRPCInterface
method), 64

P
PATH, 35

R
readLog() (supervisor.rpcinterface.SupervisorNamespaceRPCInterface

method), 59

73

supervisor Documentation, Release 4.0.0.dev0

readProcessStderrLog() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 63

readProcessStdoutLog() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 63

reloadConfig() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 63

removeProcessGroup() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 63

restart() (supervisor.rpcinterface.SupervisorNamespaceRPCInterface
method), 60

runit, 56

S
sendProcessStdin() (supervi-

sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 62

sendRemoteCommEvent() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 62

SHELL, 35
shutdown() (supervisor.rpcinterface.SupervisorNamespaceRPCInterface

method), 60
signalAllProcesses() (supervi-

sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 62

signalProcess() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 62

signalProcessGroup() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 62

startAllProcesses() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 62

startProcess() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 61

startProcessGroup() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 62

stopAllProcesses() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 62

stopProcess() (supervisor.rpcinterface.SupervisorNamespaceRPCInterface
method), 62

stopProcessGroup() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 62

Superlance, 56
supervisor.rpcinterface (module), 58

supervisor.xmlrpc (module), 64
SUPERVISOR_ENABLED, 35, 54
SUPERVISOR_GROUP_NAME, 35
SUPERVISOR_PROCESS_NAME, 35
SupervisorNamespaceRPCInterface (class in supervi-

sor.rpcinterface), 58, 60, 63
SystemNamespaceRPCInterface (class in supervi-

sor.xmlrpc), 64

T
tailProcessStderrLog() (supervi-

sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 63

tailProcessStdoutLog() (supervi-
sor.rpcinterface.SupervisorNamespaceRPCInterface
method), 63

U
umask, 56
USER, 35

74 Index

	Narrative Documentation
	Introduction
	Installing
	Running Supervisor
	Configuration File
	Subprocesses
	Logging
	Events
	Extending Supervisor’s XML-RPC API
	Upgrading Supervisor 2 to 3
	Frequently Asked Questions
	Resources and Development
	Glossary

	API Documentation
	XML-RPC API Documentation

	Plugins
	Third Party Applications and Libraries

	Indices and tables
	Python Module Index

